xref: /openbmc/linux/fs/nfs/dir.c (revision 0a5ebc14)
1 /*
2  *  linux/fs/nfs/dir.c
3  *
4  *  Copyright (C) 1992  Rick Sladkey
5  *
6  *  nfs directory handling functions
7  *
8  * 10 Apr 1996	Added silly rename for unlink	--okir
9  * 28 Sep 1996	Improved directory cache --okir
10  * 23 Aug 1997  Claus Heine claus@momo.math.rwth-aachen.de
11  *              Re-implemented silly rename for unlink, newly implemented
12  *              silly rename for nfs_rename() following the suggestions
13  *              of Olaf Kirch (okir) found in this file.
14  *              Following Linus comments on my original hack, this version
15  *              depends only on the dcache stuff and doesn't touch the inode
16  *              layer (iput() and friends).
17  *  6 Jun 1999	Cache readdir lookups in the page cache. -DaveM
18  */
19 
20 #include <linux/time.h>
21 #include <linux/errno.h>
22 #include <linux/stat.h>
23 #include <linux/fcntl.h>
24 #include <linux/string.h>
25 #include <linux/kernel.h>
26 #include <linux/slab.h>
27 #include <linux/mm.h>
28 #include <linux/sunrpc/clnt.h>
29 #include <linux/nfs_fs.h>
30 #include <linux/nfs_mount.h>
31 #include <linux/pagemap.h>
32 #include <linux/smp_lock.h>
33 #include <linux/pagevec.h>
34 #include <linux/namei.h>
35 #include <linux/mount.h>
36 #include <linux/sched.h>
37 
38 #include "nfs4_fs.h"
39 #include "delegation.h"
40 #include "iostat.h"
41 
42 /* #define NFS_DEBUG_VERBOSE 1 */
43 
44 static int nfs_opendir(struct inode *, struct file *);
45 static int nfs_readdir(struct file *, void *, filldir_t);
46 static struct dentry *nfs_lookup(struct inode *, struct dentry *, struct nameidata *);
47 static int nfs_create(struct inode *, struct dentry *, int, struct nameidata *);
48 static int nfs_mkdir(struct inode *, struct dentry *, int);
49 static int nfs_rmdir(struct inode *, struct dentry *);
50 static int nfs_unlink(struct inode *, struct dentry *);
51 static int nfs_symlink(struct inode *, struct dentry *, const char *);
52 static int nfs_link(struct dentry *, struct inode *, struct dentry *);
53 static int nfs_mknod(struct inode *, struct dentry *, int, dev_t);
54 static int nfs_rename(struct inode *, struct dentry *,
55 		      struct inode *, struct dentry *);
56 static int nfs_fsync_dir(struct file *, struct dentry *, int);
57 static loff_t nfs_llseek_dir(struct file *, loff_t, int);
58 
59 const struct file_operations nfs_dir_operations = {
60 	.llseek		= nfs_llseek_dir,
61 	.read		= generic_read_dir,
62 	.readdir	= nfs_readdir,
63 	.open		= nfs_opendir,
64 	.release	= nfs_release,
65 	.fsync		= nfs_fsync_dir,
66 };
67 
68 const struct inode_operations nfs_dir_inode_operations = {
69 	.create		= nfs_create,
70 	.lookup		= nfs_lookup,
71 	.link		= nfs_link,
72 	.unlink		= nfs_unlink,
73 	.symlink	= nfs_symlink,
74 	.mkdir		= nfs_mkdir,
75 	.rmdir		= nfs_rmdir,
76 	.mknod		= nfs_mknod,
77 	.rename		= nfs_rename,
78 	.permission	= nfs_permission,
79 	.getattr	= nfs_getattr,
80 	.setattr	= nfs_setattr,
81 };
82 
83 #ifdef CONFIG_NFS_V3
84 const struct inode_operations nfs3_dir_inode_operations = {
85 	.create		= nfs_create,
86 	.lookup		= nfs_lookup,
87 	.link		= nfs_link,
88 	.unlink		= nfs_unlink,
89 	.symlink	= nfs_symlink,
90 	.mkdir		= nfs_mkdir,
91 	.rmdir		= nfs_rmdir,
92 	.mknod		= nfs_mknod,
93 	.rename		= nfs_rename,
94 	.permission	= nfs_permission,
95 	.getattr	= nfs_getattr,
96 	.setattr	= nfs_setattr,
97 	.listxattr	= nfs3_listxattr,
98 	.getxattr	= nfs3_getxattr,
99 	.setxattr	= nfs3_setxattr,
100 	.removexattr	= nfs3_removexattr,
101 };
102 #endif  /* CONFIG_NFS_V3 */
103 
104 #ifdef CONFIG_NFS_V4
105 
106 static struct dentry *nfs_atomic_lookup(struct inode *, struct dentry *, struct nameidata *);
107 const struct inode_operations nfs4_dir_inode_operations = {
108 	.create		= nfs_create,
109 	.lookup		= nfs_atomic_lookup,
110 	.link		= nfs_link,
111 	.unlink		= nfs_unlink,
112 	.symlink	= nfs_symlink,
113 	.mkdir		= nfs_mkdir,
114 	.rmdir		= nfs_rmdir,
115 	.mknod		= nfs_mknod,
116 	.rename		= nfs_rename,
117 	.permission	= nfs_permission,
118 	.getattr	= nfs_getattr,
119 	.setattr	= nfs_setattr,
120 	.getxattr       = nfs4_getxattr,
121 	.setxattr       = nfs4_setxattr,
122 	.listxattr      = nfs4_listxattr,
123 };
124 
125 #endif /* CONFIG_NFS_V4 */
126 
127 /*
128  * Open file
129  */
130 static int
131 nfs_opendir(struct inode *inode, struct file *filp)
132 {
133 	int res;
134 
135 	dfprintk(VFS, "NFS: opendir(%s/%ld)\n",
136 			inode->i_sb->s_id, inode->i_ino);
137 
138 	lock_kernel();
139 	/* Call generic open code in order to cache credentials */
140 	res = nfs_open(inode, filp);
141 	unlock_kernel();
142 	return res;
143 }
144 
145 typedef __be32 * (*decode_dirent_t)(__be32 *, struct nfs_entry *, int);
146 typedef struct {
147 	struct file	*file;
148 	struct page	*page;
149 	unsigned long	page_index;
150 	__be32		*ptr;
151 	u64		*dir_cookie;
152 	loff_t		current_index;
153 	struct nfs_entry *entry;
154 	decode_dirent_t	decode;
155 	int		plus;
156 	int		error;
157 	unsigned long	timestamp;
158 	int		timestamp_valid;
159 } nfs_readdir_descriptor_t;
160 
161 /* Now we cache directories properly, by stuffing the dirent
162  * data directly in the page cache.
163  *
164  * Inode invalidation due to refresh etc. takes care of
165  * _everything_, no sloppy entry flushing logic, no extraneous
166  * copying, network direct to page cache, the way it was meant
167  * to be.
168  *
169  * NOTE: Dirent information verification is done always by the
170  *	 page-in of the RPC reply, nowhere else, this simplies
171  *	 things substantially.
172  */
173 static
174 int nfs_readdir_filler(nfs_readdir_descriptor_t *desc, struct page *page)
175 {
176 	struct file	*file = desc->file;
177 	struct inode	*inode = file->f_path.dentry->d_inode;
178 	struct rpc_cred	*cred = nfs_file_cred(file);
179 	unsigned long	timestamp;
180 	int		error;
181 
182 	dfprintk(DIRCACHE, "NFS: %s: reading cookie %Lu into page %lu\n",
183 			__FUNCTION__, (long long)desc->entry->cookie,
184 			page->index);
185 
186  again:
187 	timestamp = jiffies;
188 	error = NFS_PROTO(inode)->readdir(file->f_path.dentry, cred, desc->entry->cookie, page,
189 					  NFS_SERVER(inode)->dtsize, desc->plus);
190 	if (error < 0) {
191 		/* We requested READDIRPLUS, but the server doesn't grok it */
192 		if (error == -ENOTSUPP && desc->plus) {
193 			NFS_SERVER(inode)->caps &= ~NFS_CAP_READDIRPLUS;
194 			clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_FLAGS(inode));
195 			desc->plus = 0;
196 			goto again;
197 		}
198 		goto error;
199 	}
200 	desc->timestamp = timestamp;
201 	desc->timestamp_valid = 1;
202 	SetPageUptodate(page);
203 	/* Ensure consistent page alignment of the data.
204 	 * Note: assumes we have exclusive access to this mapping either
205 	 *	 through inode->i_mutex or some other mechanism.
206 	 */
207 	if (page->index == 0 && invalidate_inode_pages2_range(inode->i_mapping, PAGE_CACHE_SIZE, -1) < 0) {
208 		/* Should never happen */
209 		nfs_zap_mapping(inode, inode->i_mapping);
210 	}
211 	unlock_page(page);
212 	return 0;
213  error:
214 	SetPageError(page);
215 	unlock_page(page);
216 	nfs_zap_caches(inode);
217 	desc->error = error;
218 	return -EIO;
219 }
220 
221 static inline
222 int dir_decode(nfs_readdir_descriptor_t *desc)
223 {
224 	__be32	*p = desc->ptr;
225 	p = desc->decode(p, desc->entry, desc->plus);
226 	if (IS_ERR(p))
227 		return PTR_ERR(p);
228 	desc->ptr = p;
229 	if (desc->timestamp_valid)
230 		desc->entry->fattr->time_start = desc->timestamp;
231 	else
232 		desc->entry->fattr->valid &= ~NFS_ATTR_FATTR;
233 	return 0;
234 }
235 
236 static inline
237 void dir_page_release(nfs_readdir_descriptor_t *desc)
238 {
239 	kunmap(desc->page);
240 	page_cache_release(desc->page);
241 	desc->page = NULL;
242 	desc->ptr = NULL;
243 }
244 
245 /*
246  * Given a pointer to a buffer that has already been filled by a call
247  * to readdir, find the next entry with cookie '*desc->dir_cookie'.
