xref: /openbmc/linux/fs/nfs/dir.c (revision 08720988)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/fs/nfs/dir.c
4  *
5  *  Copyright (C) 1992  Rick Sladkey
6  *
7  *  nfs directory handling functions
8  *
9  * 10 Apr 1996	Added silly rename for unlink	--okir
10  * 28 Sep 1996	Improved directory cache --okir
11  * 23 Aug 1997  Claus Heine claus@momo.math.rwth-aachen.de
12  *              Re-implemented silly rename for unlink, newly implemented
13  *              silly rename for nfs_rename() following the suggestions
14  *              of Olaf Kirch (okir) found in this file.
15  *              Following Linus comments on my original hack, this version
16  *              depends only on the dcache stuff and doesn't touch the inode
17  *              layer (iput() and friends).
18  *  6 Jun 1999	Cache readdir lookups in the page cache. -DaveM
19  */
20 
21 #include <linux/module.h>
22 #include <linux/time.h>
23 #include <linux/errno.h>
24 #include <linux/stat.h>
25 #include <linux/fcntl.h>
26 #include <linux/string.h>
27 #include <linux/kernel.h>
28 #include <linux/slab.h>
29 #include <linux/mm.h>
30 #include <linux/sunrpc/clnt.h>
31 #include <linux/nfs_fs.h>
32 #include <linux/nfs_mount.h>
33 #include <linux/pagemap.h>
34 #include <linux/pagevec.h>
35 #include <linux/namei.h>
36 #include <linux/mount.h>
37 #include <linux/swap.h>
38 #include <linux/sched.h>
39 #include <linux/kmemleak.h>
40 #include <linux/xattr.h>
41 
42 #include "delegation.h"
43 #include "iostat.h"
44 #include "internal.h"
45 #include "fscache.h"
46 
47 #include "nfstrace.h"
48 
49 /* #define NFS_DEBUG_VERBOSE 1 */
50 
51 static int nfs_opendir(struct inode *, struct file *);
52 static int nfs_closedir(struct inode *, struct file *);
53 static int nfs_readdir(struct file *, struct dir_context *);
54 static int nfs_fsync_dir(struct file *, loff_t, loff_t, int);
55 static loff_t nfs_llseek_dir(struct file *, loff_t, int);
56 static void nfs_readdir_clear_array(struct page*);
57 
58 const struct file_operations nfs_dir_operations = {
59 	.llseek		= nfs_llseek_dir,
60 	.read		= generic_read_dir,
61 	.iterate_shared	= nfs_readdir,
62 	.open		= nfs_opendir,
63 	.release	= nfs_closedir,
64 	.fsync		= nfs_fsync_dir,
65 };
66 
67 const struct address_space_operations nfs_dir_aops = {
68 	.freepage = nfs_readdir_clear_array,
69 };
70 
71 static struct nfs_open_dir_context *alloc_nfs_open_dir_context(struct inode *dir, const struct cred *cred)
72 {
73 	struct nfs_inode *nfsi = NFS_I(dir);
74 	struct nfs_open_dir_context *ctx;
75 	ctx = kmalloc(sizeof(*ctx), GFP_KERNEL);
76 	if (ctx != NULL) {
77 		ctx->duped = 0;
78 		ctx->attr_gencount = nfsi->attr_gencount;
79 		ctx->dir_cookie = 0;
80 		ctx->dup_cookie = 0;
81 		ctx->cred = get_cred(cred);
82 		spin_lock(&dir->i_lock);
83 		if (list_empty(&nfsi->open_files) &&
84 		    (nfsi->cache_validity & NFS_INO_DATA_INVAL_DEFER))
85 			nfsi->cache_validity |= NFS_INO_INVALID_DATA |
86 				NFS_INO_REVAL_FORCED;
87 		list_add(&ctx->list, &nfsi->open_files);
88 		spin_unlock(&dir->i_lock);
89 		return ctx;
90 	}
91 	return  ERR_PTR(-ENOMEM);
92 }
93 
94 static void put_nfs_open_dir_context(struct inode *dir, struct nfs_open_dir_context *ctx)
95 {
96 	spin_lock(&dir->i_lock);
97 	list_del(&ctx->list);
98 	spin_unlock(&dir->i_lock);
99 	put_cred(ctx->cred);
100 	kfree(ctx);
101 }
102 
103 /*
104  * Open file
105  */
106 static int
107 nfs_opendir(struct inode *inode, struct file *filp)
108 {
109 	int res = 0;
110 	struct nfs_open_dir_context *ctx;
111 
112 	dfprintk(FILE, "NFS: open dir(%pD2)\n", filp);
113 
114 	nfs_inc_stats(inode, NFSIOS_VFSOPEN);
115 
116 	ctx = alloc_nfs_open_dir_context(inode, current_cred());
117 	if (IS_ERR(ctx)) {
118 		res = PTR_ERR(ctx);
119 		goto out;
120 	}
121 	filp->private_data = ctx;
122 out:
123 	return res;
124 }
125 
126 static int
127 nfs_closedir(struct inode *inode, struct file *filp)
128 {
129 	put_nfs_open_dir_context(file_inode(filp), filp->private_data);
130 	return 0;
131 }
132 
133 struct nfs_cache_array_entry {
134 	u64 cookie;
135 	u64 ino;
136 	struct qstr string;
137 	unsigned char d_type;
138 };
139 
140 struct nfs_cache_array {
141 	int size;
142 	int eof_index;
143 	u64 last_cookie;
144 	struct nfs_cache_array_entry array[0];
145 };
146 
147 typedef int (*decode_dirent_t)(struct xdr_stream *, struct nfs_entry *, bool);
148 typedef struct {
149 	struct file	*file;
150 	struct page	*page;
151 	struct dir_context *ctx;
152 	unsigned long	page_index;
153 	u64		*dir_cookie;
154 	u64		last_cookie;
155 	loff_t		current_index;
156 	decode_dirent_t	decode;
157 
158 	unsigned long	dir_verifier;
159 	unsigned long	timestamp;
160 	unsigned long	gencount;
161 	unsigned int	cache_entry_index;
162 	bool plus;
163 	bool eof;
164 } nfs_readdir_descriptor_t;
165 
166 static
167 void nfs_readdir_init_array(struct page *page)
168 {
169 	struct nfs_cache_array *array;
170 
171 	array = kmap_atomic(page);
172 	memset(array, 0, sizeof(struct nfs_cache_array));
173 	array->eof_index = -1;
174 	kunmap_atomic(array);
175 }
176 
177 /*
178  * we are freeing strings created by nfs_add_to_readdir_array()
179  */
180 static
181 void nfs_readdir_clear_array(struct page *page)
182 {
183 	struct nfs_cache_array *array;
184 	int i;
185 
186 	array = kmap_atomic(page);
187 	for (i = 0; i < array->size; i++)
188 		kfree(array->array[i].string.name);
189 	array->size = 0;
190 	kunmap_atomic(array);
191 }
192 
193 /*
194  * the caller is responsible for freeing qstr.name
195  * when called by nfs_readdir_add_to_array, the strings will be freed in
196  * nfs_clear_readdir_array()
197  */
198 static
199 int nfs_readdir_make_qstr(struct qstr *string, const char *name, unsigned int len)
200 {
201 	string->len = len;
202 	string->name = kmemdup_nul(name, len, GFP_KERNEL);
203 	if (string->name == NULL)
204 		return -ENOMEM;
205 	/*
206 	 * Avoid a kmemleak false positive. The pointer to the name is stored
207 	 * in a page cache page which kmemleak does not scan.
208 	 */
209 	kmemleak_not_leak(string->name);
210 	string->hash = full_name_hash(NULL, name, len);
211 	return 0;
212 }
213 
214 static
215 int nfs_readdir_add_to_array(struct nfs_entry *entry, struct page *page)
216 {
217 	struct nfs_cache_array *array = kmap(page);
218 	struct nfs_cache_array_entry *cache_entry;
219 	int ret;
220 
221 	cache_entry = &array->array[array->size];
222 
223 	/* Check that this entry lies within the page bounds */
224 	ret = -ENOSPC;
225 	if ((char *)&cache_entry[1] - (char *)page_address(page) > PAGE_SIZE)
226 		goto out;
227 
228 	cache_entry->cookie = entry->prev_cookie;
229 	cache_entry->ino = entry->ino;
230 	cache_entry->d_type = entry->d_type;
231 	ret = nfs_readdir_make_qstr(&cache_entry->string, entry->name, entry->len);
232 	if (ret)
233 		goto out;
234 	array->last_cookie = entry->cookie;
235 	array->size++;
236 	if (entry->eof != 0)
237 		array->eof_index = array->size;
238 out:
239 	kunmap(page);
240 	return ret;
241 }
242 
243 static
244 int nfs_readdir_search_for_pos(struct nfs_cache_array *array, nfs_readdir_descriptor_t *desc)
245 {
246 	loff_t diff = desc->ctx->pos - desc->current_index;
247 	unsigned int index;
248 
249 	if (diff < 0)
250 		goto out_eof;
251 	if (diff >= array->size) {
252 		if (array->eof_index >= 0)
253 			goto out_eof;
254 		return -EAGAIN;
255 	}
256 
257 	index = (unsigned int)diff;
258 	*desc->dir_cookie = array->array[index].cookie;
259 	desc->cache_entry_index = index;
260 	return 0;
261 out_eof:
262 	desc->eof = true;
263 	return -EBADCOOKIE;
264 }
265 
266 static bool
267 nfs_readdir_inode_mapping_valid(struct nfs_inode *nfsi)
268 {
269 	if (nfsi->cache_validity & (NFS_INO_INVALID_ATTR|NFS_INO_INVALID_DATA))
270 		return false;
271 	smp_rmb();
272 	return !test_bit(NFS_INO_INVALIDATING, &nfsi->flags);
273 }
274 
275 static
276 int nfs_readdir_search_for_cookie(struct nfs_cache_array *array, nfs_readdir_descriptor_t *desc)
277 {
278 	int i;
279 	loff_t new_pos;
280 	int status = -EAGAIN;
281 
282 	for (i = 0; i < array->size; i++) {
283 		if (array->array[i].cookie == *desc->dir_cookie) {
284 			struct nfs_inode *nfsi = NFS_I(file_inode(desc->file));
285 			struct nfs_open_dir_context *ctx = desc->file->private_data;
286 
287 			new_pos = desc->current_index + i;
288 			if (ctx->attr_gencount != nfsi->attr_gencount ||
289 			    !nfs_readdir_inode_mapping_valid(nfsi)) {
290 				ctx->duped = 0;
291 				ctx->attr_gencount = nfsi->attr_gencount;
292 			} else if (new_pos < desc->ctx->pos) {
293 				if (ctx->duped > 0
294 				    && ctx->dup_cookie == *desc->dir_cookie) {
295 					if (printk_ratelimit()) {
296 						pr_notice("NFS: directory %pD2 contains a readdir loop."
297 								"Please contact your server vendor.  "
298 								"The file: %.*s has duplicate cookie %llu\n",
299 								desc->file, array->array[i].string.len,
300 								array->array[i].string.name, *desc->dir_cookie);
301 					}
302 					status = -ELOOP;
303 					goto out;
304 				}
305 				ctx->dup_cookie = *desc->dir_cookie;
306 				ctx->duped = -1;
307 			}
308 			desc->ctx->pos = new_pos;
309 			desc->cache_entry_index = i;
310 			return 0;
311 		}
312 	}
313 	if (array->eof_index >= 0) {
314 		status = -EBADCOOKIE;
315 		if (*desc->dir_cookie == array->last_cookie)
316 			desc->eof = true;
317 	}
318 out:
319 	return status;
320 }
321 
322 static
323 int nfs_readdir_search_array(nfs_readdir_descriptor_t *desc)
324 {
325 	struct nfs_cache_array *array;
326 	int status;
327 
328 	array = kmap(desc->page);
329 
330 	if (*desc->dir_cookie == 0)
331 		status = nfs_readdir_search_for_pos(array, desc);
332 	else
333 		status = nfs_readdir_search_for_cookie(array, desc);
334 
335 	if (status == -EAGAIN) {
336 		desc->last_cookie = array->last_cookie;
337 		desc->current_index += array->size;
338 		desc->page_index++;
339 	}
340 	kunmap(desc->page);
341 	return status;
342 }
343 
344 /* Fill a page with xdr information before transferring to the cache page */
345 static
346 int nfs_readdir_xdr_filler(struct page **pages, nfs_readdir_descriptor_t *desc,
347 			struct nfs_entry *entry, struct file *file, struct inode *inode)
348 {
349 	struct nfs_open_dir_context *ctx = file->private_data;
350 	const struct cred *cred = ctx->cred;
351 	unsigned long	timestamp, gencount;
352 	int		error;
353 
354  again:
355 	timestamp = jiffies;
356 	gencount = nfs_inc_attr_generation_counter();
357 	desc->dir_verifier = nfs_save_change_attribute(inode);
358 	error = NFS_PROTO(inode)->readdir(file_dentry(file), cred, entry->cookie, pages,
359 					  NFS_SERVER(inode)->dtsize, desc->plus);
360 	if (error < 0) {
361 		/* We requested READDIRPLUS, but the server doesn't grok it */
362 		if (error == -ENOTSUPP && desc->plus) {
363 			NFS_SERVER(inode)->caps &= ~NFS_CAP_READDIRPLUS;
364 			clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags);
365 			desc->plus = false;
366 			goto again;
367 		}
368 		goto error;
369 	}
370 	desc->timestamp = timestamp;
371 	desc->gencount = gencount;
372 error:
373 	return error;
374 }
375 
376 static int xdr_decode(nfs_readdir_descriptor_t *desc,
377 		      struct nfs_entry *entry, struct xdr_stream *xdr)
378 {
379 	int error;
380 
381 	error = desc->decode(xdr, entry, desc->plus);
382 	if (error)
383 		return error;
384 	entry->fattr->time_start = desc->timestamp;
385 	entry->fattr->gencount = desc->gencount;
386 	return 0;
387 }
388 
389 /* Match file and dirent using either filehandle or fileid
390  * Note: caller is responsible for checking the fsid
391  */
392 static
393 int nfs_same_file(struct dentry *dentry, struct nfs_entry *entry)
394 {
395 	struct inode *inode;
396 	struct nfs_inode *nfsi;
397 
398 	if (d_really_is_negative(dentry))
399 		return 0;
400 
401 	inode = d_inode(dentry);
402 	if (is_bad_inode(inode) || NFS_STALE(inode))
403 		return 0;
404 
405 	nfsi = NFS_I(inode);
406 	if (entry->fattr->fileid != nfsi->fileid)
407 		return 0;
408 	if (entry->fh->size && nfs_compare_fh(entry->fh, &nfsi->fh) != 0)
409 		return 0;
410 	return 1;
411 }
412 
413 static
414 bool nfs_use_readdirplus(struct inode *dir, struct dir_context *ctx)
415 {
416 	if (!nfs_server_capable(dir, NFS_CAP_READDIRPLUS))
417 		return false;
418 	if (test_and_clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(dir)->flags))
419 		return true;
420 	if (ctx->pos == 0)
421 		return true;
422 	return false;
423 }
424 
425 /*
426  * This function is called by the lookup and getattr code to request the
427  * use of readdirplus to accelerate any future lookups in the same
428  * directory.
