xref: /openbmc/linux/fs/nfs/dir.c (revision 21453285)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/fs/nfs/dir.c
4  *
5  *  Copyright (C) 1992  Rick Sladkey
6  *
7  *  nfs directory handling functions
8  *
9  * 10 Apr 1996	Added silly rename for unlink	--okir
10  * 28 Sep 1996	Improved directory cache --okir
11  * 23 Aug 1997  Claus Heine claus@momo.math.rwth-aachen.de
12  *              Re-implemented silly rename for unlink, newly implemented
13  *              silly rename for nfs_rename() following the suggestions
14  *              of Olaf Kirch (okir) found in this file.
15  *              Following Linus comments on my original hack, this version
16  *              depends only on the dcache stuff and doesn't touch the inode
17  *              layer (iput() and friends).
18  *  6 Jun 1999	Cache readdir lookups in the page cache. -DaveM
19  */
20 
21 #include <linux/compat.h>
22 #include <linux/module.h>
23 #include <linux/time.h>
24 #include <linux/errno.h>
25 #include <linux/stat.h>
26 #include <linux/fcntl.h>
27 #include <linux/string.h>
28 #include <linux/kernel.h>
29 #include <linux/slab.h>
30 #include <linux/mm.h>
31 #include <linux/sunrpc/clnt.h>
32 #include <linux/nfs_fs.h>
33 #include <linux/nfs_mount.h>
34 #include <linux/pagemap.h>
35 #include <linux/pagevec.h>
36 #include <linux/namei.h>
37 #include <linux/mount.h>
38 #include <linux/swap.h>
39 #include <linux/sched.h>
40 #include <linux/kmemleak.h>
41 #include <linux/xattr.h>
42 #include <linux/hash.h>
43 
44 #include "delegation.h"
45 #include "iostat.h"
46 #include "internal.h"
47 #include "fscache.h"
48 
49 #include "nfstrace.h"
50 
51 /* #define NFS_DEBUG_VERBOSE 1 */
52 
53 static int nfs_opendir(struct inode *, struct file *);
54 static int nfs_closedir(struct inode *, struct file *);
55 static int nfs_readdir(struct file *, struct dir_context *);
56 static int nfs_fsync_dir(struct file *, loff_t, loff_t, int);
57 static loff_t nfs_llseek_dir(struct file *, loff_t, int);
58 static void nfs_readdir_clear_array(struct folio *);
59 
60 const struct file_operations nfs_dir_operations = {
61 	.llseek		= nfs_llseek_dir,
62 	.read		= generic_read_dir,
63 	.iterate_shared	= nfs_readdir,
64 	.open		= nfs_opendir,
65 	.release	= nfs_closedir,
66 	.fsync		= nfs_fsync_dir,
67 };
68 
69 const struct address_space_operations nfs_dir_aops = {
70 	.free_folio = nfs_readdir_clear_array,
71 };
72 
73 #define NFS_INIT_DTSIZE PAGE_SIZE
74 
75 static struct nfs_open_dir_context *
76 alloc_nfs_open_dir_context(struct inode *dir)
77 {
78 	struct nfs_inode *nfsi = NFS_I(dir);
79 	struct nfs_open_dir_context *ctx;
80 
81 	ctx = kzalloc(sizeof(*ctx), GFP_KERNEL_ACCOUNT);
82 	if (ctx != NULL) {
83 		ctx->attr_gencount = nfsi->attr_gencount;
84 		ctx->dtsize = NFS_INIT_DTSIZE;
85 		spin_lock(&dir->i_lock);
86 		if (list_empty(&nfsi->open_files) &&
87 		    (nfsi->cache_validity & NFS_INO_DATA_INVAL_DEFER))
88 			nfs_set_cache_invalid(dir,
89 					      NFS_INO_INVALID_DATA |
90 						      NFS_INO_REVAL_FORCED);
91 		list_add_tail_rcu(&ctx->list, &nfsi->open_files);
92 		memcpy(ctx->verf, nfsi->cookieverf, sizeof(ctx->verf));
93 		spin_unlock(&dir->i_lock);
94 		return ctx;
95 	}
96 	return  ERR_PTR(-ENOMEM);
97 }
98 
99 static void put_nfs_open_dir_context(struct inode *dir, struct nfs_open_dir_context *ctx)
100 {
101 	spin_lock(&dir->i_lock);
102 	list_del_rcu(&ctx->list);
103 	spin_unlock(&dir->i_lock);
104 	kfree_rcu(ctx, rcu_head);
105 }
106 
107 /*
108  * Open file
109  */
110 static int
111 nfs_opendir(struct inode *inode, struct file *filp)
112 {
113 	int res = 0;
114 	struct nfs_open_dir_context *ctx;
115 
116 	dfprintk(FILE, "NFS: open dir(%pD2)\n", filp);
117 
118 	nfs_inc_stats(inode, NFSIOS_VFSOPEN);
119 
120 	ctx = alloc_nfs_open_dir_context(inode);
121 	if (IS_ERR(ctx)) {
122 		res = PTR_ERR(ctx);
123 		goto out;
124 	}
125 	filp->private_data = ctx;
126 out:
127 	return res;
128 }
129 
130 static int
131 nfs_closedir(struct inode *inode, struct file *filp)
132 {
133 	put_nfs_open_dir_context(file_inode(filp), filp->private_data);
134 	return 0;
135 }
136 
137 struct nfs_cache_array_entry {
138 	u64 cookie;
139 	u64 ino;
140 	const char *name;
141 	unsigned int name_len;
142 	unsigned char d_type;
143 };
144 
145 struct nfs_cache_array {
146 	u64 change_attr;
147 	u64 last_cookie;
148 	unsigned int size;
149 	unsigned char folio_full : 1,
150 		      folio_is_eof : 1,
151 		      cookies_are_ordered : 1;
152 	struct nfs_cache_array_entry array[];
153 };
154 
155 struct nfs_readdir_descriptor {
156 	struct file	*file;
157 	struct folio	*folio;
158 	struct dir_context *ctx;
159 	pgoff_t		folio_index;
160 	pgoff_t		folio_index_max;
161 	u64		dir_cookie;
162 	u64		last_cookie;
163 	loff_t		current_index;
164 
165 	__be32		verf[NFS_DIR_VERIFIER_SIZE];
166 	unsigned long	dir_verifier;
167 	unsigned long	timestamp;
168 	unsigned long	gencount;
169 	unsigned long	attr_gencount;
170 	unsigned int	cache_entry_index;
171 	unsigned int	buffer_fills;
172 	unsigned int	dtsize;
173 	bool clear_cache;
174 	bool plus;
175 	bool eob;
176 	bool eof;
177 };
178 
179 static void nfs_set_dtsize(struct nfs_readdir_descriptor *desc, unsigned int sz)
180 {
181 	struct nfs_server *server = NFS_SERVER(file_inode(desc->file));
182 	unsigned int maxsize = server->dtsize;
183 
184 	if (sz > maxsize)
185 		sz = maxsize;
186 	if (sz < NFS_MIN_FILE_IO_SIZE)
187 		sz = NFS_MIN_FILE_IO_SIZE;
188 	desc->dtsize = sz;
189 }
190 
191 static void nfs_shrink_dtsize(struct nfs_readdir_descriptor *desc)
192 {
193 	nfs_set_dtsize(desc, desc->dtsize >> 1);
194 }
195 
196 static void nfs_grow_dtsize(struct nfs_readdir_descriptor *desc)
197 {
198 	nfs_set_dtsize(desc, desc->dtsize << 1);
199 }
200 
201 static void nfs_readdir_folio_init_array(struct folio *folio, u64 last_cookie,
202 					 u64 change_attr)
203 {
204 	struct nfs_cache_array *array;
205 
206 	array = kmap_local_folio(folio, 0);
207 	array->change_attr = change_attr;
208 	array->last_cookie = last_cookie;
209 	array->size = 0;
210 	array->folio_full = 0;
211 	array->folio_is_eof = 0;
212 	array->cookies_are_ordered = 1;
213 	kunmap_local(array);
214 }
215 
216 /*
217  * we are freeing strings created by nfs_add_to_readdir_array()
218  */
219 static void nfs_readdir_clear_array(struct folio *folio)
220 {
221 	struct nfs_cache_array *array;
222 	unsigned int i;
223 
224 	array = kmap_local_folio(folio, 0);
225 	for (i = 0; i < array->size; i++)
226 		kfree(array->array[i].name);
227 	array->size = 0;
228 	kunmap_local(array);
229 }
230 
231 static void nfs_readdir_folio_reinit_array(struct folio *folio, u64 last_cookie,
232 					   u64 change_attr)
233 {
234 	nfs_readdir_clear_array(folio);
235 	nfs_readdir_folio_init_array(folio, last_cookie, change_attr);
236 }
237 
238 static struct folio *
239 nfs_readdir_folio_array_alloc(u64 last_cookie, gfp_t gfp_flags)
240 {
241 	struct folio *folio = folio_alloc(gfp_flags, 0);
242 	if (folio)
243 		nfs_readdir_folio_init_array(folio, last_cookie, 0);
244 	return folio;
245 }
246 
247 static void nfs_readdir_folio_array_free(struct folio *folio)
248 {
249 	if (folio) {
250 		nfs_readdir_clear_array(folio);
251 		folio_put(folio);
252 	}
253 }
254 
255 static u64 nfs_readdir_array_index_cookie(struct nfs_cache_array *array)
256 {
257 	return array->size == 0 ? array->last_cookie : array->array[0].cookie;
258 }
259 
260 static void nfs_readdir_array_set_eof(struct nfs_cache_array *array)
261 {
262 	array->folio_is_eof = 1;
263 	array->folio_full = 1;
264 }
265 
266 static bool nfs_readdir_array_is_full(struct nfs_cache_array *array)
267 {
268 	return array->folio_full;
269 }
270 
271 /*
272  * the caller is responsible for freeing qstr.name
273  * when called by nfs_readdir_add_to_array, the strings will be freed in
274  * nfs_clear_readdir_array()
275  */
276 static const char *nfs_readdir_copy_name(const char *name, unsigned int len)
277 {
278 	const char *ret = kmemdup_nul(name, len, GFP_KERNEL);
279 
280 	/*
281 	 * Avoid a kmemleak false positive. The pointer to the name is stored
282 	 * in a page cache page which kmemleak does not scan.
283 	 */
284 	if (ret != NULL)
285 		kmemleak_not_leak(ret);
286 	return ret;
287 }
288 
289 static size_t nfs_readdir_array_maxentries(void)
290 {
291 	return (PAGE_SIZE - sizeof(struct nfs_cache_array)) /
292 	       sizeof(struct nfs_cache_array_entry);
293 }
294 
295 /*
296  * Check that the next array entry lies entirely within the page bounds
297  */
298 static int nfs_readdir_array_can_expand(struct nfs_cache_array *array)
299 {
300 	if (array->folio_full)
301 		return -ENOSPC;
302 	if (array->size == nfs_readdir_array_maxentries()) {
303 		array->folio_full = 1;
304 		return -ENOSPC;
305 	}
306 	return 0;
307 }
308 
309 static int nfs_readdir_folio_array_append(struct folio *folio,
310 					  const struct nfs_entry *entry,
311 					  u64 *cookie)
312 {
313 	struct nfs_cache_array *array;
314 	struct nfs_cache_array_entry *cache_entry;
315 	const char *name;
316 	int ret = -ENOMEM;
317 
318 	name = nfs_readdir_copy_name(entry->name, entry->len);
319 
320 	array = kmap_atomic(folio_page(folio, 0));
321 	if (!name)
322 		goto out;
323 	ret = nfs_readdir_array_can_expand(array);
324 	if (ret) {
325 		kfree(name);
326 		goto out;
327 	}
328 
329 	cache_entry = &array->array[array->size];
330 	cache_entry->cookie = array->last_cookie;
331 	cache_entry->ino = entry->ino;
332 	cache_entry->d_type = entry->d_type;
333 	cache_entry->name_len = entry->len;
334 	cache_entry->name = name;
335 	array->last_cookie = entry->cookie;
336 	if (array->last_cookie <= cache_entry->cookie)
337 		array->cookies_are_ordered = 0;
338 	array->size++;
339 	if (entry->eof != 0)
340 		nfs_readdir_array_set_eof(array);
341 out:
342 	*cookie = array->last_cookie;
343 	kunmap_atomic(array);
344 	return ret;
345 }
346 
347 #define NFS_READDIR_COOKIE_MASK (U32_MAX >> 14)
348 /*
349  * Hash algorithm allowing content addressible access to sequences
350  * of directory cookies. Content is addressed by the value of the
351  * cookie index of the first readdir entry in a page.
352  *
353  * We select only the first 18 bits to avoid issues with excessive
354  * memory use for the page cache XArray. 18 bits should allow the caching
355  * of 262144 pages of sequences of readdir entries. Since each page holds
356  * 127 readdir entries for a typical 64-bit system, that works out to a
357  * cache of ~ 33 million entries per directory.
