1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* Network filesystem high-level read support. 3 * 4 * Copyright (C) 2021 Red Hat, Inc. All Rights Reserved. 5 * Written by David Howells (dhowells@redhat.com) 6 */ 7 8 #include <linux/module.h> 9 #include <linux/export.h> 10 #include <linux/fs.h> 11 #include <linux/mm.h> 12 #include <linux/pagemap.h> 13 #include <linux/slab.h> 14 #include <linux/uio.h> 15 #include <linux/sched/mm.h> 16 #include <linux/task_io_accounting_ops.h> 17 #include "internal.h" 18 19 /* 20 * Clear the unread part of an I/O request. 21 */ 22 static void netfs_clear_unread(struct netfs_io_subrequest *subreq) 23 { 24 struct iov_iter iter; 25 26 iov_iter_xarray(&iter, READ, &subreq->rreq->mapping->i_pages, 27 subreq->start + subreq->transferred, 28 subreq->len - subreq->transferred); 29 iov_iter_zero(iov_iter_count(&iter), &iter); 30 } 31 32 static void netfs_cache_read_terminated(void *priv, ssize_t transferred_or_error, 33 bool was_async) 34 { 35 struct netfs_io_subrequest *subreq = priv; 36 37 netfs_subreq_terminated(subreq, transferred_or_error, was_async); 38 } 39 40 /* 41 * Issue a read against the cache. 42 * - Eats the caller's ref on subreq. 43 */ 44 static void netfs_read_from_cache(struct netfs_io_request *rreq, 45 struct netfs_io_subrequest *subreq, 46 enum netfs_read_from_hole read_hole) 47 { 48 struct netfs_cache_resources *cres = &rreq->cache_resources; 49 struct iov_iter iter; 50 51 netfs_stat(&netfs_n_rh_read); 52 iov_iter_xarray(&iter, READ, &rreq->mapping->i_pages, 53 subreq->start + subreq->transferred, 54 subreq->len - subreq->transferred); 55 56 cres->ops->read(cres, subreq->start, &iter, read_hole, 57 netfs_cache_read_terminated, subreq); 58 } 59 60 /* 61 * Fill a subrequest region with zeroes. 62 */ 63 static void netfs_fill_with_zeroes(struct netfs_io_request *rreq, 64 struct netfs_io_subrequest *subreq) 65 { 66 netfs_stat(&netfs_n_rh_zero); 67 __set_bit(NETFS_SREQ_CLEAR_TAIL, &subreq->flags); 68 netfs_subreq_terminated(subreq, 0, false); 69 } 70 71 /* 72 * Ask the netfs to issue a read request to the server for us. 73 * 74 * The netfs is expected to read from subreq->pos + subreq->transferred to 75 * subreq->pos + subreq->len - 1. It may not backtrack and write data into the 76 * buffer prior to the transferred point as it might clobber dirty data 77 * obtained from the cache. 78 * 79 * Alternatively, the netfs is allowed to indicate one of two things: 80 * 81 * - NETFS_SREQ_SHORT_READ: A short read - it will get called again to try and 82 * make progress. 83 * 84 * - NETFS_SREQ_CLEAR_TAIL: A short read - the rest of the buffer will be 85 * cleared. 86 */ 87 static void netfs_read_from_server(struct netfs_io_request *rreq, 88 struct netfs_io_subrequest *subreq) 89 { 90 netfs_stat(&netfs_n_rh_download); 91 rreq->netfs_ops->issue_read(subreq); 92 } 93 94 /* 95 * Release those waiting. 96 */ 97 static void netfs_rreq_completed(struct netfs_io_request *rreq, bool was_async) 98 { 99 trace_netfs_rreq(rreq, netfs_rreq_trace_done); 100 netfs_clear_subrequests(rreq, was_async); 101 netfs_put_request(rreq, was_async, netfs_rreq_trace_put_complete); 102 } 103 104 /* 105 * Deal with the completion of writing the data to the cache. We have to clear 106 * the PG_fscache bits on the folios involved and release the caller's ref. 107 * 108 * May be called in softirq mode and we inherit a ref from the caller. 