xref: /openbmc/linux/fs/netfs/io.c (revision 44e4b6ee)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* Network filesystem high-level read support.
3  *
4  * Copyright (C) 2021 Red Hat, Inc. All Rights Reserved.
5  * Written by David Howells (dhowells@redhat.com)
6  */
7 
8 #include <linux/module.h>
9 #include <linux/export.h>
10 #include <linux/fs.h>
11 #include <linux/mm.h>
12 #include <linux/pagemap.h>
13 #include <linux/slab.h>
14 #include <linux/uio.h>
15 #include <linux/sched/mm.h>
16 #include <linux/task_io_accounting_ops.h>
17 #include "internal.h"
18 
19 /*
20  * Clear the unread part of an I/O request.
21  */
22 static void netfs_clear_unread(struct netfs_io_subrequest *subreq)
23 {
24 	struct iov_iter iter;
25 
26 	iov_iter_xarray(&iter, ITER_DEST, &subreq->rreq->mapping->i_pages,
27 			subreq->start + subreq->transferred,
28 			subreq->len   - subreq->transferred);
29 	iov_iter_zero(iov_iter_count(&iter), &iter);
30 }
31 
32 static void netfs_cache_read_terminated(void *priv, ssize_t transferred_or_error,
33 					bool was_async)
34 {
35 	struct netfs_io_subrequest *subreq = priv;
36 
37 	netfs_subreq_terminated(subreq, transferred_or_error, was_async);
38 }
39 
40 /*
41  * Issue a read against the cache.
42  * - Eats the caller's ref on subreq.
43  */
44 static void netfs_read_from_cache(struct netfs_io_request *rreq,
45 				  struct netfs_io_subrequest *subreq,
46 				  enum netfs_read_from_hole read_hole)
47 {
48 	struct netfs_cache_resources *cres = &rreq->cache_resources;
49 	struct iov_iter iter;
50 
51 	netfs_stat(&netfs_n_rh_read);
52 	iov_iter_xarray(&iter, ITER_DEST, &rreq->mapping->i_pages,
53 			subreq->start + subreq->transferred,
54 			subreq->len   - subreq->transferred);
55 
56 	cres->ops->read(cres, subreq->start, &iter, read_hole,
57 			netfs_cache_read_terminated, subreq);
58 }
59 
60 /*
61  * Fill a subrequest region with zeroes.
62  */
63 static void netfs_fill_with_zeroes(struct netfs_io_request *rreq,
64 				   struct netfs_io_subrequest *subreq)
65 {
66 	netfs_stat(&netfs_n_rh_zero);
67 	__set_bit(NETFS_SREQ_CLEAR_TAIL, &subreq->flags);
68 	netfs_subreq_terminated(subreq, 0, false);
69 }
70 
71 /*
72  * Ask the netfs to issue a read request to the server for us.
73  *
74  * The netfs is expected to read from subreq->pos + subreq->transferred to
75  * subreq->pos + subreq->len - 1.  It may not backtrack and write data into the
76  * buffer prior to the transferred point as it might clobber dirty data
77  * obtained from the cache.
78  *
79  * Alternatively, the netfs is allowed to indicate one of two things:
80  *
81  * - NETFS_SREQ_SHORT_READ: A short read - it will get called again to try and
82  *   make progress.
83  *
84  * - NETFS_SREQ_CLEAR_TAIL: A short read - the rest of the buffer will be
85  *   cleared.
86  */
87 static void netfs_read_from_server(struct netfs_io_request *rreq,
88 				   struct netfs_io_subrequest *subreq)
89 {
90 	netfs_stat(&netfs_n_rh_download);
91 	rreq->netfs_ops->issue_read(subreq);
92 }
93 
94 /*
95  * Release those waiting.
