1 /* 2 * linux/fs/nfs/dir.c 3 * 4 * Copyright (C) 1992 Rick Sladkey 5 * 6 * nfs directory handling functions 7 * 8 * 10 Apr 1996 Added silly rename for unlink --okir 9 * 28 Sep 1996 Improved directory cache --okir 10 * 23 Aug 1997 Claus Heine claus@momo.math.rwth-aachen.de 11 * Re-implemented silly rename for unlink, newly implemented 12 * silly rename for nfs_rename() following the suggestions 13 * of Olaf Kirch (okir) found in this file. 14 * Following Linus comments on my original hack, this version 15 * depends only on the dcache stuff and doesn't touch the inode 16 * layer (iput() and friends). 17 * 6 Jun 1999 Cache readdir lookups in the page cache. -DaveM 18 */ 19 20 #include <linux/time.h> 21 #include <linux/errno.h> 22 #include <linux/stat.h> 23 #include <linux/fcntl.h> 24 #include <linux/string.h> 25 #include <linux/kernel.h> 26 #include <linux/slab.h> 27 #include <linux/mm.h> 28 #include <linux/sunrpc/clnt.h> 29 #include <linux/nfs_fs.h> 30 #include <linux/nfs_mount.h> 31 #include <linux/pagemap.h> 32 #include <linux/smp_lock.h> 33 #include <linux/pagevec.h> 34 #include <linux/namei.h> 35 #include <linux/mount.h> 36 #include <linux/sched.h> 37 38 #include "nfs4_fs.h" 39 #include "delegation.h" 40 #include "iostat.h" 41 #include "internal.h" 42 43 /* #define NFS_DEBUG_VERBOSE 1 */ 44 45 static int nfs_opendir(struct inode *, struct file *); 46 static int nfs_readdir(struct file *, void *, filldir_t); 47 static struct dentry *nfs_lookup(struct inode *, struct dentry *, struct nameidata *); 48 static int nfs_create(struct inode *, struct dentry *, int, struct nameidata *); 49 static int nfs_mkdir(struct inode *, struct dentry *, int); 50 static int nfs_rmdir(struct inode *, struct dentry *); 51 static int nfs_unlink(struct inode *, struct dentry *); 52 static int nfs_symlink(struct inode *, struct dentry *, const char *); 53 static int nfs_link(struct dentry *, struct inode *, struct dentry *); 54 static int nfs_mknod(struct inode *, struct dentry *, int, dev_t); 55 static int nfs_rename(struct inode *, struct dentry *, 56 struct inode *, struct dentry *); 57 static int nfs_fsync_dir(struct file *, struct dentry *, int); 58 static loff_t nfs_llseek_dir(struct file *, loff_t, int); 59 60 const struct file_operations nfs_dir_operations = { 61 .llseek = nfs_llseek_dir, 62 .read = generic_read_dir, 63 .readdir = nfs_readdir, 64 .open = nfs_opendir, 65 .release = nfs_release, 66 .fsync = nfs_fsync_dir, 67 }; 68 69 const struct inode_operations nfs_dir_inode_operations = { 70 .create = nfs_create, 71 .lookup = nfs_lookup, 72 .link = nfs_link, 73 .unlink = nfs_unlink, 74 .symlink = nfs_symlink, 75 .mkdir = nfs_mkdir, 76 .rmdir = nfs_rmdir, 77 .mknod = nfs_mknod, 78 .rename = nfs_rename, 79 .permission = nfs_permission, 80 .getattr = nfs_getattr, 81 .setattr = nfs_setattr, 82 }; 83 84 #ifdef CONFIG_NFS_V3 85 const struct inode_operations nfs3_dir_inode_operations = { 86 .create = nfs_create, 87 .lookup = nfs_lookup, 88 .link = nfs_link, 89 .unlink = nfs_unlink, 90 .symlink = nfs_symlink, 91 .mkdir = nfs_mkdir, 92 .rmdir = nfs_rmdir, 93 .mknod = nfs_mknod, 94 .rename = nfs_rename, 95 .permission = nfs_permission, 96 .getattr = nfs_getattr, 97 .setattr = nfs_setattr, 98 .listxattr = nfs3_listxattr, 99 .getxattr = nfs3_getxattr, 100 .setxattr = nfs3_setxattr, 101 .removexattr = nfs3_removexattr, 102 }; 103 #endif /* CONFIG_NFS_V3 */ 104 105 #ifdef CONFIG_NFS_V4 106 107 static struct dentry *nfs_atomic_lookup(struct inode *, struct dentry *, struct nameidata *); 108 const struct inode_operations nfs4_dir_inode_operations = { 109 .create = nfs_create, 110 .lookup = nfs_atomic_lookup, 111 .link = nfs_link, 112 .unlink = nfs_unlink, 113 .symlink = nfs_symlink, 114 .mkdir = nfs_mkdir, 115 .rmdir = nfs_rmdir, 116 .mknod = nfs_mknod, 117 .rename = nfs_rename, 118 .permission = nfs_permission, 119 .getattr = nfs_getattr, 120 .setattr = nfs_setattr, 121 .getxattr = nfs4_getxattr, 122 .setxattr = nfs4_setxattr, 123 .listxattr = nfs4_listxattr, 124 }; 125 126 #endif /* CONFIG_NFS_V4 */ 127 128 /* 129 * Open file 130 */ 131 static int 132 nfs_opendir(struct inode *inode, struct file *filp) 133 { 134 int res; 135 136 dfprintk(VFS, "NFS: opendir(%s/%ld)\n", 137 inode->i_sb->s_id, inode->i_ino); 138 139 lock_kernel(); 140 /* Call generic open code in order to cache credentials */ 141 res = nfs_open(inode, filp); 142 unlock_kernel(); 143 return res; 144 } 145 146 typedef __be32 * (*decode_dirent_t)(__be32 *, struct nfs_entry *, int); 147 typedef struct { 148 struct file *file; 149 struct page *page; 150 unsigned long page_index; 151 __be32 *ptr; 152 u64 *dir_cookie; 153 loff_t current_index; 154 struct nfs_entry *entry; 155 decode_dirent_t decode; 156 int plus; 157 unsigned long timestamp; 158 int timestamp_valid; 159 } nfs_readdir_descriptor_t; 160 161 /* Now we cache directories properly, by stuffing the dirent 162 * data directly in the page cache. 163 * 164 * Inode invalidation due to refresh etc. takes care of 165 * _everything_, no sloppy entry flushing logic, no extraneous 166 * copying, network direct to page cache, the way it was meant 167 * to be. 168 * 169 * NOTE: Dirent information verification is done always by the 170 * page-in of the RPC reply, nowhere else, this simplies 171 * things substantially. 172 */ 173 static 174 int nfs_readdir_filler(nfs_readdir_descriptor_t *desc, struct page *page) 175 { 176 struct file *file = desc->file; 177 struct inode *inode = file->f_path.dentry->d_inode; 178 struct rpc_cred *cred = nfs_file_cred(file); 179 unsigned long timestamp; 180 int error; 181 182 dfprintk(DIRCACHE, "NFS: %s: reading cookie %Lu into page %lu\n", 183 __FUNCTION__, (long long)desc->entry->cookie, 184 page->index); 185 186 again: 187 timestamp = jiffies; 188 error = NFS_PROTO(inode)->readdir(file->f_path.dentry, cred, desc->entry->cookie, page, 189 NFS_SERVER(inode)->dtsize, desc->plus); 190 if (error < 0) { 191 /* We requested READDIRPLUS, but the server doesn't grok it */ 192 if (error == -ENOTSUPP && desc->plus) { 193 NFS_SERVER(inode)->caps &= ~NFS_CAP_READDIRPLUS; 194 clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags); 195 desc->plus = 0; 196 goto again; 197 } 198 goto error; 199 } 200 desc->timestamp = timestamp; 201 desc->timestamp_valid = 1; 202 SetPageUptodate(page); 203 /* Ensure consistent page alignment of the data. 204 * Note: assumes we have exclusive access to this mapping either 205 * through inode->i_mutex or some other mechanism. 206 */ 207 if (page->index == 0 && invalidate_inode_pages2_range(inode->i_mapping, PAGE_CACHE_SIZE, -1) < 0) { 208 /* Should never happen */ 209 nfs_zap_mapping(inode, inode->i_mapping); 210 } 211 unlock_page(page); 212 return 0; 213 error: 214 unlock_page(page); 215 return -EIO; 216 } 217 218 static inline 219 int dir_decode(nfs_readdir_descriptor_t *desc) 220 { 221 __be32 *p = desc->ptr; 222 p = desc->decode(p, desc->entry, desc->plus); 223 if (IS_ERR(p)) 224 return PTR_ERR(p); 225 desc->ptr = p; 226 if (desc->timestamp_valid) 227 desc->entry->fattr->time_start = desc->timestamp; 228 else 229 desc->entry->fattr->valid &= ~NFS_ATTR_FATTR; 230 return 0; 231 } 232 233 static inline 234 void dir_page_release(nfs_readdir_descriptor_t *desc) 235 { 236 kunmap(desc->page); 237 page_cache_release(desc->page); 238 desc->page = NULL; 239 desc->ptr = NULL; 240 } 241 242 /* 243 * Given a pointer to a buffer that has already been filled by a call 244 * to readdir, find the next entry with cookie '*desc->dir_cookie'. 