xref: /openbmc/linux/fs/netfs/io.c (revision f019679ea5f2ab650c3348a79e7d9c3625f62899)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* Network filesystem high-level read support.
3  *
4  * Copyright (C) 2021 Red Hat, Inc. All Rights Reserved.
5  * Written by David Howells (dhowells@redhat.com)
6  */
7 
8 #include <linux/module.h>
9 #include <linux/export.h>
10 #include <linux/fs.h>
11 #include <linux/mm.h>
12 #include <linux/pagemap.h>
13 #include <linux/slab.h>
14 #include <linux/uio.h>
15 #include <linux/sched/mm.h>
16 #include <linux/task_io_accounting_ops.h>
17 #include "internal.h"
18 
19 /*
20  * Clear the unread part of an I/O request.
21  */
22 static void netfs_clear_unread(struct netfs_io_subrequest *subreq)
23 {
24 	struct iov_iter iter;
25 
26 	iov_iter_xarray(&iter, READ, &subreq->rreq->mapping->i_pages,
27 			subreq->start + subreq->transferred,
28 			subreq->len   - subreq->transferred);
29 	iov_iter_zero(iov_iter_count(&iter), &iter);
30 }
31 
32 static void netfs_cache_read_terminated(void *priv, ssize_t transferred_or_error,
33 					bool was_async)
34 {
35 	struct netfs_io_subrequest *subreq = priv;
36 
37 	netfs_subreq_terminated(subreq, transferred_or_error, was_async);
38 }
39 
40 /*
41  * Issue a read against the cache.
42  * - Eats the caller's ref on subreq.
43  */
44 static void netfs_read_from_cache(struct netfs_io_request *rreq,
45 				  struct netfs_io_subrequest *subreq,
46 				  enum netfs_read_from_hole read_hole)
47 {
48 	struct netfs_cache_resources *cres = &rreq->cache_resources;
49 	struct iov_iter iter;
50 
51 	netfs_stat(&netfs_n_rh_read);
52 	iov_iter_xarray(&iter, READ, &rreq->mapping->i_pages,
53 			subreq->start + subreq->transferred,
54 			subreq->len   - subreq->transferred);
55 
56 	cres->ops->read(cres, subreq->start, &iter, read_hole,
57 			netfs_cache_read_terminated, subreq);
58 }
59 
60 /*
61  * Fill a subrequest region with zeroes.
62  */
63 static void netfs_fill_with_zeroes(struct netfs_io_request *rreq,
64 				   struct netfs_io_subrequest *subreq)
65 {
66 	netfs_stat(&netfs_n_rh_zero);
67 	__set_bit(NETFS_SREQ_CLEAR_TAIL, &subreq->flags);
68 	netfs_subreq_terminated(subreq, 0, false);
69 }
70 
71 /*
72  * Ask the netfs to issue a read request to the server for us.
73  *
74  * The netfs is expected to read from subreq->pos + subreq->transferred to
75  * subreq->pos + subreq->len - 1.  It may not backtrack and write data into the
76  * buffer prior to the transferred point as it might clobber dirty data
77  * obtained from the cache.
78  *
79  * Alternatively, the netfs is allowed to indicate one of two things:
80  *
81  * - NETFS_SREQ_SHORT_READ: A short read - it will get called again to try and
82  *   make progress.
83  *
84  * - NETFS_SREQ_CLEAR_TAIL: A short read - the rest of the buffer will be
85  *   cleared.
86  */
87 static void netfs_read_from_server(struct netfs_io_request *rreq,
88 				   struct netfs_io_subrequest *subreq)
89 {
90 	netfs_stat(&netfs_n_rh_download);
91 	rreq->netfs_ops->issue_read(subreq);
92 }
93 
94 /*
95  * Release those waiting.