96  */
97 static void netfs_rreq_completed(struct netfs_io_request *rreq, bool was_async)
98 {
99 	trace_netfs_rreq(rreq, netfs_rreq_trace_done);
100 	netfs_clear_subrequests(rreq, was_async);
101 	netfs_put_request(rreq, was_async, netfs_rreq_trace_put_complete);
102 }
103 
104 /*
105  * Deal with the completion of writing the data to the cache.  We have to clear
106  * the PG_fscache bits on the folios involved and release the caller's ref.
107  *
108  * May be called in softirq mode and we inherit a ref from the caller.
109  */
110 static void netfs_rreq_unmark_after_write(struct netfs_io_request *rreq,
111 					  bool was_async)
112 {
113 	struct netfs_io_subrequest *subreq;
114 	struct folio *folio;
115 	pgoff_t unlocked = 0;
116 	bool have_unlocked = false;
117 
118 	rcu_read_lock();
119 
120 	list_for_each_entry(subreq, &rreq->subrequests, rreq_link) {
121 		XA_STATE(xas, &rreq->mapping->i_pages, subreq->start / PAGE_SIZE);
122 
123 		xas_for_each(&xas, folio, (subreq->start + subreq->len - 1) / PAGE_SIZE) {
124 			if (xas_retry(&xas, folio))
125 				continue;
126 
127 			/* We might have multiple writes from the same huge
128 			 * folio, but we mustn't unlock a folio more than once.
129 			 */
130 			if (have_unlocked && folio_index(folio) <= unlocked)
131 				continue;
132 			unlocked = folio_index(folio);
133 			folio_end_fscache(folio);
134 			have_unlocked = true;
135 		}
136 	}
137 
138 	rcu_read_unlock();
139 	netfs_rreq_completed(rreq, was_async);
140 }
141 
142 static void netfs_rreq_copy_terminated(void *priv, ssize_t transferred_or_error,
143 				       bool was_async)
144 {
145 	struct netfs_io_subrequest *subreq = priv;
146 	struct netfs_io_request *rreq = subreq->rreq;
147 
148 	if (IS_ERR_VALUE(transferred_or_error)) {
149 		netfs_stat(&netfs_n_rh_write_failed);
150 		trace_netfs_failure(rreq, subreq, transferred_or_error,
151 				    netfs_fail_copy_to_cache);
152 	} else {
153 		netfs_stat(&netfs_n_rh_write_done);
154 	}
155 
156 	trace_netfs_sreq(subreq, netfs_sreq_trace_write_term);
157 
158 	/* If we decrement nr_copy_ops to 0, the ref belongs to us. */
159 	if (atomic_dec_and_test(&rreq->nr_copy_ops))
160 		netfs_rreq_unmark_after_write(rreq, was_async);
161 
162 	netfs_put_subrequest(subreq, was_async, netfs_sreq_trace_put_terminated);
163 }
164 
165 /*
166  * Perform any outstanding writes to the cache.  We inherit a ref from the
167  * caller.
168  */
169 static void netfs_rreq_do_write_to_cache(struct netfs_io_request *rreq)
170 {
171 	struct netfs_cache_resources *cres = &rreq->cache_resources;
172 	struct netfs_io_subrequest *subreq, *next, *p;
173 	struct iov_iter iter;
174 	int ret;
175 
176 	trace_netfs_rreq(rreq, netfs_rreq_trace_copy);
177 
178 	/* We don't want terminating writes trying to wake us up whilst we're
179 	 * still going through the list.