358  */
359 static pgoff_t nfs_readdir_folio_cookie_hash(u64 cookie)
360 {
361 	if (cookie == 0)
362 		return 0;
363 	return hash_64(cookie, 18);
364 }
365 
366 static bool nfs_readdir_folio_validate(struct folio *folio, u64 last_cookie,
367 				       u64 change_attr)
368 {
369 	struct nfs_cache_array *array = kmap_local_folio(folio, 0);
370 	int ret = true;
371 
372 	if (array->change_attr != change_attr)
373 		ret = false;
374 	if (nfs_readdir_array_index_cookie(array) != last_cookie)
375 		ret = false;
376 	kunmap_local(array);
377 	return ret;
378 }
379 
380 static void nfs_readdir_folio_unlock_and_put(struct folio *folio)
381 {
382 	folio_unlock(folio);
383 	folio_put(folio);
384 }
385 
386 static void nfs_readdir_folio_init_and_validate(struct folio *folio, u64 cookie,
387 						u64 change_attr)
388 {
389 	if (folio_test_uptodate(folio)) {
390 		if (nfs_readdir_folio_validate(folio, cookie, change_attr))
391 			return;
392 		nfs_readdir_clear_array(folio);
393 	}
394 	nfs_readdir_folio_init_array(folio, cookie, change_attr);
395 	folio_mark_uptodate(folio);
396 }
397 
398 static struct folio *nfs_readdir_folio_get_locked(struct address_space *mapping,
399 						  u64 cookie, u64 change_attr)
400 {
401 	pgoff_t index = nfs_readdir_folio_cookie_hash(cookie);
402 	struct folio *folio;
403 
404 	folio = filemap_grab_folio(mapping, index);
405 	if (IS_ERR(folio))
406 		return NULL;
407 	nfs_readdir_folio_init_and_validate(folio, cookie, change_attr);
408 	return folio;
409 }
410 
411 static u64 nfs_readdir_folio_last_cookie(struct folio *folio)
412 {
413 	struct nfs_cache_array *array;
414 	u64 ret;
415 
416 	array = kmap_local_folio(folio, 0);
417 	ret = array->last_cookie;
418 	kunmap_local(array);
419 	return ret;
420 }
421 
422 static bool nfs_readdir_folio_needs_filling(struct folio *folio)
423 {
424 	struct nfs_cache_array *array;
425 	bool ret;
426 
427 	array = kmap_local_folio(folio, 0);
428 	ret = !nfs_readdir_array_is_full(array);
429 	kunmap_local(array);
430 	return ret;
431 }
432 
433 static void nfs_readdir_folio_set_eof(struct folio *folio)
434 {
435 	struct nfs_cache_array *array;
436 
437 	array = kmap_local_folio(folio, 0);
438 	nfs_readdir_array_set_eof(array);
439 	kunmap_local(array);
440 }
441 
442 static struct folio *nfs_readdir_folio_get_next(struct address_space *mapping,
443 						u64 cookie, u64 change_attr)
444 {
445 	pgoff_t index = nfs_readdir_folio_cookie_hash(cookie);
446 	struct folio *folio;
447 
448 	folio = __filemap_get_folio(mapping, index,
449 			FGP_LOCK|FGP_CREAT|FGP_NOFS|FGP_NOWAIT,
450 			mapping_gfp_mask(mapping));
451 	if (IS_ERR(folio))
452 		return NULL;
453 	nfs_readdir_folio_init_and_validate(folio, cookie, change_attr);
454 	if (nfs_readdir_folio_last_cookie(folio) != cookie)
455 		nfs_readdir_folio_reinit_array(folio, cookie, change_attr);
456 	return folio;
457 }
458 
459 static inline
460 int is_32bit_api(void)
461 {
462 #ifdef CONFIG_COMPAT
463 	return in_compat_syscall();
464 #else
465 	return (BITS_PER_LONG == 32);
466 #endif
467 }
468 
469 static
470 bool nfs_readdir_use_cookie(const struct file *filp)
471 {
472 	if ((filp->f_mode & FMODE_32BITHASH) ||
473 	    (!(filp->f_mode & FMODE_64BITHASH) && is_32bit_api()))
474 		return false;
475 	return true;
476 }
477 
478 static void nfs_readdir_seek_next_array(struct nfs_cache_array *array,
479 					struct nfs_readdir_descriptor *desc)
480 {
481 	if (array->folio_full) {
482 		desc->last_cookie = array->last_cookie;
483 		desc->current_index += array->size;
484 		desc->cache_entry_index = 0;
485 		desc->folio_index++;
486 	} else
487 		desc->last_cookie = nfs_readdir_array_index_cookie(array);
488 }
489 
490 static void nfs_readdir_rewind_search(struct nfs_readdir_descriptor *desc)
491 {
492 	desc->current_index = 0;
493 	desc->last_cookie = 0;
494 	desc->folio_index = 0;
495 }
496 
497 static int nfs_readdir_search_for_pos(struct nfs_cache_array *array,
498 				      struct nfs_readdir_descriptor *desc)
499 {
500 	loff_t diff = desc->ctx->pos - desc->current_index;
501 	unsigned int index;
502 
503 	if (diff < 0)
504 		goto out_eof;
505 	if (diff >= array->size) {
506 		if (array->folio_is_eof)
507 			goto out_eof;
508 		nfs_readdir_seek_next_array(array, desc);
509 		return -EAGAIN;
510 	}
511 
512 	index = (unsigned int)diff;
513 	desc->dir_cookie = array->array[index].cookie;
514 	desc->cache_entry_index = index;
515 	return 0;
516 out_eof:
517 	desc->eof = true;
518 	return -EBADCOOKIE;
519 }
520 
521 static bool nfs_readdir_array_cookie_in_range(struct nfs_cache_array *array,
522 					      u64 cookie)
523 {
524 	if (!array->cookies_are_ordered)
525 		return true;
526 	/* Optimisation for monotonically increasing cookies */
527 	if (cookie >= array->last_cookie)
528 		return false;
529 	if (array->size && cookie < array->array[0].cookie)
530 		return false;
531 	return true;
532 }
533 
534 static int nfs_readdir_search_for_cookie(struct nfs_cache_array *array,
535 					 struct nfs_readdir_descriptor *desc)
536 {
537 	unsigned int i;
538 	int status = -EAGAIN;
539 
540 	if (!nfs_readdir_array_cookie_in_range(array, desc->dir_cookie))
541 		goto check_eof;
542 
543 	for (i = 0; i < array->size; i++) {
544 		if (array->array[i].cookie == desc->dir_cookie) {
545 			if (nfs_readdir_use_cookie(desc->file))
546 				desc->ctx->pos = desc->dir_cookie;
547 			else
548 				desc->ctx->pos = desc->current_index + i;
549 			desc->cache_entry_index = i;
550 			return 0;
551 		}
552 	}
553 check_eof:
554 	if (array->folio_is_eof) {
555 		status = -EBADCOOKIE;
556 		if (desc->dir_cookie == array->last_cookie)
557 			desc->eof = true;
558 	} else
559 		nfs_readdir_seek_next_array(array, desc);
560 	return status;
561 }
562 
563 static int nfs_readdir_search_array(struct nfs_readdir_descriptor *desc)
564 {
565 	struct nfs_cache_array *array;
566 	int status;
567 
568 	array = kmap_local_folio(desc->folio, 0);
569 
570 	if (desc->dir_cookie == 0)
571 		status = nfs_readdir_search_for_pos(array, desc);
572 	else
573 		status = nfs_readdir_search_for_cookie(array, desc);
574 
575 	kunmap_local(array);
576 	return status;
577 }
578 
579 /* Fill a page with xdr information before transferring to the cache page */
580 static int nfs_readdir_xdr_filler(struct nfs_readdir_descriptor *desc,
581 				  __be32 *verf, u64 cookie,
582 				  struct page **pages, size_t bufsize,
583 				  __be32 *verf_res)
584 {
585 	struct inode *inode = file_inode(desc->file);
586 	struct nfs_readdir_arg arg = {
587 		.dentry = file_dentry(desc->file),
588 		.cred = desc->file->f_cred,
589 		.verf = verf,
590 		.cookie = cookie,
591 		.pages = pages,
592 		.page_len = bufsize,
593 		.plus = desc->plus,
594 	};
595 	struct nfs_readdir_res res = {
596 		.verf = verf_res,
597 	};
598 	unsigned long	timestamp, gencount;
599 	int		error;
600 
601  again:
602 	timestamp = jiffies;
603 	gencount = nfs_inc_attr_generation_counter();
604 	desc->dir_verifier = nfs_save_change_attribute(inode);
605 	error = NFS_PROTO(inode)->readdir(&arg, &res);
606 	if (error < 0) {
607 		/* We requested READDIRPLUS, but the server doesn't grok it */
608 		if (error == -ENOTSUPP && desc->plus) {
609 			NFS_SERVER(inode)->caps &= ~NFS_CAP_READDIRPLUS;
610 			desc->plus = arg.plus = false;
611 			goto again;
612 		}
613 		goto error;
614 	}
615 	desc->timestamp = timestamp;
616 	desc->gencount = gencount;
617 error:
618 	return error;
619 }
620 
621 static int xdr_decode(struct nfs_readdir_descriptor *desc,
622 		      struct nfs_entry *entry, struct xdr_stream *xdr)
623 {
624 	struct inode *inode = file_inode(desc->file);
625 	int error;
626 
627 	error = NFS_PROTO(inode)->decode_dirent(xdr, entry, desc->plus);
628 	if (error)
629 		return error;
630 	entry->fattr->time_start = desc->timestamp;
631 	entry->fattr->gencount = desc->gencount;
632 	return 0;
633 }
634 
635 /* Match file and dirent using either filehandle or fileid
636  * Note: caller is responsible for checking the fsid
637  */
638 static
639 int nfs_same_file(struct dentry *dentry, struct nfs_entry *entry)
640 {
641 	struct inode *inode;
642 	struct nfs_inode *nfsi;
643 
644 	if (d_really_is_negative(dentry))
645 		return 0;
646 
647 	inode = d_inode(dentry);
648 	if (is_bad_inode(inode) || NFS_STALE(inode))
649 		return 0;
650 
651 	nfsi = NFS_I(inode);
652 	if (entry->fattr->fileid != nfsi->fileid)
653 		return 0;
654 	if (entry->fh->size && nfs_compare_fh(entry->fh, &nfsi->fh) != 0)
655 		return 0;
656 	return 1;
657 }
658 
659 #define NFS_READDIR_CACHE_USAGE_THRESHOLD (8UL)
660 
661 static bool nfs_use_readdirplus(struct inode *dir, struct dir_context *ctx,
662 				unsigned int cache_hits,
663 				unsigned int cache_misses)
664 {
665 	if (!nfs_server_capable(dir, NFS_CAP_READDIRPLUS))
666 		return false;
667 	if (ctx->pos == 0 ||
668 	    cache_hits + cache_misses > NFS_READDIR_CACHE_USAGE_THRESHOLD)
669 		return true;
670 	return false;
671 }
672 
673 /*
674  * This function is called by the getattr code to request the
675  * use of readdirplus to accelerate any future lookups in the same
676  * directory.
677  */
678 void nfs_readdir_record_entry_cache_hit(struct inode *dir)
679 {
680 	struct nfs_inode *nfsi = NFS_I(dir);
681 	struct nfs_open_dir_context *ctx;
682 
683 	if (nfs_server_capable(dir, NFS_CAP_READDIRPLUS) &&
684 	    S_ISDIR(dir->i_mode)) {
685 		rcu_read_lock();
686 		list_for_each_entry_rcu (ctx, &nfsi->open_files, list)
687 			atomic_inc(&ctx->cache_hits);
688 		rcu_read_unlock();
689 	}
690 }
691 
692 /*
693  * This function is mainly for use by nfs_getattr().
694  *
695  * If this is an 'ls -l', we want to force use of readdirplus.
696  */
697 void nfs_readdir_record_entry_cache_miss(struct inode *dir)
698 {
699 	struct nfs_inode *nfsi = NFS_I(dir);
700 	struct nfs_open_dir_context *ctx;
701 
702 	if (nfs_server_capable(dir, NFS_CAP_READDIRPLUS) &&
703 	    S_ISDIR(dir->i_mode)) {
704 		rcu_read_lock();
705 		list_for_each_entry_rcu (ctx, &nfsi->open_files, list)
706 			atomic_inc(&ctx->cache_misses);
707 		rcu_read_unlock();
708 	}
709 }
710 
711 static void nfs_lookup_advise_force_readdirplus(struct inode *dir,
712 						unsigned int flags)
713 {
714 	if (nfs_server_capable(dir, NFS_CAP_CASE_INSENSITIVE))
715 		return;
716 	if (flags & (LOOKUP_EXCL | LOOKUP_PARENT | LOOKUP_REVAL))
717 		return;
718 	nfs_readdir_record_entry_cache_miss(dir);
719 }
720 
721 static
722 void nfs_prime_dcache(struct dentry *parent, struct nfs_entry *entry,
723 		unsigned long dir_verifier)
724 {
725 	struct qstr filename = QSTR_INIT(entry->name, entry->len);
726 	DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
727 	struct dentry *dentry;
728 	struct dentry *alias;
729 	struct inode *inode;
730 	int status;
731 
732 	if (!(entry->fattr->valid & NFS_ATTR_FATTR_FILEID))
733 		return;
734 	if (!(entry->fattr->valid & NFS_ATTR_FATTR_FSID))
735 		return;
736 	if (filename.len == 0)
737 		return;
738 	/* Validate that the name doesn't contain any illegal '\0' */
739 	if (strnlen(filename.name, filename.len) != filename.len)
740 		return;
741 	/* ...or '/' */
742 	if (strnchr(filename.name, filename.len, '/'))
743 		return;
744 	if (filename.name[0] == '.') {
745 		if (filename.len == 1)
746 			return;
747 		if (filename.len == 2 && filename.name[1] == '.')
748 			return;
749 	}
750 	filename.hash = full_name_hash(parent, filename.name, filename.len);
751 
752 	dentry = d_lookup(parent, &filename);
753 again:
754 	if (!dentry) {
755 		dentry = d_alloc_parallel(parent, &filename, &wq);
756 		if (IS_ERR(dentry))
757 			return;
758 	}
759 	if (!d_in_lookup(dentry)) {
760 		/* Is there a mountpoint here? If so, just exit */
761 		if (!nfs_fsid_equal(&NFS_SB(dentry->d_sb)->fsid,
762 					&entry->fattr->fsid))
763 			goto out;
764 		if (nfs_same_file(dentry, entry)) {
765 			if (!entry->fh->size)
766 				goto out;
767 			nfs_set_verifier(dentry, dir_verifier);
768 			status = nfs_refresh_inode(d_inode(dentry), entry->fattr);
769 			if (!status)
770 				nfs_setsecurity(d_inode(dentry), entry->fattr);
771 			trace_nfs_readdir_lookup_revalidate(d_inode(parent),
772 							    dentry, 0, status);
773 			goto out;
774 		} else {
775 			trace_nfs_readdir_lookup_revalidate_failed(
776 				d_inode(parent), dentry, 0);
777 			d_invalidate(dentry);
778 			dput(dentry);
779 			dentry = NULL;
780 			goto again;
781 		}
782 	}
783 	if (!entry->fh->size) {
784 		d_lookup_done(dentry);
785 		goto out;
786 	}
787 
788 	inode = nfs_fhget(dentry->d_sb, entry->fh, entry->fattr);
789 	alias = d_splice_alias(inode, dentry);
790 	d_lookup_done(dentry);
791 	if (alias) {
792 		if (IS_ERR(alias))
793 			goto out;
794 		dput(dentry);
795 		dentry = alias;
796 	}
797 	nfs_set_verifier(dentry, dir_verifier);
798 	trace_nfs_readdir_lookup(d_inode(parent), dentry, 0);
799 out:
800 	dput(dentry);
801 }
802 
803 static int nfs_readdir_entry_decode(struct nfs_readdir_descriptor *desc,
804 				    struct nfs_entry *entry,
805 				    struct xdr_stream *stream)
806 {
807 	int ret;
808 
809 	if (entry->fattr->label)
810 		entry->fattr->label->len = NFS4_MAXLABELLEN;
811 	ret = xdr_decode(desc, entry, stream);
812 	if (ret || !desc->plus)
813 		return ret;
814 	nfs_prime_dcache(file_dentry(desc->file), entry, desc->dir_verifier);
815 	return 0;
816 }
817 
818 /* Perform conversion from xdr to cache array */
819 static int nfs_readdir_folio_filler(struct nfs_readdir_descriptor *desc,
820 				    struct nfs_entry *entry,
821 				    struct page **xdr_pages, unsigned int buflen,
822 				    struct folio **arrays, size_t narrays,
823 				    u64 change_attr)
824 {
825 	struct address_space *mapping = desc->file->f_mapping;
826 	struct folio *new, *folio = *arrays;
827 	struct xdr_stream stream;
828 	struct page *scratch;
829 	struct xdr_buf buf;
830 	u64 cookie;
831 	int status;
832 
833 	scratch = alloc_page(GFP_KERNEL);
834 	if (scratch == NULL)
835 		return -ENOMEM;
836 
837 	xdr_init_decode_pages(&stream, &buf, xdr_pages, buflen);
838 	xdr_set_scratch_page(&stream, scratch);
839 
840 	do {
841 		status = nfs_readdir_entry_decode(desc, entry, &stream);
842 		if (status != 0)
843 			break;
844 
845 		status = nfs_readdir_folio_array_append(folio, entry, &cookie);
846 		if (status != -ENOSPC)
847 			continue;
848 
849 		if (folio->mapping != mapping) {
850 			if (!--narrays)
851 				break;
852 			new = nfs_readdir_folio_array_alloc(cookie, GFP_KERNEL);
853 			if (!new)
854 				break;
855 			arrays++;
856 			*arrays = folio = new;
857 		} else {
858 			new = nfs_readdir_folio_get_next(mapping, cookie,
859 							 change_attr);
860 			if (!new)
861 				break;
862 			if (folio != *arrays)
863 				nfs_readdir_folio_unlock_and_put(folio);
864 			folio = new;
865 		}
866 		desc->folio_index_max++;
867 		status = nfs_readdir_folio_array_append(folio, entry, &cookie);
868 	} while (!status && !entry->eof);
869 
870 	switch (status) {
871 	case -EBADCOOKIE:
872 		if (!entry->eof)
873 			break;
874 		nfs_readdir_folio_set_eof(folio);
875 		fallthrough;
876 	case -EAGAIN:
877 		status = 0;
878 		break;
879 	case -ENOSPC:
880 		status = 0;
881 		if (!desc->plus)
882 			break;
883 		while (!nfs_readdir_entry_decode(desc, entry, &stream))
884 			;
885 	}
886 
887 	if (folio != *arrays)
888 		nfs_readdir_folio_unlock_and_put(folio);
889 
890 	put_page(scratch);
891 	return status;
892 }
893 
894 static void nfs_readdir_free_pages(struct page **pages, size_t npages)
895 {
896 	while (npages--)
897 		put_page(pages[npages]);
898 	kfree(pages);
899 }
900 
901 /*
902  * nfs_readdir_alloc_pages() will allocate pages that must be freed with a call
903  * to nfs_readdir_free_pages()
904  */
905 static struct page **nfs_readdir_alloc_pages(size_t npages)
906 {
907 	struct page **pages;
908 	size_t i;
909 
910 	pages = kmalloc_array(npages, sizeof(*pages), GFP_KERNEL);
911 	if (!pages)
912 		return NULL;
913 	for (i = 0; i < npages; i++) {
914 		struct page *page = alloc_page(GFP_KERNEL);
915 		if (page == NULL)
916 			goto out_freepages;
917 		pages[i] = page;
918 	}
919 	return pages;
920 
921 out_freepages:
922 	nfs_readdir_free_pages(pages, i);
923 	return NULL;
924 }
925 
926 static int nfs_readdir_xdr_to_array(struct nfs_readdir_descriptor *desc,
927 				    __be32 *verf_arg, __be32 *verf_res,
928 				    struct folio **arrays, size_t narrays)
929 {
930 	u64 change_attr;
931 	struct page **pages;
932 	struct folio *folio = *arrays;
933 	struct nfs_entry *entry;
934 	size_t array_size;
935 	struct inode *inode = file_inode(desc->file);
936 	unsigned int dtsize = desc->dtsize;
937 	unsigned int pglen;
938 	int status = -ENOMEM;
939 
940 	entry = kzalloc(sizeof(*entry), GFP_KERNEL);
941 	if (!entry)
942 		return -ENOMEM;
943 	entry->cookie = nfs_readdir_folio_last_cookie(folio);
944 	entry->fh = nfs_alloc_fhandle();
945 	entry->fattr = nfs_alloc_fattr_with_label(NFS_SERVER(inode));
946 	entry->server = NFS_SERVER(inode);
947 	if (entry->fh == NULL || entry->fattr == NULL)
948 		goto out;
949 
950 	array_size = (dtsize + PAGE_SIZE - 1) >> PAGE_SHIFT;
951 	pages = nfs_readdir_alloc_pages(array_size);
952 	if (!pages)
953 		goto out;
954 
955 	change_attr = inode_peek_iversion_raw(inode);
956 	status = nfs_readdir_xdr_filler(desc, verf_arg, entry->cookie, pages,
957 					dtsize, verf_res);
958 	if (status < 0)
959 		goto free_pages;
960 
961 	pglen = status;
962 	if (pglen != 0)
963 		status = nfs_readdir_folio_filler(desc, entry, pages, pglen,
964 						  arrays, narrays, change_attr);
965 	else
966 		nfs_readdir_folio_set_eof(folio);
967 	desc->buffer_fills++;
968 
969 free_pages:
970 	nfs_readdir_free_pages(pages, array_size);
971 out:
972 	nfs_free_fattr(entry->fattr);
973 	nfs_free_fhandle(entry->fh);
974 	kfree(entry);
975 	return status;
976 }
977 
978 static void nfs_readdir_folio_put(struct nfs_readdir_descriptor *desc)
979 {
980 	folio_put(desc->folio);
981 	desc->folio = NULL;
982 }
983 
984 static void
985 nfs_readdir_folio_unlock_and_put_cached(struct nfs_readdir_descriptor *desc)
986 {
987 	folio_unlock(desc->folio);
988 	nfs_readdir_folio_put(desc);
989 }
990 
991 static struct folio *
992 nfs_readdir_folio_get_cached(struct nfs_readdir_descriptor *desc)
993 {
994 	struct address_space *mapping = desc->file->f_mapping;
995 	u64 change_attr = inode_peek_iversion_raw(mapping->host);
996 	u64 cookie = desc->last_cookie;
997 	struct folio *folio;
998 
999 	folio = nfs_readdir_folio_get_locked(mapping, cookie, change_attr);
1000 	if (!folio)
1001 		return NULL;
1002 	if (desc->clear_cache && !nfs_readdir_folio_needs_filling(folio))
1003 		nfs_readdir_folio_reinit_array(folio, cookie, change_attr);
1004 	return folio;
1005 }
1006 
1007 /*
1008  * Returns 0 if desc->dir_cookie was found on page desc->page_index
1009  * and locks the page to prevent removal from the page cache.