245 * 246 * If the end of the buffer has been reached, return -EAGAIN, if not, 247 * return the offset within the buffer of the next entry to be 248 * read. 249 */ 250 static inline 251 int find_dirent(nfs_readdir_descriptor_t *desc) 252 { 253 struct nfs_entry *entry = desc->entry; 254 int loop_count = 0, 255 status; 256 257 while((status = dir_decode(desc)) == 0) { 258 dfprintk(DIRCACHE, "NFS: %s: examining cookie %Lu\n", 259 __FUNCTION__, (unsigned long long)entry->cookie); 260 if (entry->prev_cookie == *desc->dir_cookie) 261 break; 262 if (loop_count++ > 200) { 263 loop_count = 0; 264 schedule(); 265 } 266 } 267 return status; 268 } 269 270 /* 271 * Given a pointer to a buffer that has already been filled by a call 272 * to readdir, find the entry at offset 'desc->file->f_pos'. 273 * 274 * If the end of the buffer has been reached, return -EAGAIN, if not, 275 * return the offset within the buffer of the next entry to be 276 * read. 277 */ 278 static inline 279 int find_dirent_index(nfs_readdir_descriptor_t *desc) 280 { 281 struct nfs_entry *entry = desc->entry; 282 int loop_count = 0, 283 status; 284 285 for(;;) { 286 status = dir_decode(desc); 287 if (status) 288 break; 289 290 dfprintk(DIRCACHE, "NFS: found cookie %Lu at index %Ld\n", 291 (unsigned long long)entry->cookie, desc->current_index); 292 293 if (desc->file->f_pos == desc->current_index) { 294 *desc->dir_cookie = entry->cookie; 295 break; 296 } 297 desc->current_index++; 298 if (loop_count++ > 200) { 299 loop_count = 0; 300 schedule(); 301 } 302 } 303 return status; 304 } 305 306 /* 307 * Find the given page, and call find_dirent() or find_dirent_index in 308 * order to try to return the next entry. 309 */ 310 static inline 311 int find_dirent_page(nfs_readdir_descriptor_t *desc) 312 { 313 struct inode *inode = desc->file->f_path.dentry->d_inode; 314 struct page *page; 315 int status; 316 317 dfprintk(DIRCACHE, "NFS: %s: searching page %ld for target %Lu\n", 318 __FUNCTION__, desc->page_index, 319 (long long) *desc->dir_cookie); 320 321 /* If we find the page in the page_cache, we cannot be sure 322 * how fresh the data is, so we will ignore readdir_plus attributes. 323 */ 324 desc->timestamp_valid = 0; 325 page = read_cache_page(inode->i_mapping, desc->page_index, 326 (filler_t *)nfs_readdir_filler, desc); 327 if (IS_ERR(page)) { 328 status = PTR_ERR(page); 329 goto out; 330 } 331 332 /* NOTE: Someone else may have changed the READDIRPLUS flag */ 333 desc->page = page; 334 desc->ptr = kmap(page); /* matching kunmap in nfs_do_filldir */ 335 if (*desc->dir_cookie != 0) 336 status = find_dirent(desc); 337 else 338 status = find_dirent_index(desc); 339 if (status < 0) 340 dir_page_release(desc); 341 out: 342 dfprintk(DIRCACHE, "NFS: %s: returns %d\n", __FUNCTION__, status); 343 return status; 344 } 345 346 /* 347 * Recurse through the page cache pages, and return a 348 * filled nfs_entry structure of the next directory entry if possible. 349 * 350 * The target for the search is '*desc->dir_cookie' if non-0, 351 * 'desc->file->f_pos' otherwise 352 */ 353 static inline 354 int readdir_search_pagecache(nfs_readdir_descriptor_t *desc) 355 { 356 int loop_count = 0; 357 int res; 358 359 /* Always search-by-index from the beginning of the cache */ 360 if (*desc->dir_cookie == 0) { 361 dfprintk(DIRCACHE, "NFS: readdir_search_pagecache() searching for offset %Ld\n", 362 (long long)desc->file->f_pos); 363 desc->page_index = 0; 364 desc->entry->cookie = desc->entry->prev_cookie = 0; 365 desc->entry->eof = 0; 366 desc->current_index = 0; 367 } else 368 dfprintk(DIRCACHE, "NFS: readdir_search_pagecache() searching for cookie %Lu\n", 369 (unsigned long long)*desc->dir_cookie); 370 371 for (;;) { 372 res = find_dirent_page(desc); 373 if (res != -EAGAIN) 374 break; 375 /* Align to beginning of next page */ 376 desc->page_index ++; 377 if (loop_count++ > 200) { 378 loop_count = 0; 379 schedule(); 380 } 381 } 382 383 dfprintk(DIRCACHE, "NFS: %s: returns %d\n", __FUNCTION__, res); 384 return res; 385 } 386 387 static inline unsigned int dt_type(struct inode *inode) 388 { 389 return (inode->i_mode >> 12) & 15; 390 } 391 392 static struct dentry *nfs_readdir_lookup(nfs_readdir_descriptor_t *desc); 393 394 /* 395 * Once we've found the start of the dirent within a page: fill 'er up... 396 */ 397 static 398 int nfs_do_filldir(nfs_readdir_descriptor_t *desc, void *dirent, 399 filldir_t filldir) 400 { 401 struct file *file = desc->file; 402 struct nfs_entry *entry = desc->entry; 403 struct dentry *dentry = NULL; 404 u64 fileid; 405 int loop_count = 0, 406 res; 407 408 dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling starting @ cookie %Lu\n", 409 (unsigned long long)entry->cookie); 410 411 for(;;) { 412 unsigned d_type = DT_UNKNOWN; 413 /* Note: entry->prev_cookie contains the cookie for 414 * retrieving the current dirent on the server */ 415 fileid = entry->ino; 416 417 /* Get a dentry if we have one */ 418 if (dentry != NULL) 419 dput(dentry); 420 dentry = nfs_readdir_lookup(desc); 421 422 /* Use readdirplus info */ 423 if (dentry != NULL && dentry->d_inode != NULL) { 424 d_type = dt_type(dentry->d_inode); 425 fileid = NFS_FILEID(dentry->d_inode); 426 } 427 428 res = filldir(dirent, entry->name, entry->len, 429 file->f_pos, nfs_compat_user_ino64(fileid), 430 d_type); 431 if (res < 0) 432 break; 433 file->f_pos++; 434 *desc->dir_cookie = entry->cookie; 435 if (dir_decode(desc) != 0) { 436 desc->page_index ++; 437 break; 438 } 439 if (loop_count++ > 200) { 440 loop_count = 0; 441 schedule(); 442 } 443 } 444 dir_page_release(desc); 445 if (dentry != NULL) 446 dput(dentry); 447 dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling ended @ cookie %Lu; returning = %d\n", 448 (unsigned long long)*desc->dir_cookie, res); 449 return res; 450 } 451 452 /* 453 * If we cannot find a cookie in our cache, we suspect that this is 454 * because it points to a deleted file, so we ask the server to return 455 * whatever it thinks is the next entry. We then feed this to filldir. 456 * If all goes well, we should then be able to find our way round the 457 * cache on the next call to readdir_search_pagecache(); 458 * 459 * NOTE: we cannot add the anonymous page to the pagecache because 460 * the data it contains might not be page aligned. Besides, 461 * we should already have a complete representation of the 462 * directory in the page cache by the time we get here. 463 */ 464 static inline 465 int uncached_readdir(nfs_readdir_descriptor_t *desc, void *dirent, 466 filldir_t filldir) 467 { 468 struct file *file = desc->file; 469 struct inode *inode = file->f_path.dentry->d_inode; 470 struct rpc_cred *cred = nfs_file_cred(file); 471 struct page *page = NULL; 472 int status; 473 unsigned long timestamp; 474 475 dfprintk(DIRCACHE, "NFS: uncached_readdir() searching for cookie %Lu\n", 476 (unsigned long long)*desc->dir_cookie); 477 478 page = alloc_page(GFP_HIGHUSER); 479 if (!page) { 480 status = -ENOMEM; 481 goto out; 482 } 483 timestamp = jiffies; 484 status = NFS_PROTO(inode)->readdir(file->f_path.dentry, cred, 485 *desc->dir_cookie, page, 486 NFS_SERVER(inode)->dtsize, 487 desc->plus); 488 desc->page = page; 489 desc->ptr = kmap(page); /* matching kunmap in nfs_do_filldir */ 490 if (status >= 0) { 491 desc->timestamp = timestamp; 492 desc->timestamp_valid = 1; 493 if ((status = dir_decode(desc)) == 0) 494 desc->entry->prev_cookie = *desc->dir_cookie; 495 } else 496 status = -EIO; 497 if (status < 0) 498 goto out_release; 499 500 status = nfs_do_filldir(desc, dirent, filldir); 501 502 /* Reset read descriptor so it searches the page cache from 503 * the start upon the next call to readdir_search_pagecache() */ 504 desc->page_index = 0; 505 desc->entry->cookie = desc->entry->prev_cookie = 0; 506 desc->entry->eof = 0; 507 out: 508 dfprintk(DIRCACHE, "NFS: %s: returns %d\n", 509 __FUNCTION__, status); 510 return status; 511 out_release: 512 dir_page_release(desc); 513 goto out; 514 } 515 516 /* The file offset position represents the dirent entry number. A 517 last cookie cache takes care of the common case of reading the 518 whole directory. 