180 	 */
181 	atomic_inc(&rreq->nr_copy_ops);
182 
183 	list_for_each_entry_safe(subreq, p, &rreq->subrequests, rreq_link) {
184 		if (!test_bit(NETFS_SREQ_COPY_TO_CACHE, &subreq->flags)) {
185 			list_del_init(&subreq->rreq_link);
186 			netfs_put_subrequest(subreq, false,
187 					     netfs_sreq_trace_put_no_copy);
188 		}
189 	}
190 
191 	list_for_each_entry(subreq, &rreq->subrequests, rreq_link) {
192 		/* Amalgamate adjacent writes */
193 		while (!list_is_last(&subreq->rreq_link, &rreq->subrequests)) {
194 			next = list_next_entry(subreq, rreq_link);
195 			if (next->start != subreq->start + subreq->len)
196 				break;
197 			subreq->len += next->len;
198 			list_del_init(&next->rreq_link);
199 			netfs_put_subrequest(next, false,
200 					     netfs_sreq_trace_put_merged);
201 		}
202 
203 		ret = cres->ops->prepare_write(cres, &subreq->start, &subreq->len,
204 					       rreq->i_size, true);
205 		if (ret < 0) {
206 			trace_netfs_failure(rreq, subreq, ret, netfs_fail_prepare_write);
207 			trace_netfs_sreq(subreq, netfs_sreq_trace_write_skip);
208 			continue;
209 		}
210 
211 		iov_iter_xarray(&iter, ITER_SOURCE, &rreq->mapping->i_pages,
212 				subreq->start, subreq->len);
213 
214 		atomic_inc(&rreq->nr_copy_ops);
215 		netfs_stat(&netfs_n_rh_write);
216 		netfs_get_subrequest(subreq, netfs_sreq_trace_get_copy_to_cache);
217 		trace_netfs_sreq(subreq, netfs_sreq_trace_write);
218 		cres->ops->write(cres, subreq->start, &iter,
219 				 netfs_rreq_copy_terminated, subreq);
220 	}
221 
222 	/* If we decrement nr_copy_ops to 0, the usage ref belongs to us. */
223 	if (atomic_dec_and_test(&rreq->nr_copy_ops))
224 		netfs_rreq_unmark_after_write(rreq, false);
225 }
226 
227 static void netfs_rreq_write_to_cache_work(struct work_struct *work)
228 {
229 	struct netfs_io_request *rreq =
230 		container_of(work, struct netfs_io_request, work);
231 
232 	netfs_rreq_do_write_to_cache(rreq);
233 }
234 
235 static void netfs_rreq_write_to_cache(struct netfs_io_request *rreq)
236 {
237 	rreq->work.func = netfs_rreq_write_to_cache_work;
238 	if (!queue_work(system_unbound_wq, &rreq->work))
239 		BUG();
240 }
241 
242 /*
243  * Handle a short read.
244  */
245 static void netfs_rreq_short_read(struct netfs_io_request *rreq,
246 				  struct netfs_io_subrequest *subreq)
247 {
248 	__clear_bit(NETFS_SREQ_SHORT_IO, &subreq->flags);
249 	__set_bit(NETFS_SREQ_SEEK_DATA_READ, &subreq->flags);
250 
251 	netfs_stat(&netfs_n_rh_short_read);
252 	trace_netfs_sreq(subreq, netfs_sreq_trace_resubmit_short);
253 
254 	netfs_get_subrequest(subreq, netfs_sreq_trace_get_short_read);
255 	atomic_inc(&rreq->nr_outstanding);
256 	if (subreq->source == NETFS_READ_FROM_CACHE)
257 		netfs_read_from_cache(rreq, subreq, NETFS_READ_HOLE_CLEAR);
258 	else
259 		netfs_read_from_server(rreq, subreq);
260 }
261 
262 /*
263  * Resubmit any short or failed operations.  Returns true if we got the rreq
264  * ref back.
265  */
266 static bool netfs_rreq_perform_resubmissions(struct netfs_io_request *rreq)
267 {
268 	struct netfs_io_subrequest *subreq;
269 
270 	WARN_ON(in_interrupt());
271 
272 	trace_netfs_rreq(rreq, netfs_rreq_trace_resubmit);
273 
274 	/* We don't want terminating submissions trying to wake us up whilst
275 	 * we're still going through the list.
