xref: /openbmc/linux/fs/nfs/dir.c (revision 2208f39c)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/fs/nfs/dir.c
4  *
5  *  Copyright (C) 1992  Rick Sladkey
6  *
7  *  nfs directory handling functions
8  *
9  * 10 Apr 1996	Added silly rename for unlink	--okir
10  * 28 Sep 1996	Improved directory cache --okir
11  * 23 Aug 1997  Claus Heine claus@momo.math.rwth-aachen.de
12  *              Re-implemented silly rename for unlink, newly implemented
13  *              silly rename for nfs_rename() following the suggestions
14  *              of Olaf Kirch (okir) found in this file.
15  *              Following Linus comments on my original hack, this version
16  *              depends only on the dcache stuff and doesn't touch the inode
17  *              layer (iput() and friends).
18  *  6 Jun 1999	Cache readdir lookups in the page cache. -DaveM
19  */
20 
21 #include <linux/module.h>
22 #include <linux/time.h>
23 #include <linux/errno.h>
24 #include <linux/stat.h>
25 #include <linux/fcntl.h>
26 #include <linux/string.h>
27 #include <linux/kernel.h>
28 #include <linux/slab.h>
29 #include <linux/mm.h>
30 #include <linux/sunrpc/clnt.h>
31 #include <linux/nfs_fs.h>
32 #include <linux/nfs_mount.h>
33 #include <linux/pagemap.h>
34 #include <linux/pagevec.h>
35 #include <linux/namei.h>
36 #include <linux/mount.h>
37 #include <linux/swap.h>
38 #include <linux/sched.h>
39 #include <linux/kmemleak.h>
40 #include <linux/xattr.h>
41 
42 #include "delegation.h"
43 #include "iostat.h"
44 #include "internal.h"
45 #include "fscache.h"
46 
47 #include "nfstrace.h"
48 
49 /* #define NFS_DEBUG_VERBOSE 1 */
50 
51 static int nfs_opendir(struct inode *, struct file *);
52 static int nfs_closedir(struct inode *, struct file *);
53 static int nfs_readdir(struct file *, struct dir_context *);
54 static int nfs_fsync_dir(struct file *, loff_t, loff_t, int);
55 static loff_t nfs_llseek_dir(struct file *, loff_t, int);
56 static void nfs_readdir_clear_array(struct page*);
57 
58 const struct file_operations nfs_dir_operations = {
59 	.llseek		= nfs_llseek_dir,
60 	.read		= generic_read_dir,
61 	.iterate_shared	= nfs_readdir,
62 	.open		= nfs_opendir,
63 	.release	= nfs_closedir,
64 	.fsync		= nfs_fsync_dir,
65 };
66 
67 const struct address_space_operations nfs_dir_aops = {
68 	.freepage = nfs_readdir_clear_array,
69 };
70 
71 static struct nfs_open_dir_context *alloc_nfs_open_dir_context(struct inode *dir, const struct cred *cred)
72 {
73 	struct nfs_inode *nfsi = NFS_I(dir);
74 	struct nfs_open_dir_context *ctx;
75 	ctx = kmalloc(sizeof(*ctx), GFP_KERNEL);
76 	if (ctx != NULL) {
77 		ctx->duped = 0;
78 		ctx->attr_gencount = nfsi->attr_gencount;
79 		ctx->dir_cookie = 0;
80 		ctx->dup_cookie = 0;
81 		ctx->cred = get_cred(cred);
82 		spin_lock(&dir->i_lock);
83 		if (list_empty(&nfsi->open_files) &&
84 		    (nfsi->cache_validity & NFS_INO_DATA_INVAL_DEFER))
85 			nfsi->cache_validity |= NFS_INO_INVALID_DATA |
86 				NFS_INO_REVAL_FORCED;
87 		list_add(&ctx->list, &nfsi->open_files);
88 		spin_unlock(&dir->i_lock);
89 		return ctx;
90 	}
91 	return  ERR_PTR(-ENOMEM);
92 }
93 
94 static void put_nfs_open_dir_context(struct inode *dir, struct nfs_open_dir_context *ctx)
95 {
96 	spin_lock(&dir->i_lock);
97 	list_del(&ctx->list);
98 	spin_unlock(&dir->i_lock);
99 	put_cred(ctx->cred);
100 	kfree(ctx);
101 }
102 
103 /*
104  * Open file
105  */
106 static int
107 nfs_opendir(struct inode *inode, struct file *filp)
108 {
109 	int res = 0;
110 	struct nfs_open_dir_context *ctx;
111 
112 	dfprintk(FILE, "NFS: open dir(%pD2)\n", filp);
113 
114 	nfs_inc_stats(inode, NFSIOS_VFSOPEN);
115 
116 	ctx = alloc_nfs_open_dir_context(inode, current_cred());
117 	if (IS_ERR(ctx)) {
118 		res = PTR_ERR(ctx);
119 		goto out;
120 	}
121 	filp->private_data = ctx;
122 out:
123 	return res;
124 }
125 
126 static int
127 nfs_closedir(struct inode *inode, struct file *filp)
128 {
129 	put_nfs_open_dir_context(file_inode(filp), filp->private_data);
130 	return 0;
131 }
132 
133 struct nfs_cache_array_entry {
134 	u64 cookie;
135 	u64 ino;
136 	struct qstr string;
137 	unsigned char d_type;
138 };
139 
140 struct nfs_cache_array {
141 	int size;
142 	int eof_index;
143 	u64 last_cookie;
144 	struct nfs_cache_array_entry array[];
145 };
146 
147 typedef struct {
148 	struct file	*file;
149 	struct page	*page;
150 	struct dir_context *ctx;
151 	unsigned long	page_index;
152 	u64		*dir_cookie;
153 	u64		last_cookie;
154 	loff_t		current_index;
155 	loff_t		prev_index;
156 
157 	unsigned long	dir_verifier;
158 	unsigned long	timestamp;
159 	unsigned long	gencount;
160 	unsigned int	cache_entry_index;
161 	bool plus;
162 	bool eof;
163 } nfs_readdir_descriptor_t;
164 
165 static
166 void nfs_readdir_init_array(struct page *page)
167 {
168 	struct nfs_cache_array *array;
169 
170 	array = kmap_atomic(page);
171 	memset(array, 0, sizeof(struct nfs_cache_array));
172 	array->eof_index = -1;
173 	kunmap_atomic(array);
174 }
175 
176 /*
177  * we are freeing strings created by nfs_add_to_readdir_array()
178  */
179 static
180 void nfs_readdir_clear_array(struct page *page)
181 {
182 	struct nfs_cache_array *array;
183 	int i;
184 
185 	array = kmap_atomic(page);
186 	for (i = 0; i < array->size; i++)
187 		kfree(array->array[i].string.name);
188 	array->size = 0;
189 	kunmap_atomic(array);
190 }
191 
192 /*
193  * the caller is responsible for freeing qstr.name
194  * when called by nfs_readdir_add_to_array, the strings will be freed in
195  * nfs_clear_readdir_array()
196  */
197 static
198 int nfs_readdir_make_qstr(struct qstr *string, const char *name, unsigned int len)
199 {
200 	string->len = len;
201 	string->name = kmemdup_nul(name, len, GFP_KERNEL);
202 	if (string->name == NULL)
203 		return -ENOMEM;
204 	/*
205 	 * Avoid a kmemleak false positive. The pointer to the name is stored
206 	 * in a page cache page which kmemleak does not scan.
207 	 */
208 	kmemleak_not_leak(string->name);
209 	string->hash = full_name_hash(NULL, name, len);
210 	return 0;
211 }
212 
213 static
214 int nfs_readdir_add_to_array(struct nfs_entry *entry, struct page *page)
215 {
216 	struct nfs_cache_array *array = kmap(page);
217 	struct nfs_cache_array_entry *cache_entry;
218 	int ret;
219 
220 	cache_entry = &array->array[array->size];
221 
222 	/* Check that this entry lies within the page bounds */
223 	ret = -ENOSPC;
224 	if ((char *)&cache_entry[1] - (char *)page_address(page) > PAGE_SIZE)
225 		goto out;
226 
227 	cache_entry->cookie = entry->prev_cookie;
228 	cache_entry->ino = entry->ino;
229 	cache_entry->d_type = entry->d_type;
230 	ret = nfs_readdir_make_qstr(&cache_entry->string, entry->name, entry->len);
231 	if (ret)
232 		goto out;
233 	array->last_cookie = entry->cookie;
234 	array->size++;
235 	if (entry->eof != 0)
236 		array->eof_index = array->size;
237 out:
238 	kunmap(page);
239 	return ret;
240 }
241 
242 static inline
243 int is_32bit_api(void)
244 {
245 #ifdef CONFIG_COMPAT
246 	return in_compat_syscall();
247 #else
248 	return (BITS_PER_LONG == 32);
249 #endif
250 }
251 
252 static
253 bool nfs_readdir_use_cookie(const struct file *filp)
254 {
255 	if ((filp->f_mode & FMODE_32BITHASH) ||
256 	    (!(filp->f_mode & FMODE_64BITHASH) && is_32bit_api()))
257 		return false;
258 	return true;
259 }
260 
261 static
262 int nfs_readdir_search_for_pos(struct nfs_cache_array *array, nfs_readdir_descriptor_t *desc)
263 {
264 	loff_t diff = desc->ctx->pos - desc->current_index;
265 	unsigned int index;
266 
267 	if (diff < 0)
268 		goto out_eof;
269 	if (diff >= array->size) {
270 		if (array->eof_index >= 0)
271 			goto out_eof;
272 		return -EAGAIN;
273 	}
274 
275 	index = (unsigned int)diff;
276 	*desc->dir_cookie = array->array[index].cookie;
277 	desc->cache_entry_index = index;
278 	return 0;
279 out_eof:
280 	desc->eof = true;
281 	return -EBADCOOKIE;
282 }
283 
284 static bool
285 nfs_readdir_inode_mapping_valid(struct nfs_inode *nfsi)
286 {
287 	if (nfsi->cache_validity & (NFS_INO_INVALID_ATTR|NFS_INO_INVALID_DATA))
288 		return false;
289 	smp_rmb();
290 	return !test_bit(NFS_INO_INVALIDATING, &nfsi->flags);
291 }
292 
293 static
294 int nfs_readdir_search_for_cookie(struct nfs_cache_array *array, nfs_readdir_descriptor_t *desc)
295 {
296 	int i;
297 	loff_t new_pos;
298 	int status = -EAGAIN;
299 
300 	for (i = 0; i < array->size; i++) {
301 		if (array->array[i].cookie == *desc->dir_cookie) {
302 			struct nfs_inode *nfsi = NFS_I(file_inode(desc->file));
303 			struct nfs_open_dir_context *ctx = desc->file->private_data;
304 
305 			new_pos = desc->current_index + i;
306 			if (ctx->attr_gencount != nfsi->attr_gencount ||
307 			    !nfs_readdir_inode_mapping_valid(nfsi)) {
308 				ctx->duped = 0;
309 				ctx->attr_gencount = nfsi->attr_gencount;
310 			} else if (new_pos < desc->prev_index) {
311 				if (ctx->duped > 0
312 				    && ctx->dup_cookie == *desc->dir_cookie) {
313 					if (printk_ratelimit()) {
314 						pr_notice("NFS: directory %pD2 contains a readdir loop."
