1 /* 2 * linux/fs/namespace.c 3 * 4 * (C) Copyright Al Viro 2000, 2001 5 * Released under GPL v2. 6 * 7 * Based on code from fs/super.c, copyright Linus Torvalds and others. 8 * Heavily rewritten. 9 */ 10 11 #include <linux/syscalls.h> 12 #include <linux/export.h> 13 #include <linux/capability.h> 14 #include <linux/mnt_namespace.h> 15 #include <linux/user_namespace.h> 16 #include <linux/namei.h> 17 #include <linux/security.h> 18 #include <linux/idr.h> 19 #include <linux/init.h> /* init_rootfs */ 20 #include <linux/fs_struct.h> /* get_fs_root et.al. */ 21 #include <linux/fsnotify.h> /* fsnotify_vfsmount_delete */ 22 #include <linux/uaccess.h> 23 #include <linux/proc_ns.h> 24 #include <linux/magic.h> 25 #include <linux/bootmem.h> 26 #include <linux/task_work.h> 27 #include "pnode.h" 28 #include "internal.h" 29 30 /* Maximum number of mounts in a mount namespace */ 31 unsigned int sysctl_mount_max __read_mostly = 100000; 32 33 static unsigned int m_hash_mask __read_mostly; 34 static unsigned int m_hash_shift __read_mostly; 35 static unsigned int mp_hash_mask __read_mostly; 36 static unsigned int mp_hash_shift __read_mostly; 37 38 static __initdata unsigned long mhash_entries; 39 static int __init set_mhash_entries(char *str) 40 { 41 if (!str) 42 return 0; 43 mhash_entries = simple_strtoul(str, &str, 0); 44 return 1; 45 } 46 __setup("mhash_entries=", set_mhash_entries); 47 48 static __initdata unsigned long mphash_entries; 49 static int __init set_mphash_entries(char *str) 50 { 51 if (!str) 52 return 0; 53 mphash_entries = simple_strtoul(str, &str, 0); 54 return 1; 55 } 56 __setup("mphash_entries=", set_mphash_entries); 57 58 static u64 event; 59 static DEFINE_IDA(mnt_id_ida); 60 static DEFINE_IDA(mnt_group_ida); 61 static DEFINE_SPINLOCK(mnt_id_lock); 62 static int mnt_id_start = 0; 63 static int mnt_group_start = 1; 64 65 static struct hlist_head *mount_hashtable __read_mostly; 66 static struct hlist_head *mountpoint_hashtable __read_mostly; 67 static struct kmem_cache *mnt_cache __read_mostly; 68 static DECLARE_RWSEM(namespace_sem); 69 70 /* /sys/fs */ 71 struct kobject *fs_kobj; 72 EXPORT_SYMBOL_GPL(fs_kobj); 73 74 /* 75 * vfsmount lock may be taken for read to prevent changes to the 76 * vfsmount hash, ie. during mountpoint lookups or walking back 77 * up the tree. 78 * 79 * It should be taken for write in all cases where the vfsmount 80 * tree or hash is modified or when a vfsmount structure is modified. 81 */ 82 __cacheline_aligned_in_smp DEFINE_SEQLOCK(mount_lock); 83 84 static inline struct hlist_head *m_hash(struct vfsmount *mnt, struct dentry *dentry) 85 { 86 unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES); 87 tmp += ((unsigned long)dentry / L1_CACHE_BYTES); 88 tmp = tmp + (tmp >> m_hash_shift); 89 return &mount_hashtable[tmp & m_hash_mask]; 90 } 91 92 static inline struct hlist_head *mp_hash(struct dentry *dentry) 93 { 94 unsigned long tmp = ((unsigned long)dentry / L1_CACHE_BYTES); 95 tmp = tmp + (tmp >> mp_hash_shift); 96 return &mountpoint_hashtable[tmp & mp_hash_mask]; 97 } 98 99 static int mnt_alloc_id(struct mount *mnt) 100 { 101 int res; 102 103 retry: 104 ida_pre_get(&mnt_id_ida, GFP_KERNEL); 105 spin_lock(&mnt_id_lock); 106 res = ida_get_new_above(&mnt_id_ida, mnt_id_start, &mnt->mnt_id); 107 if (!res) 108 mnt_id_start = mnt->mnt_id + 1; 109 spin_unlock(&mnt_id_lock); 110 if (res == -EAGAIN) 111 goto retry; 112 113 return res; 114 } 115 116 static void mnt_free_id(struct mount *mnt) 117 { 118 int id = mnt->mnt_id; 119 spin_lock(&mnt_id_lock); 120 ida_remove(&mnt_id_ida, id); 121 if (mnt_id_start > id) 122 mnt_id_start = id; 123 spin_unlock(&mnt_id_lock); 124 } 125 126 /* 127 * Allocate a new peer group ID 128 * 129 * mnt_group_ida is protected by namespace_sem 130 */ 131 static int mnt_alloc_group_id(struct mount *mnt) 132 { 133 int res; 134 135 if (!ida_pre_get(&mnt_group_ida, GFP_KERNEL)) 136 return -ENOMEM; 137 138 res = ida_get_new_above(&mnt_group_ida, 139 mnt_group_start, 140 &mnt->mnt_group_id); 141 if (!res) 142 mnt_group_start = mnt->mnt_group_id + 1; 143 144 return res; 145 } 146 147 /* 148 * Release a peer group ID 149 */ 150 void mnt_release_group_id(struct mount *mnt) 151 { 152 int id = mnt->mnt_group_id; 153 ida_remove(&mnt_group_ida, id); 154 if (mnt_group_start > id) 155 