276 	 */
277 	atomic_inc(&rreq->nr_outstanding);
278 
279 	__clear_bit(NETFS_RREQ_INCOMPLETE_IO, &rreq->flags);
280 	list_for_each_entry(subreq, &rreq->subrequests, rreq_link) {
281 		if (subreq->error) {
282 			if (subreq->source != NETFS_READ_FROM_CACHE)
283 				break;
284 			subreq->source = NETFS_DOWNLOAD_FROM_SERVER;
285 			subreq->error = 0;
286 			netfs_stat(&netfs_n_rh_download_instead);
287 			trace_netfs_sreq(subreq, netfs_sreq_trace_download_instead);
288 			netfs_get_subrequest(subreq, netfs_sreq_trace_get_resubmit);
289 			atomic_inc(&rreq->nr_outstanding);
290 			netfs_read_from_server(rreq, subreq);
291 		} else if (test_bit(NETFS_SREQ_SHORT_IO, &subreq->flags)) {
292 			netfs_rreq_short_read(rreq, subreq);
293 		}
294 	}
295 
296 	/* If we decrement nr_outstanding to 0, the usage ref belongs to us. */
297 	if (atomic_dec_and_test(&rreq->nr_outstanding))
298 		return true;
299 
300 	wake_up_var(&rreq->nr_outstanding);
301 	return false;
302 }
303 
304 /*
305  * Check to see if the data read is still valid.
306  */
307 static void netfs_rreq_is_still_valid(struct netfs_io_request *rreq)
308 {
309 	struct netfs_io_subrequest *subreq;
310 
311 	if (!rreq->netfs_ops->is_still_valid ||
312 	    rreq->netfs_ops->is_still_valid(rreq))
313 		return;
314 
315 	list_for_each_entry(subreq, &rreq->subrequests, rreq_link) {
316 		if (subreq->source == NETFS_READ_FROM_CACHE) {
317 			subreq->error = -ESTALE;
318 			__set_bit(NETFS_RREQ_INCOMPLETE_IO, &rreq->flags);
319 		}
320 	}
321 }
322 
323 /*
324  * Assess the state of a read request and decide what to do next.
325  *
326  * Note that we could be in an ordinary kernel thread, on a workqueue or in
327  * softirq context at this point.  We inherit a ref from the caller.
328  */
329 static void netfs_rreq_assess(struct netfs_io_request *rreq, bool was_async)
330 {
331 	trace_netfs_rreq(rreq, netfs_rreq_trace_assess);
332 
333 again:
334 	netfs_rreq_is_still_valid(rreq);
335 
336 	if (!test_bit(NETFS_RREQ_FAILED, &rreq->flags) &&
337 	    test_bit(NETFS_RREQ_INCOMPLETE_IO, &rreq->flags)) {
338 		if (netfs_rreq_perform_resubmissions(rreq))
339 			goto again;
340 		return;
341 	}
342 
343 	netfs_rreq_unlock_folios(rreq);
344 
345 	clear_bit_unlock(NETFS_RREQ_IN_PROGRESS, &rreq->flags);
346 	wake_up_bit(&rreq->flags, NETFS_RREQ_IN_PROGRESS);
347 
348 	if (test_bit(NETFS_RREQ_COPY_TO_CACHE, &rreq->flags))
349 		return netfs_rreq_write_to_cache(rreq);
350 
351 	netfs_rreq_completed(rreq, was_async);
352 }
353 
354 static void netfs_rreq_work(struct work_struct *work)
355 {
356 	struct netfs_io_request *rreq =
357 		container_of(work, struct netfs_io_request, work);
358 	netfs_rreq_assess(rreq, false);
359 }
360 
361 /*
362  * Handle the completion of all outstanding I/O operations on a read request.
363  * We inherit a ref from the caller.
364  */
365 static void netfs_rreq_terminated(struct netfs_io_request *rreq,
366 				  bool was_async)
367 {
368 	if (test_bit(NETFS_RREQ_INCOMPLETE_IO, &rreq->flags) &&
369 	    was_async) {
370 		if (!queue_work(system_unbound_wq, &rreq->work))
371 			BUG();
372 	} else {
373 		netfs_rreq_assess(rreq, was_async);
374 	}
375 }
376 
377 /**
378  * netfs_subreq_terminated - Note the termination of an I/O operation.
