xref: /openbmc/linux/fs/nfs/dir.c (revision 1683ed16)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/fs/nfs/dir.c
4  *
5  *  Copyright (C) 1992  Rick Sladkey
6  *
7  *  nfs directory handling functions
8  *
9  * 10 Apr 1996	Added silly rename for unlink	--okir
10  * 28 Sep 1996	Improved directory cache --okir
11  * 23 Aug 1997  Claus Heine claus@momo.math.rwth-aachen.de
12  *              Re-implemented silly rename for unlink, newly implemented
13  *              silly rename for nfs_rename() following the suggestions
14  *              of Olaf Kirch (okir) found in this file.
15  *              Following Linus comments on my original hack, this version
16  *              depends only on the dcache stuff and doesn't touch the inode
17  *              layer (iput() and friends).
18  *  6 Jun 1999	Cache readdir lookups in the page cache. -DaveM
19  */
20 
21 #include <linux/compat.h>
22 #include <linux/module.h>
23 #include <linux/time.h>
24 #include <linux/errno.h>
25 #include <linux/stat.h>
26 #include <linux/fcntl.h>
27 #include <linux/string.h>
28 #include <linux/kernel.h>
29 #include <linux/slab.h>
30 #include <linux/mm.h>
31 #include <linux/sunrpc/clnt.h>
32 #include <linux/nfs_fs.h>
33 #include <linux/nfs_mount.h>
34 #include <linux/pagemap.h>
35 #include <linux/pagevec.h>
36 #include <linux/namei.h>
37 #include <linux/mount.h>
38 #include <linux/swap.h>
39 #include <linux/sched.h>
40 #include <linux/kmemleak.h>
41 #include <linux/xattr.h>
42 #include <linux/hash.h>
43 
44 #include "delegation.h"
45 #include "iostat.h"
46 #include "internal.h"
47 #include "fscache.h"
48 
49 #include "nfstrace.h"
50 
51 /* #define NFS_DEBUG_VERBOSE 1 */
52 
53 static int nfs_opendir(struct inode *, struct file *);
54 static int nfs_closedir(struct inode *, struct file *);
55 static int nfs_readdir(struct file *, struct dir_context *);
56 static int nfs_fsync_dir(struct file *, loff_t, loff_t, int);
57 static loff_t nfs_llseek_dir(struct file *, loff_t, int);
58 static void nfs_readdir_free_folio(struct folio *);
59 
60 const struct file_operations nfs_dir_operations = {
61 	.llseek		= nfs_llseek_dir,
62 	.read		= generic_read_dir,
63 	.iterate_shared	= nfs_readdir,
64 	.open		= nfs_opendir,
65 	.release	= nfs_closedir,
66 	.fsync		= nfs_fsync_dir,
67 };
68 
69 const struct address_space_operations nfs_dir_aops = {
70 	.free_folio = nfs_readdir_free_folio,
71 };
72 
73 #define NFS_INIT_DTSIZE PAGE_SIZE
74 
75 static struct nfs_open_dir_context *
76 alloc_nfs_open_dir_context(struct inode *dir)
77 {
78 	struct nfs_inode *nfsi = NFS_I(dir);
79 	struct nfs_open_dir_context *ctx;
80 
81 	ctx = kzalloc(sizeof(*ctx), GFP_KERNEL_ACCOUNT);
82 	if (ctx != NULL) {
83 		ctx->attr_gencount = nfsi->attr_gencount;
84 		ctx->dtsize = NFS_INIT_DTSIZE;
85 		spin_lock(&dir->i_lock);
86 		if (list_empty(&nfsi->open_files) &&
87 		    (nfsi->cache_validity & NFS_INO_DATA_INVAL_DEFER))
88 			nfs_set_cache_invalid(dir,
89 					      NFS_INO_INVALID_DATA |
90 						      NFS_INO_REVAL_FORCED);
91 		list_add_tail_rcu(&ctx->list, &nfsi->open_files);
92 		memcpy(ctx->verf, nfsi->cookieverf, sizeof(ctx->verf));
93 		spin_unlock(&dir->i_lock);
94 		return ctx;
95 	}
96 	return  ERR_PTR(-ENOMEM);
97 }
98 
99 static void put_nfs_open_dir_context(struct inode *dir, struct nfs_open_dir_context *ctx)
100 {
101 	spin_lock(&dir->i_lock);
102 	list_del_rcu(&ctx->list);
103 	spin_unlock(&dir->i_lock);
104 	kfree_rcu(ctx, rcu_head);
105 }
106 
107 /*
108  * Open file
109  */
110 static int
111 nfs_opendir(struct inode *inode, struct file *filp)
112 {
113 	int res = 0;
114 	struct nfs_open_dir_context *ctx;
115 
116 	dfprintk(FILE, "NFS: open dir(%pD2)\n", filp);
117 
118 	nfs_inc_stats(inode, NFSIOS_VFSOPEN);
119 
120 	ctx = alloc_nfs_open_dir_context(inode);
121 	if (IS_ERR(ctx)) {
122 		res = PTR_ERR(ctx);
123 		goto out;
124 	}
125 	filp->private_data = ctx;
126 out:
127 	return res;
128 }
129 
130 static int
131 nfs_closedir(struct inode *inode, struct file *filp)
132 {
133 	put_nfs_open_dir_context(file_inode(filp), filp->private_data);
134 	return 0;
135 }
136 
137 struct nfs_cache_array_entry {
138 	u64 cookie;
139 	u64 ino;
140 	const char *name;
141 	unsigned int name_len;
142 	unsigned char d_type;
143 };
144 
145 struct nfs_cache_array {
146 	u64 change_attr;
147 	u64 last_cookie;
148 	unsigned int size;
149 	unsigned char page_full : 1,
150 		      page_is_eof : 1,
151 		      cookies_are_ordered : 1;
152 	struct nfs_cache_array_entry array[];
153 };
154 
155 struct nfs_readdir_descriptor {
156 	struct file	*file;
157 	struct page	*page;
158 	struct dir_context *ctx;
159 	pgoff_t		page_index;
160 	pgoff_t		page_index_max;
161 	u64		dir_cookie;
162 	u64		last_cookie;
163 	loff_t		current_index;
164 
165 	__be32		verf[NFS_DIR_VERIFIER_SIZE];
166 	unsigned long	dir_verifier;
167 	unsigned long	timestamp;
168 	unsigned long	gencount;
169 	unsigned long	attr_gencount;
170 	unsigned int	cache_entry_index;
171 	unsigned int	buffer_fills;
172 	unsigned int	dtsize;
173 	bool clear_cache;
174 	bool plus;
175 	bool eob;
176 	bool eof;
177 };
178 
179 static void nfs_set_dtsize(struct nfs_readdir_descriptor *desc, unsigned int sz)
180 {
181 	struct nfs_server *server = NFS_SERVER(file_inode(desc->file));
182 	unsigned int maxsize = server->dtsize;
183 
184 	if (sz > maxsize)
185 		sz = maxsize;
186 	if (sz < NFS_MIN_FILE_IO_SIZE)
187 		sz = NFS_MIN_FILE_IO_SIZE;
188 	desc->dtsize = sz;
189 }
190 
191 static void nfs_shrink_dtsize(struct nfs_readdir_descriptor *desc)
192 {
193 	nfs_set_dtsize(desc, desc->dtsize >> 1);
194 }
195 
196 static void nfs_grow_dtsize(struct nfs_readdir_descriptor *desc)
197 {
198 	nfs_set_dtsize(desc, desc->dtsize << 1);
199 }
200 
201 static void nfs_readdir_page_init_array(struct page *page, u64 last_cookie,
202 					u64 change_attr)
203 {
204 	struct nfs_cache_array *array;
205 
206 	array = kmap_local_page(page);
207 	array->change_attr = change_attr;
208 	array->last_cookie = last_cookie;
209 	array->size = 0;
210 	array->page_full = 0;
211 	array->page_is_eof = 0;
212 	array->cookies_are_ordered = 1;
213 	kunmap_local(array);
214 }
215 
216 /*
217  * we are freeing strings created by nfs_add_to_readdir_array()
218  */
219 static void nfs_readdir_clear_array(struct page *page)
220 {
221 	struct nfs_cache_array *array;
222 	unsigned int i;
223 
224 	array = kmap_local_page(page);
225 	for (i = 0; i < array->size; i++)
226 		kfree(array->array[i].name);
227 	array->size = 0;
228 	kunmap_local(array);
229 }
230 
231 static void nfs_readdir_free_folio(struct folio *folio)
232 {
233 	nfs_readdir_clear_array(&folio->page);
234 }
235 
236 static void nfs_readdir_page_reinit_array(struct page *page, u64 last_cookie,
237 					  u64 change_attr)
238 {
239 	nfs_readdir_clear_array(page);
240 	nfs_readdir_page_init_array(page, last_cookie, change_attr);
241 }
242 
243 static struct page *
244 nfs_readdir_page_array_alloc(u64 last_cookie, gfp_t gfp_flags)
245 {
246 	struct page *page = alloc_page(gfp_flags);
247 	if (page)
248 		nfs_readdir_page_init_array(page, last_cookie, 0);
249 	return page;
250 }
251 
252 static void nfs_readdir_page_array_free(struct page *page)
253 {
254 	if (page) {
255 		nfs_readdir_clear_array(page);
256 		put_page(page);
257 	}
258 }
259 
260 static u64 nfs_readdir_array_index_cookie(struct nfs_cache_array *array)
261 {
262 	return array->size == 0 ? array->last_cookie : array->array[0].cookie;
263 }
264 
265 static void nfs_readdir_array_set_eof(struct nfs_cache_array *array)
266 {
267 	array->page_is_eof = 1;
268 	array->page_full = 1;
269 }
270 
271 static bool nfs_readdir_array_is_full(struct nfs_cache_array *array)
272 {
273 	return array->page_full;
274 }
275 
276 /*
277  * the caller is responsible for freeing qstr.name
278  * when called by nfs_readdir_add_to_array, the strings will be freed in
279  * nfs_clear_readdir_array()
280  */
281 static const char *nfs_readdir_copy_name(const char *name, unsigned int len)
282 {
283 	const char *ret = kmemdup_nul(name, len, GFP_KERNEL);
284 
285 	/*
286 	 * Avoid a kmemleak false positive. The pointer to the name is stored
287 	 * in a page cache page which kmemleak does not scan.
288 	 */
289 	if (ret != NULL)
290 		kmemleak_not_leak(ret);
291 	return ret;
292 }
293 
294 static size_t nfs_readdir_array_maxentries(void)
295 {
296 	return (PAGE_SIZE - sizeof(struct nfs_cache_array)) /
297 	       sizeof(struct nfs_cache_array_entry);
298 }
299 
300 /*
301  * Check that the next array entry lies entirely within the page bounds
302  */
303 static int nfs_readdir_array_can_expand(struct nfs_cache_array *array)
304 {
305 	if (array->page_full)
306 		return -ENOSPC;
307 	if (array->size == nfs_readdir_array_maxentries()) {
308 		array->page_full = 1;
309 		return -ENOSPC;
310 	}
311 	return 0;
312 }
313 
314 static int nfs_readdir_page_array_append(struct page *page,
315 					 const struct nfs_entry *entry,
316 					 u64 *cookie)
317 {
318 	struct nfs_cache_array *array;
319 	struct nfs_cache_array_entry *cache_entry;
320 	const char *name;
321 	int ret = -ENOMEM;
322 
323 	name = nfs_readdir_copy_name(entry->name, entry->len);
324 
325 	array = kmap_atomic(page);
326 	if (!name)
327 		goto out;
328 	ret = nfs_readdir_array_can_expand(array);
329 	if (ret) {
330 		kfree(name);
331 		goto out;
332 	}
333 
334 	cache_entry = &array->array[array->size];
335 	cache_entry->cookie = array->last_cookie;
336 	cache_entry->ino = entry->ino;
337 	cache_entry->d_type = entry->d_type;
338 	cache_entry->name_len = entry->len;
339 	cache_entry->name = name;
340 	array->last_cookie = entry->cookie;
341 	if (array->last_cookie <= cache_entry->cookie)
342 		array->cookies_are_ordered = 0;
343 	array->size++;
344 	if (entry->eof != 0)
345 		nfs_readdir_array_set_eof(array);
346 out:
347 	*cookie = array->last_cookie;
348 	kunmap_atomic(array);
349 	return ret;
350 }
351 
352 #define NFS_READDIR_COOKIE_MASK (U32_MAX >> 14)
353 /*
354  * Hash algorithm allowing content addressible access to sequences
355  * of directory cookies. Content is addressed by the value of the
356  * cookie index of the first readdir entry in a page.
357  *
358  * We select only the first 18 bits to avoid issues with excessive
359  * memory use for the page cache XArray. 18 bits should allow the caching
360  * of 262144 pages of sequences of readdir entries. Since each page holds
361  * 127 readdir entries for a typical 64-bit system, that works out to a
362  * cache of ~ 33 million entries per directory.
