xref: /openbmc/linux/fs/nfs/dir.c (revision 1bcf4c5c)
1 /*
2  *  linux/fs/nfs/dir.c
3  *
4  *  Copyright (C) 1992  Rick Sladkey
5  *
6  *  nfs directory handling functions
7  *
8  * 10 Apr 1996	Added silly rename for unlink	--okir
9  * 28 Sep 1996	Improved directory cache --okir
10  * 23 Aug 1997  Claus Heine claus@momo.math.rwth-aachen.de
11  *              Re-implemented silly rename for unlink, newly implemented
12  *              silly rename for nfs_rename() following the suggestions
13  *              of Olaf Kirch (okir) found in this file.
14  *              Following Linus comments on my original hack, this version
15  *              depends only on the dcache stuff and doesn't touch the inode
16  *              layer (iput() and friends).
17  *  6 Jun 1999	Cache readdir lookups in the page cache. -DaveM
18  */
19 
20 #include <linux/module.h>
21 #include <linux/time.h>
22 #include <linux/errno.h>
23 #include <linux/stat.h>
24 #include <linux/fcntl.h>
25 #include <linux/string.h>
26 #include <linux/kernel.h>
27 #include <linux/slab.h>
28 #include <linux/mm.h>
29 #include <linux/sunrpc/clnt.h>
30 #include <linux/nfs_fs.h>
31 #include <linux/nfs_mount.h>
32 #include <linux/pagemap.h>
33 #include <linux/pagevec.h>
34 #include <linux/namei.h>
35 #include <linux/mount.h>
36 #include <linux/swap.h>
37 #include <linux/sched.h>
38 #include <linux/kmemleak.h>
39 #include <linux/xattr.h>
40 
41 #include "delegation.h"
42 #include "iostat.h"
43 #include "internal.h"
44 #include "fscache.h"
45 
46 #include "nfstrace.h"
47 
48 /* #define NFS_DEBUG_VERBOSE 1 */
49 
50 static int nfs_opendir(struct inode *, struct file *);
51 static int nfs_closedir(struct inode *, struct file *);
52 static int nfs_readdir(struct file *, struct dir_context *);
53 static int nfs_fsync_dir(struct file *, loff_t, loff_t, int);
54 static loff_t nfs_llseek_dir(struct file *, loff_t, int);
55 static void nfs_readdir_clear_array(struct page*);
56 
57 const struct file_operations nfs_dir_operations = {
58 	.llseek		= nfs_llseek_dir,
59 	.read		= generic_read_dir,
60 	.iterate_shared	= nfs_readdir,
61 	.open		= nfs_opendir,
62 	.release	= nfs_closedir,
63 	.fsync		= nfs_fsync_dir,
64 };
65 
66 const struct address_space_operations nfs_dir_aops = {
67 	.freepage = nfs_readdir_clear_array,
68 };
69 
70 static struct nfs_open_dir_context *alloc_nfs_open_dir_context(struct inode *dir, struct rpc_cred *cred)
71 {
72 	struct nfs_inode *nfsi = NFS_I(dir);
73 	struct nfs_open_dir_context *ctx;
74 	ctx = kmalloc(sizeof(*ctx), GFP_KERNEL);
75 	if (ctx != NULL) {
76 		ctx->duped = 0;
77 		ctx->attr_gencount = nfsi->attr_gencount;
78 		ctx->dir_cookie = 0;
79 		ctx->dup_cookie = 0;
80 		ctx->cred = get_rpccred(cred);
81 		spin_lock(&dir->i_lock);
82 		list_add(&ctx->list, &nfsi->open_files);
83 		spin_unlock(&dir->i_lock);
84 		return ctx;
85 	}
86 	return  ERR_PTR(-ENOMEM);
87 }
88 
89 static void put_nfs_open_dir_context(struct inode *dir, struct nfs_open_dir_context *ctx)
90 {
91 	spin_lock(&dir->i_lock);
92 	list_del(&ctx->list);
93 	spin_unlock(&dir->i_lock);
94 	put_rpccred(ctx->cred);
95 	kfree(ctx);
96 }
97 
98 /*
99  * Open file
100  */
101 static int
102 nfs_opendir(struct inode *inode, struct file *filp)
103 {
104 	int res = 0;
105 	struct nfs_open_dir_context *ctx;
106 	struct rpc_cred *cred;
107 
108 	dfprintk(FILE, "NFS: open dir(%pD2)\n", filp);
109 
110 	nfs_inc_stats(inode, NFSIOS_VFSOPEN);
111 
112 	cred = rpc_lookup_cred();
113 	if (IS_ERR(cred))
114 		return PTR_ERR(cred);
115 	ctx = alloc_nfs_open_dir_context(inode, cred);
116 	if (IS_ERR(ctx)) {
117 		res = PTR_ERR(ctx);
118 		goto out;
119 	}
120 	filp->private_data = ctx;
121 	if (filp->f_path.dentry == filp->f_path.mnt->mnt_root) {
122 		/* This is a mountpoint, so d_revalidate will never
123 		 * have been called, so we need to refresh the
124 		 * inode (for close-open consistency) ourselves.
125 		 */
126 		__nfs_revalidate_inode(NFS_SERVER(inode), inode);
127 	}
128 out:
129 	put_rpccred(cred);
130 	return res;
131 }
132 
133 static int
134 nfs_closedir(struct inode *inode, struct file *filp)
135 {
136 	put_nfs_open_dir_context(file_inode(filp), filp->private_data);
137 	return 0;
138 }
139 
140 struct nfs_cache_array_entry {
141 	u64 cookie;
142 	u64 ino;
143 	struct qstr string;
144 	unsigned char d_type;
145 };
146 
147 struct nfs_cache_array {
148 	atomic_t refcount;
149 	int size;
150 	int eof_index;
151 	u64 last_cookie;
152 	struct nfs_cache_array_entry array[0];
153 };
154 
155 typedef int (*decode_dirent_t)(struct xdr_stream *, struct nfs_entry *, int);
156 typedef struct {
157 	struct file	*file;
158 	struct page	*page;
159 	struct dir_context *ctx;
160 	unsigned long	page_index;
161 	u64		*dir_cookie;
162 	u64		last_cookie;
163 	loff_t		current_index;
164 	decode_dirent_t	decode;
165 
166 	unsigned long	timestamp;
167 	unsigned long	gencount;
168 	unsigned int	cache_entry_index;
169 	unsigned int	plus:1;
170 	unsigned int	eof:1;
171 } nfs_readdir_descriptor_t;
172 
173 /*
174  * The caller is responsible for calling nfs_readdir_release_array(page)
175  */
176 static
177 struct nfs_cache_array *nfs_readdir_get_array(struct page *page)
178 {
179 	void *ptr;
180 	if (page == NULL)
181 		return ERR_PTR(-EIO);
182 	ptr = kmap(page);
183 	if (ptr == NULL)
184 		return ERR_PTR(-ENOMEM);
185 	return ptr;
186 }
187 
188 static
189 void nfs_readdir_release_array(struct page *page)
190 {
191 	kunmap(page);
192 }
193 
194 /*
195  * we are freeing strings created by nfs_add_to_readdir_array()
196  */
197 static
198 void nfs_readdir_clear_array(struct page *page)
199 {
200 	struct nfs_cache_array *array;
201 	int i;
202 
203 	array = kmap_atomic(page);
204 	if (atomic_dec_and_test(&array->refcount))
205 		for (i = 0; i < array->size; i++)
206 			kfree(array->array[i].string.name);
207 	kunmap_atomic(array);
208 }
209 
210 static bool grab_page(struct page *page)
211 {
212 	struct nfs_cache_array *array = kmap_atomic(page);
213 	bool res = atomic_inc_not_zero(&array->refcount);
214 	kunmap_atomic(array);
215 	return res;
216 }
217 
218 /*
219  * the caller is responsible for freeing qstr.name
220  * when called by nfs_readdir_add_to_array, the strings will be freed in
221  * nfs_clear_readdir_array()
222  */
223 static
224 int nfs_readdir_make_qstr(struct qstr *string, const char *name, unsigned int len)
225 {
226 	string->len = len;
227 	string->name = kmemdup(name, len, GFP_KERNEL);
228 	if (string->name == NULL)
229 		return -ENOMEM;
230 	/*
231 	 * Avoid a kmemleak false positive. The pointer to the name is stored
232 	 * in a page cache page which kmemleak does not scan.
233 	 */
234 	kmemleak_not_leak(string->name);
235 	string->hash = full_name_hash(NULL, name, len);
236 	return 0;
237 }
238 
239 static
240 int nfs_readdir_add_to_array(struct nfs_entry *entry, struct page *page)
241 {
242 	struct nfs_cache_array *array = nfs_readdir_get_array(page);
243 	struct nfs_cache_array_entry *cache_entry;
244 	int ret;
245 
246 	if (IS_ERR(array))
247 		return PTR_ERR(array);
248 
249 	cache_entry = &array->array[array->size];
250 
251 	/* Check that this entry lies within the page bounds */
252 	ret = -ENOSPC;
253 	if ((char *)&cache_entry[1] - (char *)page_address(page) > PAGE_SIZE)
254 		goto out;
255 
256 	cache_entry->cookie = entry->prev_cookie;
257 	cache_entry->ino = entry->ino;
258 	cache_entry->d_type = entry->d_type;
259 	ret = nfs_readdir_make_qstr(&cache_entry->string, entry->name, entry->len);
260 	if (ret)
261 		goto out;
262 	array->last_cookie = entry->cookie;
263 	array->size++;
264 	if (entry->eof != 0)
265 		array->eof_index = array->size;
266 out:
267 	nfs_readdir_release_array(page);
268 	return ret;
269 }
270 
271 static
272 int nfs_readdir_search_for_pos(struct nfs_cache_array *array, nfs_readdir_descriptor_t *desc)
273 {
274 	loff_t diff = desc->ctx->pos - desc->current_index;
275 	unsigned int index;
276 
277 	if (diff < 0)
278 		goto out_eof;
279 	if (diff >= array->size) {
280 		if (array->eof_index >= 0)
281 			goto out_eof;
282 		return -EAGAIN;
283 	}
284 
285 	index = (unsigned int)diff;
286 	*desc->dir_cookie = array->array[index].cookie;
287 	desc->cache_entry_index = index;
288 	return 0;
289 out_eof:
290 	desc->eof = 1;
291 	return -EBADCOOKIE;
292 }
293 
294 static bool
295 nfs_readdir_inode_mapping_valid(struct nfs_inode *nfsi)
296 {
297 	if (nfsi->cache_validity & (NFS_INO_INVALID_ATTR|NFS_INO_INVALID_DATA))
298 		return false;
299 	smp_rmb();
300 	return !test_bit(NFS_INO_INVALIDATING, &nfsi->flags);
301 }
302 
303 static
304 int nfs_readdir_search_for_cookie(struct nfs_cache_array *array, nfs_readdir_descriptor_t *desc)
305 {
306 	int i;
307 	loff_t new_pos;
308 	int status = -EAGAIN;
309 
310 	for (i = 0; i < array->size; i++) {
311 		if (array->array[i].cookie == *desc->dir_cookie) {
312 			struct nfs_inode *nfsi = NFS_I(file_inode(desc->file));
313 			struct nfs_open_dir_context *ctx = desc->file->private_data;
314 
315 			new_pos = desc->current_index + i;
316 			if (ctx->attr_gencount != nfsi->attr_gencount ||
317 			    !nfs_readdir_inode_mapping_valid(nfsi)) {
318 				ctx->duped = 0;
319 				ctx->attr_gencount = nfsi->attr_gencount;
320 			} else if (new_pos < desc->ctx->pos) {
321 				if (ctx->duped > 0
322 				    && ctx->dup_cookie == *desc->dir_cookie) {
323 					if (printk_ratelimit()) {
324 						pr_notice("NFS: directory %pD2 contains a readdir loop."