519 */ 520 static int nfs_readdir(struct file *filp, void *dirent, filldir_t filldir) 521 { 522 struct dentry *dentry = filp->f_path.dentry; 523 struct inode *inode = dentry->d_inode; 524 nfs_readdir_descriptor_t my_desc, 525 *desc = &my_desc; 526 struct nfs_entry my_entry; 527 struct nfs_fh fh; 528 struct nfs_fattr fattr; 529 long res; 530 531 dfprintk(VFS, "NFS: readdir(%s/%s) starting at cookie %Lu\n", 532 dentry->d_parent->d_name.name, dentry->d_name.name, 533 (long long)filp->f_pos); 534 nfs_inc_stats(inode, NFSIOS_VFSGETDENTS); 535 536 lock_kernel(); 537 538 /* 539 * filp->f_pos points to the dirent entry number. 540 * *desc->dir_cookie has the cookie for the next entry. We have 541 * to either find the entry with the appropriate number or 542 * revalidate the cookie. 543 */ 544 memset(desc, 0, sizeof(*desc)); 545 546 desc->file = filp; 547 desc->dir_cookie = &nfs_file_open_context(filp)->dir_cookie; 548 desc->decode = NFS_PROTO(inode)->decode_dirent; 549 desc->plus = NFS_USE_READDIRPLUS(inode); 550 551 my_entry.cookie = my_entry.prev_cookie = 0; 552 my_entry.eof = 0; 553 my_entry.fh = &fh; 554 my_entry.fattr = &fattr; 555 nfs_fattr_init(&fattr); 556 desc->entry = &my_entry; 557 558 nfs_block_sillyrename(dentry); 559 res = nfs_revalidate_mapping_nolock(inode, filp->f_mapping); 560 if (res < 0) 561 goto out; 562 563 while(!desc->entry->eof) { 564 res = readdir_search_pagecache(desc); 565 566 if (res == -EBADCOOKIE) { 567 /* This means either end of directory */ 568 if (*desc->dir_cookie && desc->entry->cookie != *desc->dir_cookie) { 569 /* Or that the server has 'lost' a cookie */ 570 res = uncached_readdir(desc, dirent, filldir); 571 if (res >= 0) 572 continue; 573 } 574 res = 0; 575 break; 576 } 577 if (res == -ETOOSMALL && desc->plus) { 578 clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags); 579 nfs_zap_caches(inode); 580 desc->plus = 0; 581 desc->entry->eof = 0; 582 continue; 583 } 584 if (res < 0) 585 break; 586 587 res = nfs_do_filldir(desc, dirent, filldir); 588 if (res < 0) { 589 res = 0; 590 break; 591 } 592 } 593 out: 594 nfs_unblock_sillyrename(dentry); 595 unlock_kernel(); 596 if (res > 0) 597 res = 0; 598 dfprintk(VFS, "NFS: readdir(%s/%s) returns %ld\n", 599 dentry->d_parent->d_name.name, dentry->d_name.name, 600 res); 601 return res; 602 } 603 604 static loff_t nfs_llseek_dir(struct file *filp, loff_t offset, int origin) 605 { 606 mutex_lock(&filp->f_path.dentry->d_inode->i_mutex); 607 switch (origin) { 608 case 1: 609 offset += filp->f_pos; 610 case 0: 611 if (offset >= 0) 612 break; 613 default: 614 offset = -EINVAL; 615 goto out; 616 } 617 if (offset != filp->f_pos) { 618 filp->f_pos = offset; 619 nfs_file_open_context(filp)->dir_cookie = 0; 620 } 621 out: 622 mutex_unlock(&filp->f_path.dentry->d_inode->i_mutex); 623 return offset; 624 } 625 626 /* 627 * All directory operations under NFS are synchronous, so fsync() 628 * is a dummy operation. 629 */ 630 static int nfs_fsync_dir(struct file *filp, struct dentry *dentry, int datasync) 631 { 632 dfprintk(VFS, "NFS: fsync_dir(%s/%s) datasync %d\n", 633 dentry->d_parent->d_name.name, dentry->d_name.name, 634 datasync); 635 636 return 0; 637 } 638 639 /** 640 * nfs_force_lookup_revalidate - Mark the directory as having changed 641 * @dir - pointer to directory inode 642 * 643 * This forces the revalidation code in nfs_lookup_revalidate() to do a 644 * full lookup on all child dentries of 'dir' whenever a change occurs 645 * on the server that might have invalidated our dcache. 646 * 647 * The caller should be holding dir->i_lock 648 */ 649 void nfs_force_lookup_revalidate(struct inode *dir) 650 { 651 NFS_I(dir)->cache_change_attribute = jiffies; 652 } 653 654 /* 655 * A check for whether or not the parent directory has changed. 656 * In the case it has, we assume that the dentries are untrustworthy 657 * and may need to be looked up again. 658 */ 659 static int nfs_check_verifier(struct inode *dir, struct dentry *dentry) 660 { 661 if (IS_ROOT(dentry)) 662 return 1; 663 if (!nfs_verify_change_attribute(dir, dentry->d_time)) 664 return 0; 665 /* Revalidate nfsi->cache_change_attribute before we declare a match */ 666 if (nfs_revalidate_inode(NFS_SERVER(dir), dir) < 0) 667 return 0; 668 if (!nfs_verify_change_attribute(dir, dentry->d_time)) 669 return 0; 670 return 1; 671 } 672 673 /* 674 * Return the intent data that applies to this particular path component 675 * 676 * Note that the current set of intents only apply to the very last 677 * component of the path. 678 * We check for this using LOOKUP_CONTINUE and LOOKUP_PARENT. 679 */ 680 static inline unsigned int nfs_lookup_check_intent(struct nameidata *nd, unsigned int mask) 681 { 682 if (nd->flags & (LOOKUP_CONTINUE|LOOKUP_PARENT)) 683 return 0; 684 return nd->flags & mask; 685 } 686 687 /* 688 * Use intent information to check whether or not we're going to do 689 * an O_EXCL create using this path component. 690 */ 691 static int nfs_is_exclusive_create(struct inode *dir, struct nameidata *nd) 692 { 693 if (NFS_PROTO(dir)->version == 2) 694 return 0; 695 if (nd == NULL || nfs_lookup_check_intent(nd, LOOKUP_CREATE) == 0) 696 return 0; 697 return (nd->intent.open.flags & O_EXCL) != 0; 698 } 699 700 /* 701 * Inode and filehandle revalidation for lookups. 702 * 703 * We force revalidation in the cases where the VFS sets LOOKUP_REVAL, 704 * or if the intent information indicates that we're about to open this 705 * particular file and the "nocto" mount flag is not set. 706 * 707 */ 708 static inline 709 int nfs_lookup_verify_inode(struct inode *inode, struct nameidata *nd) 710 { 711 struct nfs_server *server = NFS_SERVER(inode); 712 713 if (test_bit(NFS_INO_MOUNTPOINT, &NFS_I(inode)->flags)) 714 return 0; 715 if (nd != NULL) { 716 /* VFS wants an on-the-wire revalidation */ 717 if (nd->flags & LOOKUP_REVAL) 718 goto out_force; 719 /* This is an open(2) */ 720 if (nfs_lookup_check_intent(nd, LOOKUP_OPEN) != 0 && 721 !(server->flags & NFS_MOUNT_NOCTO) && 722 (S_ISREG(inode->i_mode) || 723 S_ISDIR(inode->i_mode))) 724 goto out_force; 725 return 0; 726 } 727 return nfs_revalidate_inode(server, inode); 728 out_force: 729 return __nfs_revalidate_inode(server, inode); 730 } 731 732 /* 733 * We judge how long we want to trust negative 734 * dentries by looking at the parent inode mtime. 735 * 736 * If parent mtime has changed, we revalidate, else we wait for a 737 * period corresponding to the parent's attribute cache timeout value. 