1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/fs/nfs/dir.c 4 * 5 * Copyright (C) 1992 Rick Sladkey 6 * 7 * nfs directory handling functions 8 * 9 * 10 Apr 1996 Added silly rename for unlink --okir 10 * 28 Sep 1996 Improved directory cache --okir 11 * 23 Aug 1997 Claus Heine claus@momo.math.rwth-aachen.de 12 * Re-implemented silly rename for unlink, newly implemented 13 * silly rename for nfs_rename() following the suggestions 14 * of Olaf Kirch (okir) found in this file. 15 * Following Linus comments on my original hack, this version 16 * depends only on the dcache stuff and doesn't touch the inode 17 * layer (iput() and friends). 18 * 6 Jun 1999 Cache readdir lookups in the page cache. -DaveM 19 */ 20 21 #include <linux/module.h> 22 #include <linux/time.h> 23 #include <linux/errno.h> 24 #include <linux/stat.h> 25 #include <linux/fcntl.h> 26 #include <linux/string.h> 27 #include <linux/kernel.h> 28 #include <linux/slab.h> 29 #include <linux/mm.h> 30 #include <linux/sunrpc/clnt.h> 31 #include <linux/nfs_fs.h> 32 #include <linux/nfs_mount.h> 33 #include <linux/pagemap.h> 34 #include <linux/pagevec.h> 35 #include <linux/namei.h> 36 #include <linux/mount.h> 37 #include <linux/swap.h> 38 #include <linux/sched.h> 39 #include <linux/kmemleak.h> 40 #include <linux/xattr.h> 41 42 #include "delegation.h" 43 #include "iostat.h" 44 #include "internal.h" 45 #include "fscache.h" 46 47 #include "nfstrace.h" 48 49 /* #define NFS_DEBUG_VERBOSE 1 */ 50 51 static int nfs_opendir(struct inode *, struct file *); 52 static int nfs_closedir(struct inode *, struct file *); 53 static int nfs_readdir(struct file *, struct dir_context *); 54 static int nfs_fsync_dir(struct file *, loff_t, loff_t, int); 55 static loff_t nfs_llseek_dir(struct file *, loff_t, int); 56 static void nfs_readdir_clear_array(struct page*); 57 58 const struct file_operations nfs_dir_operations = { 59 .llseek = nfs_llseek_dir, 60 .read = generic_read_dir, 61 .iterate_shared = nfs_readdir, 62 .open = nfs_opendir, 63 .release = nfs_closedir, 64 .fsync = nfs_fsync_dir, 65 }; 66 67 const struct address_space_operations nfs_dir_aops = { 68 .freepage = nfs_readdir_clear_array, 69 }; 70 71 static struct nfs_open_dir_context *alloc_nfs_open_dir_context(struct inode *dir, const struct cred *cred) 72 { 73 struct nfs_inode *nfsi = NFS_I(dir); 74 struct nfs_open_dir_context *ctx; 75 ctx = kmalloc(sizeof(*ctx), GFP_KERNEL); 76 if (ctx != NULL) { 77 ctx->duped = 0; 78 ctx->attr_gencount = nfsi->attr_gencount; 79 ctx->dir_cookie = 0; 80 ctx->dup_cookie = 0; 81 ctx->cred = get_cred(cred); 82 spin_lock(&dir->i_lock); 83 if (list_empty(&nfsi->open_files) && 84 (nfsi->cache_validity & NFS_INO_DATA_INVAL_DEFER)) 85 nfsi->cache_validity |= NFS_INO_INVALID_DATA | 86 NFS_INO_REVAL_FORCED; 87 list_add(&ctx->list, &nfsi->open_files); 88 spin_unlock(&dir->i_lock); 89 return ctx; 90 } 91 return ERR_PTR(-ENOMEM); 92 } 93 94 static void put_nfs_open_dir_context(struct inode *dir, struct nfs_open_dir_context *ctx) 95 { 96 spin_lock(&dir->i_lock); 97 list_del(&ctx->list); 98 spin_unlock(&dir->i_lock); 99 put_cred(ctx->cred); 100 kfree(ctx); 101 } 102 103 /* 104 * Open file 105 */ 106 static int 107 nfs_opendir(struct inode *inode, struct file *filp) 108 { 109 int res = 0; 110 struct nfs_open_dir_context *ctx; 111 112 dfprintk(FILE, "NFS: open dir(%pD2)\n", filp); 113 114 nfs_inc_stats(inode, NFSIOS_VFSOPEN); 115 116 ctx = alloc_nfs_open_dir_context(inode, current_cred()); 117 if (IS_ERR(ctx)) { 118 res = PTR_ERR(ctx); 119 goto out; 120 } 121 filp->private_data = ctx; 122 out: 123 return res; 124 } 125 126 static int 127 nfs_closedir(struct inode *inode, struct file *filp) 128 { 129 put_nfs_open_dir_context(file_inode(filp), filp->private_data); 130 return 0; 131 } 132 133 struct nfs_cache_array_entry { 134 u64 cookie; 135 u64 ino; 136 struct qstr string; 137 unsigned char d_type; 138 }; 139 140 struct nfs_cache_array { 141 int size; 142 int eof_index; 143 u64 last_cookie; 144 struct nfs_cache_array_entry array[]; 145 }; 146 147 typedef struct { 148 struct file *file; 149 struct page *page; 150 struct dir_context *ctx; 151 unsigned long page_index; 152 u64 *dir_cookie; 153 u64 last_cookie; 154 loff_t current_index; 155 loff_t prev_index; 156 157 unsigned long dir_verifier; 158 unsigned long timestamp; 159 unsigned long gencount; 160 unsigned int cache_entry_index; 161 bool plus; 162 bool eof; 163 } nfs_readdir_descriptor_t; 164 165 static 166 void nfs_readdir_init_array(struct page *page) 167 { 168 struct nfs_cache_array *array; 169 170 array = kmap_atomic(page); 171 memset(array, 0, sizeof(struct nfs_cache_array)); 172 array->eof_index = -1; 173 kunmap_atomic(array); 174 } 175 176 /* 177 * we are freeing strings created by nfs_add_to_readdir_array() 178 */ 179 static 180 void nfs_readdir_clear_array(struct page *page) 181 { 182 struct nfs_cache_array *array; 183 int i; 184 185 array = kmap_atomic(page); 186 for (i = 0; i < array->size; i++) 187 kfree(array->array[i].string.name); 188 array->size = 0; 189 kunmap_atomic(array); 190 } 191 192 /* 193 * the caller is responsible for freeing qstr.name 194 * when called by nfs_readdir_add_to_array, the strings will be freed in 195 * nfs_clear_readdir_array() 196 */ 197 static 198 int nfs_readdir_make_qstr(struct qstr *string, const char *name, unsigned int len) 199 { 200 string->len = len; 201 string->name = kmemdup_nul(name, len, GFP_KERNEL); 202 if (string->name == NULL) 203 return -ENOMEM; 204 /* 205 * Avoid a kmemleak false positive. The pointer to the name is stored 206 * in a page cache page which kmemleak does not scan. 207 */ 208 kmemleak_not_leak(string->name); 209 string->hash = full_name_hash(NULL, name, len); 210 return 0; 211 } 212 213 static 214 int nfs_readdir_add_to_array(struct nfs_entry *entry, struct page *page) 215 { 216 struct nfs_cache_array *array = kmap(page); 217 struct nfs_cache_array_entry *cache_entry; 218 int ret; 219 220 cache_entry = &array->array[array->size]; 221 222 /* Check that this entry lies within the page bounds */ 223 ret = -ENOSPC; 224 if ((char *)&cache_entry[1] - (char *)page_address(page) > PAGE_SIZE) 225 goto out; 226 227 cache_entry->cookie = entry->prev_cookie; 228 cache_entry->ino = entry->ino; 229 cache_entry->d_type = entry->d_type; 230 ret = nfs_readdir_make_qstr(&cache_entry->string, entry->name, entry->len); 231 if (ret) 232 goto out; 233 array->last_cookie = entry->cookie; 234 array->size++; 235 if (entry->eof != 0) 236 array->eof_index = array->size; 237 out: 238 kunmap(page); 239 return ret; 240 } 241 242 static inline 243 int is_32bit_api(void) 244 { 245 #ifdef CONFIG_COMPAT 246 return in_compat_syscall(); 247 #else 248 return (BITS_PER_LONG == 32); 249 #endif 250 } 251 252 static 253 bool nfs_readdir_use_cookie(const struct file *filp) 254 { 255 if ((filp->f_mode & FMODE_32BITHASH) || 256 (!(filp->f_mode & FMODE_64BITHASH) && is_32bit_api())) 257 return false; 258 return true; 259 } 260 261 static 262 int nfs_readdir_search_for_pos(struct nfs_cache_array *array, nfs_readdir_descriptor_t *desc) 263 { 264 loff_t diff = desc->ctx->pos - desc->current_index; 265 unsigned int index; 266 267 if (diff < 0) 268 goto out_eof; 269 if (diff >= array->size) { 270 if (array->eof_index >= 0) 271 goto out_eof; 272 return -EAGAIN; 273 } 274 275 index = (unsigned int)diff; 276 *desc->dir_cookie = array->array[index].cookie; 277 desc->cache_entry_index = index; 278 return 0; 279 out_eof: 280 desc->eof = true; 281 return -EBADCOOKIE; 282 } 283 284 static bool 285 nfs_readdir_inode_mapping_valid(struct nfs_inode *nfsi) 286 { 287 if (nfsi->cache_validity & (NFS_INO_INVALID_ATTR|NFS_INO_INVALID_DATA)) 288 return false; 289 smp_rmb(); 290 return !test_bit(NFS_INO_INVALIDATING, &nfsi->flags); 291 } 292 293 static 294 int nfs_readdir_search_for_cookie(struct nfs_cache_array *array, nfs_readdir_descriptor_t *desc) 295 { 296 int i; 297 loff_t new_pos; 298 int status = -EAGAIN; 299 300 for (i = 0; i < array->size; i++) { 301 if (array->array[i].cookie == *desc->dir_cookie) { 302 struct nfs_inode *nfsi = NFS_I(file_inode(desc->file)); 303 struct nfs_open_dir_context *ctx = desc->file->private_data; 304 305 new_pos = desc->current_index + i; 306 if (ctx->attr_gencount != nfsi->attr_gencount || 307 !nfs_readdir_inode_mapping_valid(nfsi)) { 308 ctx->duped = 0; 309 ctx->attr_gencount = nfsi->attr_gencount; 310 } else if (new_pos < desc->prev_index) { 311 if (ctx->duped > 0 312 && ctx->dup_cookie == *desc->dir_cookie) { 313 if (printk_ratelimit()) { 314 pr_notice("NFS: directory %pD2 contains a readdir loop." 315 "Please contact your server vendor. " 316 "The file: %.*s has duplicate cookie %llu\n", 317 desc->file, array->array[i].string.len, 318 array->array[i].string.name, *desc->dir_cookie); 319 } 320 status = -ELOOP; 321 goto out; 322 } 323 ctx->dup_cookie = *desc->dir_cookie; 324 ctx->duped = -1; 325 } 326 if (nfs_readdir_use_cookie(desc->file)) 327 desc->ctx->pos = *desc->dir_cookie; 328 else 329 desc->ctx->pos = new_pos; 330 desc->prev_index = new_pos; 331 desc->cache_entry_index = i; 332 return 0; 333 } 334 } 335 if (array->eof_index >= 0) { 336 status = -EBADCOOKIE; 337 if (*desc->dir_cookie == array->last_cookie) 338 desc->eof = true; 339 } 340 out: 341 return status; 342 } 343 344 static 345 int nfs_readdir_search_array(nfs_readdir_descriptor_t *desc) 346 { 347 struct nfs_cache_array *array; 348 int status; 349 350 array = kmap(desc->page); 351 352 if (*desc->dir_cookie == 0) 353 status = nfs_readdir_search_for_pos(array, desc); 354 else 355 status = nfs_readdir_search_for_cookie(array, desc); 356 357 if (status == -EAGAIN) { 358 desc->last_cookie = array->last_cookie; 359 desc->current_index += array->size; 360 desc->page_index++; 361 } 362 kunmap(desc->page); 363 return status; 364 } 365 366 /* Fill a page with xdr information before transferring to the cache page */ 367 static 368 int nfs_readdir_xdr_filler(struct page **pages, nfs_readdir_descriptor_t *desc, 369 struct nfs_entry *entry, struct file *file, struct inode *inode) 370 { 371 struct nfs_open_dir_context *ctx = file->private_data; 372 const struct cred *cred = ctx->cred; 373 unsigned long timestamp, gencount; 374 int error; 375 376 again: 377 timestamp = jiffies; 378 