248  *
249  * If the end of the buffer has been reached, return -EAGAIN, if not,
250  * return the offset within the buffer of the next entry to be
251  * read.
252  */
253 static inline
254 int find_dirent(nfs_readdir_descriptor_t *desc)
255 {
256 	struct nfs_entry *entry = desc->entry;
257 	int		loop_count = 0,
258 			status;
259 
260 	while((status = dir_decode(desc)) == 0) {
261 		dfprintk(DIRCACHE, "NFS: %s: examining cookie %Lu\n",
262 				__FUNCTION__, (unsigned long long)entry->cookie);
263 		if (entry->prev_cookie == *desc->dir_cookie)
264 			break;
265 		if (loop_count++ > 200) {
266 			loop_count = 0;
267 			schedule();
268 		}
269 	}
270 	return status;
271 }
272 
273 /*
274  * Given a pointer to a buffer that has already been filled by a call
275  * to readdir, find the entry at offset 'desc->file->f_pos'.
276  *
277  * If the end of the buffer has been reached, return -EAGAIN, if not,
278  * return the offset within the buffer of the next entry to be
279  * read.
280  */
281 static inline
282 int find_dirent_index(nfs_readdir_descriptor_t *desc)
283 {
284 	struct nfs_entry *entry = desc->entry;
285 	int		loop_count = 0,
286 			status;
287 
288 	for(;;) {
289 		status = dir_decode(desc);
290 		if (status)
291 			break;
292 
293 		dfprintk(DIRCACHE, "NFS: found cookie %Lu at index %Ld\n",
294 				(unsigned long long)entry->cookie, desc->current_index);
295 
296 		if (desc->file->f_pos == desc->current_index) {
297 			*desc->dir_cookie = entry->cookie;
298 			break;
299 		}
300 		desc->current_index++;
301 		if (loop_count++ > 200) {
302 			loop_count = 0;
303 			schedule();
304 		}
305 	}
306 	return status;
307 }
308 
309 /*
310  * Find the given page, and call find_dirent() or find_dirent_index in
311  * order to try to return the next entry.
312  */
313 static inline
314 int find_dirent_page(nfs_readdir_descriptor_t *desc)
315 {
316 	struct inode	*inode = desc->file->f_path.dentry->d_inode;
317 	struct page	*page;
318 	int		status;
319 
320 	dfprintk(DIRCACHE, "NFS: %s: searching page %ld for target %Lu\n",
321 			__FUNCTION__, desc->page_index,
322 			(long long) *desc->dir_cookie);
323 
324 	/* If we find the page in the page_cache, we cannot be sure
325 	 * how fresh the data is, so we will ignore readdir_plus attributes.
326 	 */
327 	desc->timestamp_valid = 0;
328 	page = read_cache_page(inode->i_mapping, desc->page_index,
329 			       (filler_t *)nfs_readdir_filler, desc);
330 	if (IS_ERR(page)) {
331 		status = PTR_ERR(page);
332 		goto out;
333 	}
334 
335 	/* NOTE: Someone else may have changed the READDIRPLUS flag */
336 	desc->page = page;
337 	desc->ptr = kmap(page);		/* matching kunmap in nfs_do_filldir */
338 	if (*desc->dir_cookie != 0)
339 		status = find_dirent(desc);
340 	else
341 		status = find_dirent_index(desc);
342 	if (status < 0)
343 		dir_page_release(desc);
344  out:
345 	dfprintk(DIRCACHE, "NFS: %s: returns %d\n", __FUNCTION__, status);
346 	return status;
347 }
348 
349 /*
350  * Recurse through the page cache pages, and return a
351  * filled nfs_entry structure of the next directory entry if possible.
352  *
353  * The target for the search is '*desc->dir_cookie' if non-0,
354  * 'desc->file->f_pos' otherwise
355  */
356 static inline
357 int readdir_search_pagecache(nfs_readdir_descriptor_t *desc)
358 {
359 	int		loop_count = 0;
360 	int		res;
361 
362 	/* Always search-by-index from the beginning of the cache */
363 	if (*desc->dir_cookie == 0) {
364 		dfprintk(DIRCACHE, "NFS: readdir_search_pagecache() searching for offset %Ld\n",
365 				(long long)desc->file->f_pos);
366 		desc->page_index = 0;
367 		desc->entry->cookie = desc->entry->prev_cookie = 0;
368 		desc->entry->eof = 0;
369 		desc->current_index = 0;
370 	} else
371 		dfprintk(DIRCACHE, "NFS: readdir_search_pagecache() searching for cookie %Lu\n",
372 				(unsigned long long)*desc->dir_cookie);
373 
374 	for (;;) {
375 		res = find_dirent_page(desc);
376 		if (res != -EAGAIN)
377 			break;
378 		/* Align to beginning of next page */
379 		desc->page_index ++;
380 		if (loop_count++ > 200) {
381 			loop_count = 0;
382 			schedule();
383 		}
384 	}
385 
386 	dfprintk(DIRCACHE, "NFS: %s: returns %d\n", __FUNCTION__, res);
387 	return res;
388 }
389 
390 static inline unsigned int dt_type(struct inode *inode)
391 {
392 	return (inode->i_mode >> 12) & 15;
393 }
394 
395 static struct dentry *nfs_readdir_lookup(nfs_readdir_descriptor_t *desc);
396 
397 /*
398  * Once we've found the start of the dirent within a page: fill 'er up...
399  */
400 static
401 int nfs_do_filldir(nfs_readdir_descriptor_t *desc, void *dirent,
402 		   filldir_t filldir)
403 {
404 	struct file	*file = desc->file;
405 	struct nfs_entry *entry = desc->entry;
406 	struct dentry	*dentry = NULL;
407 	u64		fileid;
408 	int		loop_count = 0,
409 			res;
410 
411 	dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling starting @ cookie %Lu\n",
412 			(unsigned long long)entry->cookie);
413 
414 	for(;;) {
415 		unsigned d_type = DT_UNKNOWN;
416 		/* Note: entry->prev_cookie contains the cookie for
417 		 *	 retrieving the current dirent on the server */
418 		fileid = entry->ino;
419 
420 		/* Get a dentry if we have one */
421 		if (dentry != NULL)
422 			dput(dentry);
423 		dentry = nfs_readdir_lookup(desc);
424 
425 		/* Use readdirplus info */
426 		if (dentry != NULL && dentry->d_inode != NULL) {
427 			d_type = dt_type(dentry->d_inode);
428 			fileid = NFS_FILEID(dentry->d_inode);
429 		}
430 
431 		res = filldir(dirent, entry->name, entry->len,
432 			      file->f_pos, fileid, d_type);
433 		if (res < 0)
434 			break;
435 		file->f_pos++;
436 		*desc->dir_cookie = entry->cookie;
437 		if (dir_decode(desc) != 0) {
438 			desc->page_index ++;
439 			break;
440 		}
441 		if (loop_count++ > 200) {
442 			loop_count = 0;
443 			schedule();
444 		}
445 	}
446 	dir_page_release(desc);
447 	if (dentry != NULL)
448 		dput(dentry);
449 	dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling ended @ cookie %Lu; returning = %d\n",
450 			(unsigned long long)*desc->dir_cookie, res);
451 	return res;
452 }
453 
454 /*
455  * If we cannot find a cookie in our cache, we suspect that this is
456  * because it points to a deleted file, so we ask the server to return
457  * whatever it thinks is the next entry. We then feed this to filldir.
458  * If all goes well, we should then be able to find our way round the
459  * cache on the next call to readdir_search_pagecache();
460  *
461  * NOTE: we cannot add the anonymous page to the pagecache because
462  *	 the data it contains might not be page aligned. Besides,
463  *	 we should already have a complete representation of the
464  *	 directory in the page cache by the time we get here.
465  */
466 static inline
467 int uncached_readdir(nfs_readdir_descriptor_t *desc, void *dirent,
468 		     filldir_t filldir)
469 {
470 	struct file	*file = desc->file;
471 	struct inode	*inode = file->f_path.dentry->d_inode;
472 	struct rpc_cred	*cred = nfs_file_cred(file);
473 	struct page	*page = NULL;
474 	int		status;
475 	unsigned long	timestamp;
476 
477 	dfprintk(DIRCACHE, "NFS: uncached_readdir() searching for cookie %Lu\n",
478 			(unsigned long long)*desc->dir_cookie);
479 
480 	page = alloc_page(GFP_HIGHUSER);
481 	if (!page) {
482 		status = -ENOMEM;
483 		goto out;
484 	}
485 	timestamp = jiffies;
486 	desc->error = NFS_PROTO(inode)->readdir(file->f_path.dentry, cred, *desc->dir_cookie,
487 						page,
488 						NFS_SERVER(inode)->dtsize,
489 						desc->plus);
490 	desc->page = page;
491 	desc->ptr = kmap(page);		/* matching kunmap in nfs_do_filldir */
492 	if (desc->error >= 0) {
493 		desc->timestamp = timestamp;
494 		desc->timestamp_valid = 1;
495 		if ((status = dir_decode(desc)) == 0)
496 			desc->entry->prev_cookie = *desc->dir_cookie;
497 	} else
498 		status = -EIO;
499 	if (status < 0)
500 		goto out_release;
501 
502 	status = nfs_do_filldir(desc, dirent, filldir);
503 
504 	/* Reset read descriptor so it searches the page cache from
505 	 * the start upon the next call to readdir_search_pagecache() */
506 	desc->page_index = 0;
507 	desc->entry->cookie = desc->entry->prev_cookie = 0;
508 	desc->entry->eof = 0;
509  out:
510 	dfprintk(DIRCACHE, "NFS: %s: returns %d\n",
511 			__FUNCTION__, status);
512 	return status;
513  out_release:
514 	dir_page_release(desc);
515 	goto out;
516 }
517 
518 /* The file offset position represents the dirent entry number.  A
519    last cookie cache takes care of the common case of reading the
520    whole directory.