363  */
364 static pgoff_t nfs_readdir_page_cookie_hash(u64 cookie)
365 {
366 	if (cookie == 0)
367 		return 0;
368 	return hash_64(cookie, 18);
369 }
370 
371 static bool nfs_readdir_page_validate(struct page *page, u64 last_cookie,
372 				      u64 change_attr)
373 {
374 	struct nfs_cache_array *array = kmap_local_page(page);
375 	int ret = true;
376 
377 	if (array->change_attr != change_attr)
378 		ret = false;
379 	if (nfs_readdir_array_index_cookie(array) != last_cookie)
380 		ret = false;
381 	kunmap_local(array);
382 	return ret;
383 }
384 
385 static void nfs_readdir_page_unlock_and_put(struct page *page)
386 {
387 	unlock_page(page);
388 	put_page(page);
389 }
390 
391 static void nfs_readdir_page_init_and_validate(struct page *page, u64 cookie,
392 					       u64 change_attr)
393 {
394 	if (PageUptodate(page)) {
395 		if (nfs_readdir_page_validate(page, cookie, change_attr))
396 			return;
397 		nfs_readdir_clear_array(page);
398 	}
399 	nfs_readdir_page_init_array(page, cookie, change_attr);
400 	SetPageUptodate(page);
401 }
402 
403 static struct page *nfs_readdir_page_get_locked(struct address_space *mapping,
404 						u64 cookie, u64 change_attr)
405 {
406 	pgoff_t index = nfs_readdir_page_cookie_hash(cookie);
407 	struct page *page;
408 
409 	page = grab_cache_page(mapping, index);
410 	if (!page)
411 		return NULL;
412 	nfs_readdir_page_init_and_validate(page, cookie, change_attr);
413 	return page;
414 }
415 
416 static u64 nfs_readdir_page_last_cookie(struct page *page)
417 {
418 	struct nfs_cache_array *array;
419 	u64 ret;
420 
421 	array = kmap_local_page(page);
422 	ret = array->last_cookie;
423 	kunmap_local(array);
424 	return ret;
425 }
426 
427 static bool nfs_readdir_page_needs_filling(struct page *page)
428 {
429 	struct nfs_cache_array *array;
430 	bool ret;
431 
432 	array = kmap_local_page(page);
433 	ret = !nfs_readdir_array_is_full(array);
434 	kunmap_local(array);
435 	return ret;
436 }
437 
438 static void nfs_readdir_page_set_eof(struct page *page)
439 {
440 	struct nfs_cache_array *array;
441 
442 	array = kmap_local_page(page);
443 	nfs_readdir_array_set_eof(array);
444 	kunmap_local(array);
445 }
446 
447 static struct page *nfs_readdir_page_get_next(struct address_space *mapping,
448 					      u64 cookie, u64 change_attr)
449 {
450 	pgoff_t index = nfs_readdir_page_cookie_hash(cookie);
451 	struct page *page;
452 
453 	page = grab_cache_page_nowait(mapping, index);
454 	if (!page)
455 		return NULL;
456 	nfs_readdir_page_init_and_validate(page, cookie, change_attr);
457 	if (nfs_readdir_page_last_cookie(page) != cookie)
458 		nfs_readdir_page_reinit_array(page, cookie, change_attr);
459 	return page;
460 }
461 
462 static inline
463 int is_32bit_api(void)
464 {
465 #ifdef CONFIG_COMPAT
466 	return in_compat_syscall();
467 #else
468 	return (BITS_PER_LONG == 32);
469 #endif
470 }
471 
472 static
473 bool nfs_readdir_use_cookie(const struct file *filp)
474 {
475 	if ((filp->f_mode & FMODE_32BITHASH) ||
476 	    (!(filp->f_mode & FMODE_64BITHASH) && is_32bit_api()))
477 		return false;
478 	return true;
479 }
480 
481 static void nfs_readdir_seek_next_array(struct nfs_cache_array *array,
482 					struct nfs_readdir_descriptor *desc)
483 {
484 	if (array->page_full) {
485 		desc->last_cookie = array->last_cookie;
486 		desc->current_index += array->size;
487 		desc->cache_entry_index = 0;
488 		desc->page_index++;
489 	} else
490 		desc->last_cookie = nfs_readdir_array_index_cookie(array);
491 }
492 
493 static void nfs_readdir_rewind_search(struct nfs_readdir_descriptor *desc)
494 {
495 	desc->current_index = 0;
496 	desc->last_cookie = 0;
497 	desc->page_index = 0;
498 }
499 
500 static int nfs_readdir_search_for_pos(struct nfs_cache_array *array,
501 				      struct nfs_readdir_descriptor *desc)
502 {
503 	loff_t diff = desc->ctx->pos - desc->current_index;
504 	unsigned int index;
505 
506 	if (diff < 0)
507 		goto out_eof;
508 	if (diff >= array->size) {
509 		if (array->page_is_eof)
510 			goto out_eof;
511 		nfs_readdir_seek_next_array(array, desc);
512 		return -EAGAIN;
513 	}
514 
515 	index = (unsigned int)diff;
516 	desc->dir_cookie = array->array[index].cookie;
517 	desc->cache_entry_index = index;
518 	return 0;
519 out_eof:
520 	desc->eof = true;
521 	return -EBADCOOKIE;
522 }
523 
524 static bool nfs_readdir_array_cookie_in_range(struct nfs_cache_array *array,
525 					      u64 cookie)
526 {
527 	if (!array->cookies_are_ordered)
528 		return true;
529 	/* Optimisation for monotonically increasing cookies */
530 	if (cookie >= array->last_cookie)
531 		return false;
532 	if (array->size && cookie < array->array[0].cookie)
533 		return false;
534 	return true;
535 }
536 
537 static int nfs_readdir_search_for_cookie(struct nfs_cache_array *array,
538 					 struct nfs_readdir_descriptor *desc)
539 {
540 	unsigned int i;
541 	int status = -EAGAIN;
542 
543 	if (!nfs_readdir_array_cookie_in_range(array, desc->dir_cookie))
544 		goto check_eof;
545 
546 	for (i = 0; i < array->size; i++) {
547 		if (array->array[i].cookie == desc->dir_cookie) {
548 			if (nfs_readdir_use_cookie(desc->file))
549 				desc->ctx->pos = desc->dir_cookie;
550 			else
551 				desc->ctx->pos = desc->current_index + i;
552 			desc->cache_entry_index = i;
553 			return 0;
554 		}
555 	}
556 check_eof:
557 	if (array->page_is_eof) {
558 		status = -EBADCOOKIE;
559 		if (desc->dir_cookie == array->last_cookie)
560 			desc->eof = true;
561 	} else
562 		nfs_readdir_seek_next_array(array, desc);
563 	return status;
564 }
565 
566 static int nfs_readdir_search_array(struct nfs_readdir_descriptor *desc)
567 {
568 	struct nfs_cache_array *array;
569 	int status;
570 
571 	array = kmap_local_page(desc->page);
572 
573 	if (desc->dir_cookie == 0)
574 		status = nfs_readdir_search_for_pos(array, desc);
575 	else
576 		status = nfs_readdir_search_for_cookie(array, desc);
577 
578 	kunmap_local(array);
579 	return status;
580 }
581 
582 /* Fill a page with xdr information before transferring to the cache page */
583 static int nfs_readdir_xdr_filler(struct nfs_readdir_descriptor *desc,
584 				  __be32 *verf, u64 cookie,
585 				  struct page **pages, size_t bufsize,
586 				  __be32 *verf_res)
587 {
588 	struct inode *inode = file_inode(desc->file);
589 	struct nfs_readdir_arg arg = {
590 		.dentry = file_dentry(desc->file),
591 		.cred = desc->file->f_cred,
592 		.verf = verf,
593 		.cookie = cookie,
594 		.pages = pages,
595 		.page_len = bufsize,
596 		.plus = desc->plus,
597 	};
598 	struct nfs_readdir_res res = {
599 		.verf = verf_res,
600 	};
601 	unsigned long	timestamp, gencount;
602 	int		error;
603 
604  again:
605 	timestamp = jiffies;
606 	gencount = nfs_inc_attr_generation_counter();
607 	desc->dir_verifier = nfs_save_change_attribute(inode);
608 	error = NFS_PROTO(inode)->readdir(&arg, &res);
609 	if (error < 0) {
610 		/* We requested READDIRPLUS, but the server doesn't grok it */
611 		if (error == -ENOTSUPP && desc->plus) {
612 			NFS_SERVER(inode)->caps &= ~NFS_CAP_READDIRPLUS;
613 			desc->plus = arg.plus = false;
614 			goto again;
615 		}
616 		goto error;
617 	}
618 	desc->timestamp = timestamp;
619 	desc->gencount = gencount;
620 error:
621 	return error;
622 }
623 
624 static int xdr_decode(struct nfs_readdir_descriptor *desc,
625 		      struct nfs_entry *entry, struct xdr_stream *xdr)
626 {
627 	struct inode *inode = file_inode(desc->file);
628 	int error;
629 
630 	error = NFS_PROTO(inode)->decode_dirent(xdr, entry, desc->plus);
631 	if (error)
632 		return error;
633 	entry->fattr->time_start = desc->timestamp;
634 	entry->fattr->gencount = desc->gencount;
635 	return 0;
636 }
637 
638 /* Match file and dirent using either filehandle or fileid
639  * Note: caller is responsible for checking the fsid
640  */
641 static
642 int nfs_same_file(struct dentry *dentry, struct nfs_entry *entry)
643 {
644 	struct inode *inode;
645 	struct nfs_inode *nfsi;
646 
647 	if (d_really_is_negative(dentry))
648 		return 0;
649 
650 	inode = d_inode(dentry);
651 	if (is_bad_inode(inode) || NFS_STALE(inode))
652 		return 0;
653 
654 	nfsi = NFS_I(inode);
655 	if (entry->fattr->fileid != nfsi->fileid)
656 		return 0;
657 	if (entry->fh->size && nfs_compare_fh(entry->fh, &nfsi->fh) != 0)
658 		return 0;
659 	return 1;
660 }
661 
662 #define NFS_READDIR_CACHE_USAGE_THRESHOLD (8UL)
663 
664 static bool nfs_use_readdirplus(struct inode *dir, struct dir_context *ctx,
665 				unsigned int cache_hits,
666 				unsigned int cache_misses)
667 {
668 	if (!nfs_server_capable(dir, NFS_CAP_READDIRPLUS))
669 		return false;
670 	if (ctx->pos == 0 ||
671 	    cache_hits + cache_misses > NFS_READDIR_CACHE_USAGE_THRESHOLD)
672 		return true;
673 	return false;
674 }
675 
676 /*
677  * This function is called by the getattr code to request the
678  * use of readdirplus to accelerate any future lookups in the same
679  * directory.
680  */
681 void nfs_readdir_record_entry_cache_hit(struct inode *dir)
682 {
683 	struct nfs_inode *nfsi = NFS_I(dir);
684 	struct nfs_open_dir_context *ctx;
685 
686 	if (nfs_server_capable(dir, NFS_CAP_READDIRPLUS) &&
687 	    S_ISDIR(dir->i_mode)) {
688 		rcu_read_lock();
689 		list_for_each_entry_rcu (ctx, &nfsi->open_files, list)
690 			atomic_inc(&ctx->cache_hits);
691 		rcu_read_unlock();
692 	}
693 }
694 
695 /*
696  * This function is mainly for use by nfs_getattr().
697  *
698  * If this is an 'ls -l', we want to force use of readdirplus.
699  */
700 void nfs_readdir_record_entry_cache_miss(struct inode *dir)
701 {
702 	struct nfs_inode *nfsi = NFS_I(dir);
703 	struct nfs_open_dir_context *ctx;
704 
705 	if (nfs_server_capable(dir, NFS_CAP_READDIRPLUS) &&
706 	    S_ISDIR(dir->i_mode)) {
707 		rcu_read_lock();
708 		list_for_each_entry_rcu (ctx, &nfsi->open_files, list)
709 			atomic_inc(&ctx->cache_misses);
710 		rcu_read_unlock();
711 	}
712 }
713 
714 static void nfs_lookup_advise_force_readdirplus(struct inode *dir,
715 						unsigned int flags)
716 {
717 	if (nfs_server_capable(dir, NFS_CAP_CASE_INSENSITIVE))
718 		return;
719 	if (flags & (LOOKUP_EXCL | LOOKUP_PARENT | LOOKUP_REVAL))
720 		return;
721 	nfs_readdir_record_entry_cache_miss(dir);
722 }
723 
724 static
725 void nfs_prime_dcache(struct dentry *parent, struct nfs_entry *entry,
726 		unsigned long dir_verifier)
727 {
728 	struct qstr filename = QSTR_INIT(entry->name, entry->len);
729 	DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
730 	struct dentry *dentry;
731 	struct dentry *alias;
732 	struct inode *inode;
733 	int status;
734 
735 	if (!(entry->fattr->valid & NFS_ATTR_FATTR_FILEID))
736 		return;
737 	if (!(entry->fattr->valid & NFS_ATTR_FATTR_FSID))
738 		return;
739 	if (filename.len == 0)
740 		return;
741 	/* Validate that the name doesn't contain any illegal '\0' */
742 	if (strnlen(filename.name, filename.len) != filename.len)
743 		return;
744 	/* ...or '/' */
745 	if (strnchr(filename.name, filename.len, '/'))
746 		return;
747 	if (filename.name[0] == '.') {
748 		if (filename.len == 1)
749 			return;
750 		if (filename.len == 2 && filename.name[1] == '.')
751 			return;
752 	}
753 	filename.hash = full_name_hash(parent, filename.name, filename.len);
754 
755 	dentry = d_lookup(parent, &filename);
756 again:
757 	if (!dentry) {
758 		dentry = d_alloc_parallel(parent, &filename, &wq);
759 		if (IS_ERR(dentry))
760 			return;
761 	}
762 	if (!d_in_lookup(dentry)) {
763 		/* Is there a mountpoint here? If so, just exit */
764 		if (!nfs_fsid_equal(&NFS_SB(dentry->d_sb)->fsid,
765 					&entry->fattr->fsid))
766 			goto out;
767 		if (nfs_same_file(dentry, entry)) {
768 			if (!entry->fh->size)
769 				goto out;
770 			nfs_set_verifier(dentry, dir_verifier);
771 			status = nfs_refresh_inode(d_inode(dentry), entry->fattr);
772 			if (!status)
773 				nfs_setsecurity(d_inode(dentry), entry->fattr);
774 			trace_nfs_readdir_lookup_revalidate(d_inode(parent),
775 							    dentry, 0, status);
776 			goto out;
777 		} else {
778 			trace_nfs_readdir_lookup_revalidate_failed(
779 				d_inode(parent), dentry, 0);
780 			d_invalidate(dentry);
781 			dput(dentry);
782 			dentry = NULL;
783 			goto again;
784 		}
785 	}
786 	if (!entry->fh->size) {
787 		d_lookup_done(dentry);
788 		goto out;
789 	}
790 
791 	inode = nfs_fhget(dentry->d_sb, entry->fh, entry->fattr);
792 	alias = d_splice_alias(inode, dentry);
793 	d_lookup_done(dentry);
794 	if (alias) {
795 		if (IS_ERR(alias))
796 			goto out;
797 		dput(dentry);
798 		dentry = alias;
799 	}
800 	nfs_set_verifier(dentry, dir_verifier);
801 	trace_nfs_readdir_lookup(d_inode(parent), dentry, 0);
802 out:
803 	dput(dentry);
804 }
805 
806 static int nfs_readdir_entry_decode(struct nfs_readdir_descriptor *desc,
807 				    struct nfs_entry *entry,
808 				    struct xdr_stream *stream)
809 {
810 	int ret;
811 
812 	if (entry->fattr->label)
813 		entry->fattr->label->len = NFS4_MAXLABELLEN;
814 	ret = xdr_decode(desc, entry, stream);
815 	if (ret || !desc->plus)
816 		return ret;
817 	nfs_prime_dcache(file_dentry(desc->file), entry, desc->dir_verifier);
818 	return 0;
819 }
820 
821 /* Perform conversion from xdr to cache array */
822 static int nfs_readdir_page_filler(struct nfs_readdir_descriptor *desc,
823 				   struct nfs_entry *entry,
824 				   struct page **xdr_pages, unsigned int buflen,
825 				   struct page **arrays, size_t narrays,
826 				   u64 change_attr)
827 {
828 	struct address_space *mapping = desc->file->f_mapping;
829 	struct xdr_stream stream;
830 	struct xdr_buf buf;
831 	struct page *scratch, *new, *page = *arrays;
832 	u64 cookie;
833 	int status;
834 
835 	scratch = alloc_page(GFP_KERNEL);
836 	if (scratch == NULL)
837 		return -ENOMEM;
838 
839 	xdr_init_decode_pages(&stream, &buf, xdr_pages, buflen);
840 	xdr_set_scratch_page(&stream, scratch);
841 
842 	do {
843 		status = nfs_readdir_entry_decode(desc, entry, &stream);
844 		if (status != 0)
845 			break;
846 
847 		status = nfs_readdir_page_array_append(page, entry, &cookie);
848 		if (status != -ENOSPC)
849 			continue;
850 
851 		if (page->mapping != mapping) {
852 			if (!--narrays)
853 				break;
854 			new = nfs_readdir_page_array_alloc(cookie, GFP_KERNEL);
855 			if (!new)
856 				break;
857 			arrays++;
858 			*arrays = page = new;
859 		} else {
860 			new = nfs_readdir_page_get_next(mapping, cookie,
861 							change_attr);
862 			if (!new)
863 				break;
864 			if (page != *arrays)
865 				nfs_readdir_page_unlock_and_put(page);
866 			page = new;
867 		}
868 		desc->page_index_max++;
869 		status = nfs_readdir_page_array_append(page, entry, &cookie);
870 	} while (!status && !entry->eof);
871 
872 	switch (status) {
873 	case -EBADCOOKIE:
874 		if (!entry->eof)
875 			break;
876 		nfs_readdir_page_set_eof(page);
877 		fallthrough;
878 	case -EAGAIN:
879 		status = 0;
880 		break;
881 	case -ENOSPC:
882 		status = 0;
883 		if (!desc->plus)
884 			break;
885 		while (!nfs_readdir_entry_decode(desc, entry, &stream))
886 			;
887 	}
888 
889 	if (page != *arrays)
890 		nfs_readdir_page_unlock_and_put(page);
891 
892 	put_page(scratch);
893 	return status;
894 }
895 
896 static void nfs_readdir_free_pages(struct page **pages, size_t npages)
897 {
898 	while (npages--)
899 		put_page(pages[npages]);
900 	kfree(pages);
901 }
902 
903 /*
904  * nfs_readdir_alloc_pages() will allocate pages that must be freed with a call
905  * to nfs_readdir_free_pages()
906  */
907 static struct page **nfs_readdir_alloc_pages(size_t npages)
908 {
909 	struct page **pages;
910 	size_t i;
911 
912 	pages = kmalloc_array(npages, sizeof(*pages), GFP_KERNEL);
913 	if (!pages)
914 		return NULL;
915 	for (i = 0; i < npages; i++) {
916 		struct page *page = alloc_page(GFP_KERNEL);
917 		if (page == NULL)
918 			goto out_freepages;
919 		pages[i] = page;
920 	}
921 	return pages;
922 
923 out_freepages:
924 	nfs_readdir_free_pages(pages, i);
925 	return NULL;
926 }
927 
928 static int nfs_readdir_xdr_to_array(struct nfs_readdir_descriptor *desc,
929 				    __be32 *verf_arg, __be32 *verf_res,
930 				    struct page **arrays, size_t narrays)
931 {
932 	u64 change_attr;
933 	struct page **pages;
934 	struct page *page = *arrays;
935 	struct nfs_entry *entry;
936 	size_t array_size;
937 	struct inode *inode = file_inode(desc->file);
938 	unsigned int dtsize = desc->dtsize;
939 	unsigned int pglen;
940 	int status = -ENOMEM;
941 
942 	entry = kzalloc(sizeof(*entry), GFP_KERNEL);
943 	if (!entry)
944 		return -ENOMEM;
945 	entry->cookie = nfs_readdir_page_last_cookie(page);
946 	entry->fh = nfs_alloc_fhandle();
947 	entry->fattr = nfs_alloc_fattr_with_label(NFS_SERVER(inode));
948 	entry->server = NFS_SERVER(inode);
949 	if (entry->fh == NULL || entry->fattr == NULL)
950 		goto out;
951 
952 	array_size = (dtsize + PAGE_SIZE - 1) >> PAGE_SHIFT;
953 	pages = nfs_readdir_alloc_pages(array_size);
954 	if (!pages)
955 		goto out;
956 
957 	change_attr = inode_peek_iversion_raw(inode);
958 	status = nfs_readdir_xdr_filler(desc, verf_arg, entry->cookie, pages,
959 					dtsize, verf_res);
960 	if (status < 0)
961 		goto free_pages;
962 
963 	pglen = status;
964 	if (pglen != 0)
965 		status = nfs_readdir_page_filler(desc, entry, pages, pglen,
966 						 arrays, narrays, change_attr);
967 	else
968 		nfs_readdir_page_set_eof(page);
969 	desc->buffer_fills++;
970 
971 free_pages:
972 	nfs_readdir_free_pages(pages, array_size);
973 out:
974 	nfs_free_fattr(entry->fattr);
975 	nfs_free_fhandle(entry->fh);
976 	kfree(entry);
977 	return status;
978 }
979 
980 static void nfs_readdir_page_put(struct nfs_readdir_descriptor *desc)
981 {
982 	put_page(desc->page);
983 	desc->page = NULL;
984 }
985 
986 static void
987 nfs_readdir_page_unlock_and_put_cached(struct nfs_readdir_descriptor *desc)
988 {
989 	unlock_page(desc->page);
990 	nfs_readdir_page_put(desc);
991 }
992 
993 static struct page *
994 nfs_readdir_page_get_cached(struct nfs_readdir_descriptor *desc)
995 {
996 	struct address_space *mapping = desc->file->f_mapping;
997 	u64 change_attr = inode_peek_iversion_raw(mapping->host);
998 	u64 cookie = desc->last_cookie;
999 	struct page *page;
1000 
1001 	page = nfs_readdir_page_get_locked(mapping, cookie, change_attr);
1002 	if (!page)
1003 		return NULL;
1004 	if (desc->clear_cache && !nfs_readdir_page_needs_filling(page))
1005 		nfs_readdir_page_reinit_array(page, cookie, change_attr);
1006 	return page;
1007 }
1008 
1009 /*
1010  * Returns 0 if desc->dir_cookie was found on page desc->page_index
1011  * and locks the page to prevent removal from the page cache.
