xref: /openbmc/linux/fs/namespace.c (revision fd589a8f)
1 /*
2  *  linux/fs/namespace.c
3  *
4  * (C) Copyright Al Viro 2000, 2001
5  *	Released under GPL v2.
6  *
7  * Based on code from fs/super.c, copyright Linus Torvalds and others.
8  * Heavily rewritten.
9  */
10 
11 #include <linux/syscalls.h>
12 #include <linux/slab.h>
13 #include <linux/sched.h>
14 #include <linux/smp_lock.h>
15 #include <linux/init.h>
16 #include <linux/kernel.h>
17 #include <linux/acct.h>
18 #include <linux/capability.h>
19 #include <linux/cpumask.h>
20 #include <linux/module.h>
21 #include <linux/sysfs.h>
22 #include <linux/seq_file.h>
23 #include <linux/mnt_namespace.h>
24 #include <linux/namei.h>
25 #include <linux/nsproxy.h>
26 #include <linux/security.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/log2.h>
30 #include <linux/idr.h>
31 #include <linux/fs_struct.h>
32 #include <asm/uaccess.h>
33 #include <asm/unistd.h>
34 #include "pnode.h"
35 #include "internal.h"
36 
37 #define HASH_SHIFT ilog2(PAGE_SIZE / sizeof(struct list_head))
38 #define HASH_SIZE (1UL << HASH_SHIFT)
39 
40 /* spinlock for vfsmount related operations, inplace of dcache_lock */
41 __cacheline_aligned_in_smp DEFINE_SPINLOCK(vfsmount_lock);
42 
43 static int event;
44 static DEFINE_IDA(mnt_id_ida);
45 static DEFINE_IDA(mnt_group_ida);
46 static int mnt_id_start = 0;
47 static int mnt_group_start = 1;
48 
49 static struct list_head *mount_hashtable __read_mostly;
50 static struct kmem_cache *mnt_cache __read_mostly;
51 static struct rw_semaphore namespace_sem;
52 
53 /* /sys/fs */
54 struct kobject *fs_kobj;
55 EXPORT_SYMBOL_GPL(fs_kobj);
56 
57 static inline unsigned long hash(struct vfsmount *mnt, struct dentry *dentry)
58 {
59 	unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
60 	tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
61 	tmp = tmp + (tmp >> HASH_SHIFT);
62 	return tmp & (HASH_SIZE - 1);
63 }
64 
65 #define MNT_WRITER_UNDERFLOW_LIMIT -(1<<16)
66 
67 /* allocation is serialized by namespace_sem */
68 static int mnt_alloc_id(struct vfsmount *mnt)
69 {
70 	int res;
71 
72 retry:
73 	ida_pre_get(&mnt_id_ida, GFP_KERNEL);
74 	spin_lock(&vfsmount_lock);
75 	res = ida_get_new_above(&mnt_id_ida, mnt_id_start, &mnt->mnt_id);
76 	if (!res)
77 		mnt_id_start = mnt->mnt_id + 1;
78 	spin_unlock(&vfsmount_lock);
79 	if (res == -EAGAIN)
80 		goto retry;
81 
82 	return res;
83 }
84 
85 static void mnt_free_id(struct vfsmount *mnt)
86 {
87 	int id = mnt->mnt_id;
88 	spin_lock(&vfsmount_lock);
89 	ida_remove(&mnt_id_ida, id);
90 	if (mnt_id_start > id)
91 		mnt_id_start = id;
92 	spin_unlock(&vfsmount_lock);
93 }
94 
95 /*
96  * Allocate a new peer group ID
97  *
98  * mnt_group_ida is protected by namespace_sem
99  */
100 static int mnt_alloc_group_id(struct vfsmount *mnt)
101 {
102 	int res;
103 
104 	if (!ida_pre_get(&mnt_group_ida, GFP_KERNEL))
105 		return -ENOMEM;
106 
107 	res = ida_get_new_above(&mnt_group_ida,
108 				mnt_group_start,
109 				&mnt->mnt_group_id);
110 	if (!res)
111 		mnt_group_start = mnt->mnt_group_id + 1;
112 
113 	return res;
114 }
115 
116 /*
117  * Release a peer group ID
118  */
119 void mnt_release_group_id(struct vfsmount *mnt)
120 {
121 	int id = mnt->mnt_group_id;
122 	ida_remove(&mnt_group_ida, id);
123 	if (mnt_group_start > id)
124 		mnt_group_start = id;
125 	mnt->mnt_group_id = 0;
126 }
127 
128 struct vfsmount *alloc_vfsmnt(const char *name)
129 {
130 	struct vfsmount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
131 	if (mnt) {
132 		int err;
133 
134 		err = mnt_alloc_id(mnt);
135 		if (err)
136 			goto out_free_cache;
137 
138 		if (name) {
139 			mnt->mnt_devname = kstrdup(name, GFP_KERNEL);
140 			if (!mnt->mnt_devname)
141 				goto out_free_id;
142 		}
143 
144 		atomic_set(&mnt->mnt_count, 1);
145 		INIT_LIST_HEAD(&mnt->mnt_hash);
146 		INIT_LIST_HEAD(&mnt->mnt_child);
147 		INIT_LIST_HEAD(&mnt->mnt_mounts);
148 		INIT_LIST_HEAD(&mnt->mnt_list);
149 		INIT_LIST_HEAD(&mnt->mnt_expire);
150 		INIT_LIST_HEAD(&mnt->mnt_share);
151 		INIT_LIST_HEAD(&mnt->mnt_slave_list);
152 		INIT_LIST_HEAD(&mnt->mnt_slave);
153 #ifdef CONFIG_SMP
154 		mnt->mnt_writers = alloc_percpu(int);
155 		if (!mnt->mnt_writers)
156 			goto out_free_devname;
157 #else
158 		mnt->mnt_writers = 0;
159 #endif
160 	}
161 	return mnt;
162 
163 #ifdef CONFIG_SMP
164 out_free_devname:
165 	kfree(mnt->mnt_devname);
166 #endif
167 out_free_id:
168 	mnt_free_id(mnt);
169 out_free_cache:
170 	kmem_cache_free(mnt_cache, mnt);
171 	return NULL;
172 }
173 
174 /*
175  * Most r/o checks on a fs are for operations that take
176  * discrete amounts of time, like a write() or unlink().
177  * We must keep track of when those operations start
178  * (for permission checks) and when they end, so that
179  * we can determine when writes are able to occur to
180  * a filesystem.
181  */
182 /*
183  * __mnt_is_readonly: check whether a mount is read-only
184  * @mnt: the mount to check for its write status
185  *
186  * This shouldn't be used directly ouside of the VFS.
187  * It does not guarantee that the filesystem will stay
188  * r/w, just that it is right *now*.  This can not and
189  * should not be used in place of IS_RDONLY(inode).
190  * mnt_want/drop_write() will _keep_ the filesystem
191  * r/w.
192  */
193 int __mnt_is_readonly(struct vfsmount *mnt)
194 {
195 	if (mnt->mnt_flags & MNT_READONLY)
196 		return 1;
197 	if (mnt->mnt_sb->s_flags & MS_RDONLY)
198 		return 1;
199 	return 0;
200 }
201 EXPORT_SYMBOL_GPL(__mnt_is_readonly);
202 
203 static inline void inc_mnt_writers(struct vfsmount *mnt)
204 {
205 #ifdef CONFIG_SMP
206 	(*per_cpu_ptr(mnt->mnt_writers, smp_processor_id()))++;
207 #else
208 	mnt->mnt_writers++;
209 #endif
210 }
211 
212 static inline void dec_mnt_writers(struct vfsmount *mnt)
213 {
214 #ifdef CONFIG_SMP
215 	(*per_cpu_ptr(mnt->mnt_writers, smp_processor_id()))--;
216 #else
217 	mnt->mnt_writers--;
218 #endif
219 }
220 
221 static unsigned int count_mnt_writers(struct vfsmount *mnt)
222 {
223 #ifdef CONFIG_SMP
224 	unsigned int count = 0;
225 	int cpu;
226 
227 	for_each_possible_cpu(cpu) {
228 		count += *per_cpu_ptr(mnt->mnt_writers, cpu);
229 	}
230 
231 	return count;
232 #else
233 	return mnt->mnt_writers;
234 #endif
235 }
236 
237 /*
238  * Most r/o checks on a fs are for operations that take
239  * discrete amounts of time, like a write() or unlink().
240  * We must keep track of when those operations start
241  * (for permission checks) and when they end, so that
242  * we can determine when writes are able to occur to
243  * a filesystem.
244  */
245 /**
246  * mnt_want_write - get write access to a mount
247  * @mnt: the mount on which to take a write
248  *
249  * This tells the low-level filesystem that a write is
250  * about to be performed to it, and makes sure that
251  * writes are allowed before returning success.  When
252  * the write operation is finished, mnt_drop_write()
253  * must be called.  This is effectively a refcount.
254  */
255 int mnt_want_write(struct vfsmount *mnt)
256 {
257 	int ret = 0;
258 
259 	preempt_disable();
260 	inc_mnt_writers(mnt);
261 	/*
262 	 * The store to inc_mnt_writers must be visible before we pass
263 	 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
264 	 * incremented count after it has set MNT_WRITE_HOLD.
265 	 */
266 	smp_mb();
267 	while (mnt->mnt_flags & MNT_WRITE_HOLD)
268 		cpu_relax();
269 	/*
270 	 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
271 	 * be set to match its requirements. So we must not load that until
272 	 * MNT_WRITE_HOLD is cleared.
273 	 */
274 	smp_rmb();
275 	if (__mnt_is_readonly(mnt)) {
276 		dec_mnt_writers(mnt);
277 		ret = -EROFS;
278 		goto out;
279 	}
280 out:
281 	preempt_enable();
282 	return ret;
283 }
284 EXPORT_SYMBOL_GPL(mnt_want_write);
285 
286 /**
287  * mnt_clone_write - get write access to a mount
288  * @mnt: the mount on which to take a write
289  *
290  * This is effectively like mnt_want_write, except
291  * it must only be used to take an extra write reference
292  * on a mountpoint that we already know has a write reference
293  * on it. This allows some optimisation.
294  *
295  * After finished, mnt_drop_write must be called as usual to
296  * drop the reference.