521  */
522 static int nfs_readdir(struct file *filp, void *dirent, filldir_t filldir)
523 {
524 	struct dentry	*dentry = filp->f_path.dentry;
525 	struct inode	*inode = dentry->d_inode;
526 	nfs_readdir_descriptor_t my_desc,
527 			*desc = &my_desc;
528 	struct nfs_entry my_entry;
529 	struct nfs_fh	 fh;
530 	struct nfs_fattr fattr;
531 	long		res;
532 
533 	dfprintk(VFS, "NFS: readdir(%s/%s) starting at cookie %Lu\n",
534 			dentry->d_parent->d_name.name, dentry->d_name.name,
535 			(long long)filp->f_pos);
536 	nfs_inc_stats(inode, NFSIOS_VFSGETDENTS);
537 
538 	lock_kernel();
539 
540 	res = nfs_revalidate_mapping_nolock(inode, filp->f_mapping);
541 	if (res < 0) {
542 		unlock_kernel();
543 		return res;
544 	}
545 
546 	/*
547 	 * filp->f_pos points to the dirent entry number.
548 	 * *desc->dir_cookie has the cookie for the next entry. We have
549 	 * to either find the entry with the appropriate number or
550 	 * revalidate the cookie.
551 	 */
552 	memset(desc, 0, sizeof(*desc));
553 
554 	desc->file = filp;
555 	desc->dir_cookie = &nfs_file_open_context(filp)->dir_cookie;
556 	desc->decode = NFS_PROTO(inode)->decode_dirent;
557 	desc->plus = NFS_USE_READDIRPLUS(inode);
558 
559 	my_entry.cookie = my_entry.prev_cookie = 0;
560 	my_entry.eof = 0;
561 	my_entry.fh = &fh;
562 	my_entry.fattr = &fattr;
563 	nfs_fattr_init(&fattr);
564 	desc->entry = &my_entry;
565 
566 	while(!desc->entry->eof) {
567 		res = readdir_search_pagecache(desc);
568 
569 		if (res == -EBADCOOKIE) {
570 			/* This means either end of directory */
571 			if (*desc->dir_cookie && desc->entry->cookie != *desc->dir_cookie) {
572 				/* Or that the server has 'lost' a cookie */
573 				res = uncached_readdir(desc, dirent, filldir);
574 				if (res >= 0)
575 					continue;
576 			}
577 			res = 0;
578 			break;
579 		}
580 		if (res == -ETOOSMALL && desc->plus) {
581 			clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_FLAGS(inode));
582 			nfs_zap_caches(inode);
583 			desc->plus = 0;
584 			desc->entry->eof = 0;
585 			continue;
586 		}
587 		if (res < 0)
588 			break;
589 
590 		res = nfs_do_filldir(desc, dirent, filldir);
591 		if (res < 0) {
592 			res = 0;
593 			break;
594 		}
595 	}
596 	unlock_kernel();
597 	if (res > 0)
598 		res = 0;
599 	dfprintk(VFS, "NFS: readdir(%s/%s) returns %ld\n",
600 			dentry->d_parent->d_name.name, dentry->d_name.name,
601 			res);
602 	return res;
603 }
604 
605 static loff_t nfs_llseek_dir(struct file *filp, loff_t offset, int origin)
606 {
607 	mutex_lock(&filp->f_path.dentry->d_inode->i_mutex);
608 	switch (origin) {
609 		case 1:
610 			offset += filp->f_pos;
611 		case 0:
612 			if (offset >= 0)
613 				break;
614 		default:
615 			offset = -EINVAL;
616 			goto out;
617 	}
618 	if (offset != filp->f_pos) {
619 		filp->f_pos = offset;
620 		nfs_file_open_context(filp)->dir_cookie = 0;
621 	}
622 out:
623 	mutex_unlock(&filp->f_path.dentry->d_inode->i_mutex);
624 	return offset;
625 }
626 
627 /*
628  * All directory operations under NFS are synchronous, so fsync()
629  * is a dummy operation.
630  */
631 static int nfs_fsync_dir(struct file *filp, struct dentry *dentry, int datasync)
632 {
633 	dfprintk(VFS, "NFS: fsync_dir(%s/%s) datasync %d\n",
634 			dentry->d_parent->d_name.name, dentry->d_name.name,
635 			datasync);
636 
637 	return 0;
638 }
639 
640 /*
641  * A check for whether or not the parent directory has changed.
642  * In the case it has, we assume that the dentries are untrustworthy
643  * and may need to be looked up again.
644  */
645 static int nfs_check_verifier(struct inode *dir, struct dentry *dentry)
646 {
647 	if (IS_ROOT(dentry))
648 		return 1;
649 	if (!nfs_verify_change_attribute(dir, dentry->d_time))
650 		return 0;
651 	/* Revalidate nfsi->cache_change_attribute before we declare a match */
652 	if (nfs_revalidate_inode(NFS_SERVER(dir), dir) < 0)
653 		return 0;
654 	if (!nfs_verify_change_attribute(dir, dentry->d_time))
655 		return 0;
656 	return 1;
657 }
658 
659 static inline void nfs_set_verifier(struct dentry * dentry, unsigned long verf)
660 {
661 	dentry->d_time = verf;
662 }
663 
664 /*
665  * Return the intent data that applies to this particular path component
666  *
667  * Note that the current set of intents only apply to the very last
668  * component of the path.
669  * We check for this using LOOKUP_CONTINUE and LOOKUP_PARENT.
670  */
671 static inline unsigned int nfs_lookup_check_intent(struct nameidata *nd, unsigned int mask)
672 {
673 	if (nd->flags & (LOOKUP_CONTINUE|LOOKUP_PARENT))
674 		return 0;
675 	return nd->flags & mask;
676 }
677 
678 /*
679  * Inode and filehandle revalidation for lookups.
680  *
681  * We force revalidation in the cases where the VFS sets LOOKUP_REVAL,
682  * or if the intent information indicates that we're about to open this
683  * particular file and the "nocto" mount flag is not set.
684  *
685  */
686 static inline
687 int nfs_lookup_verify_inode(struct inode *inode, struct nameidata *nd)
688 {
689 	struct nfs_server *server = NFS_SERVER(inode);
690 
691 	if (nd != NULL) {
692 		/* VFS wants an on-the-wire revalidation */
693 		if (nd->flags & LOOKUP_REVAL)
694 			goto out_force;
695 		/* This is an open(2) */
696 		if (nfs_lookup_check_intent(nd, LOOKUP_OPEN) != 0 &&
697 				!(server->flags & NFS_MOUNT_NOCTO) &&
698 				(S_ISREG(inode->i_mode) ||
699 				 S_ISDIR(inode->i_mode)))
700 			goto out_force;
701 	}
702 	return nfs_revalidate_inode(server, inode);
703 out_force:
704 	return __nfs_revalidate_inode(server, inode);
705 }
706 
707 /*
708  * We judge how long we want to trust negative
709  * dentries by looking at the parent inode mtime.
710  *
711  * If parent mtime has changed, we revalidate, else we wait for a
712  * period corresponding to the parent's attribute cache timeout value.
713  */
714 static inline
715 int nfs_neg_need_reval(struct inode *dir, struct dentry *dentry,
716 		       struct nameidata *nd)
717 {
718 	/* Don't revalidate a negative dentry if we're creating a new file */
719 	if (nd != NULL && nfs_lookup_check_intent(nd, LOOKUP_CREATE) != 0)
720 		return 0;
721 	return !nfs_check_verifier(dir, dentry);
722 }
723 
724 /*
725  * This is called every time the dcache has a lookup hit,
726  * and we should check whether we can really trust that
727  * lookup.
728  *
729  * NOTE! The hit can be a negative hit too, don't assume
730  * we have an inode!
731  *
732  * If the parent directory is seen to have changed, we throw out the
733  * cached dentry and do a new lookup.
