1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/fs/nfs/dir.c 4 * 5 * Copyright (C) 1992 Rick Sladkey 6 * 7 * nfs directory handling functions 8 * 9 * 10 Apr 1996 Added silly rename for unlink --okir 10 * 28 Sep 1996 Improved directory cache --okir 11 * 23 Aug 1997 Claus Heine claus@momo.math.rwth-aachen.de 12 * Re-implemented silly rename for unlink, newly implemented 13 * silly rename for nfs_rename() following the suggestions 14 * of Olaf Kirch (okir) found in this file. 15 * Following Linus comments on my original hack, this version 16 * depends only on the dcache stuff and doesn't touch the inode 17 * layer (iput() and friends). 18 * 6 Jun 1999 Cache readdir lookups in the page cache. -DaveM 19 */ 20 21 #include <linux/compat.h> 22 #include <linux/module.h> 23 #include <linux/time.h> 24 #include <linux/errno.h> 25 #include <linux/stat.h> 26 #include <linux/fcntl.h> 27 #include <linux/string.h> 28 #include <linux/kernel.h> 29 #include <linux/slab.h> 30 #include <linux/mm.h> 31 #include <linux/sunrpc/clnt.h> 32 #include <linux/nfs_fs.h> 33 #include <linux/nfs_mount.h> 34 #include <linux/pagemap.h> 35 #include <linux/pagevec.h> 36 #include <linux/namei.h> 37 #include <linux/mount.h> 38 #include <linux/swap.h> 39 #include <linux/sched.h> 40 #include <linux/kmemleak.h> 41 #include <linux/xattr.h> 42 #include <linux/hash.h> 43 44 #include "delegation.h" 45 #include "iostat.h" 46 #include "internal.h" 47 #include "fscache.h" 48 49 #include "nfstrace.h" 50 51 /* #define NFS_DEBUG_VERBOSE 1 */ 52 53 static int nfs_opendir(struct inode *, struct file *); 54 static int nfs_closedir(struct inode *, struct file *); 55 static int nfs_readdir(struct file *, struct dir_context *); 56 static int nfs_fsync_dir(struct file *, loff_t, loff_t, int); 57 static loff_t nfs_llseek_dir(struct file *, loff_t, int); 58 static void nfs_readdir_free_folio(struct folio *); 59 60 const struct file_operations nfs_dir_operations = { 61 .llseek = nfs_llseek_dir, 62 .read = generic_read_dir, 63 .iterate_shared = nfs_readdir, 64 .open = nfs_opendir, 65 .release = nfs_closedir, 66 .fsync = nfs_fsync_dir, 67 }; 68 69 const struct address_space_operations nfs_dir_aops = { 70 .free_folio = nfs_readdir_free_folio, 71 }; 72 73 #define NFS_INIT_DTSIZE PAGE_SIZE 74 75 static struct nfs_open_dir_context * 76 alloc_nfs_open_dir_context(struct inode *dir) 77 { 78 struct nfs_inode *nfsi = NFS_I(dir); 79 struct nfs_open_dir_context *ctx; 80 81 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL_ACCOUNT); 82 if (ctx != NULL) { 83 ctx->attr_gencount = nfsi->attr_gencount; 84 ctx->dtsize = NFS_INIT_DTSIZE; 85 spin_lock(&dir->i_lock); 86 if (list_empty(&nfsi->open_files) && 87 (nfsi->cache_validity & NFS_INO_DATA_INVAL_DEFER)) 88 nfs_set_cache_invalid(dir, 89 NFS_INO_INVALID_DATA | 90 NFS_INO_REVAL_FORCED); 91 list_add_tail_rcu(&ctx->list, &nfsi->open_files); 92 memcpy(ctx->verf, nfsi->cookieverf, sizeof(ctx->verf)); 93 spin_unlock(&dir->i_lock); 94 return ctx; 95 } 96 return ERR_PTR(-ENOMEM); 97 } 98 99 static void put_nfs_open_dir_context(struct inode *dir, struct nfs_open_dir_context *ctx) 100 { 101 spin_lock(&dir->i_lock); 102 list_del_rcu(&ctx->list); 103 spin_unlock(&dir->i_lock); 104 kfree_rcu(ctx, rcu_head); 105 } 106 107 /* 108 * Open file 109 */ 110 static int 111 nfs_opendir(struct inode *inode, struct file *filp) 112 { 113 int res = 0; 114 struct nfs_open_dir_context *ctx; 115 116 dfprintk(FILE, "NFS: open dir(%pD2)\n", filp); 117 118 nfs_inc_stats(inode, NFSIOS_VFSOPEN); 119 120 ctx = alloc_nfs_open_dir_context(inode); 121 if (IS_ERR(ctx)) { 122 res = PTR_ERR(ctx); 123 goto out; 124 } 125 filp->private_data = ctx; 126 out: 127 return res; 128 } 129 130 static int 131 nfs_closedir(struct inode *inode, struct file *filp) 132 { 133 put_nfs_open_dir_context(file_inode(filp), filp->private_data); 134 return 0; 135 } 136 137 struct nfs_cache_array_entry { 138 u64 cookie; 139 u64 ino; 140 const char *name; 141 unsigned int name_len; 142 unsigned char d_type; 143 }; 144 145 struct nfs_cache_array { 146 u64 change_attr; 147 u64 last_cookie; 148 unsigned int size; 149 unsigned char page_full : 1, 150 page_is_eof : 1, 151 cookies_are_ordered : 1; 152 struct nfs_cache_array_entry array[]; 153 }; 154 155 struct nfs_readdir_descriptor { 156 struct file *file; 157 struct page *page; 158 struct dir_context *ctx; 159 pgoff_t page_index; 160 pgoff_t page_index_max; 161 u64 dir_cookie; 162 u64 last_cookie; 163 loff_t current_index; 164 165 __be32 verf[NFS_DIR_VERIFIER_SIZE]; 166 unsigned long dir_verifier; 167 unsigned long timestamp; 168 unsigned long gencount; 169 unsigned long attr_gencount; 170 unsigned int cache_entry_index; 171 unsigned int buffer_fills; 172 unsigned int dtsize; 173 bool clear_cache; 174 bool plus; 175 bool eob; 176 bool eof; 177 }; 178 179 static void nfs_set_dtsize(struct nfs_readdir_descriptor *desc, unsigned int sz) 180 { 181 struct nfs_server *server = NFS_SERVER(file_inode(desc->file)); 182 unsigned int maxsize = server->dtsize; 183 184 if (sz > maxsize) 185 sz = maxsize; 186 if (sz < NFS_MIN_FILE_IO_SIZE) 187 sz = NFS_MIN_FILE_IO_SIZE; 188 desc->dtsize = sz; 189 } 190 191 static void nfs_shrink_dtsize(struct nfs_readdir_descriptor *desc) 192 { 193 nfs_set_dtsize(desc, desc->dtsize >> 1); 194 } 195 196 static void nfs_grow_dtsize(struct nfs_readdir_descriptor *desc) 197 { 198 nfs_set_dtsize(desc, desc->dtsize << 1); 199 } 200 201 static void nfs_readdir_page_init_array(struct page *page, u64 last_cookie, 202 u64 change_attr) 203 { 204 struct nfs_cache_array *array; 205 206 array = kmap_atomic(page); 207 array->change_attr = change_attr; 208 array->last_cookie = last_cookie; 209 array->size = 0; 210 array->page_full = 0; 211 array->page_is_eof = 0; 212 array->cookies_are_ordered = 1; 213 kunmap_atomic(array); 214 } 215 216 /* 217 * we are freeing strings created by nfs_add_to_readdir_array() 218 */ 219 static void nfs_readdir_clear_array(struct page *page) 220 { 221 struct nfs_cache_array *array; 222 unsigned int i; 223 224 array = kmap_atomic(page); 225 for (i = 0; i < array->size; i++) 226 kfree(array->array[i].name); 227 array->size = 0; 228 kunmap_atomic(array); 229 } 230 231 static void nfs_readdir_free_folio(struct folio *folio) 232 { 233 nfs_readdir_clear_array(&folio->page); 234 } 235 236 static void nfs_readdir_page_reinit_array(struct page *page, u64 last_cookie, 237 u64 change_attr) 238 { 239 nfs_readdir_clear_array(page); 240 nfs_readdir_page_init_array(page, last_cookie, change_attr); 241 } 242 243 static struct page * 244 nfs_readdir_page_array_alloc(u64 last_cookie, gfp_t gfp_flags) 245 { 246 struct page *page = alloc_page(gfp_flags); 247 if (page) 248 nfs_readdir_page_init_array(page, last_cookie, 0); 249 return page; 250 } 251 252 static void nfs_readdir_page_array_free(struct page *page) 253 { 254 if (page) { 255 nfs_readdir_clear_array(page); 256 put_page(page); 257 } 258 } 259 260 static u64 nfs_readdir_array_index_cookie(struct nfs_cache_array *array) 261 { 262 return array->size == 0 ? array->last_cookie : array->array[0].cookie; 263 } 264 265 static void nfs_readdir_array_set_eof(struct nfs_cache_array *array) 266 { 267 array->page_is_eof = 1; 268 array->page_full = 1; 269 } 270 271 static bool nfs_readdir_array_is_full(struct nfs_cache_array *array) 272 { 273 return array->page_full; 274 } 275 276 /* 277 * the caller is responsible for freeing qstr.name 278 * when called by nfs_readdir_add_to_array, the strings will be freed in 279 * nfs_clear_readdir_array() 280 */ 281 static const char *nfs_readdir_copy_name(const char *name, unsigned int len) 282 { 283 const char *ret = kmemdup_nul(name, len, GFP_KERNEL); 284 285 /* 286 * Avoid a kmemleak false positive. The pointer to the name is stored 287 * in a page cache page which kmemleak does not scan. 288 */ 289 if (ret != NULL) 290 kmemleak_not_leak(ret); 291 return ret; 292 } 293 294 static size_t nfs_readdir_array_maxentries(void) 295 { 296 return (PAGE_SIZE - sizeof(struct nfs_cache_array)) / 297 sizeof(struct nfs_cache_array_entry); 298 } 299 300 /* 301 * Check that the next array entry lies entirely within the page bounds 302 */ 303 static int nfs_readdir_array_can_expand(struct nfs_cache_array *array) 304 { 305 if (array->page_full) 306 return -ENOSPC; 307 if (array->size == nfs_readdir_array_maxentries()) { 308 array->page_full = 1; 309 return -ENOSPC; 310 } 311 return 0; 312 } 313 314 static int nfs_readdir_page_array_append(struct page *page, 315 const struct nfs_entry *entry, 316 u64 *cookie) 317 { 318 struct nfs_cache_array *array; 319 struct nfs_cache_array_entry *cache_entry; 320 const char *name; 321 int ret = -ENOMEM; 322 323 name = nfs_readdir_copy_name(entry->name, entry->len); 324 325 array = kmap_atomic(page); 326 if (!name) 327 goto out; 328 ret = nfs_readdir_array_can_expand(array); 329 if (ret) { 330 kfree(name); 331 goto out; 332 } 333 334 cache_entry = &array->array[array->size]; 335 cache_entry->cookie = array->last_cookie; 336 cache_entry->ino = entry->ino; 337 cache_entry->d_type = entry->d_type; 338 cache_entry->name_len = entry->len; 339 cache_entry->name = name; 340 array->last_cookie = entry->cookie; 341 if (array->last_cookie <= cache_entry->cookie) 342 array->cookies_are_ordered = 0; 343 array->size++; 344 if (entry->eof != 0) 345 nfs_readdir_array_set_eof(array); 346 out: 347 *cookie = array->last_cookie; 348 kunmap_atomic(array); 349 return ret; 350 } 351 352 #define NFS_READDIR_COOKIE_MASK (U32_MAX >> 14) 353 /* 354 * Hash algorithm allowing content addressible access to sequences 355 * of directory cookies. Content is addressed by the value of the 356 * cookie index of the first readdir entry in a page. 357 * 358 * We select only the first 18 bits to avoid issues with excessive 359 * memory use for the page cache XArray. 18 bits should allow the caching 360 * of 262144 pages of sequences of readdir entries. Since each page holds 361 * 127 readdir entries for a typical 64-bit system, that works out to a 362 * cache of ~ 33 million entries per directory. 363 */ 364 static pgoff_t nfs_readdir_page_cookie_hash(u64 cookie) 365 { 366 if (cookie == 0) 367 return 0; 368 return hash_64(cookie, 18); 369 } 370 371 static bool nfs_readdir_page_validate(struct page *page, u64 last_cookie, 372 u64 change_attr) 373 { 374 struct nfs_cache_array *array = kmap_atomic(page); 375 int ret = true; 376 377 if (array->change_attr != change_attr) 378 ret = false; 379 if (nfs_readdir_array_index_cookie(array) != last_cookie) 380 ret = false; 381 kunmap_atomic(array); 382 return ret; 383 } 384 385 static void nfs_readdir_page_unlock_and_put(struct page *page) 386 { 387 unlock_page(page); 388 put_page(page); 389 } 390 391 static void nfs_readdir_page_init_and_validate(struct page *page, u64 cookie, 392 u64 change_attr) 393 { 394 if (PageUptodate(page)) { 395 if (nfs_readdir_page_validate(page, cookie, change_attr)) 396 return; 397 nfs_readdir_clear_array(page); 398 } 399 nfs_readdir_page_init_array(page, cookie, change_attr); 400 SetPageUptodate(page); 401 } 402 403 static struct page *nfs_readdir_page_get_locked(struct address_space *mapping, 404 u64 cookie, u64 change_attr) 405 { 406 pgoff_t index = nfs_readdir_page_cookie_hash(cookie); 407 struct page *page; 408 409 page = grab_cache_page(mapping, index); 410 if (!page) 411 return NULL; 412 nfs_readdir_page_init_and_validate(page, cookie, change_attr); 413 return page; 414 } 415 416 static u64 nfs_readdir_page_last_cookie(struct page *page) 417 { 418 struct nfs_cache_array *array; 419 u64 ret; 420 421 array = kmap_atomic(page); 422 ret = array->last_cookie; 423 kunmap_atomic(array); 424 return ret; 425 } 426 427 static bool nfs_readdir_page_needs_filling(struct page *page) 428 { 429 struct nfs_cache_array *array; 430 bool ret; 431 432 array = kmap_atomic(page); 433 ret = !nfs_readdir_array_is_full(array); 434 kunmap_atomic(array); 435 return ret; 436 } 437 438 static void nfs_readdir_page_set_eof(struct page *page) 439 { 440 struct nfs_cache_array *array; 441 442 array = kmap_atomic(page); 443 nfs_readdir_array_set_eof(array); 444 kunmap_atomic(array); 445 } 446 447 static struct page *nfs_readdir_page_get_next(struct address_space *mapping, 448 u64 cookie, u64 change_attr) 449 { 450 pgoff_t index = nfs_readdir_page_cookie_hash(cookie); 451 struct page *page; 452 453 page = grab_cache_page_nowait(mapping, index); 454 if (!page) 455 return NULL; 456 nfs_readdir_page_init_and_validate(page, cookie, change_attr); 457 if (nfs_readdir_page_last_cookie(page) != cookie) 458 nfs_readdir_page_reinit_array(page, cookie, change_attr); 459 return page; 460 } 461 462 static inline 463 int is_32bit_api(void) 464 { 465 #ifdef CONFIG_COMPAT 466 return in_compat_syscall(); 467 #else 468 return (BITS_PER_LONG == 32); 469 #endif 470 } 471 472 static 473 bool nfs_readdir_use_cookie(const struct file *filp) 474 { 475 if ((filp->f_mode & FMODE_32BITHASH) || 476 (!