315 								"Please contact your server vendor.  "
316 								"The file: %.*s has duplicate cookie %llu\n",
317 								desc->file, array->array[i].string.len,
318 								array->array[i].string.name, *desc->dir_cookie);
319 					}
320 					status = -ELOOP;
321 					goto out;
322 				}
323 				ctx->dup_cookie = *desc->dir_cookie;
324 				ctx->duped = -1;
325 			}
326 			if (nfs_readdir_use_cookie(desc->file))
327 				desc->ctx->pos = *desc->dir_cookie;
328 			else
329 				desc->ctx->pos = new_pos;
330 			desc->prev_index = new_pos;
331 			desc->cache_entry_index = i;
332 			return 0;
333 		}
334 	}
335 	if (array->eof_index >= 0) {
336 		status = -EBADCOOKIE;
337 		if (*desc->dir_cookie == array->last_cookie)
338 			desc->eof = true;
339 	}
340 out:
341 	return status;
342 }
343 
344 static
345 int nfs_readdir_search_array(nfs_readdir_descriptor_t *desc)
346 {
347 	struct nfs_cache_array *array;
348 	int status;
349 
350 	array = kmap(desc->page);
351 
352 	if (*desc->dir_cookie == 0)
353 		status = nfs_readdir_search_for_pos(array, desc);
354 	else
355 		status = nfs_readdir_search_for_cookie(array, desc);
356 
357 	if (status == -EAGAIN) {
358 		desc->last_cookie = array->last_cookie;
359 		desc->current_index += array->size;
360 		desc->page_index++;
361 	}
362 	kunmap(desc->page);
363 	return status;
364 }
365 
366 /* Fill a page with xdr information before transferring to the cache page */
367 static
368 int nfs_readdir_xdr_filler(struct page **pages, nfs_readdir_descriptor_t *desc,
369 			struct nfs_entry *entry, struct file *file, struct inode *inode)
370 {
371 	struct nfs_open_dir_context *ctx = file->private_data;
372 	const struct cred *cred = ctx->cred;
373 	unsigned long	timestamp, gencount;
374 	int		error;
375 
376  again:
377 	timestamp = jiffies;
378 	gencount = nfs_inc_attr_generation_counter();
379 	desc->dir_verifier = nfs_save_change_attribute(inode);
380 	error = NFS_PROTO(inode)->readdir(file_dentry(file), cred, entry->cookie, pages,
381 					  NFS_SERVER(inode)->dtsize, desc->plus);
382 	if (error < 0) {
383 		/* We requested READDIRPLUS, but the server doesn't grok it */
384 		if (error == -ENOTSUPP && desc->plus) {
385 			NFS_SERVER(inode)->caps &= ~NFS_CAP_READDIRPLUS;
386 			clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags);
387 			desc->plus = false;
388 			goto again;
389 		}
390 		goto error;
391 	}
392 	desc->timestamp = timestamp;
393 	desc->gencount = gencount;
394 error:
395 	return error;
396 }
397 
398 static int xdr_decode(nfs_readdir_descriptor_t *desc,
399 		      struct nfs_entry *entry, struct xdr_stream *xdr)
400 {
401 	struct inode *inode = file_inode(desc->file);
402 	int error;
403 
404 	error = NFS_PROTO(inode)->decode_dirent(xdr, entry, desc->plus);
405 	if (error)
406 		return error;
407 	entry->fattr->time_start = desc->timestamp;
408 	entry->fattr->gencount = desc->gencount;
409 	return 0;
410 }
411 
412 /* Match file and dirent using either filehandle or fileid
413  * Note: caller is responsible for checking the fsid
414  */
415 static
416 int nfs_same_file(struct dentry *dentry, struct nfs_entry *entry)
417 {
418 	struct inode *inode;
419 	struct nfs_inode *nfsi;
420 
421 	if (d_really_is_negative(dentry))
422 		return 0;
423 
424 	inode = d_inode(dentry);
425 	if (is_bad_inode(inode) || NFS_STALE(inode))
426 		return 0;
427 
428 	nfsi = NFS_I(inode);
429 	if (entry->fattr->fileid != nfsi->fileid)
430 		return 0;
431 	if (entry->fh->size && nfs_compare_fh(entry->fh, &nfsi->fh) != 0)
432 		return 0;
433 	return 1;
434 }
435 
436 static
437 bool nfs_use_readdirplus(struct inode *dir, struct dir_context *ctx)
438 {
439 	if (!nfs_server_capable(dir, NFS_CAP_READDIRPLUS))
440 		return false;
441 	if (test_and_clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(dir)->flags))
442 		return true;
443 	if (ctx->pos == 0)
444 		return true;
445 	return false;
446 }
447 
448 /*
449  * This function is called by the lookup and getattr code to request the
450  * use of readdirplus to accelerate any future lookups in the same
451  * directory.
452  */
453 void nfs_advise_use_readdirplus(struct inode *dir)
454 {
455 	struct nfs_inode *nfsi = NFS_I(dir);
456 
457 	if (nfs_server_capable(dir, NFS_CAP_READDIRPLUS) &&
458 	    !list_empty(&nfsi->open_files))
459 		set_bit(NFS_INO_ADVISE_RDPLUS, &nfsi->flags);
460 }
461 
462 /*
463  * This function is mainly for use by nfs_getattr().
464  *
465  * If this is an 'ls -l', we want to force use of readdirplus.
466  * Do this by checking if there is an active file descriptor
467  * and calling nfs_advise_use_readdirplus, then forcing a
468  * cache flush.
469  */
470 void nfs_force_use_readdirplus(struct inode *dir)
471 {
472 	struct nfs_inode *nfsi = NFS_I(dir);
473 
474 	if (nfs_server_capable(dir, NFS_CAP_READDIRPLUS) &&
475 	    !list_empty(&nfsi->open_files)) {
476 		set_bit(NFS_INO_ADVISE_RDPLUS, &nfsi->flags);
477 		invalidate_mapping_pages(dir->i_mapping,
478 			nfsi->page_index + 1, -1);
479 	}
480 }
481 
482 static
483 void nfs_prime_dcache(struct dentry *parent, struct nfs_entry *entry,
484 		unsigned long dir_verifier)
485 {
486 	struct qstr filename = QSTR_INIT(entry->name, entry->len);
487 	DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
488 	struct dentry *dentry;
489 	struct dentry *alias;
490 	struct inode *inode;
491 	int status;
492 
493 	if (!(entry->fattr->valid & NFS_ATTR_FATTR_FILEID))
494 		return;
495 	if (!(entry->fattr->valid & NFS_ATTR_FATTR_FSID))
496 		return;
497 	if (filename.len == 0)
498 		return;
499 	/* Validate that the name doesn't contain any illegal '\0' */
500 	if (strnlen(filename.name, filename.len) != filename.len)
501 		return;
502 	/* ...or '/' */
503 	if (strnchr(filename.name, filename.len, '/'))
504 		return;
505 	if (filename.name[0] == '.') {
506 		if (filename.len == 1)
507 			return;
508 		if (filename.len == 2 && filename.name[1] == '.')
509 			return;
510 	}
511 	filename.hash = full_name_hash(parent, filename.name, filename.len);
512 
513 	dentry = d_lookup(parent, &filename);
514 again:
515 	if (!dentry) {
516 		dentry = d_alloc_parallel(parent, &filename, &wq);
517 		if (IS_ERR(dentry))
518 			return;
519 	}
520 	if (!d_in_lookup(dentry)) {
521 		/* Is there a mountpoint here? If so, just exit */
522 		if (!nfs_fsid_equal(&NFS_SB(dentry->d_sb)->fsid,
523 					&entry->fattr->fsid))
524 			goto out;
525 		if (nfs_same_file(dentry, entry)) {
526 			if (!entry->fh->size)
527 				goto out;
528 			nfs_set_verifier(dentry, dir_verifier);
529 			status = nfs_refresh_inode(d_inode(dentry), entry->fattr);
530 			if (!status)
531 				nfs_setsecurity(d_inode(dentry), entry->fattr, entry->label);
532 			goto out;
533 		} else {
534 			d_invalidate(dentry);
535 			dput(dentry);
536 			dentry = NULL;
537 			goto again;
538 		}
539 	}
540 	if (!entry->fh->size) {
541 		d_lookup_done(dentry);
542 		goto out;
543 	}
544 
545 	inode = nfs_fhget(dentry->d_sb, entry->fh, entry->fattr, entry->label);
546 	alias = d_splice_alias(inode, dentry);
547 	d_lookup_done(dentry);
548 	if (alias) {
549 		if (IS_ERR(alias))
550 			goto out;
551 		dput(dentry);
552 		dentry = alias;
553 	}
554 	nfs_set_verifier(dentry, dir_verifier);
555 out:
556 	dput(dentry);
557 }
558 
559 /* Perform conversion from xdr to cache array */
560 static
561 int nfs_readdir_page_filler(nfs_readdir_descriptor_t *desc, struct nfs_entry *entry,
562 				struct page **xdr_pages, struct page *page, unsigned int buflen)
563 {
564 	struct xdr_stream stream;
565 	struct xdr_buf buf;
566 	struct page *scratch;
567 	struct nfs_cache_array *array;
568 	unsigned int count = 0;
569 	int status;
570 
571 	scratch = alloc_page(GFP_KERNEL);
572 	if (scratch == NULL)
573 		return -ENOMEM;
574 
575 	if (buflen == 0)
576 		goto out_nopages;
577 
578 	xdr_init_decode_pages(&stream, &buf, xdr_pages, buflen);
579 	xdr_set_scratch_buffer(&stream, page_address(scratch), PAGE_SIZE);
580 
581 	do {
582 		if (entry->label)
583 			entry->label->len = NFS4_MAXLABELLEN;
584 
585 		status = xdr_decode(desc, entry, &stream);
586 		if (status != 0) {
587 			if (status == -EAGAIN)
588 				status = 0;
589 			break;
590 		}
591 
592 		count++;
593 
594 		if (desc->plus)
595 			nfs_prime_dcache(file_dentry(desc->file), entry,
596 					desc->dir_verifier);
597 
598 		status = nfs_readdir_add_to_array(entry, page);
599 		if (status != 0)
600 			break;
601 	} while (!entry->eof);
602 
603 out_nopages:
604 	if (count == 0 || (status == -EBADCOOKIE && entry->eof != 0)) {
605 		array = kmap(page);
606 		array->eof_index = array->size;
607 		status = 0;
608 		kunmap(page);
609 	}
610 
611 	put_page(scratch);
612 	return status;
613 }
614 
615 static
616 void nfs_readdir_free_pages(struct page **pages, unsigned int npages)
617 {
618 	unsigned int i;
619 	for (i = 0; i < npages; i++)
620 		put_page(pages[i]);
621 }
622 
623 /*
624  * nfs_readdir_alloc_pages() will allocate pages that must be freed with a call
625  * to nfs_readdir_free_pages()
626  */
627 static
628 int nfs_readdir_alloc_pages(struct page **pages, unsigned int npages)
629 {
630 	unsigned int i;
631 
632 	for (i = 0; i < npages; i++) {
633 		struct page *page = alloc_page(GFP_KERNEL);
634 		if (page == NULL)
635 			goto out_freepages;
636 		pages[i] = page;
637 	}
638 	return 0;
639 
640 out_freepages:
641 	nfs_readdir_free_pages(pages, i);
642 	return -ENOMEM;
643 }
644 
645 static
646 int nfs_readdir_xdr_to_array(nfs_readdir_descriptor_t *desc, struct page *page, struct inode *inode)
647 {
648 	struct page *pages[NFS_MAX_READDIR_PAGES];
649 	struct nfs_entry entry;
650 	struct file	*file = desc->file;
651 	struct nfs_cache_array *array;
652 	int status = -ENOMEM;
653 	unsigned int array_size = ARRAY_SIZE(pages);
654 
655 	nfs_readdir_init_array(page);
656 
657 	entry.prev_cookie = 0;
658 	entry.cookie = desc->last_cookie;
659 	entry.eof = 0;
660 	entry.fh = nfs_alloc_fhandle();
661 	entry.fattr = nfs_alloc_fattr();
662 	entry.server = NFS_SERVER(inode);
663 	if (entry.fh == NULL || entry.fattr == NULL)
664 		goto out;
665 
666 	entry.label = nfs4_label_alloc(NFS_SERVER(inode), GFP_NOWAIT);
667 	if (IS_ERR(entry.label)) {
668 		status = PTR_ERR(entry.label);
669 		goto out;
670 	}
671 
672 	array = kmap(page);
673 
674 	status = nfs_readdir_alloc_pages(pages, array_size);
675 	if (status < 0)
676 		goto out_release_array;
677 	do {
678 		unsigned int pglen;
679 		status = nfs_readdir_xdr_filler(pages, desc, &entry, file, inode);
680 
681 		if (status < 0)
682 			break;
683 		pglen = status;
684 		status = nfs_readdir_page_filler(desc, &entry, pages, page, pglen);
685 		if (status < 0) {
686 			if (status == -ENOSPC)
687 				status = 0;
688 			break;
689 		}
690 	} while (array->eof_index < 0);
691 
692 	nfs_readdir_free_pages(pages, array_size);
693 out_release_array:
694 	kunmap(page);
695 	nfs4_label_free(entry.label);
696 out:
697 	nfs_free_fattr(entry.fattr);
698 	nfs_free_fhandle(entry.fh);
699 	return status;
700 }
701 
702 /*
703  * Now we cache directories properly, by converting xdr information
704  * to an array that can be used for lookups later.  This results in
705  * fewer cache pages, since we can store more information on each page.
706  * We only need to convert from xdr once so future lookups are much simpler
707  */
708 static
709 int nfs_readdir_filler(void *data, struct page* page)
710 {
711 	nfs_readdir_descriptor_t *desc = data;
712 	struct inode	*inode = file_inode(desc->file);
713 	int ret;
714 
715 	ret = nfs_readdir_xdr_to_array(desc, page, inode);
716 	if (ret < 0)
717 		goto error;
718 	SetPageUptodate(page);
719 
720 	if (invalidate_inode_pages2_range(inode->i_mapping, page->index + 1, -1) < 0) {
721 		/* Should never happen */
722 		nfs_zap_mapping(inode, inode->i_mapping);
723 	}
724 	unlock_page(page);
725 	return 0;
726  error:
727 	nfs_readdir_clear_array(page);
728 	unlock_page(page);
729 	return ret;
730 }
731 
732 static
733 void cache_page_release(nfs_readdir_descriptor_t *desc)
734 {
735 	put_page(desc->page);
736 	desc->page = NULL;
737 }
738 
739 static
740 struct page *get_cache_page(nfs_readdir_descriptor_t *desc)
741 {
742 	return read_cache_page(desc->file->f_mapping, desc->page_index,
743 			nfs_readdir_filler, desc);
744 }
745 
746 /*
747  * Returns 0 if desc->dir_cookie was found on page desc->page_index
748  * and locks the page to prevent removal from the page cache.