109 */ 110 static void netfs_rreq_unmark_after_write(struct netfs_io_request *rreq, 111 bool was_async) 112 { 113 struct netfs_io_subrequest *subreq; 114 struct folio *folio; 115 pgoff_t unlocked = 0; 116 bool have_unlocked = false; 117 118 rcu_read_lock(); 119 120 list_for_each_entry(subreq, &rreq->subrequests, rreq_link) { 121 XA_STATE(xas, &rreq->mapping->i_pages, subreq->start / PAGE_SIZE); 122 123 xas_for_each(&xas, folio, (subreq->start + subreq->len - 1) / PAGE_SIZE) { 124 /* We might have multiple writes from the same huge 125 * folio, but we mustn't unlock a folio more than once. 126 */ 127 if (have_unlocked && folio_index(folio) <= unlocked) 128 continue; 129 unlocked = folio_index(folio); 130 folio_end_fscache(folio); 131 have_unlocked = true; 132 } 133 } 134 135 rcu_read_unlock(); 136 netfs_rreq_completed(rreq, was_async); 137 } 138 139 static void netfs_rreq_copy_terminated(void *priv, ssize_t transferred_or_error, 140 bool was_async) 141 { 142 struct netfs_io_subrequest *subreq = priv; 143 struct netfs_io_request *rreq = subreq->rreq; 144 145 if (IS_ERR_VALUE(transferred_or_error)) { 146 netfs_stat(&netfs_n_rh_write_failed); 147 trace_netfs_failure(rreq, subreq, transferred_or_error, 148 netfs_fail_copy_to_cache); 149 } else { 150 netfs_stat(&netfs_n_rh_write_done); 151 } 152 153 trace_netfs_sreq(subreq, netfs_sreq_trace_write_term); 154 155 /* If we decrement nr_copy_ops to 0, the ref belongs to us. */ 156 if (atomic_dec_and_test(&rreq->nr_copy_ops)) 157 netfs_rreq_unmark_after_write(rreq, was_async); 158 159 netfs_put_subrequest(subreq, was_async, netfs_sreq_trace_put_terminated); 160 } 161 162 /* 163 * Perform any outstanding writes to the cache. We inherit a ref from the 164 * caller. 165 */ 166 static void netfs_rreq_do_write_to_cache(struct netfs_io_request *rreq) 167 { 168 struct netfs_cache_resources *cres = &rreq->cache_resources; 169 struct netfs_io_subrequest *subreq, *next, *p; 170 struct iov_iter iter; 171 int ret; 172 173 trace_netfs_rreq(rreq, netfs_rreq_trace_copy); 174 175 /* We don't want terminating writes trying to wake us up whilst we're 176 * still going through the list. 177 */ 178 atomic_inc(&rreq->nr_copy_ops); 179 180 list_for_each_entry_safe(subreq, p, &rreq->subrequests, rreq_link) { 181 if (!test_bit(NETFS_SREQ_COPY_TO_CACHE, &subreq->flags)) { 182 list_del_init(&subreq->rreq_link); 183 netfs_put_subrequest(subreq, false, 184 netfs_sreq_trace_put_no_copy); 185 } 186 } 187 188 list_for_each_entry(subreq, &rreq->subrequests, rreq_link) { 189 /* Amalgamate adjacent writes */ 190 while (!list_is_last(&subreq->rreq_link, &rreq->subrequests)) { 191 next = list_next_entry(subreq, rreq_link); 192 if (next->start != subreq->start + subreq->len) 193 break; 194 subreq->len += next->len; 195 list_del_init(&next->rreq_link); 196 netfs_put_subrequest(next, false, 197 netfs_sreq_trace_put_merged); 198 } 199 200 ret = cres->ops->prepare_write(cres, &subreq->start, &subreq->len, 201 rreq->i_size, true); 202 if (ret < 0) { 203 trace_netfs_failure(rreq, subreq, ret, netfs_fail_prepare_write); 204 trace_netfs_sreq(subreq, netfs_sreq_trace_write_skip); 205 continue; 206 } 207 208 iov_iter_xarray(&iter, WRITE, &rreq->mapping->i_pages, 209 subreq->start, subreq->len); 210 211 atomic_inc(&rreq->nr_copy_ops); 212 netfs_stat(&netfs_n_rh_write); 213 netfs_get_subrequest(subreq, netfs_sreq_trace_get_copy_to_cache); 214 trace_netfs_sreq(subreq, netfs_sreq_trace_write); 215 cres->ops->write(cres, subreq->start, &iter, 