1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/fs/nfs/dir.c
4 *
5 * Copyright (C) 1992 Rick Sladkey
6 *
7 * nfs directory handling functions
8 *
9 * 10 Apr 1996 Added silly rename for unlink --okir
10 * 28 Sep 1996 Improved directory cache --okir
11 * 23 Aug 1997 Claus Heine claus@momo.math.rwth-aachen.de
12 * Re-implemented silly rename for unlink, newly implemented
13 * silly rename for nfs_rename() following the suggestions
14 * of Olaf Kirch (okir) found in this file.
15 * Following Linus comments on my original hack, this version
16 * depends only on the dcache stuff and doesn't touch the inode
17 * layer (iput() and friends).
18 * 6 Jun 1999 Cache readdir lookups in the page cache. -DaveM
19 */
20
21 #include <linux/compat.h>
22 #include <linux/module.h>
23 #include <linux/time.h>
24 #include <linux/errno.h>
25 #include <linux/stat.h>
26 #include <linux/fcntl.h>
27 #include <linux/string.h>
28 #include <linux/kernel.h>
29 #include <linux/slab.h>
30 #include <linux/mm.h>
31 #include <linux/sunrpc/clnt.h>
32 #include <linux/nfs_fs.h>
33 #include <linux/nfs_mount.h>
34 #include <linux/pagemap.h>
35 #include <linux/pagevec.h>
36 #include <linux/namei.h>
37 #include <linux/mount.h>
38 #include <linux/swap.h>
39 #include <linux/sched.h>
40 #include <linux/kmemleak.h>
41 #include <linux/xattr.h>
42 #include <linux/hash.h>
43
44 #include "delegation.h"
45 #include "iostat.h"
46 #include "internal.h"
47 #include "fscache.h"
48
49 #include "nfstrace.h"
50
51 /* #define NFS_DEBUG_VERBOSE 1 */
52
53 static int nfs_opendir(struct inode *, struct file *);
54 static int nfs_closedir(struct inode *, struct file *);
55 static int nfs_readdir(struct file *, struct dir_context *);
56 static int nfs_fsync_dir(struct file *, loff_t, loff_t, int);
57 static loff_t nfs_llseek_dir(struct file *, loff_t, int);
58 static void nfs_readdir_clear_array(struct folio *);
59
60 const struct file_operations nfs_dir_operations = {
61 .llseek = nfs_llseek_dir,
62 .read = generic_read_dir,
63 .iterate_shared = nfs_readdir,
64 .open = nfs_opendir,
65 .release = nfs_closedir,
66 .fsync = nfs_fsync_dir,
67 };
68
69 const struct address_space_operations nfs_dir_aops = {
70 .free_folio = nfs_readdir_clear_array,
71 };
72
73 #define NFS_INIT_DTSIZE PAGE_SIZE
74
75 static struct nfs_open_dir_context *
alloc_nfs_open_dir_context(struct inode * dir)76 alloc_nfs_open_dir_context(struct inode *dir)
77 {
78 struct nfs_inode *nfsi = NFS_I(dir);
79 struct nfs_open_dir_context *ctx;
80
81 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL_ACCOUNT);
82 if (ctx != NULL) {
83 ctx->attr_gencount = nfsi->attr_gencount;
84 ctx->dtsize = NFS_INIT_DTSIZE;
85 spin_lock(&dir->i_lock);
86 if (list_empty(&nfsi->open_files) &&
87 (nfsi->cache_validity & NFS_INO_DATA_INVAL_DEFER))
88 nfs_set_cache_invalid(dir,
89 NFS_INO_INVALID_DATA |
90 NFS_INO_REVAL_FORCED);
91 list_add_tail_rcu(&ctx->list, &nfsi->open_files);
92 memcpy(ctx->verf, nfsi->cookieverf, sizeof(ctx->verf));
93 spin_unlock(&dir->i_lock);
94 return ctx;
95 }
96 return ERR_PTR(-ENOMEM);
97 }
98
put_nfs_open_dir_context(struct inode * dir,struct nfs_open_dir_context * ctx)99 static void put_nfs_open_dir_context(struct inode *dir, struct nfs_open_dir_context *ctx)
100 {
101 spin_lock(&dir->i_lock);
102 list_del_rcu(&ctx->list);
103 spin_unlock(&dir->i_lock);
104 kfree_rcu(ctx, rcu_head);
105 }
106
107 /*
108 * Open file
109 */
110 static int
nfs_opendir(struct inode * inode,struct file * filp)111 nfs_opendir(struct inode *inode, struct file *filp)
112 {
113 int res = 0;
114 struct nfs_open_dir_context *ctx;
115
116 dfprintk(FILE, "NFS: open dir(%pD2)\n", filp);
117
118 nfs_inc_stats(inode, NFSIOS_VFSOPEN);
119
120 ctx = alloc_nfs_open_dir_context(inode);
121 if (IS_ERR(ctx)) {
122 res = PTR_ERR(ctx);
123 goto out;
124 }
125 filp->private_data = ctx;
126 out:
127 return res;
128 }
129
130 static int
nfs_closedir(struct inode * inode,struct file * filp)131 nfs_closedir(struct inode *inode, struct file *filp)
132 {
133 put_nfs_open_dir_context(file_inode(filp), filp->private_data);
134 return 0;
135 }
136
137 struct nfs_cache_array_entry {
138 u64 cookie;
139 u64 ino;
140 const char *name;
141 unsigned int name_len;
142 unsigned char d_type;
143 };
144
145 struct nfs_cache_array {
146 u64 change_attr;
147 u64 last_cookie;
148 unsigned int size;
149 unsigned char folio_full : 1,
150 folio_is_eof : 1,
151 cookies_are_ordered : 1;
152 struct nfs_cache_array_entry array[];
153 };
154
155 struct nfs_readdir_descriptor {
156 struct file *file;
157 struct folio *folio;
158 struct dir_context *ctx;
159 pgoff_t folio_index;
160 pgoff_t folio_index_max;
161 u64 dir_cookie;
162 u64 last_cookie;
163 loff_t current_index;
164
165 __be32 verf[NFS_DIR_VERIFIER_SIZE];
166 unsigned long dir_verifier;
167 unsigned long timestamp;
168 unsigned long gencount;
169 unsigned long attr_gencount;
170 unsigned int cache_entry_index;
171 unsigned int buffer_fills;
172 unsigned int dtsize;
173 bool clear_cache;
174 bool plus;
175 bool eob;
176 bool eof;
177 };
178
nfs_set_dtsize(struct nfs_readdir_descriptor * desc,unsigned int sz)179 static void nfs_set_dtsize(struct nfs_readdir_descriptor *desc, unsigned int sz)
180 {
181 struct nfs_server *server = NFS_SERVER(file_inode(desc->file));
182 unsigned int maxsize = server->dtsize;
183
184 if (sz > maxsize)
185 sz = maxsize;
186 if (sz < NFS_MIN_FILE_IO_SIZE)
187 sz = NFS_MIN_FILE_IO_SIZE;
188 desc->dtsize = sz;
189 }
190
nfs_shrink_dtsize(struct nfs_readdir_descriptor * desc)191 static void nfs_shrink_dtsize(struct nfs_readdir_descriptor *desc)
192 {
193 nfs_set_dtsize(desc, desc->dtsize >> 1);
194 }
195
nfs_grow_dtsize(struct nfs_readdir_descriptor * desc)196 static void nfs_grow_dtsize(struct nfs_readdir_descriptor *desc)
197 {
198 nfs_set_dtsize(desc, desc->dtsize << 1);
199 }
200
nfs_readdir_folio_init_array(struct folio * folio,u64 last_cookie,u64 change_attr)201 static void nfs_readdir_folio_init_array(struct folio *folio, u64 last_cookie,
202 u64 change_attr)
203 {
204 struct nfs_cache_array *array;
205
206 array = kmap_local_folio(folio, 0);
207 array->change_attr = change_attr;
208 array->last_cookie = last_cookie;
209 array->size = 0;
210 array->folio_full = 0;
211 array->folio_is_eof = 0;
212 array->cookies_are_ordered = 1;
213 kunmap_local(array);
214 }
215
216 /*
217 * we are freeing strings created by nfs_add_to_readdir_array()
218 */
nfs_readdir_clear_array(struct folio * folio)219 static void nfs_readdir_clear_array(struct folio *folio)
220 {
221 struct nfs_cache_array *array;
222 unsigned int i;
223
224 array = kmap_local_folio(folio, 0);
225 for (i = 0; i < array->size; i++)
226 kfree(array->array[i].name);
227 array->size = 0;
228 kunmap_local(array);
229 }
230
nfs_readdir_folio_reinit_array(struct folio * folio,u64 last_cookie,u64 change_attr)231 static void nfs_readdir_folio_reinit_array(struct folio *folio, u64 last_cookie,
232 u64 change_attr)
233 {
234 nfs_readdir_clear_array(folio);
235 nfs_readdir_folio_init_array(folio, last_cookie, change_attr);
236 }
237
238 static struct folio *
nfs_readdir_folio_array_alloc(u64 last_cookie,gfp_t gfp_flags)239 nfs_readdir_folio_array_alloc(u64 last_cookie, gfp_t gfp_flags)
240 {
241 struct folio *folio = folio_alloc(gfp_flags, 0);
242 if (folio)
243 nfs_readdir_folio_init_array(folio, last_cookie, 0);
244 return folio;
245 }
246
nfs_readdir_folio_array_free(struct folio * folio)247 static void nfs_readdir_folio_array_free(struct folio *folio)
248 {
249 if (folio) {
250 nfs_readdir_clear_array(folio);
251 folio_put(folio);
252 }
253 }
254
nfs_readdir_array_index_cookie(struct nfs_cache_array * array)255 static u64 nfs_readdir_array_index_cookie(struct nfs_cache_array *array)
256 {
257 return array->size == 0 ? array->last_cookie : array->array[0].cookie;
258 }
259
nfs_readdir_array_set_eof(struct nfs_cache_array * array)260 static void nfs_readdir_array_set_eof(struct nfs_cache_array *array)
261 {
262 array->folio_is_eof = 1;
263 array->folio_full = 1;
264 }
265
nfs_readdir_array_is_full(struct nfs_cache_array * array)266 static bool nfs_readdir_array_is_full(struct nfs_cache_array *array)
267 {
268 return array->folio_full;
269 }
270
271 /*
272 * the caller is responsible for freeing qstr.name
273 * when called by nfs_readdir_add_to_array, the strings will be freed in
274 * nfs_clear_readdir_array()
275 */
nfs_readdir_copy_name(const char * name,unsigned int len)276 static const char *nfs_readdir_copy_name(const char *name, unsigned int len)
277 {
278 const char *ret = kmemdup_nul(name, len, GFP_KERNEL);
279
280 /*
281 * Avoid a kmemleak false positive. The pointer to the name is stored
282 * in a page cache page which kmemleak does not scan.
283 */
284 if (ret != NULL)
285 kmemleak_not_leak(ret);
286 return ret;
287 }
288
nfs_readdir_array_maxentries(void)289 static size_t nfs_readdir_array_maxentries(void)
290 {
291 return (PAGE_SIZE - sizeof(struct nfs_cache_array)) /
292 sizeof(struct nfs_cache_array_entry);
293 }
294
295 /*
296 * Check that the next array entry lies entirely within the page bounds
297 */
nfs_readdir_array_can_expand(struct nfs_cache_array * array)298 static int nfs_readdir_array_can_expand(struct nfs_cache_array *array)
299 {
300 if (array->folio_full)
301 return -ENOSPC;
302 if (array->size == nfs_readdir_array_maxentries()) {
303 array->folio_full = 1;
304 return -ENOSPC;
305 }
306 return 0;
307 }
308
nfs_readdir_folio_array_append(struct folio * folio,const struct nfs_entry * entry,u64 * cookie)309 static int nfs_readdir_folio_array_append(struct folio *folio,
310 const struct nfs_entry *entry,
311 u64 *cookie)
312 {
313 struct nfs_cache_array *array;
314 struct nfs_cache_array_entry *cache_entry;
315 const char *name;
316 int ret = -ENOMEM;
317
318 name = nfs_readdir_copy_name(entry->name, entry->len);
319
320 array = kmap_local_folio(folio, 0);
321 if (!name)
322 goto out;
323 ret = nfs_readdir_array_can_expand(array);
324 if (ret) {
325 kfree(name);
326 goto out;
327 }
328
329 cache_entry = &array->array[array->size];
330 cache_entry->cookie = array->last_cookie;
331 cache_entry->ino = entry->ino;
332 cache_entry->d_type = entry->d_type;
333 cache_entry->name_len = entry->len;
334 cache_entry->name = name;
335 array->last_cookie = entry->cookie;
336 if (array->last_cookie <= cache_entry->cookie)
337 array->cookies_are_ordered = 0;
338 array->size++;
339 if (entry->eof != 0)
340 nfs_readdir_array_set_eof(array);
341 out:
342 *cookie = array->last_cookie;
343 kunmap_local(array);
344 return ret;
345 }
346
347 #define NFS_READDIR_COOKIE_MASK (U32_MAX >> 14)
348 /*
349 * Hash algorithm allowing content addressible access to sequences
350 * of directory cookies. Content is addressed by the value of the
351 * cookie index of the first readdir entry in a page.
352 *
353 * We select only the first 18 bits to avoid issues with excessive
354 * memory use for the page cache XArray. 18 bits should allow the caching
355 * of 262144 pages of sequences of readdir entries. Since each page holds
356 * 127 readdir entries for a typical 64-bit system, that works out to a
357 * cache of ~ 33 million entries per directory.