1010  */
1011 static int find_and_lock_cache_page(struct nfs_readdir_descriptor *desc)
1012 {
1013 	struct inode *inode = file_inode(desc->file);
1014 	struct nfs_inode *nfsi = NFS_I(inode);
1015 	__be32 verf[NFS_DIR_VERIFIER_SIZE];
1016 	int res;
1017 
1018 	desc->folio = nfs_readdir_folio_get_cached(desc);
1019 	if (!desc->folio)
1020 		return -ENOMEM;
1021 	if (nfs_readdir_folio_needs_filling(desc->folio)) {
1022 		/* Grow the dtsize if we had to go back for more pages */
1023 		if (desc->folio_index == desc->folio_index_max)
1024 			nfs_grow_dtsize(desc);
1025 		desc->folio_index_max = desc->folio_index;
1026 		trace_nfs_readdir_cache_fill(desc->file, nfsi->cookieverf,
1027 					     desc->last_cookie,
1028 					     desc->folio->index, desc->dtsize);
1029 		res = nfs_readdir_xdr_to_array(desc, nfsi->cookieverf, verf,
1030 					       &desc->folio, 1);
1031 		if (res < 0) {
1032 			nfs_readdir_folio_unlock_and_put_cached(desc);
1033 			trace_nfs_readdir_cache_fill_done(inode, res);
1034 			if (res == -EBADCOOKIE || res == -ENOTSYNC) {
1035 				invalidate_inode_pages2(desc->file->f_mapping);
1036 				nfs_readdir_rewind_search(desc);
1037 				trace_nfs_readdir_invalidate_cache_range(
1038 					inode, 0, MAX_LFS_FILESIZE);
1039 				return -EAGAIN;
1040 			}
1041 			return res;
1042 		}
1043 		/*
1044 		 * Set the cookie verifier if the page cache was empty
1045 		 */
1046 		if (desc->last_cookie == 0 &&
1047 		    memcmp(nfsi->cookieverf, verf, sizeof(nfsi->cookieverf))) {
1048 			memcpy(nfsi->cookieverf, verf,
1049 			       sizeof(nfsi->cookieverf));
1050 			invalidate_inode_pages2_range(desc->file->f_mapping, 1,
1051 						      -1);
1052 			trace_nfs_readdir_invalidate_cache_range(
1053 				inode, 1, MAX_LFS_FILESIZE);
1054 		}
1055 		desc->clear_cache = false;
1056 	}
1057 	res = nfs_readdir_search_array(desc);
1058 	if (res == 0)
1059 		return 0;
1060 	nfs_readdir_folio_unlock_and_put_cached(desc);
1061 	return res;
1062 }
1063 
1064 /* Search for desc->dir_cookie from the beginning of the page cache */
1065 static int readdir_search_pagecache(struct nfs_readdir_descriptor *desc)
1066 {
1067 	int res;
1068 
1069 	do {
1070 		res = find_and_lock_cache_page(desc);
1071 	} while (res == -EAGAIN);
1072 	return res;
1073 }
1074 
1075 #define NFS_READDIR_CACHE_MISS_THRESHOLD (16UL)
1076 
1077 /*
1078  * Once we've found the start of the dirent within a page: fill 'er up...
1079  */
1080 static void nfs_do_filldir(struct nfs_readdir_descriptor *desc,
1081 			   const __be32 *verf)
1082 {
1083 	struct file	*file = desc->file;
1084 	struct nfs_cache_array *array;
1085 	unsigned int i;
1086 	bool first_emit = !desc->dir_cookie;
1087 
1088 	array = kmap_local_folio(desc->folio, 0);
1089 	for (i = desc->cache_entry_index; i < array->size; i++) {
1090 		struct nfs_cache_array_entry *ent;
1091 
1092 		ent = &array->array[i];
1093 		if (!dir_emit(desc->ctx, ent->name, ent->name_len,
1094 		    nfs_compat_user_ino64(ent->ino), ent->d_type)) {
1095 			desc->eob = true;
1096 			break;
1097 		}
1098 		memcpy(desc->verf, verf, sizeof(desc->verf));
1099 		if (i == array->size - 1) {
1100 			desc->dir_cookie = array->last_cookie;
1101 			nfs_readdir_seek_next_array(array, desc);
1102 		} else {
1103 			desc->dir_cookie = array->array[i + 1].cookie;
1104 			desc->last_cookie = array->array[0].cookie;
1105 		}
1106 		if (nfs_readdir_use_cookie(file))
1107 			desc->ctx->pos = desc->dir_cookie;
1108 		else
1109 			desc->ctx->pos++;
1110 		if (first_emit && i > NFS_READDIR_CACHE_MISS_THRESHOLD + 1) {
1111 			desc->eob = true;
1112 			break;
1113 		}
1114 	}
1115 	if (array->folio_is_eof)
1116 		desc->eof = !desc->eob;
1117 
1118 	kunmap_local(array);
1119 	dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling ended @ cookie %llu\n",
1120 			(unsigned long long)desc->dir_cookie);
1121 }
1122 
1123 /*
1124  * If we cannot find a cookie in our cache, we suspect that this is
1125  * because it points to a deleted file, so we ask the server to return
1126  * whatever it thinks is the next entry. We then feed this to filldir.
1127  * If all goes well, we should then be able to find our way round the
1128  * cache on the next call to readdir_search_pagecache();
1129  *
1130  * NOTE: we cannot add the anonymous page to the pagecache because
1131  *	 the data it contains might not be page aligned. Besides,
1132  *	 we should already have a complete representation of the
1133  *	 directory in the page cache by the time we get here.
1134  */
1135 static int uncached_readdir(struct nfs_readdir_descriptor *desc)
1136 {
1137 	struct folio	**arrays;
1138 	size_t		i, sz = 512;
1139 	__be32		verf[NFS_DIR_VERIFIER_SIZE];
1140 	int		status = -ENOMEM;
1141 
1142 	dfprintk(DIRCACHE, "NFS: uncached_readdir() searching for cookie %llu\n",
1143 			(unsigned long long)desc->dir_cookie);
1144 
1145 	arrays = kcalloc(sz, sizeof(*arrays), GFP_KERNEL);
1146 	if (!arrays)
1147 		goto out;
1148 	arrays[0] = nfs_readdir_folio_array_alloc(desc->dir_cookie, GFP_KERNEL);
1149 	if (!arrays[0])
1150 		goto out;
1151 
1152 	desc->folio_index = 0;
1153 	desc->cache_entry_index = 0;
1154 	desc->last_cookie = desc->dir_cookie;
1155 	desc->folio_index_max = 0;
1156 
1157 	trace_nfs_readdir_uncached(desc->file, desc->verf, desc->last_cookie,
1158 				   -1, desc->dtsize);
1159 
1160 	status = nfs_readdir_xdr_to_array(desc, desc->verf, verf, arrays, sz);
1161 	if (status < 0) {
1162 		trace_nfs_readdir_uncached_done(file_inode(desc->file), status);
1163 		goto out_free;
1164 	}
1165 
1166 	for (i = 0; !desc->eob && i < sz && arrays[i]; i++) {
1167 		desc->folio = arrays[i];
1168 		nfs_do_filldir(desc, verf);
1169 	}
1170 	desc->folio = NULL;
1171 
1172 	/*
1173 	 * Grow the dtsize if we have to go back for more pages,
1174 	 * or shrink it if we're reading too many.
1175 	 */
1176 	if (!desc->eof) {
1177 		if (!desc->eob)
1178 			nfs_grow_dtsize(desc);
1179 		else if (desc->buffer_fills == 1 &&
1180 			 i < (desc->folio_index_max >> 1))
1181 			nfs_shrink_dtsize(desc);
1182 	}
1183 out_free:
1184 	for (i = 0; i < sz && arrays[i]; i++)
1185 		nfs_readdir_folio_array_free(arrays[i]);
1186 out:
1187 	if (!nfs_readdir_use_cookie(desc->file))
1188 		nfs_readdir_rewind_search(desc);
1189 	desc->folio_index_max = -1;
1190 	kfree(arrays);
1191 	dfprintk(DIRCACHE, "NFS: %s: returns %d\n", __func__, status);
1192 	return status;
1193 }
1194 
1195 static bool nfs_readdir_handle_cache_misses(struct inode *inode,
1196 					    struct nfs_readdir_descriptor *desc,
1197 					    unsigned int cache_misses,
1198 					    bool force_clear)
1199 {
1200 	if (desc->ctx->pos == 0 || !desc->plus)
1201 		return false;
1202 	if (cache_misses <= NFS_READDIR_CACHE_MISS_THRESHOLD && !force_clear)
1203 		return false;
1204 	trace_nfs_readdir_force_readdirplus(inode);
1205 	return true;
1206 }
1207 
1208 /* The file offset position represents the dirent entry number.  A
1209    last cookie cache takes care of the common case of reading the
1210    whole directory.
1211  */
1212 static int nfs_readdir(struct file *file, struct dir_context *ctx)
1213 {
1214 	struct dentry	*dentry = file_dentry(file);
1215 	struct inode	*inode = d_inode(dentry);
1216 	struct nfs_inode *nfsi = NFS_I(inode);
1217 	struct nfs_open_dir_context *dir_ctx = file->private_data;
1218 	struct nfs_readdir_descriptor *desc;
1219 	unsigned int cache_hits, cache_misses;
1220 	bool force_clear;
1221 	int res;
1222 
1223 	dfprintk(FILE, "NFS: readdir(%pD2) starting at cookie %llu\n",
1224 			file, (long long)ctx->pos);
1225 	nfs_inc_stats(inode, NFSIOS_VFSGETDENTS);
1226 
1227 	/*
1228 	 * ctx->pos points to the dirent entry number.
1229 	 * *desc->dir_cookie has the cookie for the next entry. We have
1230 	 * to either find the entry with the appropriate number or
1231 	 * revalidate the cookie.
1232 	 */
1233 	nfs_revalidate_mapping(inode, file->f_mapping);
1234 
1235 	res = -ENOMEM;
1236 	desc = kzalloc(sizeof(*desc), GFP_KERNEL);
1237 	if (!desc)
1238 		goto out;
1239 	desc->file = file;
1240 	desc->ctx = ctx;
1241 	desc->folio_index_max = -1;
1242 
1243 	spin_lock(&file->f_lock);
1244 	desc->dir_cookie = dir_ctx->dir_cookie;
1245 	desc->folio_index = dir_ctx->page_index;
1246 	desc->last_cookie = dir_ctx->last_cookie;
1247 	desc->attr_gencount = dir_ctx->attr_gencount;
1248 	desc->eof = dir_ctx->eof;
1249 	nfs_set_dtsize(desc, dir_ctx->dtsize);
1250 	memcpy(desc->verf, dir_ctx->verf, sizeof(desc->verf));
1251 	cache_hits = atomic_xchg(&dir_ctx->cache_hits, 0);
1252 	cache_misses = atomic_xchg(&dir_ctx->cache_misses, 0);
1253 	force_clear = dir_ctx->force_clear;
1254 	spin_unlock(&file->f_lock);
1255 
1256 	if (desc->eof) {
1257 		res = 0;
1258 		goto out_free;
1259 	}
1260 
1261 	desc->plus = nfs_use_readdirplus(inode, ctx, cache_hits, cache_misses);
1262 	force_clear = nfs_readdir_handle_cache_misses(inode, desc, cache_misses,
1263 						      force_clear);
1264 	desc->clear_cache = force_clear;
1265 
1266 	do {
1267 		res = readdir_search_pagecache(desc);
1268 
1269 		if (res == -EBADCOOKIE) {
1270 			res = 0;
1271 			/* This means either end of directory */
1272 			if (desc->dir_cookie && !desc->eof) {
1273 				/* Or that the server has 'lost' a cookie */
1274 				res = uncached_readdir(desc);
1275 				if (res == 0)
1276 					continue;
1277 				if (res == -EBADCOOKIE || res == -ENOTSYNC)
1278 					res = 0;
1279 			}
1280 			break;
1281 		}
1282 		if (res == -ETOOSMALL && desc->plus) {
1283 			nfs_zap_caches(inode);
1284 			desc->plus = false;
1285 			desc->eof = false;
1286 			continue;
1287 		}
1288 		if (res < 0)
1289 			break;
1290 
1291 		nfs_do_filldir(desc, nfsi->cookieverf);
1292 		nfs_readdir_folio_unlock_and_put_cached(desc);
1293 		if (desc->folio_index == desc->folio_index_max)
1294 			desc->clear_cache = force_clear;
1295 	} while (!desc->eob && !desc->eof);
1296 
1297 	spin_lock(&file->f_lock);
1298 	dir_ctx->dir_cookie = desc->dir_cookie;
1299 	dir_ctx->last_cookie = desc->last_cookie;
1300 	dir_ctx->attr_gencount = desc->attr_gencount;
1301 	dir_ctx->page_index = desc->folio_index;
1302 	dir_ctx->force_clear = force_clear;
1303 	dir_ctx->eof = desc->eof;
1304 	dir_ctx->dtsize = desc->dtsize;
1305 	memcpy(dir_ctx->verf, desc->verf, sizeof(dir_ctx->verf));
1306 	spin_unlock(&file->f_lock);
1307 out_free:
1308 	kfree(desc);
1309 
1310 out:
1311 	dfprintk(FILE, "NFS: readdir(%pD2) returns %d\n", file, res);
1312 	return res;
1313 }
1314 
1315 static loff_t nfs_llseek_dir(struct file *filp, loff_t offset, int whence)
1316 {
1317 	struct nfs_open_dir_context *dir_ctx = filp->private_data;
1318 
1319 	dfprintk(FILE, "NFS: llseek dir(%pD2, %lld, %d)\n",
1320 			filp, offset, whence);
1321 
1322 	switch (whence) {
1323 	default:
1324 		return -EINVAL;
1325 	case SEEK_SET:
1326 		if (offset < 0)
1327 			return -EINVAL;
1328 		spin_lock(&filp->f_lock);
1329 		break;
1330 	case SEEK_CUR:
1331 		if (offset == 0)
1332 			return filp->f_pos;
1333 		spin_lock(&filp->f_lock);
1334 		offset += filp->f_pos;
1335 		if (offset < 0) {
1336 			spin_unlock(&filp->f_lock);
1337 			return -EINVAL;
1338 		}
1339 	}
1340 	if (offset != filp->f_pos) {
1341 		filp->f_pos = offset;
1342 		dir_ctx->page_index = 0;
1343 		if (!nfs_readdir_use_cookie(filp)) {
1344 			dir_ctx->dir_cookie = 0;
1345 			dir_ctx->last_cookie = 0;
1346 		} else {
1347 			dir_ctx->dir_cookie = offset;
1348 			dir_ctx->last_cookie = offset;
1349 		}
1350 		dir_ctx->eof = false;
1351 	}
1352 	spin_unlock(&filp->f_lock);
1353 	return offset;
1354 }
1355 
1356 /*
1357  * All directory operations under NFS are synchronous, so fsync()
1358  * is a dummy operation.