429  */
430 void nfs_advise_use_readdirplus(struct inode *dir)
431 {
432 	struct nfs_inode *nfsi = NFS_I(dir);
433 
434 	if (nfs_server_capable(dir, NFS_CAP_READDIRPLUS) &&
435 	    !list_empty(&nfsi->open_files))
436 		set_bit(NFS_INO_ADVISE_RDPLUS, &nfsi->flags);
437 }
438 
439 /*
440  * This function is mainly for use by nfs_getattr().
441  *
442  * If this is an 'ls -l', we want to force use of readdirplus.
443  * Do this by checking if there is an active file descriptor
444  * and calling nfs_advise_use_readdirplus, then forcing a
445  * cache flush.
446  */
447 void nfs_force_use_readdirplus(struct inode *dir)
448 {
449 	struct nfs_inode *nfsi = NFS_I(dir);
450 
451 	if (nfs_server_capable(dir, NFS_CAP_READDIRPLUS) &&
452 	    !list_empty(&nfsi->open_files)) {
453 		set_bit(NFS_INO_ADVISE_RDPLUS, &nfsi->flags);
454 		invalidate_mapping_pages(dir->i_mapping,
455 			nfsi->page_index + 1, -1);
456 	}
457 }
458 
459 static
460 void nfs_prime_dcache(struct dentry *parent, struct nfs_entry *entry,
461 		unsigned long dir_verifier)
462 {
463 	struct qstr filename = QSTR_INIT(entry->name, entry->len);
464 	DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
465 	struct dentry *dentry;
466 	struct dentry *alias;
467 	struct inode *inode;
468 	int status;
469 
470 	if (!(entry->fattr->valid & NFS_ATTR_FATTR_FILEID))
471 		return;
472 	if (!(entry->fattr->valid & NFS_ATTR_FATTR_FSID))
473 		return;
474 	if (filename.len == 0)
475 		return;
476 	/* Validate that the name doesn't contain any illegal '\0' */
477 	if (strnlen(filename.name, filename.len) != filename.len)
478 		return;
479 	/* ...or '/' */
480 	if (strnchr(filename.name, filename.len, '/'))
481 		return;
482 	if (filename.name[0] == '.') {
483 		if (filename.len == 1)
484 			return;
485 		if (filename.len == 2 && filename.name[1] == '.')
486 			return;
487 	}
488 	filename.hash = full_name_hash(parent, filename.name, filename.len);
489 
490 	dentry = d_lookup(parent, &filename);
491 again:
492 	if (!dentry) {
493 		dentry = d_alloc_parallel(parent, &filename, &wq);
494 		if (IS_ERR(dentry))
495 			return;
496 	}
497 	if (!d_in_lookup(dentry)) {
498 		/* Is there a mountpoint here? If so, just exit */
499 		if (!nfs_fsid_equal(&NFS_SB(dentry->d_sb)->fsid,
500 					&entry->fattr->fsid))
501 			goto out;
502 		if (nfs_same_file(dentry, entry)) {
503 			if (!entry->fh->size)
504 				goto out;
505 			nfs_set_verifier(dentry, dir_verifier);
506 			status = nfs_refresh_inode(d_inode(dentry), entry->fattr);
507 			if (!status)
508 				nfs_setsecurity(d_inode(dentry), entry->fattr, entry->label);
509 			goto out;
510 		} else {
511 			d_invalidate(dentry);
512 			dput(dentry);
513 			dentry = NULL;
514 			goto again;
515 		}
516 	}
517 	if (!entry->fh->size) {
518 		d_lookup_done(dentry);
519 		goto out;
520 	}
521 
522 	inode = nfs_fhget(dentry->d_sb, entry->fh, entry->fattr, entry->label);
523 	alias = d_splice_alias(inode, dentry);
524 	d_lookup_done(dentry);
525 	if (alias) {
526 		if (IS_ERR(alias))
527 			goto out;
528 		dput(dentry);
529 		dentry = alias;
530 	}
531 	nfs_set_verifier(dentry, dir_verifier);
532 out:
533 	dput(dentry);
534 }
535 
536 /* Perform conversion from xdr to cache array */
537 static
538 int nfs_readdir_page_filler(nfs_readdir_descriptor_t *desc, struct nfs_entry *entry,
539 				struct page **xdr_pages, struct page *page, unsigned int buflen)
540 {
541 	struct xdr_stream stream;
542 	struct xdr_buf buf;
543 	struct page *scratch;
544 	struct nfs_cache_array *array;
545 	unsigned int count = 0;
546 	int status;
547 
548 	scratch = alloc_page(GFP_KERNEL);
549 	if (scratch == NULL)
550 		return -ENOMEM;
551 
552 	if (buflen == 0)
553 		goto out_nopages;
554 
555 	xdr_init_decode_pages(&stream, &buf, xdr_pages, buflen);
556 	xdr_set_scratch_buffer(&stream, page_address(scratch), PAGE_SIZE);
557 
558 	do {
559 		status = xdr_decode(desc, entry, &stream);
560 		if (status != 0) {
561 			if (status == -EAGAIN)
562 				status = 0;
563 			break;
564 		}
565 
566 		count++;
567 
568 		if (desc->plus)
569 			nfs_prime_dcache(file_dentry(desc->file), entry,
570 					desc->dir_verifier);
571 
572 		status = nfs_readdir_add_to_array(entry, page);
573 		if (status != 0)
574 			break;
575 	} while (!entry->eof);
576 
577 out_nopages:
578 	if (count == 0 || (status == -EBADCOOKIE && entry->eof != 0)) {
579 		array = kmap(page);
580 		array->eof_index = array->size;
581 		status = 0;
582 		kunmap(page);
583 	}
584 
585 	put_page(scratch);
586 	return status;
587 }
588 
589 static
590 void nfs_readdir_free_pages(struct page **pages, unsigned int npages)
591 {
592 	unsigned int i;
593 	for (i = 0; i < npages; i++)
594 		put_page(pages[i]);
595 }
596 
597 /*
598  * nfs_readdir_alloc_pages() will allocate pages that must be freed with a call
599  * to nfs_readdir_free_pages()
600  */
601 static
602 int nfs_readdir_alloc_pages(struct page **pages, unsigned int npages)
603 {
604 	unsigned int i;
605 
606 	for (i = 0; i < npages; i++) {
607 		struct page *page = alloc_page(GFP_KERNEL);
608 		if (page == NULL)
609 			goto out_freepages;
610 		pages[i] = page;
611 	}
612 	return 0;
613 
614 out_freepages:
615 	nfs_readdir_free_pages(pages, i);
616 	return -ENOMEM;
617 }
618 
619 static
620 int nfs_readdir_xdr_to_array(nfs_readdir_descriptor_t *desc, struct page *page, struct inode *inode)
621 {
622 	struct page *pages[NFS_MAX_READDIR_PAGES];
623 	struct nfs_entry entry;
624 	struct file	*file = desc->file;
625 	struct nfs_cache_array *array;
626 	int status = -ENOMEM;
627 	unsigned int array_size = ARRAY_SIZE(pages);
628 
629 	nfs_readdir_init_array(page);
630 
631 	entry.prev_cookie = 0;
632 	entry.cookie = desc->last_cookie;
633 	entry.eof = 0;
634 	entry.fh = nfs_alloc_fhandle();
635 	entry.fattr = nfs_alloc_fattr();
636 	entry.server = NFS_SERVER(inode);
637 	if (entry.fh == NULL || entry.fattr == NULL)
638 		goto out;
639 
640 	entry.label = nfs4_label_alloc(NFS_SERVER(inode), GFP_NOWAIT);
641 	if (IS_ERR(entry.label)) {
642 		status = PTR_ERR(entry.label);
643 		goto out;
644 	}
645 
646 	array = kmap(page);
647 
648 	status = nfs_readdir_alloc_pages(pages, array_size);
649 	if (status < 0)
650 		goto out_release_array;
651 	do {
652 		unsigned int pglen;
653 		status = nfs_readdir_xdr_filler(pages, desc, &entry, file, inode);
654 
655 		if (status < 0)
656 			break;
657 		pglen = status;
658 		status = nfs_readdir_page_filler(desc, &entry, pages, page, pglen);
659 		if (status < 0) {
660 			if (status == -ENOSPC)
661 				status = 0;
662 			break;
663 		}
664 	} while (array->eof_index < 0);
665 
666 	nfs_readdir_free_pages(pages, array_size);
667 out_release_array:
668 	kunmap(page);
669 	nfs4_label_free(entry.label);
670 out:
671 	nfs_free_fattr(entry.fattr);
672 	nfs_free_fhandle(entry.fh);
673 	return status;
674 }
675 
676 /*
677  * Now we cache directories properly, by converting xdr information
678  * to an array that can be used for lookups later.  This results in
679  * fewer cache pages, since we can store more information on each page.
680  * We only need to convert from xdr once so future lookups are much simpler
681  */
682 static
683 int nfs_readdir_filler(void *data, struct page* page)
684 {
685 	nfs_readdir_descriptor_t *desc = data;
686 	struct inode	*inode = file_inode(desc->file);
687 	int ret;
688 
689 	ret = nfs_readdir_xdr_to_array(desc, page, inode);
690 	if (ret < 0)
691 		goto error;
692 	SetPageUptodate(page);
693 
694 	if (invalidate_inode_pages2_range(inode->i_mapping, page->index + 1, -1) < 0) {
695 		/* Should never happen */
696 		nfs_zap_mapping(inode, inode->i_mapping);
697 	}
698 	unlock_page(page);
699 	return 0;
700  error:
701 	nfs_readdir_clear_array(page);
702 	unlock_page(page);
703 	return ret;
704 }
705 
706 static
707 void cache_page_release(nfs_readdir_descriptor_t *desc)
708 {
709 	put_page(desc->page);
710 	desc->page = NULL;
711 }
712 
713 static
714 struct page *get_cache_page(nfs_readdir_descriptor_t *desc)
715 {
716 	return read_cache_page(desc->file->f_mapping, desc->page_index,
717 			nfs_readdir_filler, desc);
718 }
719 
720 /*
721  * Returns 0 if desc->dir_cookie was found on page desc->page_index
722  * and locks the page to prevent removal from the page cache.
723  */
724 static
725 int find_and_lock_cache_page(nfs_readdir_descriptor_t *desc)
726 {
727 	struct inode *inode = file_inode(desc->file);
728 	struct nfs_inode *nfsi = NFS_I(inode);
729 	int res;
730 
731 	desc->page = get_cache_page(desc);
732 	if (IS_ERR(desc->page))
733 		return PTR_ERR(desc->page);
734 	res = lock_page_killable(desc->page);
735 	if (res != 0)
736 		goto error;
737 	res = -EAGAIN;
738 	if (desc->page->mapping != NULL) {
739 		res = nfs_readdir_search_array(desc);
740 		if (res == 0) {
741 			nfsi->page_index = desc->page_index;
742 			return 0;
743 		}
744 	}
745 	unlock_page(desc->page);
746 error:
747 	cache_page_release(desc);
748 	return res;
749 }
750 
751 /* Search for desc->dir_cookie from the beginning of the page cache */
752 static inline
753 int readdir_search_pagecache(nfs_readdir_descriptor_t *desc)
754 {
755 	int res;
756 
757 	if (desc->page_index == 0) {
758 		desc->current_index = 0;
759 		desc->last_cookie = 0;
760 	}
761 	do {
762 		res = find_and_lock_cache_page(desc);
763 	} while (res == -EAGAIN);
764 	return res;
765 }
766 
767 /*
768  * Once we've found the start of the dirent within a page: fill 'er up...