734  */
735 static int nfs_lookup_revalidate(struct dentry * dentry, struct nameidata *nd)
736 {
737 	struct inode *dir;
738 	struct inode *inode;
739 	struct dentry *parent;
740 	int error;
741 	struct nfs_fh fhandle;
742 	struct nfs_fattr fattr;
743 
744 	parent = dget_parent(dentry);
745 	lock_kernel();
746 	dir = parent->d_inode;
747 	nfs_inc_stats(dir, NFSIOS_DENTRYREVALIDATE);
748 	inode = dentry->d_inode;
749 
750 	if (!inode) {
751 		if (nfs_neg_need_reval(dir, dentry, nd))
752 			goto out_bad;
753 		goto out_valid;
754 	}
755 
756 	if (is_bad_inode(inode)) {
757 		dfprintk(LOOKUPCACHE, "%s: %s/%s has dud inode\n",
758 				__FUNCTION__, dentry->d_parent->d_name.name,
759 				dentry->d_name.name);
760 		goto out_bad;
761 	}
762 
763 	/* Force a full look up iff the parent directory has changed */
764 	if (nfs_check_verifier(dir, dentry)) {
765 		if (nfs_lookup_verify_inode(inode, nd))
766 			goto out_zap_parent;
767 		goto out_valid;
768 	}
769 
770 	if (NFS_STALE(inode))
771 		goto out_bad;
772 
773 	error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, &fhandle, &fattr);
774 	if (error)
775 		goto out_bad;
776 	if (nfs_compare_fh(NFS_FH(inode), &fhandle))
777 		goto out_bad;
778 	if ((error = nfs_refresh_inode(inode, &fattr)) != 0)
779 		goto out_bad;
780 
781 	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
782  out_valid:
783 	unlock_kernel();
784 	dput(parent);
785 	dfprintk(LOOKUPCACHE, "NFS: %s(%s/%s) is valid\n",
786 			__FUNCTION__, dentry->d_parent->d_name.name,
787 			dentry->d_name.name);
788 	return 1;
789 out_zap_parent:
790 	nfs_zap_caches(dir);
791  out_bad:
792 	nfs_mark_for_revalidate(dir);
793 	if (inode && S_ISDIR(inode->i_mode)) {
794 		/* Purge readdir caches. */
795 		nfs_zap_caches(inode);
796 		/* If we have submounts, don't unhash ! */
797 		if (have_submounts(dentry))
798 			goto out_valid;
799 		shrink_dcache_parent(dentry);
800 	}
801 	d_drop(dentry);
802 	unlock_kernel();
803 	dput(parent);
804 	dfprintk(LOOKUPCACHE, "NFS: %s(%s/%s) is invalid\n",
805 			__FUNCTION__, dentry->d_parent->d_name.name,
806 			dentry->d_name.name);
807 	return 0;
808 }
809 
810 /*
811  * This is called from dput() when d_count is going to 0.
812  */
813 static int nfs_dentry_delete(struct dentry *dentry)
814 {
815 	dfprintk(VFS, "NFS: dentry_delete(%s/%s, %x)\n",
816 		dentry->d_parent->d_name.name, dentry->d_name.name,
817 		dentry->d_flags);
818 
819 	if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
820 		/* Unhash it, so that ->d_iput() would be called */
821 		return 1;
822 	}
823 	if (!(dentry->d_sb->s_flags & MS_ACTIVE)) {
824 		/* Unhash it, so that ancestors of killed async unlink
825 		 * files will be cleaned up during umount */
826 		return 1;
827 	}
828 	return 0;
829 
830 }
831 
832 /*
833  * Called when the dentry loses inode.
834  * We use it to clean up silly-renamed files.
835  */
836 static void nfs_dentry_iput(struct dentry *dentry, struct inode *inode)
837 {
838 	nfs_inode_return_delegation(inode);
839 	if (S_ISDIR(inode->i_mode))
840 		/* drop any readdir cache as it could easily be old */
841 		NFS_I(inode)->cache_validity |= NFS_INO_INVALID_DATA;
842 
843 	if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
844 		lock_kernel();
845 		drop_nlink(inode);
846 		nfs_complete_unlink(dentry, inode);
847 		unlock_kernel();
848 	}
849 	iput(inode);
850 }
851 
852 struct dentry_operations nfs_dentry_operations = {
853 	.d_revalidate	= nfs_lookup_revalidate,
854 	.d_delete	= nfs_dentry_delete,
855 	.d_iput		= nfs_dentry_iput,
856 };
857 
858 /*
859  * Use intent information to check whether or not we're going to do
860  * an O_EXCL create using this path component.
861  */
862 static inline
863 int nfs_is_exclusive_create(struct inode *dir, struct nameidata *nd)
864 {
865 	if (NFS_PROTO(dir)->version == 2)
866 		return 0;
867 	if (nd == NULL || nfs_lookup_check_intent(nd, LOOKUP_CREATE) == 0)
868 		return 0;
869 	return (nd->intent.open.flags & O_EXCL) != 0;
870 }
871 
872 static inline int nfs_reval_fsid(struct inode *dir, const struct nfs_fattr *fattr)
873 {
874 	struct nfs_server *server = NFS_SERVER(dir);
875 
876 	if (!nfs_fsid_equal(&server->fsid, &fattr->fsid))
877 		/* Revalidate fsid using the parent directory */
878 		return __nfs_revalidate_inode(server, dir);
879 	return 0;
880 }
881 
882 static struct dentry *nfs_lookup(struct inode *dir, struct dentry * dentry, struct nameidata *nd)
883 {
884 	struct dentry *res;
885 	struct inode *inode = NULL;
886 	int error;
887 	struct nfs_fh fhandle;
888 	struct nfs_fattr fattr;
889 
890 	dfprintk(VFS, "NFS: lookup(%s/%s)\n",
891 		dentry->d_parent->d_name.name, dentry->d_name.name);
892 	nfs_inc_stats(dir, NFSIOS_VFSLOOKUP);
893 
894 	res = ERR_PTR(-ENAMETOOLONG);
895 	if (dentry->d_name.len > NFS_SERVER(dir)->namelen)
896 		goto out;
897 
898 	res = ERR_PTR(-ENOMEM);
899 	dentry->d_op = NFS_PROTO(dir)->dentry_ops;
900 
901 	lock_kernel();
902 
903 	/*
904 	 * If we're doing an exclusive create, optimize away the lookup
905 	 * but don't hash the dentry.
906 	 */
907 	if (nfs_is_exclusive_create(dir, nd)) {
908 		d_instantiate(dentry, NULL);
909 		res = NULL;
910 		goto out_unlock;
911 	}
912 
913 	error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, &fhandle, &fattr);
914 	if (error == -ENOENT)
915 		goto no_entry;
916 	if (error < 0) {
917 		res = ERR_PTR(error);
918 		goto out_unlock;
919 	}
920 	error = nfs_reval_fsid(dir, &fattr);
921 	if (error < 0) {
922 		res = ERR_PTR(error);
923 		goto out_unlock;
924 	}
925 	inode = nfs_fhget(dentry->d_sb, &fhandle, &fattr);
926 	res = (struct dentry *)inode;
927 	if (IS_ERR(res))
928 		goto out_unlock;
929 
930 no_entry:
931 	res = d_materialise_unique(dentry, inode);
932 	if (res != NULL) {
933 		if (IS_ERR(res))
934 			goto out_unlock;
935 		dentry = res;
936 	}
937 	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
938 out_unlock:
939 	unlock_kernel();
940 out:
941 	return res;
942 }
943 
944 #ifdef CONFIG_NFS_V4
945 static int nfs_open_revalidate(struct dentry *, struct nameidata *);
946 
947 struct dentry_operations nfs4_dentry_operations = {
948 	.d_revalidate	= nfs_open_revalidate,
949 	.d_delete	= nfs_dentry_delete,
950 	.d_iput		= nfs_dentry_iput,
951 };
952 
953 /*
954  * Use intent information to determine whether we need to substitute
955  * the NFSv4-style stateful OPEN for the LOOKUP call
956  */
957 static int is_atomic_open(struct inode *dir, struct nameidata *nd)
958 {
959 	if (nd == NULL || nfs_lookup_check_intent(nd, LOOKUP_OPEN) == 0)
960 		return 0;
961 	/* NFS does not (yet) have a stateful open for directories */
962 	if (nd->flags & LOOKUP_DIRECTORY)
963 		return 0;
964 	/* Are we trying to write to a read only partition? */
965 	if (IS_RDONLY(dir) && (nd->intent.open.flags & (O_CREAT|O_TRUNC|FMODE_WRITE)))
966 		return 0;
967 	return 1;
968 }
969 
970 static struct dentry *nfs_atomic_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd)
971 {
972 	struct dentry *res = NULL;
973 	int error;
974 
975 	dfprintk(VFS, "NFS: atomic_lookup(%s/%ld), %s\n",
976 			dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
977 
978 	/* Check that we are indeed trying to open this file */
979 	if (!is_atomic_open(dir, nd))
980 		goto no_open;
981 
982 	if (dentry->d_name.len > NFS_SERVER(dir)->namelen) {
983 		res = ERR_PTR(-ENAMETOOLONG);
984 		goto out;
985 	}
986 	dentry->d_op = NFS_PROTO(dir)->dentry_ops;
987 
988 	/* Let vfs_create() deal with O_EXCL. Instantiate, but don't hash
989 	 * the dentry. */
990 	if (nd->intent.open.flags & O_EXCL) {
991 		d_instantiate(dentry, NULL);
992 		goto out;
993 	}
994 
995 	/* Open the file on the server */
996 	lock_kernel();
997 	res = nfs4_atomic_open(dir, dentry, nd);
998 	unlock_kernel();
999 	if (IS_ERR(res)) {
1000 		error = PTR_ERR(res);
1001 		switch (error) {
1002 			/* Make a negative dentry */
1003 			case -ENOENT:
1004 				res = NULL;
1005 				goto out;
1006 			/* This turned out not to be a regular file */
1007 			case -EISDIR:
1008 			case -ENOTDIR:
1009 				goto no_open;
1010 			case -ELOOP:
1011 				if (!(nd->intent.open.flags & O_NOFOLLOW))
1012 					goto no_open;
1013 			/* case -EINVAL: */
1014 			default:
1015 				goto out;
1016 		}
1017 	} else if (res != NULL)
1018 		dentry = res;
1019 	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1020 out:
1021 	return res;
1022 no_open:
1023 	return nfs_lookup(dir, dentry, nd);
1024 }
1025 
1026 static int nfs_open_revalidate(struct dentry *dentry, struct nameidata *nd)
1027 {
1028 	struct dentry *parent = NULL;
1029 	struct inode *inode = dentry->d_inode;
1030 	struct inode *dir;
1031 	int openflags, ret = 0;
1032 
1033 	parent = dget_parent(dentry);
1034 	dir = parent->d_inode;
1035 	if (!is_atomic_open(dir, nd))
1036 		goto no_open;
1037 	/* We can't create new files in nfs_open_revalidate(), so we
1038 	 * optimize away revalidation of negative dentries.