1359  */
1360 static int nfs_fsync_dir(struct file *filp, loff_t start, loff_t end,
1361 			 int datasync)
1362 {
1363 	dfprintk(FILE, "NFS: fsync dir(%pD2) datasync %d\n", filp, datasync);
1364 
1365 	nfs_inc_stats(file_inode(filp), NFSIOS_VFSFSYNC);
1366 	return 0;
1367 }
1368 
1369 /**
1370  * nfs_force_lookup_revalidate - Mark the directory as having changed
1371  * @dir: pointer to directory inode
1372  *
1373  * This forces the revalidation code in nfs_lookup_revalidate() to do a
1374  * full lookup on all child dentries of 'dir' whenever a change occurs
1375  * on the server that might have invalidated our dcache.
1376  *
1377  * Note that we reserve bit '0' as a tag to let us know when a dentry
1378  * was revalidated while holding a delegation on its inode.
1379  *
1380  * The caller should be holding dir->i_lock
1381  */
1382 void nfs_force_lookup_revalidate(struct inode *dir)
1383 {
1384 	NFS_I(dir)->cache_change_attribute += 2;
1385 }
1386 EXPORT_SYMBOL_GPL(nfs_force_lookup_revalidate);
1387 
1388 /**
1389  * nfs_verify_change_attribute - Detects NFS remote directory changes
1390  * @dir: pointer to parent directory inode
1391  * @verf: previously saved change attribute
1392  *
1393  * Return "false" if the verifiers doesn't match the change attribute.
1394  * This would usually indicate that the directory contents have changed on
1395  * the server, and that any dentries need revalidating.
1396  */
1397 static bool nfs_verify_change_attribute(struct inode *dir, unsigned long verf)
1398 {
1399 	return (verf & ~1UL) == nfs_save_change_attribute(dir);
1400 }
1401 
1402 static void nfs_set_verifier_delegated(unsigned long *verf)
1403 {
1404 	*verf |= 1UL;
1405 }
1406 
1407 #if IS_ENABLED(CONFIG_NFS_V4)
1408 static void nfs_unset_verifier_delegated(unsigned long *verf)
1409 {
1410 	*verf &= ~1UL;
1411 }
1412 #endif /* IS_ENABLED(CONFIG_NFS_V4) */
1413 
1414 static bool nfs_test_verifier_delegated(unsigned long verf)
1415 {
1416 	return verf & 1;
1417 }
1418 
1419 static bool nfs_verifier_is_delegated(struct dentry *dentry)
1420 {
1421 	return nfs_test_verifier_delegated(dentry->d_time);
1422 }
1423 
1424 static void nfs_set_verifier_locked(struct dentry *dentry, unsigned long verf)
1425 {
1426 	struct inode *inode = d_inode(dentry);
1427 	struct inode *dir = d_inode(dentry->d_parent);
1428 
1429 	if (!nfs_verify_change_attribute(dir, verf))
1430 		return;
1431 	if (inode && NFS_PROTO(inode)->have_delegation(inode, FMODE_READ))
1432 		nfs_set_verifier_delegated(&verf);
1433 	dentry->d_time = verf;
1434 }
1435 
1436 /**
1437  * nfs_set_verifier - save a parent directory verifier in the dentry
1438  * @dentry: pointer to dentry
1439  * @verf: verifier to save
1440  *
1441  * Saves the parent directory verifier in @dentry. If the inode has
1442  * a delegation, we also tag the dentry as having been revalidated
1443  * while holding a delegation so that we know we don't have to
1444  * look it up again after a directory change.
1445  */
1446 void nfs_set_verifier(struct dentry *dentry, unsigned long verf)
1447 {
1448 
1449 	spin_lock(&dentry->d_lock);
1450 	nfs_set_verifier_locked(dentry, verf);
1451 	spin_unlock(&dentry->d_lock);
1452 }
1453 EXPORT_SYMBOL_GPL(nfs_set_verifier);
1454 
1455 #if IS_ENABLED(CONFIG_NFS_V4)
1456 /**
1457  * nfs_clear_verifier_delegated - clear the dir verifier delegation tag
1458  * @inode: pointer to inode
1459  *
1460  * Iterates through the dentries in the inode alias list and clears
1461  * the tag used to indicate that the dentry has been revalidated
1462  * while holding a delegation.
1463  * This function is intended for use when the delegation is being
1464  * returned or revoked.
1465  */
1466 void nfs_clear_verifier_delegated(struct inode *inode)
1467 {
1468 	struct dentry *alias;
1469 
1470 	if (!inode)
1471 		return;
1472 	spin_lock(&inode->i_lock);
1473 	hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
1474 		spin_lock(&alias->d_lock);
1475 		nfs_unset_verifier_delegated(&alias->d_time);
1476 		spin_unlock(&alias->d_lock);
1477 	}
1478 	spin_unlock(&inode->i_lock);
1479 }
1480 EXPORT_SYMBOL_GPL(nfs_clear_verifier_delegated);
1481 #endif /* IS_ENABLED(CONFIG_NFS_V4) */
1482 
1483 static int nfs_dentry_verify_change(struct inode *dir, struct dentry *dentry)
1484 {
1485 	if (nfs_server_capable(dir, NFS_CAP_CASE_INSENSITIVE) &&
1486 	    d_really_is_negative(dentry))
1487 		return dentry->d_time == inode_peek_iversion_raw(dir);
1488 	return nfs_verify_change_attribute(dir, dentry->d_time);
1489 }
1490 
1491 /*
1492  * A check for whether or not the parent directory has changed.
1493  * In the case it has, we assume that the dentries are untrustworthy
1494  * and may need to be looked up again.
1495  * If rcu_walk prevents us from performing a full check, return 0.
1496  */
1497 static int nfs_check_verifier(struct inode *dir, struct dentry *dentry,
1498 			      int rcu_walk)
1499 {
1500 	if (IS_ROOT(dentry))
1501 		return 1;
1502 	if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONE)
1503 		return 0;
1504 	if (!nfs_dentry_verify_change(dir, dentry))
1505 		return 0;
1506 	/* Revalidate nfsi->cache_change_attribute before we declare a match */
1507 	if (nfs_mapping_need_revalidate_inode(dir)) {
1508 		if (rcu_walk)
1509 			return 0;
1510 		if (__nfs_revalidate_inode(NFS_SERVER(dir), dir) < 0)
1511 			return 0;
1512 	}
1513 	if (!nfs_dentry_verify_change(dir, dentry))
1514 		return 0;
1515 	return 1;
1516 }
1517 
1518 /*
1519  * Use intent information to check whether or not we're going to do
1520  * an O_EXCL create using this path component.
1521  */
1522 static int nfs_is_exclusive_create(struct inode *dir, unsigned int flags)
1523 {
1524 	if (NFS_PROTO(dir)->version == 2)
1525 		return 0;
1526 	return flags & LOOKUP_EXCL;
1527 }
1528 
1529 /*
1530  * Inode and filehandle revalidation for lookups.
1531  *
1532  * We force revalidation in the cases where the VFS sets LOOKUP_REVAL,
1533  * or if the intent information indicates that we're about to open this
1534  * particular file and the "nocto" mount flag is not set.
1535  *
1536  */
1537 static
1538 int nfs_lookup_verify_inode(struct inode *inode, unsigned int flags)
1539 {
1540 	struct nfs_server *server = NFS_SERVER(inode);
1541 	int ret;
1542 
1543 	if (IS_AUTOMOUNT(inode))
1544 		return 0;
1545 
1546 	if (flags & LOOKUP_OPEN) {
1547 		switch (inode->i_mode & S_IFMT) {
1548 		case S_IFREG:
1549 			/* A NFSv4 OPEN will revalidate later */
1550 			if (server->caps & NFS_CAP_ATOMIC_OPEN)
1551 				goto out;
1552 			fallthrough;
1553 		case S_IFDIR:
1554 			if (server->flags & NFS_MOUNT_NOCTO)
1555 				break;
1556 			/* NFS close-to-open cache consistency validation */
1557 			goto out_force;
1558 		}
1559 	}
1560 
1561 	/* VFS wants an on-the-wire revalidation */
1562 	if (flags & LOOKUP_REVAL)
1563 		goto out_force;
1564 out:
1565 	if (inode->i_nlink > 0 ||
1566 	    (inode->i_nlink == 0 &&
1567 	     test_bit(NFS_INO_PRESERVE_UNLINKED, &NFS_I(inode)->flags)))
1568 		return 0;
1569 	else
1570 		return -ESTALE;
1571 out_force:
1572 	if (flags & LOOKUP_RCU)
1573 		return -ECHILD;
1574 	ret = __nfs_revalidate_inode(server, inode);
1575 	if (ret != 0)
1576 		return ret;
1577 	goto out;
1578 }
1579 
1580 static void nfs_mark_dir_for_revalidate(struct inode *inode)
1581 {
1582 	spin_lock(&inode->i_lock);
1583 	nfs_set_cache_invalid(inode, NFS_INO_INVALID_CHANGE);
1584 	spin_unlock(&inode->i_lock);
1585 }
1586 
1587 /*
1588  * We judge how long we want to trust negative
1589  * dentries by looking at the parent inode mtime.
1590  *
1591  * If parent mtime has changed, we revalidate, else we wait for a
1592  * period corresponding to the parent's attribute cache timeout value.
1593  *
1594  * If LOOKUP_RCU prevents us from performing a full check, return 1
1595  * suggesting a reval is needed.
1596  *
1597  * Note that when creating a new file, or looking up a rename target,
1598  * then it shouldn't be necessary to revalidate a negative dentry.
1599  */
1600 static inline
1601 int nfs_neg_need_reval(struct inode *dir, struct dentry *dentry,
1602 		       unsigned int flags)
1603 {
1604 	if (flags & (LOOKUP_CREATE | LOOKUP_RENAME_TARGET))
1605 		return 0;
1606 	if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONEG)
1607 		return 1;
1608 	/* Case insensitive server? Revalidate negative dentries */
1609 	if (nfs_server_capable(dir, NFS_CAP_CASE_INSENSITIVE))
1610 		return 1;
1611 	return !nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU);
1612 }
1613 
1614 static int
1615 nfs_lookup_revalidate_done(struct inode *dir, struct dentry *dentry,
1616 			   struct inode *inode, int error)
1617 {
1618 	switch (error) {
1619 	case 1:
1620 		break;
1621 	case 0:
1622 		/*
1623 		 * We can't d_drop the root of a disconnected tree:
1624 		 * its d_hash is on the s_anon list and d_drop() would hide
1625 		 * it from shrink_dcache_for_unmount(), leading to busy
1626 		 * inodes on unmount and further oopses.
1627 		 */
1628 		if (inode && IS_ROOT(dentry))
1629 			error = 1;
1630 		break;
1631 	}
1632 	trace_nfs_lookup_revalidate_exit(dir, dentry, 0, error);
1633 	return error;
1634 }
1635 
1636 static int
1637 nfs_lookup_revalidate_negative(struct inode *dir, struct dentry *dentry,
1638 			       unsigned int flags)
1639 {
1640 	int ret = 1;
1641 	if (nfs_neg_need_reval(dir, dentry, flags)) {
1642 		if (flags & LOOKUP_RCU)
1643 			return -ECHILD;
1644 		ret = 0;
1645 	}
1646 	return nfs_lookup_revalidate_done(dir, dentry, NULL, ret);
1647 }
1648 
1649 static int
1650 nfs_lookup_revalidate_delegated(struct inode *dir, struct dentry *dentry,
1651 				struct inode *inode)
1652 {
1653 	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1654 	return nfs_lookup_revalidate_done(dir, dentry, inode, 1);
1655 }
1656 
1657 static int nfs_lookup_revalidate_dentry(struct inode *dir,
1658 					struct dentry *dentry,
1659 					struct inode *inode, unsigned int flags)
1660 {
1661 	struct nfs_fh *fhandle;
1662 	struct nfs_fattr *fattr;
1663 	unsigned long dir_verifier;
1664 	int ret;
1665 
1666 	trace_nfs_lookup_revalidate_enter(dir, dentry, flags);
1667 
1668 	ret = -ENOMEM;
1669 	fhandle = nfs_alloc_fhandle();
1670 	fattr = nfs_alloc_fattr_with_label(NFS_SERVER(inode));
1671 	if (fhandle == NULL || fattr == NULL)
1672 		goto out;
1673 
1674 	dir_verifier = nfs_save_change_attribute(dir);
1675 	ret = NFS_PROTO(dir)->lookup(dir, dentry, fhandle, fattr);
1676 	if (ret < 0) {
1677 		switch (ret) {
1678 		case -ESTALE:
1679 		case -ENOENT:
1680 			ret = 0;
1681 			break;
1682 		case -ETIMEDOUT:
1683 			if (NFS_SERVER(inode)->flags & NFS_MOUNT_SOFTREVAL)
1684 				ret = 1;
1685 		}
1686 		goto out;
1687 	}
1688 
1689 	/* Request help from readdirplus */
1690 	nfs_lookup_advise_force_readdirplus(dir, flags);
1691 
1692 	ret = 0;
1693 	if (nfs_compare_fh(NFS_FH(inode), fhandle))
1694 		goto out;
1695 	if (nfs_refresh_inode(inode, fattr) < 0)
1696 		goto out;
1697 
1698 	nfs_setsecurity(inode, fattr);
1699 	nfs_set_verifier(dentry, dir_verifier);
1700 
1701 	ret = 1;
1702 out:
1703 	nfs_free_fattr(fattr);
1704 	nfs_free_fhandle(fhandle);
1705 
1706 	/*
1707 	 * If the lookup failed despite the dentry change attribute being
1708 	 * a match, then we should revalidate the directory cache.
1709 	 */
1710 	if (!ret && nfs_dentry_verify_change(dir, dentry))
1711 		nfs_mark_dir_for_revalidate(dir);
1712 	return nfs_lookup_revalidate_done(dir, dentry, inode, ret);
1713 }
1714 
1715 /*
1716  * This is called every time the dcache has a lookup hit,
1717  * and we should check whether we can really trust that
1718  * lookup.