358 */
nfs_readdir_folio_cookie_hash(u64 cookie)359 static pgoff_t nfs_readdir_folio_cookie_hash(u64 cookie)
360 {
361 if (cookie == 0)
362 return 0;
363 return hash_64(cookie, 18);
364 }
365
nfs_readdir_folio_validate(struct folio * folio,u64 last_cookie,u64 change_attr)366 static bool nfs_readdir_folio_validate(struct folio *folio, u64 last_cookie,
367 u64 change_attr)
368 {
369 struct nfs_cache_array *array = kmap_local_folio(folio, 0);
370 int ret = true;
371
372 if (array->change_attr != change_attr)
373 ret = false;
374 if (nfs_readdir_array_index_cookie(array) != last_cookie)
375 ret = false;
376 kunmap_local(array);
377 return ret;
378 }
379
nfs_readdir_folio_unlock_and_put(struct folio * folio)380 static void nfs_readdir_folio_unlock_and_put(struct folio *folio)
381 {
382 folio_unlock(folio);
383 folio_put(folio);
384 }
385
nfs_readdir_folio_init_and_validate(struct folio * folio,u64 cookie,u64 change_attr)386 static void nfs_readdir_folio_init_and_validate(struct folio *folio, u64 cookie,
387 u64 change_attr)
388 {
389 if (folio_test_uptodate(folio)) {
390 if (nfs_readdir_folio_validate(folio, cookie, change_attr))
391 return;
392 nfs_readdir_clear_array(folio);
393 }
394 nfs_readdir_folio_init_array(folio, cookie, change_attr);
395 folio_mark_uptodate(folio);
396 }
397
nfs_readdir_folio_get_locked(struct address_space * mapping,u64 cookie,u64 change_attr)398 static struct folio *nfs_readdir_folio_get_locked(struct address_space *mapping,
399 u64 cookie, u64 change_attr)
400 {
401 pgoff_t index = nfs_readdir_folio_cookie_hash(cookie);
402 struct folio *folio;
403
404 folio = filemap_grab_folio(mapping, index);
405 if (IS_ERR(folio))
406 return NULL;
407 nfs_readdir_folio_init_and_validate(folio, cookie, change_attr);
408 return folio;
409 }
410
nfs_readdir_folio_last_cookie(struct folio * folio)411 static u64 nfs_readdir_folio_last_cookie(struct folio *folio)
412 {
413 struct nfs_cache_array *array;
414 u64 ret;
415
416 array = kmap_local_folio(folio, 0);
417 ret = array->last_cookie;
418 kunmap_local(array);
419 return ret;
420 }
421
nfs_readdir_folio_needs_filling(struct folio * folio)422 static bool nfs_readdir_folio_needs_filling(struct folio *folio)
423 {
424 struct nfs_cache_array *array;
425 bool ret;
426
427 array = kmap_local_folio(folio, 0);
428 ret = !nfs_readdir_array_is_full(array);
429 kunmap_local(array);
430 return ret;
431 }
432
nfs_readdir_folio_set_eof(struct folio * folio)433 static void nfs_readdir_folio_set_eof(struct folio *folio)
434 {
435 struct nfs_cache_array *array;
436
437 array = kmap_local_folio(folio, 0);
438 nfs_readdir_array_set_eof(array);
439 kunmap_local(array);
440 }
441
nfs_readdir_folio_get_next(struct address_space * mapping,u64 cookie,u64 change_attr)442 static struct folio *nfs_readdir_folio_get_next(struct address_space *mapping,
443 u64 cookie, u64 change_attr)
444 {
445 pgoff_t index = nfs_readdir_folio_cookie_hash(cookie);
446 struct folio *folio;
447
448 folio = __filemap_get_folio(mapping, index,
449 FGP_LOCK|FGP_CREAT|FGP_NOFS|FGP_NOWAIT,
450 mapping_gfp_mask(mapping));
451 if (IS_ERR(folio))
452 return NULL;
453 nfs_readdir_folio_init_and_validate(folio, cookie, change_attr);
454 if (nfs_readdir_folio_last_cookie(folio) != cookie)
455 nfs_readdir_folio_reinit_array(folio, cookie, change_attr);
456 return folio;
457 }
458
459 static inline
is_32bit_api(void)460 int is_32bit_api(void)
461 {
462 #ifdef CONFIG_COMPAT
463 return in_compat_syscall();
464 #else
465 return (BITS_PER_LONG == 32);
466 #endif
467 }
468
469 static
nfs_readdir_use_cookie(const struct file * filp)470 bool nfs_readdir_use_cookie(const struct file *filp)
471 {
472 if ((filp->f_mode & FMODE_32BITHASH) ||
473 (!(filp->f_mode & FMODE_64BITHASH) && is_32bit_api()))
474 return false;
475 return true;
476 }
477
nfs_readdir_seek_next_array(struct nfs_cache_array * array,struct nfs_readdir_descriptor * desc)478 static void nfs_readdir_seek_next_array(struct nfs_cache_array *array,
479 struct nfs_readdir_descriptor *desc)
480 {
481 if (array->folio_full) {
482 desc->last_cookie = array->last_cookie;
483 desc->current_index += array->size;
484 desc->cache_entry_index = 0;
485 desc->folio_index++;
486 } else
487 desc->last_cookie = nfs_readdir_array_index_cookie(array);
488 }
489
nfs_readdir_rewind_search(struct nfs_readdir_descriptor * desc)490 static void nfs_readdir_rewind_search(struct nfs_readdir_descriptor *desc)
491 {
492 desc->current_index = 0;
493 desc->last_cookie = 0;
494 desc->folio_index = 0;
495 }
496
nfs_readdir_search_for_pos(struct nfs_cache_array * array,struct nfs_readdir_descriptor * desc)497 static int nfs_readdir_search_for_pos(struct nfs_cache_array *array,
498 struct nfs_readdir_descriptor *desc)
499 {
500 loff_t diff = desc->ctx->pos - desc->current_index;
501 unsigned int index;
502
503 if (diff < 0)
504 goto out_eof;
505 if (diff >= array->size) {
506 if (array->folio_is_eof)
507 goto out_eof;
508 nfs_readdir_seek_next_array(array, desc);
509 return -EAGAIN;
510 }
511
512 index = (unsigned int)diff;
513 desc->dir_cookie = array->array[index].cookie;
514 desc->cache_entry_index = index;
515 return 0;
516 out_eof:
517 desc->eof = true;
518 return -EBADCOOKIE;
519 }
520
nfs_readdir_array_cookie_in_range(struct nfs_cache_array * array,u64 cookie)521 static bool nfs_readdir_array_cookie_in_range(struct nfs_cache_array *array,
522 u64 cookie)
523 {
524 if (!array->cookies_are_ordered)
525 return true;
526 /* Optimisation for monotonically increasing cookies */
527 if (cookie >= array->last_cookie)
528 return false;
529 if (array->size && cookie < array->array[0].cookie)
530 return false;
531 return true;
532 }
533
nfs_readdir_search_for_cookie(struct nfs_cache_array * array,struct nfs_readdir_descriptor * desc)534 static int nfs_readdir_search_for_cookie(struct nfs_cache_array *array,
535 struct nfs_readdir_descriptor *desc)
536 {
537 unsigned int i;
538 int status = -EAGAIN;
539
540 if (!nfs_readdir_array_cookie_in_range(array, desc->dir_cookie))
541 goto check_eof;
542
543 for (i = 0; i < array->size; i++) {
544 if (array->array[i].cookie == desc->dir_cookie) {
545 if (nfs_readdir_use_cookie(desc->file))
546 desc->ctx->pos = desc->dir_cookie;
547 else
548 desc->ctx->pos = desc->current_index + i;
549 desc->cache_entry_index = i;
550 return 0;
551 }
552 }
553 check_eof:
554 if (array->folio_is_eof) {
555 status = -EBADCOOKIE;
556 if (desc->dir_cookie == array->last_cookie)
557 desc->eof = true;
558 } else
559 nfs_readdir_seek_next_array(array, desc);
560 return status;
561 }
562
nfs_readdir_search_array(struct nfs_readdir_descriptor * desc)563 static int nfs_readdir_search_array(struct nfs_readdir_descriptor *desc)
564 {
565 struct nfs_cache_array *array;
566 int status;
567
568 array = kmap_local_folio(desc->folio, 0);
569
570 if (desc->dir_cookie == 0)
571 status = nfs_readdir_search_for_pos(array, desc);
572 else
573 status = nfs_readdir_search_for_cookie(array, desc);
574
575 kunmap_local(array);
576 return status;
577 }
578
579 /* Fill a page with xdr information before transferring to the cache page */
nfs_readdir_xdr_filler(struct nfs_readdir_descriptor * desc,__be32 * verf,u64 cookie,struct page ** pages,size_t bufsize,__be32 * verf_res)580 static int nfs_readdir_xdr_filler(struct nfs_readdir_descriptor *desc,
581 __be32 *verf, u64 cookie,
582 struct page **pages, size_t bufsize,
583 __be32 *verf_res)
584 {
585 struct inode *inode = file_inode(desc->file);
586 struct nfs_readdir_arg arg = {
587 .dentry = file_dentry(desc->file),
588 .cred = desc->file->f_cred,
589 .verf = verf,
590 .cookie = cookie,
591 .pages = pages,
592 .page_len = bufsize,
593 .plus = desc->plus,
594 };
595 struct nfs_readdir_res res = {
596 .verf = verf_res,
597 };
598 unsigned long timestamp, gencount;
599 int error;
600
601 again:
602 timestamp = jiffies;
603 gencount = nfs_inc_attr_generation_counter();
604 desc->dir_verifier = nfs_save_change_attribute(inode);
605 error = NFS_PROTO(inode)->readdir(&arg, &res);
606 if (error < 0) {
607 /* We requested READDIRPLUS, but the server doesn't grok it */
608 if (error == -ENOTSUPP && desc->plus) {
609 NFS_SERVER(inode)->caps &= ~NFS_CAP_READDIRPLUS;
610 desc->plus = arg.plus = false;
611 goto again;
612 }
613 goto error;
614 }
615 desc->timestamp = timestamp;
616 desc->gencount = gencount;
617 error:
618 return error;
619 }
620
xdr_decode(struct nfs_readdir_descriptor * desc,struct nfs_entry * entry,struct xdr_stream * xdr)621 static int xdr_decode(struct nfs_readdir_descriptor *desc,
622 struct nfs_entry *entry, struct xdr_stream *xdr)
623 {
624 struct inode *inode = file_inode(desc->file);
625 int error;
626
627 error = NFS_PROTO(inode)->decode_dirent(xdr, entry, desc->plus);
628 if (error)
629 return error;
630 entry->fattr->time_start = desc->timestamp;
631 entry->fattr->gencount = desc->gencount;
632 return 0;
633 }
634
635 /* Match file and dirent using either filehandle or fileid
636 * Note: caller is responsible for checking the fsid
637 */
638 static
nfs_same_file(struct dentry * dentry,struct nfs_entry * entry)639 int nfs_same_file(struct dentry *dentry, struct nfs_entry *entry)
640 {
641 struct inode *inode;
642 struct nfs_inode *nfsi;
643
644 if (d_really_is_negative(dentry))
645 return 0;
646
647 inode = d_inode(dentry);
648 if (is_bad_inode(inode) || NFS_STALE(inode))
649 return 0;
650
651 nfsi = NFS_I(inode);
652 if (entry->fattr->fileid != nfsi->fileid)
653 return 0;
654 if (entry->fh->size && nfs_compare_fh(entry->fh, &nfsi->fh) != 0)
655 return 0;
656 return 1;
657 }
658
659 #define NFS_READDIR_CACHE_USAGE_THRESHOLD (8UL)
660
nfs_use_readdirplus(struct inode * dir,struct dir_context * ctx,unsigned int cache_hits,unsigned int cache_misses)661 static bool nfs_use_readdirplus(struct inode *dir, struct dir_context *ctx,
662 unsigned int cache_hits,
663 unsigned int cache_misses)
664 {
665 if (!nfs_server_capable(dir, NFS_CAP_READDIRPLUS))
666 return false;
667 if (ctx->pos == 0 ||
668 cache_hits + cache_misses > NFS_READDIR_CACHE_USAGE_THRESHOLD)
669 return true;
670 return false;
671 }
672
673 /*
674 * This function is called by the getattr code to request the
675 * use of readdirplus to accelerate any future lookups in the same
676 * directory.
677 */
nfs_readdir_record_entry_cache_hit(struct inode * dir)678 void nfs_readdir_record_entry_cache_hit(struct inode *dir)
679 {
680 struct nfs_inode *nfsi = NFS_I(dir);
681 struct nfs_open_dir_context *ctx;
682
683 if (nfs_server_capable(dir, NFS_CAP_READDIRPLUS) &&
684 S_ISDIR(dir->i_mode)) {
685 rcu_read_lock();
686 list_for_each_entry_rcu (ctx, &nfsi->open_files, list)
687 atomic_inc(&ctx->cache_hits);
688 rcu_read_unlock();
689 }
690 }
691
692 /*
693 * This function is mainly for use by nfs_getattr().
694 *
695 * If this is an 'ls -l', we want to force use of readdirplus.
696 */
nfs_readdir_record_entry_cache_miss(struct inode * dir)697 void nfs_readdir_record_entry_cache_miss(struct inode *dir)
698 {
699 struct nfs_inode *nfsi = NFS_I(dir);
700 struct nfs_open_dir_context *ctx;
701
702 if (nfs_server_capable(dir, NFS_CAP_READDIRPLUS) &&
703 S_ISDIR(dir->i_mode)) {
704 rcu_read_lock();
705 list_for_each_entry_rcu (ctx, &nfsi->open_files, list)
706 atomic_inc(&ctx->cache_misses);
707 rcu_read_unlock();
708 }
709 }
710
nfs_lookup_advise_force_readdirplus(struct inode * dir,unsigned int flags)711 static void nfs_lookup_advise_force_readdirplus(struct inode *dir,
712 unsigned int flags)
713 {
714 if (nfs_server_capable(dir, NFS_CAP_CASE_INSENSITIVE))
715 return;
716 if (flags & (LOOKUP_EXCL | LOOKUP_PARENT | LOOKUP_REVAL))
717 return;
718 nfs_readdir_record_entry_cache_miss(dir);
719 }
720
721 static
nfs_prime_dcache(struct dentry * parent,struct nfs_entry * entry,unsigned long dir_verifier)722 void nfs_prime_dcache(struct dentry *parent, struct nfs_entry *entry,
723 unsigned long dir_verifier)
724 {
725 struct qstr filename = QSTR_INIT(entry->name, entry->len);
726 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
727 struct dentry *dentry;
728 struct dentry *alias;
729 struct inode *inode;
730 int status;
731
732 if (!(entry->fattr->valid & NFS_ATTR_FATTR_FILEID))
733 return;
734 if (!(entry->fattr->valid & NFS_ATTR_FATTR_FSID))
735 return;
736 if (filename.len == 0)
737 return;
738 /* Validate that the name doesn't contain any illegal '\0' */
739 if (strnlen(filename.name, filename.len) != filename.len)
740 return;
741 /* ...or '/' */
742 if (strnchr(filename.name, filename.len, '/'))
743 return;
744 if (filename.name[0] == '.') {
745 if (filename.len == 1)
746 return;
747 if (filename.len == 2 && filename.name[1] == '.')
748 return;
749 }
750 filename.hash = full_name_hash(parent, filename.name, filename.len);
751
752 dentry = d_lookup(parent, &filename);
753 again:
754 if (!dentry) {
755 dentry = d_alloc_parallel(parent, &filename, &wq);
756 if (IS_ERR(dentry))
757 return;
758 }
759 if (!d_in_lookup(dentry)) {
760 /* Is there a mountpoint here? If so, just exit */
761 if (!nfs_fsid_equal(&NFS_SB(dentry->d_sb)->fsid,
762 &entry->fattr->fsid))
763 goto out;
764 if (nfs_same_file(dentry, entry)) {
765 if (!entry->fh->size)
766 goto out;
767 nfs_set_verifier(dentry, dir_verifier);
768 status = nfs_refresh_inode(d_inode(dentry), entry->fattr);
769 if (!status)
770 nfs_setsecurity(d_inode(dentry), entry->fattr);
771 trace_nfs_readdir_lookup_revalidate(d_inode(parent),
772 dentry, 0, status);
773 goto out;
774 } else {
775 trace_nfs_readdir_lookup_revalidate_failed(
776 d_inode(parent), dentry, 0);
777 d_invalidate(dentry);
778 dput(dentry);
779 dentry = NULL;
780 goto again;
781 }
782 }
783 if (!entry->fh->size) {
784 d_lookup_done(dentry);
785 goto out;
786 }
787
788 inode = nfs_fhget(dentry->d_sb, entry->fh, entry->fattr);
789 alias = d_splice_alias(inode, dentry);
790 d_lookup_done(dentry);
791 if (alias) {
792 if (IS_ERR(alias))
793 goto out;
794 dput(dentry);
795 dentry = alias;
796 }
797 nfs_set_verifier(dentry, dir_verifier);
798 trace_nfs_readdir_lookup(d_inode(parent), dentry, 0);
799 out:
800 dput(dentry);
801 }
802
nfs_readdir_entry_decode(struct nfs_readdir_descriptor * desc,struct nfs_entry * entry,struct xdr_stream * stream)803 static int nfs_readdir_entry_decode(struct nfs_readdir_descriptor *desc,
804 struct nfs_entry *entry,
805 struct xdr_stream *stream)
806 {
807 int ret;
808
809 if (entry->fattr->label)
810 entry->fattr->label->len = NFS4_MAXLABELLEN;
811 ret = xdr_decode(desc, entry, stream);
812 if (ret || !desc->plus)
813 return ret;
814 nfs_prime_dcache(file_dentry(desc->file), entry, desc->dir_verifier);
815 return 0;
816 }
817
818 /* Perform conversion from xdr to cache array */
nfs_readdir_folio_filler(struct nfs_readdir_descriptor * desc,struct nfs_entry * entry,struct page ** xdr_pages,unsigned int buflen,struct folio ** arrays,size_t narrays,u64 change_attr)819 static int nfs_readdir_folio_filler(struct nfs_readdir_descriptor *desc,
820 struct nfs_entry *entry,
821 struct page **xdr_pages, unsigned int buflen,
822 struct folio **arrays, size_t narrays,
823 u64 change_attr)
824 {
825 struct address_space *mapping = desc->file->f_mapping;
826 struct folio *new, *folio = *arrays;
827 struct xdr_stream stream;
828 struct page *scratch;
829 struct xdr_buf buf;
830 u64 cookie;
831 int status;
832
833 scratch = alloc_page(GFP_KERNEL);
834 if (scratch == NULL)
835 return -ENOMEM;
836
837 xdr_init_decode_pages(&stream, &buf, xdr_pages, buflen);
838 xdr_set_scratch_page(&stream, scratch);
839
840 do {
841 status = nfs_readdir_entry_decode(desc, entry, &stream);
842 if (status != 0)
843 break;
844
845 status = nfs_readdir_folio_array_append(folio, entry, &cookie);
846 if (status != -ENOSPC)
847 continue;
848
849 if (folio->mapping != mapping) {
850 if (!--narrays)
851 break;
852 new = nfs_readdir_folio_array_alloc(cookie, GFP_KERNEL);
853 if (!new)
854 break;
855 arrays++;
856 *arrays = folio = new;
857 } else {
858 new = nfs_readdir_folio_get_next(mapping, cookie,
859 change_attr);
860 if (!new)
861 break;
862 if (folio != *arrays)
863 nfs_readdir_folio_unlock_and_put(folio);
864 folio = new;
865 }
866 desc->folio_index_max++;
867 status = nfs_readdir_folio_array_append(folio, entry, &cookie);
868 } while (!status && !entry->eof);
869
870 switch (status) {
871 case -EBADCOOKIE:
872 if (!entry->eof)
873 break;
874 nfs_readdir_folio_set_eof(folio);
875 fallthrough;
876 case -EAGAIN:
877 status = 0;
878 break;
879 case -ENOSPC:
880 status = 0;
881 if (!desc->plus)
882 break;
883 while (!nfs_readdir_entry_decode(desc, entry, &stream))
884 ;
885 }
886
887 if (folio != *arrays)
888 nfs_readdir_folio_unlock_and_put(folio);
889
890 put_page(scratch);
891 return status;
892 }
893
nfs_readdir_free_pages(struct page ** pages,size_t npages)894 static void nfs_readdir_free_pages(struct page **pages, size_t npages)
895 {
896 while (npages--)
897 put_page(pages[npages]);
898 kfree(pages);
899 }
900
901 /*
902 * nfs_readdir_alloc_pages() will allocate pages that must be freed with a call
903 * to nfs_readdir_free_pages()
904 */
nfs_readdir_alloc_pages(size_t npages)905 static struct page **nfs_readdir_alloc_pages(size_t npages)
906 {
907 struct page **pages;
908 size_t i;
909
910 pages = kmalloc_array(npages, sizeof(*pages), GFP_KERNEL);
911 if (!pages)
912 return NULL;
913 for (i = 0; i < npages; i++) {
914 struct page *page = alloc_page(GFP_KERNEL);
915 if (page == NULL)
916 goto out_freepages;
917 pages[i] = page;
918 }
919 return pages;
920
921 out_freepages:
922 nfs_readdir_free_pages(pages, i);
923 return NULL;
924 }
925
nfs_readdir_xdr_to_array(struct nfs_readdir_descriptor * desc,__be32 * verf_arg,__be32 * verf_res,struct folio ** arrays,size_t narrays)926 static int nfs_readdir_xdr_to_array(struct nfs_readdir_descriptor *desc,
927 __be32 *verf_arg, __be32 *verf_res,
928 struct folio **arrays, size_t narrays)
929 {
930 u64 change_attr;
931 struct page **pages;
932 struct folio *folio = *arrays;
933 struct nfs_entry *entry;
934 size_t array_size;
935 struct inode *inode = file_inode(desc->file);
936 unsigned int dtsize = desc->dtsize;
937 unsigned int pglen;
938 int status = -ENOMEM;
939
940 entry = kzalloc(sizeof(*entry), GFP_KERNEL);
941 if (!entry)
942 return -ENOMEM;
943 entry->cookie = nfs_readdir_folio_last_cookie(folio);
944 entry->fh = nfs_alloc_fhandle();
945 entry->fattr = nfs_alloc_fattr_with_label(NFS_SERVER(inode));
946 entry->server = NFS_SERVER(inode);
947 if (entry->fh == NULL || entry->fattr == NULL)
948 goto out;
949
950 array_size = (dtsize + PAGE_SIZE - 1) >> PAGE_SHIFT;
951 pages = nfs_readdir_alloc_pages(array_size);
952 if (!pages)
953 goto out;
954
955 change_attr = inode_peek_iversion_raw(inode);
956 status = nfs_readdir_xdr_filler(desc, verf_arg, entry->cookie, pages,
957 dtsize, verf_res);
958 if (status < 0)
959 goto free_pages;
960
961 pglen = status;
962 if (pglen != 0)
963 status = nfs_readdir_folio_filler(desc, entry, pages, pglen,
964 arrays, narrays, change_attr);
965 else
966 nfs_readdir_folio_set_eof(folio);
967 desc->buffer_fills++;
968
969 free_pages:
970 nfs_readdir_free_pages(pages, array_size);
971 out:
972 nfs_free_fattr(entry->fattr);
973 nfs_free_fhandle(entry->fh);
974 kfree(entry);
975 return status;
976 }
977
nfs_readdir_folio_put(struct nfs_readdir_descriptor * desc)978 static void nfs_readdir_folio_put(struct nfs_readdir_descriptor *desc)
979 {
980 folio_put(desc->folio);
981 desc->folio = NULL;
982 }
983
984 static void
nfs_readdir_folio_unlock_and_put_cached(struct nfs_readdir_descriptor * desc)985 nfs_readdir_folio_unlock_and_put_cached(struct nfs_readdir_descriptor *desc)
986 {
987 folio_unlock(desc->folio);
988 nfs_readdir_folio_put(desc);
989 }
990
991 static struct folio *
nfs_readdir_folio_get_cached(struct nfs_readdir_descriptor * desc)992 nfs_readdir_folio_get_cached(struct nfs_readdir_descriptor *desc)
993 {
994 struct address_space *mapping = desc->file->f_mapping;
995 u64 change_attr = inode_peek_iversion_raw(mapping->host);
996 u64 cookie = desc->last_cookie;
997 struct folio *folio;
998
999 folio = nfs_readdir_folio_get_locked(mapping, cookie, change_attr);
1000 if (!folio)
1001 return NULL;
1002 if (desc->clear_cache && !nfs_readdir_folio_needs_filling(folio))
1003 nfs_readdir_folio_reinit_array(folio, cookie, change_attr);
1004 return folio;
1005 }
1006
1007 /*
1008 * Returns 0 if desc->dir_cookie was found on page desc->page_index
1009 * and locks the page to prevent removal from the page cache.