1039 	 */
1040 	if (inode == NULL)
1041 		goto out;
1042 	/* NFS only supports OPEN on regular files */
1043 	if (!S_ISREG(inode->i_mode))
1044 		goto no_open;
1045 	openflags = nd->intent.open.flags;
1046 	/* We cannot do exclusive creation on a positive dentry */
1047 	if ((openflags & (O_CREAT|O_EXCL)) == (O_CREAT|O_EXCL))
1048 		goto no_open;
1049 	/* We can't create new files, or truncate existing ones here */
1050 	openflags &= ~(O_CREAT|O_TRUNC);
1051 
1052 	/*
1053 	 * Note: we're not holding inode->i_mutex and so may be racing with
1054 	 * operations that change the directory. We therefore save the
1055 	 * change attribute *before* we do the RPC call.
1056 	 */
1057 	lock_kernel();
1058 	ret = nfs4_open_revalidate(dir, dentry, openflags, nd);
1059 	if (ret == 1)
1060 		nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1061 	unlock_kernel();
1062 out:
1063 	dput(parent);
1064 	if (!ret)
1065 		d_drop(dentry);
1066 	return ret;
1067 no_open:
1068 	dput(parent);
1069 	if (inode != NULL && nfs_have_delegation(inode, FMODE_READ))
1070 		return 1;
1071 	return nfs_lookup_revalidate(dentry, nd);
1072 }
1073 #endif /* CONFIG_NFSV4 */
1074 
1075 static struct dentry *nfs_readdir_lookup(nfs_readdir_descriptor_t *desc)
1076 {
1077 	struct dentry *parent = desc->file->f_path.dentry;
1078 	struct inode *dir = parent->d_inode;
1079 	struct nfs_entry *entry = desc->entry;
1080 	struct dentry *dentry, *alias;
1081 	struct qstr name = {
1082 		.name = entry->name,
1083 		.len = entry->len,
1084 	};
1085 	struct inode *inode;
1086 	unsigned long verf = nfs_save_change_attribute(dir);
1087 
1088 	switch (name.len) {
1089 		case 2:
1090 			if (name.name[0] == '.' && name.name[1] == '.')
1091 				return dget_parent(parent);
1092 			break;
1093 		case 1:
1094 			if (name.name[0] == '.')
1095 				return dget(parent);
1096 	}
1097 
1098 	spin_lock(&dir->i_lock);
1099 	if (NFS_I(dir)->cache_validity & NFS_INO_INVALID_DATA) {
1100 		spin_unlock(&dir->i_lock);
1101 		return NULL;
1102 	}
1103 	spin_unlock(&dir->i_lock);
1104 
1105 	name.hash = full_name_hash(name.name, name.len);
1106 	dentry = d_lookup(parent, &name);
1107 	if (dentry != NULL) {
1108 		/* Is this a positive dentry that matches the readdir info? */
1109 		if (dentry->d_inode != NULL &&
1110 				(NFS_FILEID(dentry->d_inode) == entry->ino ||
1111 				d_mountpoint(dentry))) {
1112 			if (!desc->plus || entry->fh->size == 0)
1113 				return dentry;
1114 			if (nfs_compare_fh(NFS_FH(dentry->d_inode),
1115 						entry->fh) == 0)
1116 				goto out_renew;
1117 		}
1118 		/* No, so d_drop to allow one to be created */
1119 		d_drop(dentry);
1120 		dput(dentry);
1121 	}
1122 	if (!desc->plus || !(entry->fattr->valid & NFS_ATTR_FATTR))
1123 		return NULL;
1124 	if (name.len > NFS_SERVER(dir)->namelen)
1125 		return NULL;
1126 	/* Note: caller is already holding the dir->i_mutex! */
1127 	dentry = d_alloc(parent, &name);
1128 	if (dentry == NULL)
1129 		return NULL;
1130 	dentry->d_op = NFS_PROTO(dir)->dentry_ops;
1131 	inode = nfs_fhget(dentry->d_sb, entry->fh, entry->fattr);
1132 	if (IS_ERR(inode)) {
1133 		dput(dentry);
1134 		return NULL;
1135 	}
1136 
1137 	alias = d_materialise_unique(dentry, inode);
1138 	if (alias != NULL) {
1139 		dput(dentry);
1140 		if (IS_ERR(alias))
1141 			return NULL;
1142 		dentry = alias;
1143 	}
1144 
1145 out_renew:
1146 	nfs_set_verifier(dentry, verf);
1147 	return dentry;
1148 }
1149 
1150 /*
1151  * Code common to create, mkdir, and mknod.
1152  */
1153 int nfs_instantiate(struct dentry *dentry, struct nfs_fh *fhandle,
1154 				struct nfs_fattr *fattr)
1155 {
1156 	struct dentry *parent = dget_parent(dentry);
1157 	struct inode *dir = parent->d_inode;
1158 	struct inode *inode;
1159 	int error = -EACCES;
1160 
1161 	d_drop(dentry);
1162 
1163 	/* We may have been initialized further down */
1164 	if (dentry->d_inode)
1165 		goto out;
1166 	if (fhandle->size == 0) {
1167 		error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr);
1168 		if (error)
1169 			goto out_error;
1170 	}
1171 	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1172 	if (!(fattr->valid & NFS_ATTR_FATTR)) {
1173 		struct nfs_server *server = NFS_SB(dentry->d_sb);
1174 		error = server->nfs_client->rpc_ops->getattr(server, fhandle, fattr);
1175 		if (error < 0)
1176 			goto out_error;
1177 	}
1178 	inode = nfs_fhget(dentry->d_sb, fhandle, fattr);
1179 	error = PTR_ERR(inode);
1180 	if (IS_ERR(inode))
1181 		goto out_error;
1182 	d_add(dentry, inode);
1183 out:
1184 	dput(parent);
1185 	return 0;
1186 out_error:
1187 	nfs_mark_for_revalidate(dir);
1188 	dput(parent);
1189 	return error;
1190 }
1191 
1192 /*
1193  * Following a failed create operation, we drop the dentry rather
1194  * than retain a negative dentry. This avoids a problem in the event
1195  * that the operation succeeded on the server, but an error in the
1196  * reply path made it appear to have failed.
1197  */
1198 static int nfs_create(struct inode *dir, struct dentry *dentry, int mode,
1199 		struct nameidata *nd)
1200 {
1201 	struct iattr attr;
1202 	int error;
1203 	int open_flags = 0;
1204 
1205 	dfprintk(VFS, "NFS: create(%s/%ld), %s\n",
1206 			dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1207 
1208 	attr.ia_mode = mode;
1209 	attr.ia_valid = ATTR_MODE;
1210 
1211 	if ((nd->flags & LOOKUP_CREATE) != 0)
1212 		open_flags = nd->intent.open.flags;
1213 
1214 	lock_kernel();
1215 	error = NFS_PROTO(dir)->create(dir, dentry, &attr, open_flags, nd);
1216 	if (error != 0)
1217 		goto out_err;
1218 	unlock_kernel();
1219 	return 0;
1220 out_err:
1221 	unlock_kernel();
1222 	d_drop(dentry);
1223 	return error;
1224 }
1225 
1226 /*
1227  * See comments for nfs_proc_create regarding failed operations.
1228  */
1229 static int
1230 nfs_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t rdev)
1231 {
1232 	struct iattr attr;
1233 	int status;
1234 
1235 	dfprintk(VFS, "NFS: mknod(%s/%ld), %s\n",
1236 			dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1237 
1238 	if (!new_valid_dev(rdev))
1239 		return -EINVAL;
1240 
1241 	attr.ia_mode = mode;
1242 	attr.ia_valid = ATTR_MODE;
1243 
1244 	lock_kernel();
1245 	status = NFS_PROTO(dir)->mknod(dir, dentry, &attr, rdev);
1246 	if (status != 0)
1247 		goto out_err;
1248 	unlock_kernel();
1249 	return 0;
1250 out_err:
1251 	unlock_kernel();
1252 	d_drop(dentry);
1253 	return status;
1254 }
1255 
1256 /*
1257  * See comments for nfs_proc_create regarding failed operations.