297  */
298 int mnt_clone_write(struct vfsmount *mnt)
299 {
300 	/* superblock may be r/o */
301 	if (__mnt_is_readonly(mnt))
302 		return -EROFS;
303 	preempt_disable();
304 	inc_mnt_writers(mnt);
305 	preempt_enable();
306 	return 0;
307 }
308 EXPORT_SYMBOL_GPL(mnt_clone_write);
309 
310 /**
311  * mnt_want_write_file - get write access to a file's mount
312  * @file: the file who's mount on which to take a write
313  *
314  * This is like mnt_want_write, but it takes a file and can
315  * do some optimisations if the file is open for write already
316  */
317 int mnt_want_write_file(struct file *file)
318 {
319 	struct inode *inode = file->f_dentry->d_inode;
320 	if (!(file->f_mode & FMODE_WRITE) || special_file(inode->i_mode))
321 		return mnt_want_write(file->f_path.mnt);
322 	else
323 		return mnt_clone_write(file->f_path.mnt);
324 }
325 EXPORT_SYMBOL_GPL(mnt_want_write_file);
326 
327 /**
328  * mnt_drop_write - give up write access to a mount
329  * @mnt: the mount on which to give up write access
330  *
331  * Tells the low-level filesystem that we are done
332  * performing writes to it.  Must be matched with
333  * mnt_want_write() call above.
334  */
335 void mnt_drop_write(struct vfsmount *mnt)
336 {
337 	preempt_disable();
338 	dec_mnt_writers(mnt);
339 	preempt_enable();
340 }
341 EXPORT_SYMBOL_GPL(mnt_drop_write);
342 
343 static int mnt_make_readonly(struct vfsmount *mnt)
344 {
345 	int ret = 0;
346 
347 	spin_lock(&vfsmount_lock);
348 	mnt->mnt_flags |= MNT_WRITE_HOLD;
349 	/*
350 	 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
351 	 * should be visible before we do.
352 	 */
353 	smp_mb();
354 
355 	/*
356 	 * With writers on hold, if this value is zero, then there are
357 	 * definitely no active writers (although held writers may subsequently
358 	 * increment the count, they'll have to wait, and decrement it after
359 	 * seeing MNT_READONLY).
360 	 *
361 	 * It is OK to have counter incremented on one CPU and decremented on
362 	 * another: the sum will add up correctly. The danger would be when we
363 	 * sum up each counter, if we read a counter before it is incremented,
364 	 * but then read another CPU's count which it has been subsequently
365 	 * decremented from -- we would see more decrements than we should.
366 	 * MNT_WRITE_HOLD protects against this scenario, because
367 	 * mnt_want_write first increments count, then smp_mb, then spins on
368 	 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
369 	 * we're counting up here.
370 	 */
371 	if (count_mnt_writers(mnt) > 0)
372 		ret = -EBUSY;
373 	else
374 		mnt->mnt_flags |= MNT_READONLY;
375 	/*
376 	 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
377 	 * that become unheld will see MNT_READONLY.
378 	 */
379 	smp_wmb();
380 	mnt->mnt_flags &= ~MNT_WRITE_HOLD;
381 	spin_unlock(&vfsmount_lock);
382 	return ret;
383 }
384 
385 static void __mnt_unmake_readonly(struct vfsmount *mnt)
386 {
387 	spin_lock(&vfsmount_lock);
388 	mnt->mnt_flags &= ~MNT_READONLY;
389 	spin_unlock(&vfsmount_lock);
390 }
391 
392 void simple_set_mnt(struct vfsmount *mnt, struct super_block *sb)
393 {
394 	mnt->mnt_sb = sb;
395 	mnt->mnt_root = dget(sb->s_root);
396 }
397 
398 EXPORT_SYMBOL(simple_set_mnt);
399 
400 void free_vfsmnt(struct vfsmount *mnt)
401 {
402 	kfree(mnt->mnt_devname);
403 	mnt_free_id(mnt);
404 #ifdef CONFIG_SMP
405 	free_percpu(mnt->mnt_writers);
406 #endif
407 	kmem_cache_free(mnt_cache, mnt);
408 }
409 
410 /*
411  * find the first or last mount at @dentry on vfsmount @mnt depending on
412  * @dir. If @dir is set return the first mount else return the last mount.
413  */
414 struct vfsmount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry,
415 			      int dir)
416 {
417 	struct list_head *head = mount_hashtable + hash(mnt, dentry);
418 	struct list_head *tmp = head;
419 	struct vfsmount *p, *found = NULL;
420 
421 	for (;;) {
422 		tmp = dir ? tmp->next : tmp->prev;
423 		p = NULL;
424 		if (tmp == head)
425 			break;
426 		p = list_entry(tmp, struct vfsmount, mnt_hash);
427 		if (p->mnt_parent == mnt && p->mnt_mountpoint == dentry) {
428 			found = p;
429 			break;
430 		}
431 	}
432 	return found;
433 }
434 
435 /*
436  * lookup_mnt increments the ref count before returning
437  * the vfsmount struct.
438  */
439 struct vfsmount *lookup_mnt(struct path *path)
440 {
441 	struct vfsmount *child_mnt;
442 	spin_lock(&vfsmount_lock);
443 	if ((child_mnt = __lookup_mnt(path->mnt, path->dentry, 1)))
444 		mntget(child_mnt);
445 	spin_unlock(&vfsmount_lock);
446 	return child_mnt;
447 }
448 
449 static inline int check_mnt(struct vfsmount *mnt)
450 {
451 	return mnt->mnt_ns == current->nsproxy->mnt_ns;
452 }
453 
454 static void touch_mnt_namespace(struct mnt_namespace *ns)
455 {
456 	if (ns) {
457 		ns->event = ++event;
458 		wake_up_interruptible(&ns->poll);
459 	}
460 }
461 
462 static void __touch_mnt_namespace(struct mnt_namespace *ns)
463 {
464 	if (ns && ns->event != event) {
465 		ns->event = event;
466 		wake_up_interruptible(&ns->poll);
467 	}
468 }
469 
470 static void detach_mnt(struct vfsmount *mnt, struct path *old_path)
471 {
472 	old_path->dentry = mnt->mnt_mountpoint;
473 	old_path->mnt = mnt->mnt_parent;
474 	mnt->mnt_parent = mnt;
475 	mnt->mnt_mountpoint = mnt->mnt_root;
476 	list_del_init(&mnt->mnt_child);
477 	list_del_init(&mnt->mnt_hash);
478 	old_path->dentry->d_mounted--;
479 }
480 
481 void mnt_set_mountpoint(struct vfsmount *mnt, struct dentry *dentry,
482 			struct vfsmount *child_mnt)
483 {
484 	child_mnt->mnt_parent = mntget(mnt);
485 	child_mnt->mnt_mountpoint = dget(dentry);
486 	dentry->d_mounted++;
487 }
488 
489 static void attach_mnt(struct vfsmount *mnt, struct path *path)
490 {
491 	mnt_set_mountpoint(path->mnt, path->dentry, mnt);
492 	list_add_tail(&mnt->mnt_hash, mount_hashtable +
493 			hash(path->mnt, path->dentry));
494 	list_add_tail(&mnt->mnt_child, &path->mnt->mnt_mounts);
495 }
496 
497 /*
498  * the caller must hold vfsmount_lock
499  */
500 static void commit_tree(struct vfsmount *mnt)
501 {
502 	struct vfsmount *parent = mnt->mnt_parent;
503 	struct vfsmount *m;
504 	LIST_HEAD(head);
505 	struct mnt_namespace *n = parent->mnt_ns;
506 
507 	BUG_ON(parent == mnt);
508 
509 	list_add_tail(&head, &mnt->mnt_list);
510 	list_for_each_entry(m, &head, mnt_list)
511 		m->mnt_ns = n;
512 	list_splice(&head, n->list.prev);
513 
514 	list_add_tail(&mnt->mnt_hash, mount_hashtable +
515 				hash(parent, mnt->mnt_mountpoint));
516 	list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
517 	touch_mnt_namespace(n);
518 }
519 
520 static struct vfsmount *next_mnt(struct vfsmount *p, struct vfsmount *root)
521 {
522 	struct list_head *next = p->mnt_mounts.next;
523 	if (next == &p->mnt_mounts) {
524 		while (1) {
525 			if (p == root)
526 				return NULL;
527 			next = p->mnt_child.next;
528 			if (next != &p->mnt_parent->mnt_mounts)
529 				break;
530 			p = p->mnt_parent;
531 		}
532 	}
533 	return list_entry(next, struct vfsmount, mnt_child);
534 }
535 
536 static struct vfsmount *skip_mnt_tree(struct vfsmount *p)
537 {
538 	struct list_head *prev = p->mnt_mounts.prev;
539 	while (prev != &p->mnt_mounts) {
540 		p = list_entry(prev, struct vfsmount, mnt_child);
541 		prev = p->mnt_mounts.prev;
542 	}
543 	return p;
544 }
545 
546 static struct vfsmount *clone_mnt(struct vfsmount *old, struct dentry *root,
547 					int flag)
548 {
549 	struct super_block *sb = old->mnt_sb;
550 	struct vfsmount *mnt = alloc_vfsmnt(old->mnt_devname);
551 
552 	if (mnt) {
553 		if (flag & (CL_SLAVE | CL_PRIVATE))
554 			mnt->mnt_group_id = 0; /* not a peer of original */
555 		else
556 			mnt->mnt_group_id = old->mnt_group_id;
557 
558 		if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
559 			int err = mnt_alloc_group_id(mnt);
560 			if (err)
561 				goto out_free;
562 		}
563 
564 		mnt->mnt_flags = old->mnt_flags;
565 		atomic_inc(&sb->s_active);
566 		mnt->mnt_sb = sb;
567 		mnt->mnt_root = dget(root);
568 		mnt->mnt_mountpoint = mnt->mnt_root;
569 		mnt->mnt_parent = mnt;
570 
571 		if (flag & CL_SLAVE) {
572 			list_add(&mnt->mnt_slave, &old->mnt_slave_list);
573 			mnt->mnt_master = old;
574 			CLEAR_MNT_SHARED(mnt);
575 		} else if (!(flag & CL_PRIVATE)) {
576 			if ((flag & CL_PROPAGATION) || IS_MNT_SHARED(old))
577 				list_add(&mnt->mnt_share, &old->mnt_share);
578 			if (IS_MNT_SLAVE(old))
579 				list_add(&mnt->mnt_slave, &old->mnt_slave);
580 			mnt->mnt_master = old->mnt_master;
581 		}
582 		if (flag & CL_MAKE_SHARED)
583 			set_mnt_shared(mnt);
584 
585 		/* stick the duplicate mount on the same expiry list
586 		 * as the original if that was on one */
587 		if (flag & CL_EXPIRE) {
588 			if (!list_empty(&old->mnt_expire))
589 				list_add(&mnt->mnt_expire, &old->mnt_expire);
590 		}
591 	}
592 	return mnt;
593 
594  out_free:
595 	free_vfsmnt(mnt);
596 	return NULL;
597 }
598 
599 static inline void __mntput(struct vfsmount *mnt)
600 {
601 	struct super_block *sb = mnt->mnt_sb;
602 	/*
603 	 * This probably indicates that somebody messed
604 	 * up a mnt_want/drop_write() pair.  If this
605 	 * happens, the filesystem was probably unable
606 	 * to make r/w->r/o transitions.