(filp->f_mode & FMODE_64BITHASH) && is_32bit_api())) 477 return false; 478 return true; 479 } 480 481 static void nfs_readdir_seek_next_array(struct nfs_cache_array *array, 482 struct nfs_readdir_descriptor *desc) 483 { 484 if (array->page_full) { 485 desc->last_cookie = array->last_cookie; 486 desc->current_index += array->size; 487 desc->cache_entry_index = 0; 488 desc->page_index++; 489 } else 490 desc->last_cookie = nfs_readdir_array_index_cookie(array); 491 } 492 493 static void nfs_readdir_rewind_search(struct nfs_readdir_descriptor *desc) 494 { 495 desc->current_index = 0; 496 desc->last_cookie = 0; 497 desc->page_index = 0; 498 } 499 500 static int nfs_readdir_search_for_pos(struct nfs_cache_array *array, 501 struct nfs_readdir_descriptor *desc) 502 { 503 loff_t diff = desc->ctx->pos - desc->current_index; 504 unsigned int index; 505 506 if (diff < 0) 507 goto out_eof; 508 if (diff >= array->size) { 509 if (array->page_is_eof) 510 goto out_eof; 511 nfs_readdir_seek_next_array(array, desc); 512 return -EAGAIN; 513 } 514 515 index = (unsigned int)diff; 516 desc->dir_cookie = array->array[index].cookie; 517 desc->cache_entry_index = index; 518 return 0; 519 out_eof: 520 desc->eof = true; 521 return -EBADCOOKIE; 522 } 523 524 static bool nfs_readdir_array_cookie_in_range(struct nfs_cache_array *array, 525 u64 cookie) 526 { 527 if (!array->cookies_are_ordered) 528 return true; 529 /* Optimisation for monotonically increasing cookies */ 530 if (cookie >= array->last_cookie) 531 return false; 532 if (array->size && cookie < array->array[0].cookie) 533 return false; 534 return true; 535 } 536 537 static int nfs_readdir_search_for_cookie(struct nfs_cache_array *array, 538 struct nfs_readdir_descriptor *desc) 539 { 540 unsigned int i; 541 int status = -EAGAIN; 542 543 if (!nfs_readdir_array_cookie_in_range(array, desc->dir_cookie)) 544 goto check_eof; 545 546 for (i = 0; i < array->size; i++) { 547 if (array->array[i].cookie == desc->dir_cookie) { 548 if (nfs_readdir_use_cookie(desc->file)) 549 desc->ctx->pos = desc->dir_cookie; 550 else 551 desc->ctx->pos = desc->current_index + i; 552 desc->cache_entry_index = i; 553 return 0; 554 } 555 } 556 check_eof: 557 if (array->page_is_eof) { 558 status = -EBADCOOKIE; 559 if (desc->dir_cookie == array->last_cookie) 560 desc->eof = true; 561 } else 562 nfs_readdir_seek_next_array(array, desc); 563 return status; 564 } 565 566 static int nfs_readdir_search_array(struct nfs_readdir_descriptor *desc) 567 { 568 struct nfs_cache_array *array; 569 int status; 570 571 array = kmap_atomic(desc->page); 572 573 if (desc->dir_cookie == 0) 574 status = nfs_readdir_search_for_pos(array, desc); 575 else 576 status = nfs_readdir_search_for_cookie(array, desc); 577 578 kunmap_atomic(array); 579 return status; 580 } 581 582 /* Fill a page with xdr information before transferring to the cache page */ 583 static int nfs_readdir_xdr_filler(struct nfs_readdir_descriptor *desc, 584 __be32 *verf, u64 cookie, 585 struct page **pages, size_t bufsize, 586 __be32 *verf_res) 587 { 588 struct inode *inode = file_inode(desc->file); 589 struct nfs_readdir_arg arg = { 590 .dentry = file_dentry(desc->file), 591 .cred = desc->file->f_cred, 592 .verf = verf, 593 .cookie = cookie, 594 .pages = pages, 595 .page_len = bufsize, 596 .plus = desc->plus, 597 }; 598 struct nfs_readdir_res res = { 599 .verf = verf_res, 600 }; 601 unsigned long timestamp, gencount; 602 int error; 603 604 again: 605 timestamp = jiffies; 606 gencount = nfs_inc_attr_generation_counter(); 607 desc->dir_verifier = nfs_save_change_attribute(inode); 608 error = NFS_PROTO(inode)->readdir(&arg, &res); 609 if (error < 0) { 610 /* We requested READDIRPLUS, but the server doesn't grok it */ 611 if (error == -ENOTSUPP && desc->plus) { 612 NFS_SERVER(inode)->caps &= ~NFS_CAP_READDIRPLUS; 613 desc->plus = arg.plus = false; 614 goto again; 615 } 616 goto error; 617 } 618 desc->timestamp = timestamp; 619 desc->gencount = gencount; 620 error: 621 return error; 622 } 623 624 static int xdr_decode(struct nfs_readdir_descriptor *desc, 625 struct nfs_entry *entry, struct xdr_stream *xdr) 626 { 627 struct inode *inode = file_inode(desc->file); 628 int error; 629 630 error = NFS_PROTO(inode)->decode_dirent(xdr, entry, desc->plus); 631 if (error) 632 return error; 633 entry->fattr->time_start = desc->timestamp; 634 entry->fattr->gencount = desc->gencount; 635 return 0; 636 } 637 638 /* Match file and dirent using either filehandle or fileid 639 * Note: caller is responsible for checking the fsid 640 */ 641 static 642 int nfs_same_file(struct dentry *dentry, struct nfs_entry *entry) 643 { 644 struct inode *inode; 645 struct nfs_inode *nfsi; 646 647 if (d_really_is_negative(dentry)) 648 return 0; 649 650 inode = d_inode(dentry); 651 if (is_bad_inode(inode) || NFS_STALE(inode)) 652 return 0; 653 654 nfsi = NFS_I(inode); 655 if (entry->fattr->fileid != nfsi->fileid) 656 return 0; 657 if (entry->fh->size && nfs_compare_fh(entry->fh, &nfsi->fh) != 0) 658 return 0; 659 return 1; 660 } 661 662 #define NFS_READDIR_CACHE_USAGE_THRESHOLD (8UL) 663 664 static bool nfs_use_readdirplus(struct inode *dir, struct dir_context *ctx, 665 unsigned int cache_hits, 666 unsigned int cache_misses) 667 { 668 if (!nfs_server_capable(dir, NFS_CAP_READDIRPLUS)) 669 return false; 670 if (ctx->pos == 0 || 671 cache_hits + cache_misses > NFS_READDIR_CACHE_USAGE_THRESHOLD) 672 return true; 673 return false; 674 } 675 676 /* 677 * This function is called by the getattr code to request the 678 * use of readdirplus to accelerate any future lookups in the same 679 * directory. 680 */ 681 void nfs_readdir_record_entry_cache_hit(struct inode *dir) 682 { 683 struct nfs_inode *nfsi = NFS_I(dir); 684 struct nfs_open_dir_context *ctx; 685 686 if (nfs_server_capable(dir, NFS_CAP_READDIRPLUS) && 687 S_ISDIR(dir->i_mode)) { 688 rcu_read_lock(); 689 list_for_each_entry_rcu (ctx, &nfsi->open_files, list) 690 atomic_inc(&ctx->cache_hits); 691 rcu_read_unlock(); 692 } 693 } 694 695 /* 696 * This function is mainly for use by nfs_getattr(). 697 * 698 * If this is an 'ls -l', we want to force use of readdirplus. 699 */ 700 void nfs_readdir_record_entry_cache_miss(struct inode *dir) 701 { 702 struct nfs_inode *nfsi = NFS_I(dir); 703 struct nfs_open_dir_context *ctx; 704 705 if (nfs_server_capable(dir, NFS_CAP_READDIRPLUS) && 706 S_ISDIR(dir->i_mode)) { 707 rcu_read_lock(); 708 list_for_each_entry_rcu (ctx, &nfsi->open_files, list) 709 atomic_inc(&ctx->cache_misses); 710 rcu_read_unlock(); 711 } 712 } 713 714 static void nfs_lookup_advise_force_readdirplus(struct inode *dir, 715 unsigned int flags) 716 { 717 if (nfs_server_capable(dir, NFS_CAP_CASE_INSENSITIVE)) 718 return; 719 if (flags & (LOOKUP_EXCL | LOOKUP_PARENT | LOOKUP_REVAL)) 720 return; 721 nfs_readdir_record_entry_cache_miss(dir); 722 } 723 724 static 725 void nfs_prime_dcache(struct dentry *parent, struct nfs_entry *entry, 726 unsigned long dir_verifier) 727 { 728 struct qstr filename = QSTR_INIT(entry->name, entry->len); 729 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq); 730 struct dentry *dentry; 731 struct dentry *alias; 732 struct inode *inode; 733 int status; 734 735 if (!(entry->fattr->valid & NFS_ATTR_FATTR_FILEID)) 736 return; 737 if (!(entry->fattr->valid & NFS_ATTR_FATTR_FSID)) 738 return; 739 if (filename.len == 0) 740 return; 741 /* Validate that the name doesn't contain any illegal '\0' */ 742 if (strnlen(filename.name, filename.len) != filename.len) 743 return; 744 /* ...or '/' */ 745 if (strnchr(filename.name, filename.len, '/')) 746 return; 747 if (filename.name[0] == '.') { 748 if (filename.len == 1) 749 return; 750 if (filename.len == 2 && filename.name[1] == '.') 751 return; 752 } 753 filename.hash = full_name_hash(parent, filename.name, filename.len); 754 755 dentry = d_lookup(parent, &filename); 756 again: 757 if (!dentry) { 758 dentry = d_alloc_parallel(parent, &filename, &wq); 759 if (IS_ERR(dentry)) 760 return; 761 } 762 if (!d_in_lookup(dentry)) { 763 /* Is there a mountpoint here? If so, just exit */ 764 if (!nfs_fsid_equal(&NFS_SB(dentry->d_sb)->fsid, 765 &entry->fattr->fsid)) 766 goto out; 767 if (nfs_same_file(dentry, entry)) { 768 if (!entry->fh->size) 769 goto out; 770 nfs_set_verifier(dentry, dir_verifier); 771 status = nfs_refresh_inode(d_inode(dentry), entry->fattr); 772 if (!status) 773 nfs_setsecurity(d_inode(dentry), entry->fattr); 774 trace_nfs_readdir_lookup_revalidate(d_inode(parent), 775 dentry, 0, status); 776 goto out; 777 } else { 778 trace_nfs_readdir_lookup_revalidate_failed( 779 d_inode(parent), dentry, 0); 780 d_invalidate(dentry); 781 dput(dentry); 782 dentry = NULL; 783 goto again; 784 } 785 } 786 if (!entry->fh->size) { 787 d_lookup_done(dentry); 788 goto out; 789 } 790 791 inode = nfs_fhget(dentry->d_sb, entry->fh, entry->fattr); 792 alias = d_splice_alias(inode, dentry); 793 d_lookup_done(dentry); 794 if (alias) { 795 if (IS_ERR(alias)) 796 goto out; 797 dput(dentry); 798 dentry = alias; 799 } 800 nfs_set_verifier(dentry, dir_verifier); 801 trace_nfs_readdir_lookup(d_inode(parent), dentry, 0); 802 out: 803 dput(dentry); 804 } 805 806 static int nfs_readdir_entry_decode(struct nfs_readdir_descriptor *desc, 807 struct nfs_entry *entry, 808 struct xdr_stream *stream) 809 { 810 int ret; 811 812 if (entry->fattr->label) 813 entry->fattr->label->len = NFS4_MAXLABELLEN; 814 ret = xdr_decode(desc, entry, stream); 815 if (ret || !desc->plus) 816 return ret; 817 nfs_prime_dcache(file_dentry(desc->file), entry, desc->dir_verifier); 818 return 0; 819 } 820 821 /* Perform conversion from xdr to cache array */ 822 static int nfs_readdir_page_filler(struct nfs_readdir_descriptor *desc, 823 struct nfs_entry *entry, 824 struct page **xdr_pages, unsigned int buflen, 825 struct page **arrays, size_t narrays, 826 u64 change_attr) 827 { 828 struct address_space *mapping = desc->file->f_mapping; 829 struct xdr_stream stream; 830 struct xdr_buf buf; 831 struct page *scratch, *new, *page = *arrays; 832 u64 cookie; 833 int status; 834 835 scratch = alloc_page(GFP_KERNEL); 836 if (scratch == NULL) 837 return -ENOMEM; 838 839 xdr_init_decode_pages(&stream, &buf, xdr_pages, buflen); 840 xdr_set_scratch_page(&stream, scratch); 841 842 do { 843 status = nfs_readdir_entry_decode(desc, entry, &stream); 844 if (status != 0) 845 break; 846 847 status = nfs_readdir_page_array_append(page, entry, &cookie); 848 if (status != -ENOSPC) 849 continue; 850 851 if (page->mapping != mapping) { 852 if (!