1010 */
find_and_lock_cache_page(struct nfs_readdir_descriptor * desc)1011 static int find_and_lock_cache_page(struct nfs_readdir_descriptor *desc)
1012 {
1013 struct inode *inode = file_inode(desc->file);
1014 struct nfs_inode *nfsi = NFS_I(inode);
1015 __be32 verf[NFS_DIR_VERIFIER_SIZE];
1016 int res;
1017
1018 desc->folio = nfs_readdir_folio_get_cached(desc);
1019 if (!desc->folio)
1020 return -ENOMEM;
1021 if (nfs_readdir_folio_needs_filling(desc->folio)) {
1022 /* Grow the dtsize if we had to go back for more pages */
1023 if (desc->folio_index == desc->folio_index_max)
1024 nfs_grow_dtsize(desc);
1025 desc->folio_index_max = desc->folio_index;
1026 trace_nfs_readdir_cache_fill(desc->file, nfsi->cookieverf,
1027 desc->last_cookie,
1028 desc->folio->index, desc->dtsize);
1029 res = nfs_readdir_xdr_to_array(desc, nfsi->cookieverf, verf,
1030 &desc->folio, 1);
1031 if (res < 0) {
1032 nfs_readdir_folio_unlock_and_put_cached(desc);
1033 trace_nfs_readdir_cache_fill_done(inode, res);
1034 if (res == -EBADCOOKIE || res == -ENOTSYNC) {
1035 invalidate_inode_pages2(desc->file->f_mapping);
1036 nfs_readdir_rewind_search(desc);
1037 trace_nfs_readdir_invalidate_cache_range(
1038 inode, 0, MAX_LFS_FILESIZE);
1039 return -EAGAIN;
1040 }
1041 return res;
1042 }
1043 /*
1044 * Set the cookie verifier if the page cache was empty
1045 */
1046 if (desc->last_cookie == 0 &&
1047 memcmp(nfsi->cookieverf, verf, sizeof(nfsi->cookieverf))) {
1048 memcpy(nfsi->cookieverf, verf,
1049 sizeof(nfsi->cookieverf));
1050 invalidate_inode_pages2_range(desc->file->f_mapping, 1,
1051 -1);
1052 trace_nfs_readdir_invalidate_cache_range(
1053 inode, 1, MAX_LFS_FILESIZE);
1054 }
1055 desc->clear_cache = false;
1056 }
1057 res = nfs_readdir_search_array(desc);
1058 if (res == 0)
1059 return 0;
1060 nfs_readdir_folio_unlock_and_put_cached(desc);
1061 return res;
1062 }
1063
1064 /* Search for desc->dir_cookie from the beginning of the page cache */
readdir_search_pagecache(struct nfs_readdir_descriptor * desc)1065 static int readdir_search_pagecache(struct nfs_readdir_descriptor *desc)
1066 {
1067 int res;
1068
1069 do {
1070 res = find_and_lock_cache_page(desc);
1071 } while (res == -EAGAIN);
1072 return res;
1073 }
1074
1075 #define NFS_READDIR_CACHE_MISS_THRESHOLD (16UL)
1076
1077 /*
1078 * Once we've found the start of the dirent within a page: fill 'er up...
1079 */
nfs_do_filldir(struct nfs_readdir_descriptor * desc,const __be32 * verf)1080 static void nfs_do_filldir(struct nfs_readdir_descriptor *desc,
1081 const __be32 *verf)
1082 {
1083 struct file *file = desc->file;
1084 struct nfs_cache_array *array;
1085 unsigned int i;
1086 bool first_emit = !desc->dir_cookie;
1087
1088 array = kmap_local_folio(desc->folio, 0);
1089 for (i = desc->cache_entry_index; i < array->size; i++) {
1090 struct nfs_cache_array_entry *ent;
1091
1092 /*
1093 * nfs_readdir_handle_cache_misses return force clear at
1094 * (cache_misses > NFS_READDIR_CACHE_MISS_THRESHOLD) for
1095 * readdir heuristic, NFS_READDIR_CACHE_MISS_THRESHOLD + 1
1096 * entries need be emitted here.
1097 */
1098 if (first_emit && i > NFS_READDIR_CACHE_MISS_THRESHOLD + 2) {
1099 desc->eob = true;
1100 break;
1101 }
1102
1103 ent = &array->array[i];
1104 if (!dir_emit(desc->ctx, ent->name, ent->name_len,
1105 nfs_compat_user_ino64(ent->ino), ent->d_type)) {
1106 desc->eob = true;
1107 break;
1108 }
1109 memcpy(desc->verf, verf, sizeof(desc->verf));
1110 if (i == array->size - 1) {
1111 desc->dir_cookie = array->last_cookie;
1112 nfs_readdir_seek_next_array(array, desc);
1113 } else {
1114 desc->dir_cookie = array->array[i + 1].cookie;
1115 desc->last_cookie = array->array[0].cookie;
1116 }
1117 if (nfs_readdir_use_cookie(file))
1118 desc->ctx->pos = desc->dir_cookie;
1119 else
1120 desc->ctx->pos++;
1121 }
1122 if (array->folio_is_eof)
1123 desc->eof = !desc->eob;
1124
1125 kunmap_local(array);
1126 dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling ended @ cookie %llu\n",
1127 (unsigned long long)desc->dir_cookie);
1128 }
1129
1130 /*
1131 * If we cannot find a cookie in our cache, we suspect that this is
1132 * because it points to a deleted file, so we ask the server to return
1133 * whatever it thinks is the next entry. We then feed this to filldir.
1134 * If all goes well, we should then be able to find our way round the
1135 * cache on the next call to readdir_search_pagecache();
1136 *
1137 * NOTE: we cannot add the anonymous page to the pagecache because
1138 * the data it contains might not be page aligned. Besides,
1139 * we should already have a complete representation of the
1140 * directory in the page cache by the time we get here.
1141 */
uncached_readdir(struct nfs_readdir_descriptor * desc)1142 static int uncached_readdir(struct nfs_readdir_descriptor *desc)
1143 {
1144 struct folio **arrays;
1145 size_t i, sz = 512;
1146 __be32 verf[NFS_DIR_VERIFIER_SIZE];
1147 int status = -ENOMEM;
1148
1149 dfprintk(DIRCACHE, "NFS: uncached_readdir() searching for cookie %llu\n",
1150 (unsigned long long)desc->dir_cookie);
1151
1152 arrays = kcalloc(sz, sizeof(*arrays), GFP_KERNEL);
1153 if (!arrays)
1154 goto out;
1155 arrays[0] = nfs_readdir_folio_array_alloc(desc->dir_cookie, GFP_KERNEL);
1156 if (!arrays[0])
1157 goto out;
1158
1159 desc->folio_index = 0;
1160 desc->cache_entry_index = 0;
1161 desc->last_cookie = desc->dir_cookie;
1162 desc->folio_index_max = 0;
1163
1164 trace_nfs_readdir_uncached(desc->file, desc->verf, desc->last_cookie,
1165 -1, desc->dtsize);
1166
1167 status = nfs_readdir_xdr_to_array(desc, desc->verf, verf, arrays, sz);
1168 if (status < 0) {
1169 trace_nfs_readdir_uncached_done(file_inode(desc->file), status);
1170 goto out_free;
1171 }
1172
1173 for (i = 0; !desc->eob && i < sz && arrays[i]; i++) {
1174 desc->folio = arrays[i];
1175 nfs_do_filldir(desc, verf);
1176 }
1177 desc->folio = NULL;
1178
1179 /*
1180 * Grow the dtsize if we have to go back for more pages,
1181 * or shrink it if we're reading too many.
1182 */
1183 if (!desc->eof) {
1184 if (!desc->eob)
1185 nfs_grow_dtsize(desc);
1186 else if (desc->buffer_fills == 1 &&
1187 i < (desc->folio_index_max >> 1))
1188 nfs_shrink_dtsize(desc);
1189 }
1190 out_free:
1191 for (i = 0; i < sz && arrays[i]; i++)
1192 nfs_readdir_folio_array_free(arrays[i]);
1193 out:
1194 if (!nfs_readdir_use_cookie(desc->file))
1195 nfs_readdir_rewind_search(desc);
1196 desc->folio_index_max = -1;
1197 kfree(arrays);
1198 dfprintk(DIRCACHE, "NFS: %s: returns %d\n", __func__, status);
1199 return status;
1200 }
1201
nfs_readdir_handle_cache_misses(struct inode * inode,struct nfs_readdir_descriptor * desc,unsigned int cache_misses,bool force_clear)1202 static bool nfs_readdir_handle_cache_misses(struct inode *inode,
1203 struct nfs_readdir_descriptor *desc,
1204 unsigned int cache_misses,
1205 bool force_clear)
1206 {
1207 if (desc->ctx->pos == 0 || !desc->plus)
1208 return false;
1209 if (cache_misses <= NFS_READDIR_CACHE_MISS_THRESHOLD && !force_clear)
1210 return false;
1211 trace_nfs_readdir_force_readdirplus(inode);
1212 return true;
1213 }
1214
1215 /* The file offset position represents the dirent entry number. A
1216 last cookie cache takes care of the common case of reading the
1217 whole directory.
1218 */
nfs_readdir(struct file * file,struct dir_context * ctx)1219 static int nfs_readdir(struct file *file, struct dir_context *ctx)
1220 {
1221 struct dentry *dentry = file_dentry(file);
1222 struct inode *inode = d_inode(dentry);
1223 struct nfs_inode *nfsi = NFS_I(inode);
1224 struct nfs_open_dir_context *dir_ctx = file->private_data;
1225 struct nfs_readdir_descriptor *desc;
1226 unsigned int cache_hits, cache_misses;
1227 bool force_clear;
1228 int res;
1229
1230 dfprintk(FILE, "NFS: readdir(%pD2) starting at cookie %llu\n",
1231 file, (long long)ctx->pos);
1232 nfs_inc_stats(inode, NFSIOS_VFSGETDENTS);
1233
1234 /*
1235 * ctx->pos points to the dirent entry number.
1236 * *desc->dir_cookie has the cookie for the next entry. We have
1237 * to either find the entry with the appropriate number or
1238 * revalidate the cookie.