607 	 */
608 	/*
609 	 * atomic_dec_and_lock() used to deal with ->mnt_count decrements
610 	 * provides barriers, so count_mnt_writers() below is safe.  AV
611 	 */
612 	WARN_ON(count_mnt_writers(mnt));
613 	dput(mnt->mnt_root);
614 	free_vfsmnt(mnt);
615 	deactivate_super(sb);
616 }
617 
618 void mntput_no_expire(struct vfsmount *mnt)
619 {
620 repeat:
621 	if (atomic_dec_and_lock(&mnt->mnt_count, &vfsmount_lock)) {
622 		if (likely(!mnt->mnt_pinned)) {
623 			spin_unlock(&vfsmount_lock);
624 			__mntput(mnt);
625 			return;
626 		}
627 		atomic_add(mnt->mnt_pinned + 1, &mnt->mnt_count);
628 		mnt->mnt_pinned = 0;
629 		spin_unlock(&vfsmount_lock);
630 		acct_auto_close_mnt(mnt);
631 		security_sb_umount_close(mnt);
632 		goto repeat;
633 	}
634 }
635 
636 EXPORT_SYMBOL(mntput_no_expire);
637 
638 void mnt_pin(struct vfsmount *mnt)
639 {
640 	spin_lock(&vfsmount_lock);
641 	mnt->mnt_pinned++;
642 	spin_unlock(&vfsmount_lock);
643 }
644 
645 EXPORT_SYMBOL(mnt_pin);
646 
647 void mnt_unpin(struct vfsmount *mnt)
648 {
649 	spin_lock(&vfsmount_lock);
650 	if (mnt->mnt_pinned) {
651 		atomic_inc(&mnt->mnt_count);
652 		mnt->mnt_pinned--;
653 	}
654 	spin_unlock(&vfsmount_lock);
655 }
656 
657 EXPORT_SYMBOL(mnt_unpin);
658 
659 static inline void mangle(struct seq_file *m, const char *s)
660 {
661 	seq_escape(m, s, " \t\n\\");
662 }
663 
664 /*
665  * Simple .show_options callback for filesystems which don't want to
666  * implement more complex mount option showing.
667  *
668  * See also save_mount_options().
669  */
670 int generic_show_options(struct seq_file *m, struct vfsmount *mnt)
671 {
672 	const char *options;
673 
674 	rcu_read_lock();
675 	options = rcu_dereference(mnt->mnt_sb->s_options);
676 
677 	if (options != NULL && options[0]) {
678 		seq_putc(m, ',');
679 		mangle(m, options);
680 	}
681 	rcu_read_unlock();
682 
683 	return 0;
684 }
685 EXPORT_SYMBOL(generic_show_options);
686 
687 /*
688  * If filesystem uses generic_show_options(), this function should be
689  * called from the fill_super() callback.
690  *
691  * The .remount_fs callback usually needs to be handled in a special
692  * way, to make sure, that previous options are not overwritten if the
693  * remount fails.
694  *
695  * Also note, that if the filesystem's .remount_fs function doesn't
696  * reset all options to their default value, but changes only newly
697  * given options, then the displayed options will not reflect reality
698  * any more.
699  */
700 void save_mount_options(struct super_block *sb, char *options)
701 {
702 	BUG_ON(sb->s_options);
703 	rcu_assign_pointer(sb->s_options, kstrdup(options, GFP_KERNEL));
704 }
705 EXPORT_SYMBOL(save_mount_options);
706 
707 void replace_mount_options(struct super_block *sb, char *options)
708 {
709 	char *old = sb->s_options;
710 	rcu_assign_pointer(sb->s_options, options);
711 	if (old) {
712 		synchronize_rcu();
713 		kfree(old);
714 	}
715 }
716 EXPORT_SYMBOL(replace_mount_options);
717 
718 #ifdef CONFIG_PROC_FS
719 /* iterator */
720 static void *m_start(struct seq_file *m, loff_t *pos)
721 {
722 	struct proc_mounts *p = m->private;
723 
724 	down_read(&namespace_sem);
725 	return seq_list_start(&p->ns->list, *pos);
726 }
727 
728 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
729 {
730 	struct proc_mounts *p = m->private;
731 
732 	return seq_list_next(v, &p->ns->list, pos);
733 }
734 
735 static void m_stop(struct seq_file *m, void *v)
736 {
737 	up_read(&namespace_sem);
738 }
739 
740 struct proc_fs_info {
741 	int flag;
742 	const char *str;
743 };
744 
745 static int show_sb_opts(struct seq_file *m, struct super_block *sb)
746 {
747 	static const struct proc_fs_info fs_info[] = {
748 		{ MS_SYNCHRONOUS, ",sync" },
749 		{ MS_DIRSYNC, ",dirsync" },
750 		{ MS_MANDLOCK, ",mand" },
751 		{ 0, NULL }
752 	};
753 	const struct proc_fs_info *fs_infop;
754 
755 	for (fs_infop = fs_info; fs_infop->flag; fs_infop++) {
756 		if (sb->s_flags & fs_infop->flag)
757 			seq_puts(m, fs_infop->str);
758 	}
759 
760 	return security_sb_show_options(m, sb);
761 }
762 
763 static void show_mnt_opts(struct seq_file *m, struct vfsmount *mnt)
764 {
765 	static const struct proc_fs_info mnt_info[] = {
766 		{ MNT_NOSUID, ",nosuid" },
767 		{ MNT_NODEV, ",nodev" },
768 		{ MNT_NOEXEC, ",noexec" },
769 		{ MNT_NOATIME, ",noatime" },
770 		{ MNT_NODIRATIME, ",nodiratime" },
771 		{ MNT_RELATIME, ",relatime" },
772 		{ MNT_STRICTATIME, ",strictatime" },
773 		{ 0, NULL }
774 	};
775 	const struct proc_fs_info *fs_infop;
776 
777 	for (fs_infop = mnt_info; fs_infop->flag; fs_infop++) {
778 		if (mnt->mnt_flags & fs_infop->flag)
779 			seq_puts(m, fs_infop->str);
780 	}
781 }
782 
783 static void show_type(struct seq_file *m, struct super_block *sb)
784 {
785 	mangle(m, sb->s_type->name);
786 	if (sb->s_subtype && sb->s_subtype[0]) {
787 		seq_putc(m, '.');
788 		mangle(m, sb->s_subtype);
789 	}
790 }
791 
792 static int show_vfsmnt(struct seq_file *m, void *v)
793 {
794 	struct vfsmount *mnt = list_entry(v, struct vfsmount, mnt_list);
795 	int err = 0;
796 	struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt };
797 
798 	mangle(m, mnt->mnt_devname ? mnt->mnt_devname : "none");
799 	seq_putc(m, ' ');
800 	seq_path(m, &mnt_path, " \t\n\\");
801 	seq_putc(m, ' ');
802 	show_type(m, mnt->mnt_sb);
803 	seq_puts(m, __mnt_is_readonly(mnt) ? " ro" : " rw");
804 	err = show_sb_opts(m, mnt->mnt_sb);
805 	if (err)
806 		goto out;
807 	show_mnt_opts(m, mnt);
808 	if (mnt->mnt_sb->s_op->show_options)
809 		err = mnt->mnt_sb->s_op->show_options(m, mnt);
810 	seq_puts(m, " 0 0\n");
811 out:
812 	return err;
813 }
814 
815 const struct seq_operations mounts_op = {
816 	.start	= m_start,
817 	.next	= m_next,
818 	.stop	= m_stop,
819 	.show	= show_vfsmnt
820 };
821 
822 static int show_mountinfo(struct seq_file *m, void *v)
823 {
824 	struct proc_mounts *p = m->private;
825 	struct vfsmount *mnt = list_entry(v, struct vfsmount, mnt_list);
826 	struct super_block *sb = mnt->mnt_sb;
827 	struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt };
828 	struct path root = p->root;
829 	int err = 0;
830 
831 	seq_printf(m, "%i %i %u:%u ", mnt->mnt_id, mnt->mnt_parent->mnt_id,
832 		   MAJOR(sb->s_dev), MINOR(sb->s_dev));
833 	seq_dentry(m, mnt->mnt_root, " \t\n\\");
834 	seq_putc(m, ' ');
835 	seq_path_root(m, &mnt_path, &root, " \t\n\\");
836 	if (root.mnt != p->root.mnt || root.dentry != p->root.dentry) {
837 		/*
838 		 * Mountpoint is outside root, discard that one.  Ugly,
839 		 * but less so than trying to do that in iterator in a
840 		 * race-free way (due to renames).