1258  */
1259 static int nfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
1260 {
1261 	struct iattr attr;
1262 	int error;
1263 
1264 	dfprintk(VFS, "NFS: mkdir(%s/%ld), %s\n",
1265 			dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1266 
1267 	attr.ia_valid = ATTR_MODE;
1268 	attr.ia_mode = mode | S_IFDIR;
1269 
1270 	lock_kernel();
1271 	error = NFS_PROTO(dir)->mkdir(dir, dentry, &attr);
1272 	if (error != 0)
1273 		goto out_err;
1274 	unlock_kernel();
1275 	return 0;
1276 out_err:
1277 	d_drop(dentry);
1278 	unlock_kernel();
1279 	return error;
1280 }
1281 
1282 static int nfs_rmdir(struct inode *dir, struct dentry *dentry)
1283 {
1284 	int error;
1285 
1286 	dfprintk(VFS, "NFS: rmdir(%s/%ld), %s\n",
1287 			dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1288 
1289 	lock_kernel();
1290 	error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
1291 	/* Ensure the VFS deletes this inode */
1292 	if (error == 0 && dentry->d_inode != NULL)
1293 		clear_nlink(dentry->d_inode);
1294 	unlock_kernel();
1295 
1296 	return error;
1297 }
1298 
1299 static int nfs_sillyrename(struct inode *dir, struct dentry *dentry)
1300 {
1301 	static unsigned int sillycounter;
1302 	const int      fileidsize  = sizeof(NFS_FILEID(dentry->d_inode))*2;
1303 	const int      countersize = sizeof(sillycounter)*2;
1304 	const int      slen        = sizeof(".nfs")+fileidsize+countersize-1;
1305 	char           silly[slen+1];
1306 	struct qstr    qsilly;
1307 	struct dentry *sdentry;
1308 	int            error = -EIO;
1309 
1310 	dfprintk(VFS, "NFS: silly-rename(%s/%s, ct=%d)\n",
1311 		dentry->d_parent->d_name.name, dentry->d_name.name,
1312 		atomic_read(&dentry->d_count));
1313 	nfs_inc_stats(dir, NFSIOS_SILLYRENAME);
1314 
1315 	/*
1316 	 * We don't allow a dentry to be silly-renamed twice.
1317 	 */
1318 	error = -EBUSY;
1319 	if (dentry->d_flags & DCACHE_NFSFS_RENAMED)
1320 		goto out;
1321 
1322 	sprintf(silly, ".nfs%*.*Lx",
1323 		fileidsize, fileidsize,
1324 		(unsigned long long)NFS_FILEID(dentry->d_inode));
1325 
1326 	/* Return delegation in anticipation of the rename */
1327 	nfs_inode_return_delegation(dentry->d_inode);
1328 
1329 	sdentry = NULL;
1330 	do {
1331 		char *suffix = silly + slen - countersize;
1332 
1333 		dput(sdentry);
1334 		sillycounter++;
1335 		sprintf(suffix, "%*.*x", countersize, countersize, sillycounter);
1336 
1337 		dfprintk(VFS, "NFS: trying to rename %s to %s\n",
1338 				dentry->d_name.name, silly);
1339 
1340 		sdentry = lookup_one_len(silly, dentry->d_parent, slen);
1341 		/*
1342 		 * N.B. Better to return EBUSY here ... it could be
1343 		 * dangerous to delete the file while it's in use.
1344 		 */
1345 		if (IS_ERR(sdentry))
1346 			goto out;
1347 	} while(sdentry->d_inode != NULL); /* need negative lookup */
1348 
1349 	qsilly.name = silly;
1350 	qsilly.len  = strlen(silly);
1351 	if (dentry->d_inode) {
1352 		error = NFS_PROTO(dir)->rename(dir, &dentry->d_name,
1353 				dir, &qsilly);
1354 		nfs_mark_for_revalidate(dentry->d_inode);
1355 	} else
1356 		error = NFS_PROTO(dir)->rename(dir, &dentry->d_name,
1357 				dir, &qsilly);
1358 	if (!error) {
1359 		nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1360 		d_move(dentry, sdentry);
1361 		error = nfs_async_unlink(dir, dentry);
1362  		/* If we return 0 we don't unlink */
1363 	}
1364 	dput(sdentry);
1365 out:
1366 	return error;
1367 }
1368 
1369 /*
1370  * Remove a file after making sure there are no pending writes,
1371  * and after checking that the file has only one user.
1372  *
1373  * We invalidate the attribute cache and free the inode prior to the operation
1374  * to avoid possible races if the server reuses the inode.
1375  */
1376 static int nfs_safe_remove(struct dentry *dentry)
1377 {
1378 	struct inode *dir = dentry->d_parent->d_inode;
1379 	struct inode *inode = dentry->d_inode;
1380 	int error = -EBUSY;
1381 
1382 	dfprintk(VFS, "NFS: safe_remove(%s/%s)\n",
1383 		dentry->d_parent->d_name.name, dentry->d_name.name);
1384 
1385 	/* If the dentry was sillyrenamed, we simply call d_delete() */
1386 	if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1387 		error = 0;
1388 		goto out;
1389 	}
1390 
1391 	if (inode != NULL) {
1392 		nfs_inode_return_delegation(inode);
1393 		error = NFS_PROTO(dir)->remove(dir, &dentry->d_name);
1394 		/* The VFS may want to delete this inode */
1395 		if (error == 0)
1396 			drop_nlink(inode);
1397 		nfs_mark_for_revalidate(inode);
1398 	} else
1399 		error = NFS_PROTO(dir)->remove(dir, &dentry->d_name);
1400 out:
1401 	return error;
1402 }
1403 
1404 /*  We do silly rename. In case sillyrename() returns -EBUSY, the inode
1405  *  belongs to an active ".nfs..." file and we return -EBUSY.
1406  *
1407  *  If sillyrename() returns 0, we do nothing, otherwise we unlink.
1408  */
1409 static int nfs_unlink(struct inode *dir, struct dentry *dentry)
1410 {
1411 	int error;
1412 	int need_rehash = 0;
1413 
1414 	dfprintk(VFS, "NFS: unlink(%s/%ld, %s)\n", dir->i_sb->s_id,
1415 		dir->i_ino, dentry->d_name.name);
1416 
1417 	lock_kernel();
1418 	spin_lock(&dcache_lock);
1419 	spin_lock(&dentry->d_lock);
1420 	if (atomic_read(&dentry->d_count) > 1) {
1421 		spin_unlock(&dentry->d_lock);
1422 		spin_unlock(&dcache_lock);
1423 		/* Start asynchronous writeout of the inode */
1424 		write_inode_now(dentry->d_inode, 0);
1425 		error = nfs_sillyrename(dir, dentry);
1426 		unlock_kernel();
1427 		return error;
1428 	}
1429 	if (!d_unhashed(dentry)) {
1430 		__d_drop(dentry);
1431 		need_rehash = 1;
1432 	}
1433 	spin_unlock(&dentry->d_lock);
1434 	spin_unlock(&dcache_lock);
1435 	error = nfs_safe_remove(dentry);
1436 	if (!error) {
1437 		nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1438 	} else if (need_rehash)
1439 		d_rehash(dentry);
1440 	unlock_kernel();
1441 	return error;
1442 }
1443 
1444 /*
1445  * To create a symbolic link, most file systems instantiate a new inode,
1446  * add a page to it containing the path, then write it out to the disk
1447  * using prepare_write/commit_write.
1448  *
1449  * Unfortunately the NFS client can't create the in-core inode first
1450  * because it needs a file handle to create an in-core inode (see
1451  * fs/nfs/inode.c:nfs_fhget).  We only have a file handle *after* the
1452  * symlink request has completed on the server.
1453  *
1454  * So instead we allocate a raw page, copy the symname into it, then do
1455  * the SYMLINK request with the page as the buffer.  If it succeeds, we
1456  * now have a new file handle and can instantiate an in-core NFS inode
1457  * and move the raw page into its mapping.
1458  */
1459 static int nfs_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
1460 {
1461 	struct pagevec lru_pvec;
1462 	struct page *page;
1463 	char *kaddr;
1464 	struct iattr attr;
1465 	unsigned int pathlen = strlen(symname);
1466 	int error;
1467 
1468 	dfprintk(VFS, "NFS: symlink(%s/%ld, %s, %s)\n", dir->i_sb->s_id,
1469 		dir->i_ino, dentry->d_name.name, symname);
1470 
1471 	if (pathlen > PAGE_SIZE)
1472 		return -ENAMETOOLONG;
1473 
1474 	attr.ia_mode = S_IFLNK | S_IRWXUGO;
1475 	attr.ia_valid = ATTR_MODE;
1476 
1477 	lock_kernel();
1478 
1479 	page = alloc_page(GFP_HIGHUSER);
1480 	if (!page) {
1481 		unlock_kernel();
1482 		return -ENOMEM;
1483 	}
1484 
1485 	kaddr = kmap_atomic(page, KM_USER0);
1486 	memcpy(kaddr, symname, pathlen);
1487 	if (pathlen < PAGE_SIZE)
1488 		memset(kaddr + pathlen, 0, PAGE_SIZE - pathlen);
1489 	kunmap_atomic(kaddr, KM_USER0);
1490 
1491 	error = NFS_PROTO(dir)->symlink(dir, dentry, page, pathlen, &attr);
1492 	if (error != 0) {
1493 		dfprintk(VFS, "NFS: symlink(%s/%ld, %s, %s) error %d\n",
1494 			dir->i_sb->s_id, dir->i_ino,
1495 			dentry->d_name.name, symname, error);
1496 		d_drop(dentry);
1497 		__free_page(page);
1498 		unlock_kernel();
1499 		return error;
1500 	}
1501 
1502 	/*
1503 	 * No big deal if we can't add this page to the page cache here.
1504 	 * READLINK will get the missing page from the server if needed.