--narrays) 853 break; 854 new = nfs_readdir_page_array_alloc(cookie, GFP_KERNEL); 855 if (!new) 856 break; 857 arrays++; 858 *arrays = page = new; 859 } else { 860 new = nfs_readdir_page_get_next(mapping, cookie, 861 change_attr); 862 if (!new) 863 break; 864 if (page != *arrays) 865 nfs_readdir_page_unlock_and_put(page); 866 page = new; 867 } 868 desc->page_index_max++; 869 status = nfs_readdir_page_array_append(page, entry, &cookie); 870 } while (!status && !entry->eof); 871 872 switch (status) { 873 case -EBADCOOKIE: 874 if (!entry->eof) 875 break; 876 nfs_readdir_page_set_eof(page); 877 fallthrough; 878 case -EAGAIN: 879 status = 0; 880 break; 881 case -ENOSPC: 882 status = 0; 883 if (!desc->plus) 884 break; 885 while (!nfs_readdir_entry_decode(desc, entry, &stream)) 886 ; 887 } 888 889 if (page != *arrays) 890 nfs_readdir_page_unlock_and_put(page); 891 892 put_page(scratch); 893 return status; 894 } 895 896 static void nfs_readdir_free_pages(struct page **pages, size_t npages) 897 { 898 while (npages--) 899 put_page(pages[npages]); 900 kfree(pages); 901 } 902 903 /* 904 * nfs_readdir_alloc_pages() will allocate pages that must be freed with a call 905 * to nfs_readdir_free_pages() 906 */ 907 static struct page **nfs_readdir_alloc_pages(size_t npages) 908 { 909 struct page **pages; 910 size_t i; 911 912 pages = kmalloc_array(npages, sizeof(*pages), GFP_KERNEL); 913 if (!pages) 914 return NULL; 915 for (i = 0; i < npages; i++) { 916 struct page *page = alloc_page(GFP_KERNEL); 917 if (page == NULL) 918 goto out_freepages; 919 pages[i] = page; 920 } 921 return pages; 922 923 out_freepages: 924 nfs_readdir_free_pages(pages, i); 925 return NULL; 926 } 927 928 static int nfs_readdir_xdr_to_array(struct nfs_readdir_descriptor *desc, 929 __be32 *verf_arg, __be32 *verf_res, 930 struct page **arrays, size_t narrays) 931 { 932 u64 change_attr; 933 struct page **pages; 934 struct page *page = *arrays; 935 struct nfs_entry *entry; 936 size_t array_size; 937 struct inode *inode = file_inode(desc->file); 938 unsigned int dtsize = desc->dtsize; 939 unsigned int pglen; 940 int status = -ENOMEM; 941 942 entry = kzalloc(sizeof(*entry), GFP_KERNEL); 943 if (!entry) 944 return -ENOMEM; 945 entry->cookie = nfs_readdir_page_last_cookie(page); 946 entry->fh = nfs_alloc_fhandle(); 947 entry->fattr = nfs_alloc_fattr_with_label(NFS_SERVER(inode)); 948 entry->server = NFS_SERVER(inode); 949 if (entry->fh == NULL || entry->fattr == NULL) 950 goto out; 951 952 array_size = (dtsize + PAGE_SIZE - 1) >> PAGE_SHIFT; 953 pages = nfs_readdir_alloc_pages(array_size); 954 if (!pages) 955 goto out; 956 957 change_attr = inode_peek_iversion_raw(inode); 958 status = nfs_readdir_xdr_filler(desc, verf_arg, entry->cookie, pages, 959 dtsize, verf_res); 960 if (status < 0) 961 goto free_pages; 962 963 pglen = status; 964 if (pglen != 0) 965 status = nfs_readdir_page_filler(desc, entry, pages, pglen, 966 arrays, narrays, change_attr); 967 else 968 nfs_readdir_page_set_eof(page); 969 desc->buffer_fills++; 970 971 free_pages: 972 nfs_readdir_free_pages(pages, array_size); 973 out: 974 nfs_free_fattr(entry->fattr); 975 nfs_free_fhandle(entry->fh); 976 kfree(entry); 977 return status; 978 } 979 980 static void nfs_readdir_page_put(struct nfs_readdir_descriptor *desc) 981 { 982 put_page(desc->page); 983 desc->page = NULL; 984 } 985 986 static void 987 nfs_readdir_page_unlock_and_put_cached(struct nfs_readdir_descriptor *desc) 988 { 989 unlock_page(desc->page); 990 nfs_readdir_page_put(desc); 991 } 992 993 static struct page * 994 nfs_readdir_page_get_cached(struct nfs_readdir_descriptor *desc) 995 { 996 struct address_space *mapping = desc->file->f_mapping; 997 u64 change_attr = inode_peek_iversion_raw(mapping->host); 998 u64 cookie = desc->last_cookie; 999 struct page *page; 1000 1001 page = nfs_readdir_page_get_locked(mapping, cookie, change_attr); 1002 if (!page) 1003 return NULL; 1004 if (desc->clear_cache && !nfs_readdir_page_needs_filling(page)) 1005 nfs_readdir_page_reinit_array(page, cookie, change_attr); 1006 return page; 1007 } 1008 1009 /* 1010 * Returns 0 if desc->dir_cookie was found on page desc->page_index 1011 * and locks the page to prevent removal from the page cache. 1012 */ 1013 static int find_and_lock_cache_page(struct nfs_readdir_descriptor *desc) 1014 { 1015 struct inode *inode = file_inode(desc->file); 1016 struct nfs_inode *nfsi = NFS_I(inode); 1017 __be32 verf[NFS_DIR_VERIFIER_SIZE]; 1018 int res; 1019 1020 desc->page = nfs_readdir_page_get_cached(desc); 1021 if (!desc->page) 1022 return -ENOMEM; 1023 if (nfs_readdir_page_needs_filling(desc->page)) { 1024 /* Grow the dtsize if we had to go back for more pages */ 1025 if (desc->page_index == desc->page_index_max) 1026 nfs_grow_dtsize(desc); 1027 desc->page_index_max = desc->page_index; 1028 trace_nfs_readdir_cache_fill(desc->file, nfsi->cookieverf, 1029 desc->last_cookie, 1030 desc->page->index, desc->dtsize); 1031 res = nfs_readdir_xdr_to_array(desc, nfsi->cookieverf, verf, 1032 &desc->page, 1); 1033 if (res < 0) { 1034 nfs_readdir_page_unlock_and_put_cached(desc); 1035 trace_nfs_readdir_cache_fill_done(inode, res); 1036 if (res == -EBADCOOKIE || res == -ENOTSYNC) { 1037 invalidate_inode_pages2(desc->file->f_mapping); 1038 nfs_readdir_rewind_search(desc); 1039 trace_nfs_readdir_invalidate_cache_range( 1040 inode, 0, MAX_LFS_FILESIZE); 1041 return -EAGAIN; 1042 } 1043 return res; 1044 } 1045 /* 1046 * Set the cookie verifier if the page cache was empty 1047 */ 1048 if (desc->last_cookie == 0 && 1049 memcmp(nfsi->cookieverf, verf, sizeof(nfsi->cookieverf))) { 1050 memcpy(nfsi->cookieverf, verf, 1051 sizeof(nfsi->cookieverf)); 1052 invalidate_inode_pages2_range(desc->file->f_mapping, 1, 1053 -1); 1054 trace_nfs_readdir_invalidate_cache_range( 1055 inode, 1, MAX_LFS_FILESIZE); 1056 } 1057 desc->clear_cache = false; 1058 } 1059 res = nfs_readdir_search_array(desc); 1060 if (res == 0) 1061 return 0; 1062 nfs_readdir_page_unlock_and_put_cached(desc); 1063 return res; 1064 } 1065 1066 /* Search for desc->dir_cookie from the beginning of the page cache */ 1067 static int readdir_search_pagecache(struct nfs_readdir_descriptor *desc) 1068 { 1069 int res; 1070 1071 do { 1072 res = find_and_lock_cache_page(desc); 1073 } while (res == -EAGAIN); 1074 return res; 1075 } 1076 1077 #define NFS_READDIR_CACHE_MISS_THRESHOLD (16UL) 1078 1079 /* 1080 * Once we've found the start of the dirent within a page: fill 'er up... 1081 */ 1082 static void nfs_do_filldir(struct nfs_readdir_descriptor *desc, 1083 const __be32 *verf) 1084 { 1085 struct file *file = desc->file; 1086 struct nfs_cache_array *array; 1087 unsigned int i; 1088 bool first_emit = !desc->dir_cookie; 1089 1090 array = kmap_local_page(desc->page); 1091 for (i = desc->cache_entry_index; i < array->size; i++) { 1092 struct nfs_cache_array_entry *ent; 1093 1094 ent = &array->array[i]; 1095 if (!dir_emit(desc->ctx, ent->name, ent->name_len, 1096 nfs_compat_user_ino64(ent->ino), ent->d_type)) { 1097 desc->eob = true; 1098 break; 1099 } 1100 memcpy(desc->verf, verf, sizeof(desc->verf)); 1101 if (i == array->size - 1) { 1102 desc->dir_cookie = array->last_cookie; 1103 nfs_readdir_seek_next_array(array, desc); 1104 } else { 1105 desc->dir_cookie = array->array[i + 1].cookie; 1106 desc->last_cookie = array->array[0].cookie; 1107 } 1108 if (nfs_readdir_use_cookie(file)) 1109 desc->ctx->pos = desc->dir_cookie; 1110 else 1111 desc->ctx->pos++; 1112 if (first_emit && i > NFS_READDIR_CACHE_MISS_THRESHOLD + 1) { 1113 desc->eob = true; 1114 break; 1115 } 1116 } 1117 if (array->page_is_eof) 1118 desc->eof = !desc->eob; 1119 1120 kunmap_local(array); 1121 dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling ended @ cookie %llu\n", 1122 (unsigned long long)desc->dir_cookie); 1123 } 1124 1125 /* 1126 * If we cannot find a cookie in our cache, we suspect that this is 1127 * because it points to a deleted file, so we ask the server to return 1128 * whatever it thinks is the next entry. We then feed this to filldir. 1129 * If all goes well, we should then be able to find our way round the 1130 * cache on the next call to readdir_search_pagecache(); 1131 * 1132 * NOTE: we cannot add the anonymous page to the pagecache because 1133 * the data it contains might not be page aligned. Besides, 1134 * we should already have a complete representation of the 1135 * directory in the page cache by the time we get here. 1136 */ 1137 static int uncached_readdir(struct nfs_readdir_descriptor *desc) 1138 { 1139 struct page **arrays; 1140 size_t i, sz = 512; 1141 __be32 verf[NFS_DIR_VERIFIER_SIZE]; 1142 int status = -ENOMEM; 1143 1144 dfprintk(DIRCACHE, "NFS: uncached_readdir() searching for cookie %llu\n", 1145 (unsigned long long)desc->dir_cookie); 1146 1147 arrays = kcalloc(sz, sizeof(*arrays), GFP_KERNEL); 1148 if (!arrays) 1149 goto out; 1150 arrays[0] = nfs_readdir_page_array_alloc(desc->dir_cookie, GFP_KERNEL); 1151 if (!arrays[0]) 1152 goto out; 1153 1154 desc->page_index = 0; 1155 desc->cache_entry_index = 0; 1156 desc->last_cookie = desc->dir_cookie; 1157 desc->page_index_max = 0; 1158 1159 trace_nfs_readdir_uncached(desc->file, desc->verf, desc->last_cookie, 1160 -1, desc->dtsize); 1161 1162 status = nfs_readdir_xdr_to_array(desc, desc->verf, verf, arrays, sz); 1163 if (status < 0) { 1164 trace_nfs_readdir_uncached_done(file_inode(desc->file), status); 1165 goto out_free; 1166 } 1167 1168 for (i = 0; !desc->eob && i < sz && arrays[i]; i++) { 1169 desc->page = arrays[i]; 1170 nfs_do_filldir(desc, verf); 1171 } 1172 desc->page = NULL; 1173 1174 /* 1175 * Grow the dtsize if we have to go back for more pages, 1176 * or shrink it if we're reading too many. 1177 */ 1178 if (!desc->eof) { 1179 if (!desc->eob) 1180 nfs_grow_dtsize(desc); 1181 else if (desc->buffer_fills == 1 && 1182 i < (desc->page_index_max >> 1)) 1183 nfs_shrink_dtsize(desc); 1184 } 1185 out_free: 1186 for (i = 0; i < sz && arrays[i]; i++) 1187 nfs_readdir_page_array_free(arrays[i]); 1188 out: 1189 if (!nfs_readdir_use_cookie(desc->file)) 1190 nfs_readdir_rewind_search(desc); 1191 desc->page_index_max = -1; 1192 kfree(arrays); 1193 dfprintk(DIRCACHE, "NFS: %s: returns %d\n", __func__, status); 1194 return status; 1195 } 1196 1197 static bool nfs_readdir_handle_cache_misses(struct inode *inode, 1198 struct nfs_readdir_descriptor *desc, 1199 unsigned int cache_misses, 1200 bool force_clear) 1201 { 1202 if (desc->ctx->pos == 0 || !desc->plus) 1203 return false; 1204 if (cache_misses <= NFS_READDIR_CACHE_MISS_THRESHOLD && !force_clear) 1205 return false; 1206 trace_nfs_readdir_force_readdirplus(inode); 1207 return true; 1208 } 1209 1210 /* The file offset position represents the dirent entry number. A 1211 last cookie cache takes care of the common case of reading the 1212 whole directory. 1213 */ 1214 static int nfs_readdir(struct file *file, struct dir_context *ctx) 1215 { 1216 struct dentry *dentry = file_dentry(file); 1217 struct inode *inode = d_inode(dentry); 1218 struct nfs_inode *nfsi = NFS_I(inode); 1219 struct nfs_open_dir_context *dir_ctx = file->private_data; 1220 struct nfs_readdir_descriptor *desc; 1221 unsigned int cache_hits, cache_misses; 1222 bool force_clear; 1223 int res; 1224 1225 dfprintk(FILE, "NFS: readdir(%pD2) starting at cookie %llu\n", 1226 file, (long long)ctx->pos); 1227 nfs_inc_stats(inode, NFSIOS_VFSGETDENTS); 1228 1229 /* 1230 * ctx->pos points to the dirent entry number. 1231 * *desc->dir_cookie has the cookie for the next entry. We have 1232 * to either find the entry with the appropriate number or 1233 * revalidate the cookie. 