325 								"Please contact your server vendor.  "
326 								"The file: %.*s has duplicate cookie %llu\n",
327 								desc->file, array->array[i].string.len,
328 								array->array[i].string.name, *desc->dir_cookie);
329 					}
330 					status = -ELOOP;
331 					goto out;
332 				}
333 				ctx->dup_cookie = *desc->dir_cookie;
334 				ctx->duped = -1;
335 			}
336 			desc->ctx->pos = new_pos;
337 			desc->cache_entry_index = i;
338 			return 0;
339 		}
340 	}
341 	if (array->eof_index >= 0) {
342 		status = -EBADCOOKIE;
343 		if (*desc->dir_cookie == array->last_cookie)
344 			desc->eof = 1;
345 	}
346 out:
347 	return status;
348 }
349 
350 static
351 int nfs_readdir_search_array(nfs_readdir_descriptor_t *desc)
352 {
353 	struct nfs_cache_array *array;
354 	int status;
355 
356 	array = nfs_readdir_get_array(desc->page);
357 	if (IS_ERR(array)) {
358 		status = PTR_ERR(array);
359 		goto out;
360 	}
361 
362 	if (*desc->dir_cookie == 0)
363 		status = nfs_readdir_search_for_pos(array, desc);
364 	else
365 		status = nfs_readdir_search_for_cookie(array, desc);
366 
367 	if (status == -EAGAIN) {
368 		desc->last_cookie = array->last_cookie;
369 		desc->current_index += array->size;
370 		desc->page_index++;
371 	}
372 	nfs_readdir_release_array(desc->page);
373 out:
374 	return status;
375 }
376 
377 /* Fill a page with xdr information before transferring to the cache page */
378 static
379 int nfs_readdir_xdr_filler(struct page **pages, nfs_readdir_descriptor_t *desc,
380 			struct nfs_entry *entry, struct file *file, struct inode *inode)
381 {
382 	struct nfs_open_dir_context *ctx = file->private_data;
383 	struct rpc_cred	*cred = ctx->cred;
384 	unsigned long	timestamp, gencount;
385 	int		error;
386 
387  again:
388 	timestamp = jiffies;
389 	gencount = nfs_inc_attr_generation_counter();
390 	error = NFS_PROTO(inode)->readdir(file_dentry(file), cred, entry->cookie, pages,
391 					  NFS_SERVER(inode)->dtsize, desc->plus);
392 	if (error < 0) {
393 		/* We requested READDIRPLUS, but the server doesn't grok it */
394 		if (error == -ENOTSUPP && desc->plus) {
395 			NFS_SERVER(inode)->caps &= ~NFS_CAP_READDIRPLUS;
396 			clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags);
397 			desc->plus = 0;
398 			goto again;
399 		}
400 		goto error;
401 	}
402 	desc->timestamp = timestamp;
403 	desc->gencount = gencount;
404 error:
405 	return error;
406 }
407 
408 static int xdr_decode(nfs_readdir_descriptor_t *desc,
409 		      struct nfs_entry *entry, struct xdr_stream *xdr)
410 {
411 	int error;
412 
413 	error = desc->decode(xdr, entry, desc->plus);
414 	if (error)
415 		return error;
416 	entry->fattr->time_start = desc->timestamp;
417 	entry->fattr->gencount = desc->gencount;
418 	return 0;
419 }
420 
421 /* Match file and dirent using either filehandle or fileid
422  * Note: caller is responsible for checking the fsid
423  */
424 static
425 int nfs_same_file(struct dentry *dentry, struct nfs_entry *entry)
426 {
427 	struct inode *inode;
428 	struct nfs_inode *nfsi;
429 
430 	if (d_really_is_negative(dentry))
431 		return 0;
432 
433 	inode = d_inode(dentry);
434 	if (is_bad_inode(inode) || NFS_STALE(inode))
435 		return 0;
436 
437 	nfsi = NFS_I(inode);
438 	if (entry->fattr->fileid != nfsi->fileid)
439 		return 0;
440 	if (entry->fh->size && nfs_compare_fh(entry->fh, &nfsi->fh) != 0)
441 		return 0;
442 	return 1;
443 }
444 
445 static
446 bool nfs_use_readdirplus(struct inode *dir, struct dir_context *ctx)
447 {
448 	if (!nfs_server_capable(dir, NFS_CAP_READDIRPLUS))
449 		return false;
450 	if (test_and_clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(dir)->flags))
451 		return true;
452 	if (ctx->pos == 0)
453 		return true;
454 	return false;
455 }
456 
457 /*
458  * This function is called by the lookup and getattr code to request the
459  * use of readdirplus to accelerate any future lookups in the same
460  * directory.
461  */
462 void nfs_advise_use_readdirplus(struct inode *dir)
463 {
464 	struct nfs_inode *nfsi = NFS_I(dir);
465 
466 	if (nfs_server_capable(dir, NFS_CAP_READDIRPLUS) &&
467 	    !list_empty(&nfsi->open_files))
468 		set_bit(NFS_INO_ADVISE_RDPLUS, &nfsi->flags);
469 }
470 
471 /*
472  * This function is mainly for use by nfs_getattr().
473  *
474  * If this is an 'ls -l', we want to force use of readdirplus.
475  * Do this by checking if there is an active file descriptor
476  * and calling nfs_advise_use_readdirplus, then forcing a
477  * cache flush.
478  */
479 void nfs_force_use_readdirplus(struct inode *dir)
480 {
481 	struct nfs_inode *nfsi = NFS_I(dir);
482 
483 	if (nfs_server_capable(dir, NFS_CAP_READDIRPLUS) &&
484 	    !list_empty(&nfsi->open_files)) {
485 		set_bit(NFS_INO_ADVISE_RDPLUS, &nfsi->flags);
486 		invalidate_mapping_pages(dir->i_mapping, 0, -1);
487 	}
488 }
489 
490 static
491 void nfs_prime_dcache(struct dentry *parent, struct nfs_entry *entry)
492 {
493 	struct qstr filename = QSTR_INIT(entry->name, entry->len);
494 	DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
495 	struct dentry *dentry;
496 	struct dentry *alias;
497 	struct inode *dir = d_inode(parent);
498 	struct inode *inode;
499 	int status;
500 
501 	if (!(entry->fattr->valid & NFS_ATTR_FATTR_FILEID))
502 		return;
503 	if (!(entry->fattr->valid & NFS_ATTR_FATTR_FSID))
504 		return;
505 	if (filename.len == 0)
506 		return;
507 	/* Validate that the name doesn't contain any illegal '\0' */
508 	if (strnlen(filename.name, filename.len) != filename.len)
509 		return;
510 	/* ...or '/' */
511 	if (strnchr(filename.name, filename.len, '/'))
512 		return;
513 	if (filename.name[0] == '.') {
514 		if (filename.len == 1)
515 			return;
516 		if (filename.len == 2 && filename.name[1] == '.')
517 			return;
518 	}
519 	filename.hash = full_name_hash(parent, filename.name, filename.len);
520 
521 	dentry = d_lookup(parent, &filename);
522 again:
523 	if (!dentry) {
524 		dentry = d_alloc_parallel(parent, &filename, &wq);
525 		if (IS_ERR(dentry))
526 			return;
527 	}
528 	if (!d_in_lookup(dentry)) {
529 		/* Is there a mountpoint here? If so, just exit */
530 		if (!nfs_fsid_equal(&NFS_SB(dentry->d_sb)->fsid,
531 					&entry->fattr->fsid))
532 			goto out;
533 		if (nfs_same_file(dentry, entry)) {
534 			if (!entry->fh->size)
535 				goto out;
536 			nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
537 			status = nfs_refresh_inode(d_inode(dentry), entry->fattr);
538 			if (!status)
539 				nfs_setsecurity(d_inode(dentry), entry->fattr, entry->label);
540 			goto out;
541 		} else {
542 			d_invalidate(dentry);
543 			dput(dentry);
544 			dentry = NULL;
545 			goto again;
546 		}
547 	}
548 	if (!entry->fh->size) {
549 		d_lookup_done(dentry);
550 		goto out;
551 	}
552 
553 	inode = nfs_fhget(dentry->d_sb, entry->fh, entry->fattr, entry->label);
554 	alias = d_splice_alias(inode, dentry);
555 	d_lookup_done(dentry);
556 	if (alias) {
557 		if (IS_ERR(alias))
558 			goto out;
559 		dput(dentry);
560 		dentry = alias;
561 	}
562 	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
563 out:
564 	dput(dentry);
565 }
566 
567 /* Perform conversion from xdr to cache array */
568 static
569 int nfs_readdir_page_filler(nfs_readdir_descriptor_t *desc, struct nfs_entry *entry,
570 				struct page **xdr_pages, struct page *page, unsigned int buflen)
571 {
572 	struct xdr_stream stream;
573 	struct xdr_buf buf;
574 	struct page *scratch;
575 	struct nfs_cache_array *array;
576 	unsigned int count = 0;
577 	int status;
578 
579 	scratch = alloc_page(GFP_KERNEL);
580 	if (scratch == NULL)
581 		return -ENOMEM;
582 
583 	if (buflen == 0)
584 		goto out_nopages;
585 
586 	xdr_init_decode_pages(&stream, &buf, xdr_pages, buflen);
587 	xdr_set_scratch_buffer(&stream, page_address(scratch), PAGE_SIZE);
588 
589 	do {
590 		status = xdr_decode(desc, entry, &stream);
591 		if (status != 0) {
592 			if (status == -EAGAIN)
593 				status = 0;
594 			break;
595 		}
596 
597 		count++;
598 
599 		if (desc->plus != 0)
600 			nfs_prime_dcache(file_dentry(desc->file), entry);
601 
602 		status = nfs_readdir_add_to_array(entry, page);
603 		if (status != 0)
604 			break;
605 	} while (!entry->eof);
606 
607 out_nopages:
608 	if (count == 0 || (status == -EBADCOOKIE && entry->eof != 0)) {
609 		array = nfs_readdir_get_array(page);
610 		if (!IS_ERR(array)) {
611 			array->eof_index = array->size;
612 			status = 0;
613 			nfs_readdir_release_array(page);
614 		} else
615 			status = PTR_ERR(array);
616 	}
617 
618 	put_page(scratch);
619 	return status;
620 }
621 
622 static
623 void nfs_readdir_free_pages(struct page **pages, unsigned int npages)
624 {
625 	unsigned int i;
626 	for (i = 0; i < npages; i++)
627 		put_page(pages[i]);
628 }
629 
630 /*
631  * nfs_readdir_large_page will allocate pages that must be freed with a call
632  * to nfs_readdir_free_pagearray
633  */
634 static
635 int nfs_readdir_alloc_pages(struct page **pages, unsigned int npages)
636 {
637 	unsigned int i;
638 
639 	for (i = 0; i < npages; i++) {
640 		struct page *page = alloc_page(GFP_KERNEL);
641 		if (page == NULL)
642 			goto out_freepages;
643 		pages[i] = page;
644 	}
645 	return 0;
646 
647 out_freepages:
648 	nfs_readdir_free_pages(pages, i);
649 	return -ENOMEM;
650 }
651 
652 static
653 int nfs_readdir_xdr_to_array(nfs_readdir_descriptor_t *desc, struct page *page, struct inode *inode)
654 {
655 	struct page *pages[NFS_MAX_READDIR_PAGES];
656 	struct nfs_entry entry;
657 	struct file	*file = desc->file;
658 	struct nfs_cache_array *array;
659 	int status = -ENOMEM;
660 	unsigned int array_size = ARRAY_SIZE(pages);
661 
662 	entry.prev_cookie = 0;
663 	entry.cookie = desc->last_cookie;
664 	entry.eof = 0;
665 	entry.fh = nfs_alloc_fhandle();
666 	entry.fattr = nfs_alloc_fattr();
667 	entry.server = NFS_SERVER(inode);
668 	if (entry.fh == NULL || entry.fattr == NULL)
669 		goto out;
670 
671 	entry.label = nfs4_label_alloc(NFS_SERVER(inode), GFP_NOWAIT);
672 	if (IS_ERR(entry.label)) {
673 		status = PTR_ERR(entry.label);
674 		goto out;
675 	}
676 
677 	array = nfs_readdir_get_array(page);
678 	if (IS_ERR(array)) {
679 		status = PTR_ERR(array);
680 		goto out_label_free;
681 	}
682 	memset(array, 0, sizeof(struct nfs_cache_array));
683 	atomic_set(&array->refcount, 1);
684 	array->eof_index = -1;
685 
686 	status = nfs_readdir_alloc_pages(pages, array_size);
687 	if (status < 0)
688 		goto out_release_array;
689 	do {
690 		unsigned int pglen;
691 		status = nfs_readdir_xdr_filler(pages, desc, &entry, file, inode);
692 
693 		if (status < 0)
694 			break;
695 		pglen = status;
696 		status = nfs_readdir_page_filler(desc, &entry, pages, page, pglen);
697 		if (status < 0) {
698 			if (status == -ENOSPC)
699 				status = 0;
700 			break;
701 		}
702 	} while (array->eof_index < 0);
703 
704 	nfs_readdir_free_pages(pages, array_size);
705 out_release_array:
706 	nfs_readdir_release_array(page);
707 out_label_free:
708 	nfs4_label_free(entry.label);
709 out:
710 	nfs_free_fattr(entry.fattr);
711 	nfs_free_fhandle(entry.fh);
712 	return status;
713 }
714 
715 /*
716  * Now we cache directories properly, by converting xdr information
717  * to an array that can be used for lookups later.  This results in
718  * fewer cache pages, since we can store more information on each page.