216 netfs_rreq_copy_terminated, subreq); 217 } 218 219 /* If we decrement nr_copy_ops to 0, the usage ref belongs to us. */ 220 if (atomic_dec_and_test(&rreq->nr_copy_ops)) 221 netfs_rreq_unmark_after_write(rreq, false); 222 } 223 224 static void netfs_rreq_write_to_cache_work(struct work_struct *work) 225 { 226 struct netfs_io_request *rreq = 227 container_of(work, struct netfs_io_request, work); 228 229 netfs_rreq_do_write_to_cache(rreq); 230 } 231 232 static void netfs_rreq_write_to_cache(struct netfs_io_request *rreq) 233 { 234 rreq->work.func = netfs_rreq_write_to_cache_work; 235 if (!queue_work(system_unbound_wq, &rreq->work)) 236 BUG(); 237 } 238 239 /* 240 * Handle a short read. 241 */ 242 static void netfs_rreq_short_read(struct netfs_io_request *rreq, 243 struct netfs_io_subrequest *subreq) 244 { 245 __clear_bit(NETFS_SREQ_SHORT_IO, &subreq->flags); 246 __set_bit(NETFS_SREQ_SEEK_DATA_READ, &subreq->flags); 247 248 netfs_stat(&netfs_n_rh_short_read); 249 trace_netfs_sreq(subreq, netfs_sreq_trace_resubmit_short); 250 251 netfs_get_subrequest(subreq, netfs_sreq_trace_get_short_read); 252 atomic_inc(&rreq->nr_outstanding); 253 if (subreq->source == NETFS_READ_FROM_CACHE) 254 netfs_read_from_cache(rreq, subreq, NETFS_READ_HOLE_CLEAR); 255 else 256 netfs_read_from_server(rreq, subreq); 257 } 258 259 /* 260 * Resubmit any short or failed operations. Returns true if we got the rreq 261 * ref back. 262 */ 263 static bool netfs_rreq_perform_resubmissions(struct netfs_io_request *rreq) 264 { 265 struct netfs_io_subrequest *subreq; 266 267 WARN_ON(in_interrupt()); 268 269 trace_netfs_rreq(rreq, netfs_rreq_trace_resubmit); 270 271 /* We don't want terminating submissions trying to wake us up whilst 272 * we're still going through the list. 273 */ 274 atomic_inc(&rreq->nr_outstanding); 275 276 __clear_bit(NETFS_RREQ_INCOMPLETE_IO, &rreq->flags); 277 list_for_each_entry(subreq, &rreq->subrequests, rreq_link) { 278 if (subreq->error) { 279 if (subreq->source != NETFS_READ_FROM_CACHE) 280 break; 281 subreq->source = NETFS_DOWNLOAD_FROM_SERVER; 282 subreq->error = 0; 283 netfs_stat(&netfs_n_rh_download_instead); 284 trace_netfs_sreq(subreq, netfs_sreq_trace_download_instead); 285 netfs_get_subrequest(subreq, netfs_sreq_trace_get_resubmit); 286 atomic_inc(&rreq->nr_outstanding); 287 netfs_read_from_server(rreq, subreq); 288 } else if (test_bit(NETFS_SREQ_SHORT_IO, &subreq->flags)) { 289 netfs_rreq_short_read(rreq, subreq); 290 } 291 } 292 293 /* If we decrement nr_outstanding to 0, the usage ref belongs to us. */ 294 if (atomic_dec_and_test(&rreq->nr_outstanding)) 295 return true; 296 297 wake_up_var(&rreq->nr_outstanding); 298 return false; 299 } 300 301 /* 302 * Check to see if the data read is still valid. 303 */ 304 static void netfs_rreq_is_still_valid(struct netfs_io_request *rreq) 305 { 306 struct netfs_io_subrequest *subreq; 307 308 if (!rreq->netfs_ops->is_still_valid || 309 rreq->netfs_ops->is_still_valid(rreq)) 310 return; 311 312 list_for_each_entry(subreq, &rreq->subrequests, rreq_link) { 313 if (subreq->source == NETFS_READ_FROM_CACHE) { 314 subreq->error = -ESTALE; 315 __set_bit(NETFS_RREQ_INCOMPLETE_IO, &rreq->flags); 316 } 317 } 318 } 319 320 /* 321 * Assess the state of a read request and decide what to do next. 322 * 323 * Note that we could be in an ordinary kernel thread, on a workqueue or in 324 * softirq context at this point. We inherit a ref from the caller. 