738 */ 739 static inline 740 int nfs_neg_need_reval(struct inode *dir, struct dentry *dentry, 741 struct nameidata *nd) 742 { 743 /* Don't revalidate a negative dentry if we're creating a new file */ 744 if (nd != NULL && nfs_lookup_check_intent(nd, LOOKUP_CREATE) != 0) 745 return 0; 746 return !nfs_check_verifier(dir, dentry); 747 } 748 749 /* 750 * This is called every time the dcache has a lookup hit, 751 * and we should check whether we can really trust that 752 * lookup. 753 * 754 * NOTE! The hit can be a negative hit too, don't assume 755 * we have an inode! 756 * 757 * If the parent directory is seen to have changed, we throw out the 758 * cached dentry and do a new lookup. 759 */ 760 static int nfs_lookup_revalidate(struct dentry * dentry, struct nameidata *nd) 761 { 762 struct inode *dir; 763 struct inode *inode; 764 struct dentry *parent; 765 int error; 766 struct nfs_fh fhandle; 767 struct nfs_fattr fattr; 768 769 parent = dget_parent(dentry); 770 lock_kernel(); 771 dir = parent->d_inode; 772 nfs_inc_stats(dir, NFSIOS_DENTRYREVALIDATE); 773 inode = dentry->d_inode; 774 775 if (!inode) { 776 if (nfs_neg_need_reval(dir, dentry, nd)) 777 goto out_bad; 778 goto out_valid; 779 } 780 781 if (is_bad_inode(inode)) { 782 dfprintk(LOOKUPCACHE, "%s: %s/%s has dud inode\n", 783 __FUNCTION__, dentry->d_parent->d_name.name, 784 dentry->d_name.name); 785 goto out_bad; 786 } 787 788 /* Force a full look up iff the parent directory has changed */ 789 if (!nfs_is_exclusive_create(dir, nd) && nfs_check_verifier(dir, dentry)) { 790 if (nfs_lookup_verify_inode(inode, nd)) 791 goto out_zap_parent; 792 goto out_valid; 793 } 794 795 if (NFS_STALE(inode)) 796 goto out_bad; 797 798 error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, &fhandle, &fattr); 799 if (error) 800 goto out_bad; 801 if (nfs_compare_fh(NFS_FH(inode), &fhandle)) 802 goto out_bad; 803 if ((error = nfs_refresh_inode(inode, &fattr)) != 0) 804 goto out_bad; 805 806 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 807 out_valid: 808 unlock_kernel(); 809 dput(parent); 810 dfprintk(LOOKUPCACHE, "NFS: %s(%s/%s) is valid\n", 811 __FUNCTION__, dentry->d_parent->d_name.name, 812 dentry->d_name.name); 813 return 1; 814 out_zap_parent: 815 nfs_zap_caches(dir); 816 out_bad: 817 nfs_mark_for_revalidate(dir); 818 if (inode && S_ISDIR(inode->i_mode)) { 819 /* Purge readdir caches. */ 820 nfs_zap_caches(inode); 821 /* If we have submounts, don't unhash ! */ 822 if (have_submounts(dentry)) 823 goto out_valid; 824 shrink_dcache_parent(dentry); 825 } 826 d_drop(dentry); 827 unlock_kernel(); 828 dput(parent); 829 dfprintk(LOOKUPCACHE, "NFS: %s(%s/%s) is invalid\n", 830 __FUNCTION__, dentry->d_parent->d_name.name, 831 dentry->d_name.name); 832 return 0; 833 } 834 835 /* 836 * This is called from dput() when d_count is going to 0. 837 */ 838 static int nfs_dentry_delete(struct dentry *dentry) 839 { 840 dfprintk(VFS, "NFS: dentry_delete(%s/%s, %x)\n", 841 dentry->d_parent->d_name.name, dentry->d_name.name, 842 dentry->d_flags); 843 844 /* Unhash any dentry with a stale inode */ 845 if (dentry->d_inode != NULL && NFS_STALE(dentry->d_inode)) 846 return 1; 847 848 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) { 849 /* Unhash it, so that ->d_iput() would be called */ 850 return 1; 851 } 852 if (!(dentry->d_sb->s_flags & MS_ACTIVE)) { 853 /* Unhash it, so that ancestors of killed async unlink 854 * files will be cleaned up during umount */ 855 return 1; 856 } 857 return 0; 858 859 } 860 861 /* 862 * Called when the dentry loses inode. 863 * We use it to clean up silly-renamed files. 864 */ 865 static void nfs_dentry_iput(struct dentry *dentry, struct inode *inode) 866 { 867 if (S_ISDIR(inode->i_mode)) 868 /* drop any readdir cache as it could easily be old */ 869 NFS_I(inode)->cache_validity |= NFS_INO_INVALID_DATA; 870 871 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) { 872 lock_kernel(); 873 drop_nlink(inode); 874 nfs_complete_unlink(dentry, inode); 875 unlock_kernel(); 876 } 877 iput(inode); 878 } 879 880 struct dentry_operations nfs_dentry_operations = { 881 .d_revalidate = nfs_lookup_revalidate, 882 .d_delete = nfs_dentry_delete, 883 .d_iput = nfs_dentry_iput, 884 }; 885 886 static struct dentry *nfs_lookup(struct inode *dir, struct dentry * dentry, struct nameidata *nd) 887 { 888 struct dentry *res; 889 struct dentry *parent; 890 struct inode *inode = NULL; 891 int error; 892 struct nfs_fh fhandle; 893 struct nfs_fattr fattr; 894 895 dfprintk(VFS, "NFS: lookup(%s/%s)\n", 896 dentry->d_parent->d_name.name, dentry->d_name.name); 897 nfs_inc_stats(dir, NFSIOS_VFSLOOKUP); 898 899 res = ERR_PTR(-ENAMETOOLONG); 900 if (dentry->d_name.len > NFS_SERVER(dir)->namelen) 901 goto out; 902 903 res = ERR_PTR(-ENOMEM); 904 dentry->d_op = NFS_PROTO(dir)->dentry_ops; 905 906 lock_kernel(); 907 908 /* 909 * If we're doing an exclusive create, optimize away the lookup 910 * but don't hash the dentry. 911 */ 912 if (nfs_is_exclusive_create(dir, nd)) { 913 d_instantiate(dentry, NULL); 914 res = NULL; 915 goto out_unlock; 916 } 917 918 parent = dentry->d_parent; 919 /* Protect against concurrent sillydeletes */ 920 nfs_block_sillyrename(parent); 921 error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, &fhandle, &fattr); 922 if (error == -ENOENT) 923 goto no_entry; 924 if (error < 0) { 925 res = ERR_PTR(error); 926 goto out_unblock_sillyrename; 927 } 928 inode = nfs_fhget(dentry->d_sb, &fhandle, &fattr); 929 res = (struct dentry *)inode; 930 if (IS_ERR(res)) 931 goto out_unblock_sillyrename; 932 933 no_entry: 934 res = d_materialise_unique(dentry, inode); 935 if (res != NULL) { 936 if (IS_ERR(res)) 937 goto out_unblock_sillyrename; 938 dentry = res; 939 } 940 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 941 out_unblock_sillyrename: 942 nfs_unblock_sillyrename(parent); 943 out_unlock: 944 unlock_kernel(); 945 out: 946 return res; 947 } 948 949 #ifdef CONFIG_NFS_V4 950 static int nfs_open_revalidate(struct dentry *, struct nameidata *); 951 952 struct dentry_operations nfs4_dentry_operations = { 953 .d_revalidate = nfs_open_revalidate, 954 .d_delete = nfs_dentry_delete, 955 .d_iput = nfs_dentry_iput, 956 }; 957 958 /* 959 * Use intent information to determine whether we need to substitute 960 * the NFSv4-style stateful OPEN for the LOOKUP call 961 */ 962 static int is_atomic_open(struct inode *dir, struct nameidata *nd) 963 { 964 if (nd == NULL || nfs_lookup_check_intent(nd, LOOKUP_OPEN) == 0) 965 return 0; 966 /* NFS does not (yet) have a stateful open for directories */ 967 if (nd->flags & LOOKUP_DIRECTORY) 968 return 0; 969 /* Are we trying to write to a read only partition? */ 970 if (__mnt_is_readonly(nd->path.mnt) && 971 (nd->intent.open.flags & (O_CREAT|O_TRUNC|FMODE_WRITE))) 972 return 0; 973 return 1; 974 } 975 976 static struct dentry *nfs_atomic_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd) 977 { 978 struct dentry *res = NULL; 979 int error; 980 981 dfprintk(VFS, "NFS: atomic_lookup(%s/%ld), %s\n", 982 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name); 983 984 /* Check that we are indeed trying to open this file */ 985 if (!is_atomic_open(dir, nd)) 986 goto no_open; 987 988 if (dentry->d_name.len > NFS_SERVER(dir)->namelen) { 989 res = ERR_PTR(-ENAMETOOLONG); 990 goto out; 991 } 992 dentry->d_op = NFS_PROTO(dir)->dentry_ops; 993 994 /* Let vfs_create() deal with O_EXCL. Instantiate, but don't hash 995 * the dentry. */ 996 if (nd->intent.open.flags & O_EXCL) { 997 d_instantiate(dentry, NULL); 998 goto out; 999 } 1000 1001 /* Open the file on the server */ 1002 lock_kernel(); 1003 res = nfs4_atomic_open(dir, dentry, nd); 1004 unlock_kernel(); 1005 if (IS_ERR(res)) { 1006 error = PTR_ERR(res); 1007 switch (error) { 1008 /* Make a negative dentry */ 1009 case -ENOENT: 1010 res = NULL; 1011 goto out; 1012 /* This turned out not to be a regular file */ 1013 case -EISDIR: 1014 case -ENOTDIR: 1015 goto no_open; 1016 case -ELOOP: 1017 if (!