719  * We only need to convert from xdr once so future lookups are much simpler
720  */
721 static
722 int nfs_readdir_filler(nfs_readdir_descriptor_t *desc, struct page* page)
723 {
724 	struct inode	*inode = file_inode(desc->file);
725 	int ret;
726 
727 	ret = nfs_readdir_xdr_to_array(desc, page, inode);
728 	if (ret < 0)
729 		goto error;
730 	SetPageUptodate(page);
731 
732 	if (invalidate_inode_pages2_range(inode->i_mapping, page->index + 1, -1) < 0) {
733 		/* Should never happen */
734 		nfs_zap_mapping(inode, inode->i_mapping);
735 	}
736 	unlock_page(page);
737 	return 0;
738  error:
739 	unlock_page(page);
740 	return ret;
741 }
742 
743 static
744 void cache_page_release(nfs_readdir_descriptor_t *desc)
745 {
746 	nfs_readdir_clear_array(desc->page);
747 	put_page(desc->page);
748 	desc->page = NULL;
749 }
750 
751 static
752 struct page *get_cache_page(nfs_readdir_descriptor_t *desc)
753 {
754 	struct page *page;
755 
756 	for (;;) {
757 		page = read_cache_page(desc->file->f_mapping,
758 			desc->page_index, (filler_t *)nfs_readdir_filler, desc);
759 		if (IS_ERR(page) || grab_page(page))
760 			break;
761 		put_page(page);
762 	}
763 	return page;
764 }
765 
766 /*
767  * Returns 0 if desc->dir_cookie was found on page desc->page_index
768  */
769 static
770 int find_cache_page(nfs_readdir_descriptor_t *desc)
771 {
772 	int res;
773 
774 	desc->page = get_cache_page(desc);
775 	if (IS_ERR(desc->page))
776 		return PTR_ERR(desc->page);
777 
778 	res = nfs_readdir_search_array(desc);
779 	if (res != 0)
780 		cache_page_release(desc);
781 	return res;
782 }
783 
784 /* Search for desc->dir_cookie from the beginning of the page cache */
785 static inline
786 int readdir_search_pagecache(nfs_readdir_descriptor_t *desc)
787 {
788 	int res;
789 
790 	if (desc->page_index == 0) {
791 		desc->current_index = 0;
792 		desc->last_cookie = 0;
793 	}
794 	do {
795 		res = find_cache_page(desc);
796 	} while (res == -EAGAIN);
797 	return res;
798 }
799 
800 /*
801  * Once we've found the start of the dirent within a page: fill 'er up...
802  */
803 static
804 int nfs_do_filldir(nfs_readdir_descriptor_t *desc)
805 {
806 	struct file	*file = desc->file;
807 	int i = 0;
808 	int res = 0;
809 	struct nfs_cache_array *array = NULL;
810 	struct nfs_open_dir_context *ctx = file->private_data;
811 
812 	array = nfs_readdir_get_array(desc->page);
813 	if (IS_ERR(array)) {
814 		res = PTR_ERR(array);
815 		goto out;
816 	}
817 
818 	for (i = desc->cache_entry_index; i < array->size; i++) {
819 		struct nfs_cache_array_entry *ent;
820 
821 		ent = &array->array[i];
822 		if (!dir_emit(desc->ctx, ent->string.name, ent->string.len,
823 		    nfs_compat_user_ino64(ent->ino), ent->d_type)) {
824 			desc->eof = 1;
825 			break;
826 		}
827 		desc->ctx->pos++;
828 		if (i < (array->size-1))
829 			*desc->dir_cookie = array->array[i+1].cookie;
830 		else
831 			*desc->dir_cookie = array->last_cookie;
832 		if (ctx->duped != 0)
833 			ctx->duped = 1;
834 	}
835 	if (array->eof_index >= 0)
836 		desc->eof = 1;
837 
838 	nfs_readdir_release_array(desc->page);
839 out:
840 	cache_page_release(desc);
841 	dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling ended @ cookie %Lu; returning = %d\n",
842 			(unsigned long long)*desc->dir_cookie, res);
843 	return res;
844 }
845 
846 /*
847  * If we cannot find a cookie in our cache, we suspect that this is
848  * because it points to a deleted file, so we ask the server to return
849  * whatever it thinks is the next entry. We then feed this to filldir.
850  * If all goes well, we should then be able to find our way round the
851  * cache on the next call to readdir_search_pagecache();
852  *
853  * NOTE: we cannot add the anonymous page to the pagecache because
854  *	 the data it contains might not be page aligned. Besides,
855  *	 we should already have a complete representation of the
856  *	 directory in the page cache by the time we get here.
857  */
858 static inline
859 int uncached_readdir(nfs_readdir_descriptor_t *desc)
860 {
861 	struct page	*page = NULL;
862 	int		status;
863 	struct inode *inode = file_inode(desc->file);
864 	struct nfs_open_dir_context *ctx = desc->file->private_data;
865 
866 	dfprintk(DIRCACHE, "NFS: uncached_readdir() searching for cookie %Lu\n",
867 			(unsigned long long)*desc->dir_cookie);
868 
869 	page = alloc_page(GFP_HIGHUSER);
870 	if (!page) {
871 		status = -ENOMEM;
872 		goto out;
873 	}
874 
875 	desc->page_index = 0;
876 	desc->last_cookie = *desc->dir_cookie;
877 	desc->page = page;
878 	ctx->duped = 0;
879 
880 	status = nfs_readdir_xdr_to_array(desc, page, inode);
881 	if (status < 0)
882 		goto out_release;
883 
884 	status = nfs_do_filldir(desc);
885 
886  out:
887 	dfprintk(DIRCACHE, "NFS: %s: returns %d\n",
888 			__func__, status);
889 	return status;
890  out_release:
891 	cache_page_release(desc);
892 	goto out;
893 }
894 
895 /* The file offset position represents the dirent entry number.  A
896    last cookie cache takes care of the common case of reading the
897    whole directory.
898  */
899 static int nfs_readdir(struct file *file, struct dir_context *ctx)
900 {
901 	struct dentry	*dentry = file_dentry(file);
902 	struct inode	*inode = d_inode(dentry);
903 	nfs_readdir_descriptor_t my_desc,
904 			*desc = &my_desc;
905 	struct nfs_open_dir_context *dir_ctx = file->private_data;
906 	int res = 0;
907 
908 	dfprintk(FILE, "NFS: readdir(%pD2) starting at cookie %llu\n",
909 			file, (long long)ctx->pos);
910 	nfs_inc_stats(inode, NFSIOS_VFSGETDENTS);
911 
912 	/*
913 	 * ctx->pos points to the dirent entry number.
914 	 * *desc->dir_cookie has the cookie for the next entry. We have
915 	 * to either find the entry with the appropriate number or
916 	 * revalidate the cookie.
917 	 */
918 	memset(desc, 0, sizeof(*desc));
919 
920 	desc->file = file;
921 	desc->ctx = ctx;
922 	desc->dir_cookie = &dir_ctx->dir_cookie;
923 	desc->decode = NFS_PROTO(inode)->decode_dirent;
924 	desc->plus = nfs_use_readdirplus(inode, ctx) ? 1 : 0;
925 
926 	if (ctx->pos == 0 || nfs_attribute_cache_expired(inode))
927 		res = nfs_revalidate_mapping(inode, file->f_mapping);
928 	if (res < 0)
929 		goto out;
930 
931 	do {
932 		res = readdir_search_pagecache(desc);
933 
934 		if (res == -EBADCOOKIE) {
935 			res = 0;
936 			/* This means either end of directory */
937 			if (*desc->dir_cookie && desc->eof == 0) {
938 				/* Or that the server has 'lost' a cookie */
939 				res = uncached_readdir(desc);
940 				if (res == 0)
941 					continue;
942 			}
943 			break;
944 		}
945 		if (res == -ETOOSMALL && desc->plus) {
946 			clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags);
947 			nfs_zap_caches(inode);
948 			desc->page_index = 0;
949 			desc->plus = 0;
950 			desc->eof = 0;
951 			continue;
952 		}
953 		if (res < 0)
954 			break;
955 
956 		res = nfs_do_filldir(desc);
957 		if (res < 0)
958 			break;
959 	} while (!desc->eof);
960 out:
961 	if (res > 0)
962 		res = 0;
963 	dfprintk(FILE, "NFS: readdir(%pD2) returns %d\n", file, res);
964 	return res;
965 }
966 
967 static loff_t nfs_llseek_dir(struct file *filp, loff_t offset, int whence)
968 {
969 	struct nfs_open_dir_context *dir_ctx = filp->private_data;
970 
971 	dfprintk(FILE, "NFS: llseek dir(%pD2, %lld, %d)\n",
972 			filp, offset, whence);
973 
974 	switch (whence) {
975 		case 1:
976 			offset += filp->f_pos;
977 		case 0:
978 			if (offset >= 0)
979 				break;
980 		default:
981 			return -EINVAL;
982 	}
983 	if (offset != filp->f_pos) {
984 		filp->f_pos = offset;
985 		dir_ctx->dir_cookie = 0;
986 		dir_ctx->duped = 0;
987 	}
988 	return offset;
989 }
990 
991 /*
992  * All directory operations under NFS are synchronous, so fsync()
993  * is a dummy operation.
994  */
995 static int nfs_fsync_dir(struct file *filp, loff_t start, loff_t end,
996 			 int datasync)
997 {
998 	struct inode *inode = file_inode(filp);
999 
1000 	dfprintk(FILE, "NFS: fsync dir(%pD2) datasync %d\n", filp, datasync);
1001 
1002 	inode_lock(inode);
1003 	nfs_inc_stats(inode, NFSIOS_VFSFSYNC);
1004 	inode_unlock(inode);
1005 	return 0;
1006 }
1007 
1008 /**
1009  * nfs_force_lookup_revalidate - Mark the directory as having changed
1010  * @dir - pointer to directory inode
1011  *
1012  * This forces the revalidation code in nfs_lookup_revalidate() to do a
1013  * full lookup on all child dentries of 'dir' whenever a change occurs
1014  * on the server that might have invalidated our dcache.
1015  *
1016  * The caller should be holding dir->i_lock
1017  */
1018 void nfs_force_lookup_revalidate(struct inode *dir)
1019 {
1020 	NFS_I(dir)->cache_change_attribute++;
1021 }
1022 EXPORT_SYMBOL_GPL(nfs_force_lookup_revalidate);
1023 
1024 /*
1025  * A check for whether or not the parent directory has changed.
1026  * In the case it has, we assume that the dentries are untrustworthy
1027  * and may need to be looked up again.
1028  * If rcu_walk prevents us from performing a full check, return 0.