96  */
97 static void netfs_rreq_completed(struct netfs_io_request *rreq, bool was_async)
98 {
99 	trace_netfs_rreq(rreq, netfs_rreq_trace_done);
100 	netfs_clear_subrequests(rreq, was_async);
101 	netfs_put_request(rreq, was_async, netfs_rreq_trace_put_complete);
102 }
103 
104 /*
105  * Deal with the completion of writing the data to the cache.  We have to clear
106  * the PG_fscache bits on the folios involved and release the caller's ref.
107  *
108  * May be called in softirq mode and we inherit a ref from the caller.
109  */
110 static void netfs_rreq_unmark_after_write(struct netfs_io_request *rreq,
111 					  bool was_async)
112 {
113 	struct netfs_io_subrequest *subreq;
114 	struct folio *folio;
115 	pgoff_t unlocked = 0;
116 	bool have_unlocked = false;
117 
118 	rcu_read_lock();
119 
120 	list_for_each_entry(subreq, &rreq->subrequests, rreq_link) {
121 		XA_STATE(xas, &rreq->mapping->i_pages, subreq->start / PAGE_SIZE);
122 
123 		xas_for_each(&xas, folio, (subreq->start + subreq->len - 1) / PAGE_SIZE) {
124 			/* We might have multiple writes from the same huge
125 			 * folio, but we mustn't unlock a folio more than once.
126 			 */
127 			if (have_unlocked && folio_index(folio) <= unlocked)
128 				continue;
129 			unlocked = folio_index(folio);
130 			folio_end_fscache(folio);
131 			have_unlocked = true;
132 		}
133 	}
134 
135 	rcu_read_unlock();
136 	netfs_rreq_completed(rreq, was_async);
137 }
138 
139 static void netfs_rreq_copy_terminated(void *priv, ssize_t transferred_or_error,
140 				       bool was_async)
141 {
142 	struct netfs_io_subrequest *subreq = priv;
143 	struct netfs_io_request *rreq = subreq->rreq;
144 
145 	if (IS_ERR_VALUE(transferred_or_error)) {
146 		netfs_stat(&netfs_n_rh_write_failed);
147 		trace_netfs_failure(rreq, subreq, transferred_or_error,
148 				    netfs_fail_copy_to_cache);
149 	} else {
150 		netfs_stat(&netfs_n_rh_write_done);
151 	}
152 
153 	trace_netfs_sreq(subreq, netfs_sreq_trace_write_term);
154 
155 	/* If we decrement nr_copy_ops to 0, the ref belongs to us. */
156 	if (atomic_dec_and_test(&rreq->nr_copy_ops))
157 		netfs_rreq_unmark_after_write(rreq, was_async);
158 
159 	netfs_put_subrequest(subreq, was_async, netfs_sreq_trace_put_terminated);
160 }
161 
162 /*
163  * Perform any outstanding writes to the cache.  We inherit a ref from the
164  * caller.
165  */
166 static void netfs_rreq_do_write_to_cache(struct netfs_io_request *rreq)
167 {
168 	struct netfs_cache_resources *cres = &rreq->cache_resources;
169 	struct netfs_io_subrequest *subreq, *next, *p;
170 	struct iov_iter iter;
171 	int ret;
172 
173 	trace_netfs_rreq(rreq, netfs_rreq_trace_copy);
174 
175 	/* We don't want terminating writes trying to wake us up whilst we're
176 	 * still going through the list.