(nd->intent.open.flags & O_NOFOLLOW)) 1018 goto no_open; 1019 /* case -EINVAL: */ 1020 default: 1021 goto out; 1022 } 1023 } else if (res != NULL) 1024 dentry = res; 1025 out: 1026 return res; 1027 no_open: 1028 return nfs_lookup(dir, dentry, nd); 1029 } 1030 1031 static int nfs_open_revalidate(struct dentry *dentry, struct nameidata *nd) 1032 { 1033 struct dentry *parent = NULL; 1034 struct inode *inode = dentry->d_inode; 1035 struct inode *dir; 1036 int openflags, ret = 0; 1037 1038 parent = dget_parent(dentry); 1039 dir = parent->d_inode; 1040 if (!is_atomic_open(dir, nd)) 1041 goto no_open; 1042 /* We can't create new files in nfs_open_revalidate(), so we 1043 * optimize away revalidation of negative dentries. 1044 */ 1045 if (inode == NULL) { 1046 if (!nfs_neg_need_reval(dir, dentry, nd)) 1047 ret = 1; 1048 goto out; 1049 } 1050 1051 /* NFS only supports OPEN on regular files */ 1052 if (!S_ISREG(inode->i_mode)) 1053 goto no_open; 1054 openflags = nd->intent.open.flags; 1055 /* We cannot do exclusive creation on a positive dentry */ 1056 if ((openflags & (O_CREAT|O_EXCL)) == (O_CREAT|O_EXCL)) 1057 goto no_open; 1058 /* We can't create new files, or truncate existing ones here */ 1059 openflags &= ~(O_CREAT|O_TRUNC); 1060 1061 /* 1062 * Note: we're not holding inode->i_mutex and so may be racing with 1063 * operations that change the directory. We therefore save the 1064 * change attribute *before* we do the RPC call. 1065 */ 1066 lock_kernel(); 1067 ret = nfs4_open_revalidate(dir, dentry, openflags, nd); 1068 unlock_kernel(); 1069 out: 1070 dput(parent); 1071 if (!ret) 1072 d_drop(dentry); 1073 return ret; 1074 no_open: 1075 dput(parent); 1076 if (inode != NULL && nfs_have_delegation(inode, FMODE_READ)) 1077 return 1; 1078 return nfs_lookup_revalidate(dentry, nd); 1079 } 1080 #endif /* CONFIG_NFSV4 */ 1081 1082 static struct dentry *nfs_readdir_lookup(nfs_readdir_descriptor_t *desc) 1083 { 1084 struct dentry *parent = desc->file->f_path.dentry; 1085 struct inode *dir = parent->d_inode; 1086 struct nfs_entry *entry = desc->entry; 1087 struct dentry *dentry, *alias; 1088 struct qstr name = { 1089 .name = entry->name, 1090 .len = entry->len, 1091 }; 1092 struct inode *inode; 1093 unsigned long verf = nfs_save_change_attribute(dir); 1094 1095 switch (name.len) { 1096 case 2: 1097 if (name.name[0] == '.' && name.name[1] == '.') 1098 return dget_parent(parent); 1099 break; 1100 case 1: 1101 if (name.name[0] == '.') 1102 return dget(parent); 1103 } 1104 1105 spin_lock(&dir->i_lock); 1106 if (NFS_I(dir)->cache_validity & NFS_INO_INVALID_DATA) { 1107 spin_unlock(&dir->i_lock); 1108 return NULL; 1109 } 1110 spin_unlock(&dir->i_lock); 1111 1112 name.hash = full_name_hash(name.name, name.len); 1113 dentry = d_lookup(parent, &name); 1114 if (dentry != NULL) { 1115 /* Is this a positive dentry that matches the readdir info? */ 1116 if (dentry->d_inode != NULL && 1117 (NFS_FILEID(dentry->d_inode) == entry->ino || 1118 d_mountpoint(dentry))) { 1119 if (!desc->plus || entry->fh->size == 0) 1120 return dentry; 1121 if (nfs_compare_fh(NFS_FH(dentry->d_inode), 1122 entry->fh) == 0) 1123 goto out_renew; 1124 } 1125 /* No, so d_drop to allow one to be created */ 1126 d_drop(dentry); 1127 dput(dentry); 1128 } 1129 if (!desc->plus || !(entry->fattr->valid & NFS_ATTR_FATTR)) 1130 return NULL; 1131 if (name.len > NFS_SERVER(dir)->namelen) 1132 return NULL; 1133 /* Note: caller is already holding the dir->i_mutex! */ 1134 dentry = d_alloc(parent, &name); 1135 if (dentry == NULL) 1136 return NULL; 1137 dentry->d_op = NFS_PROTO(dir)->dentry_ops; 1138 inode = nfs_fhget(dentry->d_sb, entry->fh, entry->fattr); 1139 if (IS_ERR(inode)) { 1140 dput(dentry); 1141 return NULL; 1142 } 1143 1144 alias = d_materialise_unique(dentry, inode); 1145 if (alias != NULL) { 1146 dput(dentry); 1147 if (IS_ERR(alias)) 1148 return NULL; 1149 dentry = alias; 1150 } 1151 1152 out_renew: 1153 nfs_set_verifier(dentry, verf); 1154 return dentry; 1155 } 1156 1157 /* 1158 * Code common to create, mkdir, and mknod. 1159 */ 1160 int nfs_instantiate(struct dentry *dentry, struct nfs_fh *fhandle, 1161 struct nfs_fattr *fattr) 1162 { 1163 struct dentry *parent = dget_parent(dentry); 1164 struct inode *dir = parent->d_inode; 1165 struct inode *inode; 1166 int error = -EACCES; 1167 1168 d_drop(dentry); 1169 1170 /* We may have been initialized further down */ 1171 if (dentry->d_inode) 1172 goto out; 1173 if (fhandle->size == 0) { 1174 error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr); 1175 if (error) 1176 goto out_error; 1177 } 1178 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 1179 if (!(fattr->valid & NFS_ATTR_FATTR)) { 1180 struct nfs_server *server = NFS_SB(dentry->d_sb); 1181 error = server->nfs_client->rpc_ops->getattr(server, fhandle, fattr); 1182 if (error < 0) 1183 goto out_error; 1184 } 1185 inode = nfs_fhget(dentry->d_sb, fhandle, fattr); 1186 error = PTR_ERR(inode); 1187 if (IS_ERR(inode)) 1188 goto out_error; 1189 d_add(dentry, inode); 1190 out: 1191 dput(parent); 1192 return 0; 1193 out_error: 1194 nfs_mark_for_revalidate(dir); 1195 dput(parent); 1196 return error; 1197 } 1198 1199 /* 1200 * Following a failed create operation, we drop the dentry rather 1201 * than retain a negative dentry. This avoids a problem in the event 1202 * that the operation succeeded on the server, but an error in the 1203 * reply path made it appear to have failed. 1204 */ 1205 static int nfs_create(struct inode *dir, struct dentry *dentry, int mode, 1206 struct nameidata *nd) 1207 { 1208 struct iattr attr; 1209 int error; 1210 int open_flags = 0; 1211 1212 dfprintk(VFS, "NFS: create(%s/%ld), %s\n", 1213 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name); 1214 1215 attr.ia_mode = mode; 1216 attr.ia_valid = ATTR_MODE; 1217 1218 if ((nd->flags & LOOKUP_CREATE) != 0) 1219 open_flags = nd->intent.open.flags; 1220 1221 lock_kernel(); 1222 error = NFS_PROTO(dir)->create(dir, dentry, &attr, open_flags, nd); 1223 if (error != 0) 1224 goto out_err; 1225 unlock_kernel(); 1226 return 0; 1227 out_err: 1228 unlock_kernel(); 1229 d_drop(dentry); 1230 return error; 1231 } 1232 1233 /* 1234 * See comments for nfs_proc_create regarding failed operations. 1235 */ 1236 static int 1237 nfs_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t rdev) 1238 { 1239 struct iattr attr; 1240 int status; 1241 1242 dfprintk(VFS, "NFS: mknod(%s/%ld), %s\n", 1243 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name); 1244 1245 if (!new_valid_dev(rdev)) 1246 return -EINVAL; 1247 1248 attr.ia_mode = mode; 1249 attr.ia_valid = ATTR_MODE; 1250 1251 lock_kernel(); 1252 status = NFS_PROTO(dir)->mknod(dir, dentry, &attr, rdev); 1253 if (status != 0) 1254 goto out_err; 1255 unlock_kernel(); 1256 return 0; 1257 out_err: 1258 unlock_kernel(); 1259 d_drop(dentry); 1260 return status; 1261 } 1262 1263 /* 1264 * See comments for nfs_proc_create regarding failed operations. 