gencount = nfs_inc_attr_generation_counter(); 379 desc->dir_verifier = nfs_save_change_attribute(inode); 380 error = NFS_PROTO(inode)->readdir(file_dentry(file), cred, entry->cookie, pages, 381 NFS_SERVER(inode)->dtsize, desc->plus); 382 if (error < 0) { 383 /* We requested READDIRPLUS, but the server doesn't grok it */ 384 if (error == -ENOTSUPP && desc->plus) { 385 NFS_SERVER(inode)->caps &= ~NFS_CAP_READDIRPLUS; 386 clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags); 387 desc->plus = false; 388 goto again; 389 } 390 goto error; 391 } 392 desc->timestamp = timestamp; 393 desc->gencount = gencount; 394 error: 395 return error; 396 } 397 398 static int xdr_decode(nfs_readdir_descriptor_t *desc, 399 struct nfs_entry *entry, struct xdr_stream *xdr) 400 { 401 struct inode *inode = file_inode(desc->file); 402 int error; 403 404 error = NFS_PROTO(inode)->decode_dirent(xdr, entry, desc->plus); 405 if (error) 406 return error; 407 entry->fattr->time_start = desc->timestamp; 408 entry->fattr->gencount = desc->gencount; 409 return 0; 410 } 411 412 /* Match file and dirent using either filehandle or fileid 413 * Note: caller is responsible for checking the fsid 414 */ 415 static 416 int nfs_same_file(struct dentry *dentry, struct nfs_entry *entry) 417 { 418 struct inode *inode; 419 struct nfs_inode *nfsi; 420 421 if (d_really_is_negative(dentry)) 422 return 0; 423 424 inode = d_inode(dentry); 425 if (is_bad_inode(inode) || NFS_STALE(inode)) 426 return 0; 427 428 nfsi = NFS_I(inode); 429 if (entry->fattr->fileid != nfsi->fileid) 430 return 0; 431 if (entry->fh->size && nfs_compare_fh(entry->fh, &nfsi->fh) != 0) 432 return 0; 433 return 1; 434 } 435 436 static 437 bool nfs_use_readdirplus(struct inode *dir, struct dir_context *ctx) 438 { 439 if (!nfs_server_capable(dir, NFS_CAP_READDIRPLUS)) 440 return false; 441 if (test_and_clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(dir)->flags)) 442 return true; 443 if (ctx->pos == 0) 444 return true; 445 return false; 446 } 447 448 /* 449 * This function is called by the lookup and getattr code to request the 450 * use of readdirplus to accelerate any future lookups in the same 451 * directory. 452 */ 453 void nfs_advise_use_readdirplus(struct inode *dir) 454 { 455 struct nfs_inode *nfsi = NFS_I(dir); 456 457 if (nfs_server_capable(dir, NFS_CAP_READDIRPLUS) && 458 !list_empty(&nfsi->open_files)) 459 set_bit(NFS_INO_ADVISE_RDPLUS, &nfsi->flags); 460 } 461 462 /* 463 * This function is mainly for use by nfs_getattr(). 464 * 465 * If this is an 'ls -l', we want to force use of readdirplus. 466 * Do this by checking if there is an active file descriptor 467 * and calling nfs_advise_use_readdirplus, then forcing a 468 * cache flush. 469 */ 470 void nfs_force_use_readdirplus(struct inode *dir) 471 { 472 struct nfs_inode *nfsi = NFS_I(dir); 473 474 if (nfs_server_capable(dir, NFS_CAP_READDIRPLUS) && 475 !list_empty(&nfsi->open_files)) { 476 set_bit(NFS_INO_ADVISE_RDPLUS, &nfsi->flags); 477 invalidate_mapping_pages(dir->i_mapping, 478 nfsi->page_index + 1, -1); 479 } 480 } 481 482 static 483 void nfs_prime_dcache(struct dentry *parent, struct nfs_entry *entry, 484 unsigned long dir_verifier) 485 { 486 struct qstr filename = QSTR_INIT(entry->name, entry->len); 487 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq); 488 struct dentry *dentry; 489 struct dentry *alias; 490 struct inode *inode; 491 int status; 492 493 if (!(entry->fattr->valid & NFS_ATTR_FATTR_FILEID)) 494 return; 495 if (!(entry->fattr->valid & NFS_ATTR_FATTR_FSID)) 496 return; 497 if (filename.len == 0) 498 return; 499 /* Validate that the name doesn't contain any illegal '\0' */ 500 if (strnlen(filename.name, filename.len) != filename.len) 501 return; 502 /* ...or '/' */ 503 if (strnchr(filename.name, filename.len, '/')) 504 return; 505 if (filename.name[0] == '.') { 506 if (filename.len == 1) 507 return; 508 if (filename.len == 2 && filename.name[1] == '.') 509 return; 510 } 511 filename.hash = full_name_hash(parent, filename.name, filename.len); 512 513 dentry = d_lookup(parent, &filename); 514 again: 515 if (!dentry) { 516 dentry = d_alloc_parallel(parent, &filename, &wq); 517 if (IS_ERR(dentry)) 518 return; 519 } 520 if (!d_in_lookup(dentry)) { 521 /* Is there a mountpoint here? If so, just exit */ 522 if (!nfs_fsid_equal(&NFS_SB(dentry->d_sb)->fsid, 523 &entry->fattr->fsid)) 524 goto out; 525 if (nfs_same_file(dentry, entry)) { 526 if (!entry->fh->size) 527 goto out; 528 nfs_set_verifier(dentry, dir_verifier); 529 status = nfs_refresh_inode(d_inode(dentry), entry->fattr); 530 if (!status) 531 nfs_setsecurity(d_inode(dentry), entry->fattr, entry->label); 532 goto out; 533 } else { 534 d_invalidate(dentry); 535 dput(dentry); 536 dentry = NULL; 537 goto again; 538 } 539 } 540 if (!entry->fh->size) { 541 d_lookup_done(dentry); 542 goto out; 543 } 544 545 inode = nfs_fhget(dentry->d_sb, entry->fh, entry->fattr, entry->label); 546 alias = d_splice_alias(inode, dentry); 547 d_lookup_done(dentry); 548 if (alias) { 549 if (IS_ERR(alias)) 550 goto out; 551 dput(dentry); 552 dentry = alias; 553 } 554 nfs_set_verifier(dentry, dir_verifier); 555 out: 556 dput(dentry); 557 } 558 559 /* Perform conversion from xdr to cache array */ 560 static 561 int nfs_readdir_page_filler(nfs_readdir_descriptor_t *desc, struct nfs_entry *entry, 562 struct page **xdr_pages, struct page *page, unsigned int buflen) 563 { 564 struct xdr_stream stream; 565 struct xdr_buf buf; 566 struct page *scratch; 567 struct nfs_cache_array *array; 568 unsigned int count = 0; 569 int status; 570 571 scratch = alloc_page(GFP_KERNEL); 572 if (scratch == NULL) 573 return -ENOMEM; 574 575 if (buflen == 0) 576 goto out_nopages; 577 578 xdr_init_decode_pages(&stream, &buf, xdr_pages, buflen); 579 xdr_set_scratch_buffer(&stream, page_address(scratch), PAGE_SIZE); 580 581 do { 582 if (entry->label) 583 entry->label->len = NFS4_MAXLABELLEN; 584 585 status = xdr_decode(desc, entry, &stream); 586 if (status != 0) { 587 if (status == -EAGAIN) 588 status = 0; 589 break; 590 } 591 592 count++; 593 594 if (desc->plus) 595 nfs_prime_dcache(file_dentry(desc->file), entry, 596 desc->dir_verifier); 597 598 status = nfs_readdir_add_to_array(entry, page); 599 if (status != 0) 600 break; 601 } while (!entry->eof); 602 603 out_nopages: 604 if (count == 0 || (status == -EBADCOOKIE && entry->eof != 0)) { 605 array = kmap(page); 606 array->eof_index = array->size; 607 status = 0; 608 kunmap(page); 609 } 610 611 put_page(scratch); 612 return status; 613 } 614 615 static 616 void nfs_readdir_free_pages(struct page **pages, unsigned int npages) 617 { 618 unsigned int i; 619 for (i = 0; i < npages; i++) 620 put_page(pages[i]); 621 } 622 623 /* 624 * nfs_readdir_alloc_pages() will allocate pages that must be freed with a call 625 * to nfs_readdir_free_pages() 626 */ 627 static 628 int nfs_readdir_alloc_pages(struct page **pages, unsigned int npages) 629 { 630 unsigned int i; 631 632 for (i = 0; i < npages; i++) { 633 struct page *page = alloc_page(GFP_KERNEL); 634 if (page == NULL) 635 goto out_freepages; 636 pages[i] = page; 637 } 638 return 0; 639 640 out_freepages: 641 nfs_readdir_free_pages(pages, i); 642 return -ENOMEM; 643 } 644 645 static 646 int nfs_readdir_xdr_to_array(nfs_readdir_descriptor_t *desc, struct page *page, struct inode *inode) 647 { 648 struct page *pages[NFS_MAX_READDIR_PAGES]; 649 struct nfs_entry entry; 650 struct file *file = desc->file; 651 struct nfs_cache_array *array; 652 int status = -ENOMEM; 653 unsigned int array_size = ARRAY_SIZE(pages); 654 655 nfs_readdir_init_array(page); 656 657 entry.prev_cookie = 0; 658 entry.cookie = desc->last_cookie; 659 entry.eof = 0; 660 entry.fh = nfs_alloc_fhandle(); 661 entry.fattr = nfs_alloc_fattr(); 662 entry.server = NFS_SERVER(inode); 663 if (entry.fh == NULL || entry.fattr == NULL) 664 goto out; 665 666 entry.label = nfs4_label_alloc(NFS_SERVER(inode), GFP_NOWAIT); 667 if (IS_ERR(entry.label)) { 668 status = PTR_ERR(entry.label); 669 goto out; 670 } 671 672 array = kmap(page); 673 674 status = nfs_readdir_alloc_pages(pages, array_size); 675 if (status < 0) 676 goto out_release_array; 677 do { 678 unsigned int pglen; 679 status = nfs_readdir_xdr_filler(pages, desc, &entry, file, inode); 680 681 if (status < 0) 682 break; 683 pglen = status; 684 status = nfs_readdir_page_filler(desc, &entry, pages, page, pglen); 685 if (status < 0) { 686 if (status == -ENOSPC) 687 status = 0; 688 break; 689 } 690 } while (array->eof_index < 0); 691 692 nfs_readdir_free_pages(pages, array_size); 693 out_release_array: 694 kunmap(page); 695 nfs4_label_free(entry.label); 696 out: 697 nfs_free_fattr(entry.fattr); 698 nfs_free_fhandle(entry.fh); 699 return status; 700 } 701 702 /* 703 * Now we cache directories properly, by converting xdr information 704 * to an array that can be used for lookups later. This results in 705 * fewer cache pages, since we can store more information on each page. 706 * We only need to convert from xdr once so future lookups are much simpler 707 */ 708 static 709 int nfs_readdir_filler(void *data, struct page* page) 710 { 711 nfs_readdir_descriptor_t *desc = data; 712 struct inode *inode = file_inode(desc->file); 713 int ret; 714 715 ret = nfs_readdir_xdr_to_array(desc, page, inode); 716 if (ret < 0) 717 goto error; 718 SetPageUptodate(page); 719 720 if (invalidate_inode_pages2_range(inode->i_mapping, page->index + 1, -1) < 0) { 721 /* Should never happen */ 722 nfs_zap_mapping(inode, inode->i_mapping); 723 } 724 unlock_page(page); 725 return 0; 726 error: 727 nfs_readdir_clear_array(page); 728 unlock_page(page); 729 return ret; 730 } 731 732 static 733 void cache_page_release(nfs_readdir_descriptor_t *desc) 734 { 735 put_page(desc->page); 736 desc->page = NULL; 737 } 738 739 static 740 struct page *get_cache_page(nfs_readdir_descriptor_t *desc) 741 { 742 return read_cache_page(desc->file->f_mapping, desc->page_index, 743 nfs_readdir_filler, desc); 744 } 745 746 /* 747 * Returns 0 if desc->dir_cookie was found on page desc->page_index 748 * and locks the page to prevent removal from the page cache. 