1234 */ 1235 nfs_revalidate_mapping(inode, file->f_mapping); 1236 1237 res = -ENOMEM; 1238 desc = kzalloc(sizeof(*desc), GFP_KERNEL); 1239 if (!desc) 1240 goto out; 1241 desc->file = file; 1242 desc->ctx = ctx; 1243 desc->page_index_max = -1; 1244 1245 spin_lock(&file->f_lock); 1246 desc->dir_cookie = dir_ctx->dir_cookie; 1247 desc->page_index = dir_ctx->page_index; 1248 desc->last_cookie = dir_ctx->last_cookie; 1249 desc->attr_gencount = dir_ctx->attr_gencount; 1250 desc->eof = dir_ctx->eof; 1251 nfs_set_dtsize(desc, dir_ctx->dtsize); 1252 memcpy(desc->verf, dir_ctx->verf, sizeof(desc->verf)); 1253 cache_hits = atomic_xchg(&dir_ctx->cache_hits, 0); 1254 cache_misses = atomic_xchg(&dir_ctx->cache_misses, 0); 1255 force_clear = dir_ctx->force_clear; 1256 spin_unlock(&file->f_lock); 1257 1258 if (desc->eof) { 1259 res = 0; 1260 goto out_free; 1261 } 1262 1263 desc->plus = nfs_use_readdirplus(inode, ctx, cache_hits, cache_misses); 1264 force_clear = nfs_readdir_handle_cache_misses(inode, desc, cache_misses, 1265 force_clear); 1266 desc->clear_cache = force_clear; 1267 1268 do { 1269 res = readdir_search_pagecache(desc); 1270 1271 if (res == -EBADCOOKIE) { 1272 res = 0; 1273 /* This means either end of directory */ 1274 if (desc->dir_cookie && !desc->eof) { 1275 /* Or that the server has 'lost' a cookie */ 1276 res = uncached_readdir(desc); 1277 if (res == 0) 1278 continue; 1279 if (res == -EBADCOOKIE || res == -ENOTSYNC) 1280 res = 0; 1281 } 1282 break; 1283 } 1284 if (res == -ETOOSMALL && desc->plus) { 1285 nfs_zap_caches(inode); 1286 desc->plus = false; 1287 desc->eof = false; 1288 continue; 1289 } 1290 if (res < 0) 1291 break; 1292 1293 nfs_do_filldir(desc, nfsi->cookieverf); 1294 nfs_readdir_page_unlock_and_put_cached(desc); 1295 if (desc->page_index == desc->page_index_max) 1296 desc->clear_cache = force_clear; 1297 } while (!desc->eob && !desc->eof); 1298 1299 spin_lock(&file->f_lock); 1300 dir_ctx->dir_cookie = desc->dir_cookie; 1301 dir_ctx->last_cookie = desc->last_cookie; 1302 dir_ctx->attr_gencount = desc->attr_gencount; 1303 dir_ctx->page_index = desc->page_index; 1304 dir_ctx->force_clear = force_clear; 1305 dir_ctx->eof = desc->eof; 1306 dir_ctx->dtsize = desc->dtsize; 1307 memcpy(dir_ctx->verf, desc->verf, sizeof(dir_ctx->verf)); 1308 spin_unlock(&file->f_lock); 1309 out_free: 1310 kfree(desc); 1311 1312 out: 1313 dfprintk(FILE, "NFS: readdir(%pD2) returns %d\n", file, res); 1314 return res; 1315 } 1316 1317 static loff_t nfs_llseek_dir(struct file *filp, loff_t offset, int whence) 1318 { 1319 struct nfs_open_dir_context *dir_ctx = filp->private_data; 1320 1321 dfprintk(FILE, "NFS: llseek dir(%pD2, %lld, %d)\n", 1322 filp, offset, whence); 1323 1324 switch (whence) { 1325 default: 1326 return -EINVAL; 1327 case SEEK_SET: 1328 if (offset < 0) 1329 return -EINVAL; 1330 spin_lock(&filp->f_lock); 1331 break; 1332 case SEEK_CUR: 1333 if (offset == 0) 1334 return filp->f_pos; 1335 spin_lock(&filp->f_lock); 1336 offset += filp->f_pos; 1337 if (offset < 0) { 1338 spin_unlock(&filp->f_lock); 1339 return -EINVAL; 1340 } 1341 } 1342 if (offset != filp->f_pos) { 1343 filp->f_pos = offset; 1344 dir_ctx->page_index = 0; 1345 if (!nfs_readdir_use_cookie(filp)) { 1346 dir_ctx->dir_cookie = 0; 1347 dir_ctx->last_cookie = 0; 1348 } else { 1349 dir_ctx->dir_cookie = offset; 1350 dir_ctx->last_cookie = offset; 1351 } 1352 dir_ctx->eof = false; 1353 } 1354 spin_unlock(&filp->f_lock); 1355 return offset; 1356 } 1357 1358 /* 1359 * All directory operations under NFS are synchronous, so fsync() 1360 * is a dummy operation. 1361 */ 1362 static int nfs_fsync_dir(struct file *filp, loff_t start, loff_t end, 1363 int datasync) 1364 { 1365 dfprintk(FILE, "NFS: fsync dir(%pD2) datasync %d\n", filp, datasync); 1366 1367 nfs_inc_stats(file_inode(filp), NFSIOS_VFSFSYNC); 1368 return 0; 1369 } 1370 1371 /** 1372 * nfs_force_lookup_revalidate - Mark the directory as having changed 1373 * @dir: pointer to directory inode 1374 * 1375 * This forces the revalidation code in nfs_lookup_revalidate() to do a 1376 * full lookup on all child dentries of 'dir' whenever a change occurs 1377 * on the server that might have invalidated our dcache. 1378 * 1379 * Note that we reserve bit '0' as a tag to let us know when a dentry 1380 * was revalidated while holding a delegation on its inode. 1381 * 1382 * The caller should be holding dir->i_lock 1383 */ 1384 void nfs_force_lookup_revalidate(struct inode *dir) 1385 { 1386 NFS_I(dir)->cache_change_attribute += 2; 1387 } 1388 EXPORT_SYMBOL_GPL(nfs_force_lookup_revalidate); 1389 1390 /** 1391 * nfs_verify_change_attribute - Detects NFS remote directory changes 1392 * @dir: pointer to parent directory inode 1393 * @verf: previously saved change attribute 1394 * 1395 * Return "false" if the verifiers doesn't match the change attribute. 1396 * This would usually indicate that the directory contents have changed on 1397 * the server, and that any dentries need revalidating. 1398 */ 1399 static bool nfs_verify_change_attribute(struct inode *dir, unsigned long verf) 1400 { 1401 return (verf & ~1UL) == nfs_save_change_attribute(dir); 1402 } 1403 1404 static void nfs_set_verifier_delegated(unsigned long *verf) 1405 { 1406 *verf |= 1UL; 1407 } 1408 1409 #if IS_ENABLED(CONFIG_NFS_V4) 1410 static void nfs_unset_verifier_delegated(unsigned long *verf) 1411 { 1412 *verf &= ~1UL; 1413 } 1414 #endif /* IS_ENABLED(CONFIG_NFS_V4) */ 1415 1416 static bool nfs_test_verifier_delegated(unsigned long verf) 1417 { 1418 return verf & 1; 1419 } 1420 1421 static bool nfs_verifier_is_delegated(struct dentry *dentry) 1422 { 1423 return nfs_test_verifier_delegated(dentry->d_time); 1424 } 1425 1426 static void nfs_set_verifier_locked(struct dentry *dentry, unsigned long verf) 1427 { 1428 struct inode *inode = d_inode(dentry); 1429 struct inode *dir = d_inode(dentry->d_parent); 1430 1431 if (!nfs_verify_change_attribute(dir, verf)) 1432 return; 1433 if (inode && NFS_PROTO(inode)->have_delegation(inode, FMODE_READ)) 1434 nfs_set_verifier_delegated(&verf); 1435 dentry->d_time = verf; 1436 } 1437 1438 /** 1439 * nfs_set_verifier - save a parent directory verifier in the dentry 1440 * @dentry: pointer to dentry 1441 * @verf: verifier to save 1442 * 1443 * Saves the parent directory verifier in @dentry. If the inode has 1444 * a delegation, we also tag the dentry as having been revalidated 1445 * while holding a delegation so that we know we don't have to 1446 * look it up again after a directory change. 1447 */ 1448 void nfs_set_verifier(struct dentry *dentry, unsigned long verf) 1449 { 1450 1451 spin_lock(&dentry->d_lock); 1452 nfs_set_verifier_locked(dentry, verf); 1453 spin_unlock(&dentry->d_lock); 1454 } 1455 EXPORT_SYMBOL_GPL(nfs_set_verifier); 1456 1457 #if IS_ENABLED(CONFIG_NFS_V4) 1458 /** 1459 * nfs_clear_verifier_delegated - clear the dir verifier delegation tag 1460 * @inode: pointer to inode 1461 * 1462 * Iterates through the dentries in the inode alias list and clears 1463 * the tag used to indicate that the dentry has been revalidated 1464 * while holding a delegation. 1465 * This function is intended for use when the delegation is being 1466 * returned or revoked. 1467 */ 1468 void nfs_clear_verifier_delegated(struct inode *inode) 1469 { 1470 struct dentry *alias; 1471 1472 if (!inode) 1473 return; 1474 spin_lock(&inode->i_lock); 1475 hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) { 1476 spin_lock(&alias->d_lock); 1477 nfs_unset_verifier_delegated(&alias->d_time); 1478 spin_unlock(&alias->d_lock); 1479 } 1480 spin_unlock(&inode->i_lock); 1481 } 1482 EXPORT_SYMBOL_GPL(nfs_clear_verifier_delegated); 1483 #endif /* IS_ENABLED(CONFIG_NFS_V4) */ 1484 1485 static int nfs_dentry_verify_change(struct inode *dir, struct dentry *dentry) 1486 { 1487 if (nfs_server_capable(dir, NFS_CAP_CASE_INSENSITIVE) && 1488 d_really_is_negative(dentry)) 1489 return dentry->d_time == inode_peek_iversion_raw(dir); 1490 return nfs_verify_change_attribute(dir, dentry->d_time); 1491 } 1492 1493 /* 1494 * A check for whether or not the parent directory has changed. 1495 * In the case it has, we assume that the dentries are untrustworthy 1496 * and may need to be looked up again. 1497 * If rcu_walk prevents us from performing a full check, return 0. 1498 */ 1499 static int nfs_check_verifier(struct inode *dir, struct dentry *dentry, 1500 int rcu_walk) 1501 { 1502 if (IS_ROOT(dentry)) 1503 return 1; 1504 if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONE) 1505 return 0; 1506 if (!nfs_dentry_verify_change(dir, dentry)) 1507 return 0; 1508 /* Revalidate nfsi->cache_change_attribute before we declare a match */ 1509 if (nfs_mapping_need_revalidate_inode(dir)) { 1510 if (rcu_walk) 1511 return 0; 1512 if (__nfs_revalidate_inode(NFS_SERVER(dir), dir) < 0) 1513 return 0; 1514 } 1515 if (!nfs_dentry_verify_change(dir, dentry)) 1516 return 0; 1517 return 1; 1518 } 1519 1520 /* 1521 * Use intent information to check whether or not we're going to do 1522 * an O_EXCL create using this path component. 1523 */ 1524 static int nfs_is_exclusive_create(struct inode *dir, unsigned int flags) 1525 { 1526 if (NFS_PROTO(dir)->version == 2) 1527 return 0; 1528 return flags & LOOKUP_EXCL; 1529 } 1530 1531 /* 1532 * Inode and filehandle revalidation for lookups. 1533 * 1534 * We force revalidation in the cases where the VFS sets LOOKUP_REVAL, 1535 * or if the intent information indicates that we're about to open this 1536 * particular file and the "nocto" mount flag is not set. 1537 * 1538 */ 1539 static 1540 int nfs_lookup_verify_inode(struct inode *inode, unsigned int flags) 1541 { 1542 struct nfs_server *server = NFS_SERVER(inode); 1543 int ret; 1544 1545 if (IS_AUTOMOUNT(inode)) 1546 return 0; 1547 1548 if (flags & LOOKUP_OPEN) { 1549 switch (inode->i_mode & S_IFMT) { 1550 case S_IFREG: 1551 /* A NFSv4 OPEN will revalidate later */ 1552 if (server->caps & NFS_CAP_ATOMIC_OPEN) 1553 goto out; 1554 fallthrough; 1555 case S_IFDIR: 1556 if (server->flags & NFS_MOUNT_NOCTO) 1557 break; 1558 /* NFS close-to-open cache consistency validation */ 1559 goto out_force; 1560 } 1561 } 1562 1563 /* VFS wants an on-the-wire revalidation */ 1564 if (flags & LOOKUP_REVAL) 1565 goto out_force; 1566 out: 1567 if (inode->i_nlink > 0 || 1568 (inode->i_nlink == 0 && 1569 test_bit(NFS_INO_PRESERVE_UNLINKED, &NFS_I(inode)->flags))) 1570 return 0; 1571 else 1572 return -ESTALE; 1573 out_force: 1574 if (flags & LOOKUP_RCU) 1575 return -ECHILD; 1576 ret = __nfs_revalidate_inode(server, inode); 1577 if (ret != 0) 1578 return ret; 1579 goto out; 1580 } 1581 1582 static void nfs_mark_dir_for_revalidate(struct inode *inode) 1583 { 1584 spin_lock(&inode->i_lock); 1585 nfs_set_cache_invalid(inode, NFS_INO_INVALID_CHANGE); 1586 spin_unlock(&inode->i_lock); 1587 } 1588 1589 /* 1590 * We judge how long we want to trust negative 1591 * dentries by looking at the parent inode mtime. 1592 * 1593 * If parent mtime has changed, we revalidate, else we wait for a 1594 * period corresponding to the parent's attribute cache timeout value. 1595 * 1596 * If LOOKUP_RCU prevents us from performing a full check, return 1 1597 * suggesting a reval is needed. 1598 * 1599 * Note that when creating a new file, or looking up a rename target, 1600 * then it shouldn't be necessary to revalidate a negative dentry. 1601 */ 1602 static inline 1603 int nfs_neg_need_reval(struct inode *dir, struct dentry *dentry, 1604 unsigned int flags) 1605 { 1606 if (flags & (LOOKUP_CREATE | LOOKUP_RENAME_TARGET)) 1607 return 0; 1608 if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONEG) 1609 return 1; 1610 /* Case insensitive server? Revalidate negative dentries */ 1611 if (nfs_server_capable(dir, NFS_CAP_CASE_INSENSITIVE)) 1612 return 1; 1613 return !nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU); 1614 } 1615 1616 static int 1617 nfs_lookup_revalidate_done(struct inode *dir, struct dentry *dentry, 1618 struct inode *inode, int error) 1619 { 1620 switch (error) { 1621 case 1: 1622 break; 1623 case 0: 1624 /* 1625 * We can't d_drop the root of a disconnected tree: 1626 * its d_hash is on the s_anon list and d_drop() would hide 1627 * it from shrink_dcache_for_unmount(), leading to busy 1628 * inodes on unmount and further oopses. 1629 */ 1630 if (inode && IS_ROOT(dentry)) 1631 error = 1; 1632 break; 1633 } 1634 trace_nfs_lookup_revalidate_exit(dir, dentry, 0, error); 1635 return error; 1636 } 1637 1638 static int 1639 nfs_lookup_revalidate_negative(struct inode *dir, struct dentry *dentry, 1640 unsigned int flags) 1641 { 1642 int ret = 1; 1643 if (nfs_neg_need_reval(dir, dentry, flags)) { 1644 if (flags & LOOKUP_RCU) 1645 return -ECHILD; 1646 ret = 0; 1647 } 1648 return nfs_lookup_revalidate_done(dir, dentry, NULL, ret); 1649 } 1650 1651 static int 1652 nfs_lookup_revalidate_delegated(struct inode *dir, struct dentry *dentry, 1653 struct inode *inode) 1654 { 1655 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 1656 return nfs_lookup_revalidate_done(dir, dentry, inode, 1); 1657 } 1658 1659 static int nfs_lookup_revalidate_dentry(struct inode *dir, 1660 struct dentry *dentry, 1661 struct inode *inode, unsigned int flags) 1662 { 1663 struct nfs_fh *fhandle; 1664 struct nfs_fattr *fattr; 1665 unsigned long dir_verifier; 1666 int ret; 1667 1668 trace_nfs_lookup_revalidate_enter(dir, dentry, flags); 1669 1670 ret = -ENOMEM; 1671 fhandle = nfs_alloc_fhandle(); 1672 fattr = nfs_alloc_fattr_with_label(NFS_SERVER(inode)); 1673 if (fhandle == NULL || fattr == NULL) 1674 goto out; 1675 1676 dir_verifier = nfs_save_change_attribute(dir); 1677 ret = NFS_PROTO(dir)->lookup(dir, dentry, fhandle, fattr); 1678 if (ret < 0) { 1679 switch (ret) { 1680 case -ESTALE: 1681 case -ENOENT: 1682 ret = 0; 1683 break; 1684 case -ETIMEDOUT: 1685 if (NFS_SERVER(inode)->flags & NFS_MOUNT_SOFTREVAL) 1686 ret = 1; 1687 } 1688 goto out; 1689 } 1690 1691 /* Request help from readdirplus */ 1692 nfs_lookup_advise_force_readdirplus(dir, flags); 1693 1694 ret = 0; 1695 if (nfs_compare_fh(NFS_FH(inode), fhandle)) 1696 goto out; 1697 if (nfs_refresh_inode(inode, fattr) < 0) 1698 goto out; 1699 1700 nfs_setsecurity(inode, fattr); 1701 nfs_set_verifier(dentry, dir_verifier); 1702 1703 ret = 1; 1704 out: 1705 nfs_free_fattr(fattr); 1706 nfs_free_fhandle(fhandle); 1707 1708 /* 1709 * If the lookup failed despite the dentry change attribute being 1710 * a match, then we should revalidate the directory cache. 