1719  *
1720  * NOTE! The hit can be a negative hit too, don't assume
1721  * we have an inode!
1722  *
1723  * If the parent directory is seen to have changed, we throw out the
1724  * cached dentry and do a new lookup.
1725  */
1726 static int
1727 nfs_do_lookup_revalidate(struct inode *dir, struct dentry *dentry,
1728 			 unsigned int flags)
1729 {
1730 	struct inode *inode;
1731 	int error;
1732 
1733 	nfs_inc_stats(dir, NFSIOS_DENTRYREVALIDATE);
1734 	inode = d_inode(dentry);
1735 
1736 	if (!inode)
1737 		return nfs_lookup_revalidate_negative(dir, dentry, flags);
1738 
1739 	if (is_bad_inode(inode)) {
1740 		dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n",
1741 				__func__, dentry);
1742 		goto out_bad;
1743 	}
1744 
1745 	if ((flags & LOOKUP_RENAME_TARGET) && d_count(dentry) < 2 &&
1746 	    nfs_server_capable(dir, NFS_CAP_CASE_INSENSITIVE))
1747 		goto out_bad;
1748 
1749 	if (nfs_verifier_is_delegated(dentry))
1750 		return nfs_lookup_revalidate_delegated(dir, dentry, inode);
1751 
1752 	/* Force a full look up iff the parent directory has changed */
1753 	if (!(flags & (LOOKUP_EXCL | LOOKUP_REVAL)) &&
1754 	    nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU)) {
1755 		error = nfs_lookup_verify_inode(inode, flags);
1756 		if (error) {
1757 			if (error == -ESTALE)
1758 				nfs_mark_dir_for_revalidate(dir);
1759 			goto out_bad;
1760 		}
1761 		goto out_valid;
1762 	}
1763 
1764 	if (flags & LOOKUP_RCU)
1765 		return -ECHILD;
1766 
1767 	if (NFS_STALE(inode))
1768 		goto out_bad;
1769 
1770 	return nfs_lookup_revalidate_dentry(dir, dentry, inode, flags);
1771 out_valid:
1772 	return nfs_lookup_revalidate_done(dir, dentry, inode, 1);
1773 out_bad:
1774 	if (flags & LOOKUP_RCU)
1775 		return -ECHILD;
1776 	return nfs_lookup_revalidate_done(dir, dentry, inode, 0);
1777 }
1778 
1779 static int
1780 __nfs_lookup_revalidate(struct dentry *dentry, unsigned int flags,
1781 			int (*reval)(struct inode *, struct dentry *, unsigned int))
1782 {
1783 	struct dentry *parent;
1784 	struct inode *dir;
1785 	int ret;
1786 
1787 	if (flags & LOOKUP_RCU) {
1788 		if (dentry->d_fsdata == NFS_FSDATA_BLOCKED)
1789 			return -ECHILD;
1790 		parent = READ_ONCE(dentry->d_parent);
1791 		dir = d_inode_rcu(parent);
1792 		if (!dir)
1793 			return -ECHILD;
1794 		ret = reval(dir, dentry, flags);
1795 		if (parent != READ_ONCE(dentry->d_parent))
1796 			return -ECHILD;
1797 	} else {
1798 		/* Wait for unlink to complete */
1799 		wait_var_event(&dentry->d_fsdata,
1800 			       dentry->d_fsdata != NFS_FSDATA_BLOCKED);
1801 		parent = dget_parent(dentry);
1802 		ret = reval(d_inode(parent), dentry, flags);
1803 		dput(parent);
1804 	}
1805 	return ret;
1806 }
1807 
1808 static int nfs_lookup_revalidate(struct dentry *dentry, unsigned int flags)
1809 {
1810 	return __nfs_lookup_revalidate(dentry, flags, nfs_do_lookup_revalidate);
1811 }
1812 
1813 /*
1814  * A weaker form of d_revalidate for revalidating just the d_inode(dentry)
1815  * when we don't really care about the dentry name. This is called when a
1816  * pathwalk ends on a dentry that was not found via a normal lookup in the
1817  * parent dir (e.g.: ".", "..", procfs symlinks or mountpoint traversals).
1818  *
1819  * In this situation, we just want to verify that the inode itself is OK
1820  * since the dentry might have changed on the server.
1821  */
1822 static int nfs_weak_revalidate(struct dentry *dentry, unsigned int flags)
1823 {
1824 	struct inode *inode = d_inode(dentry);
1825 	int error = 0;
1826 
1827 	/*
1828 	 * I believe we can only get a negative dentry here in the case of a
1829 	 * procfs-style symlink. Just assume it's correct for now, but we may
1830 	 * eventually need to do something more here.
1831 	 */
1832 	if (!inode) {
1833 		dfprintk(LOOKUPCACHE, "%s: %pd2 has negative inode\n",
1834 				__func__, dentry);
1835 		return 1;
1836 	}
1837 
1838 	if (is_bad_inode(inode)) {
1839 		dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n",
1840 				__func__, dentry);
1841 		return 0;
1842 	}
1843 
1844 	error = nfs_lookup_verify_inode(inode, flags);
1845 	dfprintk(LOOKUPCACHE, "NFS: %s: inode %lu is %s\n",
1846 			__func__, inode->i_ino, error ? "invalid" : "valid");
1847 	return !error;
1848 }
1849 
1850 /*
1851  * This is called from dput() when d_count is going to 0.
1852  */
1853 static int nfs_dentry_delete(const struct dentry *dentry)
1854 {
1855 	dfprintk(VFS, "NFS: dentry_delete(%pd2, %x)\n",
1856 		dentry, dentry->d_flags);
1857 
1858 	/* Unhash any dentry with a stale inode */
1859 	if (d_really_is_positive(dentry) && NFS_STALE(d_inode(dentry)))
1860 		return 1;
1861 
1862 	if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1863 		/* Unhash it, so that ->d_iput() would be called */
1864 		return 1;
1865 	}
1866 	if (!(dentry->d_sb->s_flags & SB_ACTIVE)) {
1867 		/* Unhash it, so that ancestors of killed async unlink
1868 		 * files will be cleaned up during umount */
1869 		return 1;
1870 	}
1871 	return 0;
1872 
1873 }
1874 
1875 /* Ensure that we revalidate inode->i_nlink */
1876 static void nfs_drop_nlink(struct inode *inode)
1877 {
1878 	spin_lock(&inode->i_lock);
1879 	/* drop the inode if we're reasonably sure this is the last link */
1880 	if (inode->i_nlink > 0)
1881 		drop_nlink(inode);
1882 	NFS_I(inode)->attr_gencount = nfs_inc_attr_generation_counter();
1883 	nfs_set_cache_invalid(
1884 		inode, NFS_INO_INVALID_CHANGE | NFS_INO_INVALID_CTIME |
1885 			       NFS_INO_INVALID_NLINK);
1886 	spin_unlock(&inode->i_lock);
1887 }
1888 
1889 /*
1890  * Called when the dentry loses inode.
1891  * We use it to clean up silly-renamed files.
1892  */
1893 static void nfs_dentry_iput(struct dentry *dentry, struct inode *inode)
1894 {
1895 	if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1896 		nfs_complete_unlink(dentry, inode);
1897 		nfs_drop_nlink(inode);
1898 	}
1899 	iput(inode);
1900 }
1901 
1902 static void nfs_d_release(struct dentry *dentry)
1903 {
1904 	/* free cached devname value, if it survived that far */
1905 	if (unlikely(dentry->d_fsdata)) {
1906 		if (dentry->d_flags & DCACHE_NFSFS_RENAMED)
1907 			WARN_ON(1);
1908 		else
1909 			kfree(dentry->d_fsdata);
1910 	}
1911 }
1912 
1913 const struct dentry_operations nfs_dentry_operations = {
1914 	.d_revalidate	= nfs_lookup_revalidate,
1915 	.d_weak_revalidate	= nfs_weak_revalidate,
1916 	.d_delete	= nfs_dentry_delete,
1917 	.d_iput		= nfs_dentry_iput,
1918 	.d_automount	= nfs_d_automount,
1919 	.d_release	= nfs_d_release,
1920 };
1921 EXPORT_SYMBOL_GPL(nfs_dentry_operations);
1922 
1923 struct dentry *nfs_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
1924 {
1925 	struct dentry *res;
1926 	struct inode *inode = NULL;
1927 	struct nfs_fh *fhandle = NULL;
1928 	struct nfs_fattr *fattr = NULL;
1929 	unsigned long dir_verifier;
1930 	int error;
1931 
1932 	dfprintk(VFS, "NFS: lookup(%pd2)\n", dentry);
1933 	nfs_inc_stats(dir, NFSIOS_VFSLOOKUP);
1934 
1935 	if (unlikely(dentry->d_name.len > NFS_SERVER(dir)->namelen))
1936 		return ERR_PTR(-ENAMETOOLONG);
1937 
1938 	/*
1939 	 * If we're doing an exclusive create, optimize away the lookup
1940 	 * but don't hash the dentry.
1941 	 */
1942 	if (nfs_is_exclusive_create(dir, flags) || flags & LOOKUP_RENAME_TARGET)
1943 		return NULL;
1944 
1945 	res = ERR_PTR(-ENOMEM);
1946 	fhandle = nfs_alloc_fhandle();
1947 	fattr = nfs_alloc_fattr_with_label(NFS_SERVER(dir));
1948 	if (fhandle == NULL || fattr == NULL)
1949 		goto out;
1950 
1951 	dir_verifier = nfs_save_change_attribute(dir);
1952 	trace_nfs_lookup_enter(dir, dentry, flags);
1953 	error = NFS_PROTO(dir)->lookup(dir, dentry, fhandle, fattr);
1954 	if (error == -ENOENT) {
1955 		if (nfs_server_capable(dir, NFS_CAP_CASE_INSENSITIVE))
1956 			dir_verifier = inode_peek_iversion_raw(dir);
1957 		goto no_entry;
1958 	}
1959 	if (error < 0) {
1960 		res = ERR_PTR(error);
1961 		goto out;
1962 	}
1963 	inode = nfs_fhget(dentry->d_sb, fhandle, fattr);
1964 	res = ERR_CAST(inode);
1965 	if (IS_ERR(res))
1966 		goto out;
1967 
1968 	/* Notify readdir to use READDIRPLUS */
1969 	nfs_lookup_advise_force_readdirplus(dir, flags);
1970 
1971 no_entry:
1972 	res = d_splice_alias(inode, dentry);
1973 	if (res != NULL) {
1974 		if (IS_ERR(res))
1975 			goto out;
1976 		dentry = res;
1977 	}
1978 	nfs_set_verifier(dentry, dir_verifier);
1979 out:
1980 	trace_nfs_lookup_exit(dir, dentry, flags, PTR_ERR_OR_ZERO(res));
1981 	nfs_free_fattr(fattr);
1982 	nfs_free_fhandle(fhandle);
1983 	return res;
1984 }
1985 EXPORT_SYMBOL_GPL(nfs_lookup);
1986 
1987 void nfs_d_prune_case_insensitive_aliases(struct inode *inode)
1988 {
1989 	/* Case insensitive server? Revalidate dentries */
1990 	if (inode && nfs_server_capable(inode, NFS_CAP_CASE_INSENSITIVE))
1991 		d_prune_aliases(inode);
1992 }
1993 EXPORT_SYMBOL_GPL(nfs_d_prune_case_insensitive_aliases);
1994 
1995 #if IS_ENABLED(CONFIG_NFS_V4)
1996 static int nfs4_lookup_revalidate(struct dentry *, unsigned int);
1997 
1998 const struct dentry_operations nfs4_dentry_operations = {
1999 	.d_revalidate	= nfs4_lookup_revalidate,
2000 	.d_weak_revalidate	= nfs_weak_revalidate,
2001 	.d_delete	= nfs_dentry_delete,
2002 	.d_iput		= nfs_dentry_iput,
2003 	.d_automount	= nfs_d_automount,
2004 	.d_release	= nfs_d_release,
2005 };
2006 EXPORT_SYMBOL_GPL(nfs4_dentry_operations);
2007 
2008 static struct nfs_open_context *create_nfs_open_context(struct dentry *dentry, int open_flags, struct file *filp)
2009 {
2010 	return alloc_nfs_open_context(dentry, flags_to_mode(open_flags), filp);
2011 }
2012 
2013 static int do_open(struct inode *inode, struct file *filp)
2014 {
2015 	nfs_fscache_open_file(inode, filp);
2016 	return 0;
2017 }
2018 
2019 static int nfs_finish_open(struct nfs_open_context *ctx,
2020 			   struct dentry *dentry,
2021 			   struct file *file, unsigned open_flags)
2022 {
2023 	int err;
2024 
2025 	err = finish_open(file, dentry, do_open);
2026 	if (err)
2027 		goto out;
2028 	if (S_ISREG(file_inode(file)->i_mode))
2029 		nfs_file_set_open_context(file, ctx);
2030 	else
2031 		err = -EOPENSTALE;
2032 out:
2033 	return err;
2034 }
2035 
2036 int nfs_atomic_open(struct inode *dir, struct dentry *dentry,
2037 		    struct file *file, unsigned open_flags,
2038 		    umode_t mode)
2039 {
2040 	DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
2041 	struct nfs_open_context *ctx;
2042 	struct dentry *res;
2043 	struct iattr attr = { .ia_valid = ATTR_OPEN };
2044 	struct inode *inode;
2045 	unsigned int lookup_flags = 0;
2046 	unsigned long dir_verifier;
2047 	bool switched = false;
2048 	int created = 0;
2049 	int err;
2050 
2051 	/* Expect a negative dentry */
2052 	BUG_ON(d_inode(dentry));
2053 
2054 	dfprintk(VFS, "NFS: atomic_open(%s/%lu), %pd\n",
2055 			dir->i_sb->s_id, dir->i_ino, dentry);
2056 
2057 	err = nfs_check_flags(open_flags);
2058 	if (err)
2059 		return err;
2060 
2061 	/* NFS only supports OPEN on regular files */
2062 	if ((open_flags & O_DIRECTORY)) {
2063 		if (!d_in_lookup(dentry)) {
2064 			/*
2065 			 * Hashed negative dentry with O_DIRECTORY: dentry was
2066 			 * revalidated and is fine, no need to perform lookup
2067 			 * again
2068 			 */
2069 			return -ENOENT;
2070 		}
2071 		lookup_flags = LOOKUP_OPEN|LOOKUP_DIRECTORY;
2072 		goto no_open;
2073 	}
2074 
2075 	if (dentry->d_name.len > NFS_SERVER(dir)->namelen)
2076 		return -ENAMETOOLONG;
2077 
2078 	if (open_flags & O_CREAT) {
2079 		struct nfs_server *server = NFS_SERVER(dir);
2080 
2081 		if (!(server->attr_bitmask[2] & FATTR4_WORD2_MODE_UMASK))
2082 			mode &= ~current_umask();
2083 
2084 		attr.ia_valid |= ATTR_MODE;
2085 		attr.ia_mode = mode;
2086 	}
2087 	if (open_flags & O_TRUNC) {
2088 		attr.ia_valid |= ATTR_SIZE;
2089 		attr.ia_size = 0;
2090 	}
2091 
2092 	if (!(open_flags & O_CREAT) && !d_in_lookup(dentry)) {
2093 		d_drop(dentry);
2094 		switched = true;
2095 		dentry = d_alloc_parallel(dentry->d_parent,
2096 					  &dentry->d_name, &wq);
2097 		if (IS_ERR(dentry))
2098 			return PTR_ERR(dentry);
2099 		if (unlikely(!d_in_lookup(dentry)))
2100 			return finish_no_open(file, dentry);
2101 	}
2102 
2103 	ctx = create_nfs_open_context(dentry, open_flags, file);
2104 	err = PTR_ERR(ctx);
2105 	if (IS_ERR(ctx))
2106 		goto out;
2107 
2108 	trace_nfs_atomic_open_enter(dir, ctx, open_flags);
2109 	inode = NFS_PROTO(dir)->open_context(dir, ctx, open_flags, &attr, &created);
2110 	if (created)
2111 		file->f_mode |= FMODE_CREATED;
2112 	if (IS_ERR(inode)) {
2113 		err = PTR_ERR(inode);
2114 		trace_nfs_atomic_open_exit(dir, ctx, open_flags, err);
2115 		put_nfs_open_context(ctx);
2116 		d_drop(dentry);
2117 		switch (err) {
2118 		case -ENOENT:
2119 			d_splice_alias(NULL, dentry);
2120 			if (nfs_server_capable(dir, NFS_CAP_CASE_INSENSITIVE))
2121 				dir_verifier = inode_peek_iversion_raw(dir);
2122 			else
2123 				dir_verifier = nfs_save_change_attribute(dir);
2124 			nfs_set_verifier(dentry, dir_verifier);
2125 			break;
2126 		case -EISDIR:
2127 		case -ENOTDIR:
2128 			goto no_open;
2129 		case -ELOOP:
2130 			if (!(open_flags & O_NOFOLLOW))
2131 				goto no_open;
2132 			break;
2133 			/* case -EINVAL: */
2134 		default:
2135 			break;
2136 		}
2137 		goto out;
2138 	}
2139 	file->f_mode |= FMODE_CAN_ODIRECT;
2140 
2141 	err = nfs_finish_open(ctx, ctx->dentry, file, open_flags);
2142 	trace_nfs_atomic_open_exit(dir, ctx, open_flags, err);
2143 	put_nfs_open_context(ctx);
2144 out:
2145 	if (unlikely(switched)) {
2146 		d_lookup_done(dentry);
2147 		dput(dentry);
2148 	}
2149 	return err;
2150 
2151 no_open:
2152 	res = nfs_lookup(dir, dentry, lookup_flags);
2153 	if (!res) {
2154 		inode = d_inode(dentry);
2155 		if ((lookup_flags & LOOKUP_DIRECTORY) && inode &&
2156 		    !(S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode)))
2157 			res = ERR_PTR(-ENOTDIR);
2158 		else if (inode && S_ISREG(inode->i_mode))
2159 			res = ERR_PTR(-EOPENSTALE);
2160 	} else if (!IS_ERR(res)) {
2161 		inode = d_inode(res);
2162 		if ((lookup_flags & LOOKUP_DIRECTORY) && inode &&
2163 		    !(S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))) {
2164 			dput(res);
2165 			res = ERR_PTR(-ENOTDIR);
2166 		} else if (inode && S_ISREG(inode->i_mode)) {
2167 			dput(res);
2168 			res = ERR_PTR(-EOPENSTALE);
2169 		}
2170 	}
2171 	if (switched) {
2172 		d_lookup_done(dentry);
2173 		if (!res)
2174 			res = dentry;
2175 		else
2176 			dput(dentry);
2177 	}
2178 	if (IS_ERR(res))
2179 		return PTR_ERR(res);
2180 	return finish_no_open(file, res);
2181 }
2182 EXPORT_SYMBOL_GPL(nfs_atomic_open);
2183 
2184 static int
2185 nfs4_do_lookup_revalidate(struct inode *dir, struct dentry *dentry,
2186 			  unsigned int flags)
2187 {
2188 	struct inode *inode;
2189 
2190 	if (!(flags & LOOKUP_OPEN) || (flags & LOOKUP_DIRECTORY))
2191 		goto full_reval;
2192 	if (d_mountpoint(dentry))
2193 		goto full_reval;
2194 
2195 	inode = d_inode(dentry);
2196 
2197 	/* We can't create new files in nfs_open_revalidate(), so we
2198 	 * optimize away revalidation of negative dentries.