1029  */
1030 static int nfs_check_verifier(struct inode *dir, struct dentry *dentry,
1031 			      int rcu_walk)
1032 {
1033 	int ret;
1034 
1035 	if (IS_ROOT(dentry))
1036 		return 1;
1037 	if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONE)
1038 		return 0;
1039 	if (!nfs_verify_change_attribute(dir, dentry->d_time))
1040 		return 0;
1041 	/* Revalidate nfsi->cache_change_attribute before we declare a match */
1042 	if (rcu_walk)
1043 		ret = nfs_revalidate_inode_rcu(NFS_SERVER(dir), dir);
1044 	else
1045 		ret = nfs_revalidate_inode(NFS_SERVER(dir), dir);
1046 	if (ret < 0)
1047 		return 0;
1048 	if (!nfs_verify_change_attribute(dir, dentry->d_time))
1049 		return 0;
1050 	return 1;
1051 }
1052 
1053 /*
1054  * Use intent information to check whether or not we're going to do
1055  * an O_EXCL create using this path component.
1056  */
1057 static int nfs_is_exclusive_create(struct inode *dir, unsigned int flags)
1058 {
1059 	if (NFS_PROTO(dir)->version == 2)
1060 		return 0;
1061 	return flags & LOOKUP_EXCL;
1062 }
1063 
1064 /*
1065  * Inode and filehandle revalidation for lookups.
1066  *
1067  * We force revalidation in the cases where the VFS sets LOOKUP_REVAL,
1068  * or if the intent information indicates that we're about to open this
1069  * particular file and the "nocto" mount flag is not set.
1070  *
1071  */
1072 static
1073 int nfs_lookup_verify_inode(struct inode *inode, unsigned int flags)
1074 {
1075 	struct nfs_server *server = NFS_SERVER(inode);
1076 	int ret;
1077 
1078 	if (IS_AUTOMOUNT(inode))
1079 		return 0;
1080 	/* VFS wants an on-the-wire revalidation */
1081 	if (flags & LOOKUP_REVAL)
1082 		goto out_force;
1083 	/* This is an open(2) */
1084 	if ((flags & LOOKUP_OPEN) && !(server->flags & NFS_MOUNT_NOCTO) &&
1085 	    (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode)))
1086 		goto out_force;
1087 out:
1088 	return (inode->i_nlink == 0) ? -ENOENT : 0;
1089 out_force:
1090 	if (flags & LOOKUP_RCU)
1091 		return -ECHILD;
1092 	ret = __nfs_revalidate_inode(server, inode);
1093 	if (ret != 0)
1094 		return ret;
1095 	goto out;
1096 }
1097 
1098 /*
1099  * We judge how long we want to trust negative
1100  * dentries by looking at the parent inode mtime.
1101  *
1102  * If parent mtime has changed, we revalidate, else we wait for a
1103  * period corresponding to the parent's attribute cache timeout value.
1104  *
1105  * If LOOKUP_RCU prevents us from performing a full check, return 1
1106  * suggesting a reval is needed.
1107  */
1108 static inline
1109 int nfs_neg_need_reval(struct inode *dir, struct dentry *dentry,
1110 		       unsigned int flags)
1111 {
1112 	/* Don't revalidate a negative dentry if we're creating a new file */
1113 	if (flags & LOOKUP_CREATE)
1114 		return 0;
1115 	if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONEG)
1116 		return 1;
1117 	return !nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU);
1118 }
1119 
1120 /*
1121  * This is called every time the dcache has a lookup hit,
1122  * and we should check whether we can really trust that
1123  * lookup.
1124  *
1125  * NOTE! The hit can be a negative hit too, don't assume
1126  * we have an inode!
1127  *
1128  * If the parent directory is seen to have changed, we throw out the
1129  * cached dentry and do a new lookup.
1130  */
1131 static int nfs_lookup_revalidate(struct dentry *dentry, unsigned int flags)
1132 {
1133 	struct inode *dir;
1134 	struct inode *inode;
1135 	struct dentry *parent;
1136 	struct nfs_fh *fhandle = NULL;
1137 	struct nfs_fattr *fattr = NULL;
1138 	struct nfs4_label *label = NULL;
1139 	int error;
1140 
1141 	if (flags & LOOKUP_RCU) {
1142 		parent = ACCESS_ONCE(dentry->d_parent);
1143 		dir = d_inode_rcu(parent);
1144 		if (!dir)
1145 			return -ECHILD;
1146 	} else {
1147 		parent = dget_parent(dentry);
1148 		dir = d_inode(parent);
1149 	}
1150 	nfs_inc_stats(dir, NFSIOS_DENTRYREVALIDATE);
1151 	inode = d_inode(dentry);
1152 
1153 	if (!inode) {
1154 		if (nfs_neg_need_reval(dir, dentry, flags)) {
1155 			if (flags & LOOKUP_RCU)
1156 				return -ECHILD;
1157 			goto out_bad;
1158 		}
1159 		goto out_valid;
1160 	}
1161 
1162 	if (is_bad_inode(inode)) {
1163 		if (flags & LOOKUP_RCU)
1164 			return -ECHILD;
1165 		dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n",
1166 				__func__, dentry);
1167 		goto out_bad;
1168 	}
1169 
1170 	if (NFS_PROTO(dir)->have_delegation(inode, FMODE_READ))
1171 		goto out_set_verifier;
1172 
1173 	/* Force a full look up iff the parent directory has changed */
1174 	if (!nfs_is_exclusive_create(dir, flags) &&
1175 	    nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU)) {
1176 
1177 		if (nfs_lookup_verify_inode(inode, flags)) {
1178 			if (flags & LOOKUP_RCU)
1179 				return -ECHILD;
1180 			goto out_zap_parent;
1181 		}
1182 		nfs_advise_use_readdirplus(dir);
1183 		goto out_valid;
1184 	}
1185 
1186 	if (flags & LOOKUP_RCU)
1187 		return -ECHILD;
1188 
1189 	if (NFS_STALE(inode))
1190 		goto out_bad;
1191 
1192 	error = -ENOMEM;
1193 	fhandle = nfs_alloc_fhandle();
1194 	fattr = nfs_alloc_fattr();
1195 	if (fhandle == NULL || fattr == NULL)
1196 		goto out_error;
1197 
1198 	label = nfs4_label_alloc(NFS_SERVER(inode), GFP_NOWAIT);
1199 	if (IS_ERR(label))
1200 		goto out_error;
1201 
1202 	trace_nfs_lookup_revalidate_enter(dir, dentry, flags);
1203 	error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr, label);
1204 	trace_nfs_lookup_revalidate_exit(dir, dentry, flags, error);
1205 	if (error)
1206 		goto out_bad;
1207 	if (nfs_compare_fh(NFS_FH(inode), fhandle))
1208 		goto out_bad;
1209 	if ((error = nfs_refresh_inode(inode, fattr)) != 0)
1210 		goto out_bad;
1211 
1212 	nfs_setsecurity(inode, fattr, label);
1213 
1214 	nfs_free_fattr(fattr);
1215 	nfs_free_fhandle(fhandle);
1216 	nfs4_label_free(label);
1217 
1218 	/* set a readdirplus hint that we had a cache miss */
1219 	nfs_force_use_readdirplus(dir);
1220 
1221 out_set_verifier:
1222 	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1223  out_valid:
1224 	if (flags & LOOKUP_RCU) {
1225 		if (parent != ACCESS_ONCE(dentry->d_parent))
1226 			return -ECHILD;
1227 	} else
1228 		dput(parent);
1229 	dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) is valid\n",
1230 			__func__, dentry);
1231 	return 1;
1232 out_zap_parent:
1233 	nfs_zap_caches(dir);
1234  out_bad:
1235 	WARN_ON(flags & LOOKUP_RCU);
1236 	nfs_free_fattr(fattr);
1237 	nfs_free_fhandle(fhandle);
1238 	nfs4_label_free(label);
1239 	nfs_mark_for_revalidate(dir);
1240 	if (inode && S_ISDIR(inode->i_mode)) {
1241 		/* Purge readdir caches. */
1242 		nfs_zap_caches(inode);
1243 		/*
1244 		 * We can't d_drop the root of a disconnected tree:
1245 		 * its d_hash is on the s_anon list and d_drop() would hide
1246 		 * it from shrink_dcache_for_unmount(), leading to busy
1247 		 * inodes on unmount and further oopses.
1248 		 */
1249 		if (IS_ROOT(dentry))
1250 			goto out_valid;
1251 	}
1252 	dput(parent);
1253 	dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) is invalid\n",
1254 			__func__, dentry);
1255 	return 0;
1256 out_error:
1257 	WARN_ON(flags & LOOKUP_RCU);
1258 	nfs_free_fattr(fattr);
1259 	nfs_free_fhandle(fhandle);
1260 	nfs4_label_free(label);
1261 	dput(parent);
1262 	dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) lookup returned error %d\n",
1263 			__func__, dentry, error);
1264 	return error;
1265 }
1266 
1267 /*
1268  * A weaker form of d_revalidate for revalidating just the d_inode(dentry)
1269  * when we don't really care about the dentry name. This is called when a
1270  * pathwalk ends on a dentry that was not found via a normal lookup in the
1271  * parent dir (e.g.: ".", "..", procfs symlinks or mountpoint traversals).
1272  *
1273  * In this situation, we just want to verify that the inode itself is OK
1274  * since the dentry might have changed on the server.
1275  */
1276 static int nfs_weak_revalidate(struct dentry *dentry, unsigned int flags)
1277 {
1278 	int error;
1279 	struct inode *inode = d_inode(dentry);
1280 
1281 	/*
1282 	 * I believe we can only get a negative dentry here in the case of a
1283 	 * procfs-style symlink. Just assume it's correct for now, but we may
1284 	 * eventually need to do something more here.
1285 	 */
1286 	if (!inode) {
1287 		dfprintk(LOOKUPCACHE, "%s: %pd2 has negative inode\n",
1288 				__func__, dentry);
1289 		return 1;
1290 	}
1291 
1292 	if (is_bad_inode(inode)) {
1293 		dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n",
1294 				__func__, dentry);
1295 		return 0;
1296 	}
1297 
1298 	error = nfs_revalidate_inode(NFS_SERVER(inode), inode);
1299 	dfprintk(LOOKUPCACHE, "NFS: %s: inode %lu is %s\n",
1300 			__func__, inode->i_ino, error ? "invalid" : "valid");
1301 	return !error;
1302 }
1303 
1304 /*
1305  * This is called from dput() when d_count is going to 0.
1306  */
1307 static int nfs_dentry_delete(const struct dentry *dentry)
1308 {
1309 	dfprintk(VFS, "NFS: dentry_delete(%pd2, %x)\n",
1310 		dentry, dentry->d_flags);
1311 
1312 	/* Unhash any dentry with a stale inode */
1313 	if (d_really_is_positive(dentry) && NFS_STALE(d_inode(dentry)))
1314 		return 1;
1315 
1316 	if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1317 		/* Unhash it, so that ->d_iput() would be called */
1318 		return 1;
1319 	}
1320 	if (!(dentry->d_sb->s_flags & MS_ACTIVE)) {
1321 		/* Unhash it, so that ancestors of killed async unlink
1322 		 * files will be cleaned up during umount */
1323 		return 1;
1324 	}
1325 	return 0;
1326 
1327 }
1328 
1329 /* Ensure that we revalidate inode->i_nlink */
1330 static void nfs_drop_nlink(struct inode *inode)
1331 {
1332 	spin_lock(&inode->i_lock);
1333 	/* drop the inode if we're reasonably sure this is the last link */
1334 	if (inode->i_nlink == 1)
1335 		clear_nlink(inode);
1336 	NFS_I(inode)->cache_validity |= NFS_INO_INVALID_ATTR;
1337 	spin_unlock(&inode->i_lock);
1338 }
1339 
1340 /*
1341  * Called when the dentry loses inode.
1342  * We use it to clean up silly-renamed files.