749  */
750 static
751 int find_and_lock_cache_page(nfs_readdir_descriptor_t *desc)
752 {
753 	struct inode *inode = file_inode(desc->file);
754 	struct nfs_inode *nfsi = NFS_I(inode);
755 	int res;
756 
757 	desc->page = get_cache_page(desc);
758 	if (IS_ERR(desc->page))
759 		return PTR_ERR(desc->page);
760 	res = lock_page_killable(desc->page);
761 	if (res != 0)
762 		goto error;
763 	res = -EAGAIN;
764 	if (desc->page->mapping != NULL) {
765 		res = nfs_readdir_search_array(desc);
766 		if (res == 0) {
767 			nfsi->page_index = desc->page_index;
768 			return 0;
769 		}
770 	}
771 	unlock_page(desc->page);
772 error:
773 	cache_page_release(desc);
774 	return res;
775 }
776 
777 /* Search for desc->dir_cookie from the beginning of the page cache */
778 static inline
779 int readdir_search_pagecache(nfs_readdir_descriptor_t *desc)
780 {
781 	int res;
782 
783 	if (desc->page_index == 0) {
784 		desc->current_index = 0;
785 		desc->prev_index = 0;
786 		desc->last_cookie = 0;
787 	}
788 	do {
789 		res = find_and_lock_cache_page(desc);
790 	} while (res == -EAGAIN);
791 	return res;
792 }
793 
794 /*
795  * Once we've found the start of the dirent within a page: fill 'er up...
796  */
797 static
798 int nfs_do_filldir(nfs_readdir_descriptor_t *desc)
799 {
800 	struct file	*file = desc->file;
801 	int i = 0;
802 	int res = 0;
803 	struct nfs_cache_array *array = NULL;
804 	struct nfs_open_dir_context *ctx = file->private_data;
805 
806 	array = kmap(desc->page);
807 	for (i = desc->cache_entry_index; i < array->size; i++) {
808 		struct nfs_cache_array_entry *ent;
809 
810 		ent = &array->array[i];
811 		if (!dir_emit(desc->ctx, ent->string.name, ent->string.len,
812 		    nfs_compat_user_ino64(ent->ino), ent->d_type)) {
813 			desc->eof = true;
814 			break;
815 		}
816 		if (i < (array->size-1))
817 			*desc->dir_cookie = array->array[i+1].cookie;
818 		else
819 			*desc->dir_cookie = array->last_cookie;
820 		if (nfs_readdir_use_cookie(file))
821 			desc->ctx->pos = *desc->dir_cookie;
822 		else
823 			desc->ctx->pos++;
824 		if (ctx->duped != 0)
825 			ctx->duped = 1;
826 	}
827 	if (array->eof_index >= 0)
828 		desc->eof = true;
829 
830 	kunmap(desc->page);
831 	dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling ended @ cookie %Lu; returning = %d\n",
832 			(unsigned long long)*desc->dir_cookie, res);
833 	return res;
834 }
835 
836 /*
837  * If we cannot find a cookie in our cache, we suspect that this is
838  * because it points to a deleted file, so we ask the server to return
839  * whatever it thinks is the next entry. We then feed this to filldir.
840  * If all goes well, we should then be able to find our way round the
841  * cache on the next call to readdir_search_pagecache();
842  *
843  * NOTE: we cannot add the anonymous page to the pagecache because
844  *	 the data it contains might not be page aligned. Besides,
845  *	 we should already have a complete representation of the
846  *	 directory in the page cache by the time we get here.
847  */
848 static inline
849 int uncached_readdir(nfs_readdir_descriptor_t *desc)
850 {
851 	struct page	*page = NULL;
852 	int		status;
853 	struct inode *inode = file_inode(desc->file);
854 	struct nfs_open_dir_context *ctx = desc->file->private_data;
855 
856 	dfprintk(DIRCACHE, "NFS: uncached_readdir() searching for cookie %Lu\n",
857 			(unsigned long long)*desc->dir_cookie);
858 
859 	page = alloc_page(GFP_HIGHUSER);
860 	if (!page) {
861 		status = -ENOMEM;
862 		goto out;
863 	}
864 
865 	desc->page_index = 0;
866 	desc->last_cookie = *desc->dir_cookie;
867 	desc->page = page;
868 	ctx->duped = 0;
869 
870 	status = nfs_readdir_xdr_to_array(desc, page, inode);
871 	if (status < 0)
872 		goto out_release;
873 
874 	status = nfs_do_filldir(desc);
875 
876  out_release:
877 	nfs_readdir_clear_array(desc->page);
878 	cache_page_release(desc);
879  out:
880 	dfprintk(DIRCACHE, "NFS: %s: returns %d\n",
881 			__func__, status);
882 	return status;
883 }
884 
885 /* The file offset position represents the dirent entry number.  A
886    last cookie cache takes care of the common case of reading the
887    whole directory.
888  */
889 static int nfs_readdir(struct file *file, struct dir_context *ctx)
890 {
891 	struct dentry	*dentry = file_dentry(file);
892 	struct inode	*inode = d_inode(dentry);
893 	struct nfs_open_dir_context *dir_ctx = file->private_data;
894 	nfs_readdir_descriptor_t my_desc = {
895 		.file = file,
896 		.ctx = ctx,
897 		.dir_cookie = &dir_ctx->dir_cookie,
898 		.plus = nfs_use_readdirplus(inode, ctx),
899 	},
900 			*desc = &my_desc;
901 	int res = 0;
902 
903 	dfprintk(FILE, "NFS: readdir(%pD2) starting at cookie %llu\n",
904 			file, (long long)ctx->pos);
905 	nfs_inc_stats(inode, NFSIOS_VFSGETDENTS);
906 
907 	/*
908 	 * ctx->pos points to the dirent entry number.
909 	 * *desc->dir_cookie has the cookie for the next entry. We have
910 	 * to either find the entry with the appropriate number or
911 	 * revalidate the cookie.
912 	 */
913 	if (ctx->pos == 0 || nfs_attribute_cache_expired(inode))
914 		res = nfs_revalidate_mapping(inode, file->f_mapping);
915 	if (res < 0)
916 		goto out;
917 
918 	do {
919 		res = readdir_search_pagecache(desc);
920 
921 		if (res == -EBADCOOKIE) {
922 			res = 0;
923 			/* This means either end of directory */
924 			if (*desc->dir_cookie && !desc->eof) {
925 				/* Or that the server has 'lost' a cookie */
926 				res = uncached_readdir(desc);
927 				if (res == 0)
928 					continue;
929 			}
930 			break;
931 		}
932 		if (res == -ETOOSMALL && desc->plus) {
933 			clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags);
934 			nfs_zap_caches(inode);
935 			desc->page_index = 0;
936 			desc->plus = false;
937 			desc->eof = false;
938 			continue;
939 		}
940 		if (res < 0)
941 			break;
942 
943 		res = nfs_do_filldir(desc);
944 		unlock_page(desc->page);
945 		cache_page_release(desc);
946 		if (res < 0)
947 			break;
948 	} while (!desc->eof);
949 out:
950 	if (res > 0)
951 		res = 0;
952 	dfprintk(FILE, "NFS: readdir(%pD2) returns %d\n", file, res);
953 	return res;
954 }
955 
956 static loff_t nfs_llseek_dir(struct file *filp, loff_t offset, int whence)
957 {
958 	struct inode *inode = file_inode(filp);
959 	struct nfs_open_dir_context *dir_ctx = filp->private_data;
960 
961 	dfprintk(FILE, "NFS: llseek dir(%pD2, %lld, %d)\n",
962 			filp, offset, whence);
963 
964 	switch (whence) {
965 	default:
966 		return -EINVAL;
967 	case SEEK_SET:
968 		if (offset < 0)
969 			return -EINVAL;
970 		inode_lock(inode);
971 		break;
972 	case SEEK_CUR:
973 		if (offset == 0)
974 			return filp->f_pos;
975 		inode_lock(inode);
976 		offset += filp->f_pos;
977 		if (offset < 0) {
978 			inode_unlock(inode);
979 			return -EINVAL;
980 		}
981 	}
982 	if (offset != filp->f_pos) {
983 		filp->f_pos = offset;
984 		if (nfs_readdir_use_cookie(filp))
985 			dir_ctx->dir_cookie = offset;
986 		else
987 			dir_ctx->dir_cookie = 0;
988 		dir_ctx->duped = 0;
989 	}
990 	inode_unlock(inode);
991 	return offset;
992 }
993 
994 /*
995  * All directory operations under NFS are synchronous, so fsync()
996  * is a dummy operation.
997  */
998 static int nfs_fsync_dir(struct file *filp, loff_t start, loff_t end,
999 			 int datasync)
1000 {
1001 	struct inode *inode = file_inode(filp);
1002 
1003 	dfprintk(FILE, "NFS: fsync dir(%pD2) datasync %d\n", filp, datasync);
1004 
1005 	inode_lock(inode);
1006 	nfs_inc_stats(inode, NFSIOS_VFSFSYNC);
1007 	inode_unlock(inode);
1008 	return 0;
1009 }
1010 
1011 /**
1012  * nfs_force_lookup_revalidate - Mark the directory as having changed
1013  * @dir: pointer to directory inode
1014  *
1015  * This forces the revalidation code in nfs_lookup_revalidate() to do a
1016  * full lookup on all child dentries of 'dir' whenever a change occurs
1017  * on the server that might have invalidated our dcache.
1018  *
1019  * Note that we reserve bit '0' as a tag to let us know when a dentry
1020  * was revalidated while holding a delegation on its inode.
1021  *
1022  * The caller should be holding dir->i_lock
1023  */
1024 void nfs_force_lookup_revalidate(struct inode *dir)
1025 {
1026 	NFS_I(dir)->cache_change_attribute += 2;
1027 }
1028 EXPORT_SYMBOL_GPL(nfs_force_lookup_revalidate);
1029 
1030 /**
1031  * nfs_verify_change_attribute - Detects NFS remote directory changes
1032  * @dir: pointer to parent directory inode
1033  * @verf: previously saved change attribute
1034  *
1035  * Return "false" if the verifiers doesn't match the change attribute.
1036  * This would usually indicate that the directory contents have changed on
1037  * the server, and that any dentries need revalidating.
1038  */
1039 static bool nfs_verify_change_attribute(struct inode *dir, unsigned long verf)
1040 {
1041 	return (verf & ~1UL) == nfs_save_change_attribute(dir);
1042 }
1043 
1044 static void nfs_set_verifier_delegated(unsigned long *verf)
1045 {
1046 	*verf |= 1UL;
1047 }
1048 
1049 #if IS_ENABLED(CONFIG_NFS_V4)
1050 static void nfs_unset_verifier_delegated(unsigned long *verf)
1051 {
1052 	*verf &= ~1UL;
1053 }
1054 #endif /* IS_ENABLED(CONFIG_NFS_V4) */
1055 
1056 static bool nfs_test_verifier_delegated(unsigned long verf)
1057 {
1058 	return verf & 1;
1059 }
1060 
1061 static bool nfs_verifier_is_delegated(struct dentry *dentry)
1062 {
1063 	return nfs_test_verifier_delegated(dentry->d_time);
1064 }
1065 
1066 static void nfs_set_verifier_locked(struct dentry *dentry, unsigned long verf)
1067 {
1068 	struct inode *inode = d_inode(dentry);
1069 
1070 	if (!nfs_verifier_is_delegated(dentry) &&
1071 	    !nfs_verify_change_attribute(d_inode(dentry->d_parent), verf))
1072 		goto out;
1073 	if (inode && NFS_PROTO(inode)->have_delegation(inode, FMODE_READ))
1074 		nfs_set_verifier_delegated(&verf);
1075 out:
1076 	dentry->d_time = verf;
1077 }
1078 
1079 /**
1080  * nfs_set_verifier - save a parent directory verifier in the dentry
1081  * @dentry: pointer to dentry
1082  * @verf: verifier to save
1083  *
1084  * Saves the parent directory verifier in @dentry. If the inode has
1085  * a delegation, we also tag the dentry as having been revalidated
1086  * while holding a delegation so that we know we don't have to
1087  * look it up again after a directory change.
1088  */
1089 void nfs_set_verifier(struct dentry *dentry, unsigned long verf)
1090 {
1091 
1092 	spin_lock(&dentry->d_lock);
1093 	nfs_set_verifier_locked(dentry, verf);
1094 	spin_unlock(&dentry->d_lock);
1095 }
1096 EXPORT_SYMBOL_GPL(nfs_set_verifier);
1097 
1098 #if IS_ENABLED(CONFIG_NFS_V4)
1099 /**
1100  * nfs_clear_verifier_delegated - clear the dir verifier delegation tag
1101  * @inode: pointer to inode
1102  *
1103  * Iterates through the dentries in the inode alias list and clears
1104  * the tag used to indicate that the dentry has been revalidated
1105  * while holding a delegation.
1106  * This function is intended for use when the delegation is being
1107  * returned or revoked.
1108  */
1109 void nfs_clear_verifier_delegated(struct inode *inode)
1110 {
1111 	struct dentry *alias;
1112 
1113 	if (!inode)
1114 		return;
1115 	spin_lock(&inode->i_lock);
1116 	hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
1117 		spin_lock(&alias->d_lock);
1118 		nfs_unset_verifier_delegated(&alias->d_time);
1119 		spin_unlock(&alias->d_lock);
1120 	}
1121 	spin_unlock(&inode->i_lock);
1122 }
1123 EXPORT_SYMBOL_GPL(nfs_clear_verifier_delegated);
1124 #endif /* IS_ENABLED(CONFIG_NFS_V4) */
1125 
1126 /*
1127  * A check for whether or not the parent directory has changed.
1128  * In the case it has, we assume that the dentries are untrustworthy
1129  * and may need to be looked up again.