379  * @subreq: The I/O request that has terminated.
380  * @transferred_or_error: The amount of data transferred or an error code.
381  * @was_async: The termination was asynchronous
382  *
383  * This tells the read helper that a contributory I/O operation has terminated,
384  * one way or another, and that it should integrate the results.
385  *
386  * The caller indicates in @transferred_or_error the outcome of the operation,
387  * supplying a positive value to indicate the number of bytes transferred, 0 to
388  * indicate a failure to transfer anything that should be retried or a negative
389  * error code.  The helper will look after reissuing I/O operations as
390  * appropriate and writing downloaded data to the cache.
391  *
392  * If @was_async is true, the caller might be running in softirq or interrupt
393  * context and we can't sleep.
394  */
395 void netfs_subreq_terminated(struct netfs_io_subrequest *subreq,
396 			     ssize_t transferred_or_error,
397 			     bool was_async)
398 {
399 	struct netfs_io_request *rreq = subreq->rreq;
400 	int u;
401 
402 	_enter("[%u]{%llx,%lx},%zd",
403 	       subreq->debug_index, subreq->start, subreq->flags,
404 	       transferred_or_error);
405 
406 	switch (subreq->source) {
407 	case NETFS_READ_FROM_CACHE:
408 		netfs_stat(&netfs_n_rh_read_done);
409 		break;
410 	case NETFS_DOWNLOAD_FROM_SERVER:
411 		netfs_stat(&netfs_n_rh_download_done);
412 		break;
413 	default:
414 		break;
415 	}
416 
417 	if (IS_ERR_VALUE(transferred_or_error)) {
418 		subreq->error = transferred_or_error;
419 		trace_netfs_failure(rreq, subreq, transferred_or_error,
420 				    netfs_fail_read);
421 		goto failed;
422 	}
423 
424 	if (WARN(transferred_or_error > subreq->len - subreq->transferred,
425 		 "Subreq overread: R%x[%x] %zd > %zu - %zu",
426 		 rreq->debug_id, subreq->debug_index,
427 		 transferred_or_error, subreq->len, subreq->transferred))
428 		transferred_or_error = subreq->len - subreq->transferred;
429 
430 	subreq->error = 0;
431 	subreq->transferred += transferred_or_error;
432 	if (subreq->transferred < subreq->len)
433 		goto incomplete;
434 
435 complete:
436 	__clear_bit(NETFS_SREQ_NO_PROGRESS, &subreq->flags);
437 	if (test_bit(NETFS_SREQ_COPY_TO_CACHE, &subreq->flags))
438 		set_bit(NETFS_RREQ_COPY_TO_CACHE, &rreq->flags);
439 
440 out:
441 	trace_netfs_sreq(subreq, netfs_sreq_trace_terminated);
442 
443 	/* If we decrement nr_outstanding to 0, the ref belongs to us. */
444 	u = atomic_dec_return(&rreq->nr_outstanding);
445 	if (u == 0)
446 		netfs_rreq_terminated(rreq, was_async);
447 	else if (u == 1)
448 		wake_up_var(&rreq->nr_outstanding);
449 
450 	netfs_put_subrequest(subreq, was_async, netfs_sreq_trace_put_terminated);
451 	return;
452 
453 incomplete:
454 	if (test_bit(NETFS_SREQ_CLEAR_TAIL, &subreq->flags)) {
455 		netfs_clear_unread(subreq);
456 		subreq->transferred = subreq->len;
457 		goto complete;
458 	}
459 
460 	if (transferred_or_error == 0) {
461 		if (__test_and_set_bit(NETFS_SREQ_NO_PROGRESS, &subreq->flags)) {
462 			subreq->error = -ENODATA;
463 			goto failed;
464 		}
465 	} else {
466 		__clear_bit(NETFS_SREQ_NO_PROGRESS, &subreq->flags);
467 	}
468 