mnt_group_start = id; 156 mnt->mnt_group_id = 0; 157 } 158 159 /* 160 * vfsmount lock must be held for read 161 */ 162 static inline void mnt_add_count(struct mount *mnt, int n) 163 { 164 #ifdef CONFIG_SMP 165 this_cpu_add(mnt->mnt_pcp->mnt_count, n); 166 #else 167 preempt_disable(); 168 mnt->mnt_count += n; 169 preempt_enable(); 170 #endif 171 } 172 173 /* 174 * vfsmount lock must be held for write 175 */ 176 unsigned int mnt_get_count(struct mount *mnt) 177 { 178 #ifdef CONFIG_SMP 179 unsigned int count = 0; 180 int cpu; 181 182 for_each_possible_cpu(cpu) { 183 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count; 184 } 185 186 return count; 187 #else 188 return mnt->mnt_count; 189 #endif 190 } 191 192 static void drop_mountpoint(struct fs_pin *p) 193 { 194 struct mount *m = container_of(p, struct mount, mnt_umount); 195 dput(m->mnt_ex_mountpoint); 196 pin_remove(p); 197 mntput(&m->mnt); 198 } 199 200 static struct mount *alloc_vfsmnt(const char *name) 201 { 202 struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL); 203 if (mnt) { 204 int err; 205 206 err = mnt_alloc_id(mnt); 207 if (err) 208 goto out_free_cache; 209 210 if (name) { 211 mnt->mnt_devname = kstrdup_const(name, GFP_KERNEL); 212 if (!mnt->mnt_devname) 213 goto out_free_id; 214 } 215 216 #ifdef CONFIG_SMP 217 mnt->mnt_pcp = alloc_percpu(struct mnt_pcp); 218 if (!mnt->mnt_pcp) 219 goto out_free_devname; 220 221 this_cpu_add(mnt->mnt_pcp->mnt_count, 1); 222 #else 223 mnt->mnt_count = 1; 224 mnt->mnt_writers = 0; 225 #endif 226 227 INIT_HLIST_NODE(&mnt->mnt_hash); 228 INIT_LIST_HEAD(&mnt->mnt_child); 229 INIT_LIST_HEAD(&mnt->mnt_mounts); 230 INIT_LIST_HEAD(&mnt->mnt_list); 231 INIT_LIST_HEAD(&mnt->mnt_expire); 232 INIT_LIST_HEAD(&mnt->mnt_share); 233 INIT_LIST_HEAD(&mnt->mnt_slave_list); 234 INIT_LIST_HEAD(&mnt->mnt_slave); 235 INIT_HLIST_NODE(&mnt->mnt_mp_list); 236 #ifdef CONFIG_FSNOTIFY 237 INIT_HLIST_HEAD(&mnt->mnt_fsnotify_marks); 238 #endif 239 init_fs_pin(&mnt->mnt_umount, drop_mountpoint); 240 } 241 return mnt; 242 243 #ifdef CONFIG_SMP 244 out_free_devname: 245 kfree_const(mnt->mnt_devname); 246 #endif 247 out_free_id: 248 mnt_free_id(mnt); 249 out_free_cache: 250 kmem_cache_free(mnt_cache, mnt); 251 return NULL; 252 } 253 254 /* 255 * Most r/o checks on a fs are for operations that take 256 * discrete amounts of time, like a write() or unlink(). 257 * We must keep track of when those operations start 258 * (for permission checks) and when they end, so that 259 * we can determine when writes are able to occur to 260 * a filesystem. 261 */ 262 /* 263 * __mnt_is_readonly: check whether a mount is read-only 264 * @mnt: the mount to check for its write status 265 * 266 * This shouldn't be used directly ouside of the VFS. 267 * It does not guarantee that the filesystem will stay 268 * r/w, just that it is right *now*. This can not and 269 * should not be used in place of IS_RDONLY(inode). 270 * mnt_want/drop_write() will _keep_ the filesystem 271 * r/w. 272 */ 273 int __mnt_is_readonly(struct vfsmount *mnt) 274 { 275 if (mnt->mnt_flags & MNT_READONLY) 276 return 1; 277 if (mnt->mnt_sb->s_flags & MS_RDONLY) 278 return 1; 279 return 0; 280 } 281 EXPORT_SYMBOL_GPL(__mnt_is_readonly); 282 283 static inline void mnt_inc_writers(struct mount *mnt) 284 { 285 #ifdef CONFIG_SMP 286 this_cpu_inc(mnt->mnt_pcp->mnt_writers); 287 #else 288 mnt->mnt_writers++; 289 #endif 290 } 291 292 static inline void mnt_dec_writers(struct mount *mnt) 293 { 294 #ifdef CONFIG_SMP 295 this_cpu_dec(mnt->mnt_pcp->mnt_writers); 296 #else 297 mnt->mnt_writers--; 298 #endif 299 } 300 301 static unsigned int mnt_get_writers(struct mount *mnt) 302 { 303 #ifdef CONFIG_SMP 304 unsigned int count = 0; 305 int cpu; 306 307 for_each_possible_cpu(cpu) { 308 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers; 309 } 310 311 return count; 312 #else 313 return mnt->mnt_writers; 314 #endif 315 } 316 317 static int mnt_is_readonly(struct vfsmount *mnt) 318 { 319 if (mnt->mnt_sb->s_readonly_remount) 320 return 1; 321 /* Order wrt setting s_flags/s_readonly_remount in do_remount() */ 322 smp_rmb(); 323 return __mnt_is_readonly(mnt); 324 } 325 326 /* 327 * Most r/o & frozen checks on a fs are for operations that take discrete 328 * amounts of time, like a write() or unlink(). We must keep track of when 329 * those operations start (for permission checks) and when they end, so that we 330 * can determine when writes are able to occur to a filesystem. 