325 */ 326 static void netfs_rreq_assess(struct netfs_io_request *rreq, bool was_async) 327 { 328 trace_netfs_rreq(rreq, netfs_rreq_trace_assess); 329 330 again: 331 netfs_rreq_is_still_valid(rreq); 332 333 if (!test_bit(NETFS_RREQ_FAILED, &rreq->flags) && 334 test_bit(NETFS_RREQ_INCOMPLETE_IO, &rreq->flags)) { 335 if (netfs_rreq_perform_resubmissions(rreq)) 336 goto again; 337 return; 338 } 339 340 netfs_rreq_unlock_folios(rreq); 341 342 clear_bit_unlock(NETFS_RREQ_IN_PROGRESS, &rreq->flags); 343 wake_up_bit(&rreq->flags, NETFS_RREQ_IN_PROGRESS); 344 345 if (test_bit(NETFS_RREQ_COPY_TO_CACHE, &rreq->flags)) 346 return netfs_rreq_write_to_cache(rreq); 347 348 netfs_rreq_completed(rreq, was_async); 349 } 350 351 static void netfs_rreq_work(struct work_struct *work) 352 { 353 struct netfs_io_request *rreq = 354 container_of(work, struct netfs_io_request, work); 355 netfs_rreq_assess(rreq, false); 356 } 357 358 /* 359 * Handle the completion of all outstanding I/O operations on a read request. 360 * We inherit a ref from the caller. 361 */ 362 static void netfs_rreq_terminated(struct netfs_io_request *rreq, 363 bool was_async) 364 { 365 if (test_bit(NETFS_RREQ_INCOMPLETE_IO, &rreq->flags) && 366 was_async) { 367 if (!queue_work(system_unbound_wq, &rreq->work)) 368 BUG(); 369 } else { 370 netfs_rreq_assess(rreq, was_async); 371 } 372 } 373 374 /** 375 * netfs_subreq_terminated - Note the termination of an I/O operation. 376 * @subreq: The I/O request that has terminated. 377 * @transferred_or_error: The amount of data transferred or an error code. 378 * @was_async: The termination was asynchronous 379 * 380 * This tells the read helper that a contributory I/O operation has terminated, 381 * one way or another, and that it should integrate the results. 382 * 383 * The caller indicates in @transferred_or_error the outcome of the operation, 384 * supplying a positive value to indicate the number of bytes transferred, 0 to 385 * indicate a failure to transfer anything that should be retried or a negative 386 * error code. The helper will look after reissuing I/O operations as 387 * appropriate and writing downloaded data to the cache. 388 * 389 * If @was_async is true, the caller might be running in softirq or interrupt 390 * context and we can't sleep. 391 */ 392 void netfs_subreq_terminated(struct netfs_io_subrequest *subreq, 393 ssize_t transferred_or_error, 394 bool was_async) 395 { 396 struct netfs_io_request *rreq = subreq->rreq; 397 int u; 398 399 _enter("[%u]{%llx,%lx},%zd", 400 subreq->debug_index, subreq->start, subreq->flags, 401 transferred_or_error); 402 403 switch (subreq->source) { 404 case NETFS_READ_FROM_CACHE: 405 netfs_stat(&netfs_n_rh_read_done); 406 break; 407 case NETFS_DOWNLOAD_FROM_SERVER: 408 netfs_stat(&netfs_n_rh_download_done); 409 break; 410 default: 411 break; 412 } 413 414 if (IS_ERR_VALUE(transferred_or_error)) { 415 subreq->error = transferred_or_error; 416 trace_netfs_failure(rreq, subreq, transferred_or_error, 417 netfs_fail_read); 418 goto failed; 419 } 420 421 if (WARN(transferred_or_error > subreq->len - subreq->transferred, 422 "Subreq overread: R%x[%x] %zd > %zu - %zu", 423 rreq->debug_id, subreq->debug_index, 424 transferred_or_error, subreq->len, subreq->transferred)) 425 transferred_or_error = subreq->len - subreq->transferred; 426 427 subreq->error = 0; 428 subreq->transferred += transferred_or_error; 429 if (subreq->transferred < subreq->len) 430 goto incomplete; 