749 */ 750 static 751 int find_and_lock_cache_page(nfs_readdir_descriptor_t *desc) 752 { 753 struct inode *inode = file_inode(desc->file); 754 struct nfs_inode *nfsi = NFS_I(inode); 755 int res; 756 757 desc->page = get_cache_page(desc); 758 if (IS_ERR(desc->page)) 759 return PTR_ERR(desc->page); 760 res = lock_page_killable(desc->page); 761 if (res != 0) 762 goto error; 763 res = -EAGAIN; 764 if (desc->page->mapping != NULL) { 765 res = nfs_readdir_search_array(desc); 766 if (res == 0) { 767 nfsi->page_index = desc->page_index; 768 return 0; 769 } 770 } 771 unlock_page(desc->page); 772 error: 773 cache_page_release(desc); 774 return res; 775 } 776 777 /* Search for desc->dir_cookie from the beginning of the page cache */ 778 static inline 779 int readdir_search_pagecache(nfs_readdir_descriptor_t *desc) 780 { 781 int res; 782 783 if (desc->page_index == 0) { 784 desc->current_index = 0; 785 desc->prev_index = 0; 786 desc->last_cookie = 0; 787 } 788 do { 789 res = find_and_lock_cache_page(desc); 790 } while (res == -EAGAIN); 791 return res; 792 } 793 794 /* 795 * Once we've found the start of the dirent within a page: fill 'er up... 796 */ 797 static 798 int nfs_do_filldir(nfs_readdir_descriptor_t *desc) 799 { 800 struct file *file = desc->file; 801 int i = 0; 802 int res = 0; 803 struct nfs_cache_array *array = NULL; 804 struct nfs_open_dir_context *ctx = file->private_data; 805 806 array = kmap(desc->page); 807 for (i = desc->cache_entry_index; i < array->size; i++) { 808 struct nfs_cache_array_entry *ent; 809 810 ent = &array->array[i]; 811 if (!dir_emit(desc->ctx, ent->string.name, ent->string.len, 812 nfs_compat_user_ino64(ent->ino), ent->d_type)) { 813 desc->eof = true; 814 break; 815 } 816 if (i < (array->size-1)) 817 *desc->dir_cookie = array->array[i+1].cookie; 818 else 819 *desc->dir_cookie = array->last_cookie; 820 if (nfs_readdir_use_cookie(file)) 821 desc->ctx->pos = *desc->dir_cookie; 822 else 823 desc->ctx->pos++; 824 if (ctx->duped != 0) 825 ctx->duped = 1; 826 } 827 if (array->eof_index >= 0) 828 desc->eof = true; 829 830 kunmap(desc->page); 831 dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling ended @ cookie %Lu; returning = %d\n", 832 (unsigned long long)*desc->dir_cookie, res); 833 return res; 834 } 835 836 /* 837 * If we cannot find a cookie in our cache, we suspect that this is 838 * because it points to a deleted file, so we ask the server to return 839 * whatever it thinks is the next entry. We then feed this to filldir. 840 * If all goes well, we should then be able to find our way round the 841 * cache on the next call to readdir_search_pagecache(); 842 * 843 * NOTE: we cannot add the anonymous page to the pagecache because 844 * the data it contains might not be page aligned. Besides, 845 * we should already have a complete representation of the 846 * directory in the page cache by the time we get here. 847 */ 848 static inline 849 int uncached_readdir(nfs_readdir_descriptor_t *desc) 850 { 851 struct page *page = NULL; 852 int status; 853 struct inode *inode = file_inode(desc->file); 854 struct nfs_open_dir_context *ctx = desc->file->private_data; 855 856 dfprintk(DIRCACHE, "NFS: uncached_readdir() searching for cookie %Lu\n", 857 (unsigned long long)*desc->dir_cookie); 858 859 page = alloc_page(GFP_HIGHUSER); 860 if (!page) { 861 status = -ENOMEM; 862 goto out; 863 } 864 865 desc->page_index = 0; 866 desc->last_cookie = *desc->dir_cookie; 867 desc->page = page; 868 ctx->duped = 0; 869 870 status = nfs_readdir_xdr_to_array(desc, page, inode); 871 if (status < 0) 872 goto out_release; 873 874 status = nfs_do_filldir(desc); 875 876 out_release: 877 nfs_readdir_clear_array(desc->page); 878 cache_page_release(desc); 879 out: 880 dfprintk(DIRCACHE, "NFS: %s: returns %d\n", 881 __func__, status); 882 return status; 883 } 884 885 /* The file offset position represents the dirent entry number. A 886 last cookie cache takes care of the common case of reading the 887 whole directory. 888 */ 889 static int nfs_readdir(struct file *file, struct dir_context *ctx) 890 { 891 struct dentry *dentry = file_dentry(file); 892 struct inode *inode = d_inode(dentry); 893 struct nfs_open_dir_context *dir_ctx = file->private_data; 894 nfs_readdir_descriptor_t my_desc = { 895 .file = file, 896 .ctx = ctx, 897 .dir_cookie = &dir_ctx->dir_cookie, 898 .plus = nfs_use_readdirplus(inode, ctx), 899 }, 900 *desc = &my_desc; 901 int res = 0; 902 903 dfprintk(FILE, "NFS: readdir(%pD2) starting at cookie %llu\n", 904 file, (long long)ctx->pos); 905 nfs_inc_stats(inode, NFSIOS_VFSGETDENTS); 906 907 /* 908 * ctx->pos points to the dirent entry number. 909 * *desc->dir_cookie has the cookie for the next entry. We have 910 * to either find the entry with the appropriate number or 911 * revalidate the cookie. 912 */ 913 if (ctx->pos == 0 || nfs_attribute_cache_expired(inode)) 914 res = nfs_revalidate_mapping(inode, file->f_mapping); 915 if (res < 0) 916 goto out; 917 918 do { 919 res = readdir_search_pagecache(desc); 920 921 if (res == -EBADCOOKIE) { 922 res = 0; 923 /* This means either end of directory */ 924 if (*desc->dir_cookie && !desc->eof) { 925 /* Or that the server has 'lost' a cookie */ 926 res = uncached_readdir(desc); 927 if (res == 0) 928 continue; 929 } 930 break; 931 } 932 if (res == -ETOOSMALL && desc->plus) { 933 clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags); 934 nfs_zap_caches(inode); 935 desc->page_index = 0; 936 desc->plus = false; 937 desc->eof = false; 938 continue; 939 } 940 if (res < 0) 941 break; 942 943 res = nfs_do_filldir(desc); 944 unlock_page(desc->page); 945 cache_page_release(desc); 946 if (res < 0) 947 break; 948 } while (!desc->eof); 949 out: 950 if (res > 0) 951 res = 0; 952 dfprintk(FILE, "NFS: readdir(%pD2) returns %d\n", file, res); 953 return res; 954 } 955 956 static loff_t nfs_llseek_dir(struct file *filp, loff_t offset, int whence) 957 { 958 struct inode *inode = file_inode(filp); 959 struct nfs_open_dir_context *dir_ctx = filp->private_data; 960 961 dfprintk(FILE, "NFS: llseek dir(%pD2, %lld, %d)\n", 962 filp, offset, whence); 963 964 switch (whence) { 965 default: 966 return -EINVAL; 967 case SEEK_SET: 968 if (offset < 0) 969 return -EINVAL; 970 inode_lock(inode); 971 break; 972 case SEEK_CUR: 973 if (offset == 0) 974 return filp->f_pos; 975 inode_lock(inode); 976 offset += filp->f_pos; 977 if (offset < 0) { 978 inode_unlock(inode); 979 return -EINVAL; 980 } 981 } 982 if (offset != filp->f_pos) { 983 filp->f_pos = offset; 984 if (nfs_readdir_use_cookie(filp)) 985 dir_ctx->dir_cookie = offset; 986 else 987 dir_ctx->dir_cookie = 0; 988 dir_ctx->duped = 0; 989 } 990 inode_unlock(inode); 991 return offset; 992 } 993 994 /* 995 * All directory operations under NFS are synchronous, so fsync() 996 * is a dummy operation. 997 */ 998 static int nfs_fsync_dir(struct file *filp, loff_t start, loff_t end, 999 int datasync) 1000 { 1001 struct inode *inode = file_inode(filp); 1002 1003 dfprintk(FILE, "NFS: fsync dir(%pD2) datasync %d\n", filp, datasync); 1004 1005 inode_lock(inode); 1006 nfs_inc_stats(inode, NFSIOS_VFSFSYNC); 1007 inode_unlock(inode); 1008 return 0; 1009 } 1010 1011 /** 1012 * nfs_force_lookup_revalidate - Mark the directory as having changed 1013 * @dir: pointer to directory inode 1014 * 1015 * This forces the revalidation code in nfs_lookup_revalidate() to do a 1016 * full lookup on all child dentries of 'dir' whenever a change occurs 1017 * on the server that might have invalidated our dcache. 1018 * 1019 * Note that we reserve bit '0' as a tag to let us know when a dentry 1020 * was revalidated while holding a delegation on its inode. 1021 * 1022 * The caller should be holding dir->i_lock 1023 */ 1024 void nfs_force_lookup_revalidate(struct inode *dir) 1025 { 1026 NFS_I(dir)->cache_change_attribute += 2; 1027 } 1028 EXPORT_SYMBOL_GPL(nfs_force_lookup_revalidate); 1029 1030 /** 1031 * nfs_verify_change_attribute - Detects NFS remote directory changes 1032 * @dir: pointer to parent directory inode 1033 * @verf: previously saved change attribute 1034 * 1035 * Return "false" if the verifiers doesn't match the change attribute. 1036 * This would usually indicate that the directory contents have changed on 1037 * the server, and that any dentries need revalidating. 1038 */ 1039 static bool nfs_verify_change_attribute(struct inode *dir, unsigned long verf) 1040 { 1041 return (verf & ~1UL) == nfs_save_change_attribute(dir); 1042 } 1043 1044 static void nfs_set_verifier_delegated(unsigned long *verf) 1045 { 1046 *verf |= 1UL; 1047 } 1048 1049 #if IS_ENABLED(CONFIG_NFS_V4) 1050 static void nfs_unset_verifier_delegated(unsigned long *verf) 1051 { 1052 *verf &= ~1UL; 1053 } 1054 #endif /* IS_ENABLED(CONFIG_NFS_V4) */ 1055 1056 static bool nfs_test_verifier_delegated(unsigned long verf) 1057 { 1058 return verf & 1; 1059 } 1060 1061 static bool nfs_verifier_is_delegated(struct dentry *dentry) 1062 { 1063 return nfs_test_verifier_delegated(dentry->d_time); 1064 } 1065 1066 static void nfs_set_verifier_locked(struct dentry *dentry, unsigned long verf) 1067 { 1068 struct inode *inode = d_inode(dentry); 1069 1070 if (!nfs_verifier_is_delegated(dentry) && 1071 !nfs_verify_change_attribute(d_inode(dentry->d_parent), verf)) 1072 goto out; 1073 if (inode && NFS_PROTO(inode)->have_delegation(inode, FMODE_READ)) 1074 nfs_set_verifier_delegated(&verf); 1075 out: 1076 dentry->d_time = verf; 1077 } 1078 1079 /** 1080 * nfs_set_verifier - save a parent directory verifier in the dentry 1081 * @dentry: pointer to dentry 1082 * @verf: verifier to save 1083 * 1084 * Saves the parent directory verifier in @dentry. If the inode has 1085 * a delegation, we also tag the dentry as having been revalidated 1086 * while holding a delegation so that we know we don't have to 1087 * look it up again after a directory change. 1088 */ 1089 void nfs_set_verifier(struct dentry *dentry, unsigned long verf) 1090 { 1091 1092 spin_lock(&dentry->d_lock); 1093 nfs_set_verifier_locked(dentry, verf); 1094 spin_unlock(&dentry->d_lock); 1095 } 1096 EXPORT_SYMBOL_GPL(nfs_set_verifier); 1097 1098 #if IS_ENABLED(CONFIG_NFS_V4) 1099 /** 1100 * nfs_clear_verifier_delegated - clear the dir verifier delegation tag 1101 * @inode: pointer to inode 1102 * 1103 * Iterates through the dentries in the inode alias list and clears 1104 * the tag used to indicate that the dentry has been revalidated 1105 * while holding a delegation. 