1130  * If rcu_walk prevents us from performing a full check, return 0.
1131  */
1132 static int nfs_check_verifier(struct inode *dir, struct dentry *dentry,
1133 			      int rcu_walk)
1134 {
1135 	if (IS_ROOT(dentry))
1136 		return 1;
1137 	if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONE)
1138 		return 0;
1139 	if (!nfs_verify_change_attribute(dir, dentry->d_time))
1140 		return 0;
1141 	/* Revalidate nfsi->cache_change_attribute before we declare a match */
1142 	if (nfs_mapping_need_revalidate_inode(dir)) {
1143 		if (rcu_walk)
1144 			return 0;
1145 		if (__nfs_revalidate_inode(NFS_SERVER(dir), dir) < 0)
1146 			return 0;
1147 	}
1148 	if (!nfs_verify_change_attribute(dir, dentry->d_time))
1149 		return 0;
1150 	return 1;
1151 }
1152 
1153 /*
1154  * Use intent information to check whether or not we're going to do
1155  * an O_EXCL create using this path component.
1156  */
1157 static int nfs_is_exclusive_create(struct inode *dir, unsigned int flags)
1158 {
1159 	if (NFS_PROTO(dir)->version == 2)
1160 		return 0;
1161 	return flags & LOOKUP_EXCL;
1162 }
1163 
1164 /*
1165  * Inode and filehandle revalidation for lookups.
1166  *
1167  * We force revalidation in the cases where the VFS sets LOOKUP_REVAL,
1168  * or if the intent information indicates that we're about to open this
1169  * particular file and the "nocto" mount flag is not set.
1170  *
1171  */
1172 static
1173 int nfs_lookup_verify_inode(struct inode *inode, unsigned int flags)
1174 {
1175 	struct nfs_server *server = NFS_SERVER(inode);
1176 	int ret;
1177 
1178 	if (IS_AUTOMOUNT(inode))
1179 		return 0;
1180 
1181 	if (flags & LOOKUP_OPEN) {
1182 		switch (inode->i_mode & S_IFMT) {
1183 		case S_IFREG:
1184 			/* A NFSv4 OPEN will revalidate later */
1185 			if (server->caps & NFS_CAP_ATOMIC_OPEN)
1186 				goto out;
1187 			fallthrough;
1188 		case S_IFDIR:
1189 			if (server->flags & NFS_MOUNT_NOCTO)
1190 				break;
1191 			/* NFS close-to-open cache consistency validation */
1192 			goto out_force;
1193 		}
1194 	}
1195 
1196 	/* VFS wants an on-the-wire revalidation */
1197 	if (flags & LOOKUP_REVAL)
1198 		goto out_force;
1199 out:
1200 	return (inode->i_nlink == 0) ? -ESTALE : 0;
1201 out_force:
1202 	if (flags & LOOKUP_RCU)
1203 		return -ECHILD;
1204 	ret = __nfs_revalidate_inode(server, inode);
1205 	if (ret != 0)
1206 		return ret;
1207 	goto out;
1208 }
1209 
1210 /*
1211  * We judge how long we want to trust negative
1212  * dentries by looking at the parent inode mtime.
1213  *
1214  * If parent mtime has changed, we revalidate, else we wait for a
1215  * period corresponding to the parent's attribute cache timeout value.
1216  *
1217  * If LOOKUP_RCU prevents us from performing a full check, return 1
1218  * suggesting a reval is needed.
1219  *
1220  * Note that when creating a new file, or looking up a rename target,
1221  * then it shouldn't be necessary to revalidate a negative dentry.
1222  */
1223 static inline
1224 int nfs_neg_need_reval(struct inode *dir, struct dentry *dentry,
1225 		       unsigned int flags)
1226 {
1227 	if (flags & (LOOKUP_CREATE | LOOKUP_RENAME_TARGET))
1228 		return 0;
1229 	if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONEG)
1230 		return 1;
1231 	return !nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU);
1232 }
1233 
1234 static int
1235 nfs_lookup_revalidate_done(struct inode *dir, struct dentry *dentry,
1236 			   struct inode *inode, int error)
1237 {
1238 	switch (error) {
1239 	case 1:
1240 		dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) is valid\n",
1241 			__func__, dentry);
1242 		return 1;
1243 	case 0:
1244 		nfs_mark_for_revalidate(dir);
1245 		if (inode && S_ISDIR(inode->i_mode)) {
1246 			/* Purge readdir caches. */
1247 			nfs_zap_caches(inode);
1248 			/*
1249 			 * We can't d_drop the root of a disconnected tree:
1250 			 * its d_hash is on the s_anon list and d_drop() would hide
1251 			 * it from shrink_dcache_for_unmount(), leading to busy
1252 			 * inodes on unmount and further oopses.
1253 			 */
1254 			if (IS_ROOT(dentry))
1255 				return 1;
1256 		}
1257 		dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) is invalid\n",
1258 				__func__, dentry);
1259 		return 0;
1260 	}
1261 	dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) lookup returned error %d\n",
1262 				__func__, dentry, error);
1263 	return error;
1264 }
1265 
1266 static int
1267 nfs_lookup_revalidate_negative(struct inode *dir, struct dentry *dentry,
1268 			       unsigned int flags)
1269 {
1270 	int ret = 1;
1271 	if (nfs_neg_need_reval(dir, dentry, flags)) {
1272 		if (flags & LOOKUP_RCU)
1273 			return -ECHILD;
1274 		ret = 0;
1275 	}
1276 	return nfs_lookup_revalidate_done(dir, dentry, NULL, ret);
1277 }
1278 
1279 static int
1280 nfs_lookup_revalidate_delegated(struct inode *dir, struct dentry *dentry,
1281 				struct inode *inode)
1282 {
1283 	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1284 	return nfs_lookup_revalidate_done(dir, dentry, inode, 1);
1285 }
1286 
1287 static int
1288 nfs_lookup_revalidate_dentry(struct inode *dir, struct dentry *dentry,
1289 			     struct inode *inode)
1290 {
1291 	struct nfs_fh *fhandle;
1292 	struct nfs_fattr *fattr;
1293 	struct nfs4_label *label;
1294 	unsigned long dir_verifier;
1295 	int ret;
1296 
1297 	ret = -ENOMEM;
1298 	fhandle = nfs_alloc_fhandle();
1299 	fattr = nfs_alloc_fattr();
1300 	label = nfs4_label_alloc(NFS_SERVER(inode), GFP_KERNEL);
1301 	if (fhandle == NULL || fattr == NULL || IS_ERR(label))
1302 		goto out;
1303 
1304 	dir_verifier = nfs_save_change_attribute(dir);
1305 	ret = NFS_PROTO(dir)->lookup(dir, dentry, fhandle, fattr, label);
1306 	if (ret < 0) {
1307 		switch (ret) {
1308 		case -ESTALE:
1309 		case -ENOENT:
1310 			ret = 0;
1311 			break;
1312 		case -ETIMEDOUT:
1313 			if (NFS_SERVER(inode)->flags & NFS_MOUNT_SOFTREVAL)
1314 				ret = 1;
1315 		}
1316 		goto out;
1317 	}
1318 	ret = 0;
1319 	if (nfs_compare_fh(NFS_FH(inode), fhandle))
1320 		goto out;
1321 	if (nfs_refresh_inode(inode, fattr) < 0)
1322 		goto out;
1323 
1324 	nfs_setsecurity(inode, fattr, label);
1325 	nfs_set_verifier(dentry, dir_verifier);
1326 
1327 	/* set a readdirplus hint that we had a cache miss */
1328 	nfs_force_use_readdirplus(dir);
1329 	ret = 1;
1330 out:
1331 	nfs_free_fattr(fattr);
1332 	nfs_free_fhandle(fhandle);
1333 	nfs4_label_free(label);
1334 	return nfs_lookup_revalidate_done(dir, dentry, inode, ret);
1335 }
1336 
1337 /*
1338  * This is called every time the dcache has a lookup hit,
1339  * and we should check whether we can really trust that
1340  * lookup.
1341  *
1342  * NOTE! The hit can be a negative hit too, don't assume
1343  * we have an inode!
1344  *
1345  * If the parent directory is seen to have changed, we throw out the
1346  * cached dentry and do a new lookup.
1347  */
1348 static int
1349 nfs_do_lookup_revalidate(struct inode *dir, struct dentry *dentry,
1350 			 unsigned int flags)
1351 {
1352 	struct inode *inode;
1353 	int error;
1354 
1355 	nfs_inc_stats(dir, NFSIOS_DENTRYREVALIDATE);
1356 	inode = d_inode(dentry);
1357 
1358 	if (!inode)
1359 		return nfs_lookup_revalidate_negative(dir, dentry, flags);
1360 
1361 	if (is_bad_inode(inode)) {
1362 		dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n",
1363 				__func__, dentry);
1364 		goto out_bad;
1365 	}
1366 
1367 	if (nfs_verifier_is_delegated(dentry))
1368 		return nfs_lookup_revalidate_delegated(dir, dentry, inode);
1369 
1370 	/* Force a full look up iff the parent directory has changed */
1371 	if (!(flags & (LOOKUP_EXCL | LOOKUP_REVAL)) &&
1372 	    nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU)) {
1373 		error = nfs_lookup_verify_inode(inode, flags);
1374 		if (error) {
1375 			if (error == -ESTALE)
1376 				nfs_zap_caches(dir);
1377 			goto out_bad;
1378 		}
1379 		nfs_advise_use_readdirplus(dir);
1380 		goto out_valid;
1381 	}
1382 
1383 	if (flags & LOOKUP_RCU)
1384 		return -ECHILD;
1385 
1386 	if (NFS_STALE(inode))
1387 		goto out_bad;
1388 
1389 	trace_nfs_lookup_revalidate_enter(dir, dentry, flags);
1390 	error = nfs_lookup_revalidate_dentry(dir, dentry, inode);
1391 	trace_nfs_lookup_revalidate_exit(dir, dentry, flags, error);
1392 	return error;
1393 out_valid:
1394 	return nfs_lookup_revalidate_done(dir, dentry, inode, 1);
1395 out_bad:
1396 	if (flags & LOOKUP_RCU)
1397 		return -ECHILD;
1398 	return nfs_lookup_revalidate_done(dir, dentry, inode, 0);
1399 }
1400 
1401 static int
1402 __nfs_lookup_revalidate(struct dentry *dentry, unsigned int flags,
1403 			int (*reval)(struct inode *, struct dentry *, unsigned int))
1404 {
1405 	struct dentry *parent;
1406 	struct inode *dir;
1407 	int ret;
1408 
1409 	if (flags & LOOKUP_RCU) {
1410 		parent = READ_ONCE(dentry->d_parent);
1411 		dir = d_inode_rcu(parent);
1412 		if (!dir)
1413 			return -ECHILD;
1414 		ret = reval(dir, dentry, flags);
1415 		if (parent != READ_ONCE(dentry->d_parent))
1416 			return -ECHILD;
1417 	} else {
1418 		parent = dget_parent(dentry);
1419 		ret = reval(d_inode(parent), dentry, flags);
1420 		dput(parent);
1421 	}
1422 	return ret;
1423 }
1424 
1425 static int nfs_lookup_revalidate(struct dentry *dentry, unsigned int flags)
1426 {
1427 	return __nfs_lookup_revalidate(dentry, flags, nfs_do_lookup_revalidate);
1428 }
1429 
1430 /*
1431  * A weaker form of d_revalidate for revalidating just the d_inode(dentry)
1432  * when we don't really care about the dentry name. This is called when a
1433  * pathwalk ends on a dentry that was not found via a normal lookup in the
1434  * parent dir (e.g.: ".", "..", procfs symlinks or mountpoint traversals).
1435  *
1436  * In this situation, we just want to verify that the inode itself is OK
1437  * since the dentry might have changed on the server.
1438  */
1439 static int nfs_weak_revalidate(struct dentry *dentry, unsigned int flags)
1440 {
1441 	struct inode *inode = d_inode(dentry);
1442 	int error = 0;
1443 
1444 	/*
1445 	 * I believe we can only get a negative dentry here in the case of a
1446 	 * procfs-style symlink. Just assume it's correct for now, but we may
1447 	 * eventually need to do something more here.
1448 	 */
1449 	if (!inode) {
1450 		dfprintk(LOOKUPCACHE, "%s: %pd2 has negative inode\n",
1451 				__func__, dentry);
1452 		return 1;
1453 	}
1454 
1455 	if (is_bad_inode(inode)) {
1456 		dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n",
1457 				__func__, dentry);
1458 		return 0;
1459 	}
1460 
1461 	error = nfs_lookup_verify_inode(inode, flags);
1462 	dfprintk(LOOKUPCACHE, "NFS: %s: inode %lu is %s\n",
1463 			__func__, inode->i_ino, error ? "invalid" : "valid");
1464 	return !error;
1465 }
1466 
1467 /*
1468  * This is called from dput() when d_count is going to 0.