1012  */
1013 static int find_and_lock_cache_page(struct nfs_readdir_descriptor *desc)
1014 {
1015 	struct inode *inode = file_inode(desc->file);
1016 	struct nfs_inode *nfsi = NFS_I(inode);
1017 	__be32 verf[NFS_DIR_VERIFIER_SIZE];
1018 	int res;
1019 
1020 	desc->page = nfs_readdir_page_get_cached(desc);
1021 	if (!desc->page)
1022 		return -ENOMEM;
1023 	if (nfs_readdir_page_needs_filling(desc->page)) {
1024 		/* Grow the dtsize if we had to go back for more pages */
1025 		if (desc->page_index == desc->page_index_max)
1026 			nfs_grow_dtsize(desc);
1027 		desc->page_index_max = desc->page_index;
1028 		trace_nfs_readdir_cache_fill(desc->file, nfsi->cookieverf,
1029 					     desc->last_cookie,
1030 					     desc->page->index, desc->dtsize);
1031 		res = nfs_readdir_xdr_to_array(desc, nfsi->cookieverf, verf,
1032 					       &desc->page, 1);
1033 		if (res < 0) {
1034 			nfs_readdir_page_unlock_and_put_cached(desc);
1035 			trace_nfs_readdir_cache_fill_done(inode, res);
1036 			if (res == -EBADCOOKIE || res == -ENOTSYNC) {
1037 				invalidate_inode_pages2(desc->file->f_mapping);
1038 				nfs_readdir_rewind_search(desc);
1039 				trace_nfs_readdir_invalidate_cache_range(
1040 					inode, 0, MAX_LFS_FILESIZE);
1041 				return -EAGAIN;
1042 			}
1043 			return res;
1044 		}
1045 		/*
1046 		 * Set the cookie verifier if the page cache was empty
1047 		 */
1048 		if (desc->last_cookie == 0 &&
1049 		    memcmp(nfsi->cookieverf, verf, sizeof(nfsi->cookieverf))) {
1050 			memcpy(nfsi->cookieverf, verf,
1051 			       sizeof(nfsi->cookieverf));
1052 			invalidate_inode_pages2_range(desc->file->f_mapping, 1,
1053 						      -1);
1054 			trace_nfs_readdir_invalidate_cache_range(
1055 				inode, 1, MAX_LFS_FILESIZE);
1056 		}
1057 		desc->clear_cache = false;
1058 	}
1059 	res = nfs_readdir_search_array(desc);
1060 	if (res == 0)
1061 		return 0;
1062 	nfs_readdir_page_unlock_and_put_cached(desc);
1063 	return res;
1064 }
1065 
1066 /* Search for desc->dir_cookie from the beginning of the page cache */
1067 static int readdir_search_pagecache(struct nfs_readdir_descriptor *desc)
1068 {
1069 	int res;
1070 
1071 	do {
1072 		res = find_and_lock_cache_page(desc);
1073 	} while (res == -EAGAIN);
1074 	return res;
1075 }
1076 
1077 #define NFS_READDIR_CACHE_MISS_THRESHOLD (16UL)
1078 
1079 /*
1080  * Once we've found the start of the dirent within a page: fill 'er up...
1081  */
1082 static void nfs_do_filldir(struct nfs_readdir_descriptor *desc,
1083 			   const __be32 *verf)
1084 {
1085 	struct file	*file = desc->file;
1086 	struct nfs_cache_array *array;
1087 	unsigned int i;
1088 	bool first_emit = !desc->dir_cookie;
1089 
1090 	array = kmap_local_page(desc->page);
1091 	for (i = desc->cache_entry_index; i < array->size; i++) {
1092 		struct nfs_cache_array_entry *ent;
1093 
1094 		ent = &array->array[i];
1095 		if (!dir_emit(desc->ctx, ent->name, ent->name_len,
1096 		    nfs_compat_user_ino64(ent->ino), ent->d_type)) {
1097 			desc->eob = true;
1098 			break;
1099 		}
1100 		memcpy(desc->verf, verf, sizeof(desc->verf));
1101 		if (i == array->size - 1) {
1102 			desc->dir_cookie = array->last_cookie;
1103 			nfs_readdir_seek_next_array(array, desc);
1104 		} else {
1105 			desc->dir_cookie = array->array[i + 1].cookie;
1106 			desc->last_cookie = array->array[0].cookie;
1107 		}
1108 		if (nfs_readdir_use_cookie(file))
1109 			desc->ctx->pos = desc->dir_cookie;
1110 		else
1111 			desc->ctx->pos++;
1112 		if (first_emit && i > NFS_READDIR_CACHE_MISS_THRESHOLD + 1) {
1113 			desc->eob = true;
1114 			break;
1115 		}
1116 	}
1117 	if (array->page_is_eof)
1118 		desc->eof = !desc->eob;
1119 
1120 	kunmap_local(array);
1121 	dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling ended @ cookie %llu\n",
1122 			(unsigned long long)desc->dir_cookie);
1123 }
1124 
1125 /*
1126  * If we cannot find a cookie in our cache, we suspect that this is
1127  * because it points to a deleted file, so we ask the server to return
1128  * whatever it thinks is the next entry. We then feed this to filldir.
1129  * If all goes well, we should then be able to find our way round the
1130  * cache on the next call to readdir_search_pagecache();
1131  *
1132  * NOTE: we cannot add the anonymous page to the pagecache because
1133  *	 the data it contains might not be page aligned. Besides,
1134  *	 we should already have a complete representation of the
1135  *	 directory in the page cache by the time we get here.
1136  */
1137 static int uncached_readdir(struct nfs_readdir_descriptor *desc)
1138 {
1139 	struct page	**arrays;
1140 	size_t		i, sz = 512;
1141 	__be32		verf[NFS_DIR_VERIFIER_SIZE];
1142 	int		status = -ENOMEM;
1143 
1144 	dfprintk(DIRCACHE, "NFS: uncached_readdir() searching for cookie %llu\n",
1145 			(unsigned long long)desc->dir_cookie);
1146 
1147 	arrays = kcalloc(sz, sizeof(*arrays), GFP_KERNEL);
1148 	if (!arrays)
1149 		goto out;
1150 	arrays[0] = nfs_readdir_page_array_alloc(desc->dir_cookie, GFP_KERNEL);
1151 	if (!arrays[0])
1152 		goto out;
1153 
1154 	desc->page_index = 0;
1155 	desc->cache_entry_index = 0;
1156 	desc->last_cookie = desc->dir_cookie;
1157 	desc->page_index_max = 0;
1158 
1159 	trace_nfs_readdir_uncached(desc->file, desc->verf, desc->last_cookie,
1160 				   -1, desc->dtsize);
1161 
1162 	status = nfs_readdir_xdr_to_array(desc, desc->verf, verf, arrays, sz);
1163 	if (status < 0) {
1164 		trace_nfs_readdir_uncached_done(file_inode(desc->file), status);
1165 		goto out_free;
1166 	}
1167 
1168 	for (i = 0; !desc->eob && i < sz && arrays[i]; i++) {
1169 		desc->page = arrays[i];
1170 		nfs_do_filldir(desc, verf);
1171 	}
1172 	desc->page = NULL;
1173 
1174 	/*
1175 	 * Grow the dtsize if we have to go back for more pages,
1176 	 * or shrink it if we're reading too many.
1177 	 */
1178 	if (!desc->eof) {
1179 		if (!desc->eob)
1180 			nfs_grow_dtsize(desc);
1181 		else if (desc->buffer_fills == 1 &&
1182 			 i < (desc->page_index_max >> 1))
1183 			nfs_shrink_dtsize(desc);
1184 	}
1185 out_free:
1186 	for (i = 0; i < sz && arrays[i]; i++)
1187 		nfs_readdir_page_array_free(arrays[i]);
1188 out:
1189 	if (!nfs_readdir_use_cookie(desc->file))
1190 		nfs_readdir_rewind_search(desc);
1191 	desc->page_index_max = -1;
1192 	kfree(arrays);
1193 	dfprintk(DIRCACHE, "NFS: %s: returns %d\n", __func__, status);
1194 	return status;
1195 }
1196 
1197 static bool nfs_readdir_handle_cache_misses(struct inode *inode,
1198 					    struct nfs_readdir_descriptor *desc,
1199 					    unsigned int cache_misses,
1200 					    bool force_clear)
1201 {
1202 	if (desc->ctx->pos == 0 || !desc->plus)
1203 		return false;
1204 	if (cache_misses <= NFS_READDIR_CACHE_MISS_THRESHOLD && !force_clear)
1205 		return false;
1206 	trace_nfs_readdir_force_readdirplus(inode);
1207 	return true;
1208 }
1209 
1210 /* The file offset position represents the dirent entry number.  A
1211    last cookie cache takes care of the common case of reading the
1212    whole directory.
1213  */
1214 static int nfs_readdir(struct file *file, struct dir_context *ctx)
1215 {
1216 	struct dentry	*dentry = file_dentry(file);
1217 	struct inode	*inode = d_inode(dentry);
1218 	struct nfs_inode *nfsi = NFS_I(inode);
1219 	struct nfs_open_dir_context *dir_ctx = file->private_data;
1220 	struct nfs_readdir_descriptor *desc;
1221 	unsigned int cache_hits, cache_misses;
1222 	bool force_clear;
1223 	int res;
1224 
1225 	dfprintk(FILE, "NFS: readdir(%pD2) starting at cookie %llu\n",
1226 			file, (long long)ctx->pos);
1227 	nfs_inc_stats(inode, NFSIOS_VFSGETDENTS);
1228 
1229 	/*
1230 	 * ctx->pos points to the dirent entry number.
1231 	 * *desc->dir_cookie has the cookie for the next entry. We have
1232 	 * to either find the entry with the appropriate number or
1233 	 * revalidate the cookie.
1234 	 */
1235 	nfs_revalidate_mapping(inode, file->f_mapping);
1236 
1237 	res = -ENOMEM;
1238 	desc = kzalloc(sizeof(*desc), GFP_KERNEL);
1239 	if (!desc)
1240 		goto out;
1241 	desc->file = file;
1242 	desc->ctx = ctx;
1243 	desc->page_index_max = -1;
1244 
1245 	spin_lock(&file->f_lock);
1246 	desc->dir_cookie = dir_ctx->dir_cookie;
1247 	desc->page_index = dir_ctx->page_index;
1248 	desc->last_cookie = dir_ctx->last_cookie;
1249 	desc->attr_gencount = dir_ctx->attr_gencount;
1250 	desc->eof = dir_ctx->eof;
1251 	nfs_set_dtsize(desc, dir_ctx->dtsize);
1252 	memcpy(desc->verf, dir_ctx->verf, sizeof(desc->verf));
1253 	cache_hits = atomic_xchg(&dir_ctx->cache_hits, 0);
1254 	cache_misses = atomic_xchg(&dir_ctx->cache_misses, 0);
1255 	force_clear = dir_ctx->force_clear;
1256 	spin_unlock(&file->f_lock);
1257 
1258 	if (desc->eof) {
1259 		res = 0;
1260 		goto out_free;
1261 	}
1262 
1263 	desc->plus = nfs_use_readdirplus(inode, ctx, cache_hits, cache_misses);
1264 	force_clear = nfs_readdir_handle_cache_misses(inode, desc, cache_misses,
1265 						      force_clear);
1266 	desc->clear_cache = force_clear;
1267 
1268 	do {
1269 		res = readdir_search_pagecache(desc);
1270 
1271 		if (res == -EBADCOOKIE) {
1272 			res = 0;
1273 			/* This means either end of directory */
1274 			if (desc->dir_cookie && !desc->eof) {
1275 				/* Or that the server has 'lost' a cookie */
1276 				res = uncached_readdir(desc);
1277 				if (res == 0)
1278 					continue;
1279 				if (res == -EBADCOOKIE || res == -ENOTSYNC)
1280 					res = 0;
1281 			}
1282 			break;
1283 		}
1284 		if (res == -ETOOSMALL && desc->plus) {
1285 			nfs_zap_caches(inode);
1286 			desc->plus = false;
1287 			desc->eof = false;
1288 			continue;
1289 		}
1290 		if (res < 0)
1291 			break;
1292 
1293 		nfs_do_filldir(desc, nfsi->cookieverf);
1294 		nfs_readdir_page_unlock_and_put_cached(desc);
1295 		if (desc->page_index == desc->page_index_max)
1296 			desc->clear_cache = force_clear;
1297 	} while (!desc->eob && !desc->eof);
1298 
1299 	spin_lock(&file->f_lock);
1300 	dir_ctx->dir_cookie = desc->dir_cookie;
1301 	dir_ctx->last_cookie = desc->last_cookie;
1302 	dir_ctx->attr_gencount = desc->attr_gencount;
1303 	dir_ctx->page_index = desc->page_index;
1304 	dir_ctx->force_clear = force_clear;
1305 	dir_ctx->eof = desc->eof;
1306 	dir_ctx->dtsize = desc->dtsize;
1307 	memcpy(dir_ctx->verf, desc->verf, sizeof(dir_ctx->verf));
1308 	spin_unlock(&file->f_lock);
1309 out_free:
1310 	kfree(desc);
1311 
1312 out:
1313 	dfprintk(FILE, "NFS: readdir(%pD2) returns %d\n", file, res);
1314 	return res;
1315 }
1316 
1317 static loff_t nfs_llseek_dir(struct file *filp, loff_t offset, int whence)
1318 {
1319 	struct nfs_open_dir_context *dir_ctx = filp->private_data;
1320 
1321 	dfprintk(FILE, "NFS: llseek dir(%pD2, %lld, %d)\n",
1322 			filp, offset, whence);
1323 
1324 	switch (whence) {
1325 	default:
1326 		return -EINVAL;
1327 	case SEEK_SET:
1328 		if (offset < 0)
1329 			return -EINVAL;
1330 		spin_lock(&filp->f_lock);
1331 		break;
1332 	case SEEK_CUR:
1333 		if (offset == 0)
1334 			return filp->f_pos;
1335 		spin_lock(&filp->f_lock);
1336 		offset += filp->f_pos;
1337 		if (offset < 0) {
1338 			spin_unlock(&filp->f_lock);
1339 			return -EINVAL;
1340 		}
1341 	}
1342 	if (offset != filp->f_pos) {
1343 		filp->f_pos = offset;
1344 		dir_ctx->page_index = 0;
1345 		if (!nfs_readdir_use_cookie(filp)) {
1346 			dir_ctx->dir_cookie = 0;
1347 			dir_ctx->last_cookie = 0;
1348 		} else {
1349 			dir_ctx->dir_cookie = offset;
1350 			dir_ctx->last_cookie = offset;
1351 		}
1352 		dir_ctx->eof = false;
1353 	}
1354 	spin_unlock(&filp->f_lock);
1355 	return offset;
1356 }
1357 
1358 /*
1359  * All directory operations under NFS are synchronous, so fsync()
1360  * is a dummy operation.