769  */
770 static
771 int nfs_do_filldir(nfs_readdir_descriptor_t *desc)
772 {
773 	struct file	*file = desc->file;
774 	int i = 0;
775 	int res = 0;
776 	struct nfs_cache_array *array = NULL;
777 	struct nfs_open_dir_context *ctx = file->private_data;
778 
779 	array = kmap(desc->page);
780 	for (i = desc->cache_entry_index; i < array->size; i++) {
781 		struct nfs_cache_array_entry *ent;
782 
783 		ent = &array->array[i];
784 		if (!dir_emit(desc->ctx, ent->string.name, ent->string.len,
785 		    nfs_compat_user_ino64(ent->ino), ent->d_type)) {
786 			desc->eof = true;
787 			break;
788 		}
789 		desc->ctx->pos++;
790 		if (i < (array->size-1))
791 			*desc->dir_cookie = array->array[i+1].cookie;
792 		else
793 			*desc->dir_cookie = array->last_cookie;
794 		if (ctx->duped != 0)
795 			ctx->duped = 1;
796 	}
797 	if (array->eof_index >= 0)
798 		desc->eof = true;
799 
800 	kunmap(desc->page);
801 	dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling ended @ cookie %Lu; returning = %d\n",
802 			(unsigned long long)*desc->dir_cookie, res);
803 	return res;
804 }
805 
806 /*
807  * If we cannot find a cookie in our cache, we suspect that this is
808  * because it points to a deleted file, so we ask the server to return
809  * whatever it thinks is the next entry. We then feed this to filldir.
810  * If all goes well, we should then be able to find our way round the
811  * cache on the next call to readdir_search_pagecache();
812  *
813  * NOTE: we cannot add the anonymous page to the pagecache because
814  *	 the data it contains might not be page aligned. Besides,
815  *	 we should already have a complete representation of the
816  *	 directory in the page cache by the time we get here.
817  */
818 static inline
819 int uncached_readdir(nfs_readdir_descriptor_t *desc)
820 {
821 	struct page	*page = NULL;
822 	int		status;
823 	struct inode *inode = file_inode(desc->file);
824 	struct nfs_open_dir_context *ctx = desc->file->private_data;
825 
826 	dfprintk(DIRCACHE, "NFS: uncached_readdir() searching for cookie %Lu\n",
827 			(unsigned long long)*desc->dir_cookie);
828 
829 	page = alloc_page(GFP_HIGHUSER);
830 	if (!page) {
831 		status = -ENOMEM;
832 		goto out;
833 	}
834 
835 	desc->page_index = 0;
836 	desc->last_cookie = *desc->dir_cookie;
837 	desc->page = page;
838 	ctx->duped = 0;
839 
840 	status = nfs_readdir_xdr_to_array(desc, page, inode);
841 	if (status < 0)
842 		goto out_release;
843 
844 	status = nfs_do_filldir(desc);
845 
846  out_release:
847 	nfs_readdir_clear_array(desc->page);
848 	cache_page_release(desc);
849  out:
850 	dfprintk(DIRCACHE, "NFS: %s: returns %d\n",
851 			__func__, status);
852 	return status;
853 }
854 
855 /* The file offset position represents the dirent entry number.  A
856    last cookie cache takes care of the common case of reading the
857    whole directory.
858  */
859 static int nfs_readdir(struct file *file, struct dir_context *ctx)
860 {
861 	struct dentry	*dentry = file_dentry(file);
862 	struct inode	*inode = d_inode(dentry);
863 	nfs_readdir_descriptor_t my_desc,
864 			*desc = &my_desc;
865 	struct nfs_open_dir_context *dir_ctx = file->private_data;
866 	int res = 0;
867 
868 	dfprintk(FILE, "NFS: readdir(%pD2) starting at cookie %llu\n",
869 			file, (long long)ctx->pos);
870 	nfs_inc_stats(inode, NFSIOS_VFSGETDENTS);
871 
872 	/*
873 	 * ctx->pos points to the dirent entry number.
874 	 * *desc->dir_cookie has the cookie for the next entry. We have
875 	 * to either find the entry with the appropriate number or
876 	 * revalidate the cookie.
877 	 */
878 	memset(desc, 0, sizeof(*desc));
879 
880 	desc->file = file;
881 	desc->ctx = ctx;
882 	desc->dir_cookie = &dir_ctx->dir_cookie;
883 	desc->decode = NFS_PROTO(inode)->decode_dirent;
884 	desc->plus = nfs_use_readdirplus(inode, ctx);
885 
886 	if (ctx->pos == 0 || nfs_attribute_cache_expired(inode))
887 		res = nfs_revalidate_mapping(inode, file->f_mapping);
888 	if (res < 0)
889 		goto out;
890 
891 	do {
892 		res = readdir_search_pagecache(desc);
893 
894 		if (res == -EBADCOOKIE) {
895 			res = 0;
896 			/* This means either end of directory */
897 			if (*desc->dir_cookie && !desc->eof) {
898 				/* Or that the server has 'lost' a cookie */
899 				res = uncached_readdir(desc);
900 				if (res == 0)
901 					continue;
902 			}
903 			break;
904 		}
905 		if (res == -ETOOSMALL && desc->plus) {
906 			clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags);
907 			nfs_zap_caches(inode);
908 			desc->page_index = 0;
909 			desc->plus = false;
910 			desc->eof = false;
911 			continue;
912 		}
913 		if (res < 0)
914 			break;
915 
916 		res = nfs_do_filldir(desc);
917 		unlock_page(desc->page);
918 		cache_page_release(desc);
919 		if (res < 0)
920 			break;
921 	} while (!desc->eof);
922 out:
923 	if (res > 0)
924 		res = 0;
925 	dfprintk(FILE, "NFS: readdir(%pD2) returns %d\n", file, res);
926 	return res;
927 }
928 
929 static loff_t nfs_llseek_dir(struct file *filp, loff_t offset, int whence)
930 {
931 	struct inode *inode = file_inode(filp);
932 	struct nfs_open_dir_context *dir_ctx = filp->private_data;
933 
934 	dfprintk(FILE, "NFS: llseek dir(%pD2, %lld, %d)\n",
935 			filp, offset, whence);
936 
937 	switch (whence) {
938 	default:
939 		return -EINVAL;
940 	case SEEK_SET:
941 		if (offset < 0)
942 			return -EINVAL;
943 		inode_lock(inode);
944 		break;
945 	case SEEK_CUR:
946 		if (offset == 0)
947 			return filp->f_pos;
948 		inode_lock(inode);
949 		offset += filp->f_pos;
950 		if (offset < 0) {
951 			inode_unlock(inode);
952 			return -EINVAL;
953 		}
954 	}
955 	if (offset != filp->f_pos) {
956 		filp->f_pos = offset;
957 		dir_ctx->dir_cookie = 0;
958 		dir_ctx->duped = 0;
959 	}
960 	inode_unlock(inode);
961 	return offset;
962 }
963 
964 /*
965  * All directory operations under NFS are synchronous, so fsync()
966  * is a dummy operation.
967  */
968 static int nfs_fsync_dir(struct file *filp, loff_t start, loff_t end,
969 			 int datasync)
970 {
971 	struct inode *inode = file_inode(filp);
972 
973 	dfprintk(FILE, "NFS: fsync dir(%pD2) datasync %d\n", filp, datasync);
974 
975 	inode_lock(inode);
976 	nfs_inc_stats(inode, NFSIOS_VFSFSYNC);
977 	inode_unlock(inode);
978 	return 0;
979 }
980 
981 /**
982  * nfs_force_lookup_revalidate - Mark the directory as having changed
983  * @dir: pointer to directory inode
984  *
985  * This forces the revalidation code in nfs_lookup_revalidate() to do a
986  * full lookup on all child dentries of 'dir' whenever a change occurs
987  * on the server that might have invalidated our dcache.
988  *
989  * Note that we reserve bit '0' as a tag to let us know when a dentry
990  * was revalidated while holding a delegation on its inode.
991  *
992  * The caller should be holding dir->i_lock
993  */
994 void nfs_force_lookup_revalidate(struct inode *dir)
995 {
996 	NFS_I(dir)->cache_change_attribute += 2;
997 }
998 EXPORT_SYMBOL_GPL(nfs_force_lookup_revalidate);
999 
1000 /**
1001  * nfs_verify_change_attribute - Detects NFS remote directory changes
1002  * @dir: pointer to parent directory inode
1003  * @verf: previously saved change attribute
1004  *
1005  * Return "false" if the verifiers doesn't match the change attribute.
1006  * This would usually indicate that the directory contents have changed on
1007  * the server, and that any dentries need revalidating.
1008  */
1009 static bool nfs_verify_change_attribute(struct inode *dir, unsigned long verf)
1010 {
1011 	return (verf & ~1UL) == nfs_save_change_attribute(dir);
1012 }
1013 
1014 static void nfs_set_verifier_delegated(unsigned long *verf)
1015 {
1016 	*verf |= 1UL;
1017 }
1018 
1019 #if IS_ENABLED(CONFIG_NFS_V4)
1020 static void nfs_unset_verifier_delegated(unsigned long *verf)
1021 {
1022 	*verf &= ~1UL;
1023 }
1024 #endif /* IS_ENABLED(CONFIG_NFS_V4) */
1025 
1026 static bool nfs_test_verifier_delegated(unsigned long verf)
1027 {
1028 	return verf & 1;
1029 }
1030 
1031 static bool nfs_verifier_is_delegated(struct dentry *dentry)
1032 {
1033 	return nfs_test_verifier_delegated(dentry->d_time);
1034 }
1035 
1036 static void nfs_set_verifier_locked(struct dentry *dentry, unsigned long verf)
1037 {
1038 	struct inode *inode = d_inode(dentry);
1039 
1040 	if (!nfs_verifier_is_delegated(dentry) &&
1041 	    !nfs_verify_change_attribute(d_inode(dentry->d_parent), verf))
1042 		goto out;
1043 	if (inode && NFS_PROTO(inode)->have_delegation(inode, FMODE_READ))
1044 		nfs_set_verifier_delegated(&verf);
1045 out:
1046 	dentry->d_time = verf;
1047 }
1048 
1049 /**
1050  * nfs_set_verifier - save a parent directory verifier in the dentry
1051  * @dentry: pointer to dentry
1052  * @verf: verifier to save
1053  *
1054  * Saves the parent directory verifier in @dentry. If the inode has
1055  * a delegation, we also tag the dentry as having been revalidated
1056  * while holding a delegation so that we know we don't have to
1057  * look it up again after a directory change.
1058  */
1059 void nfs_set_verifier(struct dentry *dentry, unsigned long verf)
1060 {
1061 
1062 	spin_lock(&dentry->d_lock);
1063 	nfs_set_verifier_locked(dentry, verf);
1064 	spin_unlock(&dentry->d_lock);
1065 }
1066 EXPORT_SYMBOL_GPL(nfs_set_verifier);
1067 
1068 #if IS_ENABLED(CONFIG_NFS_V4)
1069 /**
1070  * nfs_clear_verifier_delegated - clear the dir verifier delegation tag
1071  * @inode: pointer to inode
1072  *
1073  * Iterates through the dentries in the inode alias list and clears
1074  * the tag used to indicate that the dentry has been revalidated
1075  * while holding a delegation.
1076  * This function is intended for use when the delegation is being
1077  * returned or revoked.
1078  */
1079 void nfs_clear_verifier_delegated(struct inode *inode)
1080 {
1081 	struct dentry *alias;
1082 
1083 	if (!inode)
1084 		return;
1085 	spin_lock(&inode->i_lock);
1086 	hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
1087 		spin_lock(&alias->d_lock);
1088 		nfs_unset_verifier_delegated(&alias->d_time);
1089 		spin_unlock(&alias->d_lock);
1090 	}
1091 	spin_unlock(&inode->i_lock);
1092 }
1093 EXPORT_SYMBOL_GPL(nfs_clear_verifier_delegated);
1094 #endif /* IS_ENABLED(CONFIG_NFS_V4) */
1095 
1096 /*
1097  * A check for whether or not the parent directory has changed.
1098  * In the case it has, we assume that the dentries are untrustworthy
1099  * and may need to be looked up again.
1100  * If rcu_walk prevents us from performing a full check, return 0.