1343  */
1344 static void nfs_dentry_iput(struct dentry *dentry, struct inode *inode)
1345 {
1346 	if (S_ISDIR(inode->i_mode))
1347 		/* drop any readdir cache as it could easily be old */
1348 		NFS_I(inode)->cache_validity |= NFS_INO_INVALID_DATA;
1349 
1350 	if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1351 		nfs_complete_unlink(dentry, inode);
1352 		nfs_drop_nlink(inode);
1353 	}
1354 	iput(inode);
1355 }
1356 
1357 static void nfs_d_release(struct dentry *dentry)
1358 {
1359 	/* free cached devname value, if it survived that far */
1360 	if (unlikely(dentry->d_fsdata)) {
1361 		if (dentry->d_flags & DCACHE_NFSFS_RENAMED)
1362 			WARN_ON(1);
1363 		else
1364 			kfree(dentry->d_fsdata);
1365 	}
1366 }
1367 
1368 const struct dentry_operations nfs_dentry_operations = {
1369 	.d_revalidate	= nfs_lookup_revalidate,
1370 	.d_weak_revalidate	= nfs_weak_revalidate,
1371 	.d_delete	= nfs_dentry_delete,
1372 	.d_iput		= nfs_dentry_iput,
1373 	.d_automount	= nfs_d_automount,
1374 	.d_release	= nfs_d_release,
1375 };
1376 EXPORT_SYMBOL_GPL(nfs_dentry_operations);
1377 
1378 struct dentry *nfs_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
1379 {
1380 	struct dentry *res;
1381 	struct inode *inode = NULL;
1382 	struct nfs_fh *fhandle = NULL;
1383 	struct nfs_fattr *fattr = NULL;
1384 	struct nfs4_label *label = NULL;
1385 	int error;
1386 
1387 	dfprintk(VFS, "NFS: lookup(%pd2)\n", dentry);
1388 	nfs_inc_stats(dir, NFSIOS_VFSLOOKUP);
1389 
1390 	if (unlikely(dentry->d_name.len > NFS_SERVER(dir)->namelen))
1391 		return ERR_PTR(-ENAMETOOLONG);
1392 
1393 	/*
1394 	 * If we're doing an exclusive create, optimize away the lookup
1395 	 * but don't hash the dentry.
1396 	 */
1397 	if (nfs_is_exclusive_create(dir, flags))
1398 		return NULL;
1399 
1400 	res = ERR_PTR(-ENOMEM);
1401 	fhandle = nfs_alloc_fhandle();
1402 	fattr = nfs_alloc_fattr();
1403 	if (fhandle == NULL || fattr == NULL)
1404 		goto out;
1405 
1406 	label = nfs4_label_alloc(NFS_SERVER(dir), GFP_NOWAIT);
1407 	if (IS_ERR(label))
1408 		goto out;
1409 
1410 	trace_nfs_lookup_enter(dir, dentry, flags);
1411 	error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr, label);
1412 	if (error == -ENOENT)
1413 		goto no_entry;
1414 	if (error < 0) {
1415 		res = ERR_PTR(error);
1416 		goto out_label;
1417 	}
1418 	inode = nfs_fhget(dentry->d_sb, fhandle, fattr, label);
1419 	res = ERR_CAST(inode);
1420 	if (IS_ERR(res))
1421 		goto out_label;
1422 
1423 	/* Notify readdir to use READDIRPLUS */
1424 	nfs_force_use_readdirplus(dir);
1425 
1426 no_entry:
1427 	res = d_splice_alias(inode, dentry);
1428 	if (res != NULL) {
1429 		if (IS_ERR(res))
1430 			goto out_label;
1431 		dentry = res;
1432 	}
1433 	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1434 out_label:
1435 	trace_nfs_lookup_exit(dir, dentry, flags, error);
1436 	nfs4_label_free(label);
1437 out:
1438 	nfs_free_fattr(fattr);
1439 	nfs_free_fhandle(fhandle);
1440 	return res;
1441 }
1442 EXPORT_SYMBOL_GPL(nfs_lookup);
1443 
1444 #if IS_ENABLED(CONFIG_NFS_V4)
1445 static int nfs4_lookup_revalidate(struct dentry *, unsigned int);
1446 
1447 const struct dentry_operations nfs4_dentry_operations = {
1448 	.d_revalidate	= nfs4_lookup_revalidate,
1449 	.d_delete	= nfs_dentry_delete,
1450 	.d_iput		= nfs_dentry_iput,
1451 	.d_automount	= nfs_d_automount,
1452 	.d_release	= nfs_d_release,
1453 };
1454 EXPORT_SYMBOL_GPL(nfs4_dentry_operations);
1455 
1456 static fmode_t flags_to_mode(int flags)
1457 {
1458 	fmode_t res = (__force fmode_t)flags & FMODE_EXEC;
1459 	if ((flags & O_ACCMODE) != O_WRONLY)
1460 		res |= FMODE_READ;
1461 	if ((flags & O_ACCMODE) != O_RDONLY)
1462 		res |= FMODE_WRITE;
1463 	return res;
1464 }
1465 
1466 static struct nfs_open_context *create_nfs_open_context(struct dentry *dentry, int open_flags, struct file *filp)
1467 {
1468 	return alloc_nfs_open_context(dentry, flags_to_mode(open_flags), filp);
1469 }
1470 
1471 static int do_open(struct inode *inode, struct file *filp)
1472 {
1473 	nfs_fscache_open_file(inode, filp);
1474 	return 0;
1475 }
1476 
1477 static int nfs_finish_open(struct nfs_open_context *ctx,
1478 			   struct dentry *dentry,
1479 			   struct file *file, unsigned open_flags,
1480 			   int *opened)
1481 {
1482 	int err;
1483 
1484 	err = finish_open(file, dentry, do_open, opened);
1485 	if (err)
1486 		goto out;
1487 	nfs_file_set_open_context(file, ctx);
1488 
1489 out:
1490 	return err;
1491 }
1492 
1493 int nfs_atomic_open(struct inode *dir, struct dentry *dentry,
1494 		    struct file *file, unsigned open_flags,
1495 		    umode_t mode, int *opened)
1496 {
1497 	DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
1498 	struct nfs_open_context *ctx;
1499 	struct dentry *res;
1500 	struct iattr attr = { .ia_valid = ATTR_OPEN };
1501 	struct inode *inode;
1502 	unsigned int lookup_flags = 0;
1503 	bool switched = false;
1504 	int err;
1505 
1506 	/* Expect a negative dentry */
1507 	BUG_ON(d_inode(dentry));
1508 
1509 	dfprintk(VFS, "NFS: atomic_open(%s/%lu), %pd\n",
1510 			dir->i_sb->s_id, dir->i_ino, dentry);
1511 
1512 	err = nfs_check_flags(open_flags);
1513 	if (err)
1514 		return err;
1515 
1516 	/* NFS only supports OPEN on regular files */
1517 	if ((open_flags & O_DIRECTORY)) {
1518 		if (!d_in_lookup(dentry)) {
1519 			/*
1520 			 * Hashed negative dentry with O_DIRECTORY: dentry was
1521 			 * revalidated and is fine, no need to perform lookup
1522 			 * again
1523 			 */
1524 			return -ENOENT;
1525 		}
1526 		lookup_flags = LOOKUP_OPEN|LOOKUP_DIRECTORY;
1527 		goto no_open;
1528 	}
1529 
1530 	if (dentry->d_name.len > NFS_SERVER(dir)->namelen)
1531 		return -ENAMETOOLONG;
1532 
1533 	if (open_flags & O_CREAT) {
1534 		attr.ia_valid |= ATTR_MODE;
1535 		attr.ia_mode = mode & ~current_umask();
1536 	}
1537 	if (open_flags & O_TRUNC) {
1538 		attr.ia_valid |= ATTR_SIZE;
1539 		attr.ia_size = 0;
1540 	}
1541 
1542 	if (!(open_flags & O_CREAT) && !d_in_lookup(dentry)) {
1543 		d_drop(dentry);
1544 		switched = true;
1545 		dentry = d_alloc_parallel(dentry->d_parent,
1546 					  &dentry->d_name, &wq);
1547 		if (IS_ERR(dentry))
1548 			return PTR_ERR(dentry);
1549 		if (unlikely(!d_in_lookup(dentry)))
1550 			return finish_no_open(file, dentry);
1551 	}
1552 
1553 	ctx = create_nfs_open_context(dentry, open_flags, file);
1554 	err = PTR_ERR(ctx);
1555 	if (IS_ERR(ctx))
1556 		goto out;
1557 
1558 	trace_nfs_atomic_open_enter(dir, ctx, open_flags);
1559 	inode = NFS_PROTO(dir)->open_context(dir, ctx, open_flags, &attr, opened);
1560 	if (IS_ERR(inode)) {
1561 		err = PTR_ERR(inode);
1562 		trace_nfs_atomic_open_exit(dir, ctx, open_flags, err);
1563 		put_nfs_open_context(ctx);
1564 		d_drop(dentry);
1565 		switch (err) {
1566 		case -ENOENT:
1567 			d_add(dentry, NULL);
1568 			nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1569 			break;
1570 		case -EISDIR:
1571 		case -ENOTDIR:
1572 			goto no_open;
1573 		case -ELOOP:
1574 			if (!(open_flags & O_NOFOLLOW))
1575 				goto no_open;
1576 			break;
1577 			/* case -EINVAL: */
1578 		default:
1579 			break;
1580 		}
1581 		goto out;
1582 	}
1583 
1584 	err = nfs_finish_open(ctx, ctx->dentry, file, open_flags, opened);
1585 	trace_nfs_atomic_open_exit(dir, ctx, open_flags, err);
1586 	put_nfs_open_context(ctx);
1587 out:
1588 	if (unlikely(switched)) {
1589 		d_lookup_done(dentry);
1590 		dput(dentry);
1591 	}
1592 	return err;
1593 
1594 no_open:
1595 	res = nfs_lookup(dir, dentry, lookup_flags);
1596 	if (switched) {
1597 		d_lookup_done(dentry);
1598 		if (!res)
1599 			res = dentry;
1600 		else
1601 			dput(dentry);
1602 	}
1603 	if (IS_ERR(res))
1604 		return PTR_ERR(res);
1605 	return finish_no_open(file, res);
1606 }
1607 EXPORT_SYMBOL_GPL(nfs_atomic_open);
1608 
1609 static int nfs4_lookup_revalidate(struct dentry *dentry, unsigned int flags)
1610 {
1611 	struct inode *inode;
1612 	int ret = 0;
1613 
1614 	if (!(flags & LOOKUP_OPEN) || (flags & LOOKUP_DIRECTORY))
1615 		goto no_open;
1616 	if (d_mountpoint(dentry))
1617 		goto no_open;
1618 	if (NFS_SB(dentry->d_sb)->caps & NFS_CAP_ATOMIC_OPEN_V1)
1619 		goto no_open;
1620 
1621 	inode = d_inode(dentry);
1622 
1623 	/* We can't create new files in nfs_open_revalidate(), so we
1624 	 * optimize away revalidation of negative dentries.
1625 	 */
1626 	if (inode == NULL) {
1627 		struct dentry *parent;
1628 		struct inode *dir;
1629 
1630 		if (flags & LOOKUP_RCU) {
1631 			parent = ACCESS_ONCE(dentry->d_parent);
1632 			dir = d_inode_rcu(parent);
1633 			if (!dir)
1634 				return -ECHILD;
1635 		} else {
1636 			parent = dget_parent(dentry);
1637 			dir = d_inode(parent);
1638 		}
1639 		if (!nfs_neg_need_reval(dir, dentry, flags))
1640 			ret = 1;
1641 		else if (flags & LOOKUP_RCU)
1642 			ret = -ECHILD;
1643 		if (!(flags & LOOKUP_RCU))
1644 			dput(parent);
1645 		else if (parent != ACCESS_ONCE(dentry->d_parent))
1646 			return -ECHILD;
1647 		goto out;
1648 	}
1649 
1650 	/* NFS only supports OPEN on regular files */
1651 	if (!S_ISREG(inode->i_mode))
1652 		goto no_open;
1653 	/* We cannot do exclusive creation on a positive dentry */
1654 	if (flags & LOOKUP_EXCL)
1655 		goto no_open;
1656 
1657 	/* Let f_op->open() actually open (and revalidate) the file */
1658 	ret = 1;
1659 
1660 out:
1661 	return ret;
1662 
1663 no_open:
1664 	return nfs_lookup_revalidate(dentry, flags);
1665 }
1666 
1667 #endif /* CONFIG_NFSV4 */
1668 
1669 /*
1670  * Code common to create, mkdir, and mknod.