469 	__set_bit(NETFS_SREQ_SHORT_IO, &subreq->flags);
470 	set_bit(NETFS_RREQ_INCOMPLETE_IO, &rreq->flags);
471 	goto out;
472 
473 failed:
474 	if (subreq->source == NETFS_READ_FROM_CACHE) {
475 		netfs_stat(&netfs_n_rh_read_failed);
476 		set_bit(NETFS_RREQ_INCOMPLETE_IO, &rreq->flags);
477 	} else {
478 		netfs_stat(&netfs_n_rh_download_failed);
479 		set_bit(NETFS_RREQ_FAILED, &rreq->flags);
480 		rreq->error = subreq->error;
481 	}
482 	goto out;
483 }
484 EXPORT_SYMBOL(netfs_subreq_terminated);
485 
486 static enum netfs_io_source netfs_cache_prepare_read(struct netfs_io_subrequest *subreq,
487 						       loff_t i_size)
488 {
489 	struct netfs_io_request *rreq = subreq->rreq;
490 	struct netfs_cache_resources *cres = &rreq->cache_resources;
491 
492 	if (cres->ops)
493 		return cres->ops->prepare_read(subreq, i_size);
494 	if (subreq->start >= rreq->i_size)
495 		return NETFS_FILL_WITH_ZEROES;
496 	return NETFS_DOWNLOAD_FROM_SERVER;
497 }
498 
499 /*
500  * Work out what sort of subrequest the next one will be.
501  */
502 static enum netfs_io_source
503 netfs_rreq_prepare_read(struct netfs_io_request *rreq,
504 			struct netfs_io_subrequest *subreq)
505 {
506 	enum netfs_io_source source;
507 
508 	_enter("%llx-%llx,%llx", subreq->start, subreq->start + subreq->len, rreq->i_size);
509 
510 	source = netfs_cache_prepare_read(subreq, rreq->i_size);
511 	if (source == NETFS_INVALID_READ)
512 		goto out;
513 
514 	if (source == NETFS_DOWNLOAD_FROM_SERVER) {
515 		/* Call out to the netfs to let it shrink the request to fit
516 		 * its own I/O sizes and boundaries.  If it shinks it here, it
517 		 * will be called again to make simultaneous calls; if it wants
518 		 * to make serial calls, it can indicate a short read and then
519 		 * we will call it again.
520 		 */
521 		if (subreq->len > rreq->i_size - subreq->start)
522 			subreq->len = rreq->i_size - subreq->start;
523 
524 		if (rreq->netfs_ops->clamp_length &&
525 		    !rreq->netfs_ops->clamp_length(subreq)) {
526 			source = NETFS_INVALID_READ;
527 			goto out;
528 		}
529 	}
530 
531 	if (WARN_ON(subreq->len == 0))
532 		source = NETFS_INVALID_READ;
533 
534 out:
535 	subreq->source = source;
536 	trace_netfs_sreq(subreq, netfs_sreq_trace_prepare);
537 	return source;
538 }
539 
540 /*
541  * Slice off a piece of a read request and submit an I/O request for it.
542  */
543 static bool netfs_rreq_submit_slice(struct netfs_io_request *rreq,
544 				    unsigned int *_debug_index)
545 {
546 	struct netfs_io_subrequest *subreq;
547 	enum netfs_io_source source;
548 
549 	subreq = netfs_alloc_subrequest(rreq);
550 	if (!subreq)
551 		return false;
552 
553 	subreq->debug_index	= (*_debug_index)++;
554 	subreq->start		= rreq->start + rreq->submitted;
555 	subreq->len		= rreq->len   - rreq->submitted;
556 
557 	_debug("slice %llx,%zx,%zx", subreq->start, subreq->len, rreq->submitted);
558 	list_add_tail(&subreq->rreq_link, &rreq->subrequests);
559 
560 	/* Call out to the cache to find out what it can do with the remaining
561 	 * subset.  It tells us in subreq->flags what it decided should be done
562 	 * and adjusts subreq->len down if the subset crosses a cache boundary.