1106 * This function is intended for use when the delegation is being 1107 * returned or revoked. 1108 */ 1109 void nfs_clear_verifier_delegated(struct inode *inode) 1110 { 1111 struct dentry *alias; 1112 1113 if (!inode) 1114 return; 1115 spin_lock(&inode->i_lock); 1116 hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) { 1117 spin_lock(&alias->d_lock); 1118 nfs_unset_verifier_delegated(&alias->d_time); 1119 spin_unlock(&alias->d_lock); 1120 } 1121 spin_unlock(&inode->i_lock); 1122 } 1123 EXPORT_SYMBOL_GPL(nfs_clear_verifier_delegated); 1124 #endif /* IS_ENABLED(CONFIG_NFS_V4) */ 1125 1126 /* 1127 * A check for whether or not the parent directory has changed. 1128 * In the case it has, we assume that the dentries are untrustworthy 1129 * and may need to be looked up again. 1130 * If rcu_walk prevents us from performing a full check, return 0. 1131 */ 1132 static int nfs_check_verifier(struct inode *dir, struct dentry *dentry, 1133 int rcu_walk) 1134 { 1135 if (IS_ROOT(dentry)) 1136 return 1; 1137 if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONE) 1138 return 0; 1139 if (!nfs_verify_change_attribute(dir, dentry->d_time)) 1140 return 0; 1141 /* Revalidate nfsi->cache_change_attribute before we declare a match */ 1142 if (nfs_mapping_need_revalidate_inode(dir)) { 1143 if (rcu_walk) 1144 return 0; 1145 if (__nfs_revalidate_inode(NFS_SERVER(dir), dir) < 0) 1146 return 0; 1147 } 1148 if (!nfs_verify_change_attribute(dir, dentry->d_time)) 1149 return 0; 1150 return 1; 1151 } 1152 1153 /* 1154 * Use intent information to check whether or not we're going to do 1155 * an O_EXCL create using this path component. 1156 */ 1157 static int nfs_is_exclusive_create(struct inode *dir, unsigned int flags) 1158 { 1159 if (NFS_PROTO(dir)->version == 2) 1160 return 0; 1161 return flags & LOOKUP_EXCL; 1162 } 1163 1164 /* 1165 * Inode and filehandle revalidation for lookups. 1166 * 1167 * We force revalidation in the cases where the VFS sets LOOKUP_REVAL, 1168 * or if the intent information indicates that we're about to open this 1169 * particular file and the "nocto" mount flag is not set. 1170 * 1171 */ 1172 static 1173 int nfs_lookup_verify_inode(struct inode *inode, unsigned int flags) 1174 { 1175 struct nfs_server *server = NFS_SERVER(inode); 1176 int ret; 1177 1178 if (IS_AUTOMOUNT(inode)) 1179 return 0; 1180 1181 if (flags & LOOKUP_OPEN) { 1182 switch (inode->i_mode & S_IFMT) { 1183 case S_IFREG: 1184 /* A NFSv4 OPEN will revalidate later */ 1185 if (server->caps & NFS_CAP_ATOMIC_OPEN) 1186 goto out; 1187 fallthrough; 1188 case S_IFDIR: 1189 if (server->flags & NFS_MOUNT_NOCTO) 1190 break; 1191 /* NFS close-to-open cache consistency validation */ 1192 goto out_force; 1193 } 1194 } 1195 1196 /* VFS wants an on-the-wire revalidation */ 1197 if (flags & LOOKUP_REVAL) 1198 goto out_force; 1199 out: 1200 return (inode->i_nlink == 0) ? -ESTALE : 0; 1201 out_force: 1202 if (flags & LOOKUP_RCU) 1203 return -ECHILD; 1204 ret = __nfs_revalidate_inode(server, inode); 1205 if (ret != 0) 1206 return ret; 1207 goto out; 1208 } 1209 1210 /* 1211 * We judge how long we want to trust negative 1212 * dentries by looking at the parent inode mtime. 1213 * 1214 * If parent mtime has changed, we revalidate, else we wait for a 1215 * period corresponding to the parent's attribute cache timeout value. 1216 * 1217 * If LOOKUP_RCU prevents us from performing a full check, return 1 1218 * suggesting a reval is needed. 1219 * 1220 * Note that when creating a new file, or looking up a rename target, 1221 * then it shouldn't be necessary to revalidate a negative dentry. 1222 */ 1223 static inline 1224 int nfs_neg_need_reval(struct inode *dir, struct dentry *dentry, 1225 unsigned int flags) 1226 { 1227 if (flags & (LOOKUP_CREATE | LOOKUP_RENAME_TARGET)) 1228 return 0; 1229 if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONEG) 1230 return 1; 1231 return !nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU); 1232 } 1233 1234 static int 1235 nfs_lookup_revalidate_done(struct inode *dir, struct dentry *dentry, 1236 struct inode *inode, int error) 1237 { 1238 switch (error) { 1239 case 1: 1240 dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) is valid\n", 1241 __func__, dentry); 1242 return 1; 1243 case 0: 1244 nfs_mark_for_revalidate(dir); 1245 if (inode && S_ISDIR(inode->i_mode)) { 1246 /* Purge readdir caches. */ 1247 nfs_zap_caches(inode); 1248 /* 1249 * We can't d_drop the root of a disconnected tree: 1250 * its d_hash is on the s_anon list and d_drop() would hide 1251 * it from shrink_dcache_for_unmount(), leading to busy 1252 * inodes on unmount and further oopses. 1253 */ 1254 if (IS_ROOT(dentry)) 1255 return 1; 1256 } 1257 dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) is invalid\n", 1258 __func__, dentry); 1259 return 0; 1260 } 1261 dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) lookup returned error %d\n", 1262 __func__, dentry, error); 1263 return error; 1264 } 1265 1266 static int 1267 nfs_lookup_revalidate_negative(struct inode *dir, struct dentry *dentry, 1268 unsigned int flags) 1269 { 1270 int ret = 1; 1271 if (nfs_neg_need_reval(dir, dentry, flags)) { 1272 if (flags & LOOKUP_RCU) 1273 return -ECHILD; 1274 ret = 0; 1275 } 1276 return nfs_lookup_revalidate_done(dir, dentry, NULL, ret); 1277 } 1278 1279 static int 1280 nfs_lookup_revalidate_delegated(struct inode *dir, struct dentry *dentry, 1281 struct inode *inode) 1282 { 1283 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 1284 return nfs_lookup_revalidate_done(dir, dentry, inode, 1); 1285 } 1286 1287 static int 1288 nfs_lookup_revalidate_dentry(struct inode *dir, struct dentry *dentry, 1289 struct inode *inode) 1290 { 1291 struct nfs_fh *fhandle; 1292 struct nfs_fattr *fattr; 1293 struct nfs4_label *label; 1294 unsigned long dir_verifier; 1295 int ret; 1296 1297 ret = -ENOMEM; 1298 fhandle = nfs_alloc_fhandle(); 1299 fattr = nfs_alloc_fattr(); 1300 label = nfs4_label_alloc(NFS_SERVER(inode), GFP_KERNEL); 1301 if (fhandle == NULL || fattr == NULL || IS_ERR(label)) 1302 goto out; 1303 1304 dir_verifier = nfs_save_change_attribute(dir); 1305 ret = NFS_PROTO(dir)->lookup(dir, dentry, fhandle, fattr, label); 1306 if (ret < 0) { 1307 switch (ret) { 1308 case -ESTALE: 1309 case -ENOENT: 1310 ret = 0; 1311 break; 1312 case -ETIMEDOUT: 1313 if (NFS_SERVER(inode)->flags & NFS_MOUNT_SOFTREVAL) 1314 ret = 1; 1315 } 1316 goto out; 1317 } 1318 ret = 0; 1319 if (nfs_compare_fh(NFS_FH(inode), fhandle)) 1320 goto out; 1321 if (nfs_refresh_inode(inode, fattr) < 0) 1322 goto out; 1323 1324 nfs_setsecurity(inode, fattr, label); 1325 nfs_set_verifier(dentry, dir_verifier); 1326 1327 /* set a readdirplus hint that we had a cache miss */ 1328 nfs_force_use_readdirplus(dir); 1329 ret = 1; 1330 out: 1331 nfs_free_fattr(fattr); 1332 nfs_free_fhandle(fhandle); 1333 nfs4_label_free(label); 1334 return nfs_lookup_revalidate_done(dir, dentry, inode, ret); 1335 } 1336 1337 /* 1338 * This is called every time the dcache has a lookup hit, 1339 * and we should check whether we can really trust that 1340 * lookup. 1341 * 1342 * NOTE! The hit can be a negative hit too, don't assume 1343 * we have an inode! 1344 * 1345 * If the parent directory is seen to have changed, we throw out the 1346 * cached dentry and do a new lookup. 1347 */ 1348 static int 1349 nfs_do_lookup_revalidate(struct inode *dir, struct dentry *dentry, 1350 unsigned int flags) 1351 { 1352 struct inode *inode; 1353 int error; 1354 1355 nfs_inc_stats(dir, NFSIOS_DENTRYREVALIDATE); 1356 inode = d_inode(dentry); 1357 1358 if (!inode) 1359 return nfs_lookup_revalidate_negative(dir, dentry, flags); 1360 1361 if (is_bad_inode(inode)) { 1362 dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n", 1363 __func__, dentry); 1364 goto out_bad; 1365 } 1366 1367 if (nfs_verifier_is_delegated(dentry)) 1368 return nfs_lookup_revalidate_delegated(dir, dentry, inode); 1369 1370 /* Force a full look up iff the parent directory has changed */ 1371 if (!(flags & (LOOKUP_EXCL | LOOKUP_REVAL)) && 1372 nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU)) { 1373 error = nfs_lookup_verify_inode(inode, flags); 1374 if (error) { 1375 if (error == -ESTALE) 1376 nfs_zap_caches(dir); 1377 goto out_bad; 1378 } 1379 nfs_advise_use_readdirplus(dir); 1380 goto out_valid; 1381 } 1382 1383 if (flags & LOOKUP_RCU) 1384 return -ECHILD; 1385 1386 if (NFS_STALE(inode)) 1387 goto out_bad; 1388 1389 trace_nfs_lookup_revalidate_enter(dir, dentry, flags); 1390 error = nfs_lookup_revalidate_dentry(dir, dentry, inode); 1391 trace_nfs_lookup_revalidate_exit(dir, dentry, flags, error); 1392 return error; 1393 out_valid: 1394 return nfs_lookup_revalidate_done(dir, dentry, inode, 1); 1395 out_bad: 1396 if (flags & LOOKUP_RCU) 1397 return -ECHILD; 1398 return nfs_lookup_revalidate_done(dir, dentry, inode, 0); 1399 } 1400 1401 static int 1402 __nfs_lookup_revalidate(struct dentry *dentry, unsigned int flags, 1403 int (*reval)(struct inode *, struct dentry *, unsigned int)) 1404 { 1405 struct dentry *parent; 1406 struct inode *dir; 1407 int ret; 1408 1409 if (flags & LOOKUP_RCU) { 1410 parent = READ_ONCE(dentry->d_parent); 1411 dir = d_inode_rcu(parent); 1412 if (!dir) 1413 return -ECHILD; 1414 ret = reval(dir, dentry, flags); 1415 if (parent != READ_ONCE(dentry->d_parent)) 1416 return -ECHILD; 1417 } else { 1418 parent = dget_parent(dentry); 1419 ret = reval(d_inode(parent), dentry, flags); 1420 dput(parent); 1421 } 1422 return ret; 1423 } 1424 1425 static int nfs_lookup_revalidate(struct dentry *dentry, unsigned int flags) 1426 { 1427 return __nfs_lookup_revalidate(dentry, flags, nfs_do_lookup_revalidate); 1428 } 1429 1430 /* 1431 * A weaker form of d_revalidate for revalidating just the d_inode(dentry) 1432 * when we don't really care about the dentry name. This is called when a 1433 * pathwalk ends on a dentry that was not found via a normal lookup in the 1434 * parent dir (e.g.: ".", "..", procfs symlinks or mountpoint traversals). 1435 * 1436 * In this situation, we just want to verify that the inode itself is OK 1437 * since the dentry might have changed on the server. 