431 432 complete: 433 __clear_bit(NETFS_SREQ_NO_PROGRESS, &subreq->flags); 434 if (test_bit(NETFS_SREQ_COPY_TO_CACHE, &subreq->flags)) 435 set_bit(NETFS_RREQ_COPY_TO_CACHE, &rreq->flags); 436 437 out: 438 trace_netfs_sreq(subreq, netfs_sreq_trace_terminated); 439 440 /* If we decrement nr_outstanding to 0, the ref belongs to us. */ 441 u = atomic_dec_return(&rreq->nr_outstanding); 442 if (u == 0) 443 netfs_rreq_terminated(rreq, was_async); 444 else if (u == 1) 445 wake_up_var(&rreq->nr_outstanding); 446 447 netfs_put_subrequest(subreq, was_async, netfs_sreq_trace_put_terminated); 448 return; 449 450 incomplete: 451 if (test_bit(NETFS_SREQ_CLEAR_TAIL, &subreq->flags)) { 452 netfs_clear_unread(subreq); 453 subreq->transferred = subreq->len; 454 goto complete; 455 } 456 457 if (transferred_or_error == 0) { 458 if (__test_and_set_bit(NETFS_SREQ_NO_PROGRESS, &subreq->flags)) { 459 subreq->error = -ENODATA; 460 goto failed; 461 } 462 } else { 463 __clear_bit(NETFS_SREQ_NO_PROGRESS, &subreq->flags); 464 } 465 466 __set_bit(NETFS_SREQ_SHORT_IO, &subreq->flags); 467 set_bit(NETFS_RREQ_INCOMPLETE_IO, &rreq->flags); 468 goto out; 469 470 failed: 471 if (subreq->source == NETFS_READ_FROM_CACHE) { 472 netfs_stat(&netfs_n_rh_read_failed); 473 set_bit(NETFS_RREQ_INCOMPLETE_IO, &rreq->flags); 474 } else { 475 netfs_stat(&netfs_n_rh_download_failed); 476 set_bit(NETFS_RREQ_FAILED, &rreq->flags); 477 rreq->error = subreq->error; 478 } 479 goto out; 480 } 481 EXPORT_SYMBOL(netfs_subreq_terminated); 482 483 static enum netfs_io_source netfs_cache_prepare_read(struct netfs_io_subrequest *subreq, 484 loff_t i_size) 485 { 486 struct netfs_io_request *rreq = subreq->rreq; 487 struct netfs_cache_resources *cres = &rreq->cache_resources; 488 489 if (cres->ops) 490 return cres->ops->prepare_read(subreq, i_size); 491 if (subreq->start >= rreq->i_size) 492 return NETFS_FILL_WITH_ZEROES; 493 return NETFS_DOWNLOAD_FROM_SERVER; 494 } 495 496 /* 497 * Work out what sort of subrequest the next one will be. 498 */ 499 static enum netfs_io_source 500 netfs_rreq_prepare_read(struct netfs_io_request *rreq, 501 struct netfs_io_subrequest *subreq) 502 { 503 enum netfs_io_source source; 504 505 _enter("%llx-%llx,%llx", subreq->start, subreq->start + subreq->len, rreq->i_size); 506 507 source = netfs_cache_prepare_read(subreq, rreq->i_size); 508 if (source == NETFS_INVALID_READ) 509 goto out; 510 511 if (source == NETFS_DOWNLOAD_FROM_SERVER) { 512 /* Call out to the netfs to let it shrink the request to fit 513 * its own I/O sizes and boundaries. If it shinks it here, it 514 * will be called again to make simultaneous calls; if it wants 515 * to make serial calls, it can indicate a short read and then 516 * we will call it again. 517 */ 518 if (subreq->len > rreq->i_size - subreq->start) 519 subreq->len = rreq->i_size - subreq->start; 520 521 if (rreq->netfs_ops->clamp_length && 522 !rreq->netfs_ops->clamp_length(subreq)) { 523 source = NETFS_INVALID_READ; 524 goto out; 525 } 526 } 527 528 if (WARN_ON(subreq->len == 0)) 529 source = NETFS_INVALID_READ; 530 531 out: 532 subreq->source = source; 533 trace_netfs_sreq(subreq, netfs_sreq_trace_prepare); 534 return source; 535 } 536 537 /* 538 * Slice off a piece of a read request and submit an I/O request for it. 539 */ 540 static bool netfs_rreq_submit_slice(struct netfs_io_request *rreq, 541 unsigned int *_debug_index) 542 { 543 struct netfs_io_subrequest *subreq; 544 enum