1101  */
1102 static int nfs_check_verifier(struct inode *dir, struct dentry *dentry,
1103 			      int rcu_walk)
1104 {
1105 	if (IS_ROOT(dentry))
1106 		return 1;
1107 	if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONE)
1108 		return 0;
1109 	if (!nfs_verify_change_attribute(dir, dentry->d_time))
1110 		return 0;
1111 	/* Revalidate nfsi->cache_change_attribute before we declare a match */
1112 	if (nfs_mapping_need_revalidate_inode(dir)) {
1113 		if (rcu_walk)
1114 			return 0;
1115 		if (__nfs_revalidate_inode(NFS_SERVER(dir), dir) < 0)
1116 			return 0;
1117 	}
1118 	if (!nfs_verify_change_attribute(dir, dentry->d_time))
1119 		return 0;
1120 	return 1;
1121 }
1122 
1123 /*
1124  * Use intent information to check whether or not we're going to do
1125  * an O_EXCL create using this path component.
1126  */
1127 static int nfs_is_exclusive_create(struct inode *dir, unsigned int flags)
1128 {
1129 	if (NFS_PROTO(dir)->version == 2)
1130 		return 0;
1131 	return flags & LOOKUP_EXCL;
1132 }
1133 
1134 /*
1135  * Inode and filehandle revalidation for lookups.
1136  *
1137  * We force revalidation in the cases where the VFS sets LOOKUP_REVAL,
1138  * or if the intent information indicates that we're about to open this
1139  * particular file and the "nocto" mount flag is not set.
1140  *
1141  */
1142 static
1143 int nfs_lookup_verify_inode(struct inode *inode, unsigned int flags)
1144 {
1145 	struct nfs_server *server = NFS_SERVER(inode);
1146 	int ret;
1147 
1148 	if (IS_AUTOMOUNT(inode))
1149 		return 0;
1150 
1151 	if (flags & LOOKUP_OPEN) {
1152 		switch (inode->i_mode & S_IFMT) {
1153 		case S_IFREG:
1154 			/* A NFSv4 OPEN will revalidate later */
1155 			if (server->caps & NFS_CAP_ATOMIC_OPEN)
1156 				goto out;
1157 			/* Fallthrough */
1158 		case S_IFDIR:
1159 			if (server->flags & NFS_MOUNT_NOCTO)
1160 				break;
1161 			/* NFS close-to-open cache consistency validation */
1162 			goto out_force;
1163 		}
1164 	}
1165 
1166 	/* VFS wants an on-the-wire revalidation */
1167 	if (flags & LOOKUP_REVAL)
1168 		goto out_force;
1169 out:
1170 	return (inode->i_nlink == 0) ? -ESTALE : 0;
1171 out_force:
1172 	if (flags & LOOKUP_RCU)
1173 		return -ECHILD;
1174 	ret = __nfs_revalidate_inode(server, inode);
1175 	if (ret != 0)
1176 		return ret;
1177 	goto out;
1178 }
1179 
1180 /*
1181  * We judge how long we want to trust negative
1182  * dentries by looking at the parent inode mtime.
1183  *
1184  * If parent mtime has changed, we revalidate, else we wait for a
1185  * period corresponding to the parent's attribute cache timeout value.
1186  *
1187  * If LOOKUP_RCU prevents us from performing a full check, return 1
1188  * suggesting a reval is needed.
1189  *
1190  * Note that when creating a new file, or looking up a rename target,
1191  * then it shouldn't be necessary to revalidate a negative dentry.
1192  */
1193 static inline
1194 int nfs_neg_need_reval(struct inode *dir, struct dentry *dentry,
1195 		       unsigned int flags)
1196 {
1197 	if (flags & (LOOKUP_CREATE | LOOKUP_RENAME_TARGET))
1198 		return 0;
1199 	if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONEG)
1200 		return 1;
1201 	return !nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU);
1202 }
1203 
1204 static int
1205 nfs_lookup_revalidate_done(struct inode *dir, struct dentry *dentry,
1206 			   struct inode *inode, int error)
1207 {
1208 	switch (error) {
1209 	case 1:
1210 		dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) is valid\n",
1211 			__func__, dentry);
1212 		return 1;
1213 	case 0:
1214 		nfs_mark_for_revalidate(dir);
1215 		if (inode && S_ISDIR(inode->i_mode)) {
1216 			/* Purge readdir caches. */
1217 			nfs_zap_caches(inode);
1218 			/*
1219 			 * We can't d_drop the root of a disconnected tree:
1220 			 * its d_hash is on the s_anon list and d_drop() would hide
1221 			 * it from shrink_dcache_for_unmount(), leading to busy
1222 			 * inodes on unmount and further oopses.
1223 			 */
1224 			if (IS_ROOT(dentry))
1225 				return 1;
1226 		}
1227 		dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) is invalid\n",
1228 				__func__, dentry);
1229 		return 0;
1230 	}
1231 	dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) lookup returned error %d\n",
1232 				__func__, dentry, error);
1233 	return error;
1234 }
1235 
1236 static int
1237 nfs_lookup_revalidate_negative(struct inode *dir, struct dentry *dentry,
1238 			       unsigned int flags)
1239 {
1240 	int ret = 1;
1241 	if (nfs_neg_need_reval(dir, dentry, flags)) {
1242 		if (flags & LOOKUP_RCU)
1243 			return -ECHILD;
1244 		ret = 0;
1245 	}
1246 	return nfs_lookup_revalidate_done(dir, dentry, NULL, ret);
1247 }
1248 
1249 static int
1250 nfs_lookup_revalidate_delegated(struct inode *dir, struct dentry *dentry,
1251 				struct inode *inode)
1252 {
1253 	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1254 	return nfs_lookup_revalidate_done(dir, dentry, inode, 1);
1255 }
1256 
1257 static int
1258 nfs_lookup_revalidate_dentry(struct inode *dir, struct dentry *dentry,
1259 			     struct inode *inode)
1260 {
1261 	struct nfs_fh *fhandle;
1262 	struct nfs_fattr *fattr;
1263 	struct nfs4_label *label;
1264 	unsigned long dir_verifier;
1265 	int ret;
1266 
1267 	ret = -ENOMEM;
1268 	fhandle = nfs_alloc_fhandle();
1269 	fattr = nfs_alloc_fattr();
1270 	label = nfs4_label_alloc(NFS_SERVER(inode), GFP_KERNEL);
1271 	if (fhandle == NULL || fattr == NULL || IS_ERR(label))
1272 		goto out;
1273 
1274 	dir_verifier = nfs_save_change_attribute(dir);
1275 	ret = NFS_PROTO(dir)->lookup(dir, dentry, fhandle, fattr, label);
1276 	if (ret < 0) {
1277 		switch (ret) {
1278 		case -ESTALE:
1279 		case -ENOENT:
1280 			ret = 0;
1281 			break;
1282 		case -ETIMEDOUT:
1283 			if (NFS_SERVER(inode)->flags & NFS_MOUNT_SOFTREVAL)
1284 				ret = 1;
1285 		}
1286 		goto out;
1287 	}
1288 	ret = 0;
1289 	if (nfs_compare_fh(NFS_FH(inode), fhandle))
1290 		goto out;
1291 	if (nfs_refresh_inode(inode, fattr) < 0)
1292 		goto out;
1293 
1294 	nfs_setsecurity(inode, fattr, label);
1295 	nfs_set_verifier(dentry, dir_verifier);
1296 
1297 	/* set a readdirplus hint that we had a cache miss */
1298 	nfs_force_use_readdirplus(dir);
1299 	ret = 1;
1300 out:
1301 	nfs_free_fattr(fattr);
1302 	nfs_free_fhandle(fhandle);
1303 	nfs4_label_free(label);
1304 	return nfs_lookup_revalidate_done(dir, dentry, inode, ret);
1305 }
1306 
1307 /*
1308  * This is called every time the dcache has a lookup hit,
1309  * and we should check whether we can really trust that
1310  * lookup.
1311  *
1312  * NOTE! The hit can be a negative hit too, don't assume
1313  * we have an inode!
1314  *
1315  * If the parent directory is seen to have changed, we throw out the
1316  * cached dentry and do a new lookup.
1317  */
1318 static int
1319 nfs_do_lookup_revalidate(struct inode *dir, struct dentry *dentry,
1320 			 unsigned int flags)
1321 {
1322 	struct inode *inode;
1323 	int error;
1324 
1325 	nfs_inc_stats(dir, NFSIOS_DENTRYREVALIDATE);
1326 	inode = d_inode(dentry);
1327 
1328 	if (!inode)
1329 		return nfs_lookup_revalidate_negative(dir, dentry, flags);
1330 
1331 	if (is_bad_inode(inode)) {
1332 		dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n",
1333 				__func__, dentry);
1334 		goto out_bad;
1335 	}
1336 
1337 	if (nfs_verifier_is_delegated(dentry))
1338 		return nfs_lookup_revalidate_delegated(dir, dentry, inode);
1339 
1340 	/* Force a full look up iff the parent directory has changed */
1341 	if (!(flags & (LOOKUP_EXCL | LOOKUP_REVAL)) &&
1342 	    nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU)) {
1343 		error = nfs_lookup_verify_inode(inode, flags);
1344 		if (error) {
1345 			if (error == -ESTALE)
1346 				nfs_zap_caches(dir);
1347 			goto out_bad;
1348 		}
1349 		nfs_advise_use_readdirplus(dir);
1350 		goto out_valid;
1351 	}
1352 
1353 	if (flags & LOOKUP_RCU)
1354 		return -ECHILD;
1355 
1356 	if (NFS_STALE(inode))
1357 		goto out_bad;
1358 
1359 	trace_nfs_lookup_revalidate_enter(dir, dentry, flags);
1360 	error = nfs_lookup_revalidate_dentry(dir, dentry, inode);
1361 	trace_nfs_lookup_revalidate_exit(dir, dentry, flags, error);
1362 	return error;
1363 out_valid:
1364 	return nfs_lookup_revalidate_done(dir, dentry, inode, 1);
1365 out_bad:
1366 	if (flags & LOOKUP_RCU)
1367 		return -ECHILD;
1368 	return nfs_lookup_revalidate_done(dir, dentry, inode, 0);
1369 }
1370 
1371 static int
1372 __nfs_lookup_revalidate(struct dentry *dentry, unsigned int flags,
1373 			int (*reval)(struct inode *, struct dentry *, unsigned int))
1374 {
1375 	struct dentry *parent;
1376 	struct inode *dir;
1377 	int ret;
1378 
1379 	if (flags & LOOKUP_RCU) {
1380 		parent = READ_ONCE(dentry->d_parent);
1381 		dir = d_inode_rcu(parent);
1382 		if (!dir)
1383 			return -ECHILD;
1384 		ret = reval(dir, dentry, flags);
1385 		if (parent != READ_ONCE(dentry->d_parent))
1386 			return -ECHILD;
1387 	} else {
1388 		parent = dget_parent(dentry);
1389 		ret = reval(d_inode(parent), dentry, flags);
1390 		dput(parent);
1391 	}
1392 	return ret;
1393 }
1394 
1395 static int nfs_lookup_revalidate(struct dentry *dentry, unsigned int flags)
1396 {
1397 	return __nfs_lookup_revalidate(dentry, flags, nfs_do_lookup_revalidate);
1398 }
1399 
1400 /*
1401  * A weaker form of d_revalidate for revalidating just the d_inode(dentry)
1402  * when we don't really care about the dentry name. This is called when a
1403  * pathwalk ends on a dentry that was not found via a normal lookup in the
1404  * parent dir (e.g.: ".", "..", procfs symlinks or mountpoint traversals).
1405  *
1406  * In this situation, we just want to verify that the inode itself is OK
1407  * since the dentry might have changed on the server.
1408  */
1409 static int nfs_weak_revalidate(struct dentry *dentry, unsigned int flags)
1410 {
1411 	struct inode *inode = d_inode(dentry);
1412 	int error = 0;
1413 
1414 	/*
1415 	 * I believe we can only get a negative dentry here in the case of a
1416 	 * procfs-style symlink. Just assume it's correct for now, but we may
1417 	 * eventually need to do something more here.
1418 	 */
1419 	if (!inode) {
1420 		dfprintk(LOOKUPCACHE, "%s: %pd2 has negative inode\n",
1421 				__func__, dentry);
1422 		return 1;
1423 	}
1424 
1425 	if (is_bad_inode(inode)) {
1426 		dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n",
1427 				__func__, dentry);
1428 		return 0;
1429 	}
1430 
1431 	error = nfs_lookup_verify_inode(inode, flags);
1432 	dfprintk(LOOKUPCACHE, "NFS: %s: inode %lu is %s\n",
1433 			__func__, inode->i_ino, error ? "invalid" : "valid");
1434 	return !error;
1435 }
1436 
1437 /*
1438  * This is called from dput() when d_count is going to 0.