1438 */ 1439 static int nfs_weak_revalidate(struct dentry *dentry, unsigned int flags) 1440 { 1441 struct inode *inode = d_inode(dentry); 1442 int error = 0; 1443 1444 /* 1445 * I believe we can only get a negative dentry here in the case of a 1446 * procfs-style symlink. Just assume it's correct for now, but we may 1447 * eventually need to do something more here. 1448 */ 1449 if (!inode) { 1450 dfprintk(LOOKUPCACHE, "%s: %pd2 has negative inode\n", 1451 __func__, dentry); 1452 return 1; 1453 } 1454 1455 if (is_bad_inode(inode)) { 1456 dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n", 1457 __func__, dentry); 1458 return 0; 1459 } 1460 1461 error = nfs_lookup_verify_inode(inode, flags); 1462 dfprintk(LOOKUPCACHE, "NFS: %s: inode %lu is %s\n", 1463 __func__, inode->i_ino, error ? "invalid" : "valid"); 1464 return !error; 1465 } 1466 1467 /* 1468 * This is called from dput() when d_count is going to 0. 1469 */ 1470 static int nfs_dentry_delete(const struct dentry *dentry) 1471 { 1472 dfprintk(VFS, "NFS: dentry_delete(%pd2, %x)\n", 1473 dentry, dentry->d_flags); 1474 1475 /* Unhash any dentry with a stale inode */ 1476 if (d_really_is_positive(dentry) && NFS_STALE(d_inode(dentry))) 1477 return 1; 1478 1479 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) { 1480 /* Unhash it, so that ->d_iput() would be called */ 1481 return 1; 1482 } 1483 if (!(dentry->d_sb->s_flags & SB_ACTIVE)) { 1484 /* Unhash it, so that ancestors of killed async unlink 1485 * files will be cleaned up during umount */ 1486 return 1; 1487 } 1488 return 0; 1489 1490 } 1491 1492 /* Ensure that we revalidate inode->i_nlink */ 1493 static void nfs_drop_nlink(struct inode *inode) 1494 { 1495 spin_lock(&inode->i_lock); 1496 /* drop the inode if we're reasonably sure this is the last link */ 1497 if (inode->i_nlink > 0) 1498 drop_nlink(inode); 1499 NFS_I(inode)->attr_gencount = nfs_inc_attr_generation_counter(); 1500 NFS_I(inode)->cache_validity |= NFS_INO_INVALID_CHANGE 1501 | NFS_INO_INVALID_CTIME 1502 | NFS_INO_INVALID_OTHER 1503 | NFS_INO_REVAL_FORCED; 1504 spin_unlock(&inode->i_lock); 1505 } 1506 1507 /* 1508 * Called when the dentry loses inode. 1509 * We use it to clean up silly-renamed files. 1510 */ 1511 static void nfs_dentry_iput(struct dentry *dentry, struct inode *inode) 1512 { 1513 if (S_ISDIR(inode->i_mode)) 1514 /* drop any readdir cache as it could easily be old */ 1515 NFS_I(inode)->cache_validity |= NFS_INO_INVALID_DATA; 1516 1517 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) { 1518 nfs_complete_unlink(dentry, inode); 1519 nfs_drop_nlink(inode); 1520 } 1521 iput(inode); 1522 } 1523 1524 static void nfs_d_release(struct dentry *dentry) 1525 { 1526 /* free cached devname value, if it survived that far */ 1527 if (unlikely(dentry->d_fsdata)) { 1528 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) 1529 WARN_ON(1); 1530 else 1531 kfree(dentry->d_fsdata); 1532 } 1533 } 1534 1535 const struct dentry_operations nfs_dentry_operations = { 1536 .d_revalidate = nfs_lookup_revalidate, 1537 .d_weak_revalidate = nfs_weak_revalidate, 1538 .d_delete = nfs_dentry_delete, 1539 .d_iput = nfs_dentry_iput, 1540 .d_automount = nfs_d_automount, 1541 .d_release = nfs_d_release, 1542 }; 1543 EXPORT_SYMBOL_GPL(nfs_dentry_operations); 1544 1545 struct dentry *nfs_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags) 1546 { 1547 struct dentry *res; 1548 struct inode *inode = NULL; 1549 struct nfs_fh *fhandle = NULL; 1550 struct nfs_fattr *fattr = NULL; 1551 struct nfs4_label *label = NULL; 1552 unsigned long dir_verifier; 1553 int error; 1554 1555 dfprintk(VFS, "NFS: lookup(%pd2)\n", dentry); 1556 nfs_inc_stats(dir, NFSIOS_VFSLOOKUP); 1557 1558 if (unlikely(dentry->d_name.len > NFS_SERVER(dir)->namelen)) 1559 return ERR_PTR(-ENAMETOOLONG); 1560 1561 /* 1562 * If we're doing an exclusive create, optimize away the lookup 1563 * but don't hash the dentry. 1564 */ 1565 if (nfs_is_exclusive_create(dir, flags) || flags & LOOKUP_RENAME_TARGET) 1566 return NULL; 1567 1568 res = ERR_PTR(-ENOMEM); 1569 fhandle = nfs_alloc_fhandle(); 1570 fattr = nfs_alloc_fattr(); 1571 if (fhandle == NULL || fattr == NULL) 1572 goto out; 1573 1574 label = nfs4_label_alloc(NFS_SERVER(dir), GFP_NOWAIT); 1575 if (IS_ERR(label)) 1576 goto out; 1577 1578 dir_verifier = nfs_save_change_attribute(dir); 1579 trace_nfs_lookup_enter(dir, dentry, flags); 1580 error = NFS_PROTO(dir)->lookup(dir, dentry, fhandle, fattr, label); 1581 if (error == -ENOENT) 1582 goto no_entry; 1583 if (error < 0) { 1584 res = ERR_PTR(error); 1585 goto out_label; 1586 } 1587 inode = nfs_fhget(dentry->d_sb, fhandle, fattr, label); 1588 res = ERR_CAST(inode); 1589 if (IS_ERR(res)) 1590 goto out_label; 1591 1592 /* Notify readdir to use READDIRPLUS */ 1593 nfs_force_use_readdirplus(dir); 1594 1595 no_entry: 1596 res = d_splice_alias(inode, dentry); 1597 if (res != NULL) { 1598 if (IS_ERR(res)) 1599 goto out_label; 1600 dentry = res; 1601 } 1602 nfs_set_verifier(dentry, dir_verifier); 1603 out_label: 1604 trace_nfs_lookup_exit(dir, dentry, flags, error); 1605 nfs4_label_free(label); 1606 out: 1607 nfs_free_fattr(fattr); 1608 nfs_free_fhandle(fhandle); 1609 return res; 1610 } 1611 EXPORT_SYMBOL_GPL(nfs_lookup); 1612 1613 #if IS_ENABLED(CONFIG_NFS_V4) 1614 static int nfs4_lookup_revalidate(struct dentry *, unsigned int); 1615 1616 const struct dentry_operations nfs4_dentry_operations = { 1617 .d_revalidate = nfs4_lookup_revalidate, 1618 .d_weak_revalidate = nfs_weak_revalidate, 1619 .d_delete = nfs_dentry_delete, 1620 .d_iput = nfs_dentry_iput, 1621 .d_automount = nfs_d_automount, 1622 .d_release = nfs_d_release, 1623 }; 1624 EXPORT_SYMBOL_GPL(nfs4_dentry_operations); 1625 1626 static fmode_t flags_to_mode(int flags) 1627 { 1628 fmode_t res = (__force fmode_t)flags & FMODE_EXEC; 1629 if ((flags & O_ACCMODE) != O_WRONLY) 1630 res |= FMODE_READ; 1631 if ((flags & O_ACCMODE) != O_RDONLY) 1632 res |= FMODE_WRITE; 1633 return res; 1634 } 1635 1636 static struct nfs_open_context *create_nfs_open_context(struct dentry *dentry, int open_flags, struct file *filp) 1637 { 1638 return alloc_nfs_open_context(dentry, flags_to_mode(open_flags), filp); 1639 } 1640 1641 static int do_open(struct inode *inode, struct file *filp) 1642 { 1643 nfs_fscache_open_file(inode, filp); 1644 return 0; 1645 } 1646 1647 static int nfs_finish_open(struct nfs_open_context *ctx, 1648 struct dentry *dentry, 1649 struct file *file, unsigned open_flags) 1650 { 1651 int err; 1652 1653 err = finish_open(file, dentry, do_open); 1654 if (err) 1655 goto out; 1656 if (S_ISREG(file->f_path.dentry->d_inode->i_mode)) 1657 nfs_file_set_open_context(file, ctx); 1658 else 1659 err = -EOPENSTALE; 1660 out: 1661 return err; 1662 } 1663 1664 int nfs_atomic_open(struct inode *dir, struct dentry *dentry, 1665 struct file *file, unsigned open_flags, 1666 umode_t mode) 1667 { 1668 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq); 1669 struct nfs_open_context *ctx; 1670 struct dentry *res; 1671 struct iattr attr = { .ia_valid = ATTR_OPEN }; 1672 struct inode *inode; 1673 unsigned int lookup_flags = 0; 1674 bool switched = false; 1675 int created = 0; 1676 int err; 1677 1678 /* Expect a negative dentry */ 1679 BUG_ON(d_inode(dentry)); 1680 1681 dfprintk(VFS, "NFS: atomic_open(%s/%lu), %pd\n", 1682 dir->i_sb->s_id, dir->i_ino, dentry); 1683 1684 err = nfs_check_flags(open_flags); 1685 if (err) 1686 return err; 1687 1688 /* NFS only supports OPEN on regular files */ 1689 if ((open_flags & O_DIRECTORY)) { 1690 if (!d_in_lookup(dentry)) { 1691 /* 1692 * Hashed negative dentry with O_DIRECTORY: dentry was 1693 * revalidated and is fine, no need to perform lookup 1694 * again 1695 */ 1696 return -ENOENT; 1697 } 1698 lookup_flags = LOOKUP_OPEN|LOOKUP_DIRECTORY; 1699 goto no_open; 1700 } 1701 1702 if (dentry->d_name.len > NFS_SERVER(dir)->namelen) 1703 return -ENAMETOOLONG; 1704 1705 if (open_flags & O_CREAT) { 1706 struct nfs_server *server = NFS_SERVER(dir); 1707 1708 if (!(server->attr_bitmask[2] & FATTR4_WORD2_MODE_UMASK)) 1709 mode &= ~current_umask(); 1710 1711 attr.ia_valid |= ATTR_MODE; 1712 attr.ia_mode = mode; 1713 } 1714 if (open_flags & O_TRUNC) { 1715 attr.ia_valid |= ATTR_SIZE; 1716 attr.ia_size = 0; 1717 } 1718 1719 if (!(open_flags & O_CREAT) && !d_in_lookup(dentry)) { 1720 d_drop(dentry); 1721 switched = true; 1722 dentry = d_alloc_parallel(dentry->d_parent, 1723 &dentry->d_name, &wq); 1724 if (IS_ERR(dentry)) 1725 return PTR_ERR(dentry); 1726 if (unlikely(!d_in_lookup(dentry))) 1727 return finish_no_open(file, dentry); 1728 } 1729 1730 ctx = create_nfs_open_context(dentry, open_flags, file); 1731 err = PTR_ERR(ctx); 1732 if (IS_ERR(ctx)) 1733 goto out; 1734 1735 trace_nfs_atomic_open_enter(dir, ctx, open_flags); 1736 inode = NFS_PROTO(dir)->open_context(dir, ctx, open_flags, &attr, &created); 1737 if (created) 1738 file->f_mode |= FMODE_CREATED; 1739 if (IS_ERR(inode)) { 1740 err = PTR_ERR(inode); 1741 trace_nfs_atomic_open_exit(dir, ctx, open_flags, err); 1742 put_nfs_open_context(ctx); 1743 d_drop(dentry); 1744 switch (err) { 1745 case -ENOENT: 1746 d_splice_alias(NULL, dentry); 1747 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 1748 break; 1749 case -EISDIR: 1750 case -ENOTDIR: 1751 goto no_open; 1752 case -ELOOP: 1753 if (!(open_flags & O_NOFOLLOW)) 1754 goto no_open; 1755 break; 1756 /* case -EINVAL: */ 1757 default: 1758 break; 1759 } 1760 goto out; 1761 } 1762 1763 err = nfs_finish_open(ctx, ctx->dentry, file, open_flags); 1764 trace_nfs_atomic_open_exit(dir, ctx, open_flags, err); 1765 put_nfs_open_context(ctx); 1766 out: 1767 if (unlikely(switched)) { 1768 d_lookup_done(dentry); 1769 dput(dentry); 1770 } 1771 return err; 1772 1773 no_open: 1774 res = nfs_lookup(dir, dentry, lookup_flags); 1775 if (switched) { 1776 d_lookup_done(dentry); 1777 if (!res) 1778 res = dentry; 1779 else 1780 dput(dentry); 1781 } 1782 if (IS_ERR(res)) 1783 return PTR_ERR(res); 1784 return finish_no_open(file, res); 1785 } 1786 EXPORT_SYMBOL_GPL(nfs_atomic_open); 1787 1788 static int 1789 nfs4_do_lookup_revalidate(struct inode *dir, struct dentry *dentry, 1790 unsigned int flags) 1791 { 1792 struct inode *inode; 1793 1794 if (!