1239 */
1240 nfs_revalidate_mapping(inode, file->f_mapping);
1241
1242 res = -ENOMEM;
1243 desc = kzalloc(sizeof(*desc), GFP_KERNEL);
1244 if (!desc)
1245 goto out;
1246 desc->file = file;
1247 desc->ctx = ctx;
1248 desc->folio_index_max = -1;
1249
1250 spin_lock(&file->f_lock);
1251 desc->dir_cookie = dir_ctx->dir_cookie;
1252 desc->folio_index = dir_ctx->page_index;
1253 desc->last_cookie = dir_ctx->last_cookie;
1254 desc->attr_gencount = dir_ctx->attr_gencount;
1255 desc->eof = dir_ctx->eof;
1256 nfs_set_dtsize(desc, dir_ctx->dtsize);
1257 memcpy(desc->verf, dir_ctx->verf, sizeof(desc->verf));
1258 cache_hits = atomic_xchg(&dir_ctx->cache_hits, 0);
1259 cache_misses = atomic_xchg(&dir_ctx->cache_misses, 0);
1260 force_clear = dir_ctx->force_clear;
1261 spin_unlock(&file->f_lock);
1262
1263 if (desc->eof) {
1264 res = 0;
1265 goto out_free;
1266 }
1267
1268 desc->plus = nfs_use_readdirplus(inode, ctx, cache_hits, cache_misses);
1269 force_clear = nfs_readdir_handle_cache_misses(inode, desc, cache_misses,
1270 force_clear);
1271 desc->clear_cache = force_clear;
1272
1273 do {
1274 res = readdir_search_pagecache(desc);
1275
1276 if (res == -EBADCOOKIE) {
1277 res = 0;
1278 /* This means either end of directory */
1279 if (desc->dir_cookie && !desc->eof) {
1280 /* Or that the server has 'lost' a cookie */
1281 res = uncached_readdir(desc);
1282 if (res == 0)
1283 continue;
1284 if (res == -EBADCOOKIE || res == -ENOTSYNC)
1285 res = 0;
1286 }
1287 break;
1288 }
1289 if (res == -ETOOSMALL && desc->plus) {
1290 nfs_zap_caches(inode);
1291 desc->plus = false;
1292 desc->eof = false;
1293 continue;
1294 }
1295 if (res < 0)
1296 break;
1297
1298 nfs_do_filldir(desc, nfsi->cookieverf);
1299 nfs_readdir_folio_unlock_and_put_cached(desc);
1300 if (desc->folio_index == desc->folio_index_max)
1301 desc->clear_cache = force_clear;
1302 } while (!desc->eob && !desc->eof);
1303
1304 spin_lock(&file->f_lock);
1305 dir_ctx->dir_cookie = desc->dir_cookie;
1306 dir_ctx->last_cookie = desc->last_cookie;
1307 dir_ctx->attr_gencount = desc->attr_gencount;
1308 dir_ctx->page_index = desc->folio_index;
1309 dir_ctx->force_clear = force_clear;
1310 dir_ctx->eof = desc->eof;
1311 dir_ctx->dtsize = desc->dtsize;
1312 memcpy(dir_ctx->verf, desc->verf, sizeof(dir_ctx->verf));
1313 spin_unlock(&file->f_lock);
1314 out_free:
1315 kfree(desc);
1316
1317 out:
1318 dfprintk(FILE, "NFS: readdir(%pD2) returns %d\n", file, res);
1319 return res;
1320 }
1321
nfs_llseek_dir(struct file * filp,loff_t offset,int whence)1322 static loff_t nfs_llseek_dir(struct file *filp, loff_t offset, int whence)
1323 {
1324 struct nfs_open_dir_context *dir_ctx = filp->private_data;
1325
1326 dfprintk(FILE, "NFS: llseek dir(%pD2, %lld, %d)\n",
1327 filp, offset, whence);
1328
1329 switch (whence) {
1330 default:
1331 return -EINVAL;
1332 case SEEK_SET:
1333 if (offset < 0)
1334 return -EINVAL;
1335 spin_lock(&filp->f_lock);
1336 break;
1337 case SEEK_CUR:
1338 if (offset == 0)
1339 return filp->f_pos;
1340 spin_lock(&filp->f_lock);
1341 offset += filp->f_pos;
1342 if (offset < 0) {
1343 spin_unlock(&filp->f_lock);
1344 return -EINVAL;
1345 }
1346 }
1347 if (offset != filp->f_pos) {
1348 filp->f_pos = offset;
1349 dir_ctx->page_index = 0;
1350 if (!nfs_readdir_use_cookie(filp)) {
1351 dir_ctx->dir_cookie = 0;
1352 dir_ctx->last_cookie = 0;
1353 } else {
1354 dir_ctx->dir_cookie = offset;
1355 dir_ctx->last_cookie = offset;
1356 }
1357 dir_ctx->eof = false;
1358 }
1359 spin_unlock(&filp->f_lock);
1360 return offset;
1361 }
1362
1363 /*
1364 * All directory operations under NFS are synchronous, so fsync()
1365 * is a dummy operation.
1366 */
nfs_fsync_dir(struct file * filp,loff_t start,loff_t end,int datasync)1367 static int nfs_fsync_dir(struct file *filp, loff_t start, loff_t end,
1368 int datasync)
1369 {
1370 dfprintk(FILE, "NFS: fsync dir(%pD2) datasync %d\n", filp, datasync);
1371
1372 nfs_inc_stats(file_inode(filp), NFSIOS_VFSFSYNC);
1373 return 0;
1374 }
1375
1376 /**
1377 * nfs_force_lookup_revalidate - Mark the directory as having changed
1378 * @dir: pointer to directory inode
1379 *
1380 * This forces the revalidation code in nfs_lookup_revalidate() to do a
1381 * full lookup on all child dentries of 'dir' whenever a change occurs
1382 * on the server that might have invalidated our dcache.
1383 *
1384 * Note that we reserve bit '0' as a tag to let us know when a dentry
1385 * was revalidated while holding a delegation on its inode.
1386 *
1387 * The caller should be holding dir->i_lock
1388 */
nfs_force_lookup_revalidate(struct inode * dir)1389 void nfs_force_lookup_revalidate(struct inode *dir)
1390 {
1391 NFS_I(dir)->cache_change_attribute += 2;
1392 }
1393 EXPORT_SYMBOL_GPL(nfs_force_lookup_revalidate);
1394
1395 /**
1396 * nfs_verify_change_attribute - Detects NFS remote directory changes
1397 * @dir: pointer to parent directory inode
1398 * @verf: previously saved change attribute
1399 *
1400 * Return "false" if the verifiers doesn't match the change attribute.
1401 * This would usually indicate that the directory contents have changed on
1402 * the server, and that any dentries need revalidating.
1403 */
nfs_verify_change_attribute(struct inode * dir,unsigned long verf)1404 static bool nfs_verify_change_attribute(struct inode *dir, unsigned long verf)
1405 {
1406 return (verf & ~1UL) == nfs_save_change_attribute(dir);
1407 }
1408
nfs_set_verifier_delegated(unsigned long * verf)1409 static void nfs_set_verifier_delegated(unsigned long *verf)
1410 {
1411 *verf |= 1UL;
1412 }
1413
1414 #if IS_ENABLED(CONFIG_NFS_V4)
nfs_unset_verifier_delegated(unsigned long * verf)1415 static void nfs_unset_verifier_delegated(unsigned long *verf)
1416 {
1417 *verf &= ~1UL;
1418 }
1419 #endif /* IS_ENABLED(CONFIG_NFS_V4) */
1420
nfs_test_verifier_delegated(unsigned long verf)1421 static bool nfs_test_verifier_delegated(unsigned long verf)
1422 {
1423 return verf & 1;
1424 }
1425
nfs_verifier_is_delegated(struct dentry * dentry)1426 static bool nfs_verifier_is_delegated(struct dentry *dentry)
1427 {
1428 return nfs_test_verifier_delegated(dentry->d_time);
1429 }
1430
nfs_set_verifier_locked(struct dentry * dentry,unsigned long verf)1431 static void nfs_set_verifier_locked(struct dentry *dentry, unsigned long verf)
1432 {
1433 struct inode *inode = d_inode(dentry);
1434 struct inode *dir = d_inode(dentry->d_parent);
1435
1436 if (!nfs_verify_change_attribute(dir, verf))
1437 return;
1438 if (inode && NFS_PROTO(inode)->have_delegation(inode, FMODE_READ))
1439 nfs_set_verifier_delegated(&verf);
1440 dentry->d_time = verf;
1441 }
1442
1443 /**
1444 * nfs_set_verifier - save a parent directory verifier in the dentry
1445 * @dentry: pointer to dentry
1446 * @verf: verifier to save
1447 *
1448 * Saves the parent directory verifier in @dentry. If the inode has
1449 * a delegation, we also tag the dentry as having been revalidated
1450 * while holding a delegation so that we know we don't have to
1451 * look it up again after a directory change.
1452 */
nfs_set_verifier(struct dentry * dentry,unsigned long verf)1453 void nfs_set_verifier(struct dentry *dentry, unsigned long verf)
1454 {
1455
1456 spin_lock(&dentry->d_lock);
1457 nfs_set_verifier_locked(dentry, verf);
1458 spin_unlock(&dentry->d_lock);
1459 }
1460 EXPORT_SYMBOL_GPL(nfs_set_verifier);
1461
1462 #if IS_ENABLED(CONFIG_NFS_V4)
1463 /**
1464 * nfs_clear_verifier_delegated - clear the dir verifier delegation tag
1465 * @inode: pointer to inode
1466 *
1467 * Iterates through the dentries in the inode alias list and clears
1468 * the tag used to indicate that the dentry has been revalidated
1469 * while holding a delegation.
1470 * This function is intended for use when the delegation is being
1471 * returned or revoked.
1472 */
nfs_clear_verifier_delegated(struct inode * inode)1473 void nfs_clear_verifier_delegated(struct inode *inode)
1474 {
1475 struct dentry *alias;
1476
1477 if (!inode)
1478 return;
1479 spin_lock(&inode->i_lock);
1480 hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
1481 spin_lock(&alias->d_lock);
1482 nfs_unset_verifier_delegated(&alias->d_time);
1483 spin_unlock(&alias->d_lock);
1484 }
1485 spin_unlock(&inode->i_lock);
1486 }
1487 EXPORT_SYMBOL_GPL(nfs_clear_verifier_delegated);
1488 #endif /* IS_ENABLED(CONFIG_NFS_V4) */
1489
nfs_dentry_verify_change(struct inode * dir,struct dentry * dentry)1490 static int nfs_dentry_verify_change(struct inode *dir, struct dentry *dentry)
1491 {
1492 if (nfs_server_capable(dir, NFS_CAP_CASE_INSENSITIVE) &&
1493 d_really_is_negative(dentry))
1494 return dentry->d_time == inode_peek_iversion_raw(dir);
1495 return nfs_verify_change_attribute(dir, dentry->d_time);
1496 }
1497
1498 /*
1499 * A check for whether or not the parent directory has changed.
1500 * In the case it has, we assume that the dentries are untrustworthy
1501 * and may need to be looked up again.
1502 * If rcu_walk prevents us from performing a full check, return 0.
1503 */
nfs_check_verifier(struct inode * dir,struct dentry * dentry,int rcu_walk)1504 static int nfs_check_verifier(struct inode *dir, struct dentry *dentry,
1505 int rcu_walk)
1506 {
1507 if (IS_ROOT(dentry))
1508 return 1;
1509 if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONE)
1510 return 0;
1511 if (!nfs_dentry_verify_change(dir, dentry))
1512 return 0;
1513 /* Revalidate nfsi->cache_change_attribute before we declare a match */
1514 if (nfs_mapping_need_revalidate_inode(dir)) {
1515 if (rcu_walk)
1516 return 0;
1517 if (__nfs_revalidate_inode(NFS_SERVER(dir), dir) < 0)
1518 return 0;
1519 }
1520 if (!nfs_dentry_verify_change(dir, dentry))
1521 return 0;
1522 return 1;
1523 }
1524
1525 /*
1526 * Use intent information to check whether or not we're going to do
1527 * an O_EXCL create using this path component.
1528 */
nfs_is_exclusive_create(struct inode * dir,unsigned int flags)1529 static int nfs_is_exclusive_create(struct inode *dir, unsigned int flags)
1530 {
1531 if (NFS_PROTO(dir)->version == 2)
1532 return 0;
1533 return flags & LOOKUP_EXCL;
1534 }
1535
1536 /*
1537 * Inode and filehandle revalidation for lookups.
1538 *
1539 * We force revalidation in the cases where the VFS sets LOOKUP_REVAL,
1540 * or if the intent information indicates that we're about to open this
1541 * particular file and the "nocto" mount flag is not set.
1542 *
1543 */
1544 static
nfs_lookup_verify_inode(struct inode * inode,unsigned int flags)1545 int nfs_lookup_verify_inode(struct inode *inode, unsigned int flags)
1546 {
1547 struct nfs_server *server = NFS_SERVER(inode);
1548 int ret;
1549
1550 if (IS_AUTOMOUNT(inode))
1551 return 0;
1552
1553 if (flags & LOOKUP_OPEN) {
1554 switch (inode->i_mode & S_IFMT) {
1555 case S_IFREG:
1556 /* A NFSv4 OPEN will revalidate later */
1557 if (server->caps & NFS_CAP_ATOMIC_OPEN)
1558 goto out;
1559 fallthrough;
1560 case S_IFDIR:
1561 if (server->flags & NFS_MOUNT_NOCTO)
1562 break;
1563 /* NFS close-to-open cache consistency validation */
1564 goto out_force;
1565 }
1566 }
1567
1568 /* VFS wants an on-the-wire revalidation */
1569 if (flags & LOOKUP_REVAL)
1570 goto out_force;
1571 out:
1572 if (inode->i_nlink > 0 ||
1573 (inode->i_nlink == 0 &&
1574 test_bit(NFS_INO_PRESERVE_UNLINKED, &NFS_I(inode)->flags)))
1575 return 0;
1576 else
1577 return -ESTALE;
1578 out_force:
1579 if (flags & LOOKUP_RCU)
1580 return -ECHILD;
1581 ret = __nfs_revalidate_inode(server, inode);
1582 if (ret != 0)
1583 return ret;
1584 goto out;
1585 }
1586
nfs_mark_dir_for_revalidate(struct inode * inode)1587 static void nfs_mark_dir_for_revalidate(struct inode *inode)
1588 {
1589 spin_lock(&inode->i_lock);
1590 nfs_set_cache_invalid(inode, NFS_INO_INVALID_CHANGE);
1591 spin_unlock(&inode->i_lock);
1592 }
1593
1594 /*
1595 * We judge how long we want to trust negative
1596 * dentries by looking at the parent inode mtime.
1597 *
1598 * If parent mtime has changed, we revalidate, else we wait for a
1599 * period corresponding to the parent's attribute cache timeout value.
1600 *
1601 * If LOOKUP_RCU prevents us from performing a full check, return 1
1602 * suggesting a reval is needed.
1603 *
1604 * Note that when creating a new file, or looking up a rename target,
1605 * then it shouldn't be necessary to revalidate a negative dentry.
1606 */
1607 static inline
nfs_neg_need_reval(struct inode * dir,struct dentry * dentry,unsigned int flags)1608 int nfs_neg_need_reval(struct inode *dir, struct dentry *dentry,
1609 unsigned int flags)
1610 {
1611 if (flags & (LOOKUP_CREATE | LOOKUP_RENAME_TARGET))
1612 return 0;
1613 if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONEG)
1614 return 1;
1615 /* Case insensitive server? Revalidate negative dentries */
1616 if (nfs_server_capable(dir, NFS_CAP_CASE_INSENSITIVE))
1617 return 1;
1618 return !nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU);
1619 }
1620
1621 static int
nfs_lookup_revalidate_done(struct inode * dir,struct dentry * dentry,struct inode * inode,int error)1622 nfs_lookup_revalidate_done(struct inode *dir, struct dentry *dentry,
1623 struct inode *inode, int error)
1624 {
1625 switch (error) {
1626 case 1:
1627 break;
1628 case -ETIMEDOUT:
1629 if (inode && (IS_ROOT(dentry) ||
1630 NFS_SERVER(inode)->flags & NFS_MOUNT_SOFTREVAL))
1631 error = 1;
1632 break;
1633 case -ESTALE:
1634 case -ENOENT:
1635 error = 0;
1636 fallthrough;
1637 default:
1638 /*
1639 * We can't d_drop the root of a disconnected tree:
1640 * its d_hash is on the s_anon list and d_drop() would hide
1641 * it from shrink_dcache_for_unmount(), leading to busy
1642 * inodes on unmount and further oopses.
1643 */
1644 if (inode && IS_ROOT(dentry))
1645 error = 1;
1646 break;
1647 }
1648 trace_nfs_lookup_revalidate_exit(dir, dentry, 0, error);
1649 return error;
1650 }
1651
1652 static int
nfs_lookup_revalidate_negative(struct inode * dir,struct dentry * dentry,unsigned int flags)1653 nfs_lookup_revalidate_negative(struct inode *dir, struct dentry *dentry,
1654 unsigned int flags)
1655 {
1656 int ret = 1;
1657 if (nfs_neg_need_reval(dir, dentry, flags)) {
1658 if (flags & LOOKUP_RCU)
1659 return -ECHILD;
1660 ret = 0;
1661 }
1662 return nfs_lookup_revalidate_done(dir, dentry, NULL, ret);
1663 }
1664
1665 static int
nfs_lookup_revalidate_delegated(struct inode * dir,struct dentry * dentry,struct inode * inode)1666 nfs_lookup_revalidate_delegated(struct inode *dir, struct dentry *dentry,
1667 struct inode *inode)
1668 {
1669 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1670 return nfs_lookup_revalidate_done(dir, dentry, inode, 1);
1671 }
1672
nfs_lookup_revalidate_dentry(struct inode * dir,struct dentry * dentry,struct inode * inode,unsigned int flags)1673 static int nfs_lookup_revalidate_dentry(struct inode *dir,
1674 struct dentry *dentry,
1675 struct inode *inode, unsigned int flags)
1676 {
1677 struct nfs_fh *fhandle;
1678 struct nfs_fattr *fattr;
1679 unsigned long dir_verifier;
1680 int ret;
1681
1682 trace_nfs_lookup_revalidate_enter(dir, dentry, flags);
1683
1684 ret = -ENOMEM;
1685 fhandle = nfs_alloc_fhandle();
1686 fattr = nfs_alloc_fattr_with_label(NFS_SERVER(inode));
1687 if (fhandle == NULL || fattr == NULL)
1688 goto out;
1689
1690 dir_verifier = nfs_save_change_attribute(dir);
1691 ret = NFS_PROTO(dir)->lookup(dir, dentry, fhandle, fattr);
1692 if (ret < 0)
1693 goto out;
1694
1695 /* Request help from readdirplus */
1696 nfs_lookup_advise_force_readdirplus(dir, flags);
1697
1698 ret = 0;
1699 if (nfs_compare_fh(NFS_FH(inode), fhandle))
1700 goto out;
1701 if (nfs_refresh_inode(inode, fattr) < 0)
1702 goto out;
1703
1704 nfs_setsecurity(inode, fattr);
1705 nfs_set_verifier(dentry, dir_verifier);
1706
1707 ret = 1;
1708 out:
1709 nfs_free_fattr(fattr);
1710 nfs_free_fhandle(fhandle);
1711
1712 /*
1713 * If the lookup failed despite the dentry change attribute being
1714 * a match, then we should revalidate the directory cache.