841 		 */
842 		return SEQ_SKIP;
843 	}
844 	seq_puts(m, mnt->mnt_flags & MNT_READONLY ? " ro" : " rw");
845 	show_mnt_opts(m, mnt);
846 
847 	/* Tagged fields ("foo:X" or "bar") */
848 	if (IS_MNT_SHARED(mnt))
849 		seq_printf(m, " shared:%i", mnt->mnt_group_id);
850 	if (IS_MNT_SLAVE(mnt)) {
851 		int master = mnt->mnt_master->mnt_group_id;
852 		int dom = get_dominating_id(mnt, &p->root);
853 		seq_printf(m, " master:%i", master);
854 		if (dom && dom != master)
855 			seq_printf(m, " propagate_from:%i", dom);
856 	}
857 	if (IS_MNT_UNBINDABLE(mnt))
858 		seq_puts(m, " unbindable");
859 
860 	/* Filesystem specific data */
861 	seq_puts(m, " - ");
862 	show_type(m, sb);
863 	seq_putc(m, ' ');
864 	mangle(m, mnt->mnt_devname ? mnt->mnt_devname : "none");
865 	seq_puts(m, sb->s_flags & MS_RDONLY ? " ro" : " rw");
866 	err = show_sb_opts(m, sb);
867 	if (err)
868 		goto out;
869 	if (sb->s_op->show_options)
870 		err = sb->s_op->show_options(m, mnt);
871 	seq_putc(m, '\n');
872 out:
873 	return err;
874 }
875 
876 const struct seq_operations mountinfo_op = {
877 	.start	= m_start,
878 	.next	= m_next,
879 	.stop	= m_stop,
880 	.show	= show_mountinfo,
881 };
882 
883 static int show_vfsstat(struct seq_file *m, void *v)
884 {
885 	struct vfsmount *mnt = list_entry(v, struct vfsmount, mnt_list);
886 	struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt };
887 	int err = 0;
888 
889 	/* device */
890 	if (mnt->mnt_devname) {
891 		seq_puts(m, "device ");
892 		mangle(m, mnt->mnt_devname);
893 	} else
894 		seq_puts(m, "no device");
895 
896 	/* mount point */
897 	seq_puts(m, " mounted on ");
898 	seq_path(m, &mnt_path, " \t\n\\");
899 	seq_putc(m, ' ');
900 
901 	/* file system type */
902 	seq_puts(m, "with fstype ");
903 	show_type(m, mnt->mnt_sb);
904 
905 	/* optional statistics */
906 	if (mnt->mnt_sb->s_op->show_stats) {
907 		seq_putc(m, ' ');
908 		err = mnt->mnt_sb->s_op->show_stats(m, mnt);
909 	}
910 
911 	seq_putc(m, '\n');
912 	return err;
913 }
914 
915 const struct seq_operations mountstats_op = {
916 	.start	= m_start,
917 	.next	= m_next,
918 	.stop	= m_stop,
919 	.show	= show_vfsstat,
920 };
921 #endif  /* CONFIG_PROC_FS */
922 
923 /**
924  * may_umount_tree - check if a mount tree is busy
925  * @mnt: root of mount tree
926  *
927  * This is called to check if a tree of mounts has any
928  * open files, pwds, chroots or sub mounts that are
929  * busy.
930  */
931 int may_umount_tree(struct vfsmount *mnt)
932 {
933 	int actual_refs = 0;
934 	int minimum_refs = 0;
935 	struct vfsmount *p;
936 
937 	spin_lock(&vfsmount_lock);
938 	for (p = mnt; p; p = next_mnt(p, mnt)) {
939 		actual_refs += atomic_read(&p->mnt_count);
940 		minimum_refs += 2;
941 	}
942 	spin_unlock(&vfsmount_lock);
943 
944 	if (actual_refs > minimum_refs)
945 		return 0;
946 
947 	return 1;
948 }
949 
950 EXPORT_SYMBOL(may_umount_tree);
951 
952 /**
953  * may_umount - check if a mount point is busy
954  * @mnt: root of mount
955  *
956  * This is called to check if a mount point has any
957  * open files, pwds, chroots or sub mounts. If the
958  * mount has sub mounts this will return busy
959  * regardless of whether the sub mounts are busy.
960  *
961  * Doesn't take quota and stuff into account. IOW, in some cases it will
962  * give false negatives. The main reason why it's here is that we need
963  * a non-destructive way to look for easily umountable filesystems.
964  */
965 int may_umount(struct vfsmount *mnt)
966 {
967 	int ret = 1;
968 	spin_lock(&vfsmount_lock);
969 	if (propagate_mount_busy(mnt, 2))
970 		ret = 0;
971 	spin_unlock(&vfsmount_lock);
972 	return ret;
973 }
974 
975 EXPORT_SYMBOL(may_umount);
976 
977 void release_mounts(struct list_head *head)
978 {
979 	struct vfsmount *mnt;
980 	while (!list_empty(head)) {
981 		mnt = list_first_entry(head, struct vfsmount, mnt_hash);
982 		list_del_init(&mnt->mnt_hash);
983 		if (mnt->mnt_parent != mnt) {
984 			struct dentry *dentry;
985 			struct vfsmount *m;
986 			spin_lock(&vfsmount_lock);
987 			dentry = mnt->mnt_mountpoint;
988 			m = mnt->mnt_parent;
989 			mnt->mnt_mountpoint = mnt->mnt_root;
990 			mnt->mnt_parent = mnt;
991 			m->mnt_ghosts--;
992 			spin_unlock(&vfsmount_lock);
993 			dput(dentry);
994 			mntput(m);
995 		}
996 		mntput(mnt);
997 	}
998 }
999 
1000 void umount_tree(struct vfsmount *mnt, int propagate, struct list_head *kill)
1001 {
1002 	struct vfsmount *p;
1003 
1004 	for (p = mnt; p; p = next_mnt(p, mnt))
1005 		list_move(&p->mnt_hash, kill);
1006 
1007 	if (propagate)
1008 		propagate_umount(kill);
1009 
1010 	list_for_each_entry(p, kill, mnt_hash) {
1011 		list_del_init(&p->mnt_expire);
1012 		list_del_init(&p->mnt_list);
1013 		__touch_mnt_namespace(p->mnt_ns);
1014 		p->mnt_ns = NULL;
1015 		list_del_init(&p->mnt_child);
1016 		if (p->mnt_parent != p) {
1017 			p->mnt_parent->mnt_ghosts++;
1018 			p->mnt_mountpoint->d_mounted--;
1019 		}
1020 		change_mnt_propagation(p, MS_PRIVATE);
1021 	}
1022 }
1023 
1024 static void shrink_submounts(struct vfsmount *mnt, struct list_head *umounts);
1025 
1026 static int do_umount(struct vfsmount *mnt, int flags)
1027 {
1028 	struct super_block *sb = mnt->mnt_sb;
1029 	int retval;
1030 	LIST_HEAD(umount_list);
1031 
1032 	retval = security_sb_umount(mnt, flags);
1033 	if (retval)
1034 		return retval;
1035 
1036 	/*
1037 	 * Allow userspace to request a mountpoint be expired rather than
1038 	 * unmounting unconditionally. Unmount only happens if:
1039 	 *  (1) the mark is already set (the mark is cleared by mntput())
1040 	 *  (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1041 	 */
1042 	if (flags & MNT_EXPIRE) {
1043 		if (mnt == current->fs->root.mnt ||
1044 		    flags & (MNT_FORCE | MNT_DETACH))
1045 			return -EINVAL;
1046 
1047 		if (atomic_read(&mnt->mnt_count) != 2)
1048 			return -EBUSY;
1049 
1050 		if (!xchg(&mnt->mnt_expiry_mark, 1))
1051 			return -EAGAIN;
1052 	}
1053 
1054 	/*
1055 	 * If we may have to abort operations to get out of this
1056 	 * mount, and they will themselves hold resources we must
1057 	 * allow the fs to do things. In the Unix tradition of
1058 	 * 'Gee thats tricky lets do it in userspace' the umount_begin
1059 	 * might fail to complete on the first run through as other tasks
1060 	 * must return, and the like. Thats for the mount program to worry
1061 	 * about for the moment.
1062 	 */
1063 
1064 	if (flags & MNT_FORCE && sb->s_op->umount_begin) {
1065 		sb->s_op->umount_begin(sb);
1066 	}
1067 
1068 	/*
1069 	 * No sense to grab the lock for this test, but test itself looks
1070 	 * somewhat bogus. Suggestions for better replacement?
1071 	 * Ho-hum... In principle, we might treat that as umount + switch
1072 	 * to rootfs. GC would eventually take care of the old vfsmount.
1073 	 * Actually it makes sense, especially if rootfs would contain a
1074 	 * /reboot - static binary that would close all descriptors and
1075 	 * call reboot(9). Then init(8) could umount root and exec /reboot.
1076 	 */
1077 	if (mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1078 		/*
1079 		 * Special case for "unmounting" root ...
1080 		 * we just try to remount it readonly.
1081 		 */
1082 		down_write(&sb->s_umount);
1083 		if (!(sb->s_flags & MS_RDONLY))
1084 			retval = do_remount_sb(sb, MS_RDONLY, NULL, 0);
1085 		up_write(&sb->s_umount);
1086 		return retval;
1087 	}
1088 
1089 	down_write(&namespace_sem);
1090 	spin_lock(&vfsmount_lock);
1091 	event++;
1092 
1093 	if (!(flags & MNT_DETACH))
1094 		shrink_submounts(mnt, &umount_list);
1095 
1096 	retval = -EBUSY;
1097 	if (flags & MNT_DETACH || !propagate_mount_busy(mnt, 2)) {
1098 		if (!list_empty(&mnt->mnt_list))
1099 			umount_tree(mnt, 1, &umount_list);
1100 		retval = 0;
1101 	}
1102 	spin_unlock(&vfsmount_lock);
1103 	if (retval)
1104 		security_sb_umount_busy(mnt);
1105 	up_write(&namespace_sem);
1106 	release_mounts(&umount_list);
1107 	return retval;
1108 }
1109 
1110 /*
1111  * Now umount can handle mount points as well as block devices.
1112  * This is important for filesystems which use unnamed block devices.
1113  *
1114  * We now support a flag for forced unmount like the other 'big iron'
1115  * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
1116  */
1117 
1118 SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
1119 {
1120 	struct path path;
1121 	int retval;
1122 
1123 	retval = user_path(name, &path);
1124 	if (retval)
1125 		goto out;
1126 	retval = -EINVAL;
1127 	if (path.dentry != path.mnt->mnt_root)
1128 		goto dput_and_out;
1129 	if (!check_mnt(path.mnt))
1130 		goto dput_and_out;
1131 
1132 	retval = -EPERM;
1133 	if (!capable(CAP_SYS_ADMIN))
1134 		goto dput_and_out;
1135 
1136 	retval = do_umount(path.mnt, flags);
1137 dput_and_out:
1138 	/* we mustn't call path_put() as that would clear mnt_expiry_mark */
1139 	dput(path.dentry);
1140 	mntput_no_expire(path.mnt);
1141 out:
1142 	return retval;
1143 }
1144 
1145 #ifdef __ARCH_WANT_SYS_OLDUMOUNT
1146 
1147 /*
1148  *	The 2.0 compatible umount. No flags.