1265 */ 1266 static int nfs_mkdir(struct inode *dir, struct dentry *dentry, int mode) 1267 { 1268 struct iattr attr; 1269 int error; 1270 1271 dfprintk(VFS, "NFS: mkdir(%s/%ld), %s\n", 1272 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name); 1273 1274 attr.ia_valid = ATTR_MODE; 1275 attr.ia_mode = mode | S_IFDIR; 1276 1277 lock_kernel(); 1278 error = NFS_PROTO(dir)->mkdir(dir, dentry, &attr); 1279 if (error != 0) 1280 goto out_err; 1281 unlock_kernel(); 1282 return 0; 1283 out_err: 1284 d_drop(dentry); 1285 unlock_kernel(); 1286 return error; 1287 } 1288 1289 static void nfs_dentry_handle_enoent(struct dentry *dentry) 1290 { 1291 if (dentry->d_inode != NULL && !d_unhashed(dentry)) 1292 d_delete(dentry); 1293 } 1294 1295 static int nfs_rmdir(struct inode *dir, struct dentry *dentry) 1296 { 1297 int error; 1298 1299 dfprintk(VFS, "NFS: rmdir(%s/%ld), %s\n", 1300 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name); 1301 1302 lock_kernel(); 1303 error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name); 1304 /* Ensure the VFS deletes this inode */ 1305 if (error == 0 && dentry->d_inode != NULL) 1306 clear_nlink(dentry->d_inode); 1307 else if (error == -ENOENT) 1308 nfs_dentry_handle_enoent(dentry); 1309 unlock_kernel(); 1310 1311 return error; 1312 } 1313 1314 static int nfs_sillyrename(struct inode *dir, struct dentry *dentry) 1315 { 1316 static unsigned int sillycounter; 1317 const int fileidsize = sizeof(NFS_FILEID(dentry->d_inode))*2; 1318 const int countersize = sizeof(sillycounter)*2; 1319 const int slen = sizeof(".nfs")+fileidsize+countersize-1; 1320 char silly[slen+1]; 1321 struct qstr qsilly; 1322 struct dentry *sdentry; 1323 int error = -EIO; 1324 1325 dfprintk(VFS, "NFS: silly-rename(%s/%s, ct=%d)\n", 1326 dentry->d_parent->d_name.name, dentry->d_name.name, 1327 atomic_read(&dentry->d_count)); 1328 nfs_inc_stats(dir, NFSIOS_SILLYRENAME); 1329 1330 /* 1331 * We don't allow a dentry to be silly-renamed twice. 1332 */ 1333 error = -EBUSY; 1334 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) 1335 goto out; 1336 1337 sprintf(silly, ".nfs%*.*Lx", 1338 fileidsize, fileidsize, 1339 (unsigned long long)NFS_FILEID(dentry->d_inode)); 1340 1341 /* Return delegation in anticipation of the rename */ 1342 nfs_inode_return_delegation(dentry->d_inode); 1343 1344 sdentry = NULL; 1345 do { 1346 char *suffix = silly + slen - countersize; 1347 1348 dput(sdentry); 1349 sillycounter++; 1350 sprintf(suffix, "%*.*x", countersize, countersize, sillycounter); 1351 1352 dfprintk(VFS, "NFS: trying to rename %s to %s\n", 1353 dentry->d_name.name, silly); 1354 1355 sdentry = lookup_one_len(silly, dentry->d_parent, slen); 1356 /* 1357 * N.B. Better to return EBUSY here ... it could be 1358 * dangerous to delete the file while it's in use. 1359 */ 1360 if (IS_ERR(sdentry)) 1361 goto out; 1362 } while(sdentry->d_inode != NULL); /* need negative lookup */ 1363 1364 qsilly.name = silly; 1365 qsilly.len = strlen(silly); 1366 if (dentry->d_inode) { 1367 error = NFS_PROTO(dir)->rename(dir, &dentry->d_name, 1368 dir, &qsilly); 1369 nfs_mark_for_revalidate(dentry->d_inode); 1370 } else 1371 error = NFS_PROTO(dir)->rename(dir, &dentry->d_name, 1372 dir, &qsilly); 1373 if (!error) { 1374 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 1375 d_move(dentry, sdentry); 1376 error = nfs_async_unlink(dir, dentry); 1377 /* If we return 0 we don't unlink */ 1378 } 1379 dput(sdentry); 1380 out: 1381 return error; 1382 } 1383 1384 /* 1385 * Remove a file after making sure there are no pending writes, 1386 * and after checking that the file has only one user. 1387 * 1388 * We invalidate the attribute cache and free the inode prior to the operation 1389 * to avoid possible races if the server reuses the inode. 1390 */ 1391 static int nfs_safe_remove(struct dentry *dentry) 1392 { 1393 struct inode *dir = dentry->d_parent->d_inode; 1394 struct inode *inode = dentry->d_inode; 1395 int error = -EBUSY; 1396 1397 dfprintk(VFS, "NFS: safe_remove(%s/%s)\n", 1398 dentry->d_parent->d_name.name, dentry->d_name.name); 1399 1400 /* If the dentry was sillyrenamed, we simply call d_delete() */ 1401 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) { 1402 error = 0; 1403 goto out; 1404 } 1405 1406 if (inode != NULL) { 1407 nfs_inode_return_delegation(inode); 1408 error = NFS_PROTO(dir)->remove(dir, &dentry->d_name); 1409 /* The VFS may want to delete this inode */ 1410 if (error == 0) 1411 drop_nlink(inode); 1412 nfs_mark_for_revalidate(inode); 1413 } else 1414 error = NFS_PROTO(dir)->remove(dir, &dentry->d_name); 1415 if (error == -ENOENT) 1416 nfs_dentry_handle_enoent(dentry); 1417 out: 1418 return error; 1419 } 1420 1421 /* We do silly rename. In case sillyrename() returns -EBUSY, the inode 1422 * belongs to an active ".nfs..." file and we return -EBUSY. 1423 * 1424 * If sillyrename() returns 0, we do nothing, otherwise we unlink. 1425 */ 1426 static int nfs_unlink(struct inode *dir, struct dentry *dentry) 1427 { 1428 int error; 1429 int need_rehash = 0; 1430 1431 dfprintk(VFS, "NFS: unlink(%s/%ld, %s)\n", dir->i_sb->s_id, 1432 dir->i_ino, dentry->d_name.name); 1433 1434 lock_kernel(); 1435 spin_lock(&dcache_lock); 1436 spin_lock(&dentry->d_lock); 1437 if (atomic_read(&dentry->d_count) > 1) { 1438 spin_unlock(&dentry->d_lock); 1439 spin_unlock(&dcache_lock); 1440 /* Start asynchronous writeout of the inode */ 1441 write_inode_now(dentry->d_inode, 0); 1442 error = nfs_sillyrename(dir, dentry); 1443 unlock_kernel(); 1444 return error; 1445 } 1446 if (!d_unhashed(dentry)) { 1447 __d_drop(dentry); 1448 need_rehash = 1; 1449 } 1450 spin_unlock(&dentry->d_lock); 1451 spin_unlock(&dcache_lock); 1452 error = nfs_safe_remove(dentry); 1453 if (!error || error == -ENOENT) { 1454 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 1455 } else if (need_rehash) 1456 d_rehash(dentry); 1457 unlock_kernel(); 1458 return error; 1459 } 1460 1461 /* 1462 * To create a symbolic link, most file systems instantiate a new inode, 1463 * add a page to it containing the path, then write it out to the disk 1464 * using prepare_write/commit_write. 1465 * 1466 * Unfortunately the NFS client can't create the in-core inode first 1467 * because it needs a file handle to create an in-core inode (see 1468 * fs/nfs/inode.c:nfs_fhget). We only have a file handle *after* the 1469 * symlink request has completed on the server. 1470 * 1471 * So instead we allocate a raw page, copy the symname into it, then do 1472 * the SYMLINK request with the page as the buffer. If it succeeds, we 1473 * now have a new file handle and can instantiate an in-core NFS inode 1474 * and move the raw page into its mapping. 1475 */ 1476 static int nfs_symlink(struct inode *dir, struct dentry *dentry, const char *symname) 1477 { 1478 struct pagevec lru_pvec; 1479 struct page *page; 1480 char *kaddr; 1481 struct iattr attr; 1482 unsigned int pathlen = strlen(symname); 1483 int error; 1484 1485 dfprintk(VFS, "NFS: symlink(%s/%ld, %s, %s)\n", dir->i_sb->s_id, 1486 dir->i_ino, dentry->d_name.name, symname); 1487 1488 if (pathlen > PAGE_SIZE) 1489 return -ENAMETOOLONG; 1490 1491 attr.ia_mode = S_IFLNK | S_IRWXUGO; 1492 attr.ia_valid = ATTR_MODE; 1493 1494 lock_kernel(); 1495 1496 page = alloc_page(GFP_HIGHUSER); 1497 if (!page) { 1498 unlock_kernel(); 1499 return -ENOMEM; 1500 } 1501 1502 kaddr = kmap_atomic(page, KM_USER0); 1503 memcpy(kaddr, symname, pathlen); 1504 if (pathlen < PAGE_SIZE) 1505 memset(kaddr + pathlen, 0, PAGE_SIZE - pathlen); 1506 kunmap_atomic(kaddr, KM_USER0); 1507 1508 error = NFS_PROTO(dir)->symlink(dir, dentry, page, pathlen, &attr); 1509 if (error != 0) { 1510 dfprintk(VFS, "NFS: symlink(%s/%ld, %s, %s) error %d\n", 1511 dir->i_sb->s_id, dir->i_ino, 1512 dentry->d_name.name, symname, error); 1513 d_drop(dentry); 1514 __free_page(page); 1515 unlock_kernel(); 1516 return error; 1517 } 1518 1519 /* 1520 * No big deal if we can't add this page to the page cache here. 1521 * READLINK will get the missing page from the server if needed. 