1439  */
1440 static int nfs_dentry_delete(const struct dentry *dentry)
1441 {
1442 	dfprintk(VFS, "NFS: dentry_delete(%pd2, %x)\n",
1443 		dentry, dentry->d_flags);
1444 
1445 	/* Unhash any dentry with a stale inode */
1446 	if (d_really_is_positive(dentry) && NFS_STALE(d_inode(dentry)))
1447 		return 1;
1448 
1449 	if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1450 		/* Unhash it, so that ->d_iput() would be called */
1451 		return 1;
1452 	}
1453 	if (!(dentry->d_sb->s_flags & SB_ACTIVE)) {
1454 		/* Unhash it, so that ancestors of killed async unlink
1455 		 * files will be cleaned up during umount */
1456 		return 1;
1457 	}
1458 	return 0;
1459 
1460 }
1461 
1462 /* Ensure that we revalidate inode->i_nlink */
1463 static void nfs_drop_nlink(struct inode *inode)
1464 {
1465 	spin_lock(&inode->i_lock);
1466 	/* drop the inode if we're reasonably sure this is the last link */
1467 	if (inode->i_nlink > 0)
1468 		drop_nlink(inode);
1469 	NFS_I(inode)->attr_gencount = nfs_inc_attr_generation_counter();
1470 	NFS_I(inode)->cache_validity |= NFS_INO_INVALID_CHANGE
1471 		| NFS_INO_INVALID_CTIME
1472 		| NFS_INO_INVALID_OTHER
1473 		| NFS_INO_REVAL_FORCED;
1474 	spin_unlock(&inode->i_lock);
1475 }
1476 
1477 /*
1478  * Called when the dentry loses inode.
1479  * We use it to clean up silly-renamed files.
1480  */
1481 static void nfs_dentry_iput(struct dentry *dentry, struct inode *inode)
1482 {
1483 	if (S_ISDIR(inode->i_mode))
1484 		/* drop any readdir cache as it could easily be old */
1485 		NFS_I(inode)->cache_validity |= NFS_INO_INVALID_DATA;
1486 
1487 	if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1488 		nfs_complete_unlink(dentry, inode);
1489 		nfs_drop_nlink(inode);
1490 	}
1491 	iput(inode);
1492 }
1493 
1494 static void nfs_d_release(struct dentry *dentry)
1495 {
1496 	/* free cached devname value, if it survived that far */
1497 	if (unlikely(dentry->d_fsdata)) {
1498 		if (dentry->d_flags & DCACHE_NFSFS_RENAMED)
1499 			WARN_ON(1);
1500 		else
1501 			kfree(dentry->d_fsdata);
1502 	}
1503 }
1504 
1505 const struct dentry_operations nfs_dentry_operations = {
1506 	.d_revalidate	= nfs_lookup_revalidate,
1507 	.d_weak_revalidate	= nfs_weak_revalidate,
1508 	.d_delete	= nfs_dentry_delete,
1509 	.d_iput		= nfs_dentry_iput,
1510 	.d_automount	= nfs_d_automount,
1511 	.d_release	= nfs_d_release,
1512 };
1513 EXPORT_SYMBOL_GPL(nfs_dentry_operations);
1514 
1515 struct dentry *nfs_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
1516 {
1517 	struct dentry *res;
1518 	struct inode *inode = NULL;
1519 	struct nfs_fh *fhandle = NULL;
1520 	struct nfs_fattr *fattr = NULL;
1521 	struct nfs4_label *label = NULL;
1522 	unsigned long dir_verifier;
1523 	int error;
1524 
1525 	dfprintk(VFS, "NFS: lookup(%pd2)\n", dentry);
1526 	nfs_inc_stats(dir, NFSIOS_VFSLOOKUP);
1527 
1528 	if (unlikely(dentry->d_name.len > NFS_SERVER(dir)->namelen))
1529 		return ERR_PTR(-ENAMETOOLONG);
1530 
1531 	/*
1532 	 * If we're doing an exclusive create, optimize away the lookup
1533 	 * but don't hash the dentry.
1534 	 */
1535 	if (nfs_is_exclusive_create(dir, flags) || flags & LOOKUP_RENAME_TARGET)
1536 		return NULL;
1537 
1538 	res = ERR_PTR(-ENOMEM);
1539 	fhandle = nfs_alloc_fhandle();
1540 	fattr = nfs_alloc_fattr();
1541 	if (fhandle == NULL || fattr == NULL)
1542 		goto out;
1543 
1544 	label = nfs4_label_alloc(NFS_SERVER(dir), GFP_NOWAIT);
1545 	if (IS_ERR(label))
1546 		goto out;
1547 
1548 	dir_verifier = nfs_save_change_attribute(dir);
1549 	trace_nfs_lookup_enter(dir, dentry, flags);
1550 	error = NFS_PROTO(dir)->lookup(dir, dentry, fhandle, fattr, label);
1551 	if (error == -ENOENT)
1552 		goto no_entry;
1553 	if (error < 0) {
1554 		res = ERR_PTR(error);
1555 		goto out_label;
1556 	}
1557 	inode = nfs_fhget(dentry->d_sb, fhandle, fattr, label);
1558 	res = ERR_CAST(inode);
1559 	if (IS_ERR(res))
1560 		goto out_label;
1561 
1562 	/* Notify readdir to use READDIRPLUS */
1563 	nfs_force_use_readdirplus(dir);
1564 
1565 no_entry:
1566 	res = d_splice_alias(inode, dentry);
1567 	if (res != NULL) {
1568 		if (IS_ERR(res))
1569 			goto out_label;
1570 		dentry = res;
1571 	}
1572 	nfs_set_verifier(dentry, dir_verifier);
1573 out_label:
1574 	trace_nfs_lookup_exit(dir, dentry, flags, error);
1575 	nfs4_label_free(label);
1576 out:
1577 	nfs_free_fattr(fattr);
1578 	nfs_free_fhandle(fhandle);
1579 	return res;
1580 }
1581 EXPORT_SYMBOL_GPL(nfs_lookup);
1582 
1583 #if IS_ENABLED(CONFIG_NFS_V4)
1584 static int nfs4_lookup_revalidate(struct dentry *, unsigned int);
1585 
1586 const struct dentry_operations nfs4_dentry_operations = {
1587 	.d_revalidate	= nfs4_lookup_revalidate,
1588 	.d_weak_revalidate	= nfs_weak_revalidate,
1589 	.d_delete	= nfs_dentry_delete,
1590 	.d_iput		= nfs_dentry_iput,
1591 	.d_automount	= nfs_d_automount,
1592 	.d_release	= nfs_d_release,
1593 };
1594 EXPORT_SYMBOL_GPL(nfs4_dentry_operations);
1595 
1596 static fmode_t flags_to_mode(int flags)
1597 {
1598 	fmode_t res = (__force fmode_t)flags & FMODE_EXEC;
1599 	if ((flags & O_ACCMODE) != O_WRONLY)
1600 		res |= FMODE_READ;
1601 	if ((flags & O_ACCMODE) != O_RDONLY)
1602 		res |= FMODE_WRITE;
1603 	return res;
1604 }
1605 
1606 static struct nfs_open_context *create_nfs_open_context(struct dentry *dentry, int open_flags, struct file *filp)
1607 {
1608 	return alloc_nfs_open_context(dentry, flags_to_mode(open_flags), filp);
1609 }
1610 
1611 static int do_open(struct inode *inode, struct file *filp)
1612 {
1613 	nfs_fscache_open_file(inode, filp);
1614 	return 0;
1615 }
1616 
1617 static int nfs_finish_open(struct nfs_open_context *ctx,
1618 			   struct dentry *dentry,
1619 			   struct file *file, unsigned open_flags)
1620 {
1621 	int err;
1622 
1623 	err = finish_open(file, dentry, do_open);
1624 	if (err)
1625 		goto out;
1626 	if (S_ISREG(file->f_path.dentry->d_inode->i_mode))
1627 		nfs_file_set_open_context(file, ctx);
1628 	else
1629 		err = -EOPENSTALE;
1630 out:
1631 	return err;
1632 }
1633 
1634 int nfs_atomic_open(struct inode *dir, struct dentry *dentry,
1635 		    struct file *file, unsigned open_flags,
1636 		    umode_t mode)
1637 {
1638 	DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
1639 	struct nfs_open_context *ctx;
1640 	struct dentry *res;
1641 	struct iattr attr = { .ia_valid = ATTR_OPEN };
1642 	struct inode *inode;
1643 	unsigned int lookup_flags = 0;
1644 	bool switched = false;
1645 	int created = 0;
1646 	int err;
1647 
1648 	/* Expect a negative dentry */
1649 	BUG_ON(d_inode(dentry));
1650 
1651 	dfprintk(VFS, "NFS: atomic_open(%s/%lu), %pd\n",
1652 			dir->i_sb->s_id, dir->i_ino, dentry);
1653 
1654 	err = nfs_check_flags(open_flags);
1655 	if (err)
1656 		return err;
1657 
1658 	/* NFS only supports OPEN on regular files */
1659 	if ((open_flags & O_DIRECTORY)) {
1660 		if (!d_in_lookup(dentry)) {
1661 			/*
1662 			 * Hashed negative dentry with O_DIRECTORY: dentry was
1663 			 * revalidated and is fine, no need to perform lookup
1664 			 * again
1665 			 */
1666 			return -ENOENT;
1667 		}
1668 		lookup_flags = LOOKUP_OPEN|LOOKUP_DIRECTORY;
1669 		goto no_open;
1670 	}
1671 
1672 	if (dentry->d_name.len > NFS_SERVER(dir)->namelen)
1673 		return -ENAMETOOLONG;
1674 
1675 	if (open_flags & O_CREAT) {
1676 		struct nfs_server *server = NFS_SERVER(dir);
1677 
1678 		if (!(server->attr_bitmask[2] & FATTR4_WORD2_MODE_UMASK))
1679 			mode &= ~current_umask();
1680 
1681 		attr.ia_valid |= ATTR_MODE;
1682 		attr.ia_mode = mode;
1683 	}
1684 	if (open_flags & O_TRUNC) {
1685 		attr.ia_valid |= ATTR_SIZE;
1686 		attr.ia_size = 0;
1687 	}
1688 
1689 	if (!(open_flags & O_CREAT) && !d_in_lookup(dentry)) {
1690 		d_drop(dentry);
1691 		switched = true;
1692 		dentry = d_alloc_parallel(dentry->d_parent,
1693 					  &dentry->d_name, &wq);
1694 		if (IS_ERR(dentry))
1695 			return PTR_ERR(dentry);
1696 		if (unlikely(!d_in_lookup(dentry)))
1697 			return finish_no_open(file, dentry);
1698 	}
1699 
1700 	ctx = create_nfs_open_context(dentry, open_flags, file);
1701 	err = PTR_ERR(ctx);
1702 	if (IS_ERR(ctx))
1703 		goto out;
1704 
1705 	trace_nfs_atomic_open_enter(dir, ctx, open_flags);
1706 	inode = NFS_PROTO(dir)->open_context(dir, ctx, open_flags, &attr, &created);
1707 	if (created)
1708 		file->f_mode |= FMODE_CREATED;
1709 	if (IS_ERR(inode)) {
1710 		err = PTR_ERR(inode);
1711 		trace_nfs_atomic_open_exit(dir, ctx, open_flags, err);
1712 		put_nfs_open_context(ctx);
1713 		d_drop(dentry);
1714 		switch (err) {
1715 		case -ENOENT:
1716 			d_splice_alias(NULL, dentry);
1717 			nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1718 			break;
1719 		case -EISDIR:
1720 		case -ENOTDIR:
1721 			goto no_open;
1722 		case -ELOOP:
1723 			if (!(open_flags & O_NOFOLLOW))
1724 				goto no_open;
1725 			break;
1726 			/* case -EINVAL: */
1727 		default:
1728 			break;
1729 		}
1730 		goto out;
1731 	}
1732 
1733 	err = nfs_finish_open(ctx, ctx->dentry, file, open_flags);
1734 	trace_nfs_atomic_open_exit(dir, ctx, open_flags, err);
1735 	put_nfs_open_context(ctx);
1736 out:
1737 	if (unlikely(switched)) {
1738 		d_lookup_done(dentry);
1739 		dput(dentry);
1740 	}
1741 	return err;
1742 
1743 no_open:
1744 	res = nfs_lookup(dir, dentry, lookup_flags);
1745 	if (switched) {
1746 		d_lookup_done(dentry);
1747 		if (!res)
1748 			res = dentry;
1749 		else
1750 			dput(dentry);
1751 	}
1752 	if (IS_ERR(res))
1753 		return PTR_ERR(res);
1754 	return finish_no_open(file, res);
1755 }
1756 EXPORT_SYMBOL_GPL(nfs_atomic_open);
1757 
1758 static int
1759 nfs4_do_lookup_revalidate(struct inode *dir, struct dentry *dentry,
1760 			  unsigned int flags)
1761 {
1762 	struct inode *inode;
1763 
1764 	if (!(flags & LOOKUP_OPEN) || (flags & LOOKUP_DIRECTORY))
1765 		goto full_reval;
1766 	if (d_mountpoint(dentry))
1767 		goto full_reval;
1768 
1769 	inode = d_inode(dentry);
1770 
1771 	/* We can't create new files in nfs_open_revalidate(), so we
1772 	 * optimize away revalidation of negative dentries.