331 */ 332 /** 333 * __mnt_want_write - get write access to a mount without freeze protection 334 * @m: the mount on which to take a write 335 * 336 * This tells the low-level filesystem that a write is about to be performed to 337 * it, and makes sure that writes are allowed (mnt it read-write) before 338 * returning success. This operation does not protect against filesystem being 339 * frozen. When the write operation is finished, __mnt_drop_write() must be 340 * called. This is effectively a refcount. 341 */ 342 int __mnt_want_write(struct vfsmount *m) 343 { 344 struct mount *mnt = real_mount(m); 345 int ret = 0; 346 347 preempt_disable(); 348 mnt_inc_writers(mnt); 349 /* 350 * The store to mnt_inc_writers must be visible before we pass 351 * MNT_WRITE_HOLD loop below, so that the slowpath can see our 352 * incremented count after it has set MNT_WRITE_HOLD. 353 */ 354 smp_mb(); 355 while (ACCESS_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD) 356 cpu_relax(); 357 /* 358 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will 359 * be set to match its requirements. So we must not load that until 360 * MNT_WRITE_HOLD is cleared. 361 */ 362 smp_rmb(); 363 if (mnt_is_readonly(m)) { 364 mnt_dec_writers(mnt); 365 ret = -EROFS; 366 } 367 preempt_enable(); 368 369 return ret; 370 } 371 372 /** 373 * mnt_want_write - get write access to a mount 374 * @m: the mount on which to take a write 375 * 376 * This tells the low-level filesystem that a write is about to be performed to 377 * it, and makes sure that writes are allowed (mount is read-write, filesystem 378 * is not frozen) before returning success. When the write operation is 379 * finished, mnt_drop_write() must be called. This is effectively a refcount. 380 */ 381 int mnt_want_write(struct vfsmount *m) 382 { 383 int ret; 384 385 sb_start_write(m->mnt_sb); 386 ret = __mnt_want_write(m); 387 if (ret) 388 sb_end_write(m->mnt_sb); 389 return ret; 390 } 391 EXPORT_SYMBOL_GPL(mnt_want_write); 392 393 /** 394 * mnt_clone_write - get write access to a mount 395 * @mnt: the mount on which to take a write 396 * 397 * This is effectively like mnt_want_write, except 398 * it must only be used to take an extra write reference 399 * on a mountpoint that we already know has a write reference 400 * on it. This allows some optimisation. 401 * 402 * After finished, mnt_drop_write must be called as usual to 403 * drop the reference. 404 */ 405 int mnt_clone_write(struct vfsmount *mnt) 406 { 407 /* superblock may be r/o */ 408 if (__mnt_is_readonly(mnt)) 409 return -EROFS; 410 preempt_disable(); 411 mnt_inc_writers(real_mount(mnt)); 412 preempt_enable(); 413 return 0; 414 } 415 EXPORT_SYMBOL_GPL(mnt_clone_write); 416 417 /** 418 * __mnt_want_write_file - get write access to a file's mount 419 * @file: the file who's mount on which to take a write 420 * 421 * This is like __mnt_want_write, but it takes a file and can 422 * do some optimisations if the file is open for write already 423 */ 424 int __mnt_want_write_file(struct file *file) 425 { 426 if (!(file->f_mode & FMODE_WRITER)) 427 return __mnt_want_write(file->f_path.mnt); 428 else 429 return mnt_clone_write(file->f_path.mnt); 430 } 431 432 /** 433 * mnt_want_write_file - get write access to a file's mount 434 * @file: the file who's mount on which to take a write 435 * 436 * This is like mnt_want_write, but it takes a file and can 437 * do some optimisations if the file is open for write already 438 */ 439 int mnt_want_write_file(struct file *file) 440 { 441 int ret; 442 443 sb_start_write(file->f_path.mnt->mnt_sb); 444 ret = __mnt_want_write_file(file); 445 if (ret) 446 sb_end_write(file->f_path.mnt->mnt_sb); 447 return ret; 448 } 449 EXPORT_SYMBOL_GPL(mnt_want_write_file); 450 451 /** 452 * __mnt_drop_write - give up write access to a mount 453 * @mnt: the mount on which to give up write access 454 * 455 * Tells the low-level filesystem that we are done 456 * performing writes to it. Must be matched with 457 * __mnt_want_write() call above. 