1505 	 */
1506 	pagevec_init(&lru_pvec, 0);
1507 	if (!add_to_page_cache(page, dentry->d_inode->i_mapping, 0,
1508 							GFP_KERNEL)) {
1509 		pagevec_add(&lru_pvec, page);
1510 		pagevec_lru_add(&lru_pvec);
1511 		SetPageUptodate(page);
1512 		unlock_page(page);
1513 	} else
1514 		__free_page(page);
1515 
1516 	unlock_kernel();
1517 	return 0;
1518 }
1519 
1520 static int
1521 nfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
1522 {
1523 	struct inode *inode = old_dentry->d_inode;
1524 	int error;
1525 
1526 	dfprintk(VFS, "NFS: link(%s/%s -> %s/%s)\n",
1527 		old_dentry->d_parent->d_name.name, old_dentry->d_name.name,
1528 		dentry->d_parent->d_name.name, dentry->d_name.name);
1529 
1530 	lock_kernel();
1531 	error = NFS_PROTO(dir)->link(inode, dir, &dentry->d_name);
1532 	if (error == 0) {
1533 		atomic_inc(&inode->i_count);
1534 		d_instantiate(dentry, inode);
1535 	}
1536 	unlock_kernel();
1537 	return error;
1538 }
1539 
1540 /*
1541  * RENAME
1542  * FIXME: Some nfsds, like the Linux user space nfsd, may generate a
1543  * different file handle for the same inode after a rename (e.g. when
1544  * moving to a different directory). A fail-safe method to do so would
1545  * be to look up old_dir/old_name, create a link to new_dir/new_name and
1546  * rename the old file using the sillyrename stuff. This way, the original
1547  * file in old_dir will go away when the last process iput()s the inode.
1548  *
1549  * FIXED.
1550  *
1551  * It actually works quite well. One needs to have the possibility for
1552  * at least one ".nfs..." file in each directory the file ever gets
1553  * moved or linked to which happens automagically with the new
1554  * implementation that only depends on the dcache stuff instead of
1555  * using the inode layer
1556  *
1557  * Unfortunately, things are a little more complicated than indicated
1558  * above. For a cross-directory move, we want to make sure we can get
1559  * rid of the old inode after the operation.  This means there must be
1560  * no pending writes (if it's a file), and the use count must be 1.
1561  * If these conditions are met, we can drop the dentries before doing
1562  * the rename.
1563  */
1564 static int nfs_rename(struct inode *old_dir, struct dentry *old_dentry,
1565 		      struct inode *new_dir, struct dentry *new_dentry)
1566 {
1567 	struct inode *old_inode = old_dentry->d_inode;
1568 	struct inode *new_inode = new_dentry->d_inode;
1569 	struct dentry *dentry = NULL, *rehash = NULL;
1570 	int error = -EBUSY;
1571 
1572 	/*
1573 	 * To prevent any new references to the target during the rename,
1574 	 * we unhash the dentry and free the inode in advance.
1575 	 */
1576 	lock_kernel();
1577 	if (!d_unhashed(new_dentry)) {
1578 		d_drop(new_dentry);
1579 		rehash = new_dentry;
1580 	}
1581 
1582 	dfprintk(VFS, "NFS: rename(%s/%s -> %s/%s, ct=%d)\n",
1583 		 old_dentry->d_parent->d_name.name, old_dentry->d_name.name,
1584 		 new_dentry->d_parent->d_name.name, new_dentry->d_name.name,
1585 		 atomic_read(&new_dentry->d_count));
1586 
1587 	/*
1588 	 * First check whether the target is busy ... we can't
1589 	 * safely do _any_ rename if the target is in use.
1590 	 *
1591 	 * For files, make a copy of the dentry and then do a
1592 	 * silly-rename. If the silly-rename succeeds, the
1593 	 * copied dentry is hashed and becomes the new target.
1594 	 */
1595 	if (!new_inode)
1596 		goto go_ahead;
1597 	if (S_ISDIR(new_inode->i_mode)) {
1598 		error = -EISDIR;
1599 		if (!S_ISDIR(old_inode->i_mode))
1600 			goto out;
1601 	} else if (atomic_read(&new_dentry->d_count) > 2) {
1602 		int err;
1603 		/* copy the target dentry's name */
1604 		dentry = d_alloc(new_dentry->d_parent,
1605 				 &new_dentry->d_name);
1606 		if (!dentry)
1607 			goto out;
1608 
1609 		/* silly-rename the existing target ... */
1610 		err = nfs_sillyrename(new_dir, new_dentry);
1611 		if (!err) {
1612 			new_dentry = rehash = dentry;
1613 			new_inode = NULL;
1614 			/* instantiate the replacement target */
1615 			d_instantiate(new_dentry, NULL);
1616 		} else if (atomic_read(&new_dentry->d_count) > 1)
1617 			/* dentry still busy? */
1618 			goto out;
1619 	} else
1620 		drop_nlink(new_inode);
1621 
1622 go_ahead:
1623 	/*
1624 	 * ... prune child dentries and writebacks if needed.
1625 	 */
1626 	if (atomic_read(&old_dentry->d_count) > 1) {
1627 		if (S_ISREG(old_inode->i_mode))
1628 			nfs_wb_all(old_inode);
1629 		shrink_dcache_parent(old_dentry);
1630 	}
1631 	nfs_inode_return_delegation(old_inode);
1632 
1633 	if (new_inode != NULL) {
1634 		nfs_inode_return_delegation(new_inode);
1635 		d_delete(new_dentry);
1636 	}
1637 
1638 	error = NFS_PROTO(old_dir)->rename(old_dir, &old_dentry->d_name,
1639 					   new_dir, &new_dentry->d_name);
1640 	nfs_mark_for_revalidate(old_inode);
1641 out:
1642 	if (rehash)
1643 		d_rehash(rehash);
1644 	if (!error) {
1645 		d_move(old_dentry, new_dentry);
1646 		nfs_set_verifier(new_dentry,
1647 					nfs_save_change_attribute(new_dir));
1648 	}
1649 
1650 	/* new dentry created? */
1651 	if (dentry)
1652 		dput(dentry);
1653 	unlock_kernel();
1654 	return error;
1655 }
1656 
1657 static DEFINE_SPINLOCK(nfs_access_lru_lock);
1658 static LIST_HEAD(nfs_access_lru_list);
1659 static atomic_long_t nfs_access_nr_entries;
1660 
1661 static void nfs_access_free_entry(struct nfs_access_entry *entry)
1662 {
1663 	put_rpccred(entry->cred);
1664 	kfree(entry);
1665 	smp_mb__before_atomic_dec();
1666 	atomic_long_dec(&nfs_access_nr_entries);
1667 	smp_mb__after_atomic_dec();
1668 }
1669 
1670 int nfs_access_cache_shrinker(int nr_to_scan, gfp_t gfp_mask)
1671 {
1672 	LIST_HEAD(head);
1673 	struct nfs_inode *nfsi;
1674 	struct nfs_access_entry *cache;
1675 
1676 restart:
1677 	spin_lock(&nfs_access_lru_lock);
1678 	list_for_each_entry(nfsi, &nfs_access_lru_list, access_cache_inode_lru) {
1679 		struct inode *inode;
1680 
1681 		if (nr_to_scan-- == 0)
1682 			break;
1683 		inode = igrab(&nfsi->vfs_inode);
1684 		if (inode == NULL)
1685 			continue;
1686 		spin_lock(&inode->i_lock);
1687 		if (list_empty(&nfsi->access_cache_entry_lru))
1688 			goto remove_lru_entry;
1689 		cache = list_entry(nfsi->access_cache_entry_lru.next,
1690 				struct nfs_access_entry, lru);
1691 		list_move(&cache->lru, &head);
1692 		rb_erase(&cache->rb_node, &nfsi->access_cache);
1693 		if (!list_empty(&nfsi->access_cache_entry_lru))
1694 			list_move_tail(&nfsi->access_cache_inode_lru,
1695 					&nfs_access_lru_list);
1696 		else {
1697 remove_lru_entry:
1698 			list_del_init(&nfsi->access_cache_inode_lru);
1699 			clear_bit(NFS_INO_ACL_LRU_SET, &nfsi->flags);
1700 		}
1701 		spin_unlock(&inode->i_lock);
1702 		spin_unlock(&nfs_access_lru_lock);
1703 		iput(inode);
1704 		goto restart;
1705 	}
1706 	spin_unlock(&nfs_access_lru_lock);
1707 	while (!list_empty(&head)) {
1708 		cache = list_entry(head.next, struct nfs_access_entry, lru);
1709 		list_del(&cache->lru);
1710 		nfs_access_free_entry(cache);
1711 	}
1712 	return (atomic_long_read(&nfs_access_nr_entries) / 100) * sysctl_vfs_cache_pressure;
1713 }
1714 
1715 static void __nfs_access_zap_cache(struct inode *inode)
1716 {
1717 	struct nfs_inode *nfsi = NFS_I(inode);
1718 	struct rb_root *root_node = &nfsi->access_cache;
1719 	struct rb_node *n, *dispose = NULL;
1720 	struct nfs_access_entry *entry;
1721 
1722 	/* Unhook entries from the cache */
1723 	while ((n = rb_first(root_node)) != NULL) {