1773 	 */
1774 	if (inode == NULL)
1775 		goto full_reval;
1776 
1777 	if (nfs_verifier_is_delegated(dentry))
1778 		return nfs_lookup_revalidate_delegated(dir, dentry, inode);
1779 
1780 	/* NFS only supports OPEN on regular files */
1781 	if (!S_ISREG(inode->i_mode))
1782 		goto full_reval;
1783 
1784 	/* We cannot do exclusive creation on a positive dentry */
1785 	if (flags & (LOOKUP_EXCL | LOOKUP_REVAL))
1786 		goto reval_dentry;
1787 
1788 	/* Check if the directory changed */
1789 	if (!nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU))
1790 		goto reval_dentry;
1791 
1792 	/* Let f_op->open() actually open (and revalidate) the file */
1793 	return 1;
1794 reval_dentry:
1795 	if (flags & LOOKUP_RCU)
1796 		return -ECHILD;
1797 	return nfs_lookup_revalidate_dentry(dir, dentry, inode);
1798 
1799 full_reval:
1800 	return nfs_do_lookup_revalidate(dir, dentry, flags);
1801 }
1802 
1803 static int nfs4_lookup_revalidate(struct dentry *dentry, unsigned int flags)
1804 {
1805 	return __nfs_lookup_revalidate(dentry, flags,
1806 			nfs4_do_lookup_revalidate);
1807 }
1808 
1809 #endif /* CONFIG_NFSV4 */
1810 
1811 struct dentry *
1812 nfs_add_or_obtain(struct dentry *dentry, struct nfs_fh *fhandle,
1813 				struct nfs_fattr *fattr,
1814 				struct nfs4_label *label)
1815 {
1816 	struct dentry *parent = dget_parent(dentry);
1817 	struct inode *dir = d_inode(parent);
1818 	struct inode *inode;
1819 	struct dentry *d;
1820 	int error;
1821 
1822 	d_drop(dentry);
1823 
1824 	if (fhandle->size == 0) {
1825 		error = NFS_PROTO(dir)->lookup(dir, dentry, fhandle, fattr, NULL);
1826 		if (error)
1827 			goto out_error;
1828 	}
1829 	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1830 	if (!(fattr->valid & NFS_ATTR_FATTR)) {
1831 		struct nfs_server *server = NFS_SB(dentry->d_sb);
1832 		error = server->nfs_client->rpc_ops->getattr(server, fhandle,
1833 				fattr, NULL, NULL);
1834 		if (error < 0)
1835 			goto out_error;
1836 	}
1837 	inode = nfs_fhget(dentry->d_sb, fhandle, fattr, label);
1838 	d = d_splice_alias(inode, dentry);
1839 out:
1840 	dput(parent);
1841 	return d;
1842 out_error:
1843 	nfs_mark_for_revalidate(dir);
1844 	d = ERR_PTR(error);
1845 	goto out;
1846 }
1847 EXPORT_SYMBOL_GPL(nfs_add_or_obtain);
1848 
1849 /*
1850  * Code common to create, mkdir, and mknod.
1851  */
1852 int nfs_instantiate(struct dentry *dentry, struct nfs_fh *fhandle,
1853 				struct nfs_fattr *fattr,
1854 				struct nfs4_label *label)
1855 {
1856 	struct dentry *d;
1857 
1858 	d = nfs_add_or_obtain(dentry, fhandle, fattr, label);
1859 	if (IS_ERR(d))
1860 		return PTR_ERR(d);
1861 
1862 	/* Callers don't care */
1863 	dput(d);
1864 	return 0;
1865 }
1866 EXPORT_SYMBOL_GPL(nfs_instantiate);
1867 
1868 /*
1869  * Following a failed create operation, we drop the dentry rather
1870  * than retain a negative dentry. This avoids a problem in the event
1871  * that the operation succeeded on the server, but an error in the
1872  * reply path made it appear to have failed.
1873  */
1874 int nfs_create(struct inode *dir, struct dentry *dentry,
1875 		umode_t mode, bool excl)
1876 {
1877 	struct iattr attr;
1878 	int open_flags = excl ? O_CREAT | O_EXCL : O_CREAT;
1879 	int error;
1880 
1881 	dfprintk(VFS, "NFS: create(%s/%lu), %pd\n",
1882 			dir->i_sb->s_id, dir->i_ino, dentry);
1883 
1884 	attr.ia_mode = mode;
1885 	attr.ia_valid = ATTR_MODE;
1886 
1887 	trace_nfs_create_enter(dir, dentry, open_flags);
1888 	error = NFS_PROTO(dir)->create(dir, dentry, &attr, open_flags);
1889 	trace_nfs_create_exit(dir, dentry, open_flags, error);
1890 	if (error != 0)
1891 		goto out_err;
1892 	return 0;
1893 out_err:
1894 	d_drop(dentry);
1895 	return error;
1896 }
1897 EXPORT_SYMBOL_GPL(nfs_create);
1898 
1899 /*
1900  * See comments for nfs_proc_create regarding failed operations.
1901  */
1902 int
1903 nfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t rdev)
1904 {
1905 	struct iattr attr;
1906 	int status;
1907 
1908 	dfprintk(VFS, "NFS: mknod(%s/%lu), %pd\n",
1909 			dir->i_sb->s_id, dir->i_ino, dentry);
1910 
1911 	attr.ia_mode = mode;
1912 	attr.ia_valid = ATTR_MODE;
1913 
1914 	trace_nfs_mknod_enter(dir, dentry);
1915 	status = NFS_PROTO(dir)->mknod(dir, dentry, &attr, rdev);
1916 	trace_nfs_mknod_exit(dir, dentry, status);
1917 	if (status != 0)
1918 		goto out_err;
1919 	return 0;
1920 out_err:
1921 	d_drop(dentry);
1922 	return status;
1923 }
1924 EXPORT_SYMBOL_GPL(nfs_mknod);
1925 
1926 /*
1927  * See comments for nfs_proc_create regarding failed operations.
1928  */
1929 int nfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
1930 {
1931 	struct iattr attr;
1932 	int error;
1933 
1934 	dfprintk(VFS, "NFS: mkdir(%s/%lu), %pd\n",
1935 			dir->i_sb->s_id, dir->i_ino, dentry);
1936 
1937 	attr.ia_valid = ATTR_MODE;
1938 	attr.ia_mode = mode | S_IFDIR;
1939 
1940 	trace_nfs_mkdir_enter(dir, dentry);
1941 	error = NFS_PROTO(dir)->mkdir(dir, dentry, &attr);
1942 	trace_nfs_mkdir_exit(dir, dentry, error);
1943 	if (error != 0)
1944 		goto out_err;
1945 	return 0;
1946 out_err:
1947 	d_drop(dentry);
1948 	return error;
1949 }
1950 EXPORT_SYMBOL_GPL(nfs_mkdir);
1951 
1952 static void nfs_dentry_handle_enoent(struct dentry *dentry)
1953 {
1954 	if (simple_positive(dentry))
1955 		d_delete(dentry);
1956 }
1957 
1958 int nfs_rmdir(struct inode *dir, struct dentry *dentry)
1959 {
1960 	int error;
1961 
1962 	dfprintk(VFS, "NFS: rmdir(%s/%lu), %pd\n",
1963 			dir->i_sb->s_id, dir->i_ino, dentry);
1964 
1965 	trace_nfs_rmdir_enter(dir, dentry);
1966 	if (d_really_is_positive(dentry)) {
1967 		down_write(&NFS_I(d_inode(dentry))->rmdir_sem);
1968 		error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
1969 		/* Ensure the VFS deletes this inode */
1970 		switch (error) {
1971 		case 0:
1972 			clear_nlink(d_inode(dentry));
1973 			break;
1974 		case -ENOENT:
1975 			nfs_dentry_handle_enoent(dentry);
1976 		}
1977 		up_write(&NFS_I(d_inode(dentry))->rmdir_sem);
1978 	} else
1979 		error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
1980 	trace_nfs_rmdir_exit(dir, dentry, error);
1981 
1982 	return error;
1983 }
1984 EXPORT_SYMBOL_GPL(nfs_rmdir);
1985 
1986 /*
1987  * Remove a file after making sure there are no pending writes,
1988  * and after checking that the file has only one user.
1989  *
1990  * We invalidate the attribute cache and free the inode prior to the operation
1991  * to avoid possible races if the server reuses the inode.
1992  */
1993 static int nfs_safe_remove(struct dentry *dentry)
1994 {
1995 	struct inode *dir = d_inode(dentry->d_parent);
1996 	struct inode *inode = d_inode(dentry);
1997 	int error = -EBUSY;
1998 
1999 	dfprintk(VFS, "NFS: safe_remove(%pd2)\n", dentry);
2000 
2001 	/* If the dentry was sillyrenamed, we simply call d_delete() */
2002 	if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
2003 		error = 0;
2004 		goto out;
2005 	}
2006 
2007 	trace_nfs_remove_enter(dir, dentry);
2008 	if (inode != NULL) {
2009 		error = NFS_PROTO(dir)->remove(dir, dentry);
2010 		if (error == 0)
2011 			nfs_drop_nlink(inode);
2012 	} else
2013 		error = NFS_PROTO(dir)->remove(dir, dentry);
2014 	if (error == -ENOENT)
2015 		nfs_dentry_handle_enoent(dentry);
2016 	trace_nfs_remove_exit(dir, dentry, error);
2017 out:
2018 	return error;
2019 }
2020 
2021 /*  We do silly rename. In case sillyrename() returns -EBUSY, the inode
2022  *  belongs to an active ".nfs..." file and we return -EBUSY.
2023  *
2024  *  If sillyrename() returns 0, we do nothing, otherwise we unlink.
2025  */
2026 int nfs_unlink(struct inode *dir, struct dentry *dentry)
2027 {
2028 	int error;
2029 	int need_rehash = 0;
2030 
2031 	dfprintk(VFS, "NFS: unlink(%s/%lu, %pd)\n", dir->i_sb->s_id,
2032 		dir->i_ino, dentry);
2033 
2034 	trace_nfs_unlink_enter(dir, dentry);
2035 	spin_lock(&dentry->d_lock);
2036 	if (d_count(dentry) > 1) {
2037 		spin_unlock(&dentry->d_lock);
2038 		/* Start asynchronous writeout of the inode */
2039 		write_inode_now(d_inode(dentry), 0);
2040 		error = nfs_sillyrename(dir, dentry);
2041 		goto out;
2042 	}
2043 	if (!d_unhashed(dentry)) {
2044 		__d_drop(dentry);
2045 		need_rehash = 1;
2046 	}
2047 	spin_unlock(&dentry->d_lock);
2048 	error = nfs_safe_remove(dentry);
2049 	if (!error || error == -ENOENT) {
2050 		nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
2051 	} else if (need_rehash)
2052 		d_rehash(dentry);
2053 out:
2054 	trace_nfs_unlink_exit(dir, dentry, error);
2055 	return error;
2056 }
2057 EXPORT_SYMBOL_GPL(nfs_unlink);
2058 
2059 /*
2060  * To create a symbolic link, most file systems instantiate a new inode,
2061  * add a page to it containing the path, then write it out to the disk
2062  * using prepare_write/commit_write.
2063  *
2064  * Unfortunately the NFS client can't create the in-core inode first
2065  * because it needs a file handle to create an in-core inode (see
2066  * fs/nfs/inode.c:nfs_fhget).  We only have a file handle *after* the
2067  * symlink request has completed on the server.
2068  *
2069  * So instead we allocate a raw page, copy the symname into it, then do
2070  * the SYMLINK request with the page as the buffer.  If it succeeds, we
2071  * now have a new file handle and can instantiate an in-core NFS inode
2072  * and move the raw page into its mapping.
2073  */
2074 int nfs_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
2075 {
2076 	struct page *page;
2077 	char *kaddr;
2078 	struct iattr attr;
2079 	unsigned int pathlen = strlen(symname);
2080 	int error;
2081 
2082 	dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s)\n", dir->i_sb->s_id,
2083 		dir->i_ino, dentry, symname);
2084 
2085 	if (pathlen > PAGE_SIZE)
2086 		return -ENAMETOOLONG;
2087 
2088 	attr.ia_mode = S_IFLNK | S_IRWXUGO;
2089 	attr.ia_valid = ATTR_MODE;
2090 
2091 	page = alloc_page(GFP_USER);
2092 	if (!page)
2093 		return -ENOMEM;
2094 
2095 	kaddr = page_address(page);
2096 	memcpy(kaddr, symname, pathlen);
2097 	if (pathlen < PAGE_SIZE)
2098 		memset(kaddr + pathlen, 0, PAGE_SIZE - pathlen);
2099 
2100 	trace_nfs_symlink_enter(dir, dentry);
2101 	error = NFS_PROTO(dir)->symlink(dir, dentry, page, pathlen, &attr);
2102 	trace_nfs_symlink_exit(dir, dentry, error);
2103 	if (error != 0) {
2104 		dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s) error %d\n",
2105 			dir->i_sb->s_id, dir->i_ino,
2106 			dentry, symname, error);
2107 		d_drop(dentry);
2108 		__free_page(page);
2109 		return error;
2110 	}
2111 
2112 	/*
2113 	 * No big deal if we can't add this page to the page cache here.
2114 	 * READLINK will get the missing page from the server if needed.
2115 	 */
2116 	if (!add_to_page_cache_lru(page, d_inode(dentry)->i_mapping, 0,
2117 							GFP_KERNEL)) {
2118 		SetPageUptodate(page);
2119 		unlock_page(page);
2120 		/*
2121 		 * add_to_page_cache_lru() grabs an extra page refcount.
2122 		 * Drop it here to avoid leaking this page later.