458 */ 459 void __mnt_drop_write(struct vfsmount *mnt) 460 { 461 preempt_disable(); 462 mnt_dec_writers(real_mount(mnt)); 463 preempt_enable(); 464 } 465 466 /** 467 * mnt_drop_write - give up write access to a mount 468 * @mnt: the mount on which to give up write access 469 * 470 * Tells the low-level filesystem that we are done performing writes to it and 471 * also allows filesystem to be frozen again. Must be matched with 472 * mnt_want_write() call above. 473 */ 474 void mnt_drop_write(struct vfsmount *mnt) 475 { 476 __mnt_drop_write(mnt); 477 sb_end_write(mnt->mnt_sb); 478 } 479 EXPORT_SYMBOL_GPL(mnt_drop_write); 480 481 void __mnt_drop_write_file(struct file *file) 482 { 483 __mnt_drop_write(file->f_path.mnt); 484 } 485 486 void mnt_drop_write_file(struct file *file) 487 { 488 mnt_drop_write(file->f_path.mnt); 489 } 490 EXPORT_SYMBOL(mnt_drop_write_file); 491 492 static int mnt_make_readonly(struct mount *mnt) 493 { 494 int ret = 0; 495 496 lock_mount_hash(); 497 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD; 498 /* 499 * After storing MNT_WRITE_HOLD, we'll read the counters. This store 500 * should be visible before we do. 501 */ 502 smp_mb(); 503 504 /* 505 * With writers on hold, if this value is zero, then there are 506 * definitely no active writers (although held writers may subsequently 507 * increment the count, they'll have to wait, and decrement it after 508 * seeing MNT_READONLY). 509 * 510 * It is OK to have counter incremented on one CPU and decremented on 511 * another: the sum will add up correctly. The danger would be when we 512 * sum up each counter, if we read a counter before it is incremented, 513 * but then read another CPU's count which it has been subsequently 514 * decremented from -- we would see more decrements than we should. 515 * MNT_WRITE_HOLD protects against this scenario, because 516 * mnt_want_write first increments count, then smp_mb, then spins on 517 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while 518 * we're counting up here. 519 */ 520 if (mnt_get_writers(mnt) > 0) 521 ret = -EBUSY; 522 else 523 mnt->mnt.mnt_flags |= MNT_READONLY; 524 /* 525 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers 526 * that become unheld will see MNT_READONLY. 527 */ 528 smp_wmb(); 529 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD; 530 unlock_mount_hash(); 531 return ret; 532 } 533 534 static void __mnt_unmake_readonly(struct mount *mnt) 535 { 536 lock_mount_hash(); 537 mnt->mnt.mnt_flags &= ~MNT_READONLY; 538 unlock_mount_hash(); 539 } 540 541 int sb_prepare_remount_readonly(struct super_block *sb) 542 { 543 struct mount *mnt; 544 int err = 0; 545 546 /* Racy optimization. Recheck the counter under MNT_WRITE_HOLD */ 547 if (atomic_long_read(&sb->s_remove_count)) 548 return -EBUSY; 549 550 lock_mount_hash(); 551 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) { 552 if (!(mnt->mnt.mnt_flags & MNT_READONLY)) { 553 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD; 554 smp_mb(); 555 if (mnt_get_writers(mnt) > 0) { 556 err = -EBUSY; 557 break; 558 } 559 } 560 } 561 if (!err && atomic_long_read(&sb->s_remove_count)) 562 err = -EBUSY; 563 564 if (!err) { 565 sb->s_readonly_remount = 1; 566 smp_wmb(); 567 } 568 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) { 569 if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD) 570 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD; 571 } 572 unlock_mount_hash(); 573 574 return err; 575 } 576 577 static void free_vfsmnt(struct mount *mnt) 578 { 579 kfree_const(mnt->mnt_devname); 580 #ifdef CONFIG_SMP 581 free_percpu(mnt->mnt_pcp); 582 #endif 583 kmem_cache_free(mnt_cache, mnt); 584 } 585 586 static void delayed_free_vfsmnt(struct rcu_head *head) 587 { 588 free_vfsmnt(container_of(head, struct mount, mnt_rcu)); 589 } 590 591 /* call under rcu_read_lock */ 592 int __legitimize_mnt(struct vfsmount *bastard, unsigned seq) 593 { 594 struct mount *mnt; 595 if (read_seqretry(&mount_lock, seq)) 596 return 1; 597 if (bastard == NULL) 598 return 0; 599 mnt = real_mount(bastard); 600 mnt_add_count(mnt, 1); 601 if (likely(!read_seqretry(&mount_lock, seq))) 602 return 0; 603 if (bastard->mnt_flags & MNT_SYNC_UMOUNT) { 604 mnt_add_count(mnt, -1); 605 return 1; 606 } 607 return -1; 608 } 609 610 /* call under rcu_read_lock */ 611 bool legitimize_mnt(struct vfsmount *bastard, unsigned seq) 612 { 613 int res = __legitimize_mnt(bastard, seq); 