1715 */
1716 if (!ret && nfs_dentry_verify_change(dir, dentry))
1717 nfs_mark_dir_for_revalidate(dir);
1718 return nfs_lookup_revalidate_done(dir, dentry, inode, ret);
1719 }
1720
1721 /*
1722 * This is called every time the dcache has a lookup hit,
1723 * and we should check whether we can really trust that
1724 * lookup.
1725 *
1726 * NOTE! The hit can be a negative hit too, don't assume
1727 * we have an inode!
1728 *
1729 * If the parent directory is seen to have changed, we throw out the
1730 * cached dentry and do a new lookup.
1731 */
1732 static int
nfs_do_lookup_revalidate(struct inode * dir,struct dentry * dentry,unsigned int flags)1733 nfs_do_lookup_revalidate(struct inode *dir, struct dentry *dentry,
1734 unsigned int flags)
1735 {
1736 struct inode *inode;
1737 int error = 0;
1738
1739 nfs_inc_stats(dir, NFSIOS_DENTRYREVALIDATE);
1740 inode = d_inode(dentry);
1741
1742 if (!inode)
1743 return nfs_lookup_revalidate_negative(dir, dentry, flags);
1744
1745 if (is_bad_inode(inode)) {
1746 dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n",
1747 __func__, dentry);
1748 goto out_bad;
1749 }
1750
1751 if ((flags & LOOKUP_RENAME_TARGET) && d_count(dentry) < 2 &&
1752 nfs_server_capable(dir, NFS_CAP_CASE_INSENSITIVE))
1753 goto out_bad;
1754
1755 if (nfs_verifier_is_delegated(dentry))
1756 return nfs_lookup_revalidate_delegated(dir, dentry, inode);
1757
1758 /* Force a full look up iff the parent directory has changed */
1759 if (!(flags & (LOOKUP_EXCL | LOOKUP_REVAL)) &&
1760 nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU)) {
1761 error = nfs_lookup_verify_inode(inode, flags);
1762 if (error) {
1763 if (error == -ESTALE)
1764 nfs_mark_dir_for_revalidate(dir);
1765 goto out_bad;
1766 }
1767 goto out_valid;
1768 }
1769
1770 if (flags & LOOKUP_RCU)
1771 return -ECHILD;
1772
1773 if (NFS_STALE(inode))
1774 goto out_bad;
1775
1776 return nfs_lookup_revalidate_dentry(dir, dentry, inode, flags);
1777 out_valid:
1778 return nfs_lookup_revalidate_done(dir, dentry, inode, 1);
1779 out_bad:
1780 if (flags & LOOKUP_RCU)
1781 return -ECHILD;
1782 return nfs_lookup_revalidate_done(dir, dentry, inode, error);
1783 }
1784
1785 static int
__nfs_lookup_revalidate(struct dentry * dentry,unsigned int flags,int (* reval)(struct inode *,struct dentry *,unsigned int))1786 __nfs_lookup_revalidate(struct dentry *dentry, unsigned int flags,
1787 int (*reval)(struct inode *, struct dentry *, unsigned int))
1788 {
1789 struct dentry *parent;
1790 struct inode *dir;
1791 int ret;
1792
1793 if (flags & LOOKUP_RCU) {
1794 if (dentry->d_fsdata == NFS_FSDATA_BLOCKED)
1795 return -ECHILD;
1796 parent = READ_ONCE(dentry->d_parent);
1797 dir = d_inode_rcu(parent);
1798 if (!dir)
1799 return -ECHILD;
1800 ret = reval(dir, dentry, flags);
1801 if (parent != READ_ONCE(dentry->d_parent))
1802 return -ECHILD;
1803 } else {
1804 /* Wait for unlink to complete - see unblock_revalidate() */
1805 wait_var_event(&dentry->d_fsdata,
1806 smp_load_acquire(&dentry->d_fsdata)
1807 != NFS_FSDATA_BLOCKED);
1808 parent = dget_parent(dentry);
1809 ret = reval(d_inode(parent), dentry, flags);
1810 dput(parent);
1811 }
1812 return ret;
1813 }
1814
nfs_lookup_revalidate(struct dentry * dentry,unsigned int flags)1815 static int nfs_lookup_revalidate(struct dentry *dentry, unsigned int flags)
1816 {
1817 return __nfs_lookup_revalidate(dentry, flags, nfs_do_lookup_revalidate);
1818 }
1819
block_revalidate(struct dentry * dentry)1820 static void block_revalidate(struct dentry *dentry)
1821 {
1822 /* old devname - just in case */
1823 kfree(dentry->d_fsdata);
1824
1825 /* Any new reference that could lead to an open
1826 * will take ->d_lock in lookup_open() -> d_lookup().
1827 * Holding this lock ensures we cannot race with
1828 * __nfs_lookup_revalidate() and removes and need
1829 * for further barriers.
1830 */
1831 lockdep_assert_held(&dentry->d_lock);
1832
1833 dentry->d_fsdata = NFS_FSDATA_BLOCKED;
1834 }
1835
unblock_revalidate(struct dentry * dentry)1836 static void unblock_revalidate(struct dentry *dentry)
1837 {
1838 /* store_release ensures wait_var_event() sees the update */
1839 smp_store_release(&dentry->d_fsdata, NULL);
1840 wake_up_var(&dentry->d_fsdata);
1841 }
1842
1843 /*
1844 * A weaker form of d_revalidate for revalidating just the d_inode(dentry)
1845 * when we don't really care about the dentry name. This is called when a
1846 * pathwalk ends on a dentry that was not found via a normal lookup in the
1847 * parent dir (e.g.: ".", "..", procfs symlinks or mountpoint traversals).
1848 *
1849 * In this situation, we just want to verify that the inode itself is OK
1850 * since the dentry might have changed on the server.
1851 */
nfs_weak_revalidate(struct dentry * dentry,unsigned int flags)1852 static int nfs_weak_revalidate(struct dentry *dentry, unsigned int flags)
1853 {
1854 struct inode *inode = d_inode(dentry);
1855 int error = 0;
1856
1857 /*
1858 * I believe we can only get a negative dentry here in the case of a
1859 * procfs-style symlink. Just assume it's correct for now, but we may
1860 * eventually need to do something more here.
1861 */
1862 if (!inode) {
1863 dfprintk(LOOKUPCACHE, "%s: %pd2 has negative inode\n",
1864 __func__, dentry);
1865 return 1;
1866 }
1867
1868 if (is_bad_inode(inode)) {
1869 dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n",
1870 __func__, dentry);
1871 return 0;
1872 }
1873
1874 error = nfs_lookup_verify_inode(inode, flags);
1875 dfprintk(LOOKUPCACHE, "NFS: %s: inode %lu is %s\n",
1876 __func__, inode->i_ino, error ? "invalid" : "valid");
1877 return !error;
1878 }
1879
1880 /*
1881 * This is called from dput() when d_count is going to 0.
1882 */
nfs_dentry_delete(const struct dentry * dentry)1883 static int nfs_dentry_delete(const struct dentry *dentry)
1884 {
1885 dfprintk(VFS, "NFS: dentry_delete(%pd2, %x)\n",
1886 dentry, dentry->d_flags);
1887
1888 /* Unhash any dentry with a stale inode */
1889 if (d_really_is_positive(dentry) && NFS_STALE(d_inode(dentry)))
1890 return 1;
1891
1892 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1893 /* Unhash it, so that ->d_iput() would be called */
1894 return 1;
1895 }
1896 if (!(dentry->d_sb->s_flags & SB_ACTIVE)) {
1897 /* Unhash it, so that ancestors of killed async unlink
1898 * files will be cleaned up during umount */
1899 return 1;
1900 }
1901 return 0;
1902
1903 }
1904
1905 /* Ensure that we revalidate inode->i_nlink */
nfs_drop_nlink(struct inode * inode)1906 static void nfs_drop_nlink(struct inode *inode)
1907 {
1908 spin_lock(&inode->i_lock);
1909 /* drop the inode if we're reasonably sure this is the last link */
1910 if (inode->i_nlink > 0)
1911 drop_nlink(inode);
1912 NFS_I(inode)->attr_gencount = nfs_inc_attr_generation_counter();
1913 nfs_set_cache_invalid(
1914 inode, NFS_INO_INVALID_CHANGE | NFS_INO_INVALID_CTIME |
1915 NFS_INO_INVALID_NLINK);
1916 spin_unlock(&inode->i_lock);
1917 }
1918
1919 /*
1920 * Called when the dentry loses inode.
1921 * We use it to clean up silly-renamed files.
1922 */
nfs_dentry_iput(struct dentry * dentry,struct inode * inode)1923 static void nfs_dentry_iput(struct dentry *dentry, struct inode *inode)
1924 {
1925 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1926 nfs_complete_unlink(dentry, inode);
1927 nfs_drop_nlink(inode);
1928 }
1929 iput(inode);
1930 }
1931
nfs_d_release(struct dentry * dentry)1932 static void nfs_d_release(struct dentry *dentry)
1933 {
1934 /* free cached devname value, if it survived that far */
1935 if (unlikely(dentry->d_fsdata)) {
1936 if (dentry->d_flags & DCACHE_NFSFS_RENAMED)
1937 WARN_ON(1);
1938 else
1939 kfree(dentry->d_fsdata);
1940 }
1941 }
1942
1943 const struct dentry_operations nfs_dentry_operations = {
1944 .d_revalidate = nfs_lookup_revalidate,
1945 .d_weak_revalidate = nfs_weak_revalidate,
1946 .d_delete = nfs_dentry_delete,
1947 .d_iput = nfs_dentry_iput,
1948 .d_automount = nfs_d_automount,
1949 .d_release = nfs_d_release,
1950 };
1951 EXPORT_SYMBOL_GPL(nfs_dentry_operations);
1952
nfs_lookup(struct inode * dir,struct dentry * dentry,unsigned int flags)1953 struct dentry *nfs_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
1954 {
1955 struct dentry *res;
1956 struct inode *inode = NULL;
1957 struct nfs_fh *fhandle = NULL;
1958 struct nfs_fattr *fattr = NULL;
1959 unsigned long dir_verifier;
1960 int error;
1961
1962 dfprintk(VFS, "NFS: lookup(%pd2)\n", dentry);
1963 nfs_inc_stats(dir, NFSIOS_VFSLOOKUP);
1964
1965 if (unlikely(dentry->d_name.len > NFS_SERVER(dir)->namelen))
1966 return ERR_PTR(-ENAMETOOLONG);
1967
1968 /*
1969 * If we're doing an exclusive create, optimize away the lookup
1970 * but don't hash the dentry.
1971 */
1972 if (nfs_is_exclusive_create(dir, flags) || flags & LOOKUP_RENAME_TARGET)
1973 return NULL;
1974
1975 res = ERR_PTR(-ENOMEM);
1976 fhandle = nfs_alloc_fhandle();
1977 fattr = nfs_alloc_fattr_with_label(NFS_SERVER(dir));
1978 if (fhandle == NULL || fattr == NULL)
1979 goto out;
1980
1981 dir_verifier = nfs_save_change_attribute(dir);
1982 trace_nfs_lookup_enter(dir, dentry, flags);
1983 error = NFS_PROTO(dir)->lookup(dir, dentry, fhandle, fattr);
1984 if (error == -ENOENT) {
1985 if (nfs_server_capable(dir, NFS_CAP_CASE_INSENSITIVE))
1986 dir_verifier = inode_peek_iversion_raw(dir);
1987 goto no_entry;
1988 }
1989 if (error < 0) {
1990 res = ERR_PTR(error);
1991 goto out;
1992 }
1993 inode = nfs_fhget(dentry->d_sb, fhandle, fattr);
1994 res = ERR_CAST(inode);
1995 if (IS_ERR(res))
1996 goto out;
1997
1998 /* Notify readdir to use READDIRPLUS */
1999 nfs_lookup_advise_force_readdirplus(dir, flags);
2000
2001 no_entry:
2002 res = d_splice_alias(inode, dentry);
2003 if (res != NULL) {
2004 if (IS_ERR(res))
2005 goto out;
2006 dentry = res;
2007 }
2008 nfs_set_verifier(dentry, dir_verifier);
2009 out:
2010 trace_nfs_lookup_exit(dir, dentry, flags, PTR_ERR_OR_ZERO(res));
2011 nfs_free_fattr(fattr);
2012 nfs_free_fhandle(fhandle);
2013 return res;
2014 }
2015 EXPORT_SYMBOL_GPL(nfs_lookup);
2016
nfs_d_prune_case_insensitive_aliases(struct inode * inode)2017 void nfs_d_prune_case_insensitive_aliases(struct inode *inode)
2018 {
2019 /* Case insensitive server? Revalidate dentries */
2020 if (inode && nfs_server_capable(inode, NFS_CAP_CASE_INSENSITIVE))
2021 d_prune_aliases(inode);
2022 }
2023 EXPORT_SYMBOL_GPL(nfs_d_prune_case_insensitive_aliases);
2024
2025 #if IS_ENABLED(CONFIG_NFS_V4)
2026 static int nfs4_lookup_revalidate(struct dentry *, unsigned int);
2027
2028 const struct dentry_operations nfs4_dentry_operations = {
2029 .d_revalidate = nfs4_lookup_revalidate,
2030 .d_weak_revalidate = nfs_weak_revalidate,
2031 .d_delete = nfs_dentry_delete,
2032 .d_iput = nfs_dentry_iput,
2033 .d_automount = nfs_d_automount,
2034 .d_release = nfs_d_release,
2035 };
2036 EXPORT_SYMBOL_GPL(nfs4_dentry_operations);
2037
create_nfs_open_context(struct dentry * dentry,int open_flags,struct file * filp)2038 static struct nfs_open_context *create_nfs_open_context(struct dentry *dentry, int open_flags, struct file *filp)
2039 {
2040 return alloc_nfs_open_context(dentry, flags_to_mode(open_flags), filp);
2041 }
2042
do_open(struct inode * inode,struct file * filp)2043 static int do_open(struct inode *inode, struct file *filp)
2044 {
2045 nfs_fscache_open_file(inode, filp);
2046 return 0;
2047 }
2048
nfs_finish_open(struct nfs_open_context * ctx,struct dentry * dentry,struct file * file,unsigned open_flags)2049 static int nfs_finish_open(struct nfs_open_context *ctx,
2050 struct dentry *dentry,
2051 struct file *file, unsigned open_flags)
2052 {
2053 int err;
2054
2055 err = finish_open(file, dentry, do_open);
2056 if (err)
2057 goto out;
2058 if (S_ISREG(file_inode(file)->i_mode))
2059 nfs_file_set_open_context(file, ctx);
2060 else
2061 err = -EOPENSTALE;
2062 out:
2063 return err;
2064 }
2065
nfs_atomic_open(struct inode * dir,struct dentry * dentry,struct file * file,unsigned open_flags,umode_t mode)2066 int nfs_atomic_open(struct inode *dir, struct dentry *dentry,
2067 struct file *file, unsigned open_flags,
2068 umode_t mode)
2069 {
2070 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
2071 struct nfs_open_context *ctx;
2072 struct dentry *res;
2073 struct iattr attr = { .ia_valid = ATTR_OPEN };
2074 struct inode *inode;
2075 unsigned int lookup_flags = 0;
2076 unsigned long dir_verifier;
2077 bool switched = false;
2078 int created = 0;
2079 int err;
2080
2081 /* Expect a negative dentry */
2082 BUG_ON(d_inode(dentry));
2083
2084 dfprintk(VFS, "NFS: atomic_open(%s/%lu), %pd\n",
2085 dir->i_sb->s_id, dir->i_ino, dentry);
2086
2087 err = nfs_check_flags(open_flags);
2088 if (err)
2089 return err;
2090
2091 /* NFS only supports OPEN on regular files */
2092 if ((open_flags & O_DIRECTORY)) {
2093 if (!d_in_lookup(dentry)) {
2094 /*
2095 * Hashed negative dentry with O_DIRECTORY: dentry was
2096 * revalidated and is fine, no need to perform lookup
2097 * again
2098 */
2099 return -ENOENT;
2100 }
2101 lookup_flags = LOOKUP_OPEN|LOOKUP_DIRECTORY;
2102 goto no_open;
2103 }
2104
2105 if (dentry->d_name.len > NFS_SERVER(dir)->namelen)
2106 return -ENAMETOOLONG;
2107
2108 if (open_flags & O_CREAT) {
2109 struct nfs_server *server = NFS_SERVER(dir);
2110
2111 if (!(server->attr_bitmask[2] & FATTR4_WORD2_MODE_UMASK))
2112 mode &= ~current_umask();
2113
2114 attr.ia_valid |= ATTR_MODE;
2115 attr.ia_mode = mode;
2116 }
2117 if (open_flags & O_TRUNC) {
2118 attr.ia_valid |= ATTR_SIZE;
2119 attr.ia_size = 0;
2120 }
2121
2122 if (!(open_flags & O_CREAT) && !d_in_lookup(dentry)) {
2123 d_drop(dentry);
2124 switched = true;
2125 dentry = d_alloc_parallel(dentry->d_parent,
2126 &dentry->d_name, &wq);
2127 if (IS_ERR(dentry))
2128 return PTR_ERR(dentry);
2129 if (unlikely(!d_in_lookup(dentry)))
2130 return finish_no_open(file, dentry);
2131 }
2132
2133 ctx = create_nfs_open_context(dentry, open_flags, file);
2134 err = PTR_ERR(ctx);
2135 if (IS_ERR(ctx))
2136 goto out;
2137
2138 trace_nfs_atomic_open_enter(dir, ctx, open_flags);
2139 inode = NFS_PROTO(dir)->open_context(dir, ctx, open_flags, &attr, &created);
2140 if (created)
2141 file->f_mode |= FMODE_CREATED;
2142 if (IS_ERR(inode)) {
2143 err = PTR_ERR(inode);
2144 trace_nfs_atomic_open_exit(dir, ctx, open_flags, err);
2145 put_nfs_open_context(ctx);
2146 d_drop(dentry);
2147 switch (err) {
2148 case -ENOENT:
2149 d_splice_alias(NULL, dentry);
2150 if (nfs_server_capable(dir, NFS_CAP_CASE_INSENSITIVE))
2151 dir_verifier = inode_peek_iversion_raw(dir);
2152 else
2153 dir_verifier = nfs_save_change_attribute(dir);
2154 nfs_set_verifier(dentry, dir_verifier);
2155 break;
2156 case -EISDIR:
2157 case -ENOTDIR:
2158 goto no_open;
2159 case -ELOOP:
2160 if (!(open_flags & O_NOFOLLOW))
2161 goto no_open;
2162 break;
2163 /* case -EINVAL: */
2164 default:
2165 break;
2166 }
2167 goto out;
2168 }
2169 file->f_mode |= FMODE_CAN_ODIRECT;
2170
2171 err = nfs_finish_open(ctx, ctx->dentry, file, open_flags);
2172 trace_nfs_atomic_open_exit(dir, ctx, open_flags, err);
2173 put_nfs_open_context(ctx);
2174 out:
2175 if (unlikely(switched)) {
2176 d_lookup_done(dentry);
2177 dput(dentry);
2178 }
2179 return err;
2180
2181 no_open:
2182 res = nfs_lookup(dir, dentry, lookup_flags);
2183 if (!res) {
2184 inode = d_inode(dentry);
2185 if ((lookup_flags & LOOKUP_DIRECTORY) && inode &&
2186 !(S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode)))
2187 res = ERR_PTR(-ENOTDIR);
2188 else if (inode && S_ISREG(inode->i_mode))
2189 res = ERR_PTR(-EOPENSTALE);
2190 } else if (!IS_ERR(res)) {
2191 inode = d_inode(res);
2192 if ((lookup_flags & LOOKUP_DIRECTORY) && inode &&
2193 !(S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))) {
2194 dput(res);
2195 res = ERR_PTR(-ENOTDIR);
2196 } else if (inode && S_ISREG(inode->i_mode)) {
2197 dput(res);
2198 res = ERR_PTR(-EOPENSTALE);
2199 }
2200 }
2201 if (switched) {
2202 d_lookup_done(dentry);
2203 if (!res)
2204 res = dentry;
2205 else
2206 dput(dentry);
2207 }
2208 if (IS_ERR(res))
2209 return PTR_ERR(res);
2210 return finish_no_open(file, res);
2211 }
2212 EXPORT_SYMBOL_GPL(nfs_atomic_open);
2213
2214 static int
nfs4_do_lookup_revalidate(struct inode * dir,struct dentry * dentry,unsigned int flags)2215 nfs4_do_lookup_revalidate(struct inode *dir, struct dentry *dentry,
2216 unsigned int flags)
2217 {
2218 struct inode *inode;
2219
2220 if (!(flags & LOOKUP_OPEN) || (flags & LOOKUP_DIRECTORY))
2221 goto full_reval;
2222 if (d_mountpoint(dentry))
2223 goto full_reval;
2224
2225 inode = d_inode(dentry);
2226
2227 /* We can't create new files in nfs_open_revalidate(), so we
2228 * optimize away revalidation of negative dentries.