1149  */
1150 SYSCALL_DEFINE1(oldumount, char __user *, name)
1151 {
1152 	return sys_umount(name, 0);
1153 }
1154 
1155 #endif
1156 
1157 static int mount_is_safe(struct path *path)
1158 {
1159 	if (capable(CAP_SYS_ADMIN))
1160 		return 0;
1161 	return -EPERM;
1162 #ifdef notyet
1163 	if (S_ISLNK(path->dentry->d_inode->i_mode))
1164 		return -EPERM;
1165 	if (path->dentry->d_inode->i_mode & S_ISVTX) {
1166 		if (current_uid() != path->dentry->d_inode->i_uid)
1167 			return -EPERM;
1168 	}
1169 	if (inode_permission(path->dentry->d_inode, MAY_WRITE))
1170 		return -EPERM;
1171 	return 0;
1172 #endif
1173 }
1174 
1175 struct vfsmount *copy_tree(struct vfsmount *mnt, struct dentry *dentry,
1176 					int flag)
1177 {
1178 	struct vfsmount *res, *p, *q, *r, *s;
1179 	struct path path;
1180 
1181 	if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(mnt))
1182 		return NULL;
1183 
1184 	res = q = clone_mnt(mnt, dentry, flag);
1185 	if (!q)
1186 		goto Enomem;
1187 	q->mnt_mountpoint = mnt->mnt_mountpoint;
1188 
1189 	p = mnt;
1190 	list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
1191 		if (!is_subdir(r->mnt_mountpoint, dentry))
1192 			continue;
1193 
1194 		for (s = r; s; s = next_mnt(s, r)) {
1195 			if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(s)) {
1196 				s = skip_mnt_tree(s);
1197 				continue;
1198 			}
1199 			while (p != s->mnt_parent) {
1200 				p = p->mnt_parent;
1201 				q = q->mnt_parent;
1202 			}
1203 			p = s;
1204 			path.mnt = q;
1205 			path.dentry = p->mnt_mountpoint;
1206 			q = clone_mnt(p, p->mnt_root, flag);
1207 			if (!q)
1208 				goto Enomem;
1209 			spin_lock(&vfsmount_lock);
1210 			list_add_tail(&q->mnt_list, &res->mnt_list);
1211 			attach_mnt(q, &path);
1212 			spin_unlock(&vfsmount_lock);
1213 		}
1214 	}
1215 	return res;
1216 Enomem:
1217 	if (res) {
1218 		LIST_HEAD(umount_list);
1219 		spin_lock(&vfsmount_lock);
1220 		umount_tree(res, 0, &umount_list);
1221 		spin_unlock(&vfsmount_lock);
1222 		release_mounts(&umount_list);
1223 	}
1224 	return NULL;
1225 }
1226 
1227 struct vfsmount *collect_mounts(struct path *path)
1228 {
1229 	struct vfsmount *tree;
1230 	down_write(&namespace_sem);
1231 	tree = copy_tree(path->mnt, path->dentry, CL_COPY_ALL | CL_PRIVATE);
1232 	up_write(&namespace_sem);
1233 	return tree;
1234 }
1235 
1236 void drop_collected_mounts(struct vfsmount *mnt)
1237 {
1238 	LIST_HEAD(umount_list);
1239 	down_write(&namespace_sem);
1240 	spin_lock(&vfsmount_lock);
1241 	umount_tree(mnt, 0, &umount_list);
1242 	spin_unlock(&vfsmount_lock);
1243 	up_write(&namespace_sem);
1244 	release_mounts(&umount_list);
1245 }
1246 
1247 static void cleanup_group_ids(struct vfsmount *mnt, struct vfsmount *end)
1248 {
1249 	struct vfsmount *p;
1250 
1251 	for (p = mnt; p != end; p = next_mnt(p, mnt)) {
1252 		if (p->mnt_group_id && !IS_MNT_SHARED(p))
1253 			mnt_release_group_id(p);
1254 	}
1255 }
1256 
1257 static int invent_group_ids(struct vfsmount *mnt, bool recurse)
1258 {
1259 	struct vfsmount *p;
1260 
1261 	for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
1262 		if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
1263 			int err = mnt_alloc_group_id(p);
1264 			if (err) {
1265 				cleanup_group_ids(mnt, p);
1266 				return err;
1267 			}
1268 		}
1269 	}
1270 
1271 	return 0;
1272 }
1273 
1274 /*
1275  *  @source_mnt : mount tree to be attached
1276  *  @nd         : place the mount tree @source_mnt is attached
1277  *  @parent_nd  : if non-null, detach the source_mnt from its parent and
1278  *  		   store the parent mount and mountpoint dentry.
1279  *  		   (done when source_mnt is moved)
1280  *
1281  *  NOTE: in the table below explains the semantics when a source mount
1282  *  of a given type is attached to a destination mount of a given type.
1283  * ---------------------------------------------------------------------------
1284  * |         BIND MOUNT OPERATION                                            |
1285  * |**************************************************************************
1286  * | source-->| shared        |       private  |       slave    | unbindable |
1287  * | dest     |               |                |                |            |
1288  * |   |      |               |                |                |            |
1289  * |   v      |               |                |                |            |
1290  * |**************************************************************************
1291  * |  shared  | shared (++)   |     shared (+) |     shared(+++)|  invalid   |
1292  * |          |               |                |                |            |
1293  * |non-shared| shared (+)    |      private   |      slave (*) |  invalid   |
1294  * ***************************************************************************
1295  * A bind operation clones the source mount and mounts the clone on the
1296  * destination mount.
1297  *
1298  * (++)  the cloned mount is propagated to all the mounts in the propagation
1299  * 	 tree of the destination mount and the cloned mount is added to
1300  * 	 the peer group of the source mount.
1301  * (+)   the cloned mount is created under the destination mount and is marked
1302  *       as shared. The cloned mount is added to the peer group of the source
1303  *       mount.
1304  * (+++) the mount is propagated to all the mounts in the propagation tree
1305  *       of the destination mount and the cloned mount is made slave
1306  *       of the same master as that of the source mount. The cloned mount
1307  *       is marked as 'shared and slave'.
1308  * (*)   the cloned mount is made a slave of the same master as that of the
1309  * 	 source mount.
1310  *
1311  * ---------------------------------------------------------------------------
1312  * |         		MOVE MOUNT OPERATION                                 |
1313  * |**************************************************************************
1314  * | source-->| shared        |       private  |       slave    | unbindable |
1315  * | dest     |               |                |                |            |
1316  * |   |      |               |                |                |            |
1317  * |   v      |               |                |                |            |
1318  * |**************************************************************************
1319  * |  shared  | shared (+)    |     shared (+) |    shared(+++) |  invalid   |
1320  * |          |               |                |                |            |
1321  * |non-shared| shared (+*)   |      private   |    slave (*)   | unbindable |
1322  * ***************************************************************************
1323  *
1324  * (+)  the mount is moved to the destination. And is then propagated to
1325  * 	all the mounts in the propagation tree of the destination mount.
1326  * (+*)  the mount is moved to the destination.
1327  * (+++)  the mount is moved to the destination and is then propagated to
1328  * 	all the mounts belonging to the destination mount's propagation tree.
1329  * 	the mount is marked as 'shared and slave'.
1330  * (*)	the mount continues to be a slave at the new location.
1331  *
1332  * if the source mount is a tree, the operations explained above is
1333  * applied to each mount in the tree.
1334  * Must be called without spinlocks held, since this function can sleep
1335  * in allocations.
1336  */
1337 static int attach_recursive_mnt(struct vfsmount *source_mnt,
1338 			struct path *path, struct path *parent_path)
1339 {
1340 	LIST_HEAD(tree_list);
1341 	struct vfsmount *dest_mnt = path->mnt;
1342 	struct dentry *dest_dentry = path->dentry;
1343 	struct vfsmount *child, *p;
1344 	int err;
1345 
1346 	if (IS_MNT_SHARED(dest_mnt)) {
1347 		err = invent_group_ids(source_mnt, true);
1348 		if (err)
1349 			goto out;
1350 	}
1351 	err = propagate_mnt(dest_mnt, dest_dentry, source_mnt, &tree_list);
1352 	if (err)
1353 		goto out_cleanup_ids;
1354 
1355 	if (IS_MNT_SHARED(dest_mnt)) {
1356 		for (p = source_mnt; p; p = next_mnt(p, source_mnt))
1357 			set_mnt_shared(p);
1358 	}
1359 
1360 	spin_lock(&vfsmount_lock);
1361 	if (parent_path) {
1362 		detach_mnt(source_mnt, parent_path);
1363 		attach_mnt(source_mnt, path);
1364 		touch_mnt_namespace(parent_path->mnt->mnt_ns);
1365 	} else {
1366 		mnt_set_mountpoint(dest_mnt, dest_dentry, source_mnt);
1367 		commit_tree(source_mnt);
1368 	}
1369 
1370 	list_for_each_entry_safe(child, p, &tree_list, mnt_hash) {
1371 		list_del_init(&child->mnt_hash);
1372 		commit_tree(child);
1373 	}
1374 	spin_unlock(&vfsmount_lock);
1375 	return 0;
1376 
1377  out_cleanup_ids:
1378 	if (IS_MNT_SHARED(dest_mnt))
1379 		cleanup_group_ids(source_mnt, NULL);
1380  out:
1381 	return err;
1382 }
1383 
1384 static int graft_tree(struct vfsmount *mnt, struct path *path)
1385 {
1386 	int err;
1387 	if (mnt->mnt_sb->s_flags & MS_NOUSER)
1388 		return -EINVAL;
1389 
1390 	if (S_ISDIR(path->dentry->d_inode->i_mode) !=
1391 	      S_ISDIR(mnt->mnt_root->d_inode->i_mode))
1392 		return -ENOTDIR;
1393 
1394 	err = -ENOENT;
1395 	mutex_lock(&path->dentry->d_inode->i_mutex);
1396 	if (IS_DEADDIR(path->dentry->d_inode))
1397 		goto out_unlock;
1398 
1399 	err = security_sb_check_sb(mnt, path);
1400 	if (err)
1401 		goto out_unlock;
1402 
1403 	err = -ENOENT;
1404 	if (!d_unlinked(path->dentry))
1405 		err = attach_recursive_mnt(mnt, path, NULL);
1406 out_unlock:
1407 	mutex_unlock(&path->dentry->d_inode->i_mutex);
1408 	if (!err)
1409 		security_sb_post_addmount(mnt, path);
1410 	return err;
1411 }
1412 
1413 /*
1414  * recursively change the type of the mountpoint.
1415  */
1416 static int do_change_type(struct path *path, int flag)
1417 {
1418 	struct vfsmount *m, *mnt = path->mnt;
1419 	int recurse = flag & MS_REC;
1420 	int type = flag & ~MS_REC;
1421 	int err = 0;
1422 
1423 	if (!capable(CAP_SYS_ADMIN))
1424 		return -EPERM;
1425 
1426 	if (path->dentry != path->mnt->mnt_root)
1427 		return -EINVAL;
1428 
1429 	down_write(&namespace_sem);
1430 	if (type == MS_SHARED) {
1431 		err = invent_group_ids(mnt, recurse);
1432 		if (err)
1433 			goto out_unlock;
1434 	}
1435 
1436 	spin_lock(&vfsmount_lock);
1437 	for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
1438 		change_mnt_propagation(m, type);
1439 	spin_unlock(&vfsmount_lock);
1440 
1441  out_unlock:
1442 	up_write(&namespace_sem);
1443 	return err;
1444 }
1445 
1446 /*
1447  * do loopback mount.