1469  */
1470 static int nfs_dentry_delete(const struct dentry *dentry)
1471 {
1472 	dfprintk(VFS, "NFS: dentry_delete(%pd2, %x)\n",
1473 		dentry, dentry->d_flags);
1474 
1475 	/* Unhash any dentry with a stale inode */
1476 	if (d_really_is_positive(dentry) && NFS_STALE(d_inode(dentry)))
1477 		return 1;
1478 
1479 	if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1480 		/* Unhash it, so that ->d_iput() would be called */
1481 		return 1;
1482 	}
1483 	if (!(dentry->d_sb->s_flags & SB_ACTIVE)) {
1484 		/* Unhash it, so that ancestors of killed async unlink
1485 		 * files will be cleaned up during umount */
1486 		return 1;
1487 	}
1488 	return 0;
1489 
1490 }
1491 
1492 /* Ensure that we revalidate inode->i_nlink */
1493 static void nfs_drop_nlink(struct inode *inode)
1494 {
1495 	spin_lock(&inode->i_lock);
1496 	/* drop the inode if we're reasonably sure this is the last link */
1497 	if (inode->i_nlink > 0)
1498 		drop_nlink(inode);
1499 	NFS_I(inode)->attr_gencount = nfs_inc_attr_generation_counter();
1500 	NFS_I(inode)->cache_validity |= NFS_INO_INVALID_CHANGE
1501 		| NFS_INO_INVALID_CTIME
1502 		| NFS_INO_INVALID_OTHER
1503 		| NFS_INO_REVAL_FORCED;
1504 	spin_unlock(&inode->i_lock);
1505 }
1506 
1507 /*
1508  * Called when the dentry loses inode.
1509  * We use it to clean up silly-renamed files.
1510  */
1511 static void nfs_dentry_iput(struct dentry *dentry, struct inode *inode)
1512 {
1513 	if (S_ISDIR(inode->i_mode))
1514 		/* drop any readdir cache as it could easily be old */
1515 		NFS_I(inode)->cache_validity |= NFS_INO_INVALID_DATA;
1516 
1517 	if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1518 		nfs_complete_unlink(dentry, inode);
1519 		nfs_drop_nlink(inode);
1520 	}
1521 	iput(inode);
1522 }
1523 
1524 static void nfs_d_release(struct dentry *dentry)
1525 {
1526 	/* free cached devname value, if it survived that far */
1527 	if (unlikely(dentry->d_fsdata)) {
1528 		if (dentry->d_flags & DCACHE_NFSFS_RENAMED)
1529 			WARN_ON(1);
1530 		else
1531 			kfree(dentry->d_fsdata);
1532 	}
1533 }
1534 
1535 const struct dentry_operations nfs_dentry_operations = {
1536 	.d_revalidate	= nfs_lookup_revalidate,
1537 	.d_weak_revalidate	= nfs_weak_revalidate,
1538 	.d_delete	= nfs_dentry_delete,
1539 	.d_iput		= nfs_dentry_iput,
1540 	.d_automount	= nfs_d_automount,
1541 	.d_release	= nfs_d_release,
1542 };
1543 EXPORT_SYMBOL_GPL(nfs_dentry_operations);
1544 
1545 struct dentry *nfs_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
1546 {
1547 	struct dentry *res;
1548 	struct inode *inode = NULL;
1549 	struct nfs_fh *fhandle = NULL;
1550 	struct nfs_fattr *fattr = NULL;
1551 	struct nfs4_label *label = NULL;
1552 	unsigned long dir_verifier;
1553 	int error;
1554 
1555 	dfprintk(VFS, "NFS: lookup(%pd2)\n", dentry);
1556 	nfs_inc_stats(dir, NFSIOS_VFSLOOKUP);
1557 
1558 	if (unlikely(dentry->d_name.len > NFS_SERVER(dir)->namelen))
1559 		return ERR_PTR(-ENAMETOOLONG);
1560 
1561 	/*
1562 	 * If we're doing an exclusive create, optimize away the lookup
1563 	 * but don't hash the dentry.
1564 	 */
1565 	if (nfs_is_exclusive_create(dir, flags) || flags & LOOKUP_RENAME_TARGET)
1566 		return NULL;
1567 
1568 	res = ERR_PTR(-ENOMEM);
1569 	fhandle = nfs_alloc_fhandle();
1570 	fattr = nfs_alloc_fattr();
1571 	if (fhandle == NULL || fattr == NULL)
1572 		goto out;
1573 
1574 	label = nfs4_label_alloc(NFS_SERVER(dir), GFP_NOWAIT);
1575 	if (IS_ERR(label))
1576 		goto out;
1577 
1578 	dir_verifier = nfs_save_change_attribute(dir);
1579 	trace_nfs_lookup_enter(dir, dentry, flags);
1580 	error = NFS_PROTO(dir)->lookup(dir, dentry, fhandle, fattr, label);
1581 	if (error == -ENOENT)
1582 		goto no_entry;
1583 	if (error < 0) {
1584 		res = ERR_PTR(error);
1585 		goto out_label;
1586 	}
1587 	inode = nfs_fhget(dentry->d_sb, fhandle, fattr, label);
1588 	res = ERR_CAST(inode);
1589 	if (IS_ERR(res))
1590 		goto out_label;
1591 
1592 	/* Notify readdir to use READDIRPLUS */
1593 	nfs_force_use_readdirplus(dir);
1594 
1595 no_entry:
1596 	res = d_splice_alias(inode, dentry);
1597 	if (res != NULL) {
1598 		if (IS_ERR(res))
1599 			goto out_label;
1600 		dentry = res;
1601 	}
1602 	nfs_set_verifier(dentry, dir_verifier);
1603 out_label:
1604 	trace_nfs_lookup_exit(dir, dentry, flags, error);
1605 	nfs4_label_free(label);
1606 out:
1607 	nfs_free_fattr(fattr);
1608 	nfs_free_fhandle(fhandle);
1609 	return res;
1610 }
1611 EXPORT_SYMBOL_GPL(nfs_lookup);
1612 
1613 #if IS_ENABLED(CONFIG_NFS_V4)
1614 static int nfs4_lookup_revalidate(struct dentry *, unsigned int);
1615 
1616 const struct dentry_operations nfs4_dentry_operations = {
1617 	.d_revalidate	= nfs4_lookup_revalidate,
1618 	.d_weak_revalidate	= nfs_weak_revalidate,
1619 	.d_delete	= nfs_dentry_delete,
1620 	.d_iput		= nfs_dentry_iput,
1621 	.d_automount	= nfs_d_automount,
1622 	.d_release	= nfs_d_release,
1623 };
1624 EXPORT_SYMBOL_GPL(nfs4_dentry_operations);
1625 
1626 static fmode_t flags_to_mode(int flags)
1627 {
1628 	fmode_t res = (__force fmode_t)flags & FMODE_EXEC;
1629 	if ((flags & O_ACCMODE) != O_WRONLY)
1630 		res |= FMODE_READ;
1631 	if ((flags & O_ACCMODE) != O_RDONLY)
1632 		res |= FMODE_WRITE;
1633 	return res;
1634 }
1635 
1636 static struct nfs_open_context *create_nfs_open_context(struct dentry *dentry, int open_flags, struct file *filp)
1637 {
1638 	return alloc_nfs_open_context(dentry, flags_to_mode(open_flags), filp);
1639 }
1640 
1641 static int do_open(struct inode *inode, struct file *filp)
1642 {
1643 	nfs_fscache_open_file(inode, filp);
1644 	return 0;
1645 }
1646 
1647 static int nfs_finish_open(struct nfs_open_context *ctx,
1648 			   struct dentry *dentry,
1649 			   struct file *file, unsigned open_flags)
1650 {
1651 	int err;
1652 
1653 	err = finish_open(file, dentry, do_open);
1654 	if (err)
1655 		goto out;
1656 	if (S_ISREG(file->f_path.dentry->d_inode->i_mode))
1657 		nfs_file_set_open_context(file, ctx);
1658 	else
1659 		err = -EOPENSTALE;
1660 out:
1661 	return err;
1662 }
1663 
1664 int nfs_atomic_open(struct inode *dir, struct dentry *dentry,
1665 		    struct file *file, unsigned open_flags,
1666 		    umode_t mode)
1667 {
1668 	DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
1669 	struct nfs_open_context *ctx;
1670 	struct dentry *res;
1671 	struct iattr attr = { .ia_valid = ATTR_OPEN };
1672 	struct inode *inode;
1673 	unsigned int lookup_flags = 0;
1674 	bool switched = false;
1675 	int created = 0;
1676 	int err;
1677 
1678 	/* Expect a negative dentry */
1679 	BUG_ON(d_inode(dentry));
1680 
1681 	dfprintk(VFS, "NFS: atomic_open(%s/%lu), %pd\n",
1682 			dir->i_sb->s_id, dir->i_ino, dentry);
1683 
1684 	err = nfs_check_flags(open_flags);
1685 	if (err)
1686 		return err;
1687 
1688 	/* NFS only supports OPEN on regular files */
1689 	if ((open_flags & O_DIRECTORY)) {
1690 		if (!d_in_lookup(dentry)) {
1691 			/*
1692 			 * Hashed negative dentry with O_DIRECTORY: dentry was
1693 			 * revalidated and is fine, no need to perform lookup
1694 			 * again
1695 			 */
1696 			return -ENOENT;
1697 		}
1698 		lookup_flags = LOOKUP_OPEN|LOOKUP_DIRECTORY;
1699 		goto no_open;
1700 	}
1701 
1702 	if (dentry->d_name.len > NFS_SERVER(dir)->namelen)
1703 		return -ENAMETOOLONG;
1704 
1705 	if (open_flags & O_CREAT) {
1706 		struct nfs_server *server = NFS_SERVER(dir);
1707 
1708 		if (!(server->attr_bitmask[2] & FATTR4_WORD2_MODE_UMASK))
1709 			mode &= ~current_umask();
1710 
1711 		attr.ia_valid |= ATTR_MODE;
1712 		attr.ia_mode = mode;
1713 	}
1714 	if (open_flags & O_TRUNC) {
1715 		attr.ia_valid |= ATTR_SIZE;
1716 		attr.ia_size = 0;
1717 	}
1718 
1719 	if (!(open_flags & O_CREAT) && !d_in_lookup(dentry)) {
1720 		d_drop(dentry);
1721 		switched = true;
1722 		dentry = d_alloc_parallel(dentry->d_parent,
1723 					  &dentry->d_name, &wq);
1724 		if (IS_ERR(dentry))
1725 			return PTR_ERR(dentry);
1726 		if (unlikely(!d_in_lookup(dentry)))
1727 			return finish_no_open(file, dentry);
1728 	}
1729 
1730 	ctx = create_nfs_open_context(dentry, open_flags, file);
1731 	err = PTR_ERR(ctx);
1732 	if (IS_ERR(ctx))
1733 		goto out;
1734 
1735 	trace_nfs_atomic_open_enter(dir, ctx, open_flags);
1736 	inode = NFS_PROTO(dir)->open_context(dir, ctx, open_flags, &attr, &created);
1737 	if (created)
1738 		file->f_mode |= FMODE_CREATED;
1739 	if (IS_ERR(inode)) {
1740 		err = PTR_ERR(inode);
1741 		trace_nfs_atomic_open_exit(dir, ctx, open_flags, err);
1742 		put_nfs_open_context(ctx);
1743 		d_drop(dentry);
1744 		switch (err) {
1745 		case -ENOENT:
1746 			d_splice_alias(NULL, dentry);
1747 			nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1748 			break;
1749 		case -EISDIR:
1750 		case -ENOTDIR:
1751 			goto no_open;
1752 		case -ELOOP:
1753 			if (!(open_flags & O_NOFOLLOW))
1754 				goto no_open;
1755 			break;
1756 			/* case -EINVAL: */
1757 		default:
1758 			break;
1759 		}
1760 		goto out;
1761 	}
1762 
1763 	err = nfs_finish_open(ctx, ctx->dentry, file, open_flags);
1764 	trace_nfs_atomic_open_exit(dir, ctx, open_flags, err);
1765 	put_nfs_open_context(ctx);
1766 out:
1767 	if (unlikely(switched)) {
1768 		d_lookup_done(dentry);
1769 		dput(dentry);
1770 	}
1771 	return err;
1772 
1773 no_open:
1774 	res = nfs_lookup(dir, dentry, lookup_flags);
1775 	if (switched) {
1776 		d_lookup_done(dentry);
1777 		if (!res)
1778 			res = dentry;
1779 		else
1780 			dput(dentry);
1781 	}
1782 	if (IS_ERR(res))
1783 		return PTR_ERR(res);
1784 	return finish_no_open(file, res);
1785 }
1786 EXPORT_SYMBOL_GPL(nfs_atomic_open);
1787 
1788 static int
1789 nfs4_do_lookup_revalidate(struct inode *dir, struct dentry *dentry,
1790 			  unsigned int flags)
1791 {
1792 	struct inode *inode;
1793 
1794 	if (!(flags & LOOKUP_OPEN) || (flags & LOOKUP_DIRECTORY))
1795 		goto full_reval;
1796 	if (d_mountpoint(dentry))
1797 		goto full_reval;
1798 
1799 	inode = d_inode(dentry);
1800 
1801 	/* We can't create new files in nfs_open_revalidate(), so we
1802 	 * optimize away revalidation of negative dentries.