614 if (likely(!res)) 615 return true; 616 if (unlikely(res < 0)) { 617 rcu_read_unlock(); 618 mntput(bastard); 619 rcu_read_lock(); 620 } 621 return false; 622 } 623 624 /* 625 * find the first mount at @dentry on vfsmount @mnt. 626 * call under rcu_read_lock() 627 */ 628 struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry) 629 { 630 struct hlist_head *head = m_hash(mnt, dentry); 631 struct mount *p; 632 633 hlist_for_each_entry_rcu(p, head, mnt_hash) 634 if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry) 635 return p; 636 return NULL; 637 } 638 639 /* 640 * find the last mount at @dentry on vfsmount @mnt. 641 * mount_lock must be held. 642 */ 643 struct mount *__lookup_mnt_last(struct vfsmount *mnt, struct dentry *dentry) 644 { 645 struct mount *p, *res = NULL; 646 p = __lookup_mnt(mnt, dentry); 647 if (!p) 648 goto out; 649 if (!(p->mnt.mnt_flags & MNT_UMOUNT)) 650 res = p; 651 hlist_for_each_entry_continue(p, mnt_hash) { 652 if (&p->mnt_parent->mnt != mnt || p->mnt_mountpoint != dentry) 653 break; 654 if (!(p->mnt.mnt_flags & MNT_UMOUNT)) 655 res = p; 656 } 657 out: 658 return res; 659 } 660 661 /* 662 * lookup_mnt - Return the first child mount mounted at path 663 * 664 * "First" means first mounted chronologically. If you create the 665 * following mounts: 666 * 667 * mount /dev/sda1 /mnt 668 * mount /dev/sda2 /mnt 669 * mount /dev/sda3 /mnt 670 * 671 * Then lookup_mnt() on the base /mnt dentry in the root mount will 672 * return successively the root dentry and vfsmount of /dev/sda1, then 673 * /dev/sda2, then /dev/sda3, then NULL. 674 * 675 * lookup_mnt takes a reference to the found vfsmount. 676 */ 677 struct vfsmount *lookup_mnt(const struct path *path) 678 { 679 struct mount *child_mnt; 680 struct vfsmount *m; 681 unsigned seq; 682 683 rcu_read_lock(); 684 do { 685 seq = read_seqbegin(&mount_lock); 686 child_mnt = __lookup_mnt(path->mnt, path->dentry); 687 m = child_mnt ? &child_mnt->mnt : NULL; 688 } while (!legitimize_mnt(m, seq)); 689 rcu_read_unlock(); 690 return m; 691 } 692 693 /* 694 * __is_local_mountpoint - Test to see if dentry is a mountpoint in the 695 * current mount namespace. 696 * 697 * The common case is dentries are not mountpoints at all and that 698 * test is handled inline. For the slow case when we are actually 699 * dealing with a mountpoint of some kind, walk through all of the 700 * mounts in the current mount namespace and test to see if the dentry 701 * is a mountpoint. 702 * 703 * The mount_hashtable is not usable in the context because we 704 * need to identify all mounts that may be in the current mount 705 * namespace not just a mount that happens to have some specified 706 * parent mount. 707 */ 708 bool __is_local_mountpoint(struct dentry *dentry) 709 { 710 struct mnt_namespace *ns = current->nsproxy->mnt_ns; 711 struct mount *mnt; 712 bool is_covered = false; 713 714 if (!d_mountpoint(dentry)) 715 goto out; 716 717 down_read(&namespace_sem); 718 list_for_each_entry(mnt, &ns->list, mnt_list) { 719 is_covered = (mnt->mnt_mountpoint == dentry); 720 if (is_covered) 721 break; 722 } 723 up_read(&namespace_sem); 724 out: 725 return is_covered; 726 } 727 728 static struct mountpoint *lookup_mountpoint(struct dentry *dentry) 729 { 730 struct hlist_head *chain = mp_hash(dentry); 731 struct mountpoint *mp; 732 733 hlist_for_each_entry(mp, chain, m_hash) { 734 if (mp->m_dentry == dentry) { 735 /* might be worth a WARN_ON() */ 736 if (d_unlinked(dentry)) 737 return ERR_PTR(-ENOENT); 738 mp->m_count++; 739 return mp; 740 } 741 } 742 return NULL; 743 } 744 745 static struct mountpoint *get_mountpoint(struct dentry *dentry) 746 { 747 struct mountpoint *mp, *new = NULL; 748 int ret; 749 750 if (d_mountpoint(dentry)) { 751 mountpoint: 752 read_seqlock_excl(&mount_lock); 753 mp = lookup_mountpoint(dentry); 754 read_sequnlock_excl(&mount_lock); 755 if (mp) 756 goto done; 757 } 758 759 if (!new) 760 new = kmalloc(sizeof(struct mountpoint), GFP_KERNEL); 761 if (!new) 762 return ERR_PTR(-ENOMEM); 763 764 765 /* Exactly one processes may set d_mounted */ 766 ret = d_set_mounted(dentry); 767 768 /* Someone else set d_mounted? */ 769 if (ret == -EBUSY) 770 goto mountpoint; 771 772 /* The dentry is not available as a mountpoint? */ 773 mp = ERR_PTR(ret); 774 if (ret) 775 goto done; 776 777 /* Add the new mountpoint to the hash table */ 778 read_seqlock_excl(&mount_lock); 779 new->m_dentry = dentry; 780 new->m_count = 1; 781 hlist_add_head(&new->m_hash, mp_hash(dentry)); 782 INIT_HLIST_HEAD(&new->m_list); 783 read_sequnlock_excl(&mount_lock); 784 785 mp = new; 786 new = NULL; 787 done: 788 kfree(new); 789 return mp; 790 } 791 792 static void put_mountpoint(struct mountpoint *mp) 793 { 794 if (!