177 	 */
178 	atomic_inc(&rreq->nr_copy_ops);
179 
180 	list_for_each_entry_safe(subreq, p, &rreq->subrequests, rreq_link) {
181 		if (!test_bit(NETFS_SREQ_COPY_TO_CACHE, &subreq->flags)) {
182 			list_del_init(&subreq->rreq_link);
183 			netfs_put_subrequest(subreq, false,
184 					     netfs_sreq_trace_put_no_copy);
185 		}
186 	}
187 
188 	list_for_each_entry(subreq, &rreq->subrequests, rreq_link) {
189 		/* Amalgamate adjacent writes */
190 		while (!list_is_last(&subreq->rreq_link, &rreq->subrequests)) {
191 			next = list_next_entry(subreq, rreq_link);
192 			if (next->start != subreq->start + subreq->len)
193 				break;
194 			subreq->len += next->len;
195 			list_del_init(&next->rreq_link);
196 			netfs_put_subrequest(next, false,
197 					     netfs_sreq_trace_put_merged);
198 		}
199 
200 		ret = cres->ops->prepare_write(cres, &subreq->start, &subreq->len,
201 					       rreq->i_size, true);
202 		if (ret < 0) {
203 			trace_netfs_failure(rreq, subreq, ret, netfs_fail_prepare_write);
204 			trace_netfs_sreq(subreq, netfs_sreq_trace_write_skip);
205 			continue;
206 		}
207 
208 		iov_iter_xarray(&iter, WRITE, &rreq->mapping->i_pages,
209 				subreq->start, subreq->len);
210 
211 		atomic_inc(&rreq->nr_copy_ops);
212 		netfs_stat(&netfs_n_rh_write);
213 		netfs_get_subrequest(subreq, netfs_sreq_trace_get_copy_to_cache);
214 		trace_netfs_sreq(subreq, netfs_sreq_trace_write);
215 		cres->ops->write(cres, subreq->start, &iter,
216 				 netfs_rreq_copy_terminated, subreq);
217 	}
218 
219 	/* If we decrement nr_copy_ops to 0, the usage ref belongs to us. */
220 	if (atomic_dec_and_test(&rreq->nr_copy_ops))
221 		netfs_rreq_unmark_after_write(rreq, false);
222 }
223 
224 static void netfs_rreq_write_to_cache_work(struct work_struct *work)
225 {
226 	struct netfs_io_request *rreq =
227 		container_of(work, struct netfs_io_request, work);
228 
229 	netfs_rreq_do_write_to_cache(rreq);
230 }
231 
232 static void netfs_rreq_write_to_cache(struct netfs_io_request *rreq)
233 {
234 	rreq->work.func = netfs_rreq_write_to_cache_work;
235 	if (!queue_work(system_unbound_wq, &rreq->work))
236 		BUG();
237 }
238 
239 /*
240  * Handle a short read.
241  */
242 static void netfs_rreq_short_read(struct netfs_io_request *rreq,
243 				  struct netfs_io_subrequest *subreq)
244 {
245 	__clear_bit(NETFS_SREQ_SHORT_IO, &subreq->flags);
246 	__set_bit(NETFS_SREQ_SEEK_DATA_READ, &subreq->flags);
247 
248 	netfs_stat(&netfs_n_rh_short_read);
249 	trace_netfs_sreq(subreq, netfs_sreq_trace_resubmit_short);
250 
251 	netfs_get_subrequest(subreq, netfs_sreq_trace_get_short_read);
252 	atomic_inc(&rreq->nr_outstanding);
253 	if (subreq->source == NETFS_READ_FROM_CACHE)
254 		netfs_read_from_cache(rreq, subreq, NETFS_READ_HOLE_CLEAR);
255 	else
256 		netfs_read_from_server(rreq, subreq);
257 }
258 
259 /*
260  * Resubmit any short or failed operations.  Returns true if we got the rreq
261  * ref back.
262  */
263 static bool netfs_rreq_perform_resubmissions(struct netfs_io_request *rreq)
264 {
265 	struct netfs_io_subrequest *subreq;
266 
267 	WARN_ON(in_interrupt());
268 
269 	trace_netfs_rreq(rreq, netfs_rreq_trace_resubmit);
270 
271 	/* We don't want terminating submissions trying to wake us up whilst
272 	 * we're still going through the list.