1803 	 */
1804 	if (inode == NULL)
1805 		goto full_reval;
1806 
1807 	if (nfs_verifier_is_delegated(dentry))
1808 		return nfs_lookup_revalidate_delegated(dir, dentry, inode);
1809 
1810 	/* NFS only supports OPEN on regular files */
1811 	if (!S_ISREG(inode->i_mode))
1812 		goto full_reval;
1813 
1814 	/* We cannot do exclusive creation on a positive dentry */
1815 	if (flags & (LOOKUP_EXCL | LOOKUP_REVAL))
1816 		goto reval_dentry;
1817 
1818 	/* Check if the directory changed */
1819 	if (!nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU))
1820 		goto reval_dentry;
1821 
1822 	/* Let f_op->open() actually open (and revalidate) the file */
1823 	return 1;
1824 reval_dentry:
1825 	if (flags & LOOKUP_RCU)
1826 		return -ECHILD;
1827 	return nfs_lookup_revalidate_dentry(dir, dentry, inode);
1828 
1829 full_reval:
1830 	return nfs_do_lookup_revalidate(dir, dentry, flags);
1831 }
1832 
1833 static int nfs4_lookup_revalidate(struct dentry *dentry, unsigned int flags)
1834 {
1835 	return __nfs_lookup_revalidate(dentry, flags,
1836 			nfs4_do_lookup_revalidate);
1837 }
1838 
1839 #endif /* CONFIG_NFSV4 */
1840 
1841 struct dentry *
1842 nfs_add_or_obtain(struct dentry *dentry, struct nfs_fh *fhandle,
1843 				struct nfs_fattr *fattr,
1844 				struct nfs4_label *label)
1845 {
1846 	struct dentry *parent = dget_parent(dentry);
1847 	struct inode *dir = d_inode(parent);
1848 	struct inode *inode;
1849 	struct dentry *d;
1850 	int error;
1851 
1852 	d_drop(dentry);
1853 
1854 	if (fhandle->size == 0) {
1855 		error = NFS_PROTO(dir)->lookup(dir, dentry, fhandle, fattr, NULL);
1856 		if (error)
1857 			goto out_error;
1858 	}
1859 	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1860 	if (!(fattr->valid & NFS_ATTR_FATTR)) {
1861 		struct nfs_server *server = NFS_SB(dentry->d_sb);
1862 		error = server->nfs_client->rpc_ops->getattr(server, fhandle,
1863 				fattr, NULL, NULL);
1864 		if (error < 0)
1865 			goto out_error;
1866 	}
1867 	inode = nfs_fhget(dentry->d_sb, fhandle, fattr, label);
1868 	d = d_splice_alias(inode, dentry);
1869 out:
1870 	dput(parent);
1871 	return d;
1872 out_error:
1873 	nfs_mark_for_revalidate(dir);
1874 	d = ERR_PTR(error);
1875 	goto out;
1876 }
1877 EXPORT_SYMBOL_GPL(nfs_add_or_obtain);
1878 
1879 /*
1880  * Code common to create, mkdir, and mknod.
1881  */
1882 int nfs_instantiate(struct dentry *dentry, struct nfs_fh *fhandle,
1883 				struct nfs_fattr *fattr,
1884 				struct nfs4_label *label)
1885 {
1886 	struct dentry *d;
1887 
1888 	d = nfs_add_or_obtain(dentry, fhandle, fattr, label);
1889 	if (IS_ERR(d))
1890 		return PTR_ERR(d);
1891 
1892 	/* Callers don't care */
1893 	dput(d);
1894 	return 0;
1895 }
1896 EXPORT_SYMBOL_GPL(nfs_instantiate);
1897 
1898 /*
1899  * Following a failed create operation, we drop the dentry rather
1900  * than retain a negative dentry. This avoids a problem in the event
1901  * that the operation succeeded on the server, but an error in the
1902  * reply path made it appear to have failed.
1903  */
1904 int nfs_create(struct inode *dir, struct dentry *dentry,
1905 		umode_t mode, bool excl)
1906 {
1907 	struct iattr attr;
1908 	int open_flags = excl ? O_CREAT | O_EXCL : O_CREAT;
1909 	int error;
1910 
1911 	dfprintk(VFS, "NFS: create(%s/%lu), %pd\n",
1912 			dir->i_sb->s_id, dir->i_ino, dentry);
1913 
1914 	attr.ia_mode = mode;
1915 	attr.ia_valid = ATTR_MODE;
1916 
1917 	trace_nfs_create_enter(dir, dentry, open_flags);
1918 	error = NFS_PROTO(dir)->create(dir, dentry, &attr, open_flags);
1919 	trace_nfs_create_exit(dir, dentry, open_flags, error);
1920 	if (error != 0)
1921 		goto out_err;
1922 	return 0;
1923 out_err:
1924 	d_drop(dentry);
1925 	return error;
1926 }
1927 EXPORT_SYMBOL_GPL(nfs_create);
1928 
1929 /*
1930  * See comments for nfs_proc_create regarding failed operations.
1931  */
1932 int
1933 nfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t rdev)
1934 {
1935 	struct iattr attr;
1936 	int status;
1937 
1938 	dfprintk(VFS, "NFS: mknod(%s/%lu), %pd\n",
1939 			dir->i_sb->s_id, dir->i_ino, dentry);
1940 
1941 	attr.ia_mode = mode;
1942 	attr.ia_valid = ATTR_MODE;
1943 
1944 	trace_nfs_mknod_enter(dir, dentry);
1945 	status = NFS_PROTO(dir)->mknod(dir, dentry, &attr, rdev);
1946 	trace_nfs_mknod_exit(dir, dentry, status);
1947 	if (status != 0)
1948 		goto out_err;
1949 	return 0;
1950 out_err:
1951 	d_drop(dentry);
1952 	return status;
1953 }
1954 EXPORT_SYMBOL_GPL(nfs_mknod);
1955 
1956 /*
1957  * See comments for nfs_proc_create regarding failed operations.
1958  */
1959 int nfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
1960 {
1961 	struct iattr attr;
1962 	int error;
1963 
1964 	dfprintk(VFS, "NFS: mkdir(%s/%lu), %pd\n",
1965 			dir->i_sb->s_id, dir->i_ino, dentry);
1966 
1967 	attr.ia_valid = ATTR_MODE;
1968 	attr.ia_mode = mode | S_IFDIR;
1969 
1970 	trace_nfs_mkdir_enter(dir, dentry);
1971 	error = NFS_PROTO(dir)->mkdir(dir, dentry, &attr);
1972 	trace_nfs_mkdir_exit(dir, dentry, error);
1973 	if (error != 0)
1974 		goto out_err;
1975 	return 0;
1976 out_err:
1977 	d_drop(dentry);
1978 	return error;
1979 }
1980 EXPORT_SYMBOL_GPL(nfs_mkdir);
1981 
1982 static void nfs_dentry_handle_enoent(struct dentry *dentry)
1983 {
1984 	if (simple_positive(dentry))
1985 		d_delete(dentry);
1986 }
1987 
1988 int nfs_rmdir(struct inode *dir, struct dentry *dentry)
1989 {
1990 	int error;
1991 
1992 	dfprintk(VFS, "NFS: rmdir(%s/%lu), %pd\n",
1993 			dir->i_sb->s_id, dir->i_ino, dentry);
1994 
1995 	trace_nfs_rmdir_enter(dir, dentry);
1996 	if (d_really_is_positive(dentry)) {
1997 		down_write(&NFS_I(d_inode(dentry))->rmdir_sem);
1998 		error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
1999 		/* Ensure the VFS deletes this inode */
2000 		switch (error) {
2001 		case 0:
2002 			clear_nlink(d_inode(dentry));
2003 			break;
2004 		case -ENOENT:
2005 			nfs_dentry_handle_enoent(dentry);
2006 		}
2007 		up_write(&NFS_I(d_inode(dentry))->rmdir_sem);
2008 	} else
2009 		error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
2010 	trace_nfs_rmdir_exit(dir, dentry, error);
2011 
2012 	return error;
2013 }
2014 EXPORT_SYMBOL_GPL(nfs_rmdir);
2015 
2016 /*
2017  * Remove a file after making sure there are no pending writes,
2018  * and after checking that the file has only one user.
2019  *
2020  * We invalidate the attribute cache and free the inode prior to the operation
2021  * to avoid possible races if the server reuses the inode.
2022  */
2023 static int nfs_safe_remove(struct dentry *dentry)
2024 {
2025 	struct inode *dir = d_inode(dentry->d_parent);
2026 	struct inode *inode = d_inode(dentry);
2027 	int error = -EBUSY;
2028 
2029 	dfprintk(VFS, "NFS: safe_remove(%pd2)\n", dentry);
2030 
2031 	/* If the dentry was sillyrenamed, we simply call d_delete() */
2032 	if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
2033 		error = 0;
2034 		goto out;
2035 	}
2036 
2037 	trace_nfs_remove_enter(dir, dentry);
2038 	if (inode != NULL) {
2039 		error = NFS_PROTO(dir)->remove(dir, dentry);
2040 		if (error == 0)
2041 			nfs_drop_nlink(inode);
2042 	} else
2043 		error = NFS_PROTO(dir)->remove(dir, dentry);
2044 	if (error == -ENOENT)
2045 		nfs_dentry_handle_enoent(dentry);
2046 	trace_nfs_remove_exit(dir, dentry, error);
2047 out:
2048 	return error;
2049 }
2050 
2051 /*  We do silly rename. In case sillyrename() returns -EBUSY, the inode
2052  *  belongs to an active ".nfs..." file and we return -EBUSY.
2053  *
2054  *  If sillyrename() returns 0, we do nothing, otherwise we unlink.
2055  */
2056 int nfs_unlink(struct inode *dir, struct dentry *dentry)
2057 {
2058 	int error;
2059 	int need_rehash = 0;
2060 
2061 	dfprintk(VFS, "NFS: unlink(%s/%lu, %pd)\n", dir->i_sb->s_id,
2062 		dir->i_ino, dentry);
2063 
2064 	trace_nfs_unlink_enter(dir, dentry);
2065 	spin_lock(&dentry->d_lock);
2066 	if (d_count(dentry) > 1) {
2067 		spin_unlock(&dentry->d_lock);
2068 		/* Start asynchronous writeout of the inode */
2069 		write_inode_now(d_inode(dentry), 0);
2070 		error = nfs_sillyrename(dir, dentry);
2071 		goto out;
2072 	}
2073 	if (!d_unhashed(dentry)) {
2074 		__d_drop(dentry);
2075 		need_rehash = 1;
2076 	}
2077 	spin_unlock(&dentry->d_lock);
2078 	error = nfs_safe_remove(dentry);
2079 	if (!error || error == -ENOENT) {
2080 		nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
2081 	} else if (need_rehash)
2082 		d_rehash(dentry);
2083 out:
2084 	trace_nfs_unlink_exit(dir, dentry, error);
2085 	return error;
2086 }
2087 EXPORT_SYMBOL_GPL(nfs_unlink);
2088 
2089 /*
2090  * To create a symbolic link, most file systems instantiate a new inode,
2091  * add a page to it containing the path, then write it out to the disk
2092  * using prepare_write/commit_write.
2093  *
2094  * Unfortunately the NFS client can't create the in-core inode first
2095  * because it needs a file handle to create an in-core inode (see
2096  * fs/nfs/inode.c:nfs_fhget).  We only have a file handle *after* the
2097  * symlink request has completed on the server.
2098  *
2099  * So instead we allocate a raw page, copy the symname into it, then do
2100  * the SYMLINK request with the page as the buffer.  If it succeeds, we
2101  * now have a new file handle and can instantiate an in-core NFS inode
2102  * and move the raw page into its mapping.
2103  */
2104 int nfs_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
2105 {
2106 	struct page *page;
2107 	char *kaddr;
2108 	struct iattr attr;
2109 	unsigned int pathlen = strlen(symname);
2110 	int error;
2111 
2112 	dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s)\n", dir->i_sb->s_id,
2113 		dir->i_ino, dentry, symname);
2114 
2115 	if (pathlen > PAGE_SIZE)
2116 		return -ENAMETOOLONG;
2117 
2118 	attr.ia_mode = S_IFLNK | S_IRWXUGO;
2119 	attr.ia_valid = ATTR_MODE;
2120 
2121 	page = alloc_page(GFP_USER);
2122 	if (!page)
2123 		return -ENOMEM;
2124 
2125 	kaddr = page_address(page);
2126 	memcpy(kaddr, symname, pathlen);
2127 	if (pathlen < PAGE_SIZE)
2128 		memset(kaddr + pathlen, 0, PAGE_SIZE - pathlen);
2129 
2130 	trace_nfs_symlink_enter(dir, dentry);
2131 	error = NFS_PROTO(dir)->symlink(dir, dentry, page, pathlen, &attr);
2132 	trace_nfs_symlink_exit(dir, dentry, error);
2133 	if (error != 0) {
2134 		dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s) error %d\n",
2135 			dir->i_sb->s_id, dir->i_ino,
2136 			dentry, symname, error);
2137 		d_drop(dentry);
2138 		__free_page(page);
2139 		return error;
2140 	}
2141 
2142 	/*
2143 	 * No big deal if we can't add this page to the page cache here.
2144 	 * READLINK will get the missing page from the server if needed.
2145 	 */
2146 	if (!add_to_page_cache_lru(page, d_inode(dentry)->i_mapping, 0,
2147 							GFP_KERNEL)) {
2148 		SetPageUptodate(page);
2149 		unlock_page(page);
2150 		/*
2151 		 * add_to_page_cache_lru() grabs an extra page refcount.
2152 		 * Drop it here to avoid leaking this page later.