2123 		 */
2124 		put_page(page);
2125 	} else
2126 		__free_page(page);
2127 
2128 	return 0;
2129 }
2130 EXPORT_SYMBOL_GPL(nfs_symlink);
2131 
2132 int
2133 nfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2134 {
2135 	struct inode *inode = d_inode(old_dentry);
2136 	int error;
2137 
2138 	dfprintk(VFS, "NFS: link(%pd2 -> %pd2)\n",
2139 		old_dentry, dentry);
2140 
2141 	trace_nfs_link_enter(inode, dir, dentry);
2142 	d_drop(dentry);
2143 	error = NFS_PROTO(dir)->link(inode, dir, &dentry->d_name);
2144 	if (error == 0) {
2145 		ihold(inode);
2146 		d_add(dentry, inode);
2147 	}
2148 	trace_nfs_link_exit(inode, dir, dentry, error);
2149 	return error;
2150 }
2151 EXPORT_SYMBOL_GPL(nfs_link);
2152 
2153 /*
2154  * RENAME
2155  * FIXME: Some nfsds, like the Linux user space nfsd, may generate a
2156  * different file handle for the same inode after a rename (e.g. when
2157  * moving to a different directory). A fail-safe method to do so would
2158  * be to look up old_dir/old_name, create a link to new_dir/new_name and
2159  * rename the old file using the sillyrename stuff. This way, the original
2160  * file in old_dir will go away when the last process iput()s the inode.
2161  *
2162  * FIXED.
2163  *
2164  * It actually works quite well. One needs to have the possibility for
2165  * at least one ".nfs..." file in each directory the file ever gets
2166  * moved or linked to which happens automagically with the new
2167  * implementation that only depends on the dcache stuff instead of
2168  * using the inode layer
2169  *
2170  * Unfortunately, things are a little more complicated than indicated
2171  * above. For a cross-directory move, we want to make sure we can get
2172  * rid of the old inode after the operation.  This means there must be
2173  * no pending writes (if it's a file), and the use count must be 1.
2174  * If these conditions are met, we can drop the dentries before doing
2175  * the rename.
2176  */
2177 int nfs_rename(struct inode *old_dir, struct dentry *old_dentry,
2178 	       struct inode *new_dir, struct dentry *new_dentry,
2179 	       unsigned int flags)
2180 {
2181 	struct inode *old_inode = d_inode(old_dentry);
2182 	struct inode *new_inode = d_inode(new_dentry);
2183 	struct dentry *dentry = NULL, *rehash = NULL;
2184 	struct rpc_task *task;
2185 	int error = -EBUSY;
2186 
2187 	if (flags)
2188 		return -EINVAL;
2189 
2190 	dfprintk(VFS, "NFS: rename(%pd2 -> %pd2, ct=%d)\n",
2191 		 old_dentry, new_dentry,
2192 		 d_count(new_dentry));
2193 
2194 	trace_nfs_rename_enter(old_dir, old_dentry, new_dir, new_dentry);
2195 	/*
2196 	 * For non-directories, check whether the target is busy and if so,
2197 	 * make a copy of the dentry and then do a silly-rename. If the
2198 	 * silly-rename succeeds, the copied dentry is hashed and becomes
2199 	 * the new target.
2200 	 */
2201 	if (new_inode && !S_ISDIR(new_inode->i_mode)) {
2202 		/*
2203 		 * To prevent any new references to the target during the
2204 		 * rename, we unhash the dentry in advance.
2205 		 */
2206 		if (!d_unhashed(new_dentry)) {
2207 			d_drop(new_dentry);
2208 			rehash = new_dentry;
2209 		}
2210 
2211 		if (d_count(new_dentry) > 2) {
2212 			int err;
2213 
2214 			/* copy the target dentry's name */
2215 			dentry = d_alloc(new_dentry->d_parent,
2216 					 &new_dentry->d_name);
2217 			if (!dentry)
2218 				goto out;
2219 
2220 			/* silly-rename the existing target ... */
2221 			err = nfs_sillyrename(new_dir, new_dentry);
2222 			if (err)
2223 				goto out;
2224 
2225 			new_dentry = dentry;
2226 			rehash = NULL;
2227 			new_inode = NULL;
2228 		}
2229 	}
2230 
2231 	task = nfs_async_rename(old_dir, new_dir, old_dentry, new_dentry, NULL);
2232 	if (IS_ERR(task)) {
2233 		error = PTR_ERR(task);
2234 		goto out;
2235 	}
2236 
2237 	error = rpc_wait_for_completion_task(task);
2238 	if (error != 0) {
2239 		((struct nfs_renamedata *)task->tk_calldata)->cancelled = 1;
2240 		/* Paired with the atomic_dec_and_test() barrier in rpc_do_put_task() */
2241 		smp_wmb();
2242 	} else
2243 		error = task->tk_status;
2244 	rpc_put_task(task);
2245 	/* Ensure the inode attributes are revalidated */
2246 	if (error == 0) {
2247 		spin_lock(&old_inode->i_lock);
2248 		NFS_I(old_inode)->attr_gencount = nfs_inc_attr_generation_counter();
2249 		NFS_I(old_inode)->cache_validity |= NFS_INO_INVALID_CHANGE
2250 			| NFS_INO_INVALID_CTIME
2251 			| NFS_INO_REVAL_FORCED;
2252 		spin_unlock(&old_inode->i_lock);
2253 	}
2254 out:
2255 	if (rehash)
2256 		d_rehash(rehash);
2257 	trace_nfs_rename_exit(old_dir, old_dentry,
2258 			new_dir, new_dentry, error);
2259 	if (!error) {
2260 		if (new_inode != NULL)
2261 			nfs_drop_nlink(new_inode);
2262 		/*
2263 		 * The d_move() should be here instead of in an async RPC completion
2264 		 * handler because we need the proper locks to move the dentry.  If
2265 		 * we're interrupted by a signal, the async RPC completion handler
2266 		 * should mark the directories for revalidation.
2267 		 */
2268 		d_move(old_dentry, new_dentry);
2269 		nfs_set_verifier(old_dentry,
2270 					nfs_save_change_attribute(new_dir));
2271 	} else if (error == -ENOENT)
2272 		nfs_dentry_handle_enoent(old_dentry);
2273 
2274 	/* new dentry created? */
2275 	if (dentry)
2276 		dput(dentry);
2277 	return error;
2278 }
2279 EXPORT_SYMBOL_GPL(nfs_rename);
2280 
2281 static DEFINE_SPINLOCK(nfs_access_lru_lock);
2282 static LIST_HEAD(nfs_access_lru_list);
2283 static atomic_long_t nfs_access_nr_entries;
2284 
2285 static unsigned long nfs_access_max_cachesize = ULONG_MAX;
2286 module_param(nfs_access_max_cachesize, ulong, 0644);
2287 MODULE_PARM_DESC(nfs_access_max_cachesize, "NFS access maximum total cache length");
2288 
2289 static void nfs_access_free_entry(struct nfs_access_entry *entry)
2290 {
2291 	put_cred(entry->cred);
2292 	kfree_rcu(entry, rcu_head);
2293 	smp_mb__before_atomic();
2294 	atomic_long_dec(&nfs_access_nr_entries);
2295 	smp_mb__after_atomic();
2296 }
2297 
2298 static void nfs_access_free_list(struct list_head *head)
2299 {
2300 	struct nfs_access_entry *cache;
2301 
2302 	while (!list_empty(head)) {
2303 		cache = list_entry(head->next, struct nfs_access_entry, lru);
2304 		list_del(&cache->lru);
2305 		nfs_access_free_entry(cache);
2306 	}
2307 }
2308 
2309 static unsigned long
2310 nfs_do_access_cache_scan(unsigned int nr_to_scan)
2311 {
2312 	LIST_HEAD(head);
2313 	struct nfs_inode *nfsi, *next;
2314 	struct nfs_access_entry *cache;
2315 	long freed = 0;
2316 
2317 	spin_lock(&nfs_access_lru_lock);
2318 	list_for_each_entry_safe(nfsi, next, &nfs_access_lru_list, access_cache_inode_lru) {
2319 		struct inode *inode;
2320 
2321 		if (nr_to_scan-- == 0)
2322 			break;
2323 		inode = &nfsi->vfs_inode;
2324 		spin_lock(&inode->i_lock);
2325 		if (list_empty(&nfsi->access_cache_entry_lru))
2326 			goto remove_lru_entry;
2327 		cache = list_entry(nfsi->access_cache_entry_lru.next,
2328 				struct nfs_access_entry, lru);
2329 		list_move(&cache->lru, &head);
2330 		rb_erase(&cache->rb_node, &nfsi->access_cache);
2331 		freed++;
2332 		if (!list_empty(&nfsi->access_cache_entry_lru))
2333 			list_move_tail(&nfsi->access_cache_inode_lru,
2334 					&nfs_access_lru_list);
2335 		else {
2336 remove_lru_entry:
2337 			list_del_init(&nfsi->access_cache_inode_lru);
2338 			smp_mb__before_atomic();
2339 			clear_bit(NFS_INO_ACL_LRU_SET, &nfsi->flags);
2340 			smp_mb__after_atomic();
2341 		}
2342 		spin_unlock(&inode->i_lock);
2343 	}
2344 	spin_unlock(&nfs_access_lru_lock);
2345 	nfs_access_free_list(&head);
2346 	return freed;
2347 }
2348 
2349 unsigned long
2350 nfs_access_cache_scan(struct shrinker *shrink, struct shrink_control *sc)
2351 {
2352 	int nr_to_scan = sc->nr_to_scan;
2353 	gfp_t gfp_mask = sc->gfp_mask;
2354 
2355 	if ((gfp_mask & GFP_KERNEL) != GFP_KERNEL)
2356 		return SHRINK_STOP;
2357 	return nfs_do_access_cache_scan(nr_to_scan);
2358 }
2359 
2360 
2361 unsigned long
2362 nfs_access_cache_count(struct shrinker *shrink, struct shrink_control *sc)
2363 {
2364 	return vfs_pressure_ratio(atomic_long_read(&nfs_access_nr_entries));
2365 }
2366 
2367 static void
2368 nfs_access_cache_enforce_limit(void)
2369 {
2370 	long nr_entries = atomic_long_read(&nfs_access_nr_entries);
2371 	unsigned long diff;
2372 	unsigned int nr_to_scan;
2373 
2374 	if (nr_entries < 0 || nr_entries <= nfs_access_max_cachesize)
2375 		return;
2376 	nr_to_scan = 100;
2377 	diff = nr_entries - nfs_access_max_cachesize;
2378 	if (diff < nr_to_scan)
2379 		nr_to_scan = diff;
2380 	nfs_do_access_cache_scan(nr_to_scan);
2381 }
2382 
2383 static void __nfs_access_zap_cache(struct nfs_inode *nfsi, struct list_head *head)
2384 {
2385 	struct rb_root *root_node = &nfsi->access_cache;
2386 	struct rb_node *n;
2387 	struct nfs_access_entry *entry;
2388 
2389 	/* Unhook entries from the cache */
2390 	while ((n = rb_first(root_node)) != NULL) {
2391 		entry = rb_entry(n, struct nfs_access_entry, rb_node);
2392 		rb_erase(n, root_node);
2393 		list_move(&entry->lru, head);
2394 	}
2395 	nfsi->cache_validity &= ~NFS_INO_INVALID_ACCESS;
2396 }
2397 
2398 void nfs_access_zap_cache(struct inode *inode)
2399 {
2400 	LIST_HEAD(head);
2401 
2402 	if (test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags) == 0)
2403 		return;
2404 	/* Remove from global LRU init */
2405 	spin_lock(&nfs_access_lru_lock);
2406 	if (test_and_clear_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
2407 		list_del_init(&NFS_I(inode)->access_cache_inode_lru);
2408 
2409 	spin_lock(&inode->i_lock);
2410 	__nfs_access_zap_cache(NFS_I(inode), &head);
2411 	spin_unlock(&inode->i_lock);
2412 	spin_unlock(&nfs_access_lru_lock);
2413 	nfs_access_free_list(&head);
2414 }
2415 EXPORT_SYMBOL_GPL(nfs_access_zap_cache);
2416 
2417 static struct nfs_access_entry *nfs_access_search_rbtree(struct inode *inode, const struct cred *cred)
2418 {
2419 	struct rb_node *n = NFS_I(inode)->access_cache.rb_node;
2420 
2421 	while (n != NULL) {
2422 		struct nfs_access_entry *entry =
2423 			rb_entry(n, struct nfs_access_entry, rb_node);
2424 		int cmp = cred_fscmp(cred, entry->cred);
2425 
2426 		if (cmp < 0)
2427 			n = n->rb_left;
2428 		else if (cmp > 0)
2429 			n = n->rb_right;
2430 		else
2431 			return entry;
2432 	}
2433 	return NULL;
2434 }
2435 
2436 static int nfs_access_get_cached(struct inode *inode, const struct cred *cred, struct nfs_access_entry *res, bool may_block)
2437 {
2438 	struct nfs_inode *nfsi = NFS_I(inode);
2439 	struct nfs_access_entry *cache;
2440 	bool retry = true;
2441 	int err;
2442 
2443 	spin_lock(&inode->i_lock);
2444 	for(;;) {
2445 		if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
2446 			goto out_zap;
2447 		cache = nfs_access_search_rbtree(inode, cred);
2448 		err = -ENOENT;
2449 		if (cache == NULL)
2450 			goto out;
2451 		/* Found an entry, is our attribute cache valid? */
2452 		if (!nfs_check_cache_invalid(inode, NFS_INO_INVALID_ACCESS))
2453 			break;
2454 		if (!retry)
2455 			break;
2456 		err = -ECHILD;
2457 		if (!may_block)
2458 			goto out;
2459 		spin_unlock(&inode->i_lock);
2460 		err = __nfs_revalidate_inode(NFS_SERVER(inode), inode);
2461 		if (err)
2462 			return err;
2463 		spin_lock(&inode->i_lock);
2464 		retry = false;
2465 	}
2466 	res->cred = cache->cred;
2467 	res->mask = cache->mask;
2468 	list_move_tail(&cache->lru, &nfsi->access_cache_entry_lru);
2469 	err = 0;
2470 out:
2471 	spin_unlock(&inode->i_lock);
2472 	return err;
2473 out_zap:
2474 	spin_unlock(&inode->i_lock);
2475 	nfs_access_zap_cache(inode);
2476 	return -ENOENT;
2477 }
2478 
2479 static int nfs_access_get_cached_rcu(struct inode *inode, const struct cred *cred, struct nfs_access_entry *res)
2480 {
2481 	/* Only check the most recently returned cache entry,
2482 	 * but do it without locking.