273 	 */
274 	atomic_inc(&rreq->nr_outstanding);
275 
276 	__clear_bit(NETFS_RREQ_INCOMPLETE_IO, &rreq->flags);
277 	list_for_each_entry(subreq, &rreq->subrequests, rreq_link) {
278 		if (subreq->error) {
279 			if (subreq->source != NETFS_READ_FROM_CACHE)
280 				break;
281 			subreq->source = NETFS_DOWNLOAD_FROM_SERVER;
282 			subreq->error = 0;
283 			netfs_stat(&netfs_n_rh_download_instead);
284 			trace_netfs_sreq(subreq, netfs_sreq_trace_download_instead);
285 			netfs_get_subrequest(subreq, netfs_sreq_trace_get_resubmit);
286 			atomic_inc(&rreq->nr_outstanding);
287 			netfs_read_from_server(rreq, subreq);
288 		} else if (test_bit(NETFS_SREQ_SHORT_IO, &subreq->flags)) {
289 			netfs_rreq_short_read(rreq, subreq);
290 		}
291 	}
292 
293 	/* If we decrement nr_outstanding to 0, the usage ref belongs to us. */
294 	if (atomic_dec_and_test(&rreq->nr_outstanding))
295 		return true;
296 
297 	wake_up_var(&rreq->nr_outstanding);
298 	return false;
299 }
300 
301 /*
302  * Check to see if the data read is still valid.
303  */
304 static void netfs_rreq_is_still_valid(struct netfs_io_request *rreq)
305 {
306 	struct netfs_io_subrequest *subreq;
307 
308 	if (!rreq->netfs_ops->is_still_valid ||
309 	    rreq->netfs_ops->is_still_valid(rreq))
310 		return;
311 
312 	list_for_each_entry(subreq, &rreq->subrequests, rreq_link) {
313 		if (subreq->source == NETFS_READ_FROM_CACHE) {
314 			subreq->error = -ESTALE;
315 			__set_bit(NETFS_RREQ_INCOMPLETE_IO, &rreq->flags);
316 		}
317 	}
318 }
319 
320 /*
321  * Assess the state of a read request and decide what to do next.
322  *
323  * Note that we could be in an ordinary kernel thread, on a workqueue or in
324  * softirq context at this point.  We inherit a ref from the caller.
325  */
326 static void netfs_rreq_assess(struct netfs_io_request *rreq, bool was_async)
327 {
328 	trace_netfs_rreq(rreq, netfs_rreq_trace_assess);
329 
330 again:
331 	netfs_rreq_is_still_valid(rreq);
332 
333 	if (!test_bit(NETFS_RREQ_FAILED, &rreq->flags) &&
334 	    test_bit(NETFS_RREQ_INCOMPLETE_IO, &rreq->flags)) {
335 		if (netfs_rreq_perform_resubmissions(rreq))
336 			goto again;
337 		return;
338 	}
339 
340 	netfs_rreq_unlock_folios(rreq);
341 
342 	clear_bit_unlock(NETFS_RREQ_IN_PROGRESS, &rreq->flags);
343 	wake_up_bit(&rreq->flags, NETFS_RREQ_IN_PROGRESS);
344 
345 	if (test_bit(NETFS_RREQ_COPY_TO_CACHE, &rreq->flags))
346 		return netfs_rreq_write_to_cache(rreq);
347 
348 	netfs_rreq_completed(rreq, was_async);
349 }
350 
351 static void netfs_rreq_work(struct work_struct *work)
352 {
353 	struct netfs_io_request *rreq =
354 		container_of(work, struct netfs_io_request, work);
355 	netfs_rreq_assess(rreq, false);
356 }
357 
358 /*
359  * Handle the completion of all outstanding I/O operations on a read request.
360  * We inherit a ref from the caller.
361  */
362 static void netfs_rreq_terminated(struct netfs_io_request *rreq,
363 				  bool was_async)
364 {
365 	if (test_bit(NETFS_RREQ_INCOMPLETE_IO, &rreq->flags) &&
366 	    was_async) {
367 		if (!queue_work(system_unbound_wq, &rreq->work))
368 			BUG();
369 	} else {
370 		netfs_rreq_assess(rreq, was_async);
371 	}
372 }
373 
374 /**
375  * netfs_subreq_terminated - Note the termination of an I/O operation.