(flags & LOOKUP_OPEN) || (flags & LOOKUP_DIRECTORY)) 1795 goto full_reval; 1796 if (d_mountpoint(dentry)) 1797 goto full_reval; 1798 1799 inode = d_inode(dentry); 1800 1801 /* We can't create new files in nfs_open_revalidate(), so we 1802 * optimize away revalidation of negative dentries. 1803 */ 1804 if (inode == NULL) 1805 goto full_reval; 1806 1807 if (nfs_verifier_is_delegated(dentry)) 1808 return nfs_lookup_revalidate_delegated(dir, dentry, inode); 1809 1810 /* NFS only supports OPEN on regular files */ 1811 if (!S_ISREG(inode->i_mode)) 1812 goto full_reval; 1813 1814 /* We cannot do exclusive creation on a positive dentry */ 1815 if (flags & (LOOKUP_EXCL | LOOKUP_REVAL)) 1816 goto reval_dentry; 1817 1818 /* Check if the directory changed */ 1819 if (!nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU)) 1820 goto reval_dentry; 1821 1822 /* Let f_op->open() actually open (and revalidate) the file */ 1823 return 1; 1824 reval_dentry: 1825 if (flags & LOOKUP_RCU) 1826 return -ECHILD; 1827 return nfs_lookup_revalidate_dentry(dir, dentry, inode); 1828 1829 full_reval: 1830 return nfs_do_lookup_revalidate(dir, dentry, flags); 1831 } 1832 1833 static int nfs4_lookup_revalidate(struct dentry *dentry, unsigned int flags) 1834 { 1835 return __nfs_lookup_revalidate(dentry, flags, 1836 nfs4_do_lookup_revalidate); 1837 } 1838 1839 #endif /* CONFIG_NFSV4 */ 1840 1841 struct dentry * 1842 nfs_add_or_obtain(struct dentry *dentry, struct nfs_fh *fhandle, 1843 struct nfs_fattr *fattr, 1844 struct nfs4_label *label) 1845 { 1846 struct dentry *parent = dget_parent(dentry); 1847 struct inode *dir = d_inode(parent); 1848 struct inode *inode; 1849 struct dentry *d; 1850 int error; 1851 1852 d_drop(dentry); 1853 1854 if (fhandle->size == 0) { 1855 error = NFS_PROTO(dir)->lookup(dir, dentry, fhandle, fattr, NULL); 1856 if (error) 1857 goto out_error; 1858 } 1859 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 1860 if (!(fattr->valid & NFS_ATTR_FATTR)) { 1861 struct nfs_server *server = NFS_SB(dentry->d_sb); 1862 error = server->nfs_client->rpc_ops->getattr(server, fhandle, 1863 fattr, NULL, NULL); 1864 if (error < 0) 1865 goto out_error; 1866 } 1867 inode = nfs_fhget(dentry->d_sb, fhandle, fattr, label); 1868 d = d_splice_alias(inode, dentry); 1869 out: 1870 dput(parent); 1871 return d; 1872 out_error: 1873 nfs_mark_for_revalidate(dir); 1874 d = ERR_PTR(error); 1875 goto out; 1876 } 1877 EXPORT_SYMBOL_GPL(nfs_add_or_obtain); 1878 1879 /* 1880 * Code common to create, mkdir, and mknod. 1881 */ 1882 int nfs_instantiate(struct dentry *dentry, struct nfs_fh *fhandle, 1883 struct nfs_fattr *fattr, 1884 struct nfs4_label *label) 1885 { 1886 struct dentry *d; 1887 1888 d = nfs_add_or_obtain(dentry, fhandle, fattr, label); 1889 if (IS_ERR(d)) 1890 return PTR_ERR(d); 1891 1892 /* Callers don't care */ 1893 dput(d); 1894 return 0; 1895 } 1896 EXPORT_SYMBOL_GPL(nfs_instantiate); 1897 1898 /* 1899 * Following a failed create operation, we drop the dentry rather 1900 * than retain a negative dentry. This avoids a problem in the event 1901 * that the operation succeeded on the server, but an error in the 1902 * reply path made it appear to have failed. 1903 */ 1904 int nfs_create(struct inode *dir, struct dentry *dentry, 1905 umode_t mode, bool excl) 1906 { 1907 struct iattr attr; 1908 int open_flags = excl ? O_CREAT | O_EXCL : O_CREAT; 1909 int error; 1910 1911 dfprintk(VFS, "NFS: create(%s/%lu), %pd\n", 1912 dir->i_sb->s_id, dir->i_ino, dentry); 1913 1914 attr.ia_mode = mode; 1915 attr.ia_valid = ATTR_MODE; 1916 1917 trace_nfs_create_enter(dir, dentry, open_flags); 1918 error = NFS_PROTO(dir)->create(dir, dentry, &attr, open_flags); 1919 trace_nfs_create_exit(dir, dentry, open_flags, error); 1920 if (error != 0) 1921 goto out_err; 1922 return 0; 1923 out_err: 1924 d_drop(dentry); 1925 return error; 1926 } 1927 EXPORT_SYMBOL_GPL(nfs_create); 1928 1929 /* 1930 * See comments for nfs_proc_create regarding failed operations. 1931 */ 1932 int 1933 nfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t rdev) 1934 { 1935 struct iattr attr; 1936 int status; 1937 1938 dfprintk(VFS, "NFS: mknod(%s/%lu), %pd\n", 1939 dir->i_sb->s_id, dir->i_ino, dentry); 1940 1941 attr.ia_mode = mode; 1942 attr.ia_valid = ATTR_MODE; 1943 1944 trace_nfs_mknod_enter(dir, dentry); 1945 status = NFS_PROTO(dir)->mknod(dir, dentry, &attr, rdev); 1946 trace_nfs_mknod_exit(dir, dentry, status); 1947 if (status != 0) 1948 goto out_err; 1949 return 0; 1950 out_err: 1951 d_drop(dentry); 1952 return status; 1953 } 1954 EXPORT_SYMBOL_GPL(nfs_mknod); 1955 1956 /* 1957 * See comments for nfs_proc_create regarding failed operations. 1958 */ 1959 int nfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode) 1960 { 1961 struct iattr attr; 1962 int error; 1963 1964 dfprintk(VFS, "NFS: mkdir(%s/%lu), %pd\n", 1965 dir->i_sb->s_id, dir->i_ino, dentry); 1966 1967 attr.ia_valid = ATTR_MODE; 1968 attr.ia_mode = mode | S_IFDIR; 1969 1970 trace_nfs_mkdir_enter(dir, dentry); 1971 error = NFS_PROTO(dir)->mkdir(dir, dentry, &attr); 1972 trace_nfs_mkdir_exit(dir, dentry, error); 1973 if (error != 0) 1974 goto out_err; 1975 return 0; 1976 out_err: 1977 d_drop(dentry); 1978 return error; 1979 } 1980 EXPORT_SYMBOL_GPL(nfs_mkdir); 1981 1982 static void nfs_dentry_handle_enoent(struct dentry *dentry) 1983 { 1984 if (simple_positive(dentry)) 1985 d_delete(dentry); 1986 } 1987 1988 int nfs_rmdir(struct inode *dir, struct dentry *dentry) 1989 { 1990 int error; 1991 1992 dfprintk(VFS, "NFS: rmdir(%s/%lu), %pd\n", 1993 dir->i_sb->s_id, dir->i_ino, dentry); 1994 1995 trace_nfs_rmdir_enter(dir, dentry); 1996 if (d_really_is_positive(dentry)) { 1997 down_write(&NFS_I(d_inode(dentry))->rmdir_sem); 1998 error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name); 1999 /* Ensure the VFS deletes this inode */ 2000 switch (error) { 2001 case 0: 2002 clear_nlink(d_inode(dentry)); 2003 break; 2004 case -ENOENT: 2005 nfs_dentry_handle_enoent(dentry); 2006 } 2007 up_write(&NFS_I(d_inode(dentry))->rmdir_sem); 2008 } else 2009 error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name); 2010 trace_nfs_rmdir_exit(dir, dentry, error); 2011 2012 return error; 2013 } 2014 EXPORT_SYMBOL_GPL(nfs_rmdir); 2015 2016 /* 2017 * Remove a file after making sure there are no pending writes, 2018 * and after checking that the file has only one user. 2019 * 2020 * We invalidate the attribute cache and free the inode prior to the operation 2021 * to avoid possible races if the server reuses the inode. 2022 */ 2023 static int nfs_safe_remove(struct dentry *dentry) 2024 { 2025 struct inode *dir = d_inode(dentry->d_parent); 2026 struct inode *inode = d_inode(dentry); 2027 int error = -EBUSY; 2028 2029 dfprintk(VFS, "NFS: safe_remove(%pd2)\n", dentry); 2030 2031 /* If the dentry was sillyrenamed, we simply call d_delete() */ 2032 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) { 2033 error = 0; 2034 goto out; 2035 } 2036 2037 trace_nfs_remove_enter(dir, dentry); 2038 if (inode != NULL) { 2039 error = NFS_PROTO(dir)->remove(dir, dentry); 2040 if (error == 0) 2041 nfs_drop_nlink(inode); 2042 } else 2043 error = NFS_PROTO(dir)->remove(dir, dentry); 2044 if (error == -ENOENT) 2045 nfs_dentry_handle_enoent(dentry); 2046 trace_nfs_remove_exit(dir, dentry, error); 2047 out: 2048 return error; 2049 } 2050 2051 /* We do silly rename. In case sillyrename() returns -EBUSY, the inode 2052 * belongs to an active ".nfs..." file and we return -EBUSY. 2053 * 2054 * If sillyrename() returns 0, we do nothing, otherwise we unlink. 2055 */ 2056 int nfs_unlink(struct inode *dir, struct dentry *dentry) 2057 { 2058 int error; 2059 int need_rehash = 0; 2060 2061 dfprintk(VFS, "NFS: unlink(%s/%lu, %pd)\n", dir->i_sb->s_id, 2062 dir->i_ino, dentry); 2063 2064 trace_nfs_unlink_enter(dir, dentry); 2065 spin_lock(&dentry->d_lock); 2066 if (d_count(dentry) > 1) { 2067 spin_unlock(&dentry->d_lock); 2068 /* Start asynchronous writeout of the inode */ 2069 write_inode_now(d_inode(dentry), 0); 2070 error = nfs_sillyrename(dir, dentry); 2071 goto out; 2072 } 2073 if (!d_unhashed(dentry)) { 2074 __d_drop(dentry); 2075 need_rehash = 1; 2076 } 2077 spin_unlock(&dentry->d_lock); 2078 error = nfs_safe_remove(dentry); 2079 if (!error || error == -ENOENT) { 2080 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 2081 } else if (need_rehash) 2082 d_rehash(dentry); 2083 out: 2084 trace_nfs_unlink_exit(dir, dentry, error); 2085 return error; 2086 } 2087 EXPORT_SYMBOL_GPL(nfs_unlink); 2088 2089 /* 2090 * To create a symbolic link, most file systems instantiate a new inode, 2091 * add a page to it containing the path, then write it out to the disk 2092 * using prepare_write/commit_write. 2093 * 2094 * Unfortunately the NFS client can't create the in-core inode first 2095 * because it needs a file handle to create an in-core inode (see 2096 * fs/nfs/inode.c:nfs_fhget). We only have a file handle *after* the 2097 * symlink request has completed on the server. 2098 * 2099 * So instead we allocate a raw page, copy the symname into it, then do 2100 * the SYMLINK request with the page as the buffer. If it succeeds, we 2101 * now have a new file handle and can instantiate an in-core NFS inode 2102 * and move the raw page into its mapping. 2103 */ 2104 int nfs_symlink(struct inode *dir, struct dentry *dentry, const char *symname) 2105 { 2106 struct page *page; 2107 char *kaddr; 2108 struct iattr attr; 2109 unsigned int pathlen = strlen(symname); 2110 int error; 2111 2112 dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s)\n", dir->i_sb->s_id, 2113 dir->i_ino, dentry, symname); 2114 2115 if (pathlen > PAGE_SIZE) 2116 return -ENAMETOOLONG; 2117 2118 attr.ia_mode = S_IFLNK | S_IRWXUGO; 2119 attr.ia_valid = ATTR_MODE; 2120 2121 page = alloc_page(GFP_USER); 2122 if (!page) 2123 return -ENOMEM; 2124 2125 kaddr = page_address(page); 2126 memcpy(kaddr, symname, pathlen); 2127 if (pathlen < PAGE_SIZE) 2128 memset(kaddr + pathlen, 0, PAGE_SIZE - pathlen); 2129 2130 trace_nfs_symlink_enter(dir, dentry); 2131 error = NFS_PROTO(dir)->symlink(dir, dentry, page, pathlen, &attr); 2132 trace_nfs_symlink_exit(dir, dentry, error); 2133 if (error != 0) { 2134 dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s) error %d\n", 2135 dir->i_sb->s_id, dir->i_ino, 2136 dentry, symname, error); 2137 d_drop(dentry); 2138 __free_page(page); 2139 return error; 2140 } 2141 2142 /* 2143 * No big deal if we can't add this page to the page cache here. 2144 * READLINK will get the missing page from the server if needed. 