2153 		 */
2154 		put_page(page);
2155 	} else
2156 		__free_page(page);
2157 
2158 	return 0;
2159 }
2160 EXPORT_SYMBOL_GPL(nfs_symlink);
2161 
2162 int
2163 nfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2164 {
2165 	struct inode *inode = d_inode(old_dentry);
2166 	int error;
2167 
2168 	dfprintk(VFS, "NFS: link(%pd2 -> %pd2)\n",
2169 		old_dentry, dentry);
2170 
2171 	trace_nfs_link_enter(inode, dir, dentry);
2172 	d_drop(dentry);
2173 	error = NFS_PROTO(dir)->link(inode, dir, &dentry->d_name);
2174 	if (error == 0) {
2175 		ihold(inode);
2176 		d_add(dentry, inode);
2177 	}
2178 	trace_nfs_link_exit(inode, dir, dentry, error);
2179 	return error;
2180 }
2181 EXPORT_SYMBOL_GPL(nfs_link);
2182 
2183 /*
2184  * RENAME
2185  * FIXME: Some nfsds, like the Linux user space nfsd, may generate a
2186  * different file handle for the same inode after a rename (e.g. when
2187  * moving to a different directory). A fail-safe method to do so would
2188  * be to look up old_dir/old_name, create a link to new_dir/new_name and
2189  * rename the old file using the sillyrename stuff. This way, the original
2190  * file in old_dir will go away when the last process iput()s the inode.
2191  *
2192  * FIXED.
2193  *
2194  * It actually works quite well. One needs to have the possibility for
2195  * at least one ".nfs..." file in each directory the file ever gets
2196  * moved or linked to which happens automagically with the new
2197  * implementation that only depends on the dcache stuff instead of
2198  * using the inode layer
2199  *
2200  * Unfortunately, things are a little more complicated than indicated
2201  * above. For a cross-directory move, we want to make sure we can get
2202  * rid of the old inode after the operation.  This means there must be
2203  * no pending writes (if it's a file), and the use count must be 1.
2204  * If these conditions are met, we can drop the dentries before doing
2205  * the rename.
2206  */
2207 int nfs_rename(struct inode *old_dir, struct dentry *old_dentry,
2208 	       struct inode *new_dir, struct dentry *new_dentry,
2209 	       unsigned int flags)
2210 {
2211 	struct inode *old_inode = d_inode(old_dentry);
2212 	struct inode *new_inode = d_inode(new_dentry);
2213 	struct dentry *dentry = NULL, *rehash = NULL;
2214 	struct rpc_task *task;
2215 	int error = -EBUSY;
2216 
2217 	if (flags)
2218 		return -EINVAL;
2219 
2220 	dfprintk(VFS, "NFS: rename(%pd2 -> %pd2, ct=%d)\n",
2221 		 old_dentry, new_dentry,
2222 		 d_count(new_dentry));
2223 
2224 	trace_nfs_rename_enter(old_dir, old_dentry, new_dir, new_dentry);
2225 	/*
2226 	 * For non-directories, check whether the target is busy and if so,
2227 	 * make a copy of the dentry and then do a silly-rename. If the
2228 	 * silly-rename succeeds, the copied dentry is hashed and becomes
2229 	 * the new target.
2230 	 */
2231 	if (new_inode && !S_ISDIR(new_inode->i_mode)) {
2232 		/*
2233 		 * To prevent any new references to the target during the
2234 		 * rename, we unhash the dentry in advance.
2235 		 */
2236 		if (!d_unhashed(new_dentry)) {
2237 			d_drop(new_dentry);
2238 			rehash = new_dentry;
2239 		}
2240 
2241 		if (d_count(new_dentry) > 2) {
2242 			int err;
2243 
2244 			/* copy the target dentry's name */
2245 			dentry = d_alloc(new_dentry->d_parent,
2246 					 &new_dentry->d_name);
2247 			if (!dentry)
2248 				goto out;
2249 
2250 			/* silly-rename the existing target ... */
2251 			err = nfs_sillyrename(new_dir, new_dentry);
2252 			if (err)
2253 				goto out;
2254 
2255 			new_dentry = dentry;
2256 			rehash = NULL;
2257 			new_inode = NULL;
2258 		}
2259 	}
2260 
2261 	task = nfs_async_rename(old_dir, new_dir, old_dentry, new_dentry, NULL);
2262 	if (IS_ERR(task)) {
2263 		error = PTR_ERR(task);
2264 		goto out;
2265 	}
2266 
2267 	error = rpc_wait_for_completion_task(task);
2268 	if (error != 0) {
2269 		((struct nfs_renamedata *)task->tk_calldata)->cancelled = 1;
2270 		/* Paired with the atomic_dec_and_test() barrier in rpc_do_put_task() */
2271 		smp_wmb();
2272 	} else
2273 		error = task->tk_status;
2274 	rpc_put_task(task);
2275 	/* Ensure the inode attributes are revalidated */
2276 	if (error == 0) {
2277 		spin_lock(&old_inode->i_lock);
2278 		NFS_I(old_inode)->attr_gencount = nfs_inc_attr_generation_counter();
2279 		NFS_I(old_inode)->cache_validity |= NFS_INO_INVALID_CHANGE
2280 			| NFS_INO_INVALID_CTIME
2281 			| NFS_INO_REVAL_FORCED;
2282 		spin_unlock(&old_inode->i_lock);
2283 	}
2284 out:
2285 	if (rehash)
2286 		d_rehash(rehash);
2287 	trace_nfs_rename_exit(old_dir, old_dentry,
2288 			new_dir, new_dentry, error);
2289 	if (!error) {
2290 		if (new_inode != NULL)
2291 			nfs_drop_nlink(new_inode);
2292 		/*
2293 		 * The d_move() should be here instead of in an async RPC completion
2294 		 * handler because we need the proper locks to move the dentry.  If
2295 		 * we're interrupted by a signal, the async RPC completion handler
2296 		 * should mark the directories for revalidation.
2297 		 */
2298 		d_move(old_dentry, new_dentry);
2299 		nfs_set_verifier(old_dentry,
2300 					nfs_save_change_attribute(new_dir));
2301 	} else if (error == -ENOENT)
2302 		nfs_dentry_handle_enoent(old_dentry);
2303 
2304 	/* new dentry created? */
2305 	if (dentry)
2306 		dput(dentry);
2307 	return error;
2308 }
2309 EXPORT_SYMBOL_GPL(nfs_rename);
2310 
2311 static DEFINE_SPINLOCK(nfs_access_lru_lock);
2312 static LIST_HEAD(nfs_access_lru_list);
2313 static atomic_long_t nfs_access_nr_entries;
2314 
2315 static unsigned long nfs_access_max_cachesize = 4*1024*1024;
2316 module_param(nfs_access_max_cachesize, ulong, 0644);
2317 MODULE_PARM_DESC(nfs_access_max_cachesize, "NFS access maximum total cache length");
2318 
2319 static void nfs_access_free_entry(struct nfs_access_entry *entry)
2320 {
2321 	put_cred(entry->cred);
2322 	kfree_rcu(entry, rcu_head);
2323 	smp_mb__before_atomic();
2324 	atomic_long_dec(&nfs_access_nr_entries);
2325 	smp_mb__after_atomic();
2326 }
2327 
2328 static void nfs_access_free_list(struct list_head *head)
2329 {
2330 	struct nfs_access_entry *cache;
2331 
2332 	while (!list_empty(head)) {
2333 		cache = list_entry(head->next, struct nfs_access_entry, lru);
2334 		list_del(&cache->lru);
2335 		nfs_access_free_entry(cache);
2336 	}
2337 }
2338 
2339 static unsigned long
2340 nfs_do_access_cache_scan(unsigned int nr_to_scan)
2341 {
2342 	LIST_HEAD(head);
2343 	struct nfs_inode *nfsi, *next;
2344 	struct nfs_access_entry *cache;
2345 	long freed = 0;
2346 
2347 	spin_lock(&nfs_access_lru_lock);
2348 	list_for_each_entry_safe(nfsi, next, &nfs_access_lru_list, access_cache_inode_lru) {
2349 		struct inode *inode;
2350 
2351 		if (nr_to_scan-- == 0)
2352 			break;
2353 		inode = &nfsi->vfs_inode;
2354 		spin_lock(&inode->i_lock);
2355 		if (list_empty(&nfsi->access_cache_entry_lru))
2356 			goto remove_lru_entry;
2357 		cache = list_entry(nfsi->access_cache_entry_lru.next,
2358 				struct nfs_access_entry, lru);
2359 		list_move(&cache->lru, &head);
2360 		rb_erase(&cache->rb_node, &nfsi->access_cache);
2361 		freed++;
2362 		if (!list_empty(&nfsi->access_cache_entry_lru))
2363 			list_move_tail(&nfsi->access_cache_inode_lru,
2364 					&nfs_access_lru_list);
2365 		else {
2366 remove_lru_entry:
2367 			list_del_init(&nfsi->access_cache_inode_lru);
2368 			smp_mb__before_atomic();
2369 			clear_bit(NFS_INO_ACL_LRU_SET, &nfsi->flags);
2370 			smp_mb__after_atomic();
2371 		}
2372 		spin_unlock(&inode->i_lock);
2373 	}
2374 	spin_unlock(&nfs_access_lru_lock);
2375 	nfs_access_free_list(&head);
2376 	return freed;
2377 }
2378 
2379 unsigned long
2380 nfs_access_cache_scan(struct shrinker *shrink, struct shrink_control *sc)
2381 {
2382 	int nr_to_scan = sc->nr_to_scan;
2383 	gfp_t gfp_mask = sc->gfp_mask;
2384 
2385 	if ((gfp_mask & GFP_KERNEL) != GFP_KERNEL)
2386 		return SHRINK_STOP;
2387 	return nfs_do_access_cache_scan(nr_to_scan);
2388 }
2389 
2390 
2391 unsigned long
2392 nfs_access_cache_count(struct shrinker *shrink, struct shrink_control *sc)
2393 {
2394 	return vfs_pressure_ratio(atomic_long_read(&nfs_access_nr_entries));
2395 }
2396 
2397 static void
2398 nfs_access_cache_enforce_limit(void)
2399 {
2400 	long nr_entries = atomic_long_read(&nfs_access_nr_entries);
2401 	unsigned long diff;
2402 	unsigned int nr_to_scan;
2403 
2404 	if (nr_entries < 0 || nr_entries <= nfs_access_max_cachesize)
2405 		return;
2406 	nr_to_scan = 100;
2407 	diff = nr_entries - nfs_access_max_cachesize;
2408 	if (diff < nr_to_scan)
2409 		nr_to_scan = diff;
2410 	nfs_do_access_cache_scan(nr_to_scan);
2411 }
2412 
2413 static void __nfs_access_zap_cache(struct nfs_inode *nfsi, struct list_head *head)
2414 {
2415 	struct rb_root *root_node = &nfsi->access_cache;
2416 	struct rb_node *n;
2417 	struct nfs_access_entry *entry;
2418 
2419 	/* Unhook entries from the cache */
2420 	while ((n = rb_first(root_node)) != NULL) {
2421 		entry = rb_entry(n, struct nfs_access_entry, rb_node);
2422 		rb_erase(n, root_node);
2423 		list_move(&entry->lru, head);
2424 	}
2425 	nfsi->cache_validity &= ~NFS_INO_INVALID_ACCESS;
2426 }
2427 
2428 void nfs_access_zap_cache(struct inode *inode)
2429 {
2430 	LIST_HEAD(head);
2431 
2432 	if (test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags) == 0)
2433 		return;
2434 	/* Remove from global LRU init */
2435 	spin_lock(&nfs_access_lru_lock);
2436 	if (test_and_clear_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
2437 		list_del_init(&NFS_I(inode)->access_cache_inode_lru);
2438 
2439 	spin_lock(&inode->i_lock);
2440 	__nfs_access_zap_cache(NFS_I(inode), &head);
2441 	spin_unlock(&inode->i_lock);
2442 	spin_unlock(&nfs_access_lru_lock);
2443 	nfs_access_free_list(&head);
2444 }
2445 EXPORT_SYMBOL_GPL(nfs_access_zap_cache);
2446 
2447 static struct nfs_access_entry *nfs_access_search_rbtree(struct inode *inode, const struct cred *cred)
2448 {
2449 	struct rb_node *n = NFS_I(inode)->access_cache.rb_node;
2450 
2451 	while (n != NULL) {
2452 		struct nfs_access_entry *entry =
2453 			rb_entry(n, struct nfs_access_entry, rb_node);
2454 		int cmp = cred_fscmp(cred, entry->cred);
2455 
2456 		if (cmp < 0)
2457 			n = n->rb_left;
2458 		else if (cmp > 0)
2459 			n = n->rb_right;
2460 		else
2461 			return entry;
2462 	}
2463 	return NULL;
2464 }
2465 
2466 static int nfs_access_get_cached_locked(struct inode *inode, const struct cred *cred, struct nfs_access_entry *res, bool may_block)
2467 {
2468 	struct nfs_inode *nfsi = NFS_I(inode);
2469 	struct nfs_access_entry *cache;
2470 	bool retry = true;
2471 	int err;
2472 
2473 	spin_lock(&inode->i_lock);
2474 	for(;;) {
2475 		if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
2476 			goto out_zap;
2477 		cache = nfs_access_search_rbtree(inode, cred);
2478 		err = -ENOENT;
2479 		if (cache == NULL)
2480 			goto out;
2481 		/* Found an entry, is our attribute cache valid? */
2482 		if (!nfs_check_cache_invalid(inode, NFS_INO_INVALID_ACCESS))
2483 			break;
2484 		if (!retry)
2485 			break;
2486 		err = -ECHILD;
2487 		if (!may_block)
2488 			goto out;
2489 		spin_unlock(&inode->i_lock);
2490 		err = __nfs_revalidate_inode(NFS_SERVER(inode), inode);
2491 		if (err)
2492 			return err;
2493 		spin_lock(&inode->i_lock);
2494 		retry = false;
2495 	}
2496 	res->cred = cache->cred;
2497 	res->mask = cache->mask;
2498 	list_move_tail(&cache->lru, &nfsi->access_cache_entry_lru);
2499 	err = 0;
2500 out:
2501 	spin_unlock(&inode->i_lock);
2502 	return err;
2503 out_zap:
2504 	spin_unlock(&inode->i_lock);
2505 	nfs_access_zap_cache(inode);
2506 	return -ENOENT;
2507 }
2508 
2509 static int nfs_access_get_cached_rcu(struct inode *inode, const struct cred *cred, struct nfs_access_entry *res)
2510 {
2511 	/* Only check the most recently returned cache entry,
2512 	 * but do it without locking.