376  * @subreq: The I/O request that has terminated.
377  * @transferred_or_error: The amount of data transferred or an error code.
378  * @was_async: The termination was asynchronous
379  *
380  * This tells the read helper that a contributory I/O operation has terminated,
381  * one way or another, and that it should integrate the results.
382  *
383  * The caller indicates in @transferred_or_error the outcome of the operation,
384  * supplying a positive value to indicate the number of bytes transferred, 0 to
385  * indicate a failure to transfer anything that should be retried or a negative
386  * error code.  The helper will look after reissuing I/O operations as
387  * appropriate and writing downloaded data to the cache.
388  *
389  * If @was_async is true, the caller might be running in softirq or interrupt
390  * context and we can't sleep.
391  */
392 void netfs_subreq_terminated(struct netfs_io_subrequest *subreq,
393 			     ssize_t transferred_or_error,
394 			     bool was_async)
395 {
396 	struct netfs_io_request *rreq = subreq->rreq;
397 	int u;
398 
399 	_enter("[%u]{%llx,%lx},%zd",
400 	       subreq->debug_index, subreq->start, subreq->flags,
401 	       transferred_or_error);
402 
403 	switch (subreq->source) {
404 	case NETFS_READ_FROM_CACHE:
405 		netfs_stat(&netfs_n_rh_read_done);
406 		break;
407 	case NETFS_DOWNLOAD_FROM_SERVER:
408 		netfs_stat(&netfs_n_rh_download_done);
409 		break;
410 	default:
411 		break;
412 	}
413 
414 	if (IS_ERR_VALUE(transferred_or_error)) {
415 		subreq->error = transferred_or_error;
416 		trace_netfs_failure(rreq, subreq, transferred_or_error,
417 				    netfs_fail_read);
418 		goto failed;
419 	}
420 
421 	if (WARN(transferred_or_error > subreq->len - subreq->transferred,
422 		 "Subreq overread: R%x[%x] %zd > %zu - %zu",
423 		 rreq->debug_id, subreq->debug_index,
424 		 transferred_or_error, subreq->len, subreq->transferred))
425 		transferred_or_error = subreq->len - subreq->transferred;
426 
427 	subreq->error = 0;
428 	subreq->transferred += transferred_or_error;
429 	if (subreq->transferred < subreq->len)
430 		goto incomplete;
431 
432 complete:
433 	__clear_bit(NETFS_SREQ_NO_PROGRESS, &subreq->flags);
434 	if (test_bit(NETFS_SREQ_COPY_TO_CACHE, &subreq->flags))
435 		set_bit(NETFS_RREQ_COPY_TO_CACHE, &rreq->flags);
436 
437 out:
438 	trace_netfs_sreq(subreq, netfs_sreq_trace_terminated);
439 
440 	/* If we decrement nr_outstanding to 0, the ref belongs to us. */
441 	u = atomic_dec_return(&rreq->nr_outstanding);
442 	if (u == 0)
443 		netfs_rreq_terminated(rreq, was_async);
444 	else if (u == 1)
445 		wake_up_var(&rreq->nr_outstanding);
446 
447 	netfs_put_subrequest(subreq, was_async, netfs_sreq_trace_put_terminated);
448 	return;
449 
450 incomplete:
451 	if (test_bit(NETFS_SREQ_CLEAR_TAIL, &subreq->flags)) {
452 		netfs_clear_unread(subreq);
453 		subreq->transferred = subreq->len;
454 		goto complete;
455 	}
456 
457 	if (transferred_or_error == 0) {
458 		if (__test_and_set_bit(NETFS_SREQ_NO_PROGRESS, &subreq->flags)) {
459 			subreq->error = -ENODATA;
460 			goto failed;
461 		}
462 	} else {
463 		__clear_bit(NETFS_SREQ_NO_PROGRESS, &subreq->flags);
464 	}
465 