1361  */
1362 static int nfs_fsync_dir(struct file *filp, loff_t start, loff_t end,
1363 			 int datasync)
1364 {
1365 	dfprintk(FILE, "NFS: fsync dir(%pD2) datasync %d\n", filp, datasync);
1366 
1367 	nfs_inc_stats(file_inode(filp), NFSIOS_VFSFSYNC);
1368 	return 0;
1369 }
1370 
1371 /**
1372  * nfs_force_lookup_revalidate - Mark the directory as having changed
1373  * @dir: pointer to directory inode
1374  *
1375  * This forces the revalidation code in nfs_lookup_revalidate() to do a
1376  * full lookup on all child dentries of 'dir' whenever a change occurs
1377  * on the server that might have invalidated our dcache.
1378  *
1379  * Note that we reserve bit '0' as a tag to let us know when a dentry
1380  * was revalidated while holding a delegation on its inode.
1381  *
1382  * The caller should be holding dir->i_lock
1383  */
1384 void nfs_force_lookup_revalidate(struct inode *dir)
1385 {
1386 	NFS_I(dir)->cache_change_attribute += 2;
1387 }
1388 EXPORT_SYMBOL_GPL(nfs_force_lookup_revalidate);
1389 
1390 /**
1391  * nfs_verify_change_attribute - Detects NFS remote directory changes
1392  * @dir: pointer to parent directory inode
1393  * @verf: previously saved change attribute
1394  *
1395  * Return "false" if the verifiers doesn't match the change attribute.
1396  * This would usually indicate that the directory contents have changed on
1397  * the server, and that any dentries need revalidating.
1398  */
1399 static bool nfs_verify_change_attribute(struct inode *dir, unsigned long verf)
1400 {
1401 	return (verf & ~1UL) == nfs_save_change_attribute(dir);
1402 }
1403 
1404 static void nfs_set_verifier_delegated(unsigned long *verf)
1405 {
1406 	*verf |= 1UL;
1407 }
1408 
1409 #if IS_ENABLED(CONFIG_NFS_V4)
1410 static void nfs_unset_verifier_delegated(unsigned long *verf)
1411 {
1412 	*verf &= ~1UL;
1413 }
1414 #endif /* IS_ENABLED(CONFIG_NFS_V4) */
1415 
1416 static bool nfs_test_verifier_delegated(unsigned long verf)
1417 {
1418 	return verf & 1;
1419 }
1420 
1421 static bool nfs_verifier_is_delegated(struct dentry *dentry)
1422 {
1423 	return nfs_test_verifier_delegated(dentry->d_time);
1424 }
1425 
1426 static void nfs_set_verifier_locked(struct dentry *dentry, unsigned long verf)
1427 {
1428 	struct inode *inode = d_inode(dentry);
1429 	struct inode *dir = d_inode(dentry->d_parent);
1430 
1431 	if (!nfs_verify_change_attribute(dir, verf))
1432 		return;
1433 	if (inode && NFS_PROTO(inode)->have_delegation(inode, FMODE_READ))
1434 		nfs_set_verifier_delegated(&verf);
1435 	dentry->d_time = verf;
1436 }
1437 
1438 /**
1439  * nfs_set_verifier - save a parent directory verifier in the dentry
1440  * @dentry: pointer to dentry
1441  * @verf: verifier to save
1442  *
1443  * Saves the parent directory verifier in @dentry. If the inode has
1444  * a delegation, we also tag the dentry as having been revalidated
1445  * while holding a delegation so that we know we don't have to
1446  * look it up again after a directory change.
1447  */
1448 void nfs_set_verifier(struct dentry *dentry, unsigned long verf)
1449 {
1450 
1451 	spin_lock(&dentry->d_lock);
1452 	nfs_set_verifier_locked(dentry, verf);
1453 	spin_unlock(&dentry->d_lock);
1454 }
1455 EXPORT_SYMBOL_GPL(nfs_set_verifier);
1456 
1457 #if IS_ENABLED(CONFIG_NFS_V4)
1458 /**
1459  * nfs_clear_verifier_delegated - clear the dir verifier delegation tag
1460  * @inode: pointer to inode
1461  *
1462  * Iterates through the dentries in the inode alias list and clears
1463  * the tag used to indicate that the dentry has been revalidated
1464  * while holding a delegation.
1465  * This function is intended for use when the delegation is being
1466  * returned or revoked.
1467  */
1468 void nfs_clear_verifier_delegated(struct inode *inode)
1469 {
1470 	struct dentry *alias;
1471 
1472 	if (!inode)
1473 		return;
1474 	spin_lock(&inode->i_lock);
1475 	hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
1476 		spin_lock(&alias->d_lock);
1477 		nfs_unset_verifier_delegated(&alias->d_time);
1478 		spin_unlock(&alias->d_lock);
1479 	}
1480 	spin_unlock(&inode->i_lock);
1481 }
1482 EXPORT_SYMBOL_GPL(nfs_clear_verifier_delegated);
1483 #endif /* IS_ENABLED(CONFIG_NFS_V4) */
1484 
1485 static int nfs_dentry_verify_change(struct inode *dir, struct dentry *dentry)
1486 {
1487 	if (nfs_server_capable(dir, NFS_CAP_CASE_INSENSITIVE) &&
1488 	    d_really_is_negative(dentry))
1489 		return dentry->d_time == inode_peek_iversion_raw(dir);
1490 	return nfs_verify_change_attribute(dir, dentry->d_time);
1491 }
1492 
1493 /*
1494  * A check for whether or not the parent directory has changed.
1495  * In the case it has, we assume that the dentries are untrustworthy
1496  * and may need to be looked up again.
1497  * If rcu_walk prevents us from performing a full check, return 0.
1498  */
1499 static int nfs_check_verifier(struct inode *dir, struct dentry *dentry,
1500 			      int rcu_walk)
1501 {
1502 	if (IS_ROOT(dentry))
1503 		return 1;
1504 	if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONE)
1505 		return 0;
1506 	if (!nfs_dentry_verify_change(dir, dentry))
1507 		return 0;
1508 	/* Revalidate nfsi->cache_change_attribute before we declare a match */
1509 	if (nfs_mapping_need_revalidate_inode(dir)) {
1510 		if (rcu_walk)
1511 			return 0;
1512 		if (__nfs_revalidate_inode(NFS_SERVER(dir), dir) < 0)
1513 			return 0;
1514 	}
1515 	if (!nfs_dentry_verify_change(dir, dentry))
1516 		return 0;
1517 	return 1;
1518 }
1519 
1520 /*
1521  * Use intent information to check whether or not we're going to do
1522  * an O_EXCL create using this path component.
1523  */
1524 static int nfs_is_exclusive_create(struct inode *dir, unsigned int flags)
1525 {
1526 	if (NFS_PROTO(dir)->version == 2)
1527 		return 0;
1528 	return flags & LOOKUP_EXCL;
1529 }
1530 
1531 /*
1532  * Inode and filehandle revalidation for lookups.
1533  *
1534  * We force revalidation in the cases where the VFS sets LOOKUP_REVAL,
1535  * or if the intent information indicates that we're about to open this
1536  * particular file and the "nocto" mount flag is not set.
1537  *
1538  */
1539 static
1540 int nfs_lookup_verify_inode(struct inode *inode, unsigned int flags)
1541 {
1542 	struct nfs_server *server = NFS_SERVER(inode);
1543 	int ret;
1544 
1545 	if (IS_AUTOMOUNT(inode))
1546 		return 0;
1547 
1548 	if (flags & LOOKUP_OPEN) {
1549 		switch (inode->i_mode & S_IFMT) {
1550 		case S_IFREG:
1551 			/* A NFSv4 OPEN will revalidate later */
1552 			if (server->caps & NFS_CAP_ATOMIC_OPEN)
1553 				goto out;
1554 			fallthrough;
1555 		case S_IFDIR:
1556 			if (server->flags & NFS_MOUNT_NOCTO)
1557 				break;
1558 			/* NFS close-to-open cache consistency validation */
1559 			goto out_force;
1560 		}
1561 	}
1562 
1563 	/* VFS wants an on-the-wire revalidation */
1564 	if (flags & LOOKUP_REVAL)
1565 		goto out_force;
1566 out:
1567 	if (inode->i_nlink > 0 ||
1568 	    (inode->i_nlink == 0 &&
1569 	     test_bit(NFS_INO_PRESERVE_UNLINKED, &NFS_I(inode)->flags)))
1570 		return 0;
1571 	else
1572 		return -ESTALE;
1573 out_force:
1574 	if (flags & LOOKUP_RCU)
1575 		return -ECHILD;
1576 	ret = __nfs_revalidate_inode(server, inode);
1577 	if (ret != 0)
1578 		return ret;
1579 	goto out;
1580 }
1581 
1582 static void nfs_mark_dir_for_revalidate(struct inode *inode)
1583 {
1584 	spin_lock(&inode->i_lock);
1585 	nfs_set_cache_invalid(inode, NFS_INO_INVALID_CHANGE);
1586 	spin_unlock(&inode->i_lock);
1587 }
1588 
1589 /*
1590  * We judge how long we want to trust negative
1591  * dentries by looking at the parent inode mtime.
1592  *
1593  * If parent mtime has changed, we revalidate, else we wait for a
1594  * period corresponding to the parent's attribute cache timeout value.
1595  *
1596  * If LOOKUP_RCU prevents us from performing a full check, return 1
1597  * suggesting a reval is needed.
1598  *
1599  * Note that when creating a new file, or looking up a rename target,
1600  * then it shouldn't be necessary to revalidate a negative dentry.
1601  */
1602 static inline
1603 int nfs_neg_need_reval(struct inode *dir, struct dentry *dentry,
1604 		       unsigned int flags)
1605 {
1606 	if (flags & (LOOKUP_CREATE | LOOKUP_RENAME_TARGET))
1607 		return 0;
1608 	if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONEG)
1609 		return 1;
1610 	/* Case insensitive server? Revalidate negative dentries */
1611 	if (nfs_server_capable(dir, NFS_CAP_CASE_INSENSITIVE))
1612 		return 1;
1613 	return !nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU);
1614 }
1615 
1616 static int
1617 nfs_lookup_revalidate_done(struct inode *dir, struct dentry *dentry,
1618 			   struct inode *inode, int error)
1619 {
1620 	switch (error) {
1621 	case 1:
1622 		break;
1623 	case 0:
1624 		/*
1625 		 * We can't d_drop the root of a disconnected tree:
1626 		 * its d_hash is on the s_anon list and d_drop() would hide
1627 		 * it from shrink_dcache_for_unmount(), leading to busy
1628 		 * inodes on unmount and further oopses.
1629 		 */
1630 		if (inode && IS_ROOT(dentry))
1631 			error = 1;
1632 		break;
1633 	}
1634 	trace_nfs_lookup_revalidate_exit(dir, dentry, 0, error);
1635 	return error;
1636 }
1637 
1638 static int
1639 nfs_lookup_revalidate_negative(struct inode *dir, struct dentry *dentry,
1640 			       unsigned int flags)
1641 {
1642 	int ret = 1;
1643 	if (nfs_neg_need_reval(dir, dentry, flags)) {
1644 		if (flags & LOOKUP_RCU)
1645 			return -ECHILD;
1646 		ret = 0;
1647 	}
1648 	return nfs_lookup_revalidate_done(dir, dentry, NULL, ret);
1649 }
1650 
1651 static int
1652 nfs_lookup_revalidate_delegated(struct inode *dir, struct dentry *dentry,
1653 				struct inode *inode)
1654 {
1655 	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1656 	return nfs_lookup_revalidate_done(dir, dentry, inode, 1);
1657 }
1658 
1659 static int nfs_lookup_revalidate_dentry(struct inode *dir,
1660 					struct dentry *dentry,
1661 					struct inode *inode, unsigned int flags)
1662 {
1663 	struct nfs_fh *fhandle;
1664 	struct nfs_fattr *fattr;
1665 	unsigned long dir_verifier;
1666 	int ret;
1667 
1668 	trace_nfs_lookup_revalidate_enter(dir, dentry, flags);
1669 
1670 	ret = -ENOMEM;
1671 	fhandle = nfs_alloc_fhandle();
1672 	fattr = nfs_alloc_fattr_with_label(NFS_SERVER(inode));
1673 	if (fhandle == NULL || fattr == NULL)
1674 		goto out;
1675 
1676 	dir_verifier = nfs_save_change_attribute(dir);
1677 	ret = NFS_PROTO(dir)->lookup(dir, dentry, fhandle, fattr);
1678 	if (ret < 0) {
1679 		switch (ret) {
1680 		case -ESTALE:
1681 		case -ENOENT:
1682 			ret = 0;
1683 			break;
1684 		case -ETIMEDOUT:
1685 			if (NFS_SERVER(inode)->flags & NFS_MOUNT_SOFTREVAL)
1686 				ret = 1;
1687 		}
1688 		goto out;
1689 	}
1690 
1691 	/* Request help from readdirplus */
1692 	nfs_lookup_advise_force_readdirplus(dir, flags);
1693 
1694 	ret = 0;
1695 	if (nfs_compare_fh(NFS_FH(inode), fhandle))
1696 		goto out;
1697 	if (nfs_refresh_inode(inode, fattr) < 0)
1698 		goto out;
1699 
1700 	nfs_setsecurity(inode, fattr);
1701 	nfs_set_verifier(dentry, dir_verifier);
1702 
1703 	ret = 1;
1704 out:
1705 	nfs_free_fattr(fattr);
1706 	nfs_free_fhandle(fhandle);
1707 
1708 	/*
1709 	 * If the lookup failed despite the dentry change attribute being
1710 	 * a match, then we should revalidate the directory cache.
1711 	 */
1712 	if (!ret && nfs_dentry_verify_change(dir, dentry))
1713 		nfs_mark_dir_for_revalidate(dir);
1714 	return nfs_lookup_revalidate_done(dir, dentry, inode, ret);
1715 }
1716 
1717 /*
1718  * This is called every time the dcache has a lookup hit,
1719  * and we should check whether we can really trust that
1720  * lookup.
1721  *
1722  * NOTE! The hit can be a negative hit too, don't assume
1723  * we have an inode!
1724  *
1725  * If the parent directory is seen to have changed, we throw out the
1726  * cached dentry and do a new lookup.