2145 */ 2146 if (!add_to_page_cache_lru(page, d_inode(dentry)->i_mapping, 0, 2147 GFP_KERNEL)) { 2148 SetPageUptodate(page); 2149 unlock_page(page); 2150 /* 2151 * add_to_page_cache_lru() grabs an extra page refcount. 2152 * Drop it here to avoid leaking this page later. 2153 */ 2154 put_page(page); 2155 } else 2156 __free_page(page); 2157 2158 return 0; 2159 } 2160 EXPORT_SYMBOL_GPL(nfs_symlink); 2161 2162 int 2163 nfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry) 2164 { 2165 struct inode *inode = d_inode(old_dentry); 2166 int error; 2167 2168 dfprintk(VFS, "NFS: link(%pd2 -> %pd2)\n", 2169 old_dentry, dentry); 2170 2171 trace_nfs_link_enter(inode, dir, dentry); 2172 d_drop(dentry); 2173 error = NFS_PROTO(dir)->link(inode, dir, &dentry->d_name); 2174 if (error == 0) { 2175 ihold(inode); 2176 d_add(dentry, inode); 2177 } 2178 trace_nfs_link_exit(inode, dir, dentry, error); 2179 return error; 2180 } 2181 EXPORT_SYMBOL_GPL(nfs_link); 2182 2183 /* 2184 * RENAME 2185 * FIXME: Some nfsds, like the Linux user space nfsd, may generate a 2186 * different file handle for the same inode after a rename (e.g. when 2187 * moving to a different directory). A fail-safe method to do so would 2188 * be to look up old_dir/old_name, create a link to new_dir/new_name and 2189 * rename the old file using the sillyrename stuff. This way, the original 2190 * file in old_dir will go away when the last process iput()s the inode. 2191 * 2192 * FIXED. 2193 * 2194 * It actually works quite well. One needs to have the possibility for 2195 * at least one ".nfs..." file in each directory the file ever gets 2196 * moved or linked to which happens automagically with the new 2197 * implementation that only depends on the dcache stuff instead of 2198 * using the inode layer 2199 * 2200 * Unfortunately, things are a little more complicated than indicated 2201 * above. For a cross-directory move, we want to make sure we can get 2202 * rid of the old inode after the operation. This means there must be 2203 * no pending writes (if it's a file), and the use count must be 1. 2204 * If these conditions are met, we can drop the dentries before doing 2205 * the rename. 2206 */ 2207 int nfs_rename(struct inode *old_dir, struct dentry *old_dentry, 2208 struct inode *new_dir, struct dentry *new_dentry, 2209 unsigned int flags) 2210 { 2211 struct inode *old_inode = d_inode(old_dentry); 2212 struct inode *new_inode = d_inode(new_dentry); 2213 struct dentry *dentry = NULL, *rehash = NULL; 2214 struct rpc_task *task; 2215 int error = -EBUSY; 2216 2217 if (flags) 2218 return -EINVAL; 2219 2220 dfprintk(VFS, "NFS: rename(%pd2 -> %pd2, ct=%d)\n", 2221 old_dentry, new_dentry, 2222 d_count(new_dentry)); 2223 2224 trace_nfs_rename_enter(old_dir, old_dentry, new_dir, new_dentry); 2225 /* 2226 * For non-directories, check whether the target is busy and if so, 2227 * make a copy of the dentry and then do a silly-rename. If the 2228 * silly-rename succeeds, the copied dentry is hashed and becomes 2229 * the new target. 2230 */ 2231 if (new_inode && !S_ISDIR(new_inode->i_mode)) { 2232 /* 2233 * To prevent any new references to the target during the 2234 * rename, we unhash the dentry in advance. 2235 */ 2236 if (!d_unhashed(new_dentry)) { 2237 d_drop(new_dentry); 2238 rehash = new_dentry; 2239 } 2240 2241 if (d_count(new_dentry) > 2) { 2242 int err; 2243 2244 /* copy the target dentry's name */ 2245 dentry = d_alloc(new_dentry->d_parent, 2246 &new_dentry->d_name); 2247 if (!dentry) 2248 goto out; 2249 2250 /* silly-rename the existing target ... */ 2251 err = nfs_sillyrename(new_dir, new_dentry); 2252 if (err) 2253 goto out; 2254 2255 new_dentry = dentry; 2256 rehash = NULL; 2257 new_inode = NULL; 2258 } 2259 } 2260 2261 task = nfs_async_rename(old_dir, new_dir, old_dentry, new_dentry, NULL); 2262 if (IS_ERR(task)) { 2263 error = PTR_ERR(task); 2264 goto out; 2265 } 2266 2267 error = rpc_wait_for_completion_task(task); 2268 if (error != 0) { 2269 ((struct nfs_renamedata *)task->tk_calldata)->cancelled = 1; 2270 /* Paired with the atomic_dec_and_test() barrier in rpc_do_put_task() */ 2271 smp_wmb(); 2272 } else 2273 error = task->tk_status; 2274 rpc_put_task(task); 2275 /* Ensure the inode attributes are revalidated */ 2276 if (error == 0) { 2277 spin_lock(&old_inode->i_lock); 2278 NFS_I(old_inode)->attr_gencount = nfs_inc_attr_generation_counter(); 2279 NFS_I(old_inode)->cache_validity |= NFS_INO_INVALID_CHANGE 2280 | NFS_INO_INVALID_CTIME 2281 | NFS_INO_REVAL_FORCED; 2282 spin_unlock(&old_inode->i_lock); 2283 } 2284 out: 2285 if (rehash) 2286 d_rehash(rehash); 2287 trace_nfs_rename_exit(old_dir, old_dentry, 2288 new_dir, new_dentry, error); 2289 if (!error) { 2290 if (new_inode != NULL) 2291 nfs_drop_nlink(new_inode); 2292 /* 2293 * The d_move() should be here instead of in an async RPC completion 2294 * handler because we need the proper locks to move the dentry. If 2295 * we're interrupted by a signal, the async RPC completion handler 2296 * should mark the directories for revalidation. 2297 */ 2298 d_move(old_dentry, new_dentry); 2299 nfs_set_verifier(old_dentry, 2300 nfs_save_change_attribute(new_dir)); 2301 } else if (error == -ENOENT) 2302 nfs_dentry_handle_enoent(old_dentry); 2303 2304 /* new dentry created? */ 2305 if (dentry) 2306 dput(dentry); 2307 return error; 2308 } 2309 EXPORT_SYMBOL_GPL(nfs_rename); 2310 2311 static DEFINE_SPINLOCK(nfs_access_lru_lock); 2312 static LIST_HEAD(nfs_access_lru_list); 2313 static atomic_long_t nfs_access_nr_entries; 2314 2315 static unsigned long nfs_access_max_cachesize = 4*1024*1024; 2316 module_param(nfs_access_max_cachesize, ulong, 0644); 2317 MODULE_PARM_DESC(nfs_access_max_cachesize, "NFS access maximum total cache length"); 2318 2319 static void nfs_access_free_entry(struct nfs_access_entry *entry) 2320 { 2321 put_cred(entry->cred); 2322 kfree_rcu(entry, rcu_head); 2323 smp_mb__before_atomic(); 2324 atomic_long_dec(&nfs_access_nr_entries); 2325 smp_mb__after_atomic(); 2326 } 2327 2328 static void nfs_access_free_list(struct list_head *head) 2329 { 2330 struct nfs_access_entry *cache; 2331 2332 while (!list_empty(head)) { 2333 cache = list_entry(head->next, struct nfs_access_entry, lru); 2334 list_del(&cache->lru); 2335 nfs_access_free_entry(cache); 2336 } 2337 } 2338 2339 static unsigned long 2340 nfs_do_access_cache_scan(unsigned int nr_to_scan) 2341 { 2342 LIST_HEAD(head); 2343 struct nfs_inode *nfsi, *next; 2344 struct nfs_access_entry *cache; 2345 long freed = 0; 2346 2347 spin_lock(&nfs_access_lru_lock); 2348 list_for_each_entry_safe(nfsi, next, &nfs_access_lru_list, access_cache_inode_lru) { 2349 struct inode *inode; 2350 2351 if (nr_to_scan-- == 0) 2352 break; 2353 inode = &nfsi->vfs_inode; 2354 spin_lock(&inode->i_lock); 2355 if (list_empty(&nfsi->access_cache_entry_lru)) 2356 goto remove_lru_entry; 2357 cache = list_entry(nfsi->access_cache_entry_lru.next, 2358 struct nfs_access_entry, lru); 2359 list_move(&cache->lru, &head); 2360 rb_erase(&cache->rb_node, &nfsi->access_cache); 2361 freed++; 2362 if (!list_empty(&nfsi->access_cache_entry_lru)) 2363 list_move_tail(&nfsi->access_cache_inode_lru, 2364 &nfs_access_lru_list); 2365 else { 2366 remove_lru_entry: 2367 list_del_init(&nfsi->access_cache_inode_lru); 2368 smp_mb__before_atomic(); 2369 clear_bit(NFS_INO_ACL_LRU_SET, &nfsi->flags); 2370 smp_mb__after_atomic(); 2371 } 2372 spin_unlock(&inode->i_lock); 2373 } 2374 spin_unlock(&nfs_access_lru_lock); 2375 nfs_access_free_list(&head); 2376 return freed; 2377 } 2378 2379 unsigned long 2380 nfs_access_cache_scan(struct shrinker *shrink, struct shrink_control *sc) 2381 { 2382 int nr_to_scan = sc->nr_to_scan; 2383 gfp_t gfp_mask = sc->gfp_mask; 2384 2385 if ((gfp_mask & GFP_KERNEL) != GFP_KERNEL) 2386 return SHRINK_STOP; 2387 return nfs_do_access_cache_scan(nr_to_scan); 2388 } 2389 2390 2391 unsigned long 2392 nfs_access_cache_count(struct shrinker *shrink, struct shrink_control *sc) 2393 { 2394 return vfs_pressure_ratio(atomic_long_read(&nfs_access_nr_entries)); 2395 } 2396 2397 static void 2398 nfs_access_cache_enforce_limit(void) 2399 { 2400 long nr_entries = atomic_long_read(&nfs_access_nr_entries); 2401 unsigned long diff; 2402 unsigned int nr_to_scan; 2403 2404 if (nr_entries < 0 || nr_entries <= nfs_access_max_cachesize) 2405 return; 2406 nr_to_scan = 100; 2407 diff = nr_entries - nfs_access_max_cachesize; 2408 if (diff < nr_to_scan) 2409 nr_to_scan = diff; 2410 nfs_do_access_cache_scan(nr_to_scan); 2411 } 2412 2413 static void __nfs_access_zap_cache(struct nfs_inode *nfsi, struct list_head *head) 2414 { 2415 struct rb_root *root_node = &nfsi->access_cache; 2416 struct rb_node *n; 2417 struct nfs_access_entry *entry; 2418 2419 /* Unhook entries from the cache */ 2420 while ((n = rb_first(root_node)) != NULL) { 2421 entry = rb_entry(n, struct nfs_access_entry, rb_node); 2422 rb_erase(n, root_node); 2423 list_move(&entry->lru, head); 2424 } 2425 nfsi->cache_validity &= ~NFS_INO_INVALID_ACCESS; 2426 } 2427 2428 void nfs_access_zap_cache(struct inode *inode) 2429 { 2430 LIST_HEAD(head); 2431 2432 if (test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags) == 0) 2433 return; 2434 /* Remove from global LRU init */ 2435 spin_lock(&nfs_access_lru_lock); 2436 if (test_and_clear_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) 2437 list_del_init(&NFS_I(inode)->access_cache_inode_lru); 2438 2439 spin_lock(&inode->i_lock); 2440 __nfs_access_zap_cache(NFS_I(inode), &head); 2441 spin_unlock(&inode->i_lock); 2442 spin_unlock(&nfs_access_lru_lock); 2443 nfs_access_free_list(&head); 2444 } 2445 EXPORT_SYMBOL_GPL(nfs_access_zap_cache); 2446 2447 static struct nfs_access_entry *nfs_access_search_rbtree(struct inode *inode, const struct cred *cred) 2448 { 2449 struct rb_node *n = NFS_I(inode)->access_cache.rb_node; 2450 2451 while (n != NULL) { 2452 struct nfs_access_entry *entry = 2453 rb_entry(n, struct nfs_access_entry, rb_node); 2454 int cmp = cred_fscmp(cred, entry->cred); 2455 2456 if (cmp < 0) 2457 n = n->rb_left; 2458 else