2229 */
2230 if (inode == NULL)
2231 goto full_reval;
2232
2233 if (nfs_verifier_is_delegated(dentry))
2234 return nfs_lookup_revalidate_delegated(dir, dentry, inode);
2235
2236 /* NFS only supports OPEN on regular files */
2237 if (!S_ISREG(inode->i_mode))
2238 goto full_reval;
2239
2240 /* We cannot do exclusive creation on a positive dentry */
2241 if (flags & (LOOKUP_EXCL | LOOKUP_REVAL))
2242 goto reval_dentry;
2243
2244 /* Check if the directory changed */
2245 if (!nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU))
2246 goto reval_dentry;
2247
2248 /* Let f_op->open() actually open (and revalidate) the file */
2249 return 1;
2250 reval_dentry:
2251 if (flags & LOOKUP_RCU)
2252 return -ECHILD;
2253 return nfs_lookup_revalidate_dentry(dir, dentry, inode, flags);
2254
2255 full_reval:
2256 return nfs_do_lookup_revalidate(dir, dentry, flags);
2257 }
2258
nfs4_lookup_revalidate(struct dentry * dentry,unsigned int flags)2259 static int nfs4_lookup_revalidate(struct dentry *dentry, unsigned int flags)
2260 {
2261 return __nfs_lookup_revalidate(dentry, flags,
2262 nfs4_do_lookup_revalidate);
2263 }
2264
2265 #endif /* CONFIG_NFSV4 */
2266
2267 struct dentry *
nfs_add_or_obtain(struct dentry * dentry,struct nfs_fh * fhandle,struct nfs_fattr * fattr)2268 nfs_add_or_obtain(struct dentry *dentry, struct nfs_fh *fhandle,
2269 struct nfs_fattr *fattr)
2270 {
2271 struct dentry *parent = dget_parent(dentry);
2272 struct inode *dir = d_inode(parent);
2273 struct inode *inode;
2274 struct dentry *d;
2275 int error;
2276
2277 d_drop(dentry);
2278
2279 if (fhandle->size == 0) {
2280 error = NFS_PROTO(dir)->lookup(dir, dentry, fhandle, fattr);
2281 if (error)
2282 goto out_error;
2283 }
2284 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
2285 if (!(fattr->valid & NFS_ATTR_FATTR)) {
2286 struct nfs_server *server = NFS_SB(dentry->d_sb);
2287 error = server->nfs_client->rpc_ops->getattr(server, fhandle,
2288 fattr, NULL);
2289 if (error < 0)
2290 goto out_error;
2291 }
2292 inode = nfs_fhget(dentry->d_sb, fhandle, fattr);
2293 d = d_splice_alias(inode, dentry);
2294 out:
2295 dput(parent);
2296 return d;
2297 out_error:
2298 d = ERR_PTR(error);
2299 goto out;
2300 }
2301 EXPORT_SYMBOL_GPL(nfs_add_or_obtain);
2302
2303 /*
2304 * Code common to create, mkdir, and mknod.
2305 */
nfs_instantiate(struct dentry * dentry,struct nfs_fh * fhandle,struct nfs_fattr * fattr)2306 int nfs_instantiate(struct dentry *dentry, struct nfs_fh *fhandle,
2307 struct nfs_fattr *fattr)
2308 {
2309 struct dentry *d;
2310
2311 d = nfs_add_or_obtain(dentry, fhandle, fattr);
2312 if (IS_ERR(d))
2313 return PTR_ERR(d);
2314
2315 /* Callers don't care */
2316 dput(d);
2317 return 0;
2318 }
2319 EXPORT_SYMBOL_GPL(nfs_instantiate);
2320
2321 /*
2322 * Following a failed create operation, we drop the dentry rather
2323 * than retain a negative dentry. This avoids a problem in the event
2324 * that the operation succeeded on the server, but an error in the
2325 * reply path made it appear to have failed.
2326 */
nfs_create(struct mnt_idmap * idmap,struct inode * dir,struct dentry * dentry,umode_t mode,bool excl)2327 int nfs_create(struct mnt_idmap *idmap, struct inode *dir,
2328 struct dentry *dentry, umode_t mode, bool excl)
2329 {
2330 struct iattr attr;
2331 int open_flags = excl ? O_CREAT | O_EXCL : O_CREAT;
2332 int error;
2333
2334 dfprintk(VFS, "NFS: create(%s/%lu), %pd\n",
2335 dir->i_sb->s_id, dir->i_ino, dentry);
2336
2337 attr.ia_mode = mode;
2338 attr.ia_valid = ATTR_MODE;
2339
2340 trace_nfs_create_enter(dir, dentry, open_flags);
2341 error = NFS_PROTO(dir)->create(dir, dentry, &attr, open_flags);
2342 trace_nfs_create_exit(dir, dentry, open_flags, error);
2343 if (error != 0)
2344 goto out_err;
2345 return 0;
2346 out_err:
2347 d_drop(dentry);
2348 return error;
2349 }
2350 EXPORT_SYMBOL_GPL(nfs_create);
2351
2352 /*
2353 * See comments for nfs_proc_create regarding failed operations.
2354 */
2355 int
nfs_mknod(struct mnt_idmap * idmap,struct inode * dir,struct dentry * dentry,umode_t mode,dev_t rdev)2356 nfs_mknod(struct mnt_idmap *idmap, struct inode *dir,
2357 struct dentry *dentry, umode_t mode, dev_t rdev)
2358 {
2359 struct iattr attr;
2360 int status;
2361
2362 dfprintk(VFS, "NFS: mknod(%s/%lu), %pd\n",
2363 dir->i_sb->s_id, dir->i_ino, dentry);
2364
2365 attr.ia_mode = mode;
2366 attr.ia_valid = ATTR_MODE;
2367
2368 trace_nfs_mknod_enter(dir, dentry);
2369 status = NFS_PROTO(dir)->mknod(dir, dentry, &attr, rdev);
2370 trace_nfs_mknod_exit(dir, dentry, status);
2371 if (status != 0)
2372 goto out_err;
2373 return 0;
2374 out_err:
2375 d_drop(dentry);
2376 return status;
2377 }
2378 EXPORT_SYMBOL_GPL(nfs_mknod);
2379
2380 /*
2381 * See comments for nfs_proc_create regarding failed operations.
2382 */
nfs_mkdir(struct mnt_idmap * idmap,struct inode * dir,struct dentry * dentry,umode_t mode)2383 int nfs_mkdir(struct mnt_idmap *idmap, struct inode *dir,
2384 struct dentry *dentry, umode_t mode)
2385 {
2386 struct iattr attr;
2387 int error;
2388
2389 dfprintk(VFS, "NFS: mkdir(%s/%lu), %pd\n",
2390 dir->i_sb->s_id, dir->i_ino, dentry);
2391
2392 attr.ia_valid = ATTR_MODE;
2393 attr.ia_mode = mode | S_IFDIR;
2394
2395 trace_nfs_mkdir_enter(dir, dentry);
2396 error = NFS_PROTO(dir)->mkdir(dir, dentry, &attr);
2397 trace_nfs_mkdir_exit(dir, dentry, error);
2398 if (error != 0)
2399 goto out_err;
2400 return 0;
2401 out_err:
2402 d_drop(dentry);
2403 return error;
2404 }
2405 EXPORT_SYMBOL_GPL(nfs_mkdir);
2406
nfs_dentry_handle_enoent(struct dentry * dentry)2407 static void nfs_dentry_handle_enoent(struct dentry *dentry)
2408 {
2409 if (simple_positive(dentry))
2410 d_delete(dentry);
2411 }
2412
nfs_dentry_remove_handle_error(struct inode * dir,struct dentry * dentry,int error)2413 static void nfs_dentry_remove_handle_error(struct inode *dir,
2414 struct dentry *dentry, int error)
2415 {
2416 switch (error) {
2417 case -ENOENT:
2418 if (d_really_is_positive(dentry))
2419 d_delete(dentry);
2420 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
2421 break;
2422 case 0:
2423 nfs_d_prune_case_insensitive_aliases(d_inode(dentry));
2424 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
2425 }
2426 }
2427
nfs_rmdir(struct inode * dir,struct dentry * dentry)2428 int nfs_rmdir(struct inode *dir, struct dentry *dentry)
2429 {
2430 int error;
2431
2432 dfprintk(VFS, "NFS: rmdir(%s/%lu), %pd\n",
2433 dir->i_sb->s_id, dir->i_ino, dentry);
2434
2435 trace_nfs_rmdir_enter(dir, dentry);
2436 if (d_really_is_positive(dentry)) {
2437 down_write(&NFS_I(d_inode(dentry))->rmdir_sem);
2438 error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
2439 /* Ensure the VFS deletes this inode */
2440 switch (error) {
2441 case 0:
2442 clear_nlink(d_inode(dentry));
2443 break;
2444 case -ENOENT:
2445 nfs_dentry_handle_enoent(dentry);
2446 }
2447 up_write(&NFS_I(d_inode(dentry))->rmdir_sem);
2448 } else
2449 error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
2450 nfs_dentry_remove_handle_error(dir, dentry, error);
2451 trace_nfs_rmdir_exit(dir, dentry, error);
2452
2453 return error;
2454 }
2455 EXPORT_SYMBOL_GPL(nfs_rmdir);
2456
2457 /*
2458 * Remove a file after making sure there are no pending writes,
2459 * and after checking that the file has only one user.
2460 *
2461 * We invalidate the attribute cache and free the inode prior to the operation
2462 * to avoid possible races if the server reuses the inode.
2463 */
nfs_safe_remove(struct dentry * dentry)2464 static int nfs_safe_remove(struct dentry *dentry)
2465 {
2466 struct inode *dir = d_inode(dentry->d_parent);
2467 struct inode *inode = d_inode(dentry);
2468 int error = -EBUSY;
2469
2470 dfprintk(VFS, "NFS: safe_remove(%pd2)\n", dentry);
2471
2472 /* If the dentry was sillyrenamed, we simply call d_delete() */
2473 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
2474 error = 0;
2475 goto out;
2476 }
2477
2478 trace_nfs_remove_enter(dir, dentry);
2479 if (inode != NULL) {
2480 error = NFS_PROTO(dir)->remove(dir, dentry);
2481 if (error == 0)
2482 nfs_drop_nlink(inode);
2483 } else
2484 error = NFS_PROTO(dir)->remove(dir, dentry);
2485 if (error == -ENOENT)
2486 nfs_dentry_handle_enoent(dentry);
2487 trace_nfs_remove_exit(dir, dentry, error);
2488 out:
2489 return error;
2490 }
2491
2492 /* We do silly rename. In case sillyrename() returns -EBUSY, the inode
2493 * belongs to an active ".nfs..." file and we return -EBUSY.
2494 *
2495 * If sillyrename() returns 0, we do nothing, otherwise we unlink.
2496 */
nfs_unlink(struct inode * dir,struct dentry * dentry)2497 int nfs_unlink(struct inode *dir, struct dentry *dentry)
2498 {
2499 int error;
2500
2501 dfprintk(VFS, "NFS: unlink(%s/%lu, %pd)\n", dir->i_sb->s_id,
2502 dir->i_ino, dentry);
2503
2504 trace_nfs_unlink_enter(dir, dentry);
2505 spin_lock(&dentry->d_lock);
2506 if (d_count(dentry) > 1 && !test_bit(NFS_INO_PRESERVE_UNLINKED,
2507 &NFS_I(d_inode(dentry))->flags)) {
2508 spin_unlock(&dentry->d_lock);
2509 /* Start asynchronous writeout of the inode */
2510 write_inode_now(d_inode(dentry), 0);
2511 error = nfs_sillyrename(dir, dentry);
2512 goto out;
2513 }
2514 /* We must prevent any concurrent open until the unlink
2515 * completes. ->d_revalidate will wait for ->d_fsdata
2516 * to clear. We set it here to ensure no lookup succeeds until
2517 * the unlink is complete on the server.