1727  */
1728 static int
1729 nfs_do_lookup_revalidate(struct inode *dir, struct dentry *dentry,
1730 			 unsigned int flags)
1731 {
1732 	struct inode *inode;
1733 	int error;
1734 
1735 	nfs_inc_stats(dir, NFSIOS_DENTRYREVALIDATE);
1736 	inode = d_inode(dentry);
1737 
1738 	if (!inode)
1739 		return nfs_lookup_revalidate_negative(dir, dentry, flags);
1740 
1741 	if (is_bad_inode(inode)) {
1742 		dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n",
1743 				__func__, dentry);
1744 		goto out_bad;
1745 	}
1746 
1747 	if ((flags & LOOKUP_RENAME_TARGET) && d_count(dentry) < 2 &&
1748 	    nfs_server_capable(dir, NFS_CAP_CASE_INSENSITIVE))
1749 		goto out_bad;
1750 
1751 	if (nfs_verifier_is_delegated(dentry))
1752 		return nfs_lookup_revalidate_delegated(dir, dentry, inode);
1753 
1754 	/* Force a full look up iff the parent directory has changed */
1755 	if (!(flags & (LOOKUP_EXCL | LOOKUP_REVAL)) &&
1756 	    nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU)) {
1757 		error = nfs_lookup_verify_inode(inode, flags);
1758 		if (error) {
1759 			if (error == -ESTALE)
1760 				nfs_mark_dir_for_revalidate(dir);
1761 			goto out_bad;
1762 		}
1763 		goto out_valid;
1764 	}
1765 
1766 	if (flags & LOOKUP_RCU)
1767 		return -ECHILD;
1768 
1769 	if (NFS_STALE(inode))
1770 		goto out_bad;
1771 
1772 	return nfs_lookup_revalidate_dentry(dir, dentry, inode, flags);
1773 out_valid:
1774 	return nfs_lookup_revalidate_done(dir, dentry, inode, 1);
1775 out_bad:
1776 	if (flags & LOOKUP_RCU)
1777 		return -ECHILD;
1778 	return nfs_lookup_revalidate_done(dir, dentry, inode, 0);
1779 }
1780 
1781 static int
1782 __nfs_lookup_revalidate(struct dentry *dentry, unsigned int flags,
1783 			int (*reval)(struct inode *, struct dentry *, unsigned int))
1784 {
1785 	struct dentry *parent;
1786 	struct inode *dir;
1787 	int ret;
1788 
1789 	if (flags & LOOKUP_RCU) {
1790 		if (dentry->d_fsdata == NFS_FSDATA_BLOCKED)
1791 			return -ECHILD;
1792 		parent = READ_ONCE(dentry->d_parent);
1793 		dir = d_inode_rcu(parent);
1794 		if (!dir)
1795 			return -ECHILD;
1796 		ret = reval(dir, dentry, flags);
1797 		if (parent != READ_ONCE(dentry->d_parent))
1798 			return -ECHILD;
1799 	} else {
1800 		/* Wait for unlink to complete */
1801 		wait_var_event(&dentry->d_fsdata,
1802 			       dentry->d_fsdata != NFS_FSDATA_BLOCKED);
1803 		parent = dget_parent(dentry);
1804 		ret = reval(d_inode(parent), dentry, flags);
1805 		dput(parent);
1806 	}
1807 	return ret;
1808 }
1809 
1810 static int nfs_lookup_revalidate(struct dentry *dentry, unsigned int flags)
1811 {
1812 	return __nfs_lookup_revalidate(dentry, flags, nfs_do_lookup_revalidate);
1813 }
1814 
1815 /*
1816  * A weaker form of d_revalidate for revalidating just the d_inode(dentry)
1817  * when we don't really care about the dentry name. This is called when a
1818  * pathwalk ends on a dentry that was not found via a normal lookup in the
1819  * parent dir (e.g.: ".", "..", procfs symlinks or mountpoint traversals).
1820  *
1821  * In this situation, we just want to verify that the inode itself is OK
1822  * since the dentry might have changed on the server.
1823  */
1824 static int nfs_weak_revalidate(struct dentry *dentry, unsigned int flags)
1825 {
1826 	struct inode *inode = d_inode(dentry);
1827 	int error = 0;
1828 
1829 	/*
1830 	 * I believe we can only get a negative dentry here in the case of a
1831 	 * procfs-style symlink. Just assume it's correct for now, but we may
1832 	 * eventually need to do something more here.
1833 	 */
1834 	if (!inode) {
1835 		dfprintk(LOOKUPCACHE, "%s: %pd2 has negative inode\n",
1836 				__func__, dentry);
1837 		return 1;
1838 	}
1839 
1840 	if (is_bad_inode(inode)) {
1841 		dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n",
1842 				__func__, dentry);
1843 		return 0;
1844 	}
1845 
1846 	error = nfs_lookup_verify_inode(inode, flags);
1847 	dfprintk(LOOKUPCACHE, "NFS: %s: inode %lu is %s\n",
1848 			__func__, inode->i_ino, error ? "invalid" : "valid");
1849 	return !error;
1850 }
1851 
1852 /*
1853  * This is called from dput() when d_count is going to 0.
1854  */
1855 static int nfs_dentry_delete(const struct dentry *dentry)
1856 {
1857 	dfprintk(VFS, "NFS: dentry_delete(%pd2, %x)\n",
1858 		dentry, dentry->d_flags);
1859 
1860 	/* Unhash any dentry with a stale inode */
1861 	if (d_really_is_positive(dentry) && NFS_STALE(d_inode(dentry)))
1862 		return 1;
1863 
1864 	if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1865 		/* Unhash it, so that ->d_iput() would be called */
1866 		return 1;
1867 	}
1868 	if (!(dentry->d_sb->s_flags & SB_ACTIVE)) {
1869 		/* Unhash it, so that ancestors of killed async unlink
1870 		 * files will be cleaned up during umount */
1871 		return 1;
1872 	}
1873 	return 0;
1874 
1875 }
1876 
1877 /* Ensure that we revalidate inode->i_nlink */
1878 static void nfs_drop_nlink(struct inode *inode)
1879 {
1880 	spin_lock(&inode->i_lock);
1881 	/* drop the inode if we're reasonably sure this is the last link */
1882 	if (inode->i_nlink > 0)
1883 		drop_nlink(inode);
1884 	NFS_I(inode)->attr_gencount = nfs_inc_attr_generation_counter();
1885 	nfs_set_cache_invalid(
1886 		inode, NFS_INO_INVALID_CHANGE | NFS_INO_INVALID_CTIME |
1887 			       NFS_INO_INVALID_NLINK);
1888 	spin_unlock(&inode->i_lock);
1889 }
1890 
1891 /*
1892  * Called when the dentry loses inode.
1893  * We use it to clean up silly-renamed files.
1894  */
1895 static void nfs_dentry_iput(struct dentry *dentry, struct inode *inode)
1896 {
1897 	if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1898 		nfs_complete_unlink(dentry, inode);
1899 		nfs_drop_nlink(inode);
1900 	}
1901 	iput(inode);
1902 }
1903 
1904 static void nfs_d_release(struct dentry *dentry)
1905 {
1906 	/* free cached devname value, if it survived that far */
1907 	if (unlikely(dentry->d_fsdata)) {
1908 		if (dentry->d_flags & DCACHE_NFSFS_RENAMED)
1909 			WARN_ON(1);
1910 		else
1911 			kfree(dentry->d_fsdata);
1912 	}
1913 }
1914 
1915 const struct dentry_operations nfs_dentry_operations = {
1916 	.d_revalidate	= nfs_lookup_revalidate,
1917 	.d_weak_revalidate	= nfs_weak_revalidate,
1918 	.d_delete	= nfs_dentry_delete,
1919 	.d_iput		= nfs_dentry_iput,
1920 	.d_automount	= nfs_d_automount,
1921 	.d_release	= nfs_d_release,
1922 };
1923 EXPORT_SYMBOL_GPL(nfs_dentry_operations);
1924 
1925 struct dentry *nfs_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
1926 {
1927 	struct dentry *res;
1928 	struct inode *inode = NULL;
1929 	struct nfs_fh *fhandle = NULL;
1930 	struct nfs_fattr *fattr = NULL;
1931 	unsigned long dir_verifier;
1932 	int error;
1933 
1934 	dfprintk(VFS, "NFS: lookup(%pd2)\n", dentry);
1935 	nfs_inc_stats(dir, NFSIOS_VFSLOOKUP);
1936 
1937 	if (unlikely(dentry->d_name.len > NFS_SERVER(dir)->namelen))
1938 		return ERR_PTR(-ENAMETOOLONG);
1939 
1940 	/*
1941 	 * If we're doing an exclusive create, optimize away the lookup
1942 	 * but don't hash the dentry.
1943 	 */
1944 	if (nfs_is_exclusive_create(dir, flags) || flags & LOOKUP_RENAME_TARGET)
1945 		return NULL;
1946 
1947 	res = ERR_PTR(-ENOMEM);
1948 	fhandle = nfs_alloc_fhandle();
1949 	fattr = nfs_alloc_fattr_with_label(NFS_SERVER(dir));
1950 	if (fhandle == NULL || fattr == NULL)
1951 		goto out;
1952 
1953 	dir_verifier = nfs_save_change_attribute(dir);
1954 	trace_nfs_lookup_enter(dir, dentry, flags);
1955 	error = NFS_PROTO(dir)->lookup(dir, dentry, fhandle, fattr);
1956 	if (error == -ENOENT) {
1957 		if (nfs_server_capable(dir, NFS_CAP_CASE_INSENSITIVE))
1958 			dir_verifier = inode_peek_iversion_raw(dir);
1959 		goto no_entry;
1960 	}
1961 	if (error < 0) {
1962 		res = ERR_PTR(error);
1963 		goto out;
1964 	}
1965 	inode = nfs_fhget(dentry->d_sb, fhandle, fattr);
1966 	res = ERR_CAST(inode);
1967 	if (IS_ERR(res))
1968 		goto out;
1969 
1970 	/* Notify readdir to use READDIRPLUS */
1971 	nfs_lookup_advise_force_readdirplus(dir, flags);
1972 
1973 no_entry:
1974 	res = d_splice_alias(inode, dentry);
1975 	if (res != NULL) {
1976 		if (IS_ERR(res))
1977 			goto out;
1978 		dentry = res;
1979 	}
1980 	nfs_set_verifier(dentry, dir_verifier);
1981 out:
1982 	trace_nfs_lookup_exit(dir, dentry, flags, PTR_ERR_OR_ZERO(res));
1983 	nfs_free_fattr(fattr);
1984 	nfs_free_fhandle(fhandle);
1985 	return res;
1986 }
1987 EXPORT_SYMBOL_GPL(nfs_lookup);
1988 
1989 void nfs_d_prune_case_insensitive_aliases(struct inode *inode)
1990 {
1991 	/* Case insensitive server? Revalidate dentries */
1992 	if (inode && nfs_server_capable(inode, NFS_CAP_CASE_INSENSITIVE))
1993 		d_prune_aliases(inode);
1994 }
1995 EXPORT_SYMBOL_GPL(nfs_d_prune_case_insensitive_aliases);
1996 
1997 #if IS_ENABLED(CONFIG_NFS_V4)
1998 static int nfs4_lookup_revalidate(struct dentry *, unsigned int);
1999 
2000 const struct dentry_operations nfs4_dentry_operations = {
2001 	.d_revalidate	= nfs4_lookup_revalidate,
2002 	.d_weak_revalidate	= nfs_weak_revalidate,
2003 	.d_delete	= nfs_dentry_delete,
2004 	.d_iput		= nfs_dentry_iput,
2005 	.d_automount	= nfs_d_automount,
2006 	.d_release	= nfs_d_release,
2007 };
2008 EXPORT_SYMBOL_GPL(nfs4_dentry_operations);
2009 
2010 static struct nfs_open_context *create_nfs_open_context(struct dentry *dentry, int open_flags, struct file *filp)
2011 {
2012 	return alloc_nfs_open_context(dentry, flags_to_mode(open_flags), filp);
2013 }
2014 
2015 static int do_open(struct inode *inode, struct file *filp)
2016 {
2017 	nfs_fscache_open_file(inode, filp);
2018 	return 0;
2019 }
2020 
2021 static int nfs_finish_open(struct nfs_open_context *ctx,
2022 			   struct dentry *dentry,
2023 			   struct file *file, unsigned open_flags)
2024 {
2025 	int err;
2026 
2027 	err = finish_open(file, dentry, do_open);
2028 	if (err)
2029 		goto out;
2030 	if (S_ISREG(file_inode(file)->i_mode))
2031 		nfs_file_set_open_context(file, ctx);
2032 	else
2033 		err = -EOPENSTALE;
2034 out:
2035 	return err;
2036 }
2037 
2038 int nfs_atomic_open(struct inode *dir, struct dentry *dentry,
2039 		    struct file *file, unsigned open_flags,
2040 		    umode_t mode)
2041 {
2042 	DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
2043 	struct nfs_open_context *ctx;
2044 	struct dentry *res;
2045 	struct iattr attr = { .ia_valid = ATTR_OPEN };
2046 	struct inode *inode;
2047 	unsigned int lookup_flags = 0;
2048 	unsigned long dir_verifier;
2049 	bool switched = false;
2050 	int created = 0;
2051 	int err;
2052 
2053 	/* Expect a negative dentry */
2054 	BUG_ON(d_inode(dentry));
2055 
2056 	dfprintk(VFS, "NFS: atomic_open(%s/%lu), %pd\n",
2057 			dir->i_sb->s_id, dir->i_ino, dentry);
2058 
2059 	err = nfs_check_flags(open_flags);
2060 	if (err)
2061 		return err;
2062 
2063 	/* NFS only supports OPEN on regular files */
2064 	if ((open_flags & O_DIRECTORY)) {
2065 		if (!d_in_lookup(dentry)) {
2066 			/*
2067 			 * Hashed negative dentry with O_DIRECTORY: dentry was
2068 			 * revalidated and is fine, no need to perform lookup
2069 			 * again
2070 			 */
2071 			return -ENOENT;
2072 		}
2073 		lookup_flags = LOOKUP_OPEN|LOOKUP_DIRECTORY;
2074 		goto no_open;
2075 	}
2076 
2077 	if (dentry->d_name.len > NFS_SERVER(dir)->namelen)
2078 		return -ENAMETOOLONG;
2079 
2080 	if (open_flags & O_CREAT) {
2081 		struct nfs_server *server = NFS_SERVER(dir);
2082 
2083 		if (!(server->attr_bitmask[2] & FATTR4_WORD2_MODE_UMASK))
2084 			mode &= ~current_umask();
2085 
2086 		attr.ia_valid |= ATTR_MODE;
2087 		attr.ia_mode = mode;
2088 	}
2089 	if (open_flags & O_TRUNC) {
2090 		attr.ia_valid |= ATTR_SIZE;
2091 		attr.ia_size = 0;
2092 	}
2093 
2094 	if (!(open_flags & O_CREAT) && !d_in_lookup(dentry)) {
2095 		d_drop(dentry);
2096 		switched = true;
2097 		dentry = d_alloc_parallel(dentry->d_parent,
2098 					  &dentry->d_name, &wq);
2099 		if (IS_ERR(dentry))
2100 			return PTR_ERR(dentry);
2101 		if (unlikely(!d_in_lookup(dentry)))
2102 			return finish_no_open(file, dentry);
2103 	}
2104 
2105 	ctx = create_nfs_open_context(dentry, open_flags, file);
2106 	err = PTR_ERR(ctx);
2107 	if (IS_ERR(ctx))
2108 		goto out;
2109 
2110 	trace_nfs_atomic_open_enter(dir, ctx, open_flags);
2111 	inode = NFS_PROTO(dir)->open_context(dir, ctx, open_flags, &attr, &created);
2112 	if (created)
2113 		file->f_mode |= FMODE_CREATED;
2114 	if (IS_ERR(inode)) {
2115 		err = PTR_ERR(inode);
2116 		trace_nfs_atomic_open_exit(dir, ctx, open_flags, err);
2117 		put_nfs_open_context(ctx);
2118 		d_drop(dentry);
2119 		switch (err) {
2120 		case -ENOENT:
2121 			d_splice_alias(NULL, dentry);
2122 			if (nfs_server_capable(dir, NFS_CAP_CASE_INSENSITIVE))
2123 				dir_verifier = inode_peek_iversion_raw(dir);
2124 			else
2125 				dir_verifier = nfs_save_change_attribute(dir);
2126 			nfs_set_verifier(dentry, dir_verifier);
2127 			break;
2128 		case -EISDIR:
2129 		case -ENOTDIR:
2130 			goto no_open;
2131 		case -ELOOP:
2132 			if (!(open_flags & O_NOFOLLOW))
2133 				goto no_open;
2134 			break;
2135 			/* case -EINVAL: */
2136 		default:
2137 			break;
2138 		}
2139 		goto out;
2140 	}
2141 	file->f_mode |= FMODE_CAN_ODIRECT;
2142 
2143 	err = nfs_finish_open(ctx, ctx->dentry, file, open_flags);
2144 	trace_nfs_atomic_open_exit(dir, ctx, open_flags, err);
2145 	put_nfs_open_context(ctx);
2146 out:
2147 	if (unlikely(switched)) {
2148 		d_lookup_done(dentry);
2149 		dput(dentry);
2150 	}
2151 	return err;
2152 
2153 no_open:
2154 	res = nfs_lookup(dir, dentry, lookup_flags);
2155 	if (!res) {
2156 		inode = d_inode(dentry);
2157 		if ((lookup_flags & LOOKUP_DIRECTORY) && inode &&
2158 		    !(S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode)))
2159 			res = ERR_PTR(-ENOTDIR);
2160 		else if (inode && S_ISREG(inode->i_mode))
2161 			res = ERR_PTR(-EOPENSTALE);
2162 	} else if (!IS_ERR(res)) {
2163 		inode = d_inode(res);
2164 		if ((lookup_flags & LOOKUP_DIRECTORY) && inode &&
2165 		    !(S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))) {
2166 			dput(res);
2167 			res = ERR_PTR(-ENOTDIR);
2168 		} else if (inode && S_ISREG(inode->i_mode)) {
2169 			dput(res);
2170 			res = ERR_PTR(-EOPENSTALE);
2171 		}
2172 	}
2173 	if (switched) {
2174 		d_lookup_done(dentry);
2175 		if (!res)
2176 			res = dentry;
2177 		else
2178 			dput(dentry);
2179 	}
2180 	if (IS_ERR(res))
2181 		return PTR_ERR(res);
2182 	return finish_no_open(file, res);
2183 }
2184 EXPORT_SYMBOL_GPL(nfs_atomic_open);
2185 
2186 static int
2187 nfs4_do_lookup_revalidate(struct inode *dir, struct dentry *dentry,
2188 			  unsigned int flags)
2189 {
2190 	struct inode *inode;
2191 
2192 	if (!(flags & LOOKUP_OPEN) || (flags & LOOKUP_DIRECTORY))
2193 		goto full_reval;
2194 	if (d_mountpoint(dentry))
2195 		goto full_reval;
2196 
2197 	inode = d_inode(dentry);
2198 
2199 	/* We can't create new files in nfs_open_revalidate(), so we
2200 	 * optimize away revalidation of negative dentries.