1522 */ 1523 pagevec_init(&lru_pvec, 0); 1524 if (!add_to_page_cache(page, dentry->d_inode->i_mapping, 0, 1525 GFP_KERNEL)) { 1526 pagevec_add(&lru_pvec, page); 1527 pagevec_lru_add(&lru_pvec); 1528 SetPageUptodate(page); 1529 unlock_page(page); 1530 } else 1531 __free_page(page); 1532 1533 unlock_kernel(); 1534 return 0; 1535 } 1536 1537 static int 1538 nfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry) 1539 { 1540 struct inode *inode = old_dentry->d_inode; 1541 int error; 1542 1543 dfprintk(VFS, "NFS: link(%s/%s -> %s/%s)\n", 1544 old_dentry->d_parent->d_name.name, old_dentry->d_name.name, 1545 dentry->d_parent->d_name.name, dentry->d_name.name); 1546 1547 lock_kernel(); 1548 d_drop(dentry); 1549 error = NFS_PROTO(dir)->link(inode, dir, &dentry->d_name); 1550 if (error == 0) { 1551 atomic_inc(&inode->i_count); 1552 d_add(dentry, inode); 1553 } 1554 unlock_kernel(); 1555 return error; 1556 } 1557 1558 /* 1559 * RENAME 1560 * FIXME: Some nfsds, like the Linux user space nfsd, may generate a 1561 * different file handle for the same inode after a rename (e.g. when 1562 * moving to a different directory). A fail-safe method to do so would 1563 * be to look up old_dir/old_name, create a link to new_dir/new_name and 1564 * rename the old file using the sillyrename stuff. This way, the original 1565 * file in old_dir will go away when the last process iput()s the inode. 1566 * 1567 * FIXED. 1568 * 1569 * It actually works quite well. One needs to have the possibility for 1570 * at least one ".nfs..." file in each directory the file ever gets 1571 * moved or linked to which happens automagically with the new 1572 * implementation that only depends on the dcache stuff instead of 1573 * using the inode layer 1574 * 1575 * Unfortunately, things are a little more complicated than indicated 1576 * above. For a cross-directory move, we want to make sure we can get 1577 * rid of the old inode after the operation. This means there must be 1578 * no pending writes (if it's a file), and the use count must be 1. 1579 * If these conditions are met, we can drop the dentries before doing 1580 * the rename. 1581 */ 1582 static int nfs_rename(struct inode *old_dir, struct dentry *old_dentry, 1583 struct inode *new_dir, struct dentry *new_dentry) 1584 { 1585 struct inode *old_inode = old_dentry->d_inode; 1586 struct inode *new_inode = new_dentry->d_inode; 1587 struct dentry *dentry = NULL, *rehash = NULL; 1588 int error = -EBUSY; 1589 1590 /* 1591 * To prevent any new references to the target during the rename, 1592 * we unhash the dentry and free the inode in advance. 1593 */ 1594 lock_kernel(); 1595 if (!d_unhashed(new_dentry)) { 1596 d_drop(new_dentry); 1597 rehash = new_dentry; 1598 } 1599 1600 dfprintk(VFS, "NFS: rename(%s/%s -> %s/%s, ct=%d)\n", 1601 old_dentry->d_parent->d_name.name, old_dentry->d_name.name, 1602 new_dentry->d_parent->d_name.name, new_dentry->d_name.name, 1603 atomic_read(&new_dentry->d_count)); 1604 1605 /* 1606 * First check whether the target is busy ... we can't 1607 * safely do _any_ rename if the target is in use. 1608 * 1609 * For files, make a copy of the dentry and then do a 1610 * silly-rename. If the silly-rename succeeds, the 1611 * copied dentry is hashed and becomes the new target. 1612 */ 1613 if (!new_inode) 1614 goto go_ahead; 1615 if (S_ISDIR(new_inode->i_mode)) { 1616 error = -EISDIR; 1617 if (!S_ISDIR(old_inode->i_mode)) 1618 goto out; 1619 } else if (atomic_read(&new_dentry->d_count) > 2) { 1620 int err; 1621 /* copy the target dentry's name */ 1622 dentry = d_alloc(new_dentry->d_parent, 1623 &new_dentry->d_name); 1624 if (!dentry) 1625 goto out; 1626 1627 /* silly-rename the existing target ... */ 1628 err = nfs_sillyrename(new_dir, new_dentry); 1629 if (!err) { 1630 new_dentry = rehash = dentry; 1631 new_inode = NULL; 1632 /* instantiate the replacement target */ 1633 d_instantiate(new_dentry, NULL); 1634 } else if (atomic_read(&new_dentry->d_count) > 1) 1635 /* dentry still busy? */ 1636 goto out; 1637 } else 1638 drop_nlink(new_inode); 1639 1640 go_ahead: 1641 /* 1642 * ... prune child dentries and writebacks if needed. 1643 */ 1644 if (atomic_read(&old_dentry->d_count) > 1) { 1645 if (S_ISREG(old_inode->i_mode)) 1646 nfs_wb_all(old_inode); 1647 shrink_dcache_parent(old_dentry); 1648 } 1649 nfs_inode_return_delegation(old_inode); 1650 1651 if (new_inode != NULL) { 1652 nfs_inode_return_delegation(new_inode); 1653 d_delete(new_dentry); 1654 } 1655 1656 error = NFS_PROTO(old_dir)->rename(old_dir, &old_dentry->d_name, 1657 new_dir, &new_dentry->d_name); 1658 nfs_mark_for_revalidate(old_inode); 1659 out: 1660 if (rehash) 1661 d_rehash(rehash); 1662 if (!error) { 1663 d_move(old_dentry, new_dentry); 1664 nfs_set_verifier(new_dentry, 1665 nfs_save_change_attribute(new_dir)); 1666 } else if (error == -ENOENT) 1667 nfs_dentry_handle_enoent(old_dentry); 1668 1669 /* new dentry created? */ 1670 if (dentry) 1671 dput(dentry); 1672 unlock_kernel(); 1673 return error; 1674 } 1675 1676 static DEFINE_SPINLOCK(nfs_access_lru_lock); 1677 static LIST_HEAD(nfs_access_lru_list); 1678 static atomic_long_t nfs_access_nr_entries; 1679 1680 static void nfs_access_free_entry(struct nfs_access_entry *entry) 1681 { 1682 put_rpccred(entry->cred); 1683 kfree(entry); 1684 smp_mb__before_atomic_dec(); 1685 atomic_long_dec(&nfs_access_nr_entries); 1686 smp_mb__after_atomic_dec(); 1687 } 1688 1689 int nfs_access_cache_shrinker(int nr_to_scan, gfp_t gfp_mask) 1690 { 1691 LIST_HEAD(head); 1692 struct nfs_inode *nfsi; 1693 struct nfs_access_entry *cache; 1694 1695 restart: 1696 spin_lock(&nfs_access_lru_lock); 1697 list_for_each_entry(nfsi, &nfs_access_lru_list, access_cache_inode_lru) { 1698 struct rw_semaphore *s_umount; 1699 struct inode *inode; 1700 1701 if (nr_to_scan-- == 0) 1702 break; 1703 s_umount = &nfsi->vfs_inode.i_sb->s_umount; 1704 if (!down_read_trylock(s_umount)) 1705 continue; 1706 inode = igrab(&nfsi->vfs_inode); 1707 if (inode == NULL) { 1708 up_read(s_umount); 1709 continue; 1710 } 1711 spin_lock(&inode->i_lock); 1712 if (list_empty(&nfsi->access_cache_entry_lru)) 1713 goto remove_lru_entry; 1714 cache = list_entry(nfsi->access_cache_entry_lru.next, 1715 struct nfs_access_entry, lru); 1716 list_move(&cache->lru, &head); 1717 rb_erase(&cache->rb_node, &nfsi->access_cache); 1718 if (!list_empty(&nfsi->access_cache_entry_lru)) 1719 list_move_tail(&nfsi->access_cache_inode_lru, 1720 &nfs_access_lru_list); 1721 else { 1722 remove_lru_entry: 1723 list_del_init(&nfsi->access_cache_inode_lru); 1724 clear_bit(NFS_INO_ACL_LRU_SET, &nfsi->flags); 1725 } 1726 spin_unlock(&inode->i_lock); 1727 spin_unlock(&nfs_access_lru_lock); 1728 iput(inode); 1729 up_read(s_umount); 1730 goto restart; 1731 } 1732 spin_unlock(&nfs_access_lru_lock); 1733 while (!list_empty(&head)) { 1734 cache = list_entry(head.next, struct nfs_access_entry, lru); 1735 list_del(&cache->lru); 1736 nfs_access_free_entry(cache); 1737 } 1738 return (atomic_long_read(&nfs_access_nr_entries) / 100) * sysctl_vfs_cache_pressure; 