1448  */
1449 static int do_loopback(struct path *path, char *old_name,
1450 				int recurse)
1451 {
1452 	struct path old_path;
1453 	struct vfsmount *mnt = NULL;
1454 	int err = mount_is_safe(path);
1455 	if (err)
1456 		return err;
1457 	if (!old_name || !*old_name)
1458 		return -EINVAL;
1459 	err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
1460 	if (err)
1461 		return err;
1462 
1463 	down_write(&namespace_sem);
1464 	err = -EINVAL;
1465 	if (IS_MNT_UNBINDABLE(old_path.mnt))
1466 		goto out;
1467 
1468 	if (!check_mnt(path->mnt) || !check_mnt(old_path.mnt))
1469 		goto out;
1470 
1471 	err = -ENOMEM;
1472 	if (recurse)
1473 		mnt = copy_tree(old_path.mnt, old_path.dentry, 0);
1474 	else
1475 		mnt = clone_mnt(old_path.mnt, old_path.dentry, 0);
1476 
1477 	if (!mnt)
1478 		goto out;
1479 
1480 	err = graft_tree(mnt, path);
1481 	if (err) {
1482 		LIST_HEAD(umount_list);
1483 		spin_lock(&vfsmount_lock);
1484 		umount_tree(mnt, 0, &umount_list);
1485 		spin_unlock(&vfsmount_lock);
1486 		release_mounts(&umount_list);
1487 	}
1488 
1489 out:
1490 	up_write(&namespace_sem);
1491 	path_put(&old_path);
1492 	return err;
1493 }
1494 
1495 static int change_mount_flags(struct vfsmount *mnt, int ms_flags)
1496 {
1497 	int error = 0;
1498 	int readonly_request = 0;
1499 
1500 	if (ms_flags & MS_RDONLY)
1501 		readonly_request = 1;
1502 	if (readonly_request == __mnt_is_readonly(mnt))
1503 		return 0;
1504 
1505 	if (readonly_request)
1506 		error = mnt_make_readonly(mnt);
1507 	else
1508 		__mnt_unmake_readonly(mnt);
1509 	return error;
1510 }
1511 
1512 /*
1513  * change filesystem flags. dir should be a physical root of filesystem.
1514  * If you've mounted a non-root directory somewhere and want to do remount
1515  * on it - tough luck.
1516  */
1517 static int do_remount(struct path *path, int flags, int mnt_flags,
1518 		      void *data)
1519 {
1520 	int err;
1521 	struct super_block *sb = path->mnt->mnt_sb;
1522 
1523 	if (!capable(CAP_SYS_ADMIN))
1524 		return -EPERM;
1525 
1526 	if (!check_mnt(path->mnt))
1527 		return -EINVAL;
1528 
1529 	if (path->dentry != path->mnt->mnt_root)
1530 		return -EINVAL;
1531 
1532 	down_write(&sb->s_umount);
1533 	if (flags & MS_BIND)
1534 		err = change_mount_flags(path->mnt, flags);
1535 	else
1536 		err = do_remount_sb(sb, flags, data, 0);
1537 	if (!err)
1538 		path->mnt->mnt_flags = mnt_flags;
1539 	up_write(&sb->s_umount);
1540 	if (!err) {
1541 		security_sb_post_remount(path->mnt, flags, data);
1542 
1543 		spin_lock(&vfsmount_lock);
1544 		touch_mnt_namespace(path->mnt->mnt_ns);
1545 		spin_unlock(&vfsmount_lock);
1546 	}
1547 	return err;
1548 }
1549 
1550 static inline int tree_contains_unbindable(struct vfsmount *mnt)
1551 {
1552 	struct vfsmount *p;
1553 	for (p = mnt; p; p = next_mnt(p, mnt)) {
1554 		if (IS_MNT_UNBINDABLE(p))
1555 			return 1;
1556 	}
1557 	return 0;
1558 }
1559 
1560 static int do_move_mount(struct path *path, char *old_name)
1561 {
1562 	struct path old_path, parent_path;
1563 	struct vfsmount *p;
1564 	int err = 0;
1565 	if (!capable(CAP_SYS_ADMIN))
1566 		return -EPERM;
1567 	if (!old_name || !*old_name)
1568 		return -EINVAL;
1569 	err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
1570 	if (err)
1571 		return err;
1572 
1573 	down_write(&namespace_sem);
1574 	while (d_mountpoint(path->dentry) &&
1575 	       follow_down(path))
1576 		;
1577 	err = -EINVAL;
1578 	if (!check_mnt(path->mnt) || !check_mnt(old_path.mnt))
1579 		goto out;
1580 
1581 	err = -ENOENT;
1582 	mutex_lock(&path->dentry->d_inode->i_mutex);
1583 	if (IS_DEADDIR(path->dentry->d_inode))
1584 		goto out1;
1585 
1586 	if (d_unlinked(path->dentry))
1587 		goto out1;
1588 
1589 	err = -EINVAL;
1590 	if (old_path.dentry != old_path.mnt->mnt_root)
1591 		goto out1;
1592 
1593 	if (old_path.mnt == old_path.mnt->mnt_parent)
1594 		goto out1;
1595 
1596 	if (S_ISDIR(path->dentry->d_inode->i_mode) !=
1597 	      S_ISDIR(old_path.dentry->d_inode->i_mode))
1598 		goto out1;
1599 	/*
1600 	 * Don't move a mount residing in a shared parent.
1601 	 */
1602 	if (old_path.mnt->mnt_parent &&
1603 	    IS_MNT_SHARED(old_path.mnt->mnt_parent))
1604 		goto out1;
1605 	/*
1606 	 * Don't move a mount tree containing unbindable mounts to a destination
1607 	 * mount which is shared.
1608 	 */
1609 	if (IS_MNT_SHARED(path->mnt) &&
1610 	    tree_contains_unbindable(old_path.mnt))
1611 		goto out1;
1612 	err = -ELOOP;
1613 	for (p = path->mnt; p->mnt_parent != p; p = p->mnt_parent)
1614 		if (p == old_path.mnt)
1615 			goto out1;
1616 
1617 	err = attach_recursive_mnt(old_path.mnt, path, &parent_path);
1618 	if (err)
1619 		goto out1;
1620 
1621 	/* if the mount is moved, it should no longer be expire
1622 	 * automatically */
1623 	list_del_init(&old_path.mnt->mnt_expire);
1624 out1:
1625 	mutex_unlock(&path->dentry->d_inode->i_mutex);
1626 out:
1627 	up_write(&namespace_sem);
1628 	if (!err)
1629 		path_put(&parent_path);
1630 	path_put(&old_path);
1631 	return err;
1632 }
1633 
1634 /*
1635  * create a new mount for userspace and request it to be added into the
1636  * namespace's tree
1637  */
1638 static int do_new_mount(struct path *path, char *type, int flags,
1639 			int mnt_flags, char *name, void *data)
1640 {
1641 	struct vfsmount *mnt;
1642 
1643 	if (!type || !memchr(type, 0, PAGE_SIZE))
1644 		return -EINVAL;
1645 
1646 	/* we need capabilities... */
1647 	if (!capable(CAP_SYS_ADMIN))
1648 		return -EPERM;
1649 
1650 	lock_kernel();
1651 	mnt = do_kern_mount(type, flags, name, data);
1652 	unlock_kernel();
1653 	if (IS_ERR(mnt))
1654 		return PTR_ERR(mnt);
1655 
1656 	return do_add_mount(mnt, path, mnt_flags, NULL);
1657 }
1658 
1659 /*
1660  * add a mount into a namespace's mount tree
1661  * - provide the option of adding the new mount to an expiration list
1662  */
1663 int do_add_mount(struct vfsmount *newmnt, struct path *path,
1664 		 int mnt_flags, struct list_head *fslist)
1665 {
1666 	int err;
1667 
1668 	down_write(&namespace_sem);
1669 	/* Something was mounted here while we slept */
1670 	while (d_mountpoint(path->dentry) &&
1671 	       follow_down(path))
1672 		;
1673 	err = -EINVAL;
1674 	if (!(mnt_flags & MNT_SHRINKABLE) && !check_mnt(path->mnt))
1675 		goto unlock;
1676 
1677 	/* Refuse the same filesystem on the same mount point */
1678 	err = -EBUSY;
1679 	if (path->mnt->mnt_sb == newmnt->mnt_sb &&
1680 	    path->mnt->mnt_root == path->dentry)
1681 		goto unlock;
1682 
1683 	err = -EINVAL;
1684 	if (S_ISLNK(newmnt->mnt_root->d_inode->i_mode))
1685 		goto unlock;
1686 
1687 	newmnt->mnt_flags = mnt_flags;
1688 	if ((err = graft_tree(newmnt, path)))
1689 		goto unlock;
1690 
1691 	if (fslist) /* add to the specified expiration list */
1692 		list_add_tail(&newmnt->mnt_expire, fslist);
1693 
1694 	up_write(&namespace_sem);
1695 	return 0;
1696 
1697 unlock:
1698 	up_write(&namespace_sem);
1699 	mntput(newmnt);
1700 	return err;
1701 }
1702 
1703 EXPORT_SYMBOL_GPL(do_add_mount);
1704 
1705 /*
1706  * process a list of expirable mountpoints with the intent of discarding any
1707  * mountpoints that aren't in use and haven't been touched since last we came
1708  * here
1709  */
1710 void mark_mounts_for_expiry(struct list_head *mounts)
1711 {
1712 	struct vfsmount *mnt, *next;
1713 	LIST_HEAD(graveyard);
1714 	LIST_HEAD(umounts);
1715 
1716 	if (list_empty(mounts))
1717 		return;
1718 
1719 	down_write(&namespace_sem);
1720 	spin_lock(&vfsmount_lock);
1721 
1722 	/* extract from the expiration list every vfsmount that matches the
1723 	 * following criteria:
1724 	 * - only referenced by its parent vfsmount
1725 	 * - still marked for expiry (marked on the last call here; marks are
1726 	 *   cleared by mntput())
1727 	 */
1728 	list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
1729 		if (!xchg(&mnt->mnt_expiry_mark, 1) ||
1730 			propagate_mount_busy(mnt, 1))
1731 			continue;
1732 		list_move(&mnt->mnt_expire, &graveyard);
1733 	}
1734 	while (!list_empty(&graveyard)) {
1735 		mnt = list_first_entry(&graveyard, struct vfsmount, mnt_expire);
1736 		touch_mnt_namespace(mnt->mnt_ns);
1737 		umount_tree(mnt, 1, &umounts);
1738 	}
1739 	spin_unlock(&vfsmount_lock);
1740 	up_write(&namespace_sem);
1741 
1742 	release_mounts(&umounts);
1743 }
1744 
1745 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
1746 
1747 /*
1748  * Ripoff of 'select_parent()'
1749  *
1750  * search the list of submounts for a given mountpoint, and move any
1751  * shrinkable submounts to the 'graveyard' list.