1711 */ 1712 if (!ret && nfs_dentry_verify_change(dir, dentry)) 1713 nfs_mark_dir_for_revalidate(dir); 1714 return nfs_lookup_revalidate_done(dir, dentry, inode, ret); 1715 } 1716 1717 /* 1718 * This is called every time the dcache has a lookup hit, 1719 * and we should check whether we can really trust that 1720 * lookup. 1721 * 1722 * NOTE! The hit can be a negative hit too, don't assume 1723 * we have an inode! 1724 * 1725 * If the parent directory is seen to have changed, we throw out the 1726 * cached dentry and do a new lookup. 1727 */ 1728 static int 1729 nfs_do_lookup_revalidate(struct inode *dir, struct dentry *dentry, 1730 unsigned int flags) 1731 { 1732 struct inode *inode; 1733 int error; 1734 1735 nfs_inc_stats(dir, NFSIOS_DENTRYREVALIDATE); 1736 inode = d_inode(dentry); 1737 1738 if (!inode) 1739 return nfs_lookup_revalidate_negative(dir, dentry, flags); 1740 1741 if (is_bad_inode(inode)) { 1742 dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n", 1743 __func__, dentry); 1744 goto out_bad; 1745 } 1746 1747 if ((flags & LOOKUP_RENAME_TARGET) && d_count(dentry) < 2 && 1748 nfs_server_capable(dir, NFS_CAP_CASE_INSENSITIVE)) 1749 goto out_bad; 1750 1751 if (nfs_verifier_is_delegated(dentry)) 1752 return nfs_lookup_revalidate_delegated(dir, dentry, inode); 1753 1754 /* Force a full look up iff the parent directory has changed */ 1755 if (!(flags & (LOOKUP_EXCL | LOOKUP_REVAL)) && 1756 nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU)) { 1757 error = nfs_lookup_verify_inode(inode, flags); 1758 if (error) { 1759 if (error == -ESTALE) 1760 nfs_mark_dir_for_revalidate(dir); 1761 goto out_bad; 1762 } 1763 goto out_valid; 1764 } 1765 1766 if (flags & LOOKUP_RCU) 1767 return -ECHILD; 1768 1769 if (NFS_STALE(inode)) 1770 goto out_bad; 1771 1772 return nfs_lookup_revalidate_dentry(dir, dentry, inode, flags); 1773 out_valid: 1774 return nfs_lookup_revalidate_done(dir, dentry, inode, 1); 1775 out_bad: 1776 if (flags & LOOKUP_RCU) 1777 return -ECHILD; 1778 return nfs_lookup_revalidate_done(dir, dentry, inode, 0); 1779 } 1780 1781 static int 1782 __nfs_lookup_revalidate(struct dentry *dentry, unsigned int flags, 1783 int (*reval)(struct inode *, struct dentry *, unsigned int)) 1784 { 1785 struct dentry *parent; 1786 struct inode *dir; 1787 int ret; 1788 1789 if (flags & LOOKUP_RCU) { 1790 if (dentry->d_fsdata == NFS_FSDATA_BLOCKED) 1791 return -ECHILD; 1792 parent = READ_ONCE(dentry->d_parent); 1793 dir = d_inode_rcu(parent); 1794 if (!dir) 1795 return -ECHILD; 1796 ret = reval(dir, dentry, flags); 1797 if (parent != READ_ONCE(dentry->d_parent)) 1798 return -ECHILD; 1799 } else { 1800 /* Wait for unlink to complete */ 1801 wait_var_event(&dentry->d_fsdata, 1802 dentry->d_fsdata != NFS_FSDATA_BLOCKED); 1803 parent = dget_parent(dentry); 1804 ret = reval(d_inode(parent), dentry, flags); 1805 dput(parent); 1806 } 1807 return ret; 1808 } 1809 1810 static int nfs_lookup_revalidate(struct dentry *dentry, unsigned int flags) 1811 { 1812 return __nfs_lookup_revalidate(dentry, flags, nfs_do_lookup_revalidate); 1813 } 1814 1815 /* 1816 * A weaker form of d_revalidate for revalidating just the d_inode(dentry) 1817 * when we don't really care about the dentry name. This is called when a 1818 * pathwalk ends on a dentry that was not found via a normal lookup in the 1819 * parent dir (e.g.: ".", "..", procfs symlinks or mountpoint traversals). 1820 * 1821 * In this situation, we just want to verify that the inode itself is OK 1822 * since the dentry might have changed on the server. 1823 */ 1824 static int nfs_weak_revalidate(struct dentry *dentry, unsigned int flags) 1825 { 1826 struct inode *inode = d_inode(dentry); 1827 int error = 0; 1828 1829 /* 1830 * I believe we can only get a negative dentry here in the case of a 1831 * procfs-style symlink. Just assume it's correct for now, but we may 1832 * eventually need to do something more here. 1833 */ 1834 if (!inode) { 1835 dfprintk(LOOKUPCACHE, "%s: %pd2 has negative inode\n", 1836 __func__, dentry); 1837 return 1; 1838 } 1839 1840 if (is_bad_inode(inode)) { 1841 dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n", 1842 __func__, dentry); 1843 return 0; 1844 } 1845 1846 error = nfs_lookup_verify_inode(inode, flags); 1847 dfprintk(LOOKUPCACHE, "NFS: %s: inode %lu is %s\n", 1848 __func__, inode->i_ino, error ? "invalid" : "valid"); 1849 return !error; 1850 } 1851 1852 /* 1853 * This is called from dput() when d_count is going to 0. 1854 */ 1855 static int nfs_dentry_delete(const struct dentry *dentry) 1856 { 1857 dfprintk(VFS, "NFS: dentry_delete(%pd2, %x)\n", 1858 dentry, dentry->d_flags); 1859 1860 /* Unhash any dentry with a stale inode */ 1861 if (d_really_is_positive(dentry) && NFS_STALE(d_inode(dentry))) 1862 return 1; 1863 1864 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) { 1865 /* Unhash it, so that ->d_iput() would be called */ 1866 return 1; 1867 } 1868 if (!(dentry->d_sb->s_flags & SB_ACTIVE)) { 1869 /* Unhash it, so that ancestors of killed async unlink 1870 * files will be cleaned up during umount */ 1871 return 1; 1872 } 1873 return 0; 1874 1875 } 1876 1877 /* Ensure that we revalidate inode->i_nlink */ 1878 static void nfs_drop_nlink(struct inode *inode) 1879 { 1880 spin_lock(&inode->i_lock); 1881 /* drop the inode if we're reasonably sure this is the last link */ 1882 if (inode->i_nlink > 0) 1883 drop_nlink(inode); 1884 NFS_I(inode)->attr_gencount = nfs_inc_attr_generation_counter(); 1885 nfs_set_cache_invalid( 1886 inode, NFS_INO_INVALID_CHANGE | NFS_INO_INVALID_CTIME | 1887 NFS_INO_INVALID_NLINK); 1888 spin_unlock(&inode->i_lock); 1889 } 1890 1891 /* 1892 * Called when the dentry loses inode. 1893 * We use it to clean up silly-renamed files. 1894 */ 1895 static void nfs_dentry_iput(struct dentry *dentry, struct inode *inode) 1896 { 1897 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) { 1898 nfs_complete_unlink(dentry, inode); 1899 nfs_drop_nlink(inode); 1900 } 1901 iput(inode); 1902 } 1903 1904 static void nfs_d_release(struct dentry *dentry) 1905 { 1906 /* free cached devname value, if it survived that far */ 1907 if (unlikely(dentry->d_fsdata)) { 1908 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) 1909 WARN_ON(1); 1910 else 1911 kfree(dentry->d_fsdata); 1912 } 1913 } 1914 1915 const struct dentry_operations nfs_dentry_operations = { 1916 .d_revalidate = nfs_lookup_revalidate, 1917 .d_weak_revalidate = nfs_weak_revalidate, 1918 .d_delete = nfs_dentry_delete, 1919 .d_iput = nfs_dentry_iput, 1920 .d_automount = nfs_d_automount, 1921 .d_release = nfs_d_release, 1922 }; 1923 EXPORT_SYMBOL_GPL(nfs_dentry_operations); 1924 1925 struct dentry *nfs_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags) 1926 { 1927 struct dentry *res; 1928 struct inode *inode = NULL; 1929 struct nfs_fh *fhandle = NULL; 1930 struct nfs_fattr *fattr = NULL; 1931 unsigned long dir_verifier; 1932 int error; 1933 1934 dfprintk(VFS, "NFS: lookup(%pd2)\n", dentry); 1935 nfs_inc_stats(dir, NFSIOS_VFSLOOKUP); 1936 1937 if (unlikely(dentry->d_name.len > NFS_SERVER(dir)->namelen)) 1938 return ERR_PTR(-ENAMETOOLONG); 1939 1940 /* 1941 * If we're doing an exclusive create, optimize away the lookup 1942 * but don't hash the dentry. 1943 */ 1944 if (nfs_is_exclusive_create(dir, flags) || flags & LOOKUP_RENAME_TARGET) 1945 return NULL; 1946 1947 res = ERR_PTR(-ENOMEM); 1948 fhandle = nfs_alloc_fhandle(); 1949 fattr = nfs_alloc_fattr_with_label(NFS_SERVER(dir)); 1950 if (fhandle == NULL || fattr == NULL) 1951 goto out; 1952 1953 dir_verifier = nfs_save_change_attribute(dir); 1954 trace_nfs_lookup_enter(dir, dentry, flags); 1955 error = NFS_PROTO(dir)->lookup(dir, dentry, fhandle, fattr); 1956 if (error == -ENOENT) { 1957 if (nfs_server_capable(dir, NFS_CAP_CASE_INSENSITIVE)) 1958 dir_verifier = inode_peek_iversion_raw(dir); 1959 goto no_entry; 1960 } 1961 if (error < 0) { 1962 res = ERR_PTR(error); 1963 goto out; 1964 } 1965 inode = nfs_fhget(dentry->d_sb, fhandle, fattr); 1966 res = ERR_CAST(inode); 1967 if (IS_ERR(res)) 1968 goto out; 1969 1970 /* Notify readdir to use READDIRPLUS */ 1971 nfs_lookup_advise_force_readdirplus(dir, flags); 1972 1973 no_entry: 1974 res = d_splice_alias(inode, dentry); 1975 if (res != NULL) { 1976 if (IS_ERR(res)) 1977 goto out; 1978 dentry = res; 1979 } 1980 nfs_set_verifier(dentry, dir_verifier); 1981 out: 1982 trace_nfs_lookup_exit(dir, dentry, flags, PTR_ERR_OR_ZERO(res)); 1983 nfs_free_fattr(fattr); 1984 nfs_free_fhandle(fhandle); 1985 return res; 1986 } 1987 EXPORT_SYMBOL_GPL(nfs_lookup); 1988 1989 void nfs_d_prune_case_insensitive_aliases(struct inode *inode) 1990 { 1991 /* Case insensitive server? Revalidate dentries */ 1992 if (inode && nfs_server_capable(inode, NFS_CAP_CASE_INSENSITIVE)) 1993 d_prune_aliases(inode); 1994 } 1995 EXPORT_SYMBOL_GPL(nfs_d_prune_case_insensitive_aliases); 1996 1997 #if IS_ENABLED(CONFIG_NFS_V4) 1998 static int nfs4_lookup_revalidate(struct dentry *, unsigned int); 1999 2000 const struct dentry_operations nfs4_dentry_operations = { 2001 .d_revalidate = nfs4_lookup_revalidate, 2002 .d_weak_revalidate = nfs_weak_revalidate, 2003 .d_delete = nfs_dentry_delete, 2004 .d_iput = nfs_dentry_iput, 2005 .d_automount = nfs_d_automount, 2006 .d_release = nfs_d_release, 2007 }; 2008 EXPORT_SYMBOL_GPL(nfs4_dentry_operations); 2009 2010 static struct nfs_open_context *create_nfs_open_context(struct dentry *dentry, int open_flags, struct file *filp) 2011 { 2012 return alloc_nfs_open_context(dentry, flags_to_mode(open_flags), filp); 2013 } 2014 2015 static int do_open(struct inode *inode, struct file *filp) 2016 { 2017 nfs_fscache_open_file(inode, filp); 2018 return 0; 2019 } 2020 2021 static int nfs_finish_open(struct nfs_open_context *ctx, 2022 struct dentry *dentry, 2023 struct file *file, unsigned open_flags) 2024 { 2025 int err; 2026 2027 err = finish_open(file, dentry, do_open); 2028 if (err) 2029 goto out; 2030 if (S_ISREG(file_inode(file)->i_mode)) 2031 nfs_file_set_open_context(file, ctx); 2032 else 2033 err = -EOPENSTALE; 2034 out: 2035 return err; 2036 } 2037 2038 int nfs_atomic_open(struct inode *dir, struct dentry *dentry, 2039 struct file *file, unsigned open_flags, 2040 umode_t mode) 2041 { 2042 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq); 2043 struct nfs_open_context *ctx; 2044 struct dentry *res; 2045 struct iattr attr = { .ia_valid = ATTR_OPEN }; 2046 struct inode *inode; 2047 unsigned int lookup_flags = 0; 2048 unsigned long dir_verifier; 2049 bool switched = false; 2050 int created = 0; 2051 int err; 2052 2053 /* Expect a negative dentry */ 2054 BUG_ON(d_inode(dentry)); 2055 2056 dfprintk(VFS, "NFS: atomic_open(%s/%lu), %pd\n", 2057 dir->i_sb->s_id, dir->i_ino, dentry); 2058 2059 err = nfs_check_flags(open_flags); 2060 if (err) 2061 return err; 2062 2063 /* NFS only supports OPEN on regular files */ 2064 if ((open_flags & O_DIRECTORY)) { 2065 if (!d_in_lookup(dentry)) { 2066 /* 2067 * Hashed negative dentry with O_DIRECTORY: dentry was 2068 * revalidated and is fine, no need to perform lookup 2069 * again 2070 */ 2071 return -ENOENT; 2072 } 2073 lookup_flags = LOOKUP_OPEN|LOOKUP_DIRECTORY; 2074 goto no_open; 2075 } 2076 2077 if (dentry->d_name.len > NFS_SERVER(dir)->namelen) 2078 return -ENAMETOOLONG; 2079 2080 if (open_flags & O_CREAT) { 2081 struct nfs_server *server = NFS_SERVER(dir); 2082 2083 if (!(server->attr_bitmask[2] & FATTR4_WORD2_MODE_UMASK)) 2084 mode &= ~current_umask(); 2085 2086 attr.ia_valid |= ATTR_MODE; 2087 attr.ia_mode = mode; 2088 } 2089 if (open_flags & O_TRUNC) { 2090 attr.ia_valid |= ATTR_SIZE; 2091 attr.ia_size = 0; 2092 } 2093 2094 if (!