2201 	 */
2202 	if (inode == NULL)
2203 		goto full_reval;
2204 
2205 	if (nfs_verifier_is_delegated(dentry))
2206 		return nfs_lookup_revalidate_delegated(dir, dentry, inode);
2207 
2208 	/* NFS only supports OPEN on regular files */
2209 	if (!S_ISREG(inode->i_mode))
2210 		goto full_reval;
2211 
2212 	/* We cannot do exclusive creation on a positive dentry */
2213 	if (flags & (LOOKUP_EXCL | LOOKUP_REVAL))
2214 		goto reval_dentry;
2215 
2216 	/* Check if the directory changed */
2217 	if (!nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU))
2218 		goto reval_dentry;
2219 
2220 	/* Let f_op->open() actually open (and revalidate) the file */
2221 	return 1;
2222 reval_dentry:
2223 	if (flags & LOOKUP_RCU)
2224 		return -ECHILD;
2225 	return nfs_lookup_revalidate_dentry(dir, dentry, inode, flags);
2226 
2227 full_reval:
2228 	return nfs_do_lookup_revalidate(dir, dentry, flags);
2229 }
2230 
2231 static int nfs4_lookup_revalidate(struct dentry *dentry, unsigned int flags)
2232 {
2233 	return __nfs_lookup_revalidate(dentry, flags,
2234 			nfs4_do_lookup_revalidate);
2235 }
2236 
2237 #endif /* CONFIG_NFSV4 */
2238 
2239 struct dentry *
2240 nfs_add_or_obtain(struct dentry *dentry, struct nfs_fh *fhandle,
2241 				struct nfs_fattr *fattr)
2242 {
2243 	struct dentry *parent = dget_parent(dentry);
2244 	struct inode *dir = d_inode(parent);
2245 	struct inode *inode;
2246 	struct dentry *d;
2247 	int error;
2248 
2249 	d_drop(dentry);
2250 
2251 	if (fhandle->size == 0) {
2252 		error = NFS_PROTO(dir)->lookup(dir, dentry, fhandle, fattr);
2253 		if (error)
2254 			goto out_error;
2255 	}
2256 	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
2257 	if (!(fattr->valid & NFS_ATTR_FATTR)) {
2258 		struct nfs_server *server = NFS_SB(dentry->d_sb);
2259 		error = server->nfs_client->rpc_ops->getattr(server, fhandle,
2260 				fattr, NULL);
2261 		if (error < 0)
2262 			goto out_error;
2263 	}
2264 	inode = nfs_fhget(dentry->d_sb, fhandle, fattr);
2265 	d = d_splice_alias(inode, dentry);
2266 out:
2267 	dput(parent);
2268 	return d;
2269 out_error:
2270 	d = ERR_PTR(error);
2271 	goto out;
2272 }
2273 EXPORT_SYMBOL_GPL(nfs_add_or_obtain);
2274 
2275 /*
2276  * Code common to create, mkdir, and mknod.
2277  */
2278 int nfs_instantiate(struct dentry *dentry, struct nfs_fh *fhandle,
2279 				struct nfs_fattr *fattr)
2280 {
2281 	struct dentry *d;
2282 
2283 	d = nfs_add_or_obtain(dentry, fhandle, fattr);
2284 	if (IS_ERR(d))
2285 		return PTR_ERR(d);
2286 
2287 	/* Callers don't care */
2288 	dput(d);
2289 	return 0;
2290 }
2291 EXPORT_SYMBOL_GPL(nfs_instantiate);
2292 
2293 /*
2294  * Following a failed create operation, we drop the dentry rather
2295  * than retain a negative dentry. This avoids a problem in the event
2296  * that the operation succeeded on the server, but an error in the
2297  * reply path made it appear to have failed.
2298  */
2299 int nfs_create(struct user_namespace *mnt_userns, struct inode *dir,
2300 	       struct dentry *dentry, umode_t mode, bool excl)
2301 {
2302 	struct iattr attr;
2303 	int open_flags = excl ? O_CREAT | O_EXCL : O_CREAT;
2304 	int error;
2305 
2306 	dfprintk(VFS, "NFS: create(%s/%lu), %pd\n",
2307 			dir->i_sb->s_id, dir->i_ino, dentry);
2308 
2309 	attr.ia_mode = mode;
2310 	attr.ia_valid = ATTR_MODE;
2311 
2312 	trace_nfs_create_enter(dir, dentry, open_flags);
2313 	error = NFS_PROTO(dir)->create(dir, dentry, &attr, open_flags);
2314 	trace_nfs_create_exit(dir, dentry, open_flags, error);
2315 	if (error != 0)
2316 		goto out_err;
2317 	return 0;
2318 out_err:
2319 	d_drop(dentry);
2320 	return error;
2321 }
2322 EXPORT_SYMBOL_GPL(nfs_create);
2323 
2324 /*
2325  * See comments for nfs_proc_create regarding failed operations.
2326  */
2327 int
2328 nfs_mknod(struct user_namespace *mnt_userns, struct inode *dir,
2329 	  struct dentry *dentry, umode_t mode, dev_t rdev)
2330 {
2331 	struct iattr attr;
2332 	int status;
2333 
2334 	dfprintk(VFS, "NFS: mknod(%s/%lu), %pd\n",
2335 			dir->i_sb->s_id, dir->i_ino, dentry);
2336 
2337 	attr.ia_mode = mode;
2338 	attr.ia_valid = ATTR_MODE;
2339 
2340 	trace_nfs_mknod_enter(dir, dentry);
2341 	status = NFS_PROTO(dir)->mknod(dir, dentry, &attr, rdev);
2342 	trace_nfs_mknod_exit(dir, dentry, status);
2343 	if (status != 0)
2344 		goto out_err;
2345 	return 0;
2346 out_err:
2347 	d_drop(dentry);
2348 	return status;
2349 }
2350 EXPORT_SYMBOL_GPL(nfs_mknod);
2351 
2352 /*
2353  * See comments for nfs_proc_create regarding failed operations.
2354  */
2355 int nfs_mkdir(struct user_namespace *mnt_userns, struct inode *dir,
2356 	      struct dentry *dentry, umode_t mode)
2357 {
2358 	struct iattr attr;
2359 	int error;
2360 
2361 	dfprintk(VFS, "NFS: mkdir(%s/%lu), %pd\n",
2362 			dir->i_sb->s_id, dir->i_ino, dentry);
2363 
2364 	attr.ia_valid = ATTR_MODE;
2365 	attr.ia_mode = mode | S_IFDIR;
2366 
2367 	trace_nfs_mkdir_enter(dir, dentry);
2368 	error = NFS_PROTO(dir)->mkdir(dir, dentry, &attr);
2369 	trace_nfs_mkdir_exit(dir, dentry, error);
2370 	if (error != 0)
2371 		goto out_err;
2372 	return 0;
2373 out_err:
2374 	d_drop(dentry);
2375 	return error;
2376 }
2377 EXPORT_SYMBOL_GPL(nfs_mkdir);
2378 
2379 static void nfs_dentry_handle_enoent(struct dentry *dentry)
2380 {
2381 	if (simple_positive(dentry))
2382 		d_delete(dentry);
2383 }
2384 
2385 static void nfs_dentry_remove_handle_error(struct inode *dir,
2386 					   struct dentry *dentry, int error)
2387 {
2388 	switch (error) {
2389 	case -ENOENT:
2390 		if (d_really_is_positive(dentry))
2391 			d_delete(dentry);
2392 		nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
2393 		break;
2394 	case 0:
2395 		nfs_d_prune_case_insensitive_aliases(d_inode(dentry));
2396 		nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
2397 	}
2398 }
2399 
2400 int nfs_rmdir(struct inode *dir, struct dentry *dentry)
2401 {
2402 	int error;
2403 
2404 	dfprintk(VFS, "NFS: rmdir(%s/%lu), %pd\n",
2405 			dir->i_sb->s_id, dir->i_ino, dentry);
2406 
2407 	trace_nfs_rmdir_enter(dir, dentry);
2408 	if (d_really_is_positive(dentry)) {
2409 		down_write(&NFS_I(d_inode(dentry))->rmdir_sem);
2410 		error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
2411 		/* Ensure the VFS deletes this inode */
2412 		switch (error) {
2413 		case 0:
2414 			clear_nlink(d_inode(dentry));
2415 			break;
2416 		case -ENOENT:
2417 			nfs_dentry_handle_enoent(dentry);
2418 		}
2419 		up_write(&NFS_I(d_inode(dentry))->rmdir_sem);
2420 	} else
2421 		error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
2422 	nfs_dentry_remove_handle_error(dir, dentry, error);
2423 	trace_nfs_rmdir_exit(dir, dentry, error);
2424 
2425 	return error;
2426 }
2427 EXPORT_SYMBOL_GPL(nfs_rmdir);
2428 
2429 /*
2430  * Remove a file after making sure there are no pending writes,
2431  * and after checking that the file has only one user.
2432  *
2433  * We invalidate the attribute cache and free the inode prior to the operation
2434  * to avoid possible races if the server reuses the inode.
2435  */
2436 static int nfs_safe_remove(struct dentry *dentry)
2437 {
2438 	struct inode *dir = d_inode(dentry->d_parent);
2439 	struct inode *inode = d_inode(dentry);
2440 	int error = -EBUSY;
2441 
2442 	dfprintk(VFS, "NFS: safe_remove(%pd2)\n", dentry);
2443 
2444 	/* If the dentry was sillyrenamed, we simply call d_delete() */
2445 	if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
2446 		error = 0;
2447 		goto out;
2448 	}
2449 
2450 	trace_nfs_remove_enter(dir, dentry);
2451 	if (inode != NULL) {
2452 		error = NFS_PROTO(dir)->remove(dir, dentry);
2453 		if (error == 0)
2454 			nfs_drop_nlink(inode);
2455 	} else
2456 		error = NFS_PROTO(dir)->remove(dir, dentry);
2457 	if (error == -ENOENT)
2458 		nfs_dentry_handle_enoent(dentry);
2459 	trace_nfs_remove_exit(dir, dentry, error);
2460 out:
2461 	return error;
2462 }
2463 
2464 /*  We do silly rename. In case sillyrename() returns -EBUSY, the inode
2465  *  belongs to an active ".nfs..." file and we return -EBUSY.
2466  *
2467  *  If sillyrename() returns 0, we do nothing, otherwise we unlink.
2468  */
2469 int nfs_unlink(struct inode *dir, struct dentry *dentry)
2470 {
2471 	int error;
2472 
2473 	dfprintk(VFS, "NFS: unlink(%s/%lu, %pd)\n", dir->i_sb->s_id,
2474 		dir->i_ino, dentry);
2475 
2476 	trace_nfs_unlink_enter(dir, dentry);
2477 	spin_lock(&dentry->d_lock);
2478 	if (d_count(dentry) > 1 && !test_bit(NFS_INO_PRESERVE_UNLINKED,
2479 					     &NFS_I(d_inode(dentry))->flags)) {
2480 		spin_unlock(&dentry->d_lock);
2481 		/* Start asynchronous writeout of the inode */
2482 		write_inode_now(d_inode(dentry), 0);
2483 		error = nfs_sillyrename(dir, dentry);
2484 		goto out;
2485 	}
2486 	/* We must prevent any concurrent open until the unlink
2487 	 * completes.  ->d_revalidate will wait for ->d_fsdata
2488 	 * to clear.  We set it here to ensure no lookup succeeds until
2489 	 * the unlink is complete on the server.
2490 	 */
2491 	error = -ETXTBSY;
2492 	if (WARN_ON(dentry->d_flags & DCACHE_NFSFS_RENAMED) ||
2493 	    WARN_ON(dentry->d_fsdata == NFS_FSDATA_BLOCKED)) {
2494 		spin_unlock(&dentry->d_lock);
2495 		goto out;
2496 	}
2497 	/* old devname */
2498 	kfree(dentry->d_fsdata);
2499 	dentry->d_fsdata = NFS_FSDATA_BLOCKED;
2500 
2501 	spin_unlock(&dentry->d_lock);
2502 	error = nfs_safe_remove(dentry);
2503 	nfs_dentry_remove_handle_error(dir, dentry, error);
2504 	dentry->d_fsdata = NULL;
2505 	wake_up_var(&dentry->d_fsdata);
2506 out:
2507 	trace_nfs_unlink_exit(dir, dentry, error);
2508 	return error;
2509 }
2510 EXPORT_SYMBOL_GPL(nfs_unlink);
2511 
2512 /*
2513  * To create a symbolic link, most file systems instantiate a new inode,
2514  * add a page to it containing the path, then write it out to the disk
2515  * using prepare_write/commit_write.
2516  *
2517  * Unfortunately the NFS client can't create the in-core inode first
2518  * because it needs a file handle to create an in-core inode (see
2519  * fs/nfs/inode.c:nfs_fhget).  We only have a file handle *after* the
2520  * symlink request has completed on the server.
2521  *
2522  * So instead we allocate a raw page, copy the symname into it, then do
2523  * the SYMLINK request with the page as the buffer.  If it succeeds, we
2524  * now have a new file handle and can instantiate an in-core NFS inode
2525  * and move the raw page into its mapping.