1752  */
1753 static int select_submounts(struct vfsmount *parent, struct list_head *graveyard)
1754 {
1755 	struct vfsmount *this_parent = parent;
1756 	struct list_head *next;
1757 	int found = 0;
1758 
1759 repeat:
1760 	next = this_parent->mnt_mounts.next;
1761 resume:
1762 	while (next != &this_parent->mnt_mounts) {
1763 		struct list_head *tmp = next;
1764 		struct vfsmount *mnt = list_entry(tmp, struct vfsmount, mnt_child);
1765 
1766 		next = tmp->next;
1767 		if (!(mnt->mnt_flags & MNT_SHRINKABLE))
1768 			continue;
1769 		/*
1770 		 * Descend a level if the d_mounts list is non-empty.
1771 		 */
1772 		if (!list_empty(&mnt->mnt_mounts)) {
1773 			this_parent = mnt;
1774 			goto repeat;
1775 		}
1776 
1777 		if (!propagate_mount_busy(mnt, 1)) {
1778 			list_move_tail(&mnt->mnt_expire, graveyard);
1779 			found++;
1780 		}
1781 	}
1782 	/*
1783 	 * All done at this level ... ascend and resume the search
1784 	 */
1785 	if (this_parent != parent) {
1786 		next = this_parent->mnt_child.next;
1787 		this_parent = this_parent->mnt_parent;
1788 		goto resume;
1789 	}
1790 	return found;
1791 }
1792 
1793 /*
1794  * process a list of expirable mountpoints with the intent of discarding any
1795  * submounts of a specific parent mountpoint
1796  */
1797 static void shrink_submounts(struct vfsmount *mnt, struct list_head *umounts)
1798 {
1799 	LIST_HEAD(graveyard);
1800 	struct vfsmount *m;
1801 
1802 	/* extract submounts of 'mountpoint' from the expiration list */
1803 	while (select_submounts(mnt, &graveyard)) {
1804 		while (!list_empty(&graveyard)) {
1805 			m = list_first_entry(&graveyard, struct vfsmount,
1806 						mnt_expire);
1807 			touch_mnt_namespace(m->mnt_ns);
1808 			umount_tree(m, 1, umounts);
1809 		}
1810 	}
1811 }
1812 
1813 /*
1814  * Some copy_from_user() implementations do not return the exact number of
1815  * bytes remaining to copy on a fault.  But copy_mount_options() requires that.
1816  * Note that this function differs from copy_from_user() in that it will oops
1817  * on bad values of `to', rather than returning a short copy.
1818  */
1819 static long exact_copy_from_user(void *to, const void __user * from,
1820 				 unsigned long n)
1821 {
1822 	char *t = to;
1823 	const char __user *f = from;
1824 	char c;
1825 
1826 	if (!access_ok(VERIFY_READ, from, n))
1827 		return n;
1828 
1829 	while (n) {
1830 		if (__get_user(c, f)) {
1831 			memset(t, 0, n);
1832 			break;
1833 		}
1834 		*t++ = c;
1835 		f++;
1836 		n--;
1837 	}
1838 	return n;
1839 }
1840 
1841 int copy_mount_options(const void __user * data, unsigned long *where)
1842 {
1843 	int i;
1844 	unsigned long page;
1845 	unsigned long size;
1846 
1847 	*where = 0;
1848 	if (!data)
1849 		return 0;
1850 
1851 	if (!(page = __get_free_page(GFP_KERNEL)))
1852 		return -ENOMEM;
1853 
1854 	/* We only care that *some* data at the address the user
1855 	 * gave us is valid.  Just in case, we'll zero
1856 	 * the remainder of the page.
1857 	 */
1858 	/* copy_from_user cannot cross TASK_SIZE ! */
1859 	size = TASK_SIZE - (unsigned long)data;
1860 	if (size > PAGE_SIZE)
1861 		size = PAGE_SIZE;
1862 
1863 	i = size - exact_copy_from_user((void *)page, data, size);
1864 	if (!i) {
1865 		free_page(page);
1866 		return -EFAULT;
1867 	}
1868 	if (i != PAGE_SIZE)
1869 		memset((char *)page + i, 0, PAGE_SIZE - i);
1870 	*where = page;
1871 	return 0;
1872 }
1873 
1874 /*
1875  * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
1876  * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
1877  *
1878  * data is a (void *) that can point to any structure up to
1879  * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
1880  * information (or be NULL).
1881  *
1882  * Pre-0.97 versions of mount() didn't have a flags word.
1883  * When the flags word was introduced its top half was required
1884  * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
1885  * Therefore, if this magic number is present, it carries no information
1886  * and must be discarded.
1887  */
1888 long do_mount(char *dev_name, char *dir_name, char *type_page,
1889 		  unsigned long flags, void *data_page)
1890 {
1891 	struct path path;
1892 	int retval = 0;
1893 	int mnt_flags = 0;
1894 
1895 	/* Discard magic */
1896 	if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
1897 		flags &= ~MS_MGC_MSK;
1898 
1899 	/* Basic sanity checks */
1900 
1901 	if (!dir_name || !*dir_name || !memchr(dir_name, 0, PAGE_SIZE))
1902 		return -EINVAL;
1903 	if (dev_name && !memchr(dev_name, 0, PAGE_SIZE))
1904 		return -EINVAL;
1905 
1906 	if (data_page)
1907 		((char *)data_page)[PAGE_SIZE - 1] = 0;
1908 
1909 	/* Default to relatime unless overriden */
1910 	if (!(flags & MS_NOATIME))
1911 		mnt_flags |= MNT_RELATIME;
1912 
1913 	/* Separate the per-mountpoint flags */
1914 	if (flags & MS_NOSUID)
1915 		mnt_flags |= MNT_NOSUID;
1916 	if (flags & MS_NODEV)
1917 		mnt_flags |= MNT_NODEV;
1918 	if (flags & MS_NOEXEC)
1919 		mnt_flags |= MNT_NOEXEC;
1920 	if (flags & MS_NOATIME)
1921 		mnt_flags |= MNT_NOATIME;
1922 	if (flags & MS_NODIRATIME)
1923 		mnt_flags |= MNT_NODIRATIME;
1924 	if (flags & MS_STRICTATIME)
1925 		mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
1926 	if (flags & MS_RDONLY)
1927 		mnt_flags |= MNT_READONLY;
1928 
1929 	flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE |
1930 		   MS_NOATIME | MS_NODIRATIME | MS_RELATIME| MS_KERNMOUNT |
1931 		   MS_STRICTATIME);
1932 
1933 	/* ... and get the mountpoint */
1934 	retval = kern_path(dir_name, LOOKUP_FOLLOW, &path);
1935 	if (retval)
1936 		return retval;
1937 
1938 	retval = security_sb_mount(dev_name, &path,
1939 				   type_page, flags, data_page);
1940 	if (retval)
1941 		goto dput_out;
1942 
1943 	if (flags & MS_REMOUNT)
1944 		retval = do_remount(&path, flags & ~MS_REMOUNT, mnt_flags,
1945 				    data_page);
1946 	else if (flags & MS_BIND)
1947 		retval = do_loopback(&path, dev_name, flags & MS_REC);
1948 	else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
1949 		retval = do_change_type(&path, flags);
1950 	else if (flags & MS_MOVE)
1951 		retval = do_move_mount(&path, dev_name);
1952 	else
1953 		retval = do_new_mount(&path, type_page, flags, mnt_flags,
1954 				      dev_name, data_page);
1955 dput_out:
1956 	path_put(&path);
1957 	return retval;
1958 }
1959 
1960 static struct mnt_namespace *alloc_mnt_ns(void)
1961 {
1962 	struct mnt_namespace *new_ns;
1963 
1964 	new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
1965 	if (!new_ns)
1966 		return ERR_PTR(-ENOMEM);
1967 	atomic_set(&new_ns->count, 1);
1968 	new_ns->root = NULL;
1969 	INIT_LIST_HEAD(&new_ns->list);
1970 	init_waitqueue_head(&new_ns->poll);
1971 	new_ns->event = 0;
1972 	return new_ns;
1973 }
1974 
1975 /*
1976  * Allocate a new namespace structure and populate it with contents
1977  * copied from the namespace of the passed in task structure.
1978  */
1979 static struct mnt_namespace *dup_mnt_ns(struct mnt_namespace *mnt_ns,
1980 		struct fs_struct *fs)
1981 {
1982 	struct mnt_namespace *new_ns;
1983 	struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
1984 	struct vfsmount *p, *q;
1985 
1986 	new_ns = alloc_mnt_ns();
1987 	if (IS_ERR(new_ns))
1988 		return new_ns;
1989 
1990 	down_write(&namespace_sem);
1991 	/* First pass: copy the tree topology */
1992 	new_ns->root = copy_tree(mnt_ns->root, mnt_ns->root->mnt_root,
1993 					CL_COPY_ALL | CL_EXPIRE);
1994 	if (!new_ns->root) {
1995 		up_write(&namespace_sem);
1996 		kfree(new_ns);
1997 		return ERR_PTR(-ENOMEM);
1998 	}
1999 	spin_lock(&vfsmount_lock);
2000 	list_add_tail(&new_ns->list, &new_ns->root->mnt_list);
2001 	spin_unlock(&vfsmount_lock);
2002 
2003 	/*
2004 	 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
2005 	 * as belonging to new namespace.  We have already acquired a private
2006 	 * fs_struct, so tsk->fs->lock is not needed.