2518 */
2519 error = -ETXTBSY;
2520 if (WARN_ON(dentry->d_flags & DCACHE_NFSFS_RENAMED) ||
2521 WARN_ON(dentry->d_fsdata == NFS_FSDATA_BLOCKED)) {
2522 spin_unlock(&dentry->d_lock);
2523 goto out;
2524 }
2525 block_revalidate(dentry);
2526
2527 spin_unlock(&dentry->d_lock);
2528 error = nfs_safe_remove(dentry);
2529 nfs_dentry_remove_handle_error(dir, dentry, error);
2530 unblock_revalidate(dentry);
2531 out:
2532 trace_nfs_unlink_exit(dir, dentry, error);
2533 return error;
2534 }
2535 EXPORT_SYMBOL_GPL(nfs_unlink);
2536
2537 /*
2538 * To create a symbolic link, most file systems instantiate a new inode,
2539 * add a page to it containing the path, then write it out to the disk
2540 * using prepare_write/commit_write.
2541 *
2542 * Unfortunately the NFS client can't create the in-core inode first
2543 * because it needs a file handle to create an in-core inode (see
2544 * fs/nfs/inode.c:nfs_fhget). We only have a file handle *after* the
2545 * symlink request has completed on the server.
2546 *
2547 * So instead we allocate a raw page, copy the symname into it, then do
2548 * the SYMLINK request with the page as the buffer. If it succeeds, we
2549 * now have a new file handle and can instantiate an in-core NFS inode
2550 * and move the raw page into its mapping.
2551 */
nfs_symlink(struct mnt_idmap * idmap,struct inode * dir,struct dentry * dentry,const char * symname)2552 int nfs_symlink(struct mnt_idmap *idmap, struct inode *dir,
2553 struct dentry *dentry, const char *symname)
2554 {
2555 struct page *page;
2556 char *kaddr;
2557 struct iattr attr;
2558 unsigned int pathlen = strlen(symname);
2559 int error;
2560
2561 dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s)\n", dir->i_sb->s_id,
2562 dir->i_ino, dentry, symname);
2563
2564 if (pathlen > PAGE_SIZE)
2565 return -ENAMETOOLONG;
2566
2567 attr.ia_mode = S_IFLNK | S_IRWXUGO;
2568 attr.ia_valid = ATTR_MODE;
2569
2570 page = alloc_page(GFP_USER);
2571 if (!page)
2572 return -ENOMEM;
2573
2574 kaddr = page_address(page);
2575 memcpy(kaddr, symname, pathlen);
2576 if (pathlen < PAGE_SIZE)
2577 memset(kaddr + pathlen, 0, PAGE_SIZE - pathlen);
2578
2579 trace_nfs_symlink_enter(dir, dentry);
2580 error = NFS_PROTO(dir)->symlink(dir, dentry, page, pathlen, &attr);
2581 trace_nfs_symlink_exit(dir, dentry, error);
2582 if (error != 0) {
2583 dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s) error %d\n",
2584 dir->i_sb->s_id, dir->i_ino,
2585 dentry, symname, error);
2586 d_drop(dentry);
2587 __free_page(page);
2588 return error;
2589 }
2590
2591 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
2592
2593 /*
2594 * No big deal if we can't add this page to the page cache here.
2595 * READLINK will get the missing page from the server if needed.
2596 */
2597 if (!add_to_page_cache_lru(page, d_inode(dentry)->i_mapping, 0,
2598 GFP_KERNEL)) {
2599 SetPageUptodate(page);
2600 unlock_page(page);
2601 /*
2602 * add_to_page_cache_lru() grabs an extra page refcount.
2603 * Drop it here to avoid leaking this page later.
2604 */
2605 put_page(page);
2606 } else
2607 __free_page(page);
2608
2609 return 0;
2610 }
2611 EXPORT_SYMBOL_GPL(nfs_symlink);
2612
2613 int
nfs_link(struct dentry * old_dentry,struct inode * dir,struct dentry * dentry)2614 nfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2615 {
2616 struct inode *inode = d_inode(old_dentry);
2617 int error;
2618
2619 dfprintk(VFS, "NFS: link(%pd2 -> %pd2)\n",
2620 old_dentry, dentry);
2621
2622 trace_nfs_link_enter(inode, dir, dentry);
2623 d_drop(dentry);
2624 if (S_ISREG(inode->i_mode))
2625 nfs_sync_inode(inode);
2626 error = NFS_PROTO(dir)->link(inode, dir, &dentry->d_name);
2627 if (error == 0) {
2628 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
2629 ihold(inode);
2630 d_add(dentry, inode);
2631 }
2632 trace_nfs_link_exit(inode, dir, dentry, error);
2633 return error;
2634 }
2635 EXPORT_SYMBOL_GPL(nfs_link);
2636
2637 static void
nfs_unblock_rename(struct rpc_task * task,struct nfs_renamedata * data)2638 nfs_unblock_rename(struct rpc_task *task, struct nfs_renamedata *data)
2639 {
2640 struct dentry *new_dentry = data->new_dentry;
2641
2642 unblock_revalidate(new_dentry);
2643 }
2644
2645 /*
2646 * RENAME
2647 * FIXME: Some nfsds, like the Linux user space nfsd, may generate a
2648 * different file handle for the same inode after a rename (e.g. when
2649 * moving to a different directory). A fail-safe method to do so would
2650 * be to look up old_dir/old_name, create a link to new_dir/new_name and
2651 * rename the old file using the sillyrename stuff. This way, the original
2652 * file in old_dir will go away when the last process iput()s the inode.
2653 *
2654 * FIXED.
2655 *
2656 * It actually works quite well. One needs to have the possibility for
2657 * at least one ".nfs..." file in each directory the file ever gets
2658 * moved or linked to which happens automagically with the new
2659 * implementation that only depends on the dcache stuff instead of
2660 * using the inode layer
2661 *
2662 * Unfortunately, things are a little more complicated than indicated
2663 * above. For a cross-directory move, we want to make sure we can get
2664 * rid of the old inode after the operation. This means there must be
2665 * no pending writes (if it's a file), and the use count must be 1.
2666 * If these conditions are met, we can drop the dentries before doing
2667 * the rename.
2668 */
nfs_rename(struct mnt_idmap * idmap,struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry,unsigned int flags)2669 int nfs_rename(struct mnt_idmap *idmap, struct inode *old_dir,
2670 struct dentry *old_dentry, struct inode *new_dir,
2671 struct dentry *new_dentry, unsigned int flags)
2672 {
2673 struct inode *old_inode = d_inode(old_dentry);
2674 struct inode *new_inode = d_inode(new_dentry);
2675 struct dentry *dentry = NULL;
2676 struct rpc_task *task;
2677 bool must_unblock = false;
2678 int error = -EBUSY;
2679
2680 if (flags)
2681 return -EINVAL;
2682
2683 dfprintk(VFS, "NFS: rename(%pd2 -> %pd2, ct=%d)\n",
2684 old_dentry, new_dentry,
2685 d_count(new_dentry));
2686
2687 trace_nfs_rename_enter(old_dir, old_dentry, new_dir, new_dentry);
2688 /*
2689 * For non-directories, check whether the target is busy and if so,
2690 * make a copy of the dentry and then do a silly-rename. If the
2691 * silly-rename succeeds, the copied dentry is hashed and becomes
2692 * the new target.
2693 */
2694 if (new_inode && !S_ISDIR(new_inode->i_mode)) {
2695 /* We must prevent any concurrent open until the unlink
2696 * completes. ->d_revalidate will wait for ->d_fsdata
2697 * to clear. We set it here to ensure no lookup succeeds until
2698 * the unlink is complete on the server.
2699 */
2700 error = -ETXTBSY;
2701 if (WARN_ON(new_dentry->d_flags & DCACHE_NFSFS_RENAMED) ||
2702 WARN_ON(new_dentry->d_fsdata == NFS_FSDATA_BLOCKED))
2703 goto out;
2704
2705 spin_lock(&new_dentry->d_lock);
2706 if (d_count(new_dentry) > 2) {
2707 int err;
2708
2709 spin_unlock(&new_dentry->d_lock);
2710
2711 /* copy the target dentry's name */
2712 dentry = d_alloc(new_dentry->d_parent,
2713 &new_dentry->d_name);
2714 if (!dentry)
2715 goto out;
2716
2717 /* silly-rename the existing target ... */
2718 err = nfs_sillyrename(new_dir, new_dentry);
2719 if (err)
2720 goto out;
2721
2722 new_dentry = dentry;
2723 new_inode = NULL;
2724 } else {
2725 block_revalidate(new_dentry);
2726 must_unblock = true;
2727 spin_unlock(&new_dentry->d_lock);
2728 }
2729
2730 }
2731
2732 if (S_ISREG(old_inode->i_mode))
2733 nfs_sync_inode(old_inode);
2734 task = nfs_async_rename(old_dir, new_dir, old_dentry, new_dentry,
2735 must_unblock ? nfs_unblock_rename : NULL);
2736 if (IS_ERR(task)) {
2737 if (must_unblock)
2738 unblock_revalidate(new_dentry);
2739 error = PTR_ERR(task);
2740 goto out;
2741 }
2742
2743 error = rpc_wait_for_completion_task(task);
2744 if (error != 0) {
2745 ((struct nfs_renamedata *)task->tk_calldata)->cancelled = 1;
2746 /* Paired with the atomic_dec_and_test() barrier in rpc_do_put_task() */
2747 smp_wmb();
2748 } else
2749 error = task->tk_status;
2750 rpc_put_task(task);
2751 /* Ensure the inode attributes are revalidated */
2752 if (error == 0) {
2753 spin_lock(&old_inode->i_lock);
2754 NFS_I(old_inode)->attr_gencount = nfs_inc_attr_generation_counter();
2755 nfs_set_cache_invalid(old_inode, NFS_INO_INVALID_CHANGE |
2756 NFS_INO_INVALID_CTIME |
2757 NFS_INO_REVAL_FORCED);
2758 spin_unlock(&old_inode->i_lock);
2759 }
2760 out:
2761 trace_nfs_rename_exit(old_dir, old_dentry,
2762 new_dir, new_dentry, error);
2763 if (!error) {
2764 if (new_inode != NULL)
2765 nfs_drop_nlink(new_inode);
2766 /*
2767 * The d_move() should be here instead of in an async RPC completion
2768 * handler because we need the proper locks to move the dentry. If
2769 * we're interrupted by a signal, the async RPC completion handler
2770 * should mark the directories for revalidation.
2771 */
2772 d_move(old_dentry, new_dentry);
2773 nfs_set_verifier(old_dentry,
2774 nfs_save_change_attribute(new_dir));
2775 } else if (error == -ENOENT)
2776 nfs_dentry_handle_enoent(old_dentry);
2777
2778 /* new dentry created? */
2779 if (dentry)
2780 dput(dentry);
2781 return error;
2782 }
2783 EXPORT_SYMBOL_GPL(nfs_rename);
2784
2785 static DEFINE_SPINLOCK(nfs_access_lru_lock);
2786 static LIST_HEAD(nfs_access_lru_list);
2787 static atomic_long_t nfs_access_nr_entries;
2788
2789 static unsigned long nfs_access_max_cachesize = 4*1024*1024;
2790 module_param(nfs_access_max_cachesize, ulong, 0644);
2791 MODULE_PARM_DESC(nfs_access_max_cachesize, "NFS access maximum total cache length");
2792
nfs_access_free_entry(struct nfs_access_entry * entry)2793 static void nfs_access_free_entry(struct nfs_access_entry *entry)
2794 {
2795 put_group_info(entry->group_info);
2796 kfree_rcu(entry, rcu_head);
2797 smp_mb__before_atomic();
2798 atomic_long_dec(&nfs_access_nr_entries);
2799 smp_mb__after_atomic();
2800 }
2801
nfs_access_free_list(struct list_head * head)2802 static void nfs_access_free_list(struct list_head *head)
2803 {
2804 struct nfs_access_entry *cache;
2805
2806 while (!list_empty(head)) {
2807 cache = list_entry(head->next, struct nfs_access_entry, lru);
2808 list_del(&cache->lru);
2809 nfs_access_free_entry(cache);
2810 }
2811 }
2812
2813 static unsigned long
nfs_do_access_cache_scan(unsigned int nr_to_scan)2814 nfs_do_access_cache_scan(unsigned int nr_to_scan)
2815 {
2816 LIST_HEAD(head);
2817 struct nfs_inode *nfsi, *next;
2818 struct nfs_access_entry *cache;
2819 long freed = 0;
2820
2821 spin_lock(&nfs_access_lru_lock);
2822 list_for_each_entry_safe(nfsi, next, &nfs_access_lru_list, access_cache_inode_lru) {
2823 struct inode *inode;
2824
2825 if (nr_to_scan-- == 0)
2826 break;
2827 inode = &nfsi->vfs_inode;
2828 spin_lock(&inode->i_lock);
2829 if (list_empty(&nfsi->access_cache_entry_lru))
2830 goto remove_lru_entry;
2831 cache = list_entry(nfsi->access_cache_entry_lru.next,
2832 struct nfs_access_entry, lru);
2833 list_move(&cache->lru, &head);
2834 rb_erase(&cache->rb_node, &nfsi->access_cache);
2835 freed++;
2836 if (!list_empty(&nfsi->access_cache_entry_lru))
2837 list_move_tail(&nfsi->access_cache_inode_lru,
2838 &nfs_access_lru_list);
2839 else {
2840 remove_lru_entry:
2841 list_del_init(&nfsi->access_cache_inode_lru);
2842 smp_mb__before_atomic();
2843 clear_bit(NFS_INO_ACL_LRU_SET, &nfsi->flags);
2844 smp_mb__after_atomic();
2845 }
2846 spin_unlock(&inode->i_lock);
2847 }
2848 spin_unlock(&nfs_access_lru_lock);
2849 nfs_access_free_list(&head);
2850 return freed;
2851 }
2852
2853 unsigned long
nfs_access_cache_scan(struct shrinker * shrink,struct shrink_control * sc)2854 nfs_access_cache_scan(struct shrinker *shrink, struct shrink_control *sc)
2855 {
2856 int nr_to_scan = sc->nr_to_scan;
2857 gfp_t gfp_mask = sc->gfp_mask;
2858
2859 if ((gfp_mask & GFP_KERNEL) != GFP_KERNEL)
2860 return SHRINK_STOP;
2861 return nfs_do_access_cache_scan(nr_to_scan);
2862 }
2863
2864
2865 unsigned long
nfs_access_cache_count(struct shrinker * shrink,struct shrink_control * sc)2866 nfs_access_cache_count(struct shrinker *shrink, struct shrink_control *sc)
2867 {
2868 return vfs_pressure_ratio(atomic_long_read(&nfs_access_nr_entries));
2869 }
2870
2871 static void
nfs_access_cache_enforce_limit(void)2872 nfs_access_cache_enforce_limit(void)
2873 {
2874 long nr_entries = atomic_long_read(&nfs_access_nr_entries);
2875 unsigned long diff;
2876 unsigned int nr_to_scan;
2877
2878 if (nr_entries < 0 || nr_entries <= nfs_access_max_cachesize)
2879 return;
2880 nr_to_scan = 100;
2881 diff = nr_entries - nfs_access_max_cachesize;
2882 if (diff < nr_to_scan)
2883 nr_to_scan = diff;
2884 nfs_do_access_cache_scan(nr_to_scan);
2885 }
2886
__nfs_access_zap_cache(struct nfs_inode * nfsi,struct list_head * head)2887 static void __nfs_access_zap_cache(struct nfs_inode *nfsi, struct list_head *head)
2888 {
2889 struct rb_root *root_node = &nfsi->access_cache;
2890 struct rb_node *n;
2891 struct nfs_access_entry *entry;
2892
2893 /* Unhook entries from the cache */
2894 while ((n = rb_first(root_node)) != NULL) {
2895 entry = rb_entry(n, struct nfs_access_entry, rb_node);
2896 rb_erase(n, root_node);
2897 list_move(&entry->lru, head);
2898 }
2899 nfsi->cache_validity &= ~NFS_INO_INVALID_ACCESS;
2900 }
2901
nfs_access_zap_cache(struct inode * inode)2902 void nfs_access_zap_cache(struct inode *inode)
2903 {
2904 LIST_HEAD(head);
2905
2906 if (test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags) == 0)
2907 return;
2908 /* Remove from global LRU init */
2909 spin_lock(&nfs_access_lru_lock);
2910 if (test_and_clear_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
2911 list_del_init(&NFS_I(inode)->access_cache_inode_lru);
2912
2913 spin_lock(&inode->i_lock);
2914 __nfs_access_zap_cache(NFS_I(inode), &head);
2915 spin_unlock(&inode->i_lock);
2916 spin_unlock(&nfs_access_lru_lock);
2917 nfs_access_free_list(&head);
2918 }
2919 EXPORT_SYMBOL_GPL(nfs_access_zap_cache);
2920
access_cmp(const struct cred * a,const struct nfs_access_entry * b)2921 static int access_cmp(const struct cred *a, const struct nfs_access_entry *b)
2922 {
2923 struct group_info *ga, *gb;
2924 int g;
2925
2926 if (uid_lt(a->fsuid, b->fsuid))
2927 return -1;
2928 if (uid_gt(a->fsuid, b->fsuid))
2929 return 1;
2930
2931 if (gid_lt(a->fsgid, b->fsgid))
2932 return -1;
2933 if (gid_gt(a->fsgid, b->fsgid))
2934 return 1;
2935
2936 ga = a->group_info;
2937 gb = b->group_info;
2938 if (ga == gb)
2939 return 0;
2940 if (ga == NULL)
2941 return -1;
2942 if (gb == NULL)
2943 return 1;
2944 if (ga->ngroups < gb->ngroups)
2945 return -1;
2946 if (ga->ngroups > gb->ngroups)
2947 return 1;
2948
2949 for (g = 0; g < ga->ngroups; g++) {
2950 if (gid_lt(ga->gid[g], gb->gid[g]))
2951 return -1;
2952 if (gid_gt(ga->gid[g], gb->gid[g]))
2953 return 1;
2954 }
2955 return 0;
2956 }
2957
nfs_access_search_rbtree(struct inode * inode,const struct cred * cred)2958 static struct nfs_access_entry *nfs_access_search_rbtree(struct inode *inode, const struct cred *cred)
2959 {
2960 struct rb_node *n = NFS_I(inode)->access_cache.rb_node;
2961
2962 while (n != NULL) {
2963 struct nfs_access_entry *entry =
2964 rb_entry(n, struct nfs_access_entry, rb_node);
2965 int cmp = access_cmp(cred, entry);
2966
2967 if (cmp < 0)
2968 n = n->rb_left;
2969 else if (cmp > 0)
2970 n = n->rb_right;
2971 else
2972 return entry;
2973 }
2974 return NULL;
2975 }
2976
nfs_access_login_time(const struct task_struct * task,const struct cred * cred)2977 static u64 nfs_access_login_time(const struct task_struct *task,
2978 const struct cred *cred)
2979 {
2980 const struct task_struct *parent;
2981 const struct cred *pcred;
2982 u64 ret;
2983
2984 rcu_read_lock();
2985 for (;;) {
2986 parent = rcu_dereference(task->real_parent);
2987 pcred = __task_cred(parent);
2988 if (parent == task || cred_fscmp(pcred, cred) != 0)
2989 break;
2990 task = parent;
2991 }
2992 ret = task->start_time;
2993 rcu_read_unlock();
2994 return ret;
2995 }
2996
nfs_access_get_cached_locked(struct inode * inode,const struct cred * cred,u32 * mask,bool may_block)2997 static int nfs_access_get_cached_locked(struct inode *inode, const struct cred *cred, u32 *mask, bool may_block)
2998 {
2999 struct nfs_inode *nfsi = NFS_I(inode);
3000 u64 login_time = nfs_access_login_time(current, cred);
3001 struct nfs_access_entry *cache;
3002 bool retry = true;
3003 int err;
3004
3005 spin_lock(&inode->i_lock);
3006 for(;;) {
3007 if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
3008 goto out_zap;
3009 cache = nfs_access_search_rbtree(inode, cred);
3010 err = -ENOENT;
3011 if (cache == NULL)
3012 goto out;
3013 /* Found an entry, is our attribute cache valid? */
3014 if (!nfs_check_cache_invalid(inode, NFS_INO_INVALID_ACCESS))
3015 break;
3016 if (!retry)
3017 break;
3018 err = -ECHILD;
3019 if (!may_block)
3020 goto out;
3021 spin_unlock(&inode->i_lock);
3022 err = __nfs_revalidate_inode(NFS_SERVER(inode), inode);
3023 if (err)
3024 return err;
3025 spin_lock(&inode->i_lock);
3026 retry = false;
3027 }
3028 err = -ENOENT;
3029 if ((s64)(login_time - cache->timestamp) > 0)
3030 goto out;
3031 *mask = cache->mask;
3032 list_move_tail(&cache->lru, &nfsi->access_cache_entry_lru);
3033 err = 0;
3034 out:
3035 spin_unlock(&inode->i_lock);
3036 return err;
3037 out_zap:
3038 spin_unlock(&inode->i_lock);
3039 nfs_access_zap_cache(inode);
3040 return -ENOENT;
3041 }
3042
nfs_access_get_cached_rcu(struct inode * inode,const struct cred * cred,u32 * mask)3043 static int nfs_access_get_cached_rcu(struct inode *inode, const struct cred *cred, u32 *mask)
3044 {
3045 /* Only check the most recently returned cache entry,
3046 * but do it without locking.