2526  */
2527 int nfs_symlink(struct user_namespace *mnt_userns, struct inode *dir,
2528 		struct dentry *dentry, const char *symname)
2529 {
2530 	struct page *page;
2531 	char *kaddr;
2532 	struct iattr attr;
2533 	unsigned int pathlen = strlen(symname);
2534 	int error;
2535 
2536 	dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s)\n", dir->i_sb->s_id,
2537 		dir->i_ino, dentry, symname);
2538 
2539 	if (pathlen > PAGE_SIZE)
2540 		return -ENAMETOOLONG;
2541 
2542 	attr.ia_mode = S_IFLNK | S_IRWXUGO;
2543 	attr.ia_valid = ATTR_MODE;
2544 
2545 	page = alloc_page(GFP_USER);
2546 	if (!page)
2547 		return -ENOMEM;
2548 
2549 	kaddr = page_address(page);
2550 	memcpy(kaddr, symname, pathlen);
2551 	if (pathlen < PAGE_SIZE)
2552 		memset(kaddr + pathlen, 0, PAGE_SIZE - pathlen);
2553 
2554 	trace_nfs_symlink_enter(dir, dentry);
2555 	error = NFS_PROTO(dir)->symlink(dir, dentry, page, pathlen, &attr);
2556 	trace_nfs_symlink_exit(dir, dentry, error);
2557 	if (error != 0) {
2558 		dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s) error %d\n",
2559 			dir->i_sb->s_id, dir->i_ino,
2560 			dentry, symname, error);
2561 		d_drop(dentry);
2562 		__free_page(page);
2563 		return error;
2564 	}
2565 
2566 	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
2567 
2568 	/*
2569 	 * No big deal if we can't add this page to the page cache here.
2570 	 * READLINK will get the missing page from the server if needed.
2571 	 */
2572 	if (!add_to_page_cache_lru(page, d_inode(dentry)->i_mapping, 0,
2573 							GFP_KERNEL)) {
2574 		SetPageUptodate(page);
2575 		unlock_page(page);
2576 		/*
2577 		 * add_to_page_cache_lru() grabs an extra page refcount.
2578 		 * Drop it here to avoid leaking this page later.
2579 		 */
2580 		put_page(page);
2581 	} else
2582 		__free_page(page);
2583 
2584 	return 0;
2585 }
2586 EXPORT_SYMBOL_GPL(nfs_symlink);
2587 
2588 int
2589 nfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2590 {
2591 	struct inode *inode = d_inode(old_dentry);
2592 	int error;
2593 
2594 	dfprintk(VFS, "NFS: link(%pd2 -> %pd2)\n",
2595 		old_dentry, dentry);
2596 
2597 	trace_nfs_link_enter(inode, dir, dentry);
2598 	d_drop(dentry);
2599 	if (S_ISREG(inode->i_mode))
2600 		nfs_sync_inode(inode);
2601 	error = NFS_PROTO(dir)->link(inode, dir, &dentry->d_name);
2602 	if (error == 0) {
2603 		nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
2604 		ihold(inode);
2605 		d_add(dentry, inode);
2606 	}
2607 	trace_nfs_link_exit(inode, dir, dentry, error);
2608 	return error;
2609 }
2610 EXPORT_SYMBOL_GPL(nfs_link);
2611 
2612 static void
2613 nfs_unblock_rename(struct rpc_task *task, struct nfs_renamedata *data)
2614 {
2615 	struct dentry *new_dentry = data->new_dentry;
2616 
2617 	new_dentry->d_fsdata = NULL;
2618 	wake_up_var(&new_dentry->d_fsdata);
2619 }
2620 
2621 /*
2622  * RENAME
2623  * FIXME: Some nfsds, like the Linux user space nfsd, may generate a
2624  * different file handle for the same inode after a rename (e.g. when
2625  * moving to a different directory). A fail-safe method to do so would
2626  * be to look up old_dir/old_name, create a link to new_dir/new_name and
2627  * rename the old file using the sillyrename stuff. This way, the original
2628  * file in old_dir will go away when the last process iput()s the inode.
2629  *
2630  * FIXED.
2631  *
2632  * It actually works quite well. One needs to have the possibility for
2633  * at least one ".nfs..." file in each directory the file ever gets
2634  * moved or linked to which happens automagically with the new
2635  * implementation that only depends on the dcache stuff instead of
2636  * using the inode layer
2637  *
2638  * Unfortunately, things are a little more complicated than indicated
2639  * above. For a cross-directory move, we want to make sure we can get
2640  * rid of the old inode after the operation.  This means there must be
2641  * no pending writes (if it's a file), and the use count must be 1.
2642  * If these conditions are met, we can drop the dentries before doing
2643  * the rename.
2644  */
2645 int nfs_rename(struct user_namespace *mnt_userns, struct inode *old_dir,
2646 	       struct dentry *old_dentry, struct inode *new_dir,
2647 	       struct dentry *new_dentry, unsigned int flags)
2648 {
2649 	struct inode *old_inode = d_inode(old_dentry);
2650 	struct inode *new_inode = d_inode(new_dentry);
2651 	struct dentry *dentry = NULL;
2652 	struct rpc_task *task;
2653 	bool must_unblock = false;
2654 	int error = -EBUSY;
2655 
2656 	if (flags)
2657 		return -EINVAL;
2658 
2659 	dfprintk(VFS, "NFS: rename(%pd2 -> %pd2, ct=%d)\n",
2660 		 old_dentry, new_dentry,
2661 		 d_count(new_dentry));
2662 
2663 	trace_nfs_rename_enter(old_dir, old_dentry, new_dir, new_dentry);
2664 	/*
2665 	 * For non-directories, check whether the target is busy and if so,
2666 	 * make a copy of the dentry and then do a silly-rename. If the
2667 	 * silly-rename succeeds, the copied dentry is hashed and becomes
2668 	 * the new target.
2669 	 */
2670 	if (new_inode && !S_ISDIR(new_inode->i_mode)) {
2671 		/* We must prevent any concurrent open until the unlink
2672 		 * completes.  ->d_revalidate will wait for ->d_fsdata
2673 		 * to clear.  We set it here to ensure no lookup succeeds until
2674 		 * the unlink is complete on the server.
2675 		 */
2676 		error = -ETXTBSY;
2677 		if (WARN_ON(new_dentry->d_flags & DCACHE_NFSFS_RENAMED) ||
2678 		    WARN_ON(new_dentry->d_fsdata == NFS_FSDATA_BLOCKED))
2679 			goto out;
2680 		if (new_dentry->d_fsdata) {
2681 			/* old devname */
2682 			kfree(new_dentry->d_fsdata);
2683 			new_dentry->d_fsdata = NULL;
2684 		}
2685 
2686 		spin_lock(&new_dentry->d_lock);
2687 		if (d_count(new_dentry) > 2) {
2688 			int err;
2689 
2690 			spin_unlock(&new_dentry->d_lock);
2691 
2692 			/* copy the target dentry's name */
2693 			dentry = d_alloc(new_dentry->d_parent,
2694 					 &new_dentry->d_name);
2695 			if (!dentry)
2696 				goto out;
2697 
2698 			/* silly-rename the existing target ... */
2699 			err = nfs_sillyrename(new_dir, new_dentry);
2700 			if (err)
2701 				goto out;
2702 
2703 			new_dentry = dentry;
2704 			new_inode = NULL;
2705 		} else {
2706 			new_dentry->d_fsdata = NFS_FSDATA_BLOCKED;
2707 			must_unblock = true;
2708 			spin_unlock(&new_dentry->d_lock);
2709 		}
2710 
2711 	}
2712 
2713 	if (S_ISREG(old_inode->i_mode))
2714 		nfs_sync_inode(old_inode);
2715 	task = nfs_async_rename(old_dir, new_dir, old_dentry, new_dentry,
2716 				must_unblock ? nfs_unblock_rename : NULL);
2717 	if (IS_ERR(task)) {
2718 		error = PTR_ERR(task);
2719 		goto out;
2720 	}
2721 
2722 	error = rpc_wait_for_completion_task(task);
2723 	if (error != 0) {
2724 		((struct nfs_renamedata *)task->tk_calldata)->cancelled = 1;
2725 		/* Paired with the atomic_dec_and_test() barrier in rpc_do_put_task() */
2726 		smp_wmb();
2727 	} else
2728 		error = task->tk_status;
2729 	rpc_put_task(task);
2730 	/* Ensure the inode attributes are revalidated */
2731 	if (error == 0) {
2732 		spin_lock(&old_inode->i_lock);
2733 		NFS_I(old_inode)->attr_gencount = nfs_inc_attr_generation_counter();
2734 		nfs_set_cache_invalid(old_inode, NFS_INO_INVALID_CHANGE |
2735 							 NFS_INO_INVALID_CTIME |
2736 							 NFS_INO_REVAL_FORCED);
2737 		spin_unlock(&old_inode->i_lock);
2738 	}
2739 out:
2740 	trace_nfs_rename_exit(old_dir, old_dentry,
2741 			new_dir, new_dentry, error);
2742 	if (!error) {
2743 		if (new_inode != NULL)
2744 			nfs_drop_nlink(new_inode);
2745 		/*
2746 		 * The d_move() should be here instead of in an async RPC completion
2747 		 * handler because we need the proper locks to move the dentry.  If
2748 		 * we're interrupted by a signal, the async RPC completion handler
2749 		 * should mark the directories for revalidation.
2750 		 */
2751 		d_move(old_dentry, new_dentry);
2752 		nfs_set_verifier(old_dentry,
2753 					nfs_save_change_attribute(new_dir));
2754 	} else if (error == -ENOENT)
2755 		nfs_dentry_handle_enoent(old_dentry);
2756 
2757 	/* new dentry created? */
2758 	if (dentry)
2759 		dput(dentry);
2760 	return error;
2761 }
2762 EXPORT_SYMBOL_GPL(nfs_rename);
2763 
2764 static DEFINE_SPINLOCK(nfs_access_lru_lock);
2765 static LIST_HEAD(nfs_access_lru_list);
2766 static atomic_long_t nfs_access_nr_entries;
2767 
2768 static unsigned long nfs_access_max_cachesize = 4*1024*1024;
2769 module_param(nfs_access_max_cachesize, ulong, 0644);
2770 MODULE_PARM_DESC(nfs_access_max_cachesize, "NFS access maximum total cache length");
2771 
2772 static void nfs_access_free_entry(struct nfs_access_entry *entry)
2773 {
2774 	put_group_info(entry->group_info);
2775 	kfree_rcu(entry, rcu_head);
2776 	smp_mb__before_atomic();
2777 	atomic_long_dec(&nfs_access_nr_entries);
2778 	smp_mb__after_atomic();
2779 }
2780 
2781 static void nfs_access_free_list(struct list_head *head)
2782 {
2783 	struct nfs_access_entry *cache;
2784 
2785 	while (!list_empty(head)) {
2786 		cache = list_entry(head->next, struct nfs_access_entry, lru);
2787 		list_del(&cache->lru);
2788 		nfs_access_free_entry(cache);
2789 	}
2790 }
2791 
2792 static unsigned long
2793 nfs_do_access_cache_scan(unsigned int nr_to_scan)
2794 {
2795 	LIST_HEAD(head);
2796 	struct nfs_inode *nfsi, *next;
2797 	struct nfs_access_entry *cache;
2798 	long freed = 0;
2799 
2800 	spin_lock(&nfs_access_lru_lock);
2801 	list_for_each_entry_safe(nfsi, next, &nfs_access_lru_list, access_cache_inode_lru) {
2802 		struct inode *inode;
2803 
2804 		if (nr_to_scan-- == 0)
2805 			break;
2806 		inode = &nfsi->vfs_inode;
2807 		spin_lock(&inode->i_lock);
2808 		if (list_empty(&nfsi->access_cache_entry_lru))
2809 			goto remove_lru_entry;
2810 		cache = list_entry(nfsi->access_cache_entry_lru.next,
2811 				struct nfs_access_entry, lru);
2812 		list_move(&cache->lru, &head);
2813 		rb_erase(&cache->rb_node, &nfsi->access_cache);
2814 		freed++;
2815 		if (!list_empty(&nfsi->access_cache_entry_lru))
2816 			list_move_tail(&nfsi->access_cache_inode_lru,
2817 					&nfs_access_lru_list);
2818 		else {
2819 remove_lru_entry:
2820 			list_del_init(&nfsi->access_cache_inode_lru);
2821 			smp_mb__before_atomic();
2822 			clear_bit(NFS_INO_ACL_LRU_SET, &nfsi->flags);
2823 			smp_mb__after_atomic();
2824 		}
2825 		spin_unlock(&inode->i_lock);
2826 	}
2827 	spin_unlock(&nfs_access_lru_lock);
2828 	nfs_access_free_list(&head);
2829 	return freed;
2830 }
2831 
2832 unsigned long
2833 nfs_access_cache_scan(struct shrinker *shrink, struct shrink_control *sc)
2834 {
2835 	int nr_to_scan = sc->nr_to_scan;
2836 	gfp_t gfp_mask = sc->gfp_mask;
2837 
2838 	if ((gfp_mask & GFP_KERNEL) != GFP_KERNEL)
2839 		return SHRINK_STOP;
2840 	return nfs_do_access_cache_scan(nr_to_scan);
2841 }
2842 
2843 
2844 unsigned long
2845 nfs_access_cache_count(struct shrinker *shrink, struct shrink_control *sc)
2846 {
2847 	return vfs_pressure_ratio(atomic_long_read(&nfs_access_nr_entries));
2848 }
2849 
2850 static void
2851 nfs_access_cache_enforce_limit(void)
2852 {
2853 	long nr_entries = atomic_long_read(&nfs_access_nr_entries);
2854 	unsigned long diff;
2855 	unsigned int nr_to_scan;
2856 
2857 	if (nr_entries < 0 || nr_entries <= nfs_access_max_cachesize)
2858 		return;
2859 	nr_to_scan = 100;
2860 	diff = nr_entries - nfs_access_max_cachesize;
2861 	if (diff < nr_to_scan)
2862 		nr_to_scan = diff;
2863 	nfs_do_access_cache_scan(nr_to_scan);
2864 }
2865 
2866 static void __nfs_access_zap_cache(struct nfs_inode *nfsi, struct list_head *head)
2867 {
2868 	struct rb_root *root_node = &nfsi->access_cache;
2869 	struct rb_node *n;
2870 	struct nfs_access_entry *entry;
2871 
2872 	/* Unhook entries from the cache */
2873 	while ((n = rb_first(root_node)) != NULL) {
2874 		entry = rb_entry(n, struct nfs_access_entry, rb_node);
2875 		rb_erase(n, root_node);
2876 		list_move(&entry->lru, head);
2877 	}
2878 	nfsi->cache_validity &= ~NFS_INO_INVALID_ACCESS;
2879 }
2880 
2881 void nfs_access_zap_cache(struct inode *inode)
2882 {
2883 	LIST_HEAD(head);
2884 
2885 	if (test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags) == 0)
2886 		return;
2887 	/* Remove from global LRU init */
2888 	spin_lock(&nfs_access_lru_lock);
2889 	if (test_and_clear_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
2890 		list_del_init(&NFS_I(inode)->access_cache_inode_lru);
2891 
2892 	spin_lock(&inode->i_lock);
2893 	__nfs_access_zap_cache(NFS_I(inode), &head);
2894 	spin_unlock(&inode->i_lock);
2895 	spin_unlock(&nfs_access_lru_lock);
2896 	nfs_access_free_list(&head);
2897 }
2898 EXPORT_SYMBOL_GPL(nfs_access_zap_cache);
2899 
2900 static int access_cmp(const struct cred *a, const struct nfs_access_entry *b)
2901 {
2902 	struct group_info *ga, *gb;
2903 	int g;
2904 
2905 	if (uid_lt(a->fsuid, b->fsuid))
2906 		return -1;
2907 	if (uid_gt(a->fsuid, b->fsuid))
2908 		return 1;
2909 
2910 	if (gid_lt(a->fsgid, b->fsgid))
2911 		return -1;
2912 	if (gid_gt(a->fsgid, b->fsgid))
2913 		return 1;
2914 
2915 	ga = a->group_info;
2916 	gb = b->group_info;
2917 	if (ga == gb)
2918 		return 0;
2919 	if (ga == NULL)
2920 		return -1;
2921 	if (gb == NULL)
2922 		return 1;
2923 	if (ga->ngroups < gb->ngroups)
2924 		return -1;
2925 	if (ga->ngroups > gb->ngroups)
2926 		return 1;
2927 
2928 	for (g = 0; g < ga->ngroups; g++) {
2929 		if (gid_lt(ga->gid[g], gb->gid[g]))
2930 			return -1;
2931 		if (gid_gt(ga->gid[g], gb->gid[g]))
2932 			return 1;
2933 	}
2934 	return 0;
2935 }
2936 
2937 static struct nfs_access_entry *nfs_access_search_rbtree(struct inode *inode, const struct cred *cred)
2938 {
2939 	struct rb_node *n = NFS_I(inode)->access_cache.rb_node;
2940 
2941 	while (n != NULL) {
2942 		struct nfs_access_entry *entry =
2943 			rb_entry(n, struct nfs_access_entry, rb_node);
2944 		int cmp = access_cmp(cred, entry);
2945 
2946 		if (cmp < 0)
2947 			n = n->rb_left;
2948 		else if (cmp > 0)
2949 			n = n->rb_right;
2950 		else
2951 			return entry;
2952 	}
2953 	return NULL;
2954 }
2955 
2956 static u64 nfs_access_login_time(const struct task_struct *task,
2957 				 const struct cred *cred)
2958 {
2959 	const struct task_struct *parent;
2960 	const struct cred *pcred;
2961 	u64 ret;
2962 
2963 	rcu_read_lock();
2964 	for (;;) {
2965 		parent = rcu_dereference(task->real_parent);
2966 		pcred = rcu_dereference(parent->cred);
2967 		if (parent == task || cred_fscmp(pcred, cred) != 0)
2968 			break;
2969 		task = parent;
2970 	}
2971 	ret = task->start_time;
2972 	rcu_read_unlock();
2973 	return ret;
2974 }
2975 
2976 static int nfs_access_get_cached_locked(struct inode *inode, const struct cred *cred, u32 *mask, bool may_block)
2977 {
2978 	struct nfs_inode *nfsi = NFS_I(inode);
2979 	u64 login_time = nfs_access_login_time(current, cred);
2980 	struct nfs_access_entry *cache;
2981 	bool retry = true;
2982 	int err;
2983 
2984 	spin_lock(&inode->i_lock);
2985 	for(;;) {
2986 		if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
2987 			goto out_zap;
2988 		cache = nfs_access_search_rbtree(inode, cred);
2989 		err = -ENOENT;
2990 		if (cache == NULL)
2991 			goto out;
2992 		/* Found an entry, is our attribute cache valid? */
2993 		if (!nfs_check_cache_invalid(inode, NFS_INO_INVALID_ACCESS))
2994 			break;
2995 		if (!retry)
2996 			break;
2997 		err = -ECHILD;
2998 		if (!may_block)
2999 			goto out;
3000 		spin_unlock(&inode->i_lock);
3001 		err = __nfs_revalidate_inode(NFS_SERVER(inode), inode);
3002 		if (err)
3003 			return err;
3004 		spin_lock(&inode->i_lock);
3005 		retry = false;
3006 	}
3007 	err = -ENOENT;
3008 	if ((s64)(login_time - cache->timestamp) > 0)
3009 		goto out;
3010 	*mask = cache->mask;
3011 	list_move_tail(&cache->lru, &nfsi->access_cache_entry_lru);
3012 	err = 0;
3013 out:
3014 	spin_unlock(&inode->i_lock);
3015 	return err;
3016 out_zap:
3017 	spin_unlock(&inode->i_lock);
3018 	nfs_access_zap_cache(inode);
3019 	return -ENOENT;
3020 }
3021 
3022 static int nfs_access_get_cached_rcu(struct inode *inode, const struct cred *cred, u32 *mask)
3023 {
3024 	/* Only check the most recently returned cache entry,
3025 	 * but do it without locking.