(open_flags & O_CREAT) && !d_in_lookup(dentry)) { 2095 d_drop(dentry); 2096 switched = true; 2097 dentry = d_alloc_parallel(dentry->d_parent, 2098 &dentry->d_name, &wq); 2099 if (IS_ERR(dentry)) 2100 return PTR_ERR(dentry); 2101 if (unlikely(!d_in_lookup(dentry))) 2102 return finish_no_open(file, dentry); 2103 } 2104 2105 ctx = create_nfs_open_context(dentry, open_flags, file); 2106 err = PTR_ERR(ctx); 2107 if (IS_ERR(ctx)) 2108 goto out; 2109 2110 trace_nfs_atomic_open_enter(dir, ctx, open_flags); 2111 inode = NFS_PROTO(dir)->open_context(dir, ctx, open_flags, &attr, &created); 2112 if (created) 2113 file->f_mode |= FMODE_CREATED; 2114 if (IS_ERR(inode)) { 2115 err = PTR_ERR(inode); 2116 trace_nfs_atomic_open_exit(dir, ctx, open_flags, err); 2117 put_nfs_open_context(ctx); 2118 d_drop(dentry); 2119 switch (err) { 2120 case -ENOENT: 2121 d_splice_alias(NULL, dentry); 2122 if (nfs_server_capable(dir, NFS_CAP_CASE_INSENSITIVE)) 2123 dir_verifier = inode_peek_iversion_raw(dir); 2124 else 2125 dir_verifier = nfs_save_change_attribute(dir); 2126 nfs_set_verifier(dentry, dir_verifier); 2127 break; 2128 case -EISDIR: 2129 case -ENOTDIR: 2130 goto no_open; 2131 case -ELOOP: 2132 if (!(open_flags & O_NOFOLLOW)) 2133 goto no_open; 2134 break; 2135 /* case -EINVAL: */ 2136 default: 2137 break; 2138 } 2139 goto out; 2140 } 2141 file->f_mode |= FMODE_CAN_ODIRECT; 2142 2143 err = nfs_finish_open(ctx, ctx->dentry, file, open_flags); 2144 trace_nfs_atomic_open_exit(dir, ctx, open_flags, err); 2145 put_nfs_open_context(ctx); 2146 out: 2147 if (unlikely(switched)) { 2148 d_lookup_done(dentry); 2149 dput(dentry); 2150 } 2151 return err; 2152 2153 no_open: 2154 res = nfs_lookup(dir, dentry, lookup_flags); 2155 if (!res) { 2156 inode = d_inode(dentry); 2157 if ((lookup_flags & LOOKUP_DIRECTORY) && inode && 2158 !(S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))) 2159 res = ERR_PTR(-ENOTDIR); 2160 else if (inode && S_ISREG(inode->i_mode)) 2161 res = ERR_PTR(-EOPENSTALE); 2162 } else if (!IS_ERR(res)) { 2163 inode = d_inode(res); 2164 if ((lookup_flags & LOOKUP_DIRECTORY) && inode && 2165 !(S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))) { 2166 dput(res); 2167 res = ERR_PTR(-ENOTDIR); 2168 } else if (inode && S_ISREG(inode->i_mode)) { 2169 dput(res); 2170 res = ERR_PTR(-EOPENSTALE); 2171 } 2172 } 2173 if (switched) { 2174 d_lookup_done(dentry); 2175 if (!res) 2176 res = dentry; 2177 else 2178 dput(dentry); 2179 } 2180 if (IS_ERR(res)) 2181 return PTR_ERR(res); 2182 return finish_no_open(file, res); 2183 } 2184 EXPORT_SYMBOL_GPL(nfs_atomic_open); 2185 2186 static int 2187 nfs4_do_lookup_revalidate(struct inode *dir, struct dentry *dentry, 2188 unsigned int flags) 2189 { 2190 struct inode *inode; 2191 2192 if (!(flags & LOOKUP_OPEN) || (flags & LOOKUP_DIRECTORY)) 2193 goto full_reval; 2194 if (d_mountpoint(dentry)) 2195 goto full_reval; 2196 2197 inode = d_inode(dentry); 2198 2199 /* We can't create new files in nfs_open_revalidate(), so we 2200 * optimize away revalidation of negative dentries. 2201 */ 2202 if (inode == NULL) 2203 goto full_reval; 2204 2205 if (nfs_verifier_is_delegated(dentry)) 2206 return nfs_lookup_revalidate_delegated(dir, dentry, inode); 2207 2208 /* NFS only supports OPEN on regular files */ 2209 if (!S_ISREG(inode->i_mode)) 2210 goto full_reval; 2211 2212 /* We cannot do exclusive creation on a positive dentry */ 2213 if (flags & (LOOKUP_EXCL | LOOKUP_REVAL)) 2214 goto reval_dentry; 2215 2216 /* Check if the directory changed */ 2217 if (!nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU)) 2218 goto reval_dentry; 2219 2220 /* Let f_op->open() actually open (and revalidate) the file */ 2221 return 1; 2222 reval_dentry: 2223 if (flags & LOOKUP_RCU) 2224 return -ECHILD; 2225 return nfs_lookup_revalidate_dentry(dir, dentry, inode, flags); 2226 2227 full_reval: 2228 return nfs_do_lookup_revalidate(dir, dentry, flags); 2229 } 2230 2231 static int nfs4_lookup_revalidate(struct dentry *dentry, unsigned int flags) 2232 { 2233 return __nfs_lookup_revalidate(dentry, flags, 2234 nfs4_do_lookup_revalidate); 2235 } 2236 2237 #endif /* CONFIG_NFSV4 */ 2238 2239 struct dentry * 2240 nfs_add_or_obtain(struct dentry *dentry, struct nfs_fh *fhandle, 2241 struct nfs_fattr *fattr) 2242 { 2243 struct dentry *parent = dget_parent(dentry); 2244 struct inode *dir = d_inode(parent); 2245 struct inode *inode; 2246 struct dentry *d; 2247 int error; 2248 2249 d_drop(dentry); 2250 2251 if (fhandle->size == 0) { 2252 error = NFS_PROTO(dir)->lookup(dir, dentry, fhandle, fattr); 2253 if (error) 2254 goto out_error; 2255 } 2256 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 2257 if (!(fattr->valid & NFS_ATTR_FATTR)) { 2258 struct nfs_server *server = NFS_SB(dentry->d_sb); 2259 error = server->nfs_client->rpc_ops->getattr(server, fhandle, 2260 fattr, NULL); 2261 if (error < 0) 2262 goto out_error; 2263 } 2264 inode = nfs_fhget(dentry->d_sb, fhandle, fattr); 2265 d = d_splice_alias(inode, dentry); 2266 out: 2267 dput(parent); 2268 return d; 2269 out_error: 2270 d = ERR_PTR(error); 2271 goto out; 2272 } 2273 EXPORT_SYMBOL_GPL(nfs_add_or_obtain); 2274 2275 /* 2276 * Code common to create, mkdir, and mknod. 2277 */ 2278 int nfs_instantiate(struct dentry *dentry, struct nfs_fh *fhandle, 2279 struct nfs_fattr *fattr) 2280 { 2281 struct dentry *d; 2282 2283 d = nfs_add_or_obtain(dentry, fhandle, fattr); 2284 if (IS_ERR(d)) 2285 return PTR_ERR(d); 2286 2287 /* Callers don't care */ 2288 dput(d); 2289 return 0; 2290 } 2291 EXPORT_SYMBOL_GPL(nfs_instantiate); 2292 2293 /* 2294 * Following a failed create operation, we drop the dentry rather 2295 * than retain a negative dentry. This avoids a problem in the event 2296 * that the operation succeeded on the server, but an error in the 2297 * reply path made it appear to have failed. 2298 */ 2299 int nfs_create(struct user_namespace *mnt_userns, struct inode *dir, 2300 struct dentry *dentry, umode_t mode, bool excl) 2301 { 2302 struct iattr attr; 2303 int open_flags = excl ? O_CREAT | O_EXCL : O_CREAT; 2304 int error; 2305 2306 dfprintk(VFS, "NFS: create(%s/%lu), %pd\n", 2307 dir->i_sb->s_id, dir->i_ino, dentry); 2308 2309 attr.ia_mode = mode; 2310 attr.ia_valid = ATTR_MODE; 2311 2312 trace_nfs_create_enter(dir, dentry, open_flags); 2313 error = NFS_PROTO(dir)->create(dir, dentry, &attr, open_flags); 2314 trace_nfs_create_exit(dir, dentry, open_flags, error); 2315 if (error != 0) 2316 goto out_err; 2317 return 0; 2318 out_err: 2319 d_drop(dentry); 2320 return error; 2321 } 2322 EXPORT_SYMBOL_GPL(nfs_create); 2323 2324 /* 2325 * See comments for nfs_proc_create regarding failed operations. 2326 */ 2327 int 2328 nfs_mknod(struct user_namespace *mnt_userns, struct inode *dir, 2329 struct dentry *dentry, umode_t mode, dev_t rdev) 2330 { 2331 struct iattr attr; 2332 int status; 2333 2334 dfprintk(VFS, "NFS: mknod(%s/%lu), %pd\n", 2335 dir->i_sb->s_id, dir->i_ino, dentry); 2336 2337 attr.ia_mode = mode; 2338 attr.ia_valid = ATTR_MODE; 2339 2340 trace_nfs_mknod_enter(dir, dentry); 2341 status = NFS_PROTO(dir)->mknod(dir, dentry, &attr, rdev); 2342 trace_nfs_mknod_exit(dir, dentry, status); 2343 if (status != 0) 2344 goto out_err; 2345 return 0; 2346 out_err: 2347 d_drop(dentry); 2348 return status; 2349 } 2350 EXPORT_SYMBOL_GPL(nfs_mknod); 2351 2352 /* 2353 * See comments for nfs_proc_create regarding failed operations. 2354 */ 2355 int nfs_mkdir(struct user_namespace *mnt_userns, struct inode *dir, 2356 struct dentry *dentry, umode_t mode) 2357 { 2358 struct iattr attr; 2359 int error; 2360 2361 dfprintk(VFS, "NFS: mkdir(%s/%lu), %pd\n", 2362 dir->i_sb->s_id, dir->i_ino, dentry); 2363 2364 attr.ia_valid = ATTR_MODE; 2365 attr.ia_mode = mode | S_IFDIR; 2366 2367 trace_nfs_mkdir_enter(dir, dentry); 2368 error = NFS_PROTO(dir)->mkdir(dir, dentry, &attr); 2369 trace_nfs_mkdir_exit(dir, dentry, error); 2370 if (error != 0) 2371 goto out_err; 2372 return 0; 2373 out_err: 2374 d_drop(dentry); 2375 return error; 2376 } 2377 EXPORT_SYMBOL_GPL(nfs_mkdir); 2378 2379 static void nfs_dentry_handle_enoent(struct dentry *dentry) 2380 { 2381 if (simple_positive(dentry)) 2382 d_delete(dentry); 2383 } 2384 2385 static void nfs_dentry_remove_handle_error(struct inode *dir, 2386 struct dentry *dentry, int error) 2387 { 2388 switch (error) { 2389 case -ENOENT: 2390 if (d_really_is_positive(dentry)) 2391 d_delete(dentry); 2392 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 2393 break; 2394 case 0: 2395 nfs_d_prune_case_insensitive_aliases(d_inode(dentry)); 2396 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 2397 } 2398 } 2399 2400 int nfs_rmdir(struct inode *dir, struct dentry *dentry) 2401 { 2402 int error; 2403 2404 dfprintk(VFS, "NFS: rmdir(%s/%lu), %pd\n", 2405 dir->i_sb->s_id, dir->i_ino, dentry); 2406 2407 trace_nfs_rmdir_enter(dir, dentry); 2408 if (d_really_is_positive(dentry)) { 2409 down_write(&NFS_I(d_inode(dentry))->rmdir_sem); 2410 error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name); 2411 /* Ensure the VFS deletes this inode */ 2412 switch (error) { 2413 case 0: 2414 clear_nlink(d_inode(dentry)); 2415 break; 2416 case -ENOENT: 2417 nfs_dentry_handle_enoent(dentry); 2418 } 2419 up_write(&NFS_I(d_inode(dentry))->rmdir_sem); 2420 } else 2421 error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name); 2422 nfs_dentry_remove_handle_error(dir, dentry, error); 2423 trace_nfs_rmdir_exit(dir, dentry, error); 2424 2425 return error; 2426 } 2427 EXPORT_SYMBOL_GPL(nfs_rmdir); 2428 2429 /* 2430 * Remove a file after making sure there are no pending writes, 2431 * and after checking that the file has only one user. 2432 * 2433 * We invalidate the attribute cache and free the inode prior to the operation 2434 * to avoid possible races if the server reuses the inode. 2435 */ 2436 static int nfs_safe_remove(struct dentry *dentry) 2437 { 2438 struct inode *dir = d_inode(dentry->d_parent); 2439 struct inode *inode = d_inode(dentry); 2440 int error = -EBUSY; 2441 2442 dfprintk(VFS, "NFS: safe_remove(%pd2)\n", dentry); 2443 2444 /* If the dentry was sillyrenamed, we simply call d_delete() */ 2445 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) { 2446 error = 0; 2447 goto out; 2448 } 2449 2450 trace_nfs_remove_enter(dir, dentry); 2451 if (inode != NULL) { 2452 error = NFS_PROTO(dir)->remove(dir, dentry); 2453 if (error == 0) 2454 nfs_drop_nlink(inode); 2455 } else 2456 error = NFS_PROTO(dir)->remove(dir, dentry); 2457 if (error == -ENOENT) 2458 nfs_dentry_handle_enoent(dentry); 2459 trace_nfs_remove_exit(dir, dentry, error); 2460 out: 2461 return error; 2462 } 2463 2464 /* We do silly rename. In case sillyrename() returns -EBUSY, the inode 2465 * belongs to an active ".nfs..." file and we return -EBUSY. 2466 * 2467 * If sillyrename() returns 0, we do nothing, otherwise we unlink. 2468 */ 2469 int nfs_unlink(struct inode *dir, struct dentry *dentry) 2470 { 2471 int error; 2472 2473 dfprintk(VFS, "NFS: unlink(%s/%lu, %pd)\n", dir->i_sb->s_id, 2474 dir->i_ino, dentry); 2475 2476 trace_nfs_unlink_enter(dir, dentry); 2477 spin_lock(&dentry->d_lock); 2478 if (d_count(dentry) > 1 && !test_bit(NFS_INO_PRESERVE_UNLINKED, 2479 &NFS_I(d_inode(dentry))->flags)) { 2480 spin_unlock(&dentry->d_lock); 2481 /* Start asynchronous writeout of the inode */ 2482 write_inode_now(d_inode(dentry), 0); 2483 error = nfs_sillyrename(dir, dentry); 2484 goto out; 2485 } 2486 /* We must prevent any concurrent open until the unlink 2487 * completes. ->d_revalidate will wait for ->d_fsdata 2488 * to clear. We set it here to ensure no lookup succeeds until 2489 * the unlink is complete on the server. 2490 */ 2491 error = -ETXTBSY; 2492 if (WARN_ON(dentry->d_flags & DCACHE_NFSFS_RENAMED) || 2493 WARN_ON(dentry->d_fsdata == NFS_FSDATA_BLOCKED)) { 2494 spin_unlock(&dentry->d_lock); 2495 goto out; 2496 } 2497 /* old devname */ 2498 kfree(dentry->d_fsdata); 2499 dentry->d_fsdata = NFS_FSDATA_BLOCKED; 2500 2501 spin_unlock(&dentry->d_lock); 2502 error = nfs_safe_remove(dentry); 2503 nfs_dentry_remove_handle_error(dir, dentry, error); 2504 dentry->d_fsdata = NULL; 2505 wake_up_var(&dentry->d_fsdata); 2506 out: 2507 trace_nfs_unlink_exit(dir, dentry, error); 2508 return error; 2509 } 2510 EXPORT_SYMBOL_GPL(nfs_unlink); 2511 2512 /* 2513 * To create a symbolic link, most file systems instantiate a new inode, 2514 * add a page to it containing the path, then write it out to the disk 2515 * using prepare_write/commit_write. 