466 	__set_bit(NETFS_SREQ_SHORT_IO, &subreq->flags);
467 	set_bit(NETFS_RREQ_INCOMPLETE_IO, &rreq->flags);
468 	goto out;
469 
470 failed:
471 	if (subreq->source == NETFS_READ_FROM_CACHE) {
472 		netfs_stat(&netfs_n_rh_read_failed);
473 		set_bit(NETFS_RREQ_INCOMPLETE_IO, &rreq->flags);
474 	} else {
475 		netfs_stat(&netfs_n_rh_download_failed);
476 		set_bit(NETFS_RREQ_FAILED, &rreq->flags);
477 		rreq->error = subreq->error;
478 	}
479 	goto out;
480 }
481 EXPORT_SYMBOL(netfs_subreq_terminated);
482 
483 static enum netfs_io_source netfs_cache_prepare_read(struct netfs_io_subrequest *subreq,
484 						       loff_t i_size)
485 {
486 	struct netfs_io_request *rreq = subreq->rreq;
487 	struct netfs_cache_resources *cres = &rreq->cache_resources;
488 
489 	if (cres->ops)
490 		return cres->ops->prepare_read(subreq, i_size);
491 	if (subreq->start >= rreq->i_size)
492 		return NETFS_FILL_WITH_ZEROES;
493 	return NETFS_DOWNLOAD_FROM_SERVER;
494 }
495 
496 /*
497  * Work out what sort of subrequest the next one will be.
498  */
499 static enum netfs_io_source
500 netfs_rreq_prepare_read(struct netfs_io_request *rreq,
501 			struct netfs_io_subrequest *subreq)
502 {
503 	enum netfs_io_source source;
504 
505 	_enter("%llx-%llx,%llx", subreq->start, subreq->start + subreq->len, rreq->i_size);
506 
507 	source = netfs_cache_prepare_read(subreq, rreq->i_size);
508 	if (source == NETFS_INVALID_READ)
509 		goto out;
510 
511 	if (source == NETFS_DOWNLOAD_FROM_SERVER) {
512 		/* Call out to the netfs to let it shrink the request to fit
513 		 * its own I/O sizes and boundaries.  If it shinks it here, it
514 		 * will be called again to make simultaneous calls; if it wants
515 		 * to make serial calls, it can indicate a short read and then
516 		 * we will call it again.
517 		 */
518 		if (subreq->len > rreq->i_size - subreq->start)
519 			subreq->len = rreq->i_size - subreq->start;
520 
521 		if (rreq->netfs_ops->clamp_length &&
522 		    !rreq->netfs_ops->clamp_length(subreq)) {
523 			source = NETFS_INVALID_READ;
524 			goto out;
525 		}
526 	}
527 
528 	if (WARN_ON(subreq->len == 0))
529 		source = NETFS_INVALID_READ;
530 
531 out:
532 	subreq->source = source;
533 	trace_netfs_sreq(subreq, netfs_sreq_trace_prepare);
534 	return source;
535 }
536 
537 /*
538  * Slice off a piece of a read request and submit an I/O request for it.
539  */
540 static bool netfs_rreq_submit_slice(struct netfs_io_request *rreq,
541 				    unsigned int *_debug_index)
542 {
543 	struct netfs_io_subrequest *subreq;
544 	enum netfs_io_source source;
545 
546 	subreq = netfs_alloc_subrequest(rreq);
547 	if (!subreq)
548 		return false;
549 
550 	subreq->debug_index	= (*_debug_index)++;
551 	subreq->start		= rreq->start + rreq->submitted;
552 	subreq->len		= rreq->len   - rreq->submitted;
553 
554 	_debug("slice %llx,%zx,%zx", subreq->start, subreq->len, rreq->submitted);
555 	list_add_tail(&subreq->rreq_link, &rreq->subrequests);
556 
557 	/* Call out to the cache to find out what it can do with the remaining
558 	 * subset.  It tells us in subreq->flags what it decided should be done
559 	 * and adjusts subreq->len down if the subset crosses a cache boundary.