if (cmp > 0) 2459 n = n->rb_right; 2460 else 2461 return entry; 2462 } 2463 return NULL; 2464 } 2465 2466 static int nfs_access_get_cached_locked(struct inode *inode, const struct cred *cred, struct nfs_access_entry *res, bool may_block) 2467 { 2468 struct nfs_inode *nfsi = NFS_I(inode); 2469 struct nfs_access_entry *cache; 2470 bool retry = true; 2471 int err; 2472 2473 spin_lock(&inode->i_lock); 2474 for(;;) { 2475 if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS) 2476 goto out_zap; 2477 cache = nfs_access_search_rbtree(inode, cred); 2478 err = -ENOENT; 2479 if (cache == NULL) 2480 goto out; 2481 /* Found an entry, is our attribute cache valid? */ 2482 if (!nfs_check_cache_invalid(inode, NFS_INO_INVALID_ACCESS)) 2483 break; 2484 if (!retry) 2485 break; 2486 err = -ECHILD; 2487 if (!may_block) 2488 goto out; 2489 spin_unlock(&inode->i_lock); 2490 err = __nfs_revalidate_inode(NFS_SERVER(inode), inode); 2491 if (err) 2492 return err; 2493 spin_lock(&inode->i_lock); 2494 retry = false; 2495 } 2496 res->cred = cache->cred; 2497 res->mask = cache->mask; 2498 list_move_tail(&cache->lru, &nfsi->access_cache_entry_lru); 2499 err = 0; 2500 out: 2501 spin_unlock(&inode->i_lock); 2502 return err; 2503 out_zap: 2504 spin_unlock(&inode->i_lock); 2505 nfs_access_zap_cache(inode); 2506 return -ENOENT; 2507 } 2508 2509 static int nfs_access_get_cached_rcu(struct inode *inode, const struct cred *cred, struct nfs_access_entry *res) 2510 { 2511 /* Only check the most recently returned cache entry, 2512 * but do it without locking. 2513 */ 2514 struct nfs_inode *nfsi = NFS_I(inode); 2515 struct nfs_access_entry *cache; 2516 int err = -ECHILD; 2517 struct list_head *lh; 2518 2519 rcu_read_lock(); 2520 if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS) 2521 goto out; 2522 lh = rcu_dereference(list_tail_rcu(&nfsi->access_cache_entry_lru)); 2523 cache = list_entry(lh, struct nfs_access_entry, lru); 2524 if (lh == &nfsi->access_cache_entry_lru || 2525 cred_fscmp(cred, cache->cred) != 0) 2526 cache = NULL; 2527 if (cache == NULL) 2528 goto out; 2529 if (nfs_check_cache_invalid(inode, NFS_INO_INVALID_ACCESS)) 2530 goto out; 2531 res->cred = cache->cred; 2532 res->mask = cache->mask; 2533 err = 0; 2534 out: 2535 rcu_read_unlock(); 2536 return err; 2537 } 2538 2539 int nfs_access_get_cached(struct inode *inode, const struct cred *cred, struct 2540 nfs_access_entry *res, bool may_block) 2541 { 2542 int status; 2543 2544 status = nfs_access_get_cached_rcu(inode, cred, res); 2545 if (status != 0) 2546 status = nfs_access_get_cached_locked(inode, cred, res, 2547 may_block); 2548 2549 return status; 2550 } 2551 EXPORT_SYMBOL_GPL(nfs_access_get_cached); 2552 2553 static void nfs_access_add_rbtree(struct inode *inode, struct nfs_access_entry *set) 2554 { 2555 struct nfs_inode *nfsi = NFS_I(inode); 2556 struct rb_root *root_node = &nfsi->access_cache; 2557 struct rb_node **p = &root_node->rb_node; 2558 struct rb_node *parent = NULL; 2559 struct nfs_access_entry *entry; 2560 int cmp; 2561 2562 spin_lock(&inode->i_lock); 2563 while (*p != NULL) { 2564 parent = *p; 2565 entry = rb_entry(parent, struct nfs_access_entry, rb_node); 2566 cmp = cred_fscmp(set->cred, entry->cred); 2567 2568 if (cmp < 0) 2569 p = &parent->rb_left; 2570 else if (cmp > 0) 2571 p = &parent->rb_right; 2572 else 2573 goto found; 2574 } 2575 rb_link_node(&set->rb_node, parent, p); 2576 rb_insert_color(&set->rb_node, root_node); 2577 list_add_tail(&set->lru, &nfsi->access_cache_entry_lru); 2578 spin_unlock(&inode->i_lock); 2579 return; 2580 found: 2581 rb_replace_node(parent, &set->rb_node, root_node); 2582 list_add_tail(&set->lru, &nfsi->access_cache_entry_lru); 2583 list_del(&entry->lru); 2584 spin_unlock(&inode->i_lock); 2585 nfs_access_free_entry(entry); 2586 } 2587 2588 void nfs_access_add_cache(struct inode *inode, struct nfs_access_entry *set) 2589 { 2590 struct nfs_access_entry *cache = kmalloc(sizeof(*cache), GFP_KERNEL); 2591 if (cache == NULL) 2592 return; 2593 RB_CLEAR_NODE(&cache->rb_node); 2594 cache->cred = get_cred(set->cred); 2595 cache->mask = set->mask; 2596 2597 /* The above field assignments must be visible 2598 * before this item appears on the lru. We cannot easily 2599 * use rcu_assign_pointer, so just force the memory barrier. 2600 */ 2601 smp_wmb(); 2602 nfs_access_add_rbtree(inode, cache); 2603 2604 /* Update accounting */ 2605 smp_mb__before_atomic(); 2606 atomic_long_inc(&nfs_access_nr_entries); 2607 smp_mb__after_atomic(); 2608 2609 /* Add inode to global LRU list */ 2610 if (!test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) { 2611 spin_lock(&nfs_access_lru_lock); 2612 if (!test_and_set_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) 2613 list_add_tail(&NFS_I(inode)->access_cache_inode_lru, 2614 &nfs_access_lru_list); 2615 spin_unlock(&nfs_access_lru_lock); 2616 } 2617 nfs_access_cache_enforce_limit(); 2618 } 2619 EXPORT_SYMBOL_GPL(nfs_access_add_cache); 2620 2621 #define NFS_MAY_READ (NFS_ACCESS_READ) 2622 #define NFS_MAY_WRITE (NFS_ACCESS_MODIFY | \ 2623 NFS_ACCESS_EXTEND | \ 2624 NFS_ACCESS_DELETE) 2625 #define NFS_FILE_MAY_WRITE (NFS_ACCESS_MODIFY | \ 2626 NFS_ACCESS_EXTEND) 2627 #define NFS_DIR_MAY_WRITE NFS_MAY_WRITE 2628 #define NFS_MAY_LOOKUP (NFS_ACCESS_LOOKUP) 2629 #define NFS_MAY_EXECUTE (NFS_ACCESS_EXECUTE) 2630 static int 2631 nfs_access_calc_mask(u32 access_result, umode_t umode) 2632 { 2633 int mask = 0; 2634 2635 if (access_result & NFS_MAY_READ) 2636 mask |= MAY_READ; 2637 if (S_ISDIR(umode)) { 2638 if ((access_result & NFS_DIR_MAY_WRITE) == NFS_DIR_MAY_WRITE) 2639 mask |= MAY_WRITE; 2640 if ((access_result & NFS_MAY_LOOKUP) == NFS_MAY_LOOKUP) 2641 mask |= MAY_EXEC; 2642 } else if (S_ISREG(umode)) { 2643 if ((access_result & NFS_FILE_MAY_WRITE) == NFS_FILE_MAY_WRITE) 2644 mask |= MAY_WRITE; 2645 if ((access_result & NFS_MAY_EXECUTE) == NFS_MAY_EXECUTE) 2646 mask |= MAY_EXEC; 2647 } else if (access_result & NFS_MAY_WRITE) 2648 mask |= MAY_WRITE; 2649 return mask; 2650 } 2651 2652 void nfs_access_set_mask(struct nfs_access_entry *entry, u32 access_result) 2653 { 2654 entry->mask = access_result; 2655 } 2656 EXPORT_SYMBOL_GPL(nfs_access_set_mask); 2657 2658 static int nfs_do_access(struct inode *inode, const struct cred *cred, int mask) 2659 { 2660 struct nfs_access_entry cache; 2661 bool may_block = (mask & MAY_NOT_BLOCK) == 0; 2662 int cache_mask = -1; 2663 int status; 2664 2665 trace_nfs_access_enter(inode); 2666 2667 status = nfs_access_get_cached(inode, cred, &cache, may_block); 2668 if (status == 0) 2669 goto out_cached; 2670 2671 status = -ECHILD; 2672 if (!may_block) 2673 goto out; 2674 2675 /* 2676 * Determine which access bits we want to ask for... 2677 */ 2678 cache.mask = NFS_ACCESS_READ | NFS_ACCESS_MODIFY | NFS_ACCESS_EXTEND; 2679 if (nfs_server_capable(inode, NFS_CAP_XATTR)) { 2680 cache.mask |= NFS_ACCESS_XAREAD | NFS_ACCESS_XAWRITE | 2681 NFS_ACCESS_XALIST; 2682 } 2683 if (S_ISDIR(inode->i_mode)) 2684 cache.mask |= NFS_ACCESS_DELETE | NFS_ACCESS_LOOKUP; 2685 else 2686 cache.mask |= NFS_ACCESS_EXECUTE; 2687 cache.cred = cred; 2688 status = NFS_PROTO(inode)->access(inode, &cache); 2689 if (status != 0) { 2690 if (status == -ESTALE) { 2691 if (!S_ISDIR(inode->i_mode)) 2692 nfs_set_inode_stale(inode); 2693 else 2694 nfs_zap_caches(inode); 2695 } 2696 goto out; 2697 } 2698 nfs_access_add_cache(inode, &cache); 2699 out_cached: 2700 cache_mask = nfs_access_calc_mask(cache.mask, inode->i_mode); 2701 if ((mask & ~cache_mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) != 0) 2702 status = -EACCES; 2703 out: 2704 trace_nfs_access_exit(inode, mask, cache_mask, status); 2705 return status; 2706 } 2707 2708 static int nfs_open_permission_mask(int openflags) 2709 { 2710 int mask = 0; 2711 2712 if (openflags & __FMODE_EXEC) { 2713 /* ONLY check exec rights */ 2714 mask = MAY_EXEC; 2715 } else { 2716 if ((openflags & O_ACCMODE) != O_WRONLY) 2717 mask |= MAY_READ; 2718 if ((openflags & O_ACCMODE) != O_RDONLY) 2719 mask |= MAY_WRITE; 2720 } 2721 2722 return mask; 2723 } 2724 2725 int nfs_may_open(struct inode *inode, const struct cred *cred, int openflags) 2726 { 2727 return nfs_do_access(inode, cred, nfs_open_permission_mask(openflags)); 2728 } 2729 EXPORT_SYMBOL_GPL(nfs_may_open); 2730 2731 static int nfs_execute_ok(struct inode *inode, int mask) 2732 { 2733 struct nfs_server *server = NFS_SERVER(inode); 2734 int ret = 0; 2735 2736 if (S_ISDIR(inode->i_mode)) 2737 return 0; 2738 if (nfs_check_cache_invalid(inode, NFS_INO_INVALID_OTHER)) { 2739 if (mask & MAY_NOT_BLOCK) 2740 return -ECHILD; 2741 ret = __nfs_revalidate_inode(server, inode); 2742 } 2743 if (ret == 0 && !execute_ok(inode)) 2744 ret = -EACCES; 2745 return ret; 2746 } 2747 2748 int nfs_permission(struct inode *inode, int mask) 2749 { 2750 const struct cred *cred = current_cred(); 2751 int res = 0; 2752 2753 nfs_inc_stats(inode, NFSIOS_VFSACCESS); 2754 2755 if ((mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0) 2756 goto out; 2757 /* Is this sys_access() ? */ 2758 if (mask & (MAY_ACCESS | MAY_CHDIR)) 2759 goto force_lookup; 2760 2761 switch (inode->i_mode & S_IFMT) { 2762 case S_IFLNK: 2763 goto out; 2764 case S_IFREG: 2765 if ((mask & MAY_OPEN) && 2766 nfs_server_capable(inode, NFS_CAP_ATOMIC_OPEN)) 2767 return 0; 2768 break; 2769 case S_IFDIR: 2770 /* 2771 * Optimize away all write operations, since the server 2772 * will check permissions when we perform the op. 2773 */ 2774 if ((mask & MAY_WRITE) && !(mask & MAY_READ)) 2775 goto out; 2776 } 2777 2778 force_lookup: 2779 if (!NFS_PROTO(inode)->access) 2780 goto out_notsup; 2781 2782 res = nfs_do_access(inode, cred, mask); 2783 out: 2784 if (!res && (mask & MAY_EXEC)) 2785 res = nfs_execute_ok(inode, mask); 2786 2787 dfprintk(VFS, "NFS: permission(%s/%lu), mask=0x%x, res=%d\n", 2788 inode->i_sb->s_id, inode->i_ino, mask, res); 2789 return res; 2790 out_notsup: 2791 if (mask & MAY_NOT_BLOCK) 2792 return -ECHILD; 2793 2794 res = nfs_revalidate_inode(NFS_SERVER(inode), inode); 2795 if (res == 0) 2796 res = generic_permission(inode, mask); 2797 goto out; 2798 } 2799 EXPORT_SYMBOL_GPL(nfs_permission); 2800 2801 /* 2802 * Local variables: 2803 * version-control: t 2804 * kept-new-versions: 5 2805 * End: 2806 */ 2807