2483 	 */
2484 	struct nfs_inode *nfsi = NFS_I(inode);
2485 	struct nfs_access_entry *cache;
2486 	int err = -ECHILD;
2487 	struct list_head *lh;
2488 
2489 	rcu_read_lock();
2490 	if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
2491 		goto out;
2492 	lh = rcu_dereference(nfsi->access_cache_entry_lru.prev);
2493 	cache = list_entry(lh, struct nfs_access_entry, lru);
2494 	if (lh == &nfsi->access_cache_entry_lru ||
2495 	    cred_fscmp(cred, cache->cred) != 0)
2496 		cache = NULL;
2497 	if (cache == NULL)
2498 		goto out;
2499 	if (nfs_check_cache_invalid(inode, NFS_INO_INVALID_ACCESS))
2500 		goto out;
2501 	res->cred = cache->cred;
2502 	res->mask = cache->mask;
2503 	err = 0;
2504 out:
2505 	rcu_read_unlock();
2506 	return err;
2507 }
2508 
2509 static void nfs_access_add_rbtree(struct inode *inode, struct nfs_access_entry *set)
2510 {
2511 	struct nfs_inode *nfsi = NFS_I(inode);
2512 	struct rb_root *root_node = &nfsi->access_cache;
2513 	struct rb_node **p = &root_node->rb_node;
2514 	struct rb_node *parent = NULL;
2515 	struct nfs_access_entry *entry;
2516 	int cmp;
2517 
2518 	spin_lock(&inode->i_lock);
2519 	while (*p != NULL) {
2520 		parent = *p;
2521 		entry = rb_entry(parent, struct nfs_access_entry, rb_node);
2522 		cmp = cred_fscmp(set->cred, entry->cred);
2523 
2524 		if (cmp < 0)
2525 			p = &parent->rb_left;
2526 		else if (cmp > 0)
2527 			p = &parent->rb_right;
2528 		else
2529 			goto found;
2530 	}
2531 	rb_link_node(&set->rb_node, parent, p);
2532 	rb_insert_color(&set->rb_node, root_node);
2533 	list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
2534 	spin_unlock(&inode->i_lock);
2535 	return;
2536 found:
2537 	rb_replace_node(parent, &set->rb_node, root_node);
2538 	list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
2539 	list_del(&entry->lru);
2540 	spin_unlock(&inode->i_lock);
2541 	nfs_access_free_entry(entry);
2542 }
2543 
2544 void nfs_access_add_cache(struct inode *inode, struct nfs_access_entry *set)
2545 {
2546 	struct nfs_access_entry *cache = kmalloc(sizeof(*cache), GFP_KERNEL);
2547 	if (cache == NULL)
2548 		return;
2549 	RB_CLEAR_NODE(&cache->rb_node);
2550 	cache->cred = get_cred(set->cred);
2551 	cache->mask = set->mask;
2552 
2553 	/* The above field assignments must be visible
2554 	 * before this item appears on the lru.  We cannot easily
2555 	 * use rcu_assign_pointer, so just force the memory barrier.
2556 	 */
2557 	smp_wmb();
2558 	nfs_access_add_rbtree(inode, cache);
2559 
2560 	/* Update accounting */
2561 	smp_mb__before_atomic();
2562 	atomic_long_inc(&nfs_access_nr_entries);
2563 	smp_mb__after_atomic();
2564 
2565 	/* Add inode to global LRU list */
2566 	if (!test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) {
2567 		spin_lock(&nfs_access_lru_lock);
2568 		if (!test_and_set_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
2569 			list_add_tail(&NFS_I(inode)->access_cache_inode_lru,
2570 					&nfs_access_lru_list);
2571 		spin_unlock(&nfs_access_lru_lock);
2572 	}
2573 	nfs_access_cache_enforce_limit();
2574 }
2575 EXPORT_SYMBOL_GPL(nfs_access_add_cache);
2576 
2577 #define NFS_MAY_READ (NFS_ACCESS_READ)
2578 #define NFS_MAY_WRITE (NFS_ACCESS_MODIFY | \
2579 		NFS_ACCESS_EXTEND | \
2580 		NFS_ACCESS_DELETE)
2581 #define NFS_FILE_MAY_WRITE (NFS_ACCESS_MODIFY | \
2582 		NFS_ACCESS_EXTEND)
2583 #define NFS_DIR_MAY_WRITE NFS_MAY_WRITE
2584 #define NFS_MAY_LOOKUP (NFS_ACCESS_LOOKUP)
2585 #define NFS_MAY_EXECUTE (NFS_ACCESS_EXECUTE)
2586 static int
2587 nfs_access_calc_mask(u32 access_result, umode_t umode)
2588 {
2589 	int mask = 0;
2590 
2591 	if (access_result & NFS_MAY_READ)
2592 		mask |= MAY_READ;
2593 	if (S_ISDIR(umode)) {
2594 		if ((access_result & NFS_DIR_MAY_WRITE) == NFS_DIR_MAY_WRITE)
2595 			mask |= MAY_WRITE;
2596 		if ((access_result & NFS_MAY_LOOKUP) == NFS_MAY_LOOKUP)
2597 			mask |= MAY_EXEC;
2598 	} else if (S_ISREG(umode)) {
2599 		if ((access_result & NFS_FILE_MAY_WRITE) == NFS_FILE_MAY_WRITE)
2600 			mask |= MAY_WRITE;
2601 		if ((access_result & NFS_MAY_EXECUTE) == NFS_MAY_EXECUTE)
2602 			mask |= MAY_EXEC;
2603 	} else if (access_result & NFS_MAY_WRITE)
2604 			mask |= MAY_WRITE;
2605 	return mask;
2606 }
2607 
2608 void nfs_access_set_mask(struct nfs_access_entry *entry, u32 access_result)
2609 {
2610 	entry->mask = access_result;
2611 }
2612 EXPORT_SYMBOL_GPL(nfs_access_set_mask);
2613 
2614 static int nfs_do_access(struct inode *inode, const struct cred *cred, int mask)
2615 {
2616 	struct nfs_access_entry cache;
2617 	bool may_block = (mask & MAY_NOT_BLOCK) == 0;
2618 	int cache_mask = -1;
2619 	int status;
2620 
2621 	trace_nfs_access_enter(inode);
2622 
2623 	status = nfs_access_get_cached_rcu(inode, cred, &cache);
2624 	if (status != 0)
2625 		status = nfs_access_get_cached(inode, cred, &cache, may_block);
2626 	if (status == 0)
2627 		goto out_cached;
2628 
2629 	status = -ECHILD;
2630 	if (!may_block)
2631 		goto out;
2632 
2633 	/*
2634 	 * Determine which access bits we want to ask for...
2635 	 */
2636 	cache.mask = NFS_ACCESS_READ | NFS_ACCESS_MODIFY | NFS_ACCESS_EXTEND;
2637 	if (S_ISDIR(inode->i_mode))
2638 		cache.mask |= NFS_ACCESS_DELETE | NFS_ACCESS_LOOKUP;
2639 	else
2640 		cache.mask |= NFS_ACCESS_EXECUTE;
2641 	cache.cred = cred;
2642 	status = NFS_PROTO(inode)->access(inode, &cache);
2643 	if (status != 0) {
2644 		if (status == -ESTALE) {
2645 			nfs_zap_caches(inode);
2646 			if (!S_ISDIR(inode->i_mode))
2647 				set_bit(NFS_INO_STALE, &NFS_I(inode)->flags);
2648 		}
2649 		goto out;
2650 	}
2651 	nfs_access_add_cache(inode, &cache);
2652 out_cached:
2653 	cache_mask = nfs_access_calc_mask(cache.mask, inode->i_mode);
2654 	if ((mask & ~cache_mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) != 0)
2655 		status = -EACCES;
2656 out:
2657 	trace_nfs_access_exit(inode, mask, cache_mask, status);
2658 	return status;
2659 }
2660 
2661 static int nfs_open_permission_mask(int openflags)
2662 {
2663 	int mask = 0;
2664 
2665 	if (openflags & __FMODE_EXEC) {
2666 		/* ONLY check exec rights */
2667 		mask = MAY_EXEC;
2668 	} else {
2669 		if ((openflags & O_ACCMODE) != O_WRONLY)
2670 			mask |= MAY_READ;
2671 		if ((openflags & O_ACCMODE) != O_RDONLY)
2672 			mask |= MAY_WRITE;
2673 	}
2674 
2675 	return mask;
2676 }
2677 
2678 int nfs_may_open(struct inode *inode, const struct cred *cred, int openflags)
2679 {
2680 	return nfs_do_access(inode, cred, nfs_open_permission_mask(openflags));
2681 }
2682 EXPORT_SYMBOL_GPL(nfs_may_open);
2683 
2684 static int nfs_execute_ok(struct inode *inode, int mask)
2685 {
2686 	struct nfs_server *server = NFS_SERVER(inode);
2687 	int ret = 0;
2688 
2689 	if (S_ISDIR(inode->i_mode))
2690 		return 0;
2691 	if (nfs_check_cache_invalid(inode, NFS_INO_INVALID_OTHER)) {
2692 		if (mask & MAY_NOT_BLOCK)
2693 			return -ECHILD;
2694 		ret = __nfs_revalidate_inode(server, inode);
2695 	}
2696 	if (ret == 0 && !execute_ok(inode))
2697 		ret = -EACCES;
2698 	return ret;
2699 }
2700 
2701 int nfs_permission(struct inode *inode, int mask)
2702 {
2703 	const struct cred *cred = current_cred();
2704 	int res = 0;
2705 
2706 	nfs_inc_stats(inode, NFSIOS_VFSACCESS);
2707 
2708 	if ((mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
2709 		goto out;
2710 	/* Is this sys_access() ? */
2711 	if (mask & (MAY_ACCESS | MAY_CHDIR))
2712 		goto force_lookup;
2713 
2714 	switch (inode->i_mode & S_IFMT) {
2715 		case S_IFLNK:
2716 			goto out;
2717 		case S_IFREG:
2718 			if ((mask & MAY_OPEN) &&
2719 			   nfs_server_capable(inode, NFS_CAP_ATOMIC_OPEN))
2720 				return 0;
2721 			break;
2722 		case S_IFDIR:
2723 			/*
2724 			 * Optimize away all write operations, since the server
2725 			 * will check permissions when we perform the op.
2726 			 */
2727 			if ((mask & MAY_WRITE) && !(mask & MAY_READ))
2728 				goto out;
2729 	}
2730 
2731 force_lookup:
2732 	if (!NFS_PROTO(inode)->access)
2733 		goto out_notsup;
2734 
2735 	/* Always try fast lookups first */
2736 	rcu_read_lock();
2737 	res = nfs_do_access(inode, cred, mask|MAY_NOT_BLOCK);
2738 	rcu_read_unlock();
2739 	if (res == -ECHILD && !(mask & MAY_NOT_BLOCK)) {
2740 		/* Fast lookup failed, try the slow way */
2741 		res = nfs_do_access(inode, cred, mask);
2742 	}
2743 out:
2744 	if (!res && (mask & MAY_EXEC))
2745 		res = nfs_execute_ok(inode, mask);
2746 
2747 	dfprintk(VFS, "NFS: permission(%s/%lu), mask=0x%x, res=%d\n",
2748 		inode->i_sb->s_id, inode->i_ino, mask, res);
2749 	return res;
2750 out_notsup:
2751 	if (mask & MAY_NOT_BLOCK)
2752 		return -ECHILD;
2753 
2754 	res = nfs_revalidate_inode(NFS_SERVER(inode), inode);
2755 	if (res == 0)
2756 		res = generic_permission(inode, mask);
2757 	goto out;
2758 }
2759 EXPORT_SYMBOL_GPL(nfs_permission);
2760 
2761 /*
2762  * Local variables:
2763  *  version-control: t
2764  *  kept-new-versions: 5
2765  * End:
2766  */
2767