2199 	 */
2200 	if (inode == NULL)
2201 		goto full_reval;
2202 
2203 	if (nfs_verifier_is_delegated(dentry))
2204 		return nfs_lookup_revalidate_delegated(dir, dentry, inode);
2205 
2206 	/* NFS only supports OPEN on regular files */
2207 	if (!S_ISREG(inode->i_mode))
2208 		goto full_reval;
2209 
2210 	/* We cannot do exclusive creation on a positive dentry */
2211 	if (flags & (LOOKUP_EXCL | LOOKUP_REVAL))
2212 		goto reval_dentry;
2213 
2214 	/* Check if the directory changed */
2215 	if (!nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU))
2216 		goto reval_dentry;
2217 
2218 	/* Let f_op->open() actually open (and revalidate) the file */
2219 	return 1;
2220 reval_dentry:
2221 	if (flags & LOOKUP_RCU)
2222 		return -ECHILD;
2223 	return nfs_lookup_revalidate_dentry(dir, dentry, inode, flags);
2224 
2225 full_reval:
2226 	return nfs_do_lookup_revalidate(dir, dentry, flags);
2227 }
2228 
2229 static int nfs4_lookup_revalidate(struct dentry *dentry, unsigned int flags)
2230 {
2231 	return __nfs_lookup_revalidate(dentry, flags,
2232 			nfs4_do_lookup_revalidate);
2233 }
2234 
2235 #endif /* CONFIG_NFSV4 */
2236 
2237 struct dentry *
2238 nfs_add_or_obtain(struct dentry *dentry, struct nfs_fh *fhandle,
2239 				struct nfs_fattr *fattr)
2240 {
2241 	struct dentry *parent = dget_parent(dentry);
2242 	struct inode *dir = d_inode(parent);
2243 	struct inode *inode;
2244 	struct dentry *d;
2245 	int error;
2246 
2247 	d_drop(dentry);
2248 
2249 	if (fhandle->size == 0) {
2250 		error = NFS_PROTO(dir)->lookup(dir, dentry, fhandle, fattr);
2251 		if (error)
2252 			goto out_error;
2253 	}
2254 	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
2255 	if (!(fattr->valid & NFS_ATTR_FATTR)) {
2256 		struct nfs_server *server = NFS_SB(dentry->d_sb);
2257 		error = server->nfs_client->rpc_ops->getattr(server, fhandle,
2258 				fattr, NULL);
2259 		if (error < 0)
2260 			goto out_error;
2261 	}
2262 	inode = nfs_fhget(dentry->d_sb, fhandle, fattr);
2263 	d = d_splice_alias(inode, dentry);
2264 out:
2265 	dput(parent);
2266 	return d;
2267 out_error:
2268 	d = ERR_PTR(error);
2269 	goto out;
2270 }
2271 EXPORT_SYMBOL_GPL(nfs_add_or_obtain);
2272 
2273 /*
2274  * Code common to create, mkdir, and mknod.
2275  */
2276 int nfs_instantiate(struct dentry *dentry, struct nfs_fh *fhandle,
2277 				struct nfs_fattr *fattr)
2278 {
2279 	struct dentry *d;
2280 
2281 	d = nfs_add_or_obtain(dentry, fhandle, fattr);
2282 	if (IS_ERR(d))
2283 		return PTR_ERR(d);
2284 
2285 	/* Callers don't care */
2286 	dput(d);
2287 	return 0;
2288 }
2289 EXPORT_SYMBOL_GPL(nfs_instantiate);
2290 
2291 /*
2292  * Following a failed create operation, we drop the dentry rather
2293  * than retain a negative dentry. This avoids a problem in the event
2294  * that the operation succeeded on the server, but an error in the
2295  * reply path made it appear to have failed.
2296  */
2297 int nfs_create(struct mnt_idmap *idmap, struct inode *dir,
2298 	       struct dentry *dentry, umode_t mode, bool excl)
2299 {
2300 	struct iattr attr;
2301 	int open_flags = excl ? O_CREAT | O_EXCL : O_CREAT;
2302 	int error;
2303 
2304 	dfprintk(VFS, "NFS: create(%s/%lu), %pd\n",
2305 			dir->i_sb->s_id, dir->i_ino, dentry);
2306 
2307 	attr.ia_mode = mode;
2308 	attr.ia_valid = ATTR_MODE;
2309 
2310 	trace_nfs_create_enter(dir, dentry, open_flags);
2311 	error = NFS_PROTO(dir)->create(dir, dentry, &attr, open_flags);
2312 	trace_nfs_create_exit(dir, dentry, open_flags, error);
2313 	if (error != 0)
2314 		goto out_err;
2315 	return 0;
2316 out_err:
2317 	d_drop(dentry);
2318 	return error;
2319 }
2320 EXPORT_SYMBOL_GPL(nfs_create);
2321 
2322 /*
2323  * See comments for nfs_proc_create regarding failed operations.
2324  */
2325 int
2326 nfs_mknod(struct mnt_idmap *idmap, struct inode *dir,
2327 	  struct dentry *dentry, umode_t mode, dev_t rdev)
2328 {
2329 	struct iattr attr;
2330 	int status;
2331 
2332 	dfprintk(VFS, "NFS: mknod(%s/%lu), %pd\n",
2333 			dir->i_sb->s_id, dir->i_ino, dentry);
2334 
2335 	attr.ia_mode = mode;
2336 	attr.ia_valid = ATTR_MODE;
2337 
2338 	trace_nfs_mknod_enter(dir, dentry);
2339 	status = NFS_PROTO(dir)->mknod(dir, dentry, &attr, rdev);
2340 	trace_nfs_mknod_exit(dir, dentry, status);
2341 	if (status != 0)
2342 		goto out_err;
2343 	return 0;
2344 out_err:
2345 	d_drop(dentry);
2346 	return status;
2347 }
2348 EXPORT_SYMBOL_GPL(nfs_mknod);
2349 
2350 /*
2351  * See comments for nfs_proc_create regarding failed operations.
2352  */
2353 int nfs_mkdir(struct mnt_idmap *idmap, struct inode *dir,
2354 	      struct dentry *dentry, umode_t mode)
2355 {
2356 	struct iattr attr;
2357 	int error;
2358 
2359 	dfprintk(VFS, "NFS: mkdir(%s/%lu), %pd\n",
2360 			dir->i_sb->s_id, dir->i_ino, dentry);
2361 
2362 	attr.ia_valid = ATTR_MODE;
2363 	attr.ia_mode = mode | S_IFDIR;
2364 
2365 	trace_nfs_mkdir_enter(dir, dentry);
2366 	error = NFS_PROTO(dir)->mkdir(dir, dentry, &attr);
2367 	trace_nfs_mkdir_exit(dir, dentry, error);
2368 	if (error != 0)
2369 		goto out_err;
2370 	return 0;
2371 out_err:
2372 	d_drop(dentry);
2373 	return error;
2374 }
2375 EXPORT_SYMBOL_GPL(nfs_mkdir);
2376 
2377 static void nfs_dentry_handle_enoent(struct dentry *dentry)
2378 {
2379 	if (simple_positive(dentry))
2380 		d_delete(dentry);
2381 }
2382 
2383 static void nfs_dentry_remove_handle_error(struct inode *dir,
2384 					   struct dentry *dentry, int error)
2385 {
2386 	switch (error) {
2387 	case -ENOENT:
2388 		if (d_really_is_positive(dentry))
2389 			d_delete(dentry);
2390 		nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
2391 		break;
2392 	case 0:
2393 		nfs_d_prune_case_insensitive_aliases(d_inode(dentry));
2394 		nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
2395 	}
2396 }
2397 
2398 int nfs_rmdir(struct inode *dir, struct dentry *dentry)
2399 {
2400 	int error;
2401 
2402 	dfprintk(VFS, "NFS: rmdir(%s/%lu), %pd\n",
2403 			dir->i_sb->s_id, dir->i_ino, dentry);
2404 
2405 	trace_nfs_rmdir_enter(dir, dentry);
2406 	if (d_really_is_positive(dentry)) {
2407 		down_write(&NFS_I(d_inode(dentry))->rmdir_sem);
2408 		error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
2409 		/* Ensure the VFS deletes this inode */
2410 		switch (error) {
2411 		case 0:
2412 			clear_nlink(d_inode(dentry));
2413 			break;
2414 		case -ENOENT:
2415 			nfs_dentry_handle_enoent(dentry);
2416 		}
2417 		up_write(&NFS_I(d_inode(dentry))->rmdir_sem);
2418 	} else
2419 		error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
2420 	nfs_dentry_remove_handle_error(dir, dentry, error);
2421 	trace_nfs_rmdir_exit(dir, dentry, error);
2422 
2423 	return error;
2424 }
2425 EXPORT_SYMBOL_GPL(nfs_rmdir);
2426 
2427 /*
2428  * Remove a file after making sure there are no pending writes,
2429  * and after checking that the file has only one user.
2430  *
2431  * We invalidate the attribute cache and free the inode prior to the operation
2432  * to avoid possible races if the server reuses the inode.
2433  */
2434 static int nfs_safe_remove(struct dentry *dentry)
2435 {
2436 	struct inode *dir = d_inode(dentry->d_parent);
2437 	struct inode *inode = d_inode(dentry);
2438 	int error = -EBUSY;
2439 
2440 	dfprintk(VFS, "NFS: safe_remove(%pd2)\n", dentry);
2441 
2442 	/* If the dentry was sillyrenamed, we simply call d_delete() */
2443 	if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
2444 		error = 0;
2445 		goto out;
2446 	}
2447 
2448 	trace_nfs_remove_enter(dir, dentry);
2449 	if (inode != NULL) {
2450 		error = NFS_PROTO(dir)->remove(dir, dentry);
2451 		if (error == 0)
2452 			nfs_drop_nlink(inode);
2453 	} else
2454 		error = NFS_PROTO(dir)->remove(dir, dentry);
2455 	if (error == -ENOENT)
2456 		nfs_dentry_handle_enoent(dentry);
2457 	trace_nfs_remove_exit(dir, dentry, error);
2458 out:
2459 	return error;
2460 }
2461 
2462 /*  We do silly rename. In case sillyrename() returns -EBUSY, the inode
2463  *  belongs to an active ".nfs..." file and we return -EBUSY.
2464  *
2465  *  If sillyrename() returns 0, we do nothing, otherwise we unlink.
2466  */
2467 int nfs_unlink(struct inode *dir, struct dentry *dentry)
2468 {
2469 	int error;
2470 
2471 	dfprintk(VFS, "NFS: unlink(%s/%lu, %pd)\n", dir->i_sb->s_id,
2472 		dir->i_ino, dentry);
2473 
2474 	trace_nfs_unlink_enter(dir, dentry);
2475 	spin_lock(&dentry->d_lock);
2476 	if (d_count(dentry) > 1 && !test_bit(NFS_INO_PRESERVE_UNLINKED,
2477 					     &NFS_I(d_inode(dentry))->flags)) {
2478 		spin_unlock(&dentry->d_lock);
2479 		/* Start asynchronous writeout of the inode */
2480 		write_inode_now(d_inode(dentry), 0);
2481 		error = nfs_sillyrename(dir, dentry);
2482 		goto out;
2483 	}
2484 	/* We must prevent any concurrent open until the unlink
2485 	 * completes.  ->d_revalidate will wait for ->d_fsdata
2486 	 * to clear.  We set it here to ensure no lookup succeeds until
2487 	 * the unlink is complete on the server.
2488 	 */
2489 	error = -ETXTBSY;
2490 	if (WARN_ON(dentry->d_flags & DCACHE_NFSFS_RENAMED) ||
2491 	    WARN_ON(dentry->d_fsdata == NFS_FSDATA_BLOCKED)) {
2492 		spin_unlock(&dentry->d_lock);
2493 		goto out;
2494 	}
2495 	/* old devname */
2496 	kfree(dentry->d_fsdata);
2497 	dentry->d_fsdata = NFS_FSDATA_BLOCKED;
2498 
2499 	spin_unlock(&dentry->d_lock);
2500 	error = nfs_safe_remove(dentry);
2501 	nfs_dentry_remove_handle_error(dir, dentry, error);
2502 	dentry->d_fsdata = NULL;
2503 	wake_up_var(&dentry->d_fsdata);
2504 out:
2505 	trace_nfs_unlink_exit(dir, dentry, error);
2506 	return error;
2507 }
2508 EXPORT_SYMBOL_GPL(nfs_unlink);
2509 
2510 /*
2511  * To create a symbolic link, most file systems instantiate a new inode,
2512  * add a page to it containing the path, then write it out to the disk
2513  * using prepare_write/commit_write.
2514  *
2515  * Unfortunately the NFS client can't create the in-core inode first
2516  * because it needs a file handle to create an in-core inode (see
2517  * fs/nfs/inode.c:nfs_fhget).  We only have a file handle *after* the
2518  * symlink request has completed on the server.