3026 	 */
3027 	struct nfs_inode *nfsi = NFS_I(inode);
3028 	u64 login_time = nfs_access_login_time(current, cred);
3029 	struct nfs_access_entry *cache;
3030 	int err = -ECHILD;
3031 	struct list_head *lh;
3032 
3033 	rcu_read_lock();
3034 	if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
3035 		goto out;
3036 	lh = rcu_dereference(list_tail_rcu(&nfsi->access_cache_entry_lru));
3037 	cache = list_entry(lh, struct nfs_access_entry, lru);
3038 	if (lh == &nfsi->access_cache_entry_lru ||
3039 	    access_cmp(cred, cache) != 0)
3040 		cache = NULL;
3041 	if (cache == NULL)
3042 		goto out;
3043 	if ((s64)(login_time - cache->timestamp) > 0)
3044 		goto out;
3045 	if (nfs_check_cache_invalid(inode, NFS_INO_INVALID_ACCESS))
3046 		goto out;
3047 	*mask = cache->mask;
3048 	err = 0;
3049 out:
3050 	rcu_read_unlock();
3051 	return err;
3052 }
3053 
3054 int nfs_access_get_cached(struct inode *inode, const struct cred *cred,
3055 			  u32 *mask, bool may_block)
3056 {
3057 	int status;
3058 
3059 	status = nfs_access_get_cached_rcu(inode, cred, mask);
3060 	if (status != 0)
3061 		status = nfs_access_get_cached_locked(inode, cred, mask,
3062 		    may_block);
3063 
3064 	return status;
3065 }
3066 EXPORT_SYMBOL_GPL(nfs_access_get_cached);
3067 
3068 static void nfs_access_add_rbtree(struct inode *inode,
3069 				  struct nfs_access_entry *set,
3070 				  const struct cred *cred)
3071 {
3072 	struct nfs_inode *nfsi = NFS_I(inode);
3073 	struct rb_root *root_node = &nfsi->access_cache;
3074 	struct rb_node **p = &root_node->rb_node;
3075 	struct rb_node *parent = NULL;
3076 	struct nfs_access_entry *entry;
3077 	int cmp;
3078 
3079 	spin_lock(&inode->i_lock);
3080 	while (*p != NULL) {
3081 		parent = *p;
3082 		entry = rb_entry(parent, struct nfs_access_entry, rb_node);
3083 		cmp = access_cmp(cred, entry);
3084 
3085 		if (cmp < 0)
3086 			p = &parent->rb_left;
3087 		else if (cmp > 0)
3088 			p = &parent->rb_right;
3089 		else
3090 			goto found;
3091 	}
3092 	set->timestamp = ktime_get_ns();
3093 	rb_link_node(&set->rb_node, parent, p);
3094 	rb_insert_color(&set->rb_node, root_node);
3095 	list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
3096 	spin_unlock(&inode->i_lock);
3097 	return;
3098 found:
3099 	rb_replace_node(parent, &set->rb_node, root_node);
3100 	list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
3101 	list_del(&entry->lru);
3102 	spin_unlock(&inode->i_lock);
3103 	nfs_access_free_entry(entry);
3104 }
3105 
3106 void nfs_access_add_cache(struct inode *inode, struct nfs_access_entry *set,
3107 			  const struct cred *cred)
3108 {
3109 	struct nfs_access_entry *cache = kmalloc(sizeof(*cache), GFP_KERNEL);
3110 	if (cache == NULL)
3111 		return;
3112 	RB_CLEAR_NODE(&cache->rb_node);
3113 	cache->fsuid = cred->fsuid;
3114 	cache->fsgid = cred->fsgid;
3115 	cache->group_info = get_group_info(cred->group_info);
3116 	cache->mask = set->mask;
3117 
3118 	/* The above field assignments must be visible
3119 	 * before this item appears on the lru.  We cannot easily
3120 	 * use rcu_assign_pointer, so just force the memory barrier.
3121 	 */
3122 	smp_wmb();
3123 	nfs_access_add_rbtree(inode, cache, cred);
3124 
3125 	/* Update accounting */
3126 	smp_mb__before_atomic();
3127 	atomic_long_inc(&nfs_access_nr_entries);
3128 	smp_mb__after_atomic();
3129 
3130 	/* Add inode to global LRU list */
3131 	if (!test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) {
3132 		spin_lock(&nfs_access_lru_lock);
3133 		if (!test_and_set_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
3134 			list_add_tail(&NFS_I(inode)->access_cache_inode_lru,
3135 					&nfs_access_lru_list);
3136 		spin_unlock(&nfs_access_lru_lock);
3137 	}
3138 	nfs_access_cache_enforce_limit();
3139 }
3140 EXPORT_SYMBOL_GPL(nfs_access_add_cache);
3141 
3142 #define NFS_MAY_READ (NFS_ACCESS_READ)
3143 #define NFS_MAY_WRITE (NFS_ACCESS_MODIFY | \
3144 		NFS_ACCESS_EXTEND | \
3145 		NFS_ACCESS_DELETE)
3146 #define NFS_FILE_MAY_WRITE (NFS_ACCESS_MODIFY | \
3147 		NFS_ACCESS_EXTEND)
3148 #define NFS_DIR_MAY_WRITE NFS_MAY_WRITE
3149 #define NFS_MAY_LOOKUP (NFS_ACCESS_LOOKUP)
3150 #define NFS_MAY_EXECUTE (NFS_ACCESS_EXECUTE)
3151 static int
3152 nfs_access_calc_mask(u32 access_result, umode_t umode)
3153 {
3154 	int mask = 0;
3155 
3156 	if (access_result & NFS_MAY_READ)
3157 		mask |= MAY_READ;
3158 	if (S_ISDIR(umode)) {
3159 		if ((access_result & NFS_DIR_MAY_WRITE) == NFS_DIR_MAY_WRITE)
3160 			mask |= MAY_WRITE;
3161 		if ((access_result & NFS_MAY_LOOKUP) == NFS_MAY_LOOKUP)
3162 			mask |= MAY_EXEC;
3163 	} else if (S_ISREG(umode)) {
3164 		if ((access_result & NFS_FILE_MAY_WRITE) == NFS_FILE_MAY_WRITE)
3165 			mask |= MAY_WRITE;
3166 		if ((access_result & NFS_MAY_EXECUTE) == NFS_MAY_EXECUTE)
3167 			mask |= MAY_EXEC;
3168 	} else if (access_result & NFS_MAY_WRITE)
3169 			mask |= MAY_WRITE;
3170 	return mask;
3171 }
3172 
3173 void nfs_access_set_mask(struct nfs_access_entry *entry, u32 access_result)
3174 {
3175 	entry->mask = access_result;
3176 }
3177 EXPORT_SYMBOL_GPL(nfs_access_set_mask);
3178 
3179 static int nfs_do_access(struct inode *inode, const struct cred *cred, int mask)
3180 {
3181 	struct nfs_access_entry cache;
3182 	bool may_block = (mask & MAY_NOT_BLOCK) == 0;
3183 	int cache_mask = -1;
3184 	int status;
3185 
3186 	trace_nfs_access_enter(inode);
3187 
3188 	status = nfs_access_get_cached(inode, cred, &cache.mask, may_block);
3189 	if (status == 0)
3190 		goto out_cached;
3191 
3192 	status = -ECHILD;
3193 	if (!may_block)
3194 		goto out;
3195 
3196 	/*
3197 	 * Determine which access bits we want to ask for...
3198 	 */
3199 	cache.mask = NFS_ACCESS_READ | NFS_ACCESS_MODIFY | NFS_ACCESS_EXTEND |
3200 		     nfs_access_xattr_mask(NFS_SERVER(inode));
3201 	if (S_ISDIR(inode->i_mode))
3202 		cache.mask |= NFS_ACCESS_DELETE | NFS_ACCESS_LOOKUP;
3203 	else
3204 		cache.mask |= NFS_ACCESS_EXECUTE;
3205 	status = NFS_PROTO(inode)->access(inode, &cache, cred);
3206 	if (status != 0) {
3207 		if (status == -ESTALE) {
3208 			if (!S_ISDIR(inode->i_mode))
3209 				nfs_set_inode_stale(inode);
3210 			else
3211 				nfs_zap_caches(inode);
3212 		}
3213 		goto out;
3214 	}
3215 	nfs_access_add_cache(inode, &cache, cred);
3216 out_cached:
3217 	cache_mask = nfs_access_calc_mask(cache.mask, inode->i_mode);
3218 	if ((mask & ~cache_mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) != 0)
3219 		status = -EACCES;
3220 out:
3221 	trace_nfs_access_exit(inode, mask, cache_mask, status);
3222 	return status;
3223 }
3224 
3225 static int nfs_open_permission_mask(int openflags)
3226 {
3227 	int mask = 0;
3228 
3229 	if (openflags & __FMODE_EXEC) {
3230 		/* ONLY check exec rights */
3231 		mask = MAY_EXEC;
3232 	} else {
3233 		if ((openflags & O_ACCMODE) != O_WRONLY)
3234 			mask |= MAY_READ;
3235 		if ((openflags & O_ACCMODE) != O_RDONLY)
3236 			mask |= MAY_WRITE;
3237 	}
3238 
3239 	return mask;
3240 }
3241 
3242 int nfs_may_open(struct inode *inode, const struct cred *cred, int openflags)
3243 {
3244 	return nfs_do_access(inode, cred, nfs_open_permission_mask(openflags));
3245 }
3246 EXPORT_SYMBOL_GPL(nfs_may_open);
3247 
3248 static int nfs_execute_ok(struct inode *inode, int mask)
3249 {
3250 	struct nfs_server *server = NFS_SERVER(inode);
3251 	int ret = 0;
3252 
3253 	if (S_ISDIR(inode->i_mode))
3254 		return 0;
3255 	if (nfs_check_cache_invalid(inode, NFS_INO_INVALID_MODE)) {
3256 		if (mask & MAY_NOT_BLOCK)
3257 			return -ECHILD;
3258 		ret = __nfs_revalidate_inode(server, inode);
3259 	}
3260 	if (ret == 0 && !execute_ok(inode))
3261 		ret = -EACCES;
3262 	return ret;
3263 }
3264 
3265 int nfs_permission(struct user_namespace *mnt_userns,
3266 		   struct inode *inode,
3267 		   int mask)
3268 {
3269 	const struct cred *cred = current_cred();
3270 	int res = 0;
3271 
3272 	nfs_inc_stats(inode, NFSIOS_VFSACCESS);
3273 
3274 	if ((mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
3275 		goto out;
3276 	/* Is this sys_access() ? */
3277 	if (mask & (MAY_ACCESS | MAY_CHDIR))
3278 		goto force_lookup;
3279 
3280 	switch (inode->i_mode & S_IFMT) {
3281 		case S_IFLNK:
3282 			goto out;
3283 		case S_IFREG:
3284 			if ((mask & MAY_OPEN) &&
3285 			   nfs_server_capable(inode, NFS_CAP_ATOMIC_OPEN))
3286 				return 0;
3287 			break;
3288 		case S_IFDIR:
3289 			/*
3290 			 * Optimize away all write operations, since the server
3291 			 * will check permissions when we perform the op.
3292 			 */
3293 			if ((mask & MAY_WRITE) && !(mask & MAY_READ))
3294 				goto out;
3295 	}
3296 
3297 force_lookup:
3298 	if (!NFS_PROTO(inode)->access)
3299 		goto out_notsup;
3300 
3301 	res = nfs_do_access(inode, cred, mask);
3302 out:
3303 	if (!res && (mask & MAY_EXEC))
3304 		res = nfs_execute_ok(inode, mask);
3305 
3306 	dfprintk(VFS, "NFS: permission(%s/%lu), mask=0x%x, res=%d\n",
3307 		inode->i_sb->s_id, inode->i_ino, mask, res);
3308 	return res;
3309 out_notsup:
3310 	if (mask & MAY_NOT_BLOCK)
3311 		return -ECHILD;
3312 
3313 	res = nfs_revalidate_inode(inode, NFS_INO_INVALID_MODE |
3314 						  NFS_INO_INVALID_OTHER);
3315 	if (res == 0)
3316 		res = generic_permission(&init_user_ns, inode, mask);
3317 	goto out;
3318 }
3319 EXPORT_SYMBOL_GPL(nfs_permission);
3320