2007 	 */
2008 	p = mnt_ns->root;
2009 	q = new_ns->root;
2010 	while (p) {
2011 		q->mnt_ns = new_ns;
2012 		if (fs) {
2013 			if (p == fs->root.mnt) {
2014 				rootmnt = p;
2015 				fs->root.mnt = mntget(q);
2016 			}
2017 			if (p == fs->pwd.mnt) {
2018 				pwdmnt = p;
2019 				fs->pwd.mnt = mntget(q);
2020 			}
2021 		}
2022 		p = next_mnt(p, mnt_ns->root);
2023 		q = next_mnt(q, new_ns->root);
2024 	}
2025 	up_write(&namespace_sem);
2026 
2027 	if (rootmnt)
2028 		mntput(rootmnt);
2029 	if (pwdmnt)
2030 		mntput(pwdmnt);
2031 
2032 	return new_ns;
2033 }
2034 
2035 struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
2036 		struct fs_struct *new_fs)
2037 {
2038 	struct mnt_namespace *new_ns;
2039 
2040 	BUG_ON(!ns);
2041 	get_mnt_ns(ns);
2042 
2043 	if (!(flags & CLONE_NEWNS))
2044 		return ns;
2045 
2046 	new_ns = dup_mnt_ns(ns, new_fs);
2047 
2048 	put_mnt_ns(ns);
2049 	return new_ns;
2050 }
2051 
2052 /**
2053  * create_mnt_ns - creates a private namespace and adds a root filesystem
2054  * @mnt: pointer to the new root filesystem mountpoint
2055  */
2056 struct mnt_namespace *create_mnt_ns(struct vfsmount *mnt)
2057 {
2058 	struct mnt_namespace *new_ns;
2059 
2060 	new_ns = alloc_mnt_ns();
2061 	if (!IS_ERR(new_ns)) {
2062 		mnt->mnt_ns = new_ns;
2063 		new_ns->root = mnt;
2064 		list_add(&new_ns->list, &new_ns->root->mnt_list);
2065 	}
2066 	return new_ns;
2067 }
2068 EXPORT_SYMBOL(create_mnt_ns);
2069 
2070 SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
2071 		char __user *, type, unsigned long, flags, void __user *, data)
2072 {
2073 	int retval;
2074 	unsigned long data_page;
2075 	unsigned long type_page;
2076 	unsigned long dev_page;
2077 	char *dir_page;
2078 
2079 	retval = copy_mount_options(type, &type_page);
2080 	if (retval < 0)
2081 		return retval;
2082 
2083 	dir_page = getname(dir_name);
2084 	retval = PTR_ERR(dir_page);
2085 	if (IS_ERR(dir_page))
2086 		goto out1;
2087 
2088 	retval = copy_mount_options(dev_name, &dev_page);
2089 	if (retval < 0)
2090 		goto out2;
2091 
2092 	retval = copy_mount_options(data, &data_page);
2093 	if (retval < 0)
2094 		goto out3;
2095 
2096 	retval = do_mount((char *)dev_page, dir_page, (char *)type_page,
2097 			  flags, (void *)data_page);
2098 	free_page(data_page);
2099 
2100 out3:
2101 	free_page(dev_page);
2102 out2:
2103 	putname(dir_page);
2104 out1:
2105 	free_page(type_page);
2106 	return retval;
2107 }
2108 
2109 /*
2110  * pivot_root Semantics:
2111  * Moves the root file system of the current process to the directory put_old,
2112  * makes new_root as the new root file system of the current process, and sets
2113  * root/cwd of all processes which had them on the current root to new_root.
2114  *
2115  * Restrictions:
2116  * The new_root and put_old must be directories, and  must not be on the
2117  * same file  system as the current process root. The put_old  must  be
2118  * underneath new_root,  i.e. adding a non-zero number of /.. to the string
2119  * pointed to by put_old must yield the same directory as new_root. No other
2120  * file system may be mounted on put_old. After all, new_root is a mountpoint.
2121  *
2122  * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
2123  * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
2124  * in this situation.
2125  *
2126  * Notes:
2127  *  - we don't move root/cwd if they are not at the root (reason: if something
2128  *    cared enough to change them, it's probably wrong to force them elsewhere)
2129  *  - it's okay to pick a root that isn't the root of a file system, e.g.
2130  *    /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
2131  *    though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
2132  *    first.
2133  */
2134 SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
2135 		const char __user *, put_old)
2136 {
2137 	struct vfsmount *tmp;
2138 	struct path new, old, parent_path, root_parent, root;
2139 	int error;
2140 
2141 	if (!capable(CAP_SYS_ADMIN))
2142 		return -EPERM;
2143 
2144 	error = user_path_dir(new_root, &new);
2145 	if (error)
2146 		goto out0;
2147 	error = -EINVAL;
2148 	if (!check_mnt(new.mnt))
2149 		goto out1;
2150 
2151 	error = user_path_dir(put_old, &old);
2152 	if (error)
2153 		goto out1;
2154 
2155 	error = security_sb_pivotroot(&old, &new);
2156 	if (error) {
2157 		path_put(&old);
2158 		goto out1;
2159 	}
2160 
2161 	read_lock(&current->fs->lock);
2162 	root = current->fs->root;
2163 	path_get(&current->fs->root);
2164 	read_unlock(&current->fs->lock);
2165 	down_write(&namespace_sem);
2166 	mutex_lock(&old.dentry->d_inode->i_mutex);
2167 	error = -EINVAL;
2168 	if (IS_MNT_SHARED(old.mnt) ||
2169 		IS_MNT_SHARED(new.mnt->mnt_parent) ||
2170 		IS_MNT_SHARED(root.mnt->mnt_parent))
2171 		goto out2;
2172 	if (!check_mnt(root.mnt))
2173 		goto out2;
2174 	error = -ENOENT;
2175 	if (IS_DEADDIR(new.dentry->d_inode))
2176 		goto out2;
2177 	if (d_unlinked(new.dentry))
2178 		goto out2;
2179 	if (d_unlinked(old.dentry))
2180 		goto out2;
2181 	error = -EBUSY;
2182 	if (new.mnt == root.mnt ||
2183 	    old.mnt == root.mnt)
2184 		goto out2; /* loop, on the same file system  */
2185 	error = -EINVAL;
2186 	if (root.mnt->mnt_root != root.dentry)
2187 		goto out2; /* not a mountpoint */
2188 	if (root.mnt->mnt_parent == root.mnt)
2189 		goto out2; /* not attached */
2190 	if (new.mnt->mnt_root != new.dentry)
2191 		goto out2; /* not a mountpoint */
2192 	if (new.mnt->mnt_parent == new.mnt)
2193 		goto out2; /* not attached */
2194 	/* make sure we can reach put_old from new_root */
2195 	tmp = old.mnt;
2196 	spin_lock(&vfsmount_lock);
2197 	if (tmp != new.mnt) {
2198 		for (;;) {
2199 			if (tmp->mnt_parent == tmp)
2200 				goto out3; /* already mounted on put_old */
2201 			if (tmp->mnt_parent == new.mnt)
2202 				break;
2203 			tmp = tmp->mnt_parent;
2204 		}
2205 		if (!is_subdir(tmp->mnt_mountpoint, new.dentry))
2206 			goto out3;
2207 	} else if (!is_subdir(old.dentry, new.dentry))
2208 		goto out3;
2209 	detach_mnt(new.mnt, &parent_path);
2210 	detach_mnt(root.mnt, &root_parent);
2211 	/* mount old root on put_old */
2212 	attach_mnt(root.mnt, &old);
2213 	/* mount new_root on / */
2214 	attach_mnt(new.mnt, &root_parent);
2215 	touch_mnt_namespace(current->nsproxy->mnt_ns);
2216 	spin_unlock(&vfsmount_lock);
2217 	chroot_fs_refs(&root, &new);
2218 	security_sb_post_pivotroot(&root, &new);
2219 	error = 0;
2220 	path_put(&root_parent);
2221 	path_put(&parent_path);
2222 out2:
2223 	mutex_unlock(&old.dentry->d_inode->i_mutex);
2224 	up_write(&namespace_sem);
2225 	path_put(&root);
2226 	path_put(&old);
2227 out1:
2228 	path_put(&new);
2229 out0:
2230 	return error;
2231 out3:
2232 	spin_unlock(&vfsmount_lock);
2233 	goto out2;
2234 }
2235 
2236 static void __init init_mount_tree(void)
2237 {
2238 	struct vfsmount *mnt;
2239 	struct mnt_namespace *ns;
2240 	struct path root;
2241 
2242 	mnt = do_kern_mount("rootfs", 0, "rootfs", NULL);
2243 	if (IS_ERR(mnt))
2244 		panic("Can't create rootfs");
2245 	ns = create_mnt_ns(mnt);
2246 	if (IS_ERR(ns))
2247 		panic("Can't allocate initial namespace");
2248 
2249 	init_task.nsproxy->mnt_ns = ns;
2250 	get_mnt_ns(ns);
2251 
2252 	root.mnt = ns->root;
2253 	root.dentry = ns->root->mnt_root;
2254 
2255 	set_fs_pwd(current->fs, &root);
2256 	set_fs_root(current->fs, &root);
2257 }
2258 
2259 void __init mnt_init(void)
2260 {
2261 	unsigned u;
2262 	int err;
2263 
2264 	init_rwsem(&namespace_sem);
2265 
2266 	mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct vfsmount),
2267 			0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
2268 
2269 	mount_hashtable = (struct list_head *)__get_free_page(GFP_ATOMIC);
2270 
2271 	if (!mount_hashtable)
2272 		panic("Failed to allocate mount hash table\n");
2273 
2274 	printk("Mount-cache hash table entries: %lu\n", HASH_SIZE);
2275 
2276 	for (u = 0; u < HASH_SIZE; u++)
2277 		INIT_LIST_HEAD(&mount_hashtable[u]);
2278 
2279 	err = sysfs_init();
2280 	if (err)
2281 		printk(KERN_WARNING "%s: sysfs_init error: %d\n",
2282 			__func__, err);
2283 	fs_kobj = kobject_create_and_add("fs", NULL);
2284 	if (!fs_kobj)
2285 		printk(KERN_WARNING "%s: kobj create error\n", __func__);
2286 	init_rootfs();
2287 	init_mount_tree();
2288 }
2289 
2290 void put_mnt_ns(struct mnt_namespace *ns)
2291 {
2292 	struct vfsmount *root;
2293 	LIST_HEAD(umount_list);
2294 
2295 	if (!atomic_dec_and_lock(&ns->count, &vfsmount_lock))
2296 		return;
2297 	root = ns->root;
2298 	ns->root = NULL;
2299 	spin_unlock(&vfsmount_lock);
2300 	down_write(&namespace_sem);
2301 	spin_lock(&vfsmount_lock);
2302 	umount_tree(root, 0, &umount_list);
2303 	spin_unlock(&vfsmount_lock);
2304 	up_write(&namespace_sem);
2305 	release_mounts(&umount_list);
2306 	kfree(ns);
2307 }
2308 EXPORT_SYMBOL(put_mnt_ns);
2309