560 	 *
561 	 * Then when we hand the subset, it can choose to take a subset of that
562 	 * (the starts must coincide), in which case, we go around the loop
563 	 * again and ask it to download the next piece.
564 	 */
565 	source = netfs_rreq_prepare_read(rreq, subreq);
566 	if (source == NETFS_INVALID_READ)
567 		goto subreq_failed;
568 
569 	atomic_inc(&rreq->nr_outstanding);
570 
571 	rreq->submitted += subreq->len;
572 
573 	trace_netfs_sreq(subreq, netfs_sreq_trace_submit);
574 	switch (source) {
575 	case NETFS_FILL_WITH_ZEROES:
576 		netfs_fill_with_zeroes(rreq, subreq);
577 		break;
578 	case NETFS_DOWNLOAD_FROM_SERVER:
579 		netfs_read_from_server(rreq, subreq);
580 		break;
581 	case NETFS_READ_FROM_CACHE:
582 		netfs_read_from_cache(rreq, subreq, NETFS_READ_HOLE_IGNORE);
583 		break;
584 	default:
585 		BUG();
586 	}
587 
588 	return true;
589 
590 subreq_failed:
591 	rreq->error = subreq->error;
592 	netfs_put_subrequest(subreq, false, netfs_sreq_trace_put_failed);
593 	return false;
594 }
595 
596 /*
597  * Begin the process of reading in a chunk of data, where that data may be
598  * stitched together from multiple sources, including multiple servers and the
599  * local cache.
600  */
601 int netfs_begin_read(struct netfs_io_request *rreq, bool sync)
602 {
603 	unsigned int debug_index = 0;
604 	int ret;
605 
606 	_enter("R=%x %llx-%llx",
607 	       rreq->debug_id, rreq->start, rreq->start + rreq->len - 1);
608 
609 	if (rreq->len == 0) {
610 		pr_err("Zero-sized read [R=%x]\n", rreq->debug_id);
611 		netfs_put_request(rreq, false, netfs_rreq_trace_put_zero_len);
612 		return -EIO;
613 	}
614 
615 	INIT_WORK(&rreq->work, netfs_rreq_work);
616 
617 	if (sync)
618 		netfs_get_request(rreq, netfs_rreq_trace_get_hold);
619 
620 	/* Chop the read into slices according to what the cache and the netfs
621 	 * want and submit each one.
622 	 */
623 	atomic_set(&rreq->nr_outstanding, 1);
624 	do {
625 		if (!netfs_rreq_submit_slice(rreq, &debug_index))
626 			break;
627 
628 	} while (rreq->submitted < rreq->len);
629 
630 	if (sync) {
631 		/* Keep nr_outstanding incremented so that the ref always belongs to
632 		 * us, and the service code isn't punted off to a random thread pool to
633 		 * process.
634 		 */
635 		for (;;) {
636 			wait_var_event(&rreq->nr_outstanding,
637 				       atomic_read(&rreq->nr_outstanding) == 1);
638 			netfs_rreq_assess(rreq, false);
639 			if (!test_bit(NETFS_RREQ_IN_PROGRESS, &rreq->flags))
640 				break;
641 			cond_resched();
642 		}
643 
644 		ret = rreq->error;
645 		if (ret == 0 && rreq->submitted < rreq->len) {
646 			trace_netfs_failure(rreq, NULL, ret, netfs_fail_short_read);
647 			ret = -EIO;
648 		}
649 		netfs_put_request(rreq, false, netfs_rreq_trace_put_hold);
650 	} else {
651 		/* If we decrement nr_outstanding to 0, the ref belongs to us. */
652 		if (atomic_dec_and_test(&rreq->nr_outstanding))
653 			netfs_rreq_assess(rreq, false);
654 		ret = 0;
655 	}
656 	return ret;
657 }
658