--mp->m_count) { 795 struct dentry *dentry = mp->m_dentry; 796 BUG_ON(!hlist_empty(&mp->m_list)); 797 spin_lock(&dentry->d_lock); 798 dentry->d_flags &= ~DCACHE_MOUNTED; 799 spin_unlock(&dentry->d_lock); 800 hlist_del(&mp->m_hash); 801 kfree(mp); 802 } 803 } 804 805 static inline int check_mnt(struct mount *mnt) 806 { 807 return mnt->mnt_ns == current->nsproxy->mnt_ns; 808 } 809 810 /* 811 * vfsmount lock must be held for write 812 */ 813 static void touch_mnt_namespace(struct mnt_namespace *ns) 814 { 815 if (ns) { 816 ns->event = ++event; 817 wake_up_interruptible(&ns->poll); 818 } 819 } 820 821 /* 822 * vfsmount lock must be held for write 823 */ 824 static void __touch_mnt_namespace(struct mnt_namespace *ns) 825 { 826 if (ns && ns->event != event) { 827 ns->event = event; 828 wake_up_interruptible(&ns->poll); 829 } 830 } 831 832 /* 833 * vfsmount lock must be held for write 834 */ 835 static void unhash_mnt(struct mount *mnt) 836 { 837 mnt->mnt_parent = mnt; 838 mnt->mnt_mountpoint = mnt->mnt.mnt_root; 839 list_del_init(&mnt->mnt_child); 840 hlist_del_init_rcu(&mnt->mnt_hash); 841 hlist_del_init(&mnt->mnt_mp_list); 842 put_mountpoint(mnt->mnt_mp); 843 mnt->mnt_mp = NULL; 844 } 845 846 /* 847 * vfsmount lock must be held for write 848 */ 849 static void detach_mnt(struct mount *mnt, struct path *old_path) 850 { 851 old_path->dentry = mnt->mnt_mountpoint; 852 old_path->mnt = &mnt->mnt_parent->mnt; 853 unhash_mnt(mnt); 854 } 855 856 /* 857 * vfsmount lock must be held for write 858 */ 859 static void umount_mnt(struct mount *mnt) 860 { 861 /* old mountpoint will be dropped when we can do that */ 862 mnt->mnt_ex_mountpoint = mnt->mnt_mountpoint; 863 unhash_mnt(mnt); 864 } 865 866 /* 867 * vfsmount lock must be held for write 868 */ 869 void mnt_set_mountpoint(struct mount *mnt, 870 struct mountpoint *mp, 871 struct mount *child_mnt) 872 { 873 mp->m_count++; 874 mnt_add_count(mnt, 1); /* essentially, that's mntget */ 875 child_mnt->mnt_mountpoint = dget(mp->m_dentry); 876 child_mnt->mnt_parent = mnt; 877 child_mnt->mnt_mp = mp; 878 hlist_add_head(&child_mnt->mnt_mp_list, &mp->m_list); 879 } 880 881 /* 882 * vfsmount lock must be held for write 883 */ 884 static void attach_mnt(struct mount *mnt, 885 struct mount *parent, 886 struct mountpoint *mp) 887 { 888 mnt_set_mountpoint(parent, mp, mnt); 889 hlist_add_head_rcu(&mnt->mnt_hash, m_hash(&parent->mnt, mp->m_dentry)); 890 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts); 891 } 892 893 static void attach_shadowed(struct mount *mnt, 894 struct mount *parent, 895 struct mount *shadows) 896 { 897 if (shadows) { 898 hlist_add_behind_rcu(&mnt->mnt_hash, &shadows->mnt_hash); 899 list_add(&mnt->mnt_child, &shadows->mnt_child); 900 } else { 901 hlist_add_head_rcu(&mnt->mnt_hash, 902 m_hash(&parent->mnt, mnt->mnt_mountpoint)); 903 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts); 904 } 905 } 906 907 /* 908 * vfsmount lock must be held for write 909 */ 910 static void commit_tree(struct mount *mnt, struct mount *shadows) 911 { 912 struct mount *parent = mnt->mnt_parent; 913 struct mount *m; 914 LIST_HEAD(head); 915 struct mnt_namespace *n = parent->mnt_ns; 916 917 BUG_ON(parent == mnt); 918 919 list_add_tail(&head, &mnt->mnt_list); 920 list_for_each_entry(m, &head, mnt_list) 921 m->mnt_ns = n; 922 923 list_splice(&head, n->list.prev); 924 925 n->mounts += n->pending_mounts; 926 n->pending_mounts = 0; 927 928 attach_shadowed(mnt, parent, shadows); 929 touch_mnt_namespace(n); 930 } 931 932 static struct mount *next_mnt(struct mount *p, struct mount *root) 933 { 934 struct list_head *next = p->mnt_mounts.next; 935 if (next == &p->mnt_mounts) { 936 while (1) { 937 if (p == root) 938 return NULL; 939 next = p->mnt_child.next; 940 if (next != &p->mnt_parent->mnt_mounts) 941 break; 942 p = p->mnt_parent; 943 } 944 } 945 return list_entry(next, struct