2513 	 */
2514 	struct nfs_inode *nfsi = NFS_I(inode);
2515 	struct nfs_access_entry *cache;
2516 	int err = -ECHILD;
2517 	struct list_head *lh;
2518 
2519 	rcu_read_lock();
2520 	if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
2521 		goto out;
2522 	lh = rcu_dereference(list_tail_rcu(&nfsi->access_cache_entry_lru));
2523 	cache = list_entry(lh, struct nfs_access_entry, lru);
2524 	if (lh == &nfsi->access_cache_entry_lru ||
2525 	    cred_fscmp(cred, cache->cred) != 0)
2526 		cache = NULL;
2527 	if (cache == NULL)
2528 		goto out;
2529 	if (nfs_check_cache_invalid(inode, NFS_INO_INVALID_ACCESS))
2530 		goto out;
2531 	res->cred = cache->cred;
2532 	res->mask = cache->mask;
2533 	err = 0;
2534 out:
2535 	rcu_read_unlock();
2536 	return err;
2537 }
2538 
2539 int nfs_access_get_cached(struct inode *inode, const struct cred *cred, struct
2540 nfs_access_entry *res, bool may_block)
2541 {
2542 	int status;
2543 
2544 	status = nfs_access_get_cached_rcu(inode, cred, res);
2545 	if (status != 0)
2546 		status = nfs_access_get_cached_locked(inode, cred, res,
2547 		    may_block);
2548 
2549 	return status;
2550 }
2551 EXPORT_SYMBOL_GPL(nfs_access_get_cached);
2552 
2553 static void nfs_access_add_rbtree(struct inode *inode, struct nfs_access_entry *set)
2554 {
2555 	struct nfs_inode *nfsi = NFS_I(inode);
2556 	struct rb_root *root_node = &nfsi->access_cache;
2557 	struct rb_node **p = &root_node->rb_node;
2558 	struct rb_node *parent = NULL;
2559 	struct nfs_access_entry *entry;
2560 	int cmp;
2561 
2562 	spin_lock(&inode->i_lock);
2563 	while (*p != NULL) {
2564 		parent = *p;
2565 		entry = rb_entry(parent, struct nfs_access_entry, rb_node);
2566 		cmp = cred_fscmp(set->cred, entry->cred);
2567 
2568 		if (cmp < 0)
2569 			p = &parent->rb_left;
2570 		else if (cmp > 0)
2571 			p = &parent->rb_right;
2572 		else
2573 			goto found;
2574 	}
2575 	rb_link_node(&set->rb_node, parent, p);
2576 	rb_insert_color(&set->rb_node, root_node);
2577 	list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
2578 	spin_unlock(&inode->i_lock);
2579 	return;
2580 found:
2581 	rb_replace_node(parent, &set->rb_node, root_node);
2582 	list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
2583 	list_del(&entry->lru);
2584 	spin_unlock(&inode->i_lock);
2585 	nfs_access_free_entry(entry);
2586 }
2587 
2588 void nfs_access_add_cache(struct inode *inode, struct nfs_access_entry *set)
2589 {
2590 	struct nfs_access_entry *cache = kmalloc(sizeof(*cache), GFP_KERNEL);
2591 	if (cache == NULL)
2592 		return;
2593 	RB_CLEAR_NODE(&cache->rb_node);
2594 	cache->cred = get_cred(set->cred);
2595 	cache->mask = set->mask;
2596 
2597 	/* The above field assignments must be visible
2598 	 * before this item appears on the lru.  We cannot easily
2599 	 * use rcu_assign_pointer, so just force the memory barrier.
2600 	 */
2601 	smp_wmb();
2602 	nfs_access_add_rbtree(inode, cache);
2603 
2604 	/* Update accounting */
2605 	smp_mb__before_atomic();
2606 	atomic_long_inc(&nfs_access_nr_entries);
2607 	smp_mb__after_atomic();
2608 
2609 	/* Add inode to global LRU list */
2610 	if (!test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) {
2611 		spin_lock(&nfs_access_lru_lock);
2612 		if (!test_and_set_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
2613 			list_add_tail(&NFS_I(inode)->access_cache_inode_lru,
2614 					&nfs_access_lru_list);
2615 		spin_unlock(&nfs_access_lru_lock);
2616 	}
2617 	nfs_access_cache_enforce_limit();
2618 }
2619 EXPORT_SYMBOL_GPL(nfs_access_add_cache);
2620 
2621 #define NFS_MAY_READ (NFS_ACCESS_READ)
2622 #define NFS_MAY_WRITE (NFS_ACCESS_MODIFY | \
2623 		NFS_ACCESS_EXTEND | \
2624 		NFS_ACCESS_DELETE)
2625 #define NFS_FILE_MAY_WRITE (NFS_ACCESS_MODIFY | \
2626 		NFS_ACCESS_EXTEND)
2627 #define NFS_DIR_MAY_WRITE NFS_MAY_WRITE
2628 #define NFS_MAY_LOOKUP (NFS_ACCESS_LOOKUP)
2629 #define NFS_MAY_EXECUTE (NFS_ACCESS_EXECUTE)
2630 static int
2631 nfs_access_calc_mask(u32 access_result, umode_t umode)
2632 {
2633 	int mask = 0;
2634 
2635 	if (access_result & NFS_MAY_READ)
2636 		mask |= MAY_READ;
2637 	if (S_ISDIR(umode)) {
2638 		if ((access_result & NFS_DIR_MAY_WRITE) == NFS_DIR_MAY_WRITE)
2639 			mask |= MAY_WRITE;
2640 		if ((access_result & NFS_MAY_LOOKUP) == NFS_MAY_LOOKUP)
2641 			mask |= MAY_EXEC;
2642 	} else if (S_ISREG(umode)) {
2643 		if ((access_result & NFS_FILE_MAY_WRITE) == NFS_FILE_MAY_WRITE)
2644 			mask |= MAY_WRITE;
2645 		if ((access_result & NFS_MAY_EXECUTE) == NFS_MAY_EXECUTE)
2646 			mask |= MAY_EXEC;
2647 	} else if (access_result & NFS_MAY_WRITE)
2648 			mask |= MAY_WRITE;
2649 	return mask;
2650 }
2651 
2652 void nfs_access_set_mask(struct nfs_access_entry *entry, u32 access_result)
2653 {
2654 	entry->mask = access_result;
2655 }
2656 EXPORT_SYMBOL_GPL(nfs_access_set_mask);
2657 
2658 static int nfs_do_access(struct inode *inode, const struct cred *cred, int mask)
2659 {
2660 	struct nfs_access_entry cache;
2661 	bool may_block = (mask & MAY_NOT_BLOCK) == 0;
2662 	int cache_mask = -1;
2663 	int status;
2664 
2665 	trace_nfs_access_enter(inode);
2666 
2667 	status = nfs_access_get_cached(inode, cred, &cache, may_block);
2668 	if (status == 0)
2669 		goto out_cached;
2670 
2671 	status = -ECHILD;
2672 	if (!may_block)
2673 		goto out;
2674 
2675 	/*
2676 	 * Determine which access bits we want to ask for...
2677 	 */
2678 	cache.mask = NFS_ACCESS_READ | NFS_ACCESS_MODIFY | NFS_ACCESS_EXTEND;
2679 	if (nfs_server_capable(inode, NFS_CAP_XATTR)) {
2680 		cache.mask |= NFS_ACCESS_XAREAD | NFS_ACCESS_XAWRITE |
2681 		    NFS_ACCESS_XALIST;
2682 	}
2683 	if (S_ISDIR(inode->i_mode))
2684 		cache.mask |= NFS_ACCESS_DELETE | NFS_ACCESS_LOOKUP;
2685 	else
2686 		cache.mask |= NFS_ACCESS_EXECUTE;
2687 	cache.cred = cred;
2688 	status = NFS_PROTO(inode)->access(inode, &cache);
2689 	if (status != 0) {
2690 		if (status == -ESTALE) {
2691 			if (!S_ISDIR(inode->i_mode))
2692 				nfs_set_inode_stale(inode);
2693 			else
2694 				nfs_zap_caches(inode);
2695 		}
2696 		goto out;
2697 	}
2698 	nfs_access_add_cache(inode, &cache);
2699 out_cached:
2700 	cache_mask = nfs_access_calc_mask(cache.mask, inode->i_mode);
2701 	if ((mask & ~cache_mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) != 0)
2702 		status = -EACCES;
2703 out:
2704 	trace_nfs_access_exit(inode, mask, cache_mask, status);
2705 	return status;
2706 }
2707 
2708 static int nfs_open_permission_mask(int openflags)
2709 {
2710 	int mask = 0;
2711 
2712 	if (openflags & __FMODE_EXEC) {
2713 		/* ONLY check exec rights */
2714 		mask = MAY_EXEC;
2715 	} else {
2716 		if ((openflags & O_ACCMODE) != O_WRONLY)
2717 			mask |= MAY_READ;
2718 		if ((openflags & O_ACCMODE) != O_RDONLY)
2719 			mask |= MAY_WRITE;
2720 	}
2721 
2722 	return mask;
2723 }
2724 
2725 int nfs_may_open(struct inode *inode, const struct cred *cred, int openflags)
2726 {
2727 	return nfs_do_access(inode, cred, nfs_open_permission_mask(openflags));
2728 }
2729 EXPORT_SYMBOL_GPL(nfs_may_open);
2730 
2731 static int nfs_execute_ok(struct inode *inode, int mask)
2732 {
2733 	struct nfs_server *server = NFS_SERVER(inode);
2734 	int ret = 0;
2735 
2736 	if (S_ISDIR(inode->i_mode))
2737 		return 0;
2738 	if (nfs_check_cache_invalid(inode, NFS_INO_INVALID_OTHER)) {
2739 		if (mask & MAY_NOT_BLOCK)
2740 			return -ECHILD;
2741 		ret = __nfs_revalidate_inode(server, inode);
2742 	}
2743 	if (ret == 0 && !execute_ok(inode))
2744 		ret = -EACCES;
2745 	return ret;
2746 }
2747 
2748 int nfs_permission(struct inode *inode, int mask)
2749 {
2750 	const struct cred *cred = current_cred();
2751 	int res = 0;
2752 
2753 	nfs_inc_stats(inode, NFSIOS_VFSACCESS);
2754 
2755 	if ((mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
2756 		goto out;
2757 	/* Is this sys_access() ? */
2758 	if (mask & (MAY_ACCESS | MAY_CHDIR))
2759 		goto force_lookup;
2760 
2761 	switch (inode->i_mode & S_IFMT) {
2762 		case S_IFLNK:
2763 			goto out;
2764 		case S_IFREG:
2765 			if ((mask & MAY_OPEN) &&
2766 			   nfs_server_capable(inode, NFS_CAP_ATOMIC_OPEN))
2767 				return 0;
2768 			break;
2769 		case S_IFDIR:
2770 			/*
2771 			 * Optimize away all write operations, since the server
2772 			 * will check permissions when we perform the op.
2773 			 */
2774 			if ((mask & MAY_WRITE) && !(mask & MAY_READ))
2775 				goto out;
2776 	}
2777 
2778 force_lookup:
2779 	if (!NFS_PROTO(inode)->access)
2780 		goto out_notsup;
2781 
2782 	res = nfs_do_access(inode, cred, mask);
2783 out:
2784 	if (!res && (mask & MAY_EXEC))
2785 		res = nfs_execute_ok(inode, mask);
2786 
2787 	dfprintk(VFS, "NFS: permission(%s/%lu), mask=0x%x, res=%d\n",
2788 		inode->i_sb->s_id, inode->i_ino, mask, res);
2789 	return res;
2790 out_notsup:
2791 	if (mask & MAY_NOT_BLOCK)
2792 		return -ECHILD;
2793 
2794 	res = nfs_revalidate_inode(NFS_SERVER(inode), inode);
2795 	if (res == 0)
2796 		res = generic_permission(inode, mask);
2797 	goto out;
2798 }
2799 EXPORT_SYMBOL_GPL(nfs_permission);
2800 
2801 /*
2802  * Local variables:
2803  *  version-control: t
2804  *  kept-new-versions: 5
2805  * End:
2806  */
2807