1671  */
1672 int nfs_instantiate(struct dentry *dentry, struct nfs_fh *fhandle,
1673 				struct nfs_fattr *fattr,
1674 				struct nfs4_label *label)
1675 {
1676 	struct dentry *parent = dget_parent(dentry);
1677 	struct inode *dir = d_inode(parent);
1678 	struct inode *inode;
1679 	int error = -EACCES;
1680 
1681 	d_drop(dentry);
1682 
1683 	/* We may have been initialized further down */
1684 	if (d_really_is_positive(dentry))
1685 		goto out;
1686 	if (fhandle->size == 0) {
1687 		error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr, NULL);
1688 		if (error)
1689 			goto out_error;
1690 	}
1691 	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1692 	if (!(fattr->valid & NFS_ATTR_FATTR)) {
1693 		struct nfs_server *server = NFS_SB(dentry->d_sb);
1694 		error = server->nfs_client->rpc_ops->getattr(server, fhandle, fattr, NULL);
1695 		if (error < 0)
1696 			goto out_error;
1697 	}
1698 	inode = nfs_fhget(dentry->d_sb, fhandle, fattr, label);
1699 	error = PTR_ERR(inode);
1700 	if (IS_ERR(inode))
1701 		goto out_error;
1702 	d_add(dentry, inode);
1703 out:
1704 	dput(parent);
1705 	return 0;
1706 out_error:
1707 	nfs_mark_for_revalidate(dir);
1708 	dput(parent);
1709 	return error;
1710 }
1711 EXPORT_SYMBOL_GPL(nfs_instantiate);
1712 
1713 /*
1714  * Following a failed create operation, we drop the dentry rather
1715  * than retain a negative dentry. This avoids a problem in the event
1716  * that the operation succeeded on the server, but an error in the
1717  * reply path made it appear to have failed.
1718  */
1719 int nfs_create(struct inode *dir, struct dentry *dentry,
1720 		umode_t mode, bool excl)
1721 {
1722 	struct iattr attr;
1723 	int open_flags = excl ? O_CREAT | O_EXCL : O_CREAT;
1724 	int error;
1725 
1726 	dfprintk(VFS, "NFS: create(%s/%lu), %pd\n",
1727 			dir->i_sb->s_id, dir->i_ino, dentry);
1728 
1729 	attr.ia_mode = mode;
1730 	attr.ia_valid = ATTR_MODE;
1731 
1732 	trace_nfs_create_enter(dir, dentry, open_flags);
1733 	error = NFS_PROTO(dir)->create(dir, dentry, &attr, open_flags);
1734 	trace_nfs_create_exit(dir, dentry, open_flags, error);
1735 	if (error != 0)
1736 		goto out_err;
1737 	return 0;
1738 out_err:
1739 	d_drop(dentry);
1740 	return error;
1741 }
1742 EXPORT_SYMBOL_GPL(nfs_create);
1743 
1744 /*
1745  * See comments for nfs_proc_create regarding failed operations.
1746  */
1747 int
1748 nfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t rdev)
1749 {
1750 	struct iattr attr;
1751 	int status;
1752 
1753 	dfprintk(VFS, "NFS: mknod(%s/%lu), %pd\n",
1754 			dir->i_sb->s_id, dir->i_ino, dentry);
1755 
1756 	attr.ia_mode = mode;
1757 	attr.ia_valid = ATTR_MODE;
1758 
1759 	trace_nfs_mknod_enter(dir, dentry);
1760 	status = NFS_PROTO(dir)->mknod(dir, dentry, &attr, rdev);
1761 	trace_nfs_mknod_exit(dir, dentry, status);
1762 	if (status != 0)
1763 		goto out_err;
1764 	return 0;
1765 out_err:
1766 	d_drop(dentry);
1767 	return status;
1768 }
1769 EXPORT_SYMBOL_GPL(nfs_mknod);
1770 
1771 /*
1772  * See comments for nfs_proc_create regarding failed operations.
1773  */
1774 int nfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
1775 {
1776 	struct iattr attr;
1777 	int error;
1778 
1779 	dfprintk(VFS, "NFS: mkdir(%s/%lu), %pd\n",
1780 			dir->i_sb->s_id, dir->i_ino, dentry);
1781 
1782 	attr.ia_valid = ATTR_MODE;
1783 	attr.ia_mode = mode | S_IFDIR;
1784 
1785 	trace_nfs_mkdir_enter(dir, dentry);
1786 	error = NFS_PROTO(dir)->mkdir(dir, dentry, &attr);
1787 	trace_nfs_mkdir_exit(dir, dentry, error);
1788 	if (error != 0)
1789 		goto out_err;
1790 	return 0;
1791 out_err:
1792 	d_drop(dentry);
1793 	return error;
1794 }
1795 EXPORT_SYMBOL_GPL(nfs_mkdir);
1796 
1797 static void nfs_dentry_handle_enoent(struct dentry *dentry)
1798 {
1799 	if (simple_positive(dentry))
1800 		d_delete(dentry);
1801 }
1802 
1803 int nfs_rmdir(struct inode *dir, struct dentry *dentry)
1804 {
1805 	int error;
1806 
1807 	dfprintk(VFS, "NFS: rmdir(%s/%lu), %pd\n",
1808 			dir->i_sb->s_id, dir->i_ino, dentry);
1809 
1810 	trace_nfs_rmdir_enter(dir, dentry);
1811 	if (d_really_is_positive(dentry)) {
1812 		down_write(&NFS_I(d_inode(dentry))->rmdir_sem);
1813 		error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
1814 		/* Ensure the VFS deletes this inode */
1815 		switch (error) {
1816 		case 0:
1817 			clear_nlink(d_inode(dentry));
1818 			break;
1819 		case -ENOENT:
1820 			nfs_dentry_handle_enoent(dentry);
1821 		}
1822 		up_write(&NFS_I(d_inode(dentry))->rmdir_sem);
1823 	} else
1824 		error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
1825 	trace_nfs_rmdir_exit(dir, dentry, error);
1826 
1827 	return error;
1828 }
1829 EXPORT_SYMBOL_GPL(nfs_rmdir);
1830 
1831 /*
1832  * Remove a file after making sure there are no pending writes,
1833  * and after checking that the file has only one user.
1834  *
1835  * We invalidate the attribute cache and free the inode prior to the operation
1836  * to avoid possible races if the server reuses the inode.
1837  */
1838 static int nfs_safe_remove(struct dentry *dentry)
1839 {
1840 	struct inode *dir = d_inode(dentry->d_parent);
1841 	struct inode *inode = d_inode(dentry);
1842 	int error = -EBUSY;
1843 
1844 	dfprintk(VFS, "NFS: safe_remove(%pd2)\n", dentry);
1845 
1846 	/* If the dentry was sillyrenamed, we simply call d_delete() */
1847 	if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1848 		error = 0;
1849 		goto out;
1850 	}
1851 
1852 	trace_nfs_remove_enter(dir, dentry);
1853 	if (inode != NULL) {
1854 		NFS_PROTO(inode)->return_delegation(inode);
1855 		error = NFS_PROTO(dir)->remove(dir, &dentry->d_name);
1856 		if (error == 0)
1857 			nfs_drop_nlink(inode);
1858 	} else
1859 		error = NFS_PROTO(dir)->remove(dir, &dentry->d_name);
1860 	if (error == -ENOENT)
1861 		nfs_dentry_handle_enoent(dentry);
1862 	trace_nfs_remove_exit(dir, dentry, error);
1863 out:
1864 	return error;
1865 }
1866 
1867 /*  We do silly rename. In case sillyrename() returns -EBUSY, the inode
1868  *  belongs to an active ".nfs..." file and we return -EBUSY.
1869  *
1870  *  If sillyrename() returns 0, we do nothing, otherwise we unlink.
1871  */
1872 int nfs_unlink(struct inode *dir, struct dentry *dentry)
1873 {
1874 	int error;
1875 	int need_rehash = 0;
1876 
1877 	dfprintk(VFS, "NFS: unlink(%s/%lu, %pd)\n", dir->i_sb->s_id,
1878 		dir->i_ino, dentry);
1879 
1880 	trace_nfs_unlink_enter(dir, dentry);
1881 	spin_lock(&dentry->d_lock);
1882 	if (d_count(dentry) > 1) {
1883 		spin_unlock(&dentry->d_lock);
1884 		/* Start asynchronous writeout of the inode */
1885 		write_inode_now(d_inode(dentry), 0);
1886 		error = nfs_sillyrename(dir, dentry);
1887 		goto out;
1888 	}
1889 	if (!d_unhashed(dentry)) {
1890 		__d_drop(dentry);
1891 		need_rehash = 1;
1892 	}
1893 	spin_unlock(&dentry->d_lock);
1894 	error = nfs_safe_remove(dentry);
1895 	if (!error || error == -ENOENT) {
1896 		nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1897 	} else if (need_rehash)
1898 		d_rehash(dentry);
1899 out:
1900 	trace_nfs_unlink_exit(dir, dentry, error);
1901 	return error;
1902 }
1903 EXPORT_SYMBOL_GPL(nfs_unlink);
1904 
1905 /*
1906  * To create a symbolic link, most file systems instantiate a new inode,
1907  * add a page to it containing the path, then write it out to the disk
1908  * using prepare_write/commit_write.
1909  *
1910  * Unfortunately the NFS client can't create the in-core inode first
1911  * because it needs a file handle to create an in-core inode (see
1912  * fs/nfs/inode.c:nfs_fhget).  We only have a file handle *after* the
1913  * symlink request has completed on the server.
1914  *
1915  * So instead we allocate a raw page, copy the symname into it, then do
1916  * the SYMLINK request with the page as the buffer.  If it succeeds, we
1917  * now have a new file handle and can instantiate an in-core NFS inode
1918  * and move the raw page into its mapping.
1919  */
1920 int nfs_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
1921 {
1922 	struct page *page;
1923 	char *kaddr;
1924 	struct iattr attr;
1925 	unsigned int pathlen = strlen(symname);
1926 	int error;
1927 
1928 	dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s)\n", dir->i_sb->s_id,
1929 		dir->i_ino, dentry, symname);
1930 
1931 	if (pathlen > PAGE_SIZE)
1932 		return -ENAMETOOLONG;
1933 
1934 	attr.ia_mode = S_IFLNK | S_IRWXUGO;
1935 	attr.ia_valid = ATTR_MODE;
1936 
1937 	page = alloc_page(GFP_USER);
1938 	if (!page)
1939 		return -ENOMEM;
1940 
1941 	kaddr = page_address(page);
1942 	memcpy(kaddr, symname, pathlen);
1943 	if (pathlen < PAGE_SIZE)
1944 		memset(kaddr + pathlen, 0, PAGE_SIZE - pathlen);
1945 
1946 	trace_nfs_symlink_enter(dir, dentry);
1947 	error = NFS_PROTO(dir)->symlink(dir, dentry, page, pathlen, &attr);
1948 	trace_nfs_symlink_exit(dir, dentry, error);
1949 	if (error != 0) {
1950 		dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s) error %d\n",
1951 			dir->i_sb->s_id, dir->i_ino,
1952 			dentry, symname, error);
1953 		d_drop(dentry);
1954 		__free_page(page);
1955 		return error;
1956 	}
1957 
1958 	/*
1959 	 * No big deal if we can't add this page to the page cache here.
1960 	 * READLINK will get the missing page from the server if needed.
1961 	 */
1962 	if (!add_to_page_cache_lru(page, d_inode(dentry)->i_mapping, 0,
1963 							GFP_KERNEL)) {
1964 		SetPageUptodate(page);
1965 		unlock_page(page);
1966 		/*
1967 		 * add_to_page_cache_lru() grabs an extra page refcount.
1968 		 * Drop it here to avoid leaking this page later.