mount, mnt_child); 946 } 947 948 static struct mount *skip_mnt_tree(struct mount *p) 949 { 950 struct list_head *prev = p->mnt_mounts.prev; 951 while (prev != &p->mnt_mounts) { 952 p = list_entry(prev, struct mount, mnt_child); 953 prev = p->mnt_mounts.prev; 954 } 955 return p; 956 } 957 958 struct vfsmount * 959 vfs_kern_mount(struct file_system_type *type, int flags, const char *name, void *data) 960 { 961 struct mount *mnt; 962 struct dentry *root; 963 964 if (!type) 965 return ERR_PTR(-ENODEV); 966 967 mnt = alloc_vfsmnt(name); 968 if (!mnt) 969 return ERR_PTR(-ENOMEM); 970 971 if (flags & MS_KERNMOUNT) 972 mnt->mnt.mnt_flags = MNT_INTERNAL; 973 974 root = mount_fs(type, flags, name, data); 975 if (IS_ERR(root)) { 976 mnt_free_id(mnt); 977 free_vfsmnt(mnt); 978 return ERR_CAST(root); 979 } 980 981 mnt->mnt.mnt_root = root; 982 mnt->mnt.mnt_sb = root->d_sb; 983 mnt->mnt_mountpoint = mnt->mnt.mnt_root; 984 mnt->mnt_parent = mnt; 985 lock_mount_hash(); 986 list_add_tail(&mnt->mnt_instance, &root->d_sb->s_mounts); 987 unlock_mount_hash(); 988 return &mnt->mnt; 989 } 990 EXPORT_SYMBOL_GPL(vfs_kern_mount); 991 992 static struct mount *clone_mnt(struct mount *old, struct dentry *root, 993 int flag) 994 { 995 struct super_block *sb = old->mnt.mnt_sb; 996 struct mount *mnt; 997 int err; 998 999 mnt = alloc_vfsmnt(old->mnt_devname); 1000 if (!mnt) 1001 return ERR_PTR(-ENOMEM); 1002 1003 if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE)) 1004 mnt->mnt_group_id = 0; /* not a peer of original */ 1005 else 1006 mnt->mnt_group_id = old->mnt_group_id; 1007 1008 if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) { 1009 err = mnt_alloc_group_id(mnt); 1010 if (err) 1011 goto out_free; 1012 } 1013 1014 mnt->mnt.mnt_flags = old->mnt.mnt_flags & ~(MNT_WRITE_HOLD|MNT_MARKED); 1015 /* Don't allow unprivileged users to change mount flags */ 1016 if (flag & CL_UNPRIVILEGED) { 1017 mnt->mnt.mnt_flags |= MNT_LOCK_ATIME; 1018 1019 if (mnt->mnt.mnt_flags & MNT_READONLY) 1020 mnt->mnt.mnt_flags |= MNT_LOCK_READONLY; 1021 1022 if (mnt->mnt.mnt_flags & MNT_NODEV) 1023 mnt->mnt.mnt_flags |= MNT_LOCK_NODEV; 1024 1025 if (mnt->mnt.mnt_flags & MNT_NOSUID) 1026 mnt->mnt.mnt_flags |= MNT_LOCK_NOSUID; 1027 1028 if (mnt->mnt.mnt_flags & MNT_NOEXEC) 1029 mnt->mnt.mnt_flags |= MNT_LOCK_NOEXEC; 1030 } 1031 1032 /* Don't allow unprivileged users to reveal what is under a mount */ 1033 if ((flag & CL_UNPRIVILEGED) && 1034 (!(flag & CL_EXPIRE) || list_empty(&old->mnt_expire))) 1035 mnt->mnt.mnt_flags |= MNT_LOCKED; 1036 1037 atomic_inc(&sb->s_active); 1038 mnt->mnt.mnt_sb = sb; 1039 mnt->mnt.mnt_root = dget(root); 1040 mnt->mnt_mountpoint = mnt->mnt.mnt_root; 1041 mnt->mnt_parent = mnt; 1042 lock_mount_hash(); 1043 list_add_tail(&mnt->mnt_instance, &sb->s_mounts); 1044 unlock_mount_hash(); 1045 1046 if ((flag & CL_SLAVE) || 1047 ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) { 1048 list_add(&mnt->mnt_slave, &old->mnt_slave_list); 1049 mnt->mnt_master = old; 1050 CLEAR_MNT_SHARED(mnt); 1051 } else if (!(flag & CL_PRIVATE)) { 1052 if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old)) 1053 list_add(&mnt->mnt_share, &old->mnt_share); 1054 if (IS_MNT_SLAVE(old)) 1055 list_add(&mnt->mnt_slave, &old->mnt_slave); 1056 mnt->mnt_master = old->mnt_master; 1057 } else { 1058 CLEAR_MNT_SHARED(mnt); 1059 } 1060 if (flag & CL_MAKE_SHARED) 1061 set_mnt_shared(mnt); 1062 1063 /* stick the duplicate mount on the same expiry list 1064 * as the original if that was on one */ 1065 if (flag & CL_EXPIRE) { 1066 if (!list_empty(&old->mnt_expire)) 1067 list_add(&mnt->mnt_expire, &old->mnt_expire); 1068 } 1069 1070 return mnt; 1071 1072 out_free: 1073 mnt_free_id(mnt); 1074 free_vfsmnt(mnt); 1075 return ERR_PTR(err); 1076 } 1077 1078 static void cleanup_mnt(struct mount *mnt) 1079 { 1080 /* 1081 * This probably indicates that somebody messed 1082 * up a mnt_want/drop_write() pair. If this 1083 * happens, the filesystem was probably unable 1084 * to make r/w->r/o transitions. 