netfs_io_source source; 545 546 subreq = netfs_alloc_subrequest(rreq); 547 if (!subreq) 548 return false; 549 550 subreq->debug_index = (*_debug_index)++; 551 subreq->start = rreq->start + rreq->submitted; 552 subreq->len = rreq->len - rreq->submitted; 553 554 _debug("slice %llx,%zx,%zx", subreq->start, subreq->len, rreq->submitted); 555 list_add_tail(&subreq->rreq_link, &rreq->subrequests); 556 557 /* Call out to the cache to find out what it can do with the remaining 558 * subset. It tells us in subreq->flags what it decided should be done 559 * and adjusts subreq->len down if the subset crosses a cache boundary. 560 * 561 * Then when we hand the subset, it can choose to take a subset of that 562 * (the starts must coincide), in which case, we go around the loop 563 * again and ask it to download the next piece. 564 */ 565 source = netfs_rreq_prepare_read(rreq, subreq); 566 if (source == NETFS_INVALID_READ) 567 goto subreq_failed; 568 569 atomic_inc(&rreq->nr_outstanding); 570 571 rreq->submitted += subreq->len; 572 573 trace_netfs_sreq(subreq, netfs_sreq_trace_submit); 574 switch (source) { 575 case NETFS_FILL_WITH_ZEROES: 576 netfs_fill_with_zeroes(rreq, subreq); 577 break; 578 case NETFS_DOWNLOAD_FROM_SERVER: 579 netfs_read_from_server(rreq, subreq); 580 break; 581 case NETFS_READ_FROM_CACHE: 582 netfs_read_from_cache(rreq, subreq, NETFS_READ_HOLE_IGNORE); 583 break; 584 default: 585 BUG(); 586 } 587 588 return true; 589 590 subreq_failed: 591 rreq->error = subreq->error; 592 netfs_put_subrequest(subreq, false, netfs_sreq_trace_put_failed); 593 return false; 594 } 595 596 /* 597 * Begin the process of reading in a chunk of data, where that data may be 598 * stitched together from multiple sources, including multiple servers and the 599 * local cache. 600 */ 601 int netfs_begin_read(struct netfs_io_request *rreq, bool sync) 602 { 603 unsigned int debug_index = 0; 604 int ret; 605 606 _enter("R=%x %llx-%llx", 607 rreq->debug_id, rreq->start, rreq->start + rreq->len - 1); 608 609 if (rreq->len == 0) { 610 pr_err("Zero-sized read [R=%x]\n", rreq->debug_id); 611 netfs_put_request(rreq, false, netfs_rreq_trace_put_zero_len); 612 return -EIO; 613 } 614 615 INIT_WORK(&rreq->work, netfs_rreq_work); 616 617 if (sync) 618 netfs_get_request(rreq, netfs_rreq_trace_get_hold); 619 620 /* Chop the read into slices according to what the cache and the netfs 621 * want and submit each one. 622 */ 623 atomic_set(&rreq->nr_outstanding, 1); 624 do { 625 if (!netfs_rreq_submit_slice(rreq, &debug_index)) 626 break; 627 628 } while (rreq->submitted < rreq->len); 629 630 if (sync) { 631 /* Keep nr_outstanding incremented so that the ref always belongs to 632 * us, and the service code isn't punted off to a random thread pool to 633 * process. 634 */ 635 for (;;) { 636 wait_var_event(&rreq->nr_outstanding, 637 atomic_read(&rreq->nr_outstanding) == 1); 638 netfs_rreq_assess(rreq, false); 639 if (!test_bit(NETFS_RREQ_IN_PROGRESS, &rreq->flags)) 640 break; 641 cond_resched(); 642 } 643 644 ret = rreq->error; 645 if (ret == 0 && rreq->submitted < rreq->len) { 646 trace_netfs_failure(rreq, NULL, ret, netfs_fail_short_read); 647 ret = -EIO; 648 } 649 netfs_put_request(rreq, false, netfs_rreq_trace_put_hold); 650 } else { 651 /* If we decrement nr_outstanding to 0, the ref belongs to us. */ 652 if (atomic_dec_and_test(&rreq->nr_outstanding)) 653 netfs_rreq_assess(rreq, false); 654 ret = 0; 655 } 656 return ret; 657 } 658