3047 */
3048 struct nfs_inode *nfsi = NFS_I(inode);
3049 u64 login_time = nfs_access_login_time(current, cred);
3050 struct nfs_access_entry *cache;
3051 int err = -ECHILD;
3052 struct list_head *lh;
3053
3054 rcu_read_lock();
3055 if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
3056 goto out;
3057 lh = rcu_dereference(list_tail_rcu(&nfsi->access_cache_entry_lru));
3058 cache = list_entry(lh, struct nfs_access_entry, lru);
3059 if (lh == &nfsi->access_cache_entry_lru ||
3060 access_cmp(cred, cache) != 0)
3061 cache = NULL;
3062 if (cache == NULL)
3063 goto out;
3064 if ((s64)(login_time - cache->timestamp) > 0)
3065 goto out;
3066 if (nfs_check_cache_invalid(inode, NFS_INO_INVALID_ACCESS))
3067 goto out;
3068 *mask = cache->mask;
3069 err = 0;
3070 out:
3071 rcu_read_unlock();
3072 return err;
3073 }
3074
nfs_access_get_cached(struct inode * inode,const struct cred * cred,u32 * mask,bool may_block)3075 int nfs_access_get_cached(struct inode *inode, const struct cred *cred,
3076 u32 *mask, bool may_block)
3077 {
3078 int status;
3079
3080 status = nfs_access_get_cached_rcu(inode, cred, mask);
3081 if (status != 0)
3082 status = nfs_access_get_cached_locked(inode, cred, mask,
3083 may_block);
3084
3085 return status;
3086 }
3087 EXPORT_SYMBOL_GPL(nfs_access_get_cached);
3088
nfs_access_add_rbtree(struct inode * inode,struct nfs_access_entry * set,const struct cred * cred)3089 static void nfs_access_add_rbtree(struct inode *inode,
3090 struct nfs_access_entry *set,
3091 const struct cred *cred)
3092 {
3093 struct nfs_inode *nfsi = NFS_I(inode);
3094 struct rb_root *root_node = &nfsi->access_cache;
3095 struct rb_node **p = &root_node->rb_node;
3096 struct rb_node *parent = NULL;
3097 struct nfs_access_entry *entry;
3098 int cmp;
3099
3100 spin_lock(&inode->i_lock);
3101 while (*p != NULL) {
3102 parent = *p;
3103 entry = rb_entry(parent, struct nfs_access_entry, rb_node);
3104 cmp = access_cmp(cred, entry);
3105
3106 if (cmp < 0)
3107 p = &parent->rb_left;
3108 else if (cmp > 0)
3109 p = &parent->rb_right;
3110 else
3111 goto found;
3112 }
3113 rb_link_node(&set->rb_node, parent, p);
3114 rb_insert_color(&set->rb_node, root_node);
3115 list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
3116 spin_unlock(&inode->i_lock);
3117 return;
3118 found:
3119 rb_replace_node(parent, &set->rb_node, root_node);
3120 list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
3121 list_del(&entry->lru);
3122 spin_unlock(&inode->i_lock);
3123 nfs_access_free_entry(entry);
3124 }
3125
nfs_access_add_cache(struct inode * inode,struct nfs_access_entry * set,const struct cred * cred)3126 void nfs_access_add_cache(struct inode *inode, struct nfs_access_entry *set,
3127 const struct cred *cred)
3128 {
3129 struct nfs_access_entry *cache = kmalloc(sizeof(*cache), GFP_KERNEL);
3130 if (cache == NULL)
3131 return;
3132 RB_CLEAR_NODE(&cache->rb_node);
3133 cache->fsuid = cred->fsuid;
3134 cache->fsgid = cred->fsgid;
3135 cache->group_info = get_group_info(cred->group_info);
3136 cache->mask = set->mask;
3137 cache->timestamp = ktime_get_ns();
3138
3139 /* The above field assignments must be visible
3140 * before this item appears on the lru. We cannot easily
3141 * use rcu_assign_pointer, so just force the memory barrier.
3142 */
3143 smp_wmb();
3144 nfs_access_add_rbtree(inode, cache, cred);
3145
3146 /* Update accounting */
3147 smp_mb__before_atomic();
3148 atomic_long_inc(&nfs_access_nr_entries);
3149 smp_mb__after_atomic();
3150
3151 /* Add inode to global LRU list */
3152 if (!test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) {
3153 spin_lock(&nfs_access_lru_lock);
3154 if (!test_and_set_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
3155 list_add_tail(&NFS_I(inode)->access_cache_inode_lru,
3156 &nfs_access_lru_list);
3157 spin_unlock(&nfs_access_lru_lock);
3158 }
3159 nfs_access_cache_enforce_limit();
3160 }
3161 EXPORT_SYMBOL_GPL(nfs_access_add_cache);
3162
3163 #define NFS_MAY_READ (NFS_ACCESS_READ)
3164 #define NFS_MAY_WRITE (NFS_ACCESS_MODIFY | \
3165 NFS_ACCESS_EXTEND | \
3166 NFS_ACCESS_DELETE)
3167 #define NFS_FILE_MAY_WRITE (NFS_ACCESS_MODIFY | \
3168 NFS_ACCESS_EXTEND)
3169 #define NFS_DIR_MAY_WRITE NFS_MAY_WRITE
3170 #define NFS_MAY_LOOKUP (NFS_ACCESS_LOOKUP)
3171 #define NFS_MAY_EXECUTE (NFS_ACCESS_EXECUTE)
3172 static int
nfs_access_calc_mask(u32 access_result,umode_t umode)3173 nfs_access_calc_mask(u32 access_result, umode_t umode)
3174 {
3175 int mask = 0;
3176
3177 if (access_result & NFS_MAY_READ)
3178 mask |= MAY_READ;
3179 if (S_ISDIR(umode)) {
3180 if ((access_result & NFS_DIR_MAY_WRITE) == NFS_DIR_MAY_WRITE)
3181 mask |= MAY_WRITE;
3182 if ((access_result & NFS_MAY_LOOKUP) == NFS_MAY_LOOKUP)
3183 mask |= MAY_EXEC;
3184 } else if (S_ISREG(umode)) {
3185 if ((access_result & NFS_FILE_MAY_WRITE) == NFS_FILE_MAY_WRITE)
3186 mask |= MAY_WRITE;
3187 if ((access_result & NFS_MAY_EXECUTE) == NFS_MAY_EXECUTE)
3188 mask |= MAY_EXEC;
3189 } else if (access_result & NFS_MAY_WRITE)
3190 mask |= MAY_WRITE;
3191 return mask;
3192 }
3193
nfs_access_set_mask(struct nfs_access_entry * entry,u32 access_result)3194 void nfs_access_set_mask(struct nfs_access_entry *entry, u32 access_result)
3195 {
3196 entry->mask = access_result;
3197 }
3198 EXPORT_SYMBOL_GPL(nfs_access_set_mask);
3199
nfs_do_access(struct inode * inode,const struct cred * cred,int mask)3200 static int nfs_do_access(struct inode *inode, const struct cred *cred, int mask)
3201 {
3202 struct nfs_access_entry cache;
3203 bool may_block = (mask & MAY_NOT_BLOCK) == 0;
3204 int cache_mask = -1;
3205 int status;
3206
3207 trace_nfs_access_enter(inode);
3208
3209 status = nfs_access_get_cached(inode, cred, &cache.mask, may_block);
3210 if (status == 0)
3211 goto out_cached;
3212
3213 status = -ECHILD;
3214 if (!may_block)
3215 goto out;
3216
3217 /*
3218 * Determine which access bits we want to ask for...
3219 */
3220 cache.mask = NFS_ACCESS_READ | NFS_ACCESS_MODIFY | NFS_ACCESS_EXTEND |
3221 nfs_access_xattr_mask(NFS_SERVER(inode));
3222 if (S_ISDIR(inode->i_mode))
3223 cache.mask |= NFS_ACCESS_DELETE | NFS_ACCESS_LOOKUP;
3224 else
3225 cache.mask |= NFS_ACCESS_EXECUTE;
3226 status = NFS_PROTO(inode)->access(inode, &cache, cred);
3227 if (status != 0) {
3228 if (status == -ESTALE) {
3229 if (!S_ISDIR(inode->i_mode))
3230 nfs_set_inode_stale(inode);
3231 else
3232 nfs_zap_caches(inode);
3233 }
3234 goto out;
3235 }
3236 nfs_access_add_cache(inode, &cache, cred);
3237 out_cached:
3238 cache_mask = nfs_access_calc_mask(cache.mask, inode->i_mode);
3239 if ((mask & ~cache_mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) != 0)
3240 status = -EACCES;
3241 out:
3242 trace_nfs_access_exit(inode, mask, cache_mask, status);
3243 return status;
3244 }
3245
nfs_open_permission_mask(int openflags)3246 static int nfs_open_permission_mask(int openflags)
3247 {
3248 int mask = 0;
3249
3250 if (openflags & __FMODE_EXEC) {
3251 /* ONLY check exec rights */
3252 mask = MAY_EXEC;
3253 } else {
3254 if ((openflags & O_ACCMODE) != O_WRONLY)
3255 mask |= MAY_READ;
3256 if ((openflags & O_ACCMODE) != O_RDONLY)
3257 mask |= MAY_WRITE;
3258 }
3259
3260 return mask;
3261 }
3262
nfs_may_open(struct inode * inode,const struct cred * cred,int openflags)3263 int nfs_may_open(struct inode *inode, const struct cred *cred, int openflags)
3264 {
3265 return nfs_do_access(inode, cred, nfs_open_permission_mask(openflags));
3266 }
3267 EXPORT_SYMBOL_GPL(nfs_may_open);
3268
nfs_execute_ok(struct inode * inode,int mask)3269 static int nfs_execute_ok(struct inode *inode, int mask)
3270 {
3271 struct nfs_server *server = NFS_SERVER(inode);
3272 int ret = 0;
3273
3274 if (S_ISDIR(inode->i_mode))
3275 return 0;
3276 if (nfs_check_cache_invalid(inode, NFS_INO_INVALID_MODE)) {
3277 if (mask & MAY_NOT_BLOCK)
3278 return -ECHILD;
3279 ret = __nfs_revalidate_inode(server, inode);
3280 }
3281 if (ret == 0 && !execute_ok(inode))
3282 ret = -EACCES;
3283 return ret;
3284 }
3285
nfs_permission(struct mnt_idmap * idmap,struct inode * inode,int mask)3286 int nfs_permission(struct mnt_idmap *idmap,
3287 struct inode *inode,
3288 int mask)
3289 {
3290 const struct cred *cred = current_cred();
3291 int res = 0;
3292
3293 nfs_inc_stats(inode, NFSIOS_VFSACCESS);
3294
3295 if ((mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
3296 goto out;
3297 /* Is this sys_access() ? */
3298 if (mask & (MAY_ACCESS | MAY_CHDIR))
3299 goto force_lookup;
3300
3301 switch (inode->i_mode & S_IFMT) {
3302 case S_IFLNK:
3303 goto out;
3304 case S_IFREG:
3305 if ((mask & MAY_OPEN) &&
3306 nfs_server_capable(inode, NFS_CAP_ATOMIC_OPEN))
3307 return 0;
3308 break;
3309 case S_IFDIR:
3310 /*
3311 * Optimize away all write operations, since the server
3312 * will check permissions when we perform the op.
3313 */
3314 if ((mask & MAY_WRITE) && !(mask & MAY_READ))
3315 goto out;
3316 }
3317
3318 force_lookup:
3319 if (!NFS_PROTO(inode)->access)
3320 goto out_notsup;
3321
3322 res = nfs_do_access(inode, cred, mask);
3323 out:
3324 if (!res && (mask & MAY_EXEC))
3325 res = nfs_execute_ok(inode, mask);
3326
3327 dfprintk(VFS, "NFS: permission(%s/%lu), mask=0x%x, res=%d\n",
3328 inode->i_sb->s_id, inode->i_ino, mask, res);
3329 return res;
3330 out_notsup:
3331 if (mask & MAY_NOT_BLOCK)
3332 return -ECHILD;
3333
3334 res = nfs_revalidate_inode(inode, NFS_INO_INVALID_MODE |
3335 NFS_INO_INVALID_OTHER);
3336 if (res == 0)
3337 res = generic_permission(&nop_mnt_idmap, inode, mask);
3338 goto out;
3339 }
3340 EXPORT_SYMBOL_GPL(nfs_permission);
3341