2519  *
2520  * So instead we allocate a raw page, copy the symname into it, then do
2521  * the SYMLINK request with the page as the buffer.  If it succeeds, we
2522  * now have a new file handle and can instantiate an in-core NFS inode
2523  * and move the raw page into its mapping.
2524  */
2525 int nfs_symlink(struct mnt_idmap *idmap, struct inode *dir,
2526 		struct dentry *dentry, const char *symname)
2527 {
2528 	struct page *page;
2529 	char *kaddr;
2530 	struct iattr attr;
2531 	unsigned int pathlen = strlen(symname);
2532 	int error;
2533 
2534 	dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s)\n", dir->i_sb->s_id,
2535 		dir->i_ino, dentry, symname);
2536 
2537 	if (pathlen > PAGE_SIZE)
2538 		return -ENAMETOOLONG;
2539 
2540 	attr.ia_mode = S_IFLNK | S_IRWXUGO;
2541 	attr.ia_valid = ATTR_MODE;
2542 
2543 	page = alloc_page(GFP_USER);
2544 	if (!page)
2545 		return -ENOMEM;
2546 
2547 	kaddr = page_address(page);
2548 	memcpy(kaddr, symname, pathlen);
2549 	if (pathlen < PAGE_SIZE)
2550 		memset(kaddr + pathlen, 0, PAGE_SIZE - pathlen);
2551 
2552 	trace_nfs_symlink_enter(dir, dentry);
2553 	error = NFS_PROTO(dir)->symlink(dir, dentry, page, pathlen, &attr);
2554 	trace_nfs_symlink_exit(dir, dentry, error);
2555 	if (error != 0) {
2556 		dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s) error %d\n",
2557 			dir->i_sb->s_id, dir->i_ino,
2558 			dentry, symname, error);
2559 		d_drop(dentry);
2560 		__free_page(page);
2561 		return error;
2562 	}
2563 
2564 	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
2565 
2566 	/*
2567 	 * No big deal if we can't add this page to the page cache here.
2568 	 * READLINK will get the missing page from the server if needed.
2569 	 */
2570 	if (!add_to_page_cache_lru(page, d_inode(dentry)->i_mapping, 0,
2571 							GFP_KERNEL)) {
2572 		SetPageUptodate(page);
2573 		unlock_page(page);
2574 		/*
2575 		 * add_to_page_cache_lru() grabs an extra page refcount.
2576 		 * Drop it here to avoid leaking this page later.
2577 		 */
2578 		put_page(page);
2579 	} else
2580 		__free_page(page);
2581 
2582 	return 0;
2583 }
2584 EXPORT_SYMBOL_GPL(nfs_symlink);
2585 
2586 int
2587 nfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2588 {
2589 	struct inode *inode = d_inode(old_dentry);
2590 	int error;
2591 
2592 	dfprintk(VFS, "NFS: link(%pd2 -> %pd2)\n",
2593 		old_dentry, dentry);
2594 
2595 	trace_nfs_link_enter(inode, dir, dentry);
2596 	d_drop(dentry);
2597 	if (S_ISREG(inode->i_mode))
2598 		nfs_sync_inode(inode);
2599 	error = NFS_PROTO(dir)->link(inode, dir, &dentry->d_name);
2600 	if (error == 0) {
2601 		nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
2602 		ihold(inode);
2603 		d_add(dentry, inode);
2604 	}
2605 	trace_nfs_link_exit(inode, dir, dentry, error);
2606 	return error;
2607 }
2608 EXPORT_SYMBOL_GPL(nfs_link);
2609 
2610 static void
2611 nfs_unblock_rename(struct rpc_task *task, struct nfs_renamedata *data)
2612 {
2613 	struct dentry *new_dentry = data->new_dentry;
2614 
2615 	new_dentry->d_fsdata = NULL;
2616 	wake_up_var(&new_dentry->d_fsdata);
2617 }
2618 
2619 /*
2620  * RENAME
2621  * FIXME: Some nfsds, like the Linux user space nfsd, may generate a
2622  * different file handle for the same inode after a rename (e.g. when
2623  * moving to a different directory). A fail-safe method to do so would
2624  * be to look up old_dir/old_name, create a link to new_dir/new_name and
2625  * rename the old file using the sillyrename stuff. This way, the original
2626  * file in old_dir will go away when the last process iput()s the inode.
2627  *
2628  * FIXED.
2629  *
2630  * It actually works quite well. One needs to have the possibility for
2631  * at least one ".nfs..." file in each directory the file ever gets
2632  * moved or linked to which happens automagically with the new
2633  * implementation that only depends on the dcache stuff instead of
2634  * using the inode layer
2635  *
2636  * Unfortunately, things are a little more complicated than indicated
2637  * above. For a cross-directory move, we want to make sure we can get
2638  * rid of the old inode after the operation.  This means there must be
2639  * no pending writes (if it's a file), and the use count must be 1.
2640  * If these conditions are met, we can drop the dentries before doing
2641  * the rename.
2642  */
2643 int nfs_rename(struct mnt_idmap *idmap, struct inode *old_dir,
2644 	       struct dentry *old_dentry, struct inode *new_dir,
2645 	       struct dentry *new_dentry, unsigned int flags)
2646 {
2647 	struct inode *old_inode = d_inode(old_dentry);
2648 	struct inode *new_inode = d_inode(new_dentry);
2649 	struct dentry *dentry = NULL;
2650 	struct rpc_task *task;
2651 	bool must_unblock = false;
2652 	int error = -EBUSY;
2653 
2654 	if (flags)
2655 		return -EINVAL;
2656 
2657 	dfprintk(VFS, "NFS: rename(%pd2 -> %pd2, ct=%d)\n",
2658 		 old_dentry, new_dentry,
2659 		 d_count(new_dentry));
2660 
2661 	trace_nfs_rename_enter(old_dir, old_dentry, new_dir, new_dentry);
2662 	/*
2663 	 * For non-directories, check whether the target is busy and if so,
2664 	 * make a copy of the dentry and then do a silly-rename. If the
2665 	 * silly-rename succeeds, the copied dentry is hashed and becomes
2666 	 * the new target.
2667 	 */
2668 	if (new_inode && !S_ISDIR(new_inode->i_mode)) {
2669 		/* We must prevent any concurrent open until the unlink
2670 		 * completes.  ->d_revalidate will wait for ->d_fsdata
2671 		 * to clear.  We set it here to ensure no lookup succeeds until
2672 		 * the unlink is complete on the server.
2673 		 */
2674 		error = -ETXTBSY;
2675 		if (WARN_ON(new_dentry->d_flags & DCACHE_NFSFS_RENAMED) ||
2676 		    WARN_ON(new_dentry->d_fsdata == NFS_FSDATA_BLOCKED))
2677 			goto out;
2678 		if (new_dentry->d_fsdata) {
2679 			/* old devname */
2680 			kfree(new_dentry->d_fsdata);
2681 			new_dentry->d_fsdata = NULL;
2682 		}
2683 
2684 		spin_lock(&new_dentry->d_lock);
2685 		if (d_count(new_dentry) > 2) {
2686 			int err;
2687 
2688 			spin_unlock(&new_dentry->d_lock);
2689 
2690 			/* copy the target dentry's name */
2691 			dentry = d_alloc(new_dentry->d_parent,
2692 					 &new_dentry->d_name);
2693 			if (!dentry)
2694 				goto out;
2695 
2696 			/* silly-rename the existing target ... */
2697 			err = nfs_sillyrename(new_dir, new_dentry);
2698 			if (err)
2699 				goto out;
2700 
2701 			new_dentry = dentry;
2702 			new_inode = NULL;
2703 		} else {
2704 			new_dentry->d_fsdata = NFS_FSDATA_BLOCKED;
2705 			must_unblock = true;
2706 			spin_unlock(&new_dentry->d_lock);
2707 		}
2708 
2709 	}
2710 
2711 	if (S_ISREG(old_inode->i_mode))
2712 		nfs_sync_inode(old_inode);
2713 	task = nfs_async_rename(old_dir, new_dir, old_dentry, new_dentry,
2714 				must_unblock ? nfs_unblock_rename : NULL);
2715 	if (IS_ERR(task)) {
2716 		error = PTR_ERR(task);
2717 		goto out;
2718 	}
2719 
2720 	error = rpc_wait_for_completion_task(task);
2721 	if (error != 0) {
2722 		((struct nfs_renamedata *)task->tk_calldata)->cancelled = 1;
2723 		/* Paired with the atomic_dec_and_test() barrier in rpc_do_put_task() */
2724 		smp_wmb();
2725 	} else
2726 		error = task->tk_status;
2727 	rpc_put_task(task);
2728 	/* Ensure the inode attributes are revalidated */
2729 	if (error == 0) {
2730 		spin_lock(&old_inode->i_lock);
2731 		NFS_I(old_inode)->attr_gencount = nfs_inc_attr_generation_counter();
2732 		nfs_set_cache_invalid(old_inode, NFS_INO_INVALID_CHANGE |
2733 							 NFS_INO_INVALID_CTIME |
2734 							 NFS_INO_REVAL_FORCED);
2735 		spin_unlock(&old_inode->i_lock);
2736 	}
2737 out:
2738 	trace_nfs_rename_exit(old_dir, old_dentry,
2739 			new_dir, new_dentry, error);
2740 	if (!error) {
2741 		if (new_inode != NULL)
2742 			nfs_drop_nlink(new_inode);
2743 		/*
2744 		 * The d_move() should be here instead of in an async RPC completion
2745 		 * handler because we need the proper locks to move the dentry.  If
2746 		 * we're interrupted by a signal, the async RPC completion handler
2747 		 * should mark the directories for revalidation.
2748 		 */
2749 		d_move(old_dentry, new_dentry);
2750 		nfs_set_verifier(old_dentry,
2751 					nfs_save_change_attribute(new_dir));
2752 	} else if (error == -ENOENT)
2753 		nfs_dentry_handle_enoent(old_dentry);
2754 
2755 	/* new dentry created? */
2756 	if (dentry)
2757 		dput(dentry);
2758 	return error;
2759 }
2760 EXPORT_SYMBOL_GPL(nfs_rename);
2761 
2762 static DEFINE_SPINLOCK(nfs_access_lru_lock);
2763 static LIST_HEAD(nfs_access_lru_list);
2764 static atomic_long_t nfs_access_nr_entries;
2765 
2766 static unsigned long nfs_access_max_cachesize = 4*1024*1024;
2767 module_param(nfs_access_max_cachesize, ulong, 0644);
2768 MODULE_PARM_DESC(nfs_access_max_cachesize, "NFS access maximum total cache length");
2769 
2770 static void nfs_access_free_entry(struct nfs_access_entry *entry)
2771 {
2772 	put_group_info(entry->group_info);
2773 	kfree_rcu(entry, rcu_head);
2774 	smp_mb__before_atomic();
2775 	atomic_long_dec(&nfs_access_nr_entries);
2776 	smp_mb__after_atomic();
2777 }
2778 
2779 static void nfs_access_free_list(struct list_head *head)
2780 {
2781 	struct nfs_access_entry *cache;
2782 
2783 	while (!list_empty(head)) {
2784 		cache = list_entry(head->next, struct nfs_access_entry, lru);
2785 		list_del(&cache->lru);
2786 		nfs_access_free_entry(cache);
2787 	}
2788 }
2789 
2790 static unsigned long
2791 nfs_do_access_cache_scan(unsigned int nr_to_scan)
2792 {
2793 	LIST_HEAD(head);
2794 	struct nfs_inode *nfsi, *next;
2795 	struct nfs_access_entry *cache;
2796 	long freed = 0;
2797 
2798 	spin_lock(&nfs_access_lru_lock);
2799 	list_for_each_entry_safe(nfsi, next, &nfs_access_lru_list, access_cache_inode_lru) {
2800 		struct inode *inode;
2801 
2802 		if (nr_to_scan-- == 0)
2803 			break;
2804 		inode = &nfsi->vfs_inode;
2805 		spin_lock(&inode->i_lock);
2806 		if (list_empty(&nfsi->access_cache_entry_lru))
2807 			goto remove_lru_entry;
2808 		cache = list_entry(nfsi->access_cache_entry_lru.next,
2809 				struct nfs_access_entry, lru);
2810 		list_move(&cache->lru, &head);
2811 		rb_erase(&cache->rb_node, &nfsi->access_cache);
2812 		freed++;
2813 		if (!list_empty(&nfsi->access_cache_entry_lru))
2814 			list_move_tail(&nfsi->access_cache_inode_lru,
2815 					&nfs_access_lru_list);
2816 		else {
2817 remove_lru_entry:
2818 			list_del_init(&nfsi->access_cache_inode_lru);
2819 			smp_mb__before_atomic();
2820 			clear_bit(NFS_INO_ACL_LRU_SET, &nfsi->flags);
2821 			smp_mb__after_atomic();
2822 		}
2823 		spin_unlock(&inode->i_lock);
2824 	}
2825 	spin_unlock(&nfs_access_lru_lock);
2826 	nfs_access_free_list(&head);
2827 	return freed;
2828 }
2829 
2830 unsigned long
2831 nfs_access_cache_scan(struct shrinker *shrink, struct shrink_control *sc)
2832 {
2833 	int nr_to_scan = sc->nr_to_scan;
2834 	gfp_t gfp_mask = sc->gfp_mask;
2835 
2836 	if ((gfp_mask & GFP_KERNEL) != GFP_KERNEL)
2837 		return SHRINK_STOP;
2838 	return nfs_do_access_cache_scan(nr_to_scan);
2839 }
2840 
2841 
2842 unsigned long
2843 nfs_access_cache_count(struct shrinker *shrink, struct shrink_control *sc)
2844 {
2845 	return vfs_pressure_ratio(atomic_long_read(&nfs_access_nr_entries));
2846 }
2847 
2848 static void
2849 nfs_access_cache_enforce_limit(void)
2850 {
2851 	long nr_entries = atomic_long_read(&nfs_access_nr_entries);
2852 	unsigned long diff;
2853 	unsigned int nr_to_scan;
2854 
2855 	if (nr_entries < 0 || nr_entries <= nfs_access_max_cachesize)
2856 		return;
2857 	nr_to_scan = 100;
2858 	diff = nr_entries - nfs_access_max_cachesize;
2859 	if (diff < nr_to_scan)
2860 		nr_to_scan = diff;
2861 	nfs_do_access_cache_scan(nr_to_scan);
2862 }
2863 
2864 static void __nfs_access_zap_cache(struct nfs_inode *nfsi, struct list_head *head)
2865 {
2866 	struct rb_root *root_node = &nfsi->access_cache;
2867 	struct rb_node *n;
2868 	struct nfs_access_entry *entry;
2869 
2870 	/* Unhook entries from the cache */
2871 	while ((n = rb_first(root_node)) != NULL) {
2872 		entry = rb_entry(n, struct nfs_access_entry, rb_node);
2873 		rb_erase(n, root_node);
2874 		list_move(&entry->lru, head);
2875 	}
2876 	nfsi->cache_validity &= ~NFS_INO_INVALID_ACCESS;
2877 }
2878 
2879 void nfs_access_zap_cache(struct inode *inode)
2880 {
2881 	LIST_HEAD(head);
2882 
2883 	if (test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags) == 0)
2884 		return;
2885 	/* Remove from global LRU init */
2886 	spin_lock(&nfs_access_lru_lock);
2887 	if (test_and_clear_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
2888 		list_del_init(&NFS_I(inode)->access_cache_inode_lru);
2889 
2890 	spin_lock(&inode->i_lock);
2891 	__nfs_access_zap_cache(NFS_I(inode), &head);
2892 	spin_unlock(&inode->i_lock);
2893 	spin_unlock(&nfs_access_lru_lock);
2894 	nfs_access_free_list(&head);
2895 }
2896 EXPORT_SYMBOL_GPL(nfs_access_zap_cache);
2897 
2898 static int access_cmp(const struct cred *a, const struct nfs_access_entry *b)
2899 {
2900 	struct group_info *ga, *gb;
2901 	int g;
2902 
2903 	if (uid_lt(a->fsuid, b->fsuid))
2904 		return -1;
2905 	if (uid_gt(a->fsuid, b->fsuid))
2906 		return 1;
2907 
2908 	if (gid_lt(a->fsgid, b->fsgid))
2909 		return -1;
2910 	if (gid_gt(a->fsgid, b->fsgid))
2911 		return 1;
2912 
2913 	ga = a->group_info;
2914 	gb = b->group_info;
2915 	if (ga == gb)
2916 		return 0;
2917 	if (ga == NULL)
2918 		return -1;
2919 	if (gb == NULL)
2920 		return 1;
2921 	if (ga->ngroups < gb->ngroups)
2922 		return -1;
2923 	if (ga->ngroups > gb->ngroups)
2924 		return 1;
2925 
2926 	for (g = 0; g < ga->ngroups; g++) {
2927 		if (gid_lt(ga->gid[g], gb->gid[g]))
2928 			return -1;
2929 		if (gid_gt(ga->gid[g], gb->gid[g]))
2930 			return 1;
2931 	}
2932 	return 0;
2933 }
2934 
2935 static struct nfs_access_entry *nfs_access_search_rbtree(struct inode *inode, const struct cred *cred)
2936 {
2937 	struct rb_node *n = NFS_I(inode)->access_cache.rb_node;
2938 
2939 	while (n != NULL) {
2940 		struct nfs_access_entry *entry =
2941 			rb_entry(n, struct nfs_access_entry, rb_node);
2942 		int cmp = access_cmp(cred, entry);
2943 
2944 		if (cmp < 0)
2945 			n = n->rb_left;
2946 		else if (cmp > 0)
2947 			n = n->rb_right;
2948 		else
2949 			return entry;
2950 	}
2951 	return NULL;
2952 }
2953 
2954 static u64 nfs_access_login_time(const struct task_struct *task,
2955 				 const struct cred *cred)
2956 {
2957 	const struct task_struct *parent;
2958 	const struct cred *pcred;
2959 	u64 ret;
2960 
2961 	rcu_read_lock();
2962 	for (;;) {
2963 		parent = rcu_dereference(task->real_parent);
2964 		pcred = rcu_dereference(parent->cred);
2965 		if (parent == task || cred_fscmp(pcred, cred) != 0)
2966 			break;
2967 		task = parent;
2968 	}
2969 	ret = task->start_time;
2970 	rcu_read_unlock();
2971 	return ret;
2972 }
2973 
2974 static int nfs_access_get_cached_locked(struct inode *inode, const struct cred *cred, u32 *mask, bool may_block)
2975 {
2976 	struct nfs_inode *nfsi = NFS_I(inode);
2977 	u64 login_time = nfs_access_login_time(current, cred);
2978 	struct nfs_access_entry *cache;
2979 	bool retry = true;
2980 	int err;
2981 
2982 	spin_lock(&inode->i_lock);
2983 	for(;;) {
2984 		if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
2985 			goto out_zap;
2986 		cache = nfs_access_search_rbtree(inode, cred);
2987 		err = -ENOENT;
2988 		if (cache == NULL)
2989 			goto out;
2990 		/* Found an entry, is our attribute cache valid? */
2991 		if (!nfs_check_cache_invalid(inode, NFS_INO_INVALID_ACCESS))
2992 			break;
2993 		if (!retry)
2994 			break;
2995 		err = -ECHILD;
2996 		if (!may_block)
2997 			goto out;
2998 		spin_unlock(&inode->i_lock);
2999 		err = __nfs_revalidate_inode(NFS_SERVER(inode), inode);
3000 		if (err)
3001 			return err;
3002 		spin_lock(&inode->i_lock);
3003 		retry = false;
3004 	}
3005 	err = -ENOENT;
3006 	if ((s64)(login_time - cache->timestamp) > 0)
3007 		goto out;
3008 	*mask = cache->mask;
3009 	list_move_tail(&cache->lru, &nfsi->access_cache_entry_lru);
3010 	err = 0;
3011 out:
3012 	spin_unlock(&inode->i_lock);
3013 	return err;
3014 out_zap:
3015 	spin_unlock(&inode->i_lock);
3016 	nfs_access_zap_cache(inode);
3017 	return -ENOENT;
3018 }
3019 
3020 static int nfs_access_get_cached_rcu(struct inode *inode, const struct cred *cred, u32 *mask)
3021 {
3022 	/* Only check the most recently returned cache entry,
3023 	 * but do it without locking.