2516 * 2517 * Unfortunately the NFS client can't create the in-core inode first 2518 * because it needs a file handle to create an in-core inode (see 2519 * fs/nfs/inode.c:nfs_fhget). We only have a file handle *after* the 2520 * symlink request has completed on the server. 2521 * 2522 * So instead we allocate a raw page, copy the symname into it, then do 2523 * the SYMLINK request with the page as the buffer. If it succeeds, we 2524 * now have a new file handle and can instantiate an in-core NFS inode 2525 * and move the raw page into its mapping. 2526 */ 2527 int nfs_symlink(struct user_namespace *mnt_userns, struct inode *dir, 2528 struct dentry *dentry, const char *symname) 2529 { 2530 struct page *page; 2531 char *kaddr; 2532 struct iattr attr; 2533 unsigned int pathlen = strlen(symname); 2534 int error; 2535 2536 dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s)\n", dir->i_sb->s_id, 2537 dir->i_ino, dentry, symname); 2538 2539 if (pathlen > PAGE_SIZE) 2540 return -ENAMETOOLONG; 2541 2542 attr.ia_mode = S_IFLNK | S_IRWXUGO; 2543 attr.ia_valid = ATTR_MODE; 2544 2545 page = alloc_page(GFP_USER); 2546 if (!page) 2547 return -ENOMEM; 2548 2549 kaddr = page_address(page); 2550 memcpy(kaddr, symname, pathlen); 2551 if (pathlen < PAGE_SIZE) 2552 memset(kaddr + pathlen, 0, PAGE_SIZE - pathlen); 2553 2554 trace_nfs_symlink_enter(dir, dentry); 2555 error = NFS_PROTO(dir)->symlink(dir, dentry, page, pathlen, &attr); 2556 trace_nfs_symlink_exit(dir, dentry, error); 2557 if (error != 0) { 2558 dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s) error %d\n", 2559 dir->i_sb->s_id, dir->i_ino, 2560 dentry, symname, error); 2561 d_drop(dentry); 2562 __free_page(page); 2563 return error; 2564 } 2565 2566 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 2567 2568 /* 2569 * No big deal if we can't add this page to the page cache here. 2570 * READLINK will get the missing page from the server if needed. 2571 */ 2572 if (!add_to_page_cache_lru(page, d_inode(dentry)->i_mapping, 0, 2573 GFP_KERNEL)) { 2574 SetPageUptodate(page); 2575 unlock_page(page); 2576 /* 2577 * add_to_page_cache_lru() grabs an extra page refcount. 2578 * Drop it here to avoid leaking this page later. 2579 */ 2580 put_page(page); 2581 } else 2582 __free_page(page); 2583 2584 return 0; 2585 } 2586 EXPORT_SYMBOL_GPL(nfs_symlink); 2587 2588 int 2589 nfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry) 2590 { 2591 struct inode *inode = d_inode(old_dentry); 2592 int error; 2593 2594 dfprintk(VFS, "NFS: link(%pd2 -> %pd2)\n", 2595 old_dentry, dentry); 2596 2597 trace_nfs_link_enter(inode, dir, dentry); 2598 d_drop(dentry); 2599 if (S_ISREG(inode->i_mode)) 2600 nfs_sync_inode(inode); 2601 error = NFS_PROTO(dir)->link(inode, dir, &dentry->d_name); 2602 if (error == 0) { 2603 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 2604 ihold(inode); 2605 d_add(dentry, inode); 2606 } 2607 trace_nfs_link_exit(inode, dir, dentry, error); 2608 return error; 2609 } 2610 EXPORT_SYMBOL_GPL(nfs_link); 2611 2612 static void 2613 nfs_unblock_rename(struct rpc_task *task, struct nfs_renamedata *data) 2614 { 2615 struct dentry *new_dentry = data->new_dentry; 2616 2617 new_dentry->d_fsdata = NULL; 2618 wake_up_var(&new_dentry->d_fsdata); 2619 } 2620 2621 /* 2622 * RENAME 2623 * FIXME: Some nfsds, like the Linux user space nfsd, may generate a 2624 * different file handle for the same inode after a rename (e.g. when 2625 * moving to a different directory). A fail-safe method to do so would 2626 * be to look up old_dir/old_name, create a link to new_dir/new_name and 2627 * rename the old file using the sillyrename stuff. This way, the original 2628 * file in old_dir will go away when the last process iput()s the inode. 2629 * 2630 * FIXED. 2631 * 2632 * It actually works quite well. One needs to have the possibility for 2633 * at least one ".nfs..." file in each directory the file ever gets 2634 * moved or linked to which happens automagically with the new 2635 * implementation that only depends on the dcache stuff instead of 2636 * using the inode layer 2637 * 2638 * Unfortunately, things are a little more complicated than indicated 2639 * above. For a cross-directory move, we want to make sure we can get 2640 * rid of the old inode after the operation. This means there must be 2641 * no pending writes (if it's a file), and the use count must be 1. 2642 * If these conditions are met, we can drop the dentries before doing 2643 * the rename. 2644 */ 2645 int nfs_rename(struct user_namespace *mnt_userns, struct inode *old_dir, 2646 struct dentry *old_dentry, struct inode *new_dir, 2647 struct dentry *new_dentry, unsigned int flags) 2648 { 2649 struct inode *old_inode = d_inode(old_dentry); 2650 struct inode *new_inode = d_inode(new_dentry); 2651 struct dentry *dentry = NULL; 2652 struct rpc_task *task; 2653 bool must_unblock = false; 2654 int error = -EBUSY; 2655 2656 if (flags) 2657 return -EINVAL; 2658 2659 dfprintk(VFS, "NFS: rename(%pd2 -> %pd2, ct=%d)\n", 2660 old_dentry, new_dentry, 2661 d_count(new_dentry)); 2662 2663 trace_nfs_rename_enter(old_dir, old_dentry, new_dir, new_dentry); 2664 /* 2665 * For non-directories, check whether the target is busy and if so, 2666 * make a copy of the dentry and then do a silly-rename. If the 2667 * silly-rename succeeds, the copied dentry is hashed and becomes 2668 * the new target. 2669 */ 2670 if (new_inode && !S_ISDIR(new_inode->i_mode)) { 2671 /* We must prevent any concurrent open until the unlink 2672 * completes. ->d_revalidate will wait for ->d_fsdata 2673 * to clear. We set it here to ensure no lookup succeeds until 2674 * the unlink is complete on the server. 2675 */ 2676 error = -ETXTBSY; 2677 if (WARN_ON(new_dentry->d_flags & DCACHE_NFSFS_RENAMED) || 2678 WARN_ON(new_dentry->d_fsdata == NFS_FSDATA_BLOCKED)) 2679 goto out; 2680 if (new_dentry->d_fsdata) { 2681 /* old devname */ 2682 kfree(new_dentry->d_fsdata); 2683 new_dentry->d_fsdata = NULL; 2684 } 2685 2686 spin_lock(&new_dentry->d_lock); 2687 if (d_count(new_dentry) > 2) { 2688 int err; 2689 2690 spin_unlock(&new_dentry->d_lock); 2691 2692 /* copy the target dentry's name */ 2693 dentry = d_alloc(new_dentry->d_parent, 2694 &new_dentry->d_name); 2695 if (!dentry) 2696 goto out; 2697 2698 /* silly-rename the existing target ... */ 2699 err = nfs_sillyrename(new_dir, new_dentry); 2700 if (err) 2701 goto out; 2702 2703 new_dentry = dentry; 2704 new_inode = NULL; 2705 } else { 2706 new_dentry->d_fsdata = NFS_FSDATA_BLOCKED; 2707 must_unblock = true; 2708 spin_unlock(&new_dentry->d_lock); 2709 } 2710 2711 } 2712 2713 if (S_ISREG(old_inode->i_mode)) 2714 nfs_sync_inode(old_inode); 2715 task = nfs_async_rename(old_dir, new_dir, old_dentry, new_dentry, 2716 must_unblock ? nfs_unblock_rename : NULL); 2717 if (IS_ERR(task)) { 2718 error = PTR_ERR(task); 2719 goto out; 2720 } 2721 2722 error = rpc_wait_for_completion_task(task); 2723 if (error != 0) { 2724 ((struct nfs_renamedata *)task->tk_calldata)->cancelled = 1; 2725 /* Paired with the atomic_dec_and_test() barrier in rpc_do_put_task() */ 2726 smp_wmb(); 2727 } else 2728 error = task->tk_status; 2729 rpc_put_task(task); 2730 /* Ensure the inode attributes are revalidated */ 2731 if (error == 0) { 2732 spin_lock(&old_inode->i_lock); 2733 NFS_I(old_inode)->attr_gencount = nfs_inc_attr_generation_counter(); 2734 nfs_set_cache_invalid(old_inode, NFS_INO_INVALID_CHANGE | 2735 NFS_INO_INVALID_CTIME | 2736 NFS_INO_REVAL_FORCED); 2737 spin_unlock(&old_inode->i_lock); 2738 } 2739 out: 2740 trace_nfs_rename_exit(old_dir, old_dentry, 2741 new_dir, new_dentry, error); 2742 if (!error) { 2743 if (new_inode != NULL) 2744 nfs_drop_nlink(new_inode); 2745 /* 2746 * The d_move() should be here instead of in an async RPC completion 2747 * handler because we need the proper locks to move the dentry. If 2748 * we're interrupted by a signal, the async RPC completion handler 2749 * should mark the directories for revalidation. 2750 */ 2751 d_move(old_dentry, new_dentry); 2752 nfs_set_verifier(old_dentry, 2753 nfs_save_change_attribute(new_dir)); 2754 } else if (error == -ENOENT) 2755 nfs_dentry_handle_enoent(old_dentry); 2756 2757 /* new dentry created? */ 2758 if (dentry) 2759 dput(dentry); 2760 return error; 2761 } 2762 EXPORT_SYMBOL_GPL(nfs_rename); 2763 2764 static DEFINE_SPINLOCK(nfs_access_lru_lock); 2765 static LIST_HEAD(nfs_access_lru_list); 2766 static atomic_long_t nfs_access_nr_entries; 2767 2768 static unsigned long nfs_access_max_cachesize = 4*1024*1024; 2769 module_param(nfs_access_max_cachesize, ulong, 0644); 2770 MODULE_PARM_DESC(nfs_access_max_cachesize, "NFS access maximum total cache length"); 2771 2772 static void nfs_access_free_entry(struct nfs_access_entry *entry) 2773 { 2774 put_group_info(entry->group_info); 2775 kfree_rcu(entry, rcu_head); 2776 smp_mb__before_atomic(); 2777 atomic_long_dec(&nfs_access_nr_entries); 2778 smp_mb__after_atomic(); 2779 } 2780 2781 static void nfs_access_free_list(struct list_head *head) 2782 { 2783 struct nfs_access_entry *cache; 2784 2785 while (!list_empty(head)) { 2786 cache = list_entry(head->next, struct nfs_access_entry, lru); 2787 list_del(&cache->lru); 2788 nfs_access_free_entry(cache); 2789 } 2790 } 2791 2792 static unsigned long 2793 nfs_do_access_cache_scan(unsigned int nr_to_scan) 2794 { 2795 LIST_HEAD(head); 2796 struct nfs_inode *nfsi, *next; 2797 struct nfs_access_entry *cache; 2798 long freed = 0; 2799 2800 spin_lock(&nfs_access_lru_lock); 2801 list_for_each_entry_safe(nfsi, next, &nfs_access_lru_list, access_cache_inode_lru) { 2802 struct inode *inode; 2803 2804 if (nr_to_scan-- == 0) 2805 break; 2806 inode = &nfsi->vfs_inode; 2807 spin_lock(&inode->i_lock); 2808 if (list_empty(&nfsi->access_cache_entry_lru)) 2809 goto remove_lru_entry; 2810 cache = list_entry(nfsi->access_cache_entry_lru.next, 2811 struct nfs_access_entry, lru); 2812 list_move(&cache->lru, &head); 2813 rb_erase(&cache->rb_node, &nfsi->access_cache); 2814 freed++; 2815 if (!list_empty(&nfsi->access_cache_entry_lru)) 2816 list_move_tail(&nfsi->access_cache_inode_lru, 2817 &nfs_access_lru_list); 2818 else { 2819 remove_lru_entry: 2820 list_del_init(&nfsi->access_cache_inode_lru); 2821 smp_mb__before_atomic(); 2822 clear_bit(NFS_INO_ACL_LRU_SET, &nfsi->flags); 2823 smp_mb__after_atomic(); 2824 } 2825 spin_unlock(&inode->i_lock); 2826 } 2827 spin_unlock(&nfs_access_lru_lock); 2828 nfs_access_free_list(&head); 2829 return freed; 2830 } 2831 2832 unsigned long 2833 nfs_access_cache_scan(struct shrinker *shrink, struct shrink_control *sc) 2834 { 2835 int nr_to_scan = sc->nr_to_scan; 2836 gfp_t gfp_mask = sc->gfp_mask; 2837 2838 if ((gfp_mask & GFP_KERNEL) != GFP_KERNEL) 2839 return SHRINK_STOP; 2840 return nfs_do_access_cache_scan(nr_to_scan); 2841 } 2842 2843 2844 unsigned long 2845 nfs_access_cache_count(struct shrinker *shrink, struct shrink_control *sc) 2846 { 2847 return vfs_pressure_ratio(atomic_long_read(&nfs_access_nr_entries)); 2848 } 2849 2850 static void 2851 nfs_access_cache_enforce_limit(void) 2852 { 2853 long nr_entries = atomic_long_read(&nfs_access_nr_entries); 2854 unsigned long diff; 2855 unsigned int nr_to_scan; 2856 2857 if (nr_entries < 0 || nr_entries <= nfs_access_max_cachesize) 2858 return; 2859 nr_to_scan = 100; 2860 diff = nr_entries - nfs_access_max_cachesize; 2861 if (diff < nr_to_scan) 2862 nr_to_scan = diff; 2863 nfs_do_access_cache_scan(nr_to_scan); 2864 } 2865 2866 static void __nfs_access_zap_cache(struct nfs_inode *nfsi, struct list_head *head) 2867 { 2868 struct rb_root *root_node = &nfsi->access_cache; 2869 struct rb_node *n; 2870 struct nfs_access_entry *entry; 2871 2872 /* Unhook entries from the cache */ 2873 while ((n = rb_first(root_node)) != NULL) { 2874 entry = rb_entry(n, struct nfs_access_entry, rb_node); 2875 rb_erase(n, root_node); 2876 list_move(&entry->lru, head); 2877 } 2878 nfsi->cache_validity &= ~NFS_INO_INVALID_ACCESS; 2879 } 2880 2881 void nfs_access_zap_cache(struct inode *inode) 2882 { 2883 LIST_HEAD(head); 2884 2885 if (test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags) == 0) 2886 return; 2887 /* Remove from global LRU init */ 2888 spin_lock(&nfs_access_lru_lock); 2889 if (test_and_clear_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) 2890 