1724 		entry = rb_entry(n, struct nfs_access_entry, rb_node);
1725 		rb_erase(n, root_node);
1726 		list_del(&entry->lru);
1727 		n->rb_left = dispose;
1728 		dispose = n;
1729 	}
1730 	nfsi->cache_validity &= ~NFS_INO_INVALID_ACCESS;
1731 	spin_unlock(&inode->i_lock);
1732 
1733 	/* Now kill them all! */
1734 	while (dispose != NULL) {
1735 		n = dispose;
1736 		dispose = n->rb_left;
1737 		nfs_access_free_entry(rb_entry(n, struct nfs_access_entry, rb_node));
1738 	}
1739 }
1740 
1741 void nfs_access_zap_cache(struct inode *inode)
1742 {
1743 	/* Remove from global LRU init */
1744 	if (test_and_clear_bit(NFS_INO_ACL_LRU_SET, &NFS_FLAGS(inode))) {
1745 		spin_lock(&nfs_access_lru_lock);
1746 		list_del_init(&NFS_I(inode)->access_cache_inode_lru);
1747 		spin_unlock(&nfs_access_lru_lock);
1748 	}
1749 
1750 	spin_lock(&inode->i_lock);
1751 	/* This will release the spinlock */
1752 	__nfs_access_zap_cache(inode);
1753 }
1754 
1755 static struct nfs_access_entry *nfs_access_search_rbtree(struct inode *inode, struct rpc_cred *cred)
1756 {
1757 	struct rb_node *n = NFS_I(inode)->access_cache.rb_node;
1758 	struct nfs_access_entry *entry;
1759 
1760 	while (n != NULL) {
1761 		entry = rb_entry(n, struct nfs_access_entry, rb_node);
1762 
1763 		if (cred < entry->cred)
1764 			n = n->rb_left;
1765 		else if (cred > entry->cred)
1766 			n = n->rb_right;
1767 		else
1768 			return entry;
1769 	}
1770 	return NULL;
1771 }
1772 
1773 static int nfs_access_get_cached(struct inode *inode, struct rpc_cred *cred, struct nfs_access_entry *res)
1774 {
1775 	struct nfs_inode *nfsi = NFS_I(inode);
1776 	struct nfs_access_entry *cache;
1777 	int err = -ENOENT;
1778 
1779 	spin_lock(&inode->i_lock);
1780 	if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
1781 		goto out_zap;
1782 	cache = nfs_access_search_rbtree(inode, cred);
1783 	if (cache == NULL)
1784 		goto out;
1785 	if (!time_in_range(jiffies, cache->jiffies, cache->jiffies + NFS_ATTRTIMEO(inode)))
1786 		goto out_stale;
1787 	res->jiffies = cache->jiffies;
1788 	res->cred = cache->cred;
1789 	res->mask = cache->mask;
1790 	list_move_tail(&cache->lru, &nfsi->access_cache_entry_lru);
1791 	err = 0;
1792 out:
1793 	spin_unlock(&inode->i_lock);
1794 	return err;
1795 out_stale:
1796 	rb_erase(&cache->rb_node, &nfsi->access_cache);
1797 	list_del(&cache->lru);
1798 	spin_unlock(&inode->i_lock);
1799 	nfs_access_free_entry(cache);
1800 	return -ENOENT;
1801 out_zap:
1802 	/* This will release the spinlock */
1803 	__nfs_access_zap_cache(inode);
1804 	return -ENOENT;
1805 }
1806 
1807 static void nfs_access_add_rbtree(struct inode *inode, struct nfs_access_entry *set)
1808 {
1809 	struct nfs_inode *nfsi = NFS_I(inode);
1810 	struct rb_root *root_node = &nfsi->access_cache;
1811 	struct rb_node **p = &root_node->rb_node;
1812 	struct rb_node *parent = NULL;
1813 	struct nfs_access_entry *entry;
1814 
1815 	spin_lock(&inode->i_lock);
1816 	while (*p != NULL) {
1817 		parent = *p;
1818 		entry = rb_entry(parent, struct nfs_access_entry, rb_node);
1819 
1820 		if (set->cred < entry->cred)
1821 			p = &parent->rb_left;
1822 		else if (set->cred > entry->cred)
1823 			p = &parent->rb_right;
1824 		else
1825 			goto found;
1826 	}
1827 	rb_link_node(&set->rb_node, parent, p);
1828 	rb_insert_color(&set->rb_node, root_node);
1829 	list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
1830 	spin_unlock(&inode->i_lock);
1831 	return;
1832 found:
1833 	rb_replace_node(parent, &set->rb_node, root_node);
1834 	list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
1835 	list_del(&entry->lru);
1836 	spin_unlock(&inode->i_lock);
1837 	nfs_access_free_entry(entry);
1838 }
1839 
1840 static void nfs_access_add_cache(struct inode *inode, struct nfs_access_entry *set)
1841 {
1842 	struct nfs_access_entry *cache = kmalloc(sizeof(*cache), GFP_KERNEL);
1843 	if (cache == NULL)
1844 		return;
1845 	RB_CLEAR_NODE(&cache->rb_node);
1846 	cache->jiffies = set->jiffies;
1847 	cache->cred = get_rpccred(set->cred);
1848 	cache->mask = set->mask;
1849 
1850 	nfs_access_add_rbtree(inode, cache);
1851 
1852 	/* Update accounting */
1853 	smp_mb__before_atomic_inc();
1854 	atomic_long_inc(&nfs_access_nr_entries);
1855 	smp_mb__after_atomic_inc();
1856 
1857 	/* Add inode to global LRU list */
1858 	if (!test_and_set_bit(NFS_INO_ACL_LRU_SET, &NFS_FLAGS(inode))) {
1859 		spin_lock(&nfs_access_lru_lock);
1860 		list_add_tail(&NFS_I(inode)->access_cache_inode_lru, &nfs_access_lru_list);
1861 		spin_unlock(&nfs_access_lru_lock);
1862 	}
1863 }
1864 
1865 static int nfs_do_access(struct inode *inode, struct rpc_cred *cred, int mask)
1866 {
1867 	struct nfs_access_entry cache;
1868 	int status;
1869 
1870 	status = nfs_access_get_cached(inode, cred, &cache);
1871 	if (status == 0)
1872 		goto out;
1873 
1874 	/* Be clever: ask server to check for all possible rights */
1875 	cache.mask = MAY_EXEC | MAY_WRITE | MAY_READ;
1876 	cache.cred = cred;
1877 	cache.jiffies = jiffies;
1878 	status = NFS_PROTO(inode)->access(inode, &cache);
1879 	if (status != 0)
1880 		return status;
1881 	nfs_access_add_cache(inode, &cache);
1882 out:
1883 	if ((cache.mask & mask) == mask)
1884 		return 0;
1885 	return -EACCES;
1886 }
1887 
1888 static int nfs_open_permission_mask(int openflags)
1889 {
1890 	int mask = 0;
1891 
1892 	if (openflags & FMODE_READ)
1893 		mask |= MAY_READ;
1894 	if (openflags & FMODE_WRITE)
1895 		mask |= MAY_WRITE;
1896 	if (openflags & FMODE_EXEC)
1897 		mask |= MAY_EXEC;
1898 	return mask;
1899 }
1900 
1901 int nfs_may_open(struct inode *inode, struct rpc_cred *cred, int openflags)
1902 {
1903 	return nfs_do_access(inode, cred, nfs_open_permission_mask(openflags));
1904 }
1905 
1906 int nfs_permission(struct inode *inode, int mask, struct nameidata *nd)
1907 {
1908 	struct rpc_cred *cred;
1909 	int res = 0;
1910 
1911 	nfs_inc_stats(inode, NFSIOS_VFSACCESS);
1912 
1913 	if (mask == 0)
1914 		goto out;
1915 	/* Is this sys_access() ? */
1916 	if (nd != NULL && (nd->flags & LOOKUP_ACCESS))
1917 		goto force_lookup;
1918 
1919 	switch (inode->i_mode & S_IFMT) {
1920 		case S_IFLNK:
1921 			goto out;
1922 		case S_IFREG:
1923 			/* NFSv4 has atomic_open... */
1924 			if (nfs_server_capable(inode, NFS_CAP_ATOMIC_OPEN)
1925 					&& nd != NULL
1926 					&& (nd->flags & LOOKUP_OPEN))
1927 				goto out;
1928 			break;
1929 		case S_IFDIR:
1930 			/*
1931 			 * Optimize away all write operations, since the server
1932 			 * will check permissions when we perform the op.
1933 			 */
1934 			if ((mask & MAY_WRITE) && !(mask & MAY_READ))
1935 				goto out;
1936 	}
1937 
1938 force_lookup:
1939 	lock_kernel();
1940 
1941 	if (!NFS_PROTO(inode)->access)
1942 		goto out_notsup;
1943 
1944 	cred = rpcauth_lookupcred(NFS_CLIENT(inode)->cl_auth, 0);
1945 	if (!IS_ERR(cred)) {
1946 		res = nfs_do_access(inode, cred, mask);
1947 		put_rpccred(cred);
1948 	} else
1949 		res = PTR_ERR(cred);
1950 	unlock_kernel();
1951 out:
1952 	dfprintk(VFS, "NFS: permission(%s/%ld), mask=0x%x, res=%d\n",
1953 		inode->i_sb->s_id, inode->i_ino, mask, res);
1954 	return res;
1955 out_notsup:
1956 	res = nfs_revalidate_inode(NFS_SERVER(inode), inode);
1957 	if (res == 0)
1958 		res = generic_permission(inode, mask, NULL);
1959 	unlock_kernel();
1960 	goto out;
1961 }
1962 
1963 /*
1964  * Local variables:
1965  *  version-control: t
1966  *  kept-new-versions: 5
1967  * End:
1968  */
1969