563 	 *
564 	 * Then when we hand the subset, it can choose to take a subset of that
565 	 * (the starts must coincide), in which case, we go around the loop
566 	 * again and ask it to download the next piece.
567 	 */
568 	source = netfs_rreq_prepare_read(rreq, subreq);
569 	if (source == NETFS_INVALID_READ)
570 		goto subreq_failed;
571 
572 	atomic_inc(&rreq->nr_outstanding);
573 
574 	rreq->submitted += subreq->len;
575 
576 	trace_netfs_sreq(subreq, netfs_sreq_trace_submit);
577 	switch (source) {
578 	case NETFS_FILL_WITH_ZEROES:
579 		netfs_fill_with_zeroes(rreq, subreq);
580 		break;
581 	case NETFS_DOWNLOAD_FROM_SERVER:
582 		netfs_read_from_server(rreq, subreq);
583 		break;
584 	case NETFS_READ_FROM_CACHE:
585 		netfs_read_from_cache(rreq, subreq, NETFS_READ_HOLE_IGNORE);
586 		break;
587 	default:
588 		BUG();
589 	}
590 
591 	return true;
592 
593 subreq_failed:
594 	rreq->error = subreq->error;
595 	netfs_put_subrequest(subreq, false, netfs_sreq_trace_put_failed);
596 	return false;
597 }
598 
599 /*
600  * Begin the process of reading in a chunk of data, where that data may be
601  * stitched together from multiple sources, including multiple servers and the
602  * local cache.
603  */
604 int netfs_begin_read(struct netfs_io_request *rreq, bool sync)
605 {
606 	unsigned int debug_index = 0;
607 	int ret;
608 
609 	_enter("R=%x %llx-%llx",
610 	       rreq->debug_id, rreq->start, rreq->start + rreq->len - 1);
611 
612 	if (rreq->len == 0) {
613 		pr_err("Zero-sized read [R=%x]\n", rreq->debug_id);
614 		netfs_put_request(rreq, false, netfs_rreq_trace_put_zero_len);
615 		return -EIO;
616 	}
617 
618 	INIT_WORK(&rreq->work, netfs_rreq_work);
619 
620 	if (sync)
621 		netfs_get_request(rreq, netfs_rreq_trace_get_hold);
622 
623 	/* Chop the read into slices according to what the cache and the netfs
624 	 * want and submit each one.
625 	 */
626 	atomic_set(&rreq->nr_outstanding, 1);
627 	do {
628 		if (!netfs_rreq_submit_slice(rreq, &debug_index))
629 			break;
630 
631 	} while (rreq->submitted < rreq->len);
632 
633 	if (sync) {
634 		/* Keep nr_outstanding incremented so that the ref always belongs to
635 		 * us, and the service code isn't punted off to a random thread pool to
636 		 * process.
637 		 */
638 		for (;;) {
639 			wait_var_event(&rreq->nr_outstanding,
640 				       atomic_read(&rreq->nr_outstanding) == 1);
641 			netfs_rreq_assess(rreq, false);
642 			if (!test_bit(NETFS_RREQ_IN_PROGRESS, &rreq->flags))
643 				break;
644 			cond_resched();
645 		}
646 
647 		ret = rreq->error;
648 		if (ret == 0 && rreq->submitted < rreq->len) {
649 			trace_netfs_failure(rreq, NULL, ret, netfs_fail_short_read);
650 			ret = -EIO;
651 		}
652 		netfs_put_request(rreq, false, netfs_rreq_trace_put_hold);
653 	} else {
654 		/* If we decrement nr_outstanding to 0, the ref belongs to us. */
655 		if (atomic_dec_and_test(&rreq->nr_outstanding))
656 			netfs_rreq_assess(rreq, false);
657 		ret = 0;
658 	}
659 	return ret;
660 }
661