list_del_init(&NFS_I(inode)->access_cache_inode_lru); 2891 2892 spin_lock(&inode->i_lock); 2893 __nfs_access_zap_cache(NFS_I(inode), &head); 2894 spin_unlock(&inode->i_lock); 2895 spin_unlock(&nfs_access_lru_lock); 2896 nfs_access_free_list(&head); 2897 } 2898 EXPORT_SYMBOL_GPL(nfs_access_zap_cache); 2899 2900 static int access_cmp(const struct cred *a, const struct nfs_access_entry *b) 2901 { 2902 struct group_info *ga, *gb; 2903 int g; 2904 2905 if (uid_lt(a->fsuid, b->fsuid)) 2906 return -1; 2907 if (uid_gt(a->fsuid, b->fsuid)) 2908 return 1; 2909 2910 if (gid_lt(a->fsgid, b->fsgid)) 2911 return -1; 2912 if (gid_gt(a->fsgid, b->fsgid)) 2913 return 1; 2914 2915 ga = a->group_info; 2916 gb = b->group_info; 2917 if (ga == gb) 2918 return 0; 2919 if (ga == NULL) 2920 return -1; 2921 if (gb == NULL) 2922 return 1; 2923 if (ga->ngroups < gb->ngroups) 2924 return -1; 2925 if (ga->ngroups > gb->ngroups) 2926 return 1; 2927 2928 for (g = 0; g < ga->ngroups; g++) { 2929 if (gid_lt(ga->gid[g], gb->gid[g])) 2930 return -1; 2931 if (gid_gt(ga->gid[g], gb->gid[g])) 2932 return 1; 2933 } 2934 return 0; 2935 } 2936 2937 static struct nfs_access_entry *nfs_access_search_rbtree(struct inode *inode, const struct cred *cred) 2938 { 2939 struct rb_node *n = NFS_I(inode)->access_cache.rb_node; 2940 2941 while (n != NULL) { 2942 struct nfs_access_entry *entry = 2943 rb_entry(n, struct nfs_access_entry, rb_node); 2944 int cmp = access_cmp(cred, entry); 2945 2946 if (cmp < 0) 2947 n = n->rb_left; 2948 else if (cmp > 0) 2949 n = n->rb_right; 2950 else 2951 return entry; 2952 } 2953 return NULL; 2954 } 2955 2956 static u64 nfs_access_login_time(const struct task_struct *task, 2957 const struct cred *cred) 2958 { 2959 const struct task_struct *parent; 2960 u64 ret; 2961 2962 rcu_read_lock(); 2963 for (;;) { 2964 parent = rcu_dereference(task->real_parent); 2965 if (parent == task || cred_fscmp(parent->cred, cred) != 0) 2966 break; 2967 task = parent; 2968 } 2969 ret = task->start_time; 2970 rcu_read_unlock(); 2971 return ret; 2972 } 2973 2974 static int nfs_access_get_cached_locked(struct inode *inode, const struct cred *cred, u32 *mask, bool may_block) 2975 { 2976 struct nfs_inode *nfsi = NFS_I(inode); 2977 u64 login_time = nfs_access_login_time(current, cred); 2978 struct nfs_access_entry *cache; 2979 bool retry = true; 2980 int err; 2981 2982 spin_lock(&inode->i_lock); 2983 for(;;) { 2984 if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS) 2985 goto out_zap; 2986 cache = nfs_access_search_rbtree(inode, cred); 2987 err = -ENOENT; 2988 if (cache == NULL) 2989 goto out; 2990 /* Found an entry, is our attribute cache valid? */ 2991 if (!nfs_check_cache_invalid(inode, NFS_INO_INVALID_ACCESS)) 2992 break; 2993 if (!retry) 2994 break; 2995 err = -ECHILD; 2996 if (!may_block) 2997 goto out; 2998 spin_unlock(&inode->i_lock); 2999 err = __nfs_revalidate_inode(NFS_SERVER(inode), inode); 3000 if (err) 3001 return err; 3002 spin_lock(&inode->i_lock); 3003 retry = false; 3004 } 3005 err = -ENOENT; 3006 if ((s64)(login_time - cache->timestamp) > 0) 3007 goto out; 3008 *mask = cache->mask; 3009 list_move_tail(&cache->lru, &nfsi->access_cache_entry_lru); 3010 err = 0; 3011 out: 3012 spin_unlock(&inode->i_lock); 3013 return err; 3014 out_zap: 3015 spin_unlock(&inode->i_lock); 3016 nfs_access_zap_cache(inode); 3017 return -ENOENT; 3018 } 3019 3020 static int nfs_access_get_cached_rcu(struct inode *inode, const struct cred *cred, u32 *mask) 3021 { 3022 /* Only check the most recently returned cache entry, 3023 * but do it without locking. 3024 */ 3025 struct nfs_inode *nfsi = NFS_I(inode); 3026 struct nfs_access_entry *cache; 3027 int err = -ECHILD; 3028 struct list_head *lh; 3029 3030 rcu_read_lock(); 3031 if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS) 3032 goto out; 3033 lh = rcu_dereference(list_tail_rcu(&nfsi->access_cache_entry_lru)); 3034 cache = list_entry(lh, struct nfs_access_entry, lru); 3035 if (lh == &nfsi->access_cache_entry_lru || 3036 access_cmp(cred, cache) != 0) 3037 cache = NULL; 3038 if (cache == NULL) 3039 goto out; 3040 if (nfs_check_cache_invalid(inode, NFS_INO_INVALID_ACCESS)) 3041 goto out; 3042 *mask = cache->mask; 3043 err = 0; 3044 out: 3045 rcu_read_unlock(); 3046 return err; 3047 } 3048 3049 int nfs_access_get_cached(struct inode *inode, const struct cred *cred, 3050 u32 *mask, bool may_block) 3051 { 3052 int status; 3053 3054 status = nfs_access_get_cached_rcu(inode, cred, mask); 3055 if (status != 0) 3056 status = nfs_access_get_cached_locked(inode, cred, mask, 3057 may_block); 3058 3059 return status; 3060 } 3061 EXPORT_SYMBOL_GPL(nfs_access_get_cached); 3062 3063 static void nfs_access_add_rbtree(struct inode *inode, 3064 struct nfs_access_entry *set, 3065 const struct cred *cred) 3066 { 3067 struct nfs_inode *nfsi = NFS_I(inode); 3068 struct rb_root *root_node = &nfsi->access_cache; 3069 struct rb_node **p = &root_node->rb_node; 3070 struct rb_node *parent = NULL; 3071 struct nfs_access_entry *entry; 3072 int cmp; 3073 3074 spin_lock(&inode->i_lock); 3075 while (*p != NULL) { 3076 parent = *p; 3077 entry = rb_entry(parent, struct nfs_access_entry, rb_node); 3078 cmp = access_cmp(cred, entry); 3079 3080 if (cmp < 0) 3081 p = &parent->rb_left; 3082 else if (cmp > 0) 3083 p = &parent->rb_right; 3084 else 3085 goto found; 3086 } 3087 set->timestamp = ktime_get_ns(); 3088 rb_link_node(&set->rb_node, parent, p); 3089 rb_insert_color(&set->rb_node, root_node); 3090 list_add_tail(&set->lru, &nfsi->access_cache_entry_lru); 3091 spin_unlock(&inode->i_lock); 3092 return; 3093 found: 3094 rb_replace_node(parent, &set->rb_node, root_node); 3095 list_add_tail(&set->lru, &nfsi->access_cache_entry_lru); 3096 list_del(&entry->lru); 3097 spin_unlock(&inode->i_lock); 3098 nfs_access_free_entry(entry); 3099 } 3100 3101 void nfs_access_add_cache(struct inode *inode, struct nfs_access_entry *set, 3102 const struct cred *cred) 3103 { 3104 struct nfs_access_entry *cache = kmalloc(sizeof(*cache), GFP_KERNEL); 3105 if (cache == NULL) 3106 return; 3107 RB_CLEAR_NODE(&cache->rb_node); 3108 cache->fsuid = cred->fsuid; 3109 cache->fsgid = cred->fsgid; 3110 cache->group_info = get_group_info(cred->group_info); 3111 cache->mask = set->mask; 3112 3113 /* The above field assignments must be visible 3114 * before this item appears on the lru. We cannot easily 3115 * use rcu_assign_pointer, so just force the memory barrier. 3116 */ 3117 smp_wmb(); 3118 nfs_access_add_rbtree(inode, cache, cred); 3119 3120 /* Update accounting */ 3121 smp_mb__before_atomic(); 3122 atomic_long_inc(&nfs_access_nr_entries); 3123 smp_mb__after_atomic(); 3124 3125 /* Add inode to global LRU list */ 3126 if (!test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) { 3127 spin_lock(&nfs_access_lru_lock); 3128 if (!test_and_set_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) 3129 list_add_tail(&NFS_I(inode)->access_cache_inode_lru, 3130 &nfs_access_lru_list); 3131 spin_unlock(&nfs_access_lru_lock); 3132 } 3133 nfs_access_cache_enforce_limit(); 3134 } 3135 EXPORT_SYMBOL_GPL(nfs_access_add_cache); 3136 3137 #define NFS_MAY_READ (NFS_ACCESS_READ) 3138 #define NFS_MAY_WRITE (NFS_ACCESS_MODIFY | \ 3139 NFS_ACCESS_EXTEND | \ 3140 NFS_ACCESS_DELETE) 3141 #define NFS_FILE_MAY_WRITE (NFS_ACCESS_MODIFY | \ 3142 NFS_ACCESS_EXTEND) 3143 #define NFS_DIR_MAY_WRITE NFS_MAY_WRITE 3144 #define NFS_MAY_LOOKUP (NFS_ACCESS_LOOKUP) 3145 #define NFS_MAY_EXECUTE (NFS_ACCESS_EXECUTE) 3146 static int 3147 nfs_access_calc_mask(u32 access_result, umode_t umode) 3148 { 3149 int mask = 0; 3150 3151 if (access_result & NFS_MAY_READ) 3152 mask |= MAY_READ; 3153 if (S_ISDIR(umode)) { 3154 if ((access_result & NFS_DIR_MAY_WRITE) == NFS_DIR_MAY_WRITE) 3155 mask |= MAY_WRITE; 3156 if ((access_result & NFS_MAY_LOOKUP) == NFS_MAY_LOOKUP) 3157 mask |= MAY_EXEC; 3158 } else if (S_ISREG(umode)) { 3159 if ((access_result & NFS_FILE_MAY_WRITE) == NFS_FILE_MAY_WRITE) 3160 mask |= MAY_WRITE; 3161 if ((access_result & NFS_MAY_EXECUTE) == NFS_MAY_EXECUTE) 3162 mask |= MAY_EXEC; 3163 } else if (access_result & NFS_MAY_WRITE) 3164 mask |= MAY_WRITE; 3165 return mask; 3166 } 3167 3168 void nfs_access_set_mask(struct nfs_access_entry *entry, u32 access_result) 3169 { 3170 entry->mask = access_result; 3171 } 3172 EXPORT_SYMBOL_GPL(nfs_access_set_mask); 3173 3174 static int nfs_do_access(struct inode *inode, const struct cred *cred, int mask) 3175 { 3176 struct nfs_access_entry cache; 3177 bool may_block = (mask & MAY_NOT_BLOCK) == 0; 3178 int cache_mask = -1; 3179 int status; 3180 3181 trace_nfs_access_enter(inode); 3182 3183 status = nfs_access_get_cached(inode, cred, &cache.mask, may_block); 3184 if (status == 0) 3185 goto out_cached; 3186 3187 status = -ECHILD; 3188 if (!may_block) 3189 goto out; 3190 3191 /* 3192 * Determine which access bits we want to ask for... 3193 */ 3194 cache.mask = NFS_ACCESS_READ | NFS_ACCESS_MODIFY | NFS_ACCESS_EXTEND | 3195 nfs_access_xattr_mask(NFS_SERVER(inode)); 3196 if (S_ISDIR(inode->i_mode)) 3197 cache.mask |= NFS_ACCESS_DELETE | NFS_ACCESS_LOOKUP; 3198 else 3199 cache.mask |= NFS_ACCESS_EXECUTE; 3200 status = NFS_PROTO(inode)->access(inode, &cache, cred); 3201 if (status != 0) { 3202 if (status == -ESTALE) { 3203 if (!S_ISDIR(inode->i_mode)) 3204 nfs_set_inode_stale(inode); 3205 else 3206 nfs_zap_caches(inode); 3207 } 3208 goto out; 3209 } 3210 nfs_access_add_cache(inode, &cache, cred); 3211 out_cached: 3212 cache_mask = nfs_access_calc_mask(cache.mask, inode->i_mode); 3213 if ((mask & ~cache_mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) != 0) 3214 status = -EACCES; 3215 out: 3216 trace_nfs_access_exit(inode, mask, cache_mask, status); 3217 return status; 3218 } 3219 3220 static int nfs_open_permission_mask(int openflags) 3221 { 3222 int mask = 0; 3223 3224 if (openflags & __FMODE_EXEC) { 3225 /* ONLY check exec rights */ 3226 mask = MAY_EXEC; 3227 } else { 3228 if ((openflags & O_ACCMODE) != O_WRONLY) 3229 mask |= MAY_READ; 3230 if ((openflags & O_ACCMODE) != O_RDONLY) 3231 mask |= MAY_WRITE; 3232 } 3233 3234 return mask; 3235 } 3236 3237 int nfs_may_open(struct inode *inode, const struct cred *cred, int openflags) 3238 { 3239 return nfs_do_access(inode, cred, nfs_open_permission_mask(openflags)); 3240 } 3241 EXPORT_SYMBOL_GPL(nfs_may_open); 3242 3243 static int nfs_execute_ok(struct inode *inode, int mask) 3244 { 3245 struct nfs_server *server = NFS_SERVER(inode); 3246 int ret = 0; 3247 3248 if (S_ISDIR(inode->i_mode)) 3249 return 0; 3250 if (nfs_check_cache_invalid(inode, NFS_INO_INVALID_MODE)) { 3251 if (mask & MAY_NOT_BLOCK) 3252 return -ECHILD; 3253 ret = __nfs_revalidate_inode(server, inode); 3254 } 3255 if (ret == 0 && !execute_ok(inode)) 3256 ret = -EACCES; 3257 return ret; 3258 } 3259 3260 int nfs_permission(struct user_namespace *mnt_userns, 3261 struct inode *inode, 3262 int mask) 3263 { 3264 const struct cred *cred = current_cred(); 3265 int res = 0; 3266 3267 nfs_inc_stats(inode, NFSIOS_VFSACCESS); 3268 3269 if ((mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0) 3270 goto out; 3271 /* Is this sys_access() ? */ 3272 if (mask & (MAY_ACCESS | MAY_CHDIR)) 3273 goto force_lookup; 3274 3275 switch (inode->i_mode & S_IFMT) { 3276 case S_IFLNK: 3277 goto out; 3278 case S_IFREG: 3279 if ((mask & MAY_OPEN) && 3280 nfs_server_capable(inode, NFS_CAP_ATOMIC_OPEN)) 3281 return 0; 3282 break; 3283 case S_IFDIR: 3284 /* 3285 * Optimize away all write operations, since the server 3286 * will check permissions when we perform the op. 3287 */ 3288 if ((mask & MAY_WRITE) && !(mask & MAY_READ)) 3289 goto out; 3290 } 3291 3292 force_lookup: 3293 if (!NFS_PROTO(inode)->access) 3294 goto out_notsup; 3295 3296 res = nfs_do_access(inode, cred, mask); 3297 out: 3298 if (!res && (mask & MAY_EXEC)) 3299 res = nfs_execute_ok(inode, mask); 3300 3301 dfprintk(VFS, "NFS: permission(%s/%lu), mask=0x%x, res=%d\n", 3302 inode->i_sb->s_id, inode->i_ino, mask, res); 3303 return res; 3304 out_notsup: 3305 if (mask & MAY_NOT_BLOCK) 3306 return -ECHILD; 3307 3308 res = nfs_revalidate_inode(inode, NFS_INO_INVALID_MODE | 3309 NFS_INO_INVALID_OTHER); 3310 if (res == 0) 3311 res = generic_permission(&init_user_ns, inode, mask); 3312 goto out; 3313 } 3314 EXPORT_SYMBOL_GPL(nfs_permission); 3315