3024 	 */
3025 	struct nfs_inode *nfsi = NFS_I(inode);
3026 	u64 login_time = nfs_access_login_time(current, cred);
3027 	struct nfs_access_entry *cache;
3028 	int err = -ECHILD;
3029 	struct list_head *lh;
3030 
3031 	rcu_read_lock();
3032 	if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
3033 		goto out;
3034 	lh = rcu_dereference(list_tail_rcu(&nfsi->access_cache_entry_lru));
3035 	cache = list_entry(lh, struct nfs_access_entry, lru);
3036 	if (lh == &nfsi->access_cache_entry_lru ||
3037 	    access_cmp(cred, cache) != 0)
3038 		cache = NULL;
3039 	if (cache == NULL)
3040 		goto out;
3041 	if ((s64)(login_time - cache->timestamp) > 0)
3042 		goto out;
3043 	if (nfs_check_cache_invalid(inode, NFS_INO_INVALID_ACCESS))
3044 		goto out;
3045 	*mask = cache->mask;
3046 	err = 0;
3047 out:
3048 	rcu_read_unlock();
3049 	return err;
3050 }
3051 
3052 int nfs_access_get_cached(struct inode *inode, const struct cred *cred,
3053 			  u32 *mask, bool may_block)
3054 {
3055 	int status;
3056 
3057 	status = nfs_access_get_cached_rcu(inode, cred, mask);
3058 	if (status != 0)
3059 		status = nfs_access_get_cached_locked(inode, cred, mask,
3060 		    may_block);
3061 
3062 	return status;
3063 }
3064 EXPORT_SYMBOL_GPL(nfs_access_get_cached);
3065 
3066 static void nfs_access_add_rbtree(struct inode *inode,
3067 				  struct nfs_access_entry *set,
3068 				  const struct cred *cred)
3069 {
3070 	struct nfs_inode *nfsi = NFS_I(inode);
3071 	struct rb_root *root_node = &nfsi->access_cache;
3072 	struct rb_node **p = &root_node->rb_node;
3073 	struct rb_node *parent = NULL;
3074 	struct nfs_access_entry *entry;
3075 	int cmp;
3076 
3077 	spin_lock(&inode->i_lock);
3078 	while (*p != NULL) {
3079 		parent = *p;
3080 		entry = rb_entry(parent, struct nfs_access_entry, rb_node);
3081 		cmp = access_cmp(cred, entry);
3082 
3083 		if (cmp < 0)
3084 			p = &parent->rb_left;
3085 		else if (cmp > 0)
3086 			p = &parent->rb_right;
3087 		else
3088 			goto found;
3089 	}
3090 	rb_link_node(&set->rb_node, parent, p);
3091 	rb_insert_color(&set->rb_node, root_node);
3092 	list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
3093 	spin_unlock(&inode->i_lock);
3094 	return;
3095 found:
3096 	rb_replace_node(parent, &set->rb_node, root_node);
3097 	list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
3098 	list_del(&entry->lru);
3099 	spin_unlock(&inode->i_lock);
3100 	nfs_access_free_entry(entry);
3101 }
3102 
3103 void nfs_access_add_cache(struct inode *inode, struct nfs_access_entry *set,
3104 			  const struct cred *cred)
3105 {
3106 	struct nfs_access_entry *cache = kmalloc(sizeof(*cache), GFP_KERNEL);
3107 	if (cache == NULL)
3108 		return;
3109 	RB_CLEAR_NODE(&cache->rb_node);
3110 	cache->fsuid = cred->fsuid;
3111 	cache->fsgid = cred->fsgid;
3112 	cache->group_info = get_group_info(cred->group_info);
3113 	cache->mask = set->mask;
3114 	cache->timestamp = ktime_get_ns();
3115 
3116 	/* The above field assignments must be visible
3117 	 * before this item appears on the lru.  We cannot easily
3118 	 * use rcu_assign_pointer, so just force the memory barrier.
3119 	 */
3120 	smp_wmb();
3121 	nfs_access_add_rbtree(inode, cache, cred);
3122 
3123 	/* Update accounting */
3124 	smp_mb__before_atomic();
3125 	atomic_long_inc(&nfs_access_nr_entries);
3126 	smp_mb__after_atomic();
3127 
3128 	/* Add inode to global LRU list */
3129 	if (!test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) {
3130 		spin_lock(&nfs_access_lru_lock);
3131 		if (!test_and_set_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
3132 			list_add_tail(&NFS_I(inode)->access_cache_inode_lru,
3133 					&nfs_access_lru_list);
3134 		spin_unlock(&nfs_access_lru_lock);
3135 	}
3136 	nfs_access_cache_enforce_limit();
3137 }
3138 EXPORT_SYMBOL_GPL(nfs_access_add_cache);
3139 
3140 #define NFS_MAY_READ (NFS_ACCESS_READ)
3141 #define NFS_MAY_WRITE (NFS_ACCESS_MODIFY | \
3142 		NFS_ACCESS_EXTEND | \
3143 		NFS_ACCESS_DELETE)
3144 #define NFS_FILE_MAY_WRITE (NFS_ACCESS_MODIFY | \
3145 		NFS_ACCESS_EXTEND)
3146 #define NFS_DIR_MAY_WRITE NFS_MAY_WRITE
3147 #define NFS_MAY_LOOKUP (NFS_ACCESS_LOOKUP)
3148 #define NFS_MAY_EXECUTE (NFS_ACCESS_EXECUTE)
3149 static int
3150 nfs_access_calc_mask(u32 access_result, umode_t umode)
3151 {
3152 	int mask = 0;
3153 
3154 	if (access_result & NFS_MAY_READ)
3155 		mask |= MAY_READ;
3156 	if (S_ISDIR(umode)) {
3157 		if ((access_result & NFS_DIR_MAY_WRITE) == NFS_DIR_MAY_WRITE)
3158 			mask |= MAY_WRITE;
3159 		if ((access_result & NFS_MAY_LOOKUP) == NFS_MAY_LOOKUP)
3160 			mask |= MAY_EXEC;
3161 	} else if (S_ISREG(umode)) {
3162 		if ((access_result & NFS_FILE_MAY_WRITE) == NFS_FILE_MAY_WRITE)
3163 			mask |= MAY_WRITE;
3164 		if ((access_result & NFS_MAY_EXECUTE) == NFS_MAY_EXECUTE)
3165 			mask |= MAY_EXEC;
3166 	} else if (access_result & NFS_MAY_WRITE)
3167 			mask |= MAY_WRITE;
3168 	return mask;
3169 }
3170 
3171 void nfs_access_set_mask(struct nfs_access_entry *entry, u32 access_result)
3172 {
3173 	entry->mask = access_result;
3174 }
3175 EXPORT_SYMBOL_GPL(nfs_access_set_mask);
3176 
3177 static int nfs_do_access(struct inode *inode, const struct cred *cred, int mask)
3178 {
3179 	struct nfs_access_entry cache;
3180 	bool may_block = (mask & MAY_NOT_BLOCK) == 0;
3181 	int cache_mask = -1;
3182 	int status;
3183 
3184 	trace_nfs_access_enter(inode);
3185 
3186 	status = nfs_access_get_cached(inode, cred, &cache.mask, may_block);
3187 	if (status == 0)
3188 		goto out_cached;
3189 
3190 	status = -ECHILD;
3191 	if (!may_block)
3192 		goto out;
3193 
3194 	/*
3195 	 * Determine which access bits we want to ask for...
3196 	 */
3197 	cache.mask = NFS_ACCESS_READ | NFS_ACCESS_MODIFY | NFS_ACCESS_EXTEND |
3198 		     nfs_access_xattr_mask(NFS_SERVER(inode));
3199 	if (S_ISDIR(inode->i_mode))
3200 		cache.mask |= NFS_ACCESS_DELETE | NFS_ACCESS_LOOKUP;
3201 	else
3202 		cache.mask |= NFS_ACCESS_EXECUTE;
3203 	status = NFS_PROTO(inode)->access(inode, &cache, cred);
3204 	if (status != 0) {
3205 		if (status == -ESTALE) {
3206 			if (!S_ISDIR(inode->i_mode))
3207 				nfs_set_inode_stale(inode);
3208 			else
3209 				nfs_zap_caches(inode);
3210 		}
3211 		goto out;
3212 	}
3213 	nfs_access_add_cache(inode, &cache, cred);
3214 out_cached:
3215 	cache_mask = nfs_access_calc_mask(cache.mask, inode->i_mode);
3216 	if ((mask & ~cache_mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) != 0)
3217 		status = -EACCES;
3218 out:
3219 	trace_nfs_access_exit(inode, mask, cache_mask, status);
3220 	return status;
3221 }
3222 
3223 static int nfs_open_permission_mask(int openflags)
3224 {
3225 	int mask = 0;
3226 
3227 	if (openflags & __FMODE_EXEC) {
3228 		/* ONLY check exec rights */
3229 		mask = MAY_EXEC;
3230 	} else {
3231 		if ((openflags & O_ACCMODE) != O_WRONLY)
3232 			mask |= MAY_READ;
3233 		if ((openflags & O_ACCMODE) != O_RDONLY)
3234 			mask |= MAY_WRITE;
3235 	}
3236 
3237 	return mask;
3238 }
3239 
3240 int nfs_may_open(struct inode *inode, const struct cred *cred, int openflags)
3241 {
3242 	return nfs_do_access(inode, cred, nfs_open_permission_mask(openflags));
3243 }
3244 EXPORT_SYMBOL_GPL(nfs_may_open);
3245 
3246 static int nfs_execute_ok(struct inode *inode, int mask)
3247 {
3248 	struct nfs_server *server = NFS_SERVER(inode);
3249 	int ret = 0;
3250 
3251 	if (S_ISDIR(inode->i_mode))
3252 		return 0;
3253 	if (nfs_check_cache_invalid(inode, NFS_INO_INVALID_MODE)) {
3254 		if (mask & MAY_NOT_BLOCK)
3255 			return -ECHILD;
3256 		ret = __nfs_revalidate_inode(server, inode);
3257 	}
3258 	if (ret == 0 && !execute_ok(inode))
3259 		ret = -EACCES;
3260 	return ret;
3261 }
3262 
3263 int nfs_permission(struct mnt_idmap *idmap,
3264 		   struct inode *inode,
3265 		   int mask)
3266 {
3267 	const struct cred *cred = current_cred();
3268 	int res = 0;
3269 
3270 	nfs_inc_stats(inode, NFSIOS_VFSACCESS);
3271 
3272 	if ((mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
3273 		goto out;
3274 	/* Is this sys_access() ? */
3275 	if (mask & (MAY_ACCESS | MAY_CHDIR))
3276 		goto force_lookup;
3277 
3278 	switch (inode->i_mode & S_IFMT) {
3279 		case S_IFLNK:
3280 			goto out;
3281 		case S_IFREG:
3282 			if ((mask & MAY_OPEN) &&
3283 			   nfs_server_capable(inode, NFS_CAP_ATOMIC_OPEN))
3284 				return 0;
3285 			break;
3286 		case S_IFDIR:
3287 			/*
3288 			 * Optimize away all write operations, since the server
3289 			 * will check permissions when we perform the op.
3290 			 */
3291 			if ((mask & MAY_WRITE) && !(mask & MAY_READ))
3292 				goto out;
3293 	}
3294 
3295 force_lookup:
3296 	if (!NFS_PROTO(inode)->access)
3297 		goto out_notsup;
3298 
3299 	res = nfs_do_access(inode, cred, mask);
3300 out:
3301 	if (!res && (mask & MAY_EXEC))
3302 		res = nfs_execute_ok(inode, mask);
3303 
3304 	dfprintk(VFS, "NFS: permission(%s/%lu), mask=0x%x, res=%d\n",
3305 		inode->i_sb->s_id, inode->i_ino, mask, res);
3306 	return res;
3307 out_notsup:
3308 	if (mask & MAY_NOT_BLOCK)
3309 		return -ECHILD;
3310 
3311 	res = nfs_revalidate_inode(inode, NFS_INO_INVALID_MODE |
3312 						  NFS_INO_INVALID_OTHER);
3313 	if (res == 0)
3314 		res = generic_permission(&nop_mnt_idmap, inode, mask);
3315 	goto out;
3316 }
3317 EXPORT_SYMBOL_GPL(nfs_permission);
3318