1969 		 */
1970 		put_page(page);
1971 	} else
1972 		__free_page(page);
1973 
1974 	return 0;
1975 }
1976 EXPORT_SYMBOL_GPL(nfs_symlink);
1977 
1978 int
1979 nfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
1980 {
1981 	struct inode *inode = d_inode(old_dentry);
1982 	int error;
1983 
1984 	dfprintk(VFS, "NFS: link(%pd2 -> %pd2)\n",
1985 		old_dentry, dentry);
1986 
1987 	trace_nfs_link_enter(inode, dir, dentry);
1988 	NFS_PROTO(inode)->return_delegation(inode);
1989 
1990 	d_drop(dentry);
1991 	error = NFS_PROTO(dir)->link(inode, dir, &dentry->d_name);
1992 	if (error == 0) {
1993 		ihold(inode);
1994 		d_add(dentry, inode);
1995 	}
1996 	trace_nfs_link_exit(inode, dir, dentry, error);
1997 	return error;
1998 }
1999 EXPORT_SYMBOL_GPL(nfs_link);
2000 
2001 /*
2002  * RENAME
2003  * FIXME: Some nfsds, like the Linux user space nfsd, may generate a
2004  * different file handle for the same inode after a rename (e.g. when
2005  * moving to a different directory). A fail-safe method to do so would
2006  * be to look up old_dir/old_name, create a link to new_dir/new_name and
2007  * rename the old file using the sillyrename stuff. This way, the original
2008  * file in old_dir will go away when the last process iput()s the inode.
2009  *
2010  * FIXED.
2011  *
2012  * It actually works quite well. One needs to have the possibility for
2013  * at least one ".nfs..." file in each directory the file ever gets
2014  * moved or linked to which happens automagically with the new
2015  * implementation that only depends on the dcache stuff instead of
2016  * using the inode layer
2017  *
2018  * Unfortunately, things are a little more complicated than indicated
2019  * above. For a cross-directory move, we want to make sure we can get
2020  * rid of the old inode after the operation.  This means there must be
2021  * no pending writes (if it's a file), and the use count must be 1.
2022  * If these conditions are met, we can drop the dentries before doing
2023  * the rename.
2024  */
2025 int nfs_rename(struct inode *old_dir, struct dentry *old_dentry,
2026 	       struct inode *new_dir, struct dentry *new_dentry,
2027 	       unsigned int flags)
2028 {
2029 	struct inode *old_inode = d_inode(old_dentry);
2030 	struct inode *new_inode = d_inode(new_dentry);
2031 	struct dentry *dentry = NULL, *rehash = NULL;
2032 	struct rpc_task *task;
2033 	int error = -EBUSY;
2034 
2035 	if (flags)
2036 		return -EINVAL;
2037 
2038 	dfprintk(VFS, "NFS: rename(%pd2 -> %pd2, ct=%d)\n",
2039 		 old_dentry, new_dentry,
2040 		 d_count(new_dentry));
2041 
2042 	trace_nfs_rename_enter(old_dir, old_dentry, new_dir, new_dentry);
2043 	/*
2044 	 * For non-directories, check whether the target is busy and if so,
2045 	 * make a copy of the dentry and then do a silly-rename. If the
2046 	 * silly-rename succeeds, the copied dentry is hashed and becomes
2047 	 * the new target.
2048 	 */
2049 	if (new_inode && !S_ISDIR(new_inode->i_mode)) {
2050 		/*
2051 		 * To prevent any new references to the target during the
2052 		 * rename, we unhash the dentry in advance.
2053 		 */
2054 		if (!d_unhashed(new_dentry)) {
2055 			d_drop(new_dentry);
2056 			rehash = new_dentry;
2057 		}
2058 
2059 		if (d_count(new_dentry) > 2) {
2060 			int err;
2061 
2062 			/* copy the target dentry's name */
2063 			dentry = d_alloc(new_dentry->d_parent,
2064 					 &new_dentry->d_name);
2065 			if (!dentry)
2066 				goto out;
2067 
2068 			/* silly-rename the existing target ... */
2069 			err = nfs_sillyrename(new_dir, new_dentry);
2070 			if (err)
2071 				goto out;
2072 
2073 			new_dentry = dentry;
2074 			rehash = NULL;
2075 			new_inode = NULL;
2076 		}
2077 	}
2078 
2079 	NFS_PROTO(old_inode)->return_delegation(old_inode);
2080 	if (new_inode != NULL)
2081 		NFS_PROTO(new_inode)->return_delegation(new_inode);
2082 
2083 	task = nfs_async_rename(old_dir, new_dir, old_dentry, new_dentry, NULL);
2084 	if (IS_ERR(task)) {
2085 		error = PTR_ERR(task);
2086 		goto out;
2087 	}
2088 
2089 	error = rpc_wait_for_completion_task(task);
2090 	if (error == 0)
2091 		error = task->tk_status;
2092 	rpc_put_task(task);
2093 	nfs_mark_for_revalidate(old_inode);
2094 out:
2095 	if (rehash)
2096 		d_rehash(rehash);
2097 	trace_nfs_rename_exit(old_dir, old_dentry,
2098 			new_dir, new_dentry, error);
2099 	if (!error) {
2100 		if (new_inode != NULL)
2101 			nfs_drop_nlink(new_inode);
2102 		d_move(old_dentry, new_dentry);
2103 		nfs_set_verifier(new_dentry,
2104 					nfs_save_change_attribute(new_dir));
2105 	} else if (error == -ENOENT)
2106 		nfs_dentry_handle_enoent(old_dentry);
2107 
2108 	/* new dentry created? */
2109 	if (dentry)
2110 		dput(dentry);
2111 	return error;
2112 }
2113 EXPORT_SYMBOL_GPL(nfs_rename);
2114 
2115 static DEFINE_SPINLOCK(nfs_access_lru_lock);
2116 static LIST_HEAD(nfs_access_lru_list);
2117 static atomic_long_t nfs_access_nr_entries;
2118 
2119 static unsigned long nfs_access_max_cachesize = ULONG_MAX;
2120 module_param(nfs_access_max_cachesize, ulong, 0644);
2121 MODULE_PARM_DESC(nfs_access_max_cachesize, "NFS access maximum total cache length");
2122 
2123 static void nfs_access_free_entry(struct nfs_access_entry *entry)
2124 {
2125 	put_rpccred(entry->cred);
2126 	kfree_rcu(entry, rcu_head);
2127 	smp_mb__before_atomic();
2128 	atomic_long_dec(&nfs_access_nr_entries);
2129 	smp_mb__after_atomic();
2130 }
2131 
2132 static void nfs_access_free_list(struct list_head *head)
2133 {
2134 	struct nfs_access_entry *cache;
2135 
2136 	while (!list_empty(head)) {
2137 		cache = list_entry(head->next, struct nfs_access_entry, lru);
2138 		list_del(&cache->lru);
2139 		nfs_access_free_entry(cache);
2140 	}
2141 }
2142 
2143 static unsigned long
2144 nfs_do_access_cache_scan(unsigned int nr_to_scan)
2145 {
2146 	LIST_HEAD(head);
2147 	struct nfs_inode *nfsi, *next;
2148 	struct nfs_access_entry *cache;
2149 	long freed = 0;
2150 
2151 	spin_lock(&nfs_access_lru_lock);
2152 	list_for_each_entry_safe(nfsi, next, &nfs_access_lru_list, access_cache_inode_lru) {
2153 		struct inode *inode;
2154 
2155 		if (nr_to_scan-- == 0)
2156 			break;
2157 		inode = &nfsi->vfs_inode;
2158 		spin_lock(&inode->i_lock);
2159 		if (list_empty(&nfsi->access_cache_entry_lru))
2160 			goto remove_lru_entry;
2161 		cache = list_entry(nfsi->access_cache_entry_lru.next,
2162 				struct nfs_access_entry, lru);
2163 		list_move(&cache->lru, &head);
2164 		rb_erase(&cache->rb_node, &nfsi->access_cache);
2165 		freed++;
2166 		if (!list_empty(&nfsi->access_cache_entry_lru))
2167 			list_move_tail(&nfsi->access_cache_inode_lru,
2168 					&nfs_access_lru_list);
2169 		else {
2170 remove_lru_entry:
2171 			list_del_init(&nfsi->access_cache_inode_lru);
2172 			smp_mb__before_atomic();
2173 			clear_bit(NFS_INO_ACL_LRU_SET, &nfsi->flags);
2174 			smp_mb__after_atomic();
2175 		}
2176 		spin_unlock(&inode->i_lock);
2177 	}
2178 	spin_unlock(&nfs_access_lru_lock);
2179 	nfs_access_free_list(&head);
2180 	return freed;
2181 }
2182 
2183 unsigned long
2184 nfs_access_cache_scan(struct shrinker *shrink, struct shrink_control *sc)
2185 {
2186 	int nr_to_scan = sc->nr_to_scan;
2187 	gfp_t gfp_mask = sc->gfp_mask;
2188 
2189 	if ((gfp_mask & GFP_KERNEL) != GFP_KERNEL)
2190 		return SHRINK_STOP;
2191 	return nfs_do_access_cache_scan(nr_to_scan);
2192 }
2193 
2194 
2195 unsigned long
2196 nfs_access_cache_count(struct shrinker *shrink, struct shrink_control *sc)
2197 {
2198 	return vfs_pressure_ratio(atomic_long_read(&nfs_access_nr_entries));
2199 }
2200 
2201 static void
2202 nfs_access_cache_enforce_limit(void)
2203 {
2204 	long nr_entries = atomic_long_read(&nfs_access_nr_entries);
2205 	unsigned long diff;
2206 	unsigned int nr_to_scan;
2207 
2208 	if (nr_entries < 0 || nr_entries <= nfs_access_max_cachesize)
2209 		return;
2210 	nr_to_scan = 100;
2211 	diff = nr_entries - nfs_access_max_cachesize;
2212 	if (diff < nr_to_scan)
2213 		nr_to_scan = diff;
2214 	nfs_do_access_cache_scan(nr_to_scan);
2215 }
2216 
2217 static void __nfs_access_zap_cache(struct nfs_inode *nfsi, struct list_head *head)
2218 {
2219 	struct rb_root *root_node = &nfsi->access_cache;
2220 	struct rb_node *n;
2221 	struct nfs_access_entry *entry;
2222 
2223 	/* Unhook entries from the cache */
2224 	while ((n = rb_first(root_node)) != NULL) {
2225 		entry = rb_entry(n, struct nfs_access_entry, rb_node);
2226 		rb_erase(n, root_node);
2227 		list_move(&entry->lru, head);
2228 	}
2229 	nfsi->cache_validity &= ~NFS_INO_INVALID_ACCESS;
2230 }
2231 
2232 void nfs_access_zap_cache(struct inode *inode)
2233 {
2234 	LIST_HEAD(head);
2235 
2236 	if (test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags) == 0)
2237 		return;
2238 	/* Remove from global LRU init */
2239 	spin_lock(&nfs_access_lru_lock);
2240 	if (test_and_clear_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
2241 		list_del_init(&NFS_I(inode)->access_cache_inode_lru);
2242 
2243 	spin_lock(&inode->i_lock);
2244 	__nfs_access_zap_cache(NFS_I(inode), &head);
2245 	spin_unlock(&inode->i_lock);
2246 	spin_unlock(&nfs_access_lru_lock);
2247 	nfs_access_free_list(&head);
2248 }
2249 EXPORT_SYMBOL_GPL(nfs_access_zap_cache);
2250 
2251 static struct nfs_access_entry *nfs_access_search_rbtree(struct inode *inode, struct rpc_cred *cred)
2252 {
2253 	struct rb_node *n = NFS_I(inode)->access_cache.rb_node;
2254 	struct nfs_access_entry *entry;
2255 
2256 	while (n != NULL) {
2257 		entry = rb_entry(n, struct nfs_access_entry, rb_node);
2258 
2259 		if (cred < entry->cred)
2260 			n = n->rb_left;
2261 		else if (cred > entry->cred)
2262 			n = n->rb_right;
2263 		else
2264 			return entry;
2265 	}
2266 	return NULL;
2267 }
2268 
2269 static int nfs_access_get_cached(struct inode *inode, struct rpc_cred *cred, struct nfs_access_entry *res, bool may_block)
2270 {
2271 	struct nfs_inode *nfsi = NFS_I(inode);
2272 	struct nfs_access_entry *cache;
2273 	bool retry = true;
2274 	int err;
2275 
2276 	spin_lock(&inode->i_lock);
2277 	for(;;) {
2278 		if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
2279 			goto out_zap;
2280 		cache = nfs_access_search_rbtree(inode, cred);
2281 		err = -ENOENT;
2282 		if (cache == NULL)
2283 			goto out;
2284 		/* Found an entry, is our attribute cache valid? */
2285 		if (!nfs_attribute_cache_expired(inode) &&
2286 		    !(nfsi->cache_validity & NFS_INO_INVALID_ATTR))
2287 			break;
2288 		err = -ECHILD;
2289 		if (!may_block)
2290 			goto out;
2291 		if (!retry)
2292 			goto out_zap;
2293 		spin_unlock(&inode->i_lock);
2294 		err = __nfs_revalidate_inode(NFS_SERVER(inode), inode);
2295 		if (err)
2296 			return err;
2297 		spin_lock(&inode->i_lock);
2298 		retry = false;
2299 	}
2300 	res->jiffies = cache->jiffies;
2301 	res->cred = cache->cred;
2302 	res->mask = cache->mask;
2303 	list_move_tail(&cache->lru, &nfsi->access_cache_entry_lru);
2304 	err = 0;
2305 out:
2306 	spin_unlock(&inode->i_lock);
2307 	return err;
2308 out_zap:
2309 	spin_unlock(&inode->i_lock);
2310 	nfs_access_zap_cache(inode);
2311 	return -ENOENT;
2312 }
2313 
2314 static int nfs_access_get_cached_rcu(struct inode *inode, struct rpc_cred *cred, struct nfs_access_entry *res)
2315 {
2316 	/* Only check the most recently returned cache entry,
2317 	 * but do it without locking.