1739 } 1740 1741 static void __nfs_access_zap_cache(struct inode *inode) 1742 { 1743 struct nfs_inode *nfsi = NFS_I(inode); 1744 struct rb_root *root_node = &nfsi->access_cache; 1745 struct rb_node *n, *dispose = NULL; 1746 struct nfs_access_entry *entry; 1747 1748 /* Unhook entries from the cache */ 1749 while ((n = rb_first(root_node)) != NULL) { 1750 entry = rb_entry(n, struct nfs_access_entry, rb_node); 1751 rb_erase(n, root_node); 1752 list_del(&entry->lru); 1753 n->rb_left = dispose; 1754 dispose = n; 1755 } 1756 nfsi->cache_validity &= ~NFS_INO_INVALID_ACCESS; 1757 spin_unlock(&inode->i_lock); 1758 1759 /* Now kill them all! */ 1760 while (dispose != NULL) { 1761 n = dispose; 1762 dispose = n->rb_left; 1763 nfs_access_free_entry(rb_entry(n, struct nfs_access_entry, rb_node)); 1764 } 1765 } 1766 1767 void nfs_access_zap_cache(struct inode *inode) 1768 { 1769 /* Remove from global LRU init */ 1770 if (test_and_clear_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) { 1771 spin_lock(&nfs_access_lru_lock); 1772 list_del_init(&NFS_I(inode)->access_cache_inode_lru); 1773 spin_unlock(&nfs_access_lru_lock); 1774 } 1775 1776 spin_lock(&inode->i_lock); 1777 /* This will release the spinlock */ 1778 __nfs_access_zap_cache(inode); 1779 } 1780 1781 static struct nfs_access_entry *nfs_access_search_rbtree(struct inode *inode, struct rpc_cred *cred) 1782 { 1783 struct rb_node *n = NFS_I(inode)->access_cache.rb_node; 1784 struct nfs_access_entry *entry; 1785 1786 while (n != NULL) { 1787 entry = rb_entry(n, struct nfs_access_entry, rb_node); 1788 1789 if (cred < entry->cred) 1790 n = n->rb_left; 1791 else if (cred > entry->cred) 1792 n = n->rb_right; 1793 else 1794 return entry; 1795 } 1796 return NULL; 1797 } 1798 1799 static int nfs_access_get_cached(struct inode *inode, struct rpc_cred *cred, struct nfs_access_entry *res) 1800 { 1801 struct nfs_inode *nfsi = NFS_I(inode); 1802 struct nfs_access_entry *cache; 1803 int err = -ENOENT; 1804 1805 spin_lock(&inode->i_lock); 1806 if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS) 1807 goto out_zap; 1808 cache = nfs_access_search_rbtree(inode, cred); 1809 if (cache == NULL) 1810 goto out; 1811 if (!time_in_range(jiffies, cache->jiffies, cache->jiffies + nfsi->attrtimeo)) 1812 goto out_stale; 1813 res->jiffies = cache->jiffies; 1814 res->cred = cache->cred; 1815 res->mask = cache->mask; 1816 list_move_tail(&cache->lru, &nfsi->access_cache_entry_lru); 1817 err = 0; 1818 out: 1819 spin_unlock(&inode->i_lock); 1820 return err; 1821 out_stale: 1822 rb_erase(&cache->rb_node, &nfsi->access_cache); 1823 list_del(&cache->lru); 1824 spin_unlock(&inode->i_lock); 1825 nfs_access_free_entry(cache); 1826 return -ENOENT; 1827 out_zap: 1828 /* This will release the spinlock */ 1829 __nfs_access_zap_cache(inode); 1830 return -ENOENT; 1831 } 1832 1833 static void nfs_access_add_rbtree(struct inode *inode, struct nfs_access_entry *set) 1834 { 1835 struct nfs_inode *nfsi = NFS_I(inode); 1836 struct rb_root *root_node = &nfsi->access_cache; 1837 struct rb_node **p = &root_node->rb_node; 1838 struct rb_node *parent = NULL; 1839 struct nfs_access_entry *entry; 1840 1841 spin_lock(&inode->i_lock); 1842 while (*p != NULL) { 1843 parent = *p; 1844 entry = rb_entry(parent, struct nfs_access_entry, rb_node); 1845 1846 if (set->cred < entry->cred) 1847 p = &parent->rb_left; 1848 else if (set->cred > entry->cred) 1849 p = &parent->rb_right; 1850 else 1851 goto found; 1852 } 1853 rb_link_node(&set->rb_node, parent, p); 1854 rb_insert_color(&set->rb_node, root_node); 1855 list_add_tail(&set->lru, &nfsi->access_cache_entry_lru); 1856 spin_unlock(&inode->i_lock); 1857 return; 1858 found: 1859 rb_replace_node(parent, &set->rb_node, root_node); 1860 list_add_tail(&set->lru, &nfsi->access_cache_entry_lru); 1861 list_del(&entry->lru); 1862 spin_unlock(&inode->i_lock); 1863 nfs_access_free_entry(entry); 1864 } 1865 1866 static void nfs_access_add_cache(struct inode *inode, struct nfs_access_entry *set) 1867 { 1868 struct nfs_access_entry *cache = kmalloc(sizeof(*cache), GFP_KERNEL); 1869 if (cache == NULL) 1870 return; 1871 RB_CLEAR_NODE(&cache->rb_node); 1872 cache->jiffies = set->jiffies; 1873 cache->cred = get_rpccred(set->cred); 1874 cache->mask = set->mask; 1875 1876 nfs_access_add_rbtree(inode, cache); 1877 1878 /* Update accounting */ 1879 smp_mb__before_atomic_inc(); 1880 atomic_long_inc(&nfs_access_nr_entries); 1881 smp_mb__after_atomic_inc(); 1882 1883 /* Add inode to global LRU list */ 1884 if (!test_and_set_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) { 1885 spin_lock(&nfs_access_lru_lock); 1886 list_add_tail(&NFS_I(inode)->access_cache_inode_lru, &nfs_access_lru_list); 1887 spin_unlock(&nfs_access_lru_lock); 1888 } 1889 } 1890 1891 static int nfs_do_access(struct inode *inode, struct rpc_cred *cred, int mask) 1892 { 1893 struct nfs_access_entry cache; 1894 int status; 1895 1896 status = nfs_access_get_cached(inode, cred, &cache); 1897 if (status == 0) 1898 goto out; 1899 1900 /* Be clever: ask server to check for all possible rights */ 1901 cache.mask = MAY_EXEC | MAY_WRITE | MAY_READ; 1902 cache.cred = cred; 1903 cache.jiffies = jiffies; 1904 status = NFS_PROTO(inode)->access(inode, &cache); 1905 if (status != 0) 1906 return status; 1907 nfs_access_add_cache(inode, &cache); 1908 out: 1909 if ((cache.mask & mask) == mask) 1910 return 0; 1911 return -EACCES; 1912 } 1913 1914 static int nfs_open_permission_mask(int openflags) 1915 { 1916 int mask = 0; 1917 1918 if (openflags & FMODE_READ) 1919 mask |= MAY_READ; 1920 if (openflags & FMODE_WRITE) 1921 mask |= MAY_WRITE; 1922 if (openflags & FMODE_EXEC) 1923 mask |= MAY_EXEC; 1924 return mask; 1925 } 1926 1927 int nfs_may_open(struct inode *inode, struct rpc_cred *cred, int openflags) 1928 { 1929 return nfs_do_access(inode, cred, nfs_open_permission_mask(openflags)); 1930 } 1931 1932 int nfs_permission(struct inode *inode, int mask, struct nameidata *nd) 1933 { 1934 struct rpc_cred *cred; 1935 int res = 0; 1936 1937 nfs_inc_stats(inode, NFSIOS_VFSACCESS); 1938 1939 if (mask == 0) 1940 goto out; 1941 /* Is this sys_access() ? */ 1942 if (nd != NULL && (nd->flags & LOOKUP_ACCESS)) 1943 goto force_lookup; 1944 1945 switch (inode->i_mode & S_IFMT) { 1946 case S_IFLNK: 1947 goto out; 1948 case S_IFREG: 1949 /* NFSv4 has atomic_open... */ 1950 if (nfs_server_capable(inode, NFS_CAP_ATOMIC_OPEN) 1951 && nd != NULL 1952 && (nd->flags & LOOKUP_OPEN)) 1953 goto out; 1954 break; 1955 case S_IFDIR: 1956 /* 1957 * Optimize away all write operations, since the server 1958 * will check permissions when we perform the op. 1959 */ 1960 if ((mask & MAY_WRITE) && !(mask & MAY_READ)) 1961 goto out; 1962 } 1963 1964 force_lookup: 1965 lock_kernel(); 1966 1967 if (!NFS_PROTO(inode)->access) 1968 goto out_notsup; 1969 1970 cred = rpc_lookup_cred(); 1971 if (!IS_ERR(cred)) { 1972 res = nfs_do_access(inode, cred, mask); 1973 put_rpccred(cred); 1974 } else 1975 res = PTR_ERR(cred); 1976 unlock_kernel(); 1977 out: 1978 dfprintk(VFS, "NFS: permission(%s/%ld), mask=0x%x, res=%d\n", 1979 inode->i_sb->s_id, inode->i_ino, mask, res); 1980 return res; 1981 out_notsup: 1982 res = nfs_revalidate_inode(NFS_SERVER(inode), inode); 1983 if (res == 0) 1984 res = generic_permission(inode, mask, NULL); 1985 unlock_kernel(); 1986 goto out; 1987 } 1988 1989 /* 1990 * Local variables: 1991 * version-control: t 1992 * kept-new-versions: 5 1993 * End: 1994 */ 1995