2318 	 */
2319 	struct nfs_inode *nfsi = NFS_I(inode);
2320 	struct nfs_access_entry *cache;
2321 	int err = -ECHILD;
2322 	struct list_head *lh;
2323 
2324 	rcu_read_lock();
2325 	if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
2326 		goto out;
2327 	lh = rcu_dereference(nfsi->access_cache_entry_lru.prev);
2328 	cache = list_entry(lh, struct nfs_access_entry, lru);
2329 	if (lh == &nfsi->access_cache_entry_lru ||
2330 	    cred != cache->cred)
2331 		cache = NULL;
2332 	if (cache == NULL)
2333 		goto out;
2334 	err = nfs_revalidate_inode_rcu(NFS_SERVER(inode), inode);
2335 	if (err)
2336 		goto out;
2337 	res->jiffies = cache->jiffies;
2338 	res->cred = cache->cred;
2339 	res->mask = cache->mask;
2340 out:
2341 	rcu_read_unlock();
2342 	return err;
2343 }
2344 
2345 static void nfs_access_add_rbtree(struct inode *inode, struct nfs_access_entry *set)
2346 {
2347 	struct nfs_inode *nfsi = NFS_I(inode);
2348 	struct rb_root *root_node = &nfsi->access_cache;
2349 	struct rb_node **p = &root_node->rb_node;
2350 	struct rb_node *parent = NULL;
2351 	struct nfs_access_entry *entry;
2352 
2353 	spin_lock(&inode->i_lock);
2354 	while (*p != NULL) {
2355 		parent = *p;
2356 		entry = rb_entry(parent, struct nfs_access_entry, rb_node);
2357 
2358 		if (set->cred < entry->cred)
2359 			p = &parent->rb_left;
2360 		else if (set->cred > entry->cred)
2361 			p = &parent->rb_right;
2362 		else
2363 			goto found;
2364 	}
2365 	rb_link_node(&set->rb_node, parent, p);
2366 	rb_insert_color(&set->rb_node, root_node);
2367 	list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
2368 	spin_unlock(&inode->i_lock);
2369 	return;
2370 found:
2371 	rb_replace_node(parent, &set->rb_node, root_node);
2372 	list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
2373 	list_del(&entry->lru);
2374 	spin_unlock(&inode->i_lock);
2375 	nfs_access_free_entry(entry);
2376 }
2377 
2378 void nfs_access_add_cache(struct inode *inode, struct nfs_access_entry *set)
2379 {
2380 	struct nfs_access_entry *cache = kmalloc(sizeof(*cache), GFP_KERNEL);
2381 	if (cache == NULL)
2382 		return;
2383 	RB_CLEAR_NODE(&cache->rb_node);
2384 	cache->jiffies = set->jiffies;
2385 	cache->cred = get_rpccred(set->cred);
2386 	cache->mask = set->mask;
2387 
2388 	/* The above field assignments must be visible
2389 	 * before this item appears on the lru.  We cannot easily
2390 	 * use rcu_assign_pointer, so just force the memory barrier.
2391 	 */
2392 	smp_wmb();
2393 	nfs_access_add_rbtree(inode, cache);
2394 
2395 	/* Update accounting */
2396 	smp_mb__before_atomic();
2397 	atomic_long_inc(&nfs_access_nr_entries);
2398 	smp_mb__after_atomic();
2399 
2400 	/* Add inode to global LRU list */
2401 	if (!test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) {
2402 		spin_lock(&nfs_access_lru_lock);
2403 		if (!test_and_set_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
2404 			list_add_tail(&NFS_I(inode)->access_cache_inode_lru,
2405 					&nfs_access_lru_list);
2406 		spin_unlock(&nfs_access_lru_lock);
2407 	}
2408 	nfs_access_cache_enforce_limit();
2409 }
2410 EXPORT_SYMBOL_GPL(nfs_access_add_cache);
2411 
2412 void nfs_access_set_mask(struct nfs_access_entry *entry, u32 access_result)
2413 {
2414 	entry->mask = 0;
2415 	if (access_result & NFS4_ACCESS_READ)
2416 		entry->mask |= MAY_READ;
2417 	if (access_result &
2418 	    (NFS4_ACCESS_MODIFY | NFS4_ACCESS_EXTEND | NFS4_ACCESS_DELETE))
2419 		entry->mask |= MAY_WRITE;
2420 	if (access_result & (NFS4_ACCESS_LOOKUP|NFS4_ACCESS_EXECUTE))
2421 		entry->mask |= MAY_EXEC;
2422 }
2423 EXPORT_SYMBOL_GPL(nfs_access_set_mask);
2424 
2425 static int nfs_do_access(struct inode *inode, struct rpc_cred *cred, int mask)
2426 {
2427 	struct nfs_access_entry cache;
2428 	bool may_block = (mask & MAY_NOT_BLOCK) == 0;
2429 	int status;
2430 
2431 	trace_nfs_access_enter(inode);
2432 
2433 	status = nfs_access_get_cached_rcu(inode, cred, &cache);
2434 	if (status != 0)
2435 		status = nfs_access_get_cached(inode, cred, &cache, may_block);
2436 	if (status == 0)
2437 		goto out_cached;
2438 
2439 	status = -ECHILD;
2440 	if (!may_block)
2441 		goto out;
2442 
2443 	/* Be clever: ask server to check for all possible rights */
2444 	cache.mask = MAY_EXEC | MAY_WRITE | MAY_READ;
2445 	cache.cred = cred;
2446 	cache.jiffies = jiffies;
2447 	status = NFS_PROTO(inode)->access(inode, &cache);
2448 	if (status != 0) {
2449 		if (status == -ESTALE) {
2450 			nfs_zap_caches(inode);
2451 			if (!S_ISDIR(inode->i_mode))
2452 				set_bit(NFS_INO_STALE, &NFS_I(inode)->flags);
2453 		}
2454 		goto out;
2455 	}
2456 	nfs_access_add_cache(inode, &cache);
2457 out_cached:
2458 	if ((mask & ~cache.mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) != 0)
2459 		status = -EACCES;
2460 out:
2461 	trace_nfs_access_exit(inode, status);
2462 	return status;
2463 }
2464 
2465 static int nfs_open_permission_mask(int openflags)
2466 {
2467 	int mask = 0;
2468 
2469 	if (openflags & __FMODE_EXEC) {
2470 		/* ONLY check exec rights */
2471 		mask = MAY_EXEC;
2472 	} else {
2473 		if ((openflags & O_ACCMODE) != O_WRONLY)
2474 			mask |= MAY_READ;
2475 		if ((openflags & O_ACCMODE) != O_RDONLY)
2476 			mask |= MAY_WRITE;
2477 	}
2478 
2479 	return mask;
2480 }
2481 
2482 int nfs_may_open(struct inode *inode, struct rpc_cred *cred, int openflags)
2483 {
2484 	return nfs_do_access(inode, cred, nfs_open_permission_mask(openflags));
2485 }
2486 EXPORT_SYMBOL_GPL(nfs_may_open);
2487 
2488 static int nfs_execute_ok(struct inode *inode, int mask)
2489 {
2490 	struct nfs_server *server = NFS_SERVER(inode);
2491 	int ret;
2492 
2493 	if (mask & MAY_NOT_BLOCK)
2494 		ret = nfs_revalidate_inode_rcu(server, inode);
2495 	else
2496 		ret = nfs_revalidate_inode(server, inode);
2497 	if (ret == 0 && !execute_ok(inode))
2498 		ret = -EACCES;
2499 	return ret;
2500 }
2501 
2502 int nfs_permission(struct inode *inode, int mask)
2503 {
2504 	struct rpc_cred *cred;
2505 	int res = 0;
2506 
2507 	nfs_inc_stats(inode, NFSIOS_VFSACCESS);
2508 
2509 	if ((mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
2510 		goto out;
2511 	/* Is this sys_access() ? */
2512 	if (mask & (MAY_ACCESS | MAY_CHDIR))
2513 		goto force_lookup;
2514 
2515 	switch (inode->i_mode & S_IFMT) {
2516 		case S_IFLNK:
2517 			goto out;
2518 		case S_IFREG:
2519 			if ((mask & MAY_OPEN) &&
2520 			   nfs_server_capable(inode, NFS_CAP_ATOMIC_OPEN))
2521 				return 0;
2522 			break;
2523 		case S_IFDIR:
2524 			/*
2525 			 * Optimize away all write operations, since the server
2526 			 * will check permissions when we perform the op.
2527 			 */
2528 			if ((mask & MAY_WRITE) && !(mask & MAY_READ))
2529 				goto out;
2530 	}
2531 
2532 force_lookup:
2533 	if (!NFS_PROTO(inode)->access)
2534 		goto out_notsup;
2535 
2536 	/* Always try fast lookups first */
2537 	rcu_read_lock();
2538 	cred = rpc_lookup_cred_nonblock();
2539 	if (!IS_ERR(cred))
2540 		res = nfs_do_access(inode, cred, mask|MAY_NOT_BLOCK);
2541 	else
2542 		res = PTR_ERR(cred);
2543 	rcu_read_unlock();
2544 	if (res == -ECHILD && !(mask & MAY_NOT_BLOCK)) {
2545 		/* Fast lookup failed, try the slow way */
2546 		cred = rpc_lookup_cred();
2547 		if (!IS_ERR(cred)) {
2548 			res = nfs_do_access(inode, cred, mask);
2549 			put_rpccred(cred);
2550 		} else
2551 			res = PTR_ERR(cred);
2552 	}
2553 out:
2554 	if (!res && (mask & MAY_EXEC))
2555 		res = nfs_execute_ok(inode, mask);
2556 
2557 	dfprintk(VFS, "NFS: permission(%s/%lu), mask=0x%x, res=%d\n",
2558 		inode->i_sb->s_id, inode->i_ino, mask, res);
2559 	return res;
2560 out_notsup:
2561 	if (mask & MAY_NOT_BLOCK)
2562 		return -ECHILD;
2563 
2564 	res = nfs_revalidate_inode(NFS_SERVER(inode), inode);
2565 	if (res == 0)
2566 		res = generic_permission(inode, mask);
2567 	goto out;
2568 }
2569 EXPORT_SYMBOL_GPL(nfs_permission);
2570 
2571 /*
2572  * Local variables:
2573  *  version-control: t
2574  *  kept-new-versions: 5
2575  * End:
2576  */
2577