1085 */ 1086 /* 1087 * The locking used to deal with mnt_count decrement provides barriers, 1088 * so mnt_get_writers() below is safe. 1089 */ 1090 WARN_ON(mnt_get_writers(mnt)); 1091 if (unlikely(mnt->mnt_pins.first)) 1092 mnt_pin_kill(mnt); 1093 fsnotify_vfsmount_delete(&mnt->mnt); 1094 dput(mnt->mnt.mnt_root); 1095 deactivate_super(mnt->mnt.mnt_sb); 1096 mnt_free_id(mnt); 1097 call_rcu(&mnt->mnt_rcu, delayed_free_vfsmnt); 1098 } 1099 1100 static void __cleanup_mnt(struct rcu_head *head) 1101 { 1102 cleanup_mnt(container_of(head, struct mount, mnt_rcu)); 1103 } 1104 1105 static LLIST_HEAD(delayed_mntput_list); 1106 static void delayed_mntput(struct work_struct *unused) 1107 { 1108 struct llist_node *node = llist_del_all(&delayed_mntput_list); 1109 struct llist_node *next; 1110 1111 for (; node; node = next) { 1112 next = llist_next(node); 1113 cleanup_mnt(llist_entry(node, struct mount, mnt_llist)); 1114 } 1115 } 1116 static DECLARE_DELAYED_WORK(delayed_mntput_work, delayed_mntput); 1117 1118 static void mntput_no_expire(struct mount *mnt) 1119 { 1120 rcu_read_lock(); 1121 mnt_add_count(mnt, -1); 1122 if (likely(mnt->mnt_ns)) { /* shouldn't be the last one */ 1123 rcu_read_unlock(); 1124 return; 1125 } 1126 lock_mount_hash(); 1127 if (mnt_get_count(mnt)) { 1128 rcu_read_unlock(); 1129 unlock_mount_hash(); 1130 return; 1131 } 1132 if (unlikely(mnt->mnt.mnt_flags & MNT_DOOMED)) { 1133 rcu_read_unlock(); 1134 unlock_mount_hash(); 1135 return; 1136 } 1137 mnt->mnt.mnt_flags |= MNT_DOOMED; 1138 rcu_read_unlock(); 1139 1140 list_del(&mnt->mnt_instance); 1141 1142 if (unlikely(!list_empty(&mnt->mnt_mounts))) { 1143 struct mount *p, *tmp; 1144 list_for_each_entry_safe(p, tmp, &mnt->mnt_mounts, mnt_child) { 1145 umount_mnt(p); 1146 } 1147 } 1148 unlock_mount_hash(); 1149 1150 if (likely(!(mnt->mnt.mnt_flags & MNT_INTERNAL))) { 1151 struct task_struct *task = current; 1152 if (likely(!(task->flags & PF_KTHREAD))) { 1153 init_task_work(&mnt->mnt_rcu, __cleanup_mnt); 1154 if (!task_work_add(task, &mnt->mnt_rcu, true)) 1155 return; 1156 } 1157 if (llist_add(&mnt->mnt_llist, &delayed_mntput_list)) 1158 schedule_delayed_work(&delayed_mntput_work, 1); 1159 return; 1160 } 1161 cleanup_mnt(mnt); 1162 } 1163 1164 void mntput(struct vfsmount *mnt) 1165 { 1166 if (mnt) { 1167 struct mount *m = real_mount(mnt); 1168 /* avoid cacheline pingpong, hope gcc doesn't get "smart" */ 1169 if (unlikely(m->mnt_expiry_mark)) 1170 m->mnt_expiry_mark = 0; 1171 mntput_no_expire(m); 1172 } 1173 } 1174 EXPORT_SYMBOL(mntput); 1175 1176 struct vfsmount *mntget(struct vfsmount *mnt) 1177 { 1178 if (mnt) 1179 mnt_add_count(real_mount(mnt), 1); 1180 return mnt; 1181 } 1182 EXPORT_SYMBOL(mntget); 1183 1184 /* path_is_mountpoint() - Check if path is a mount in the current 1185 * namespace. 1186 * 1187 * d_mountpoint() can only be used reliably to establish if a dentry is 1188 * not mounted in any namespace and that common case is handled inline. 1189 * d_mountpoint() isn't aware of the possibility there may be multiple 1190 * mounts using a given dentry in a different namespace. This function 1191 * checks if the passed in path is a mountpoint rather than the dentry 1192 * alone. 1193 */ 1194 bool path_is_mountpoint(const struct path *path) 1195 { 1196 unsigned seq; 1197 bool res; 1198 1199 if (!d_mountpoint(path->dentry)) 1200 return false; 1201 1202 rcu_read_lock(); 1203 do { 1204 seq = read_seqbegin(&mount_lock); 1205 res = __path_is_mountpoint(path); 1206 } while (read_seqretry(&mount_lock, seq)); 1207 rcu_read_unlock(); 1208 1209 return res; 1210 } 1211 EXPORT_SYMBOL(path_is_mountpoint); 1212 1213 struct vfsmount *mnt_clone_internal(const struct path *path) 1214 { 1215 struct mount *p; 1216 p = clone_mnt(real_mount(path->mnt), path->dentry, CL_PRIVATE); 1217 if (IS_ERR(p)) 1218 return ERR_CAST(p); 1219 p->mnt.mnt_flags |= MNT_INTERNAL; 1220 return &p->mnt; 1221 } 1222 1223 static inline void mangle(struct seq_file *m, const char *s) 1224 { 1225 seq_escape(m, s, " \t\n\\"); 1226 } 1227 1228 /* 1229 * Simple .show_options callback for filesystems which don't want to 1230 * implement more complex mount option showing. 1231 * 1232 * See also save_mount_options(). 1233 */ 1234 int generic_show_options(struct seq_file *m, struct dentry *root) 1235 { 1236 const char *options; 1237 1238 rcu_read_lock(); 1239 options = rcu_dereference(root->d_sb->s_options); 1240 1241 if (options != NULL && options[0]) { 1242 seq_putc(m, ','); 1243 mangle(m, options); 1244 } 1245 rcu_read_unlock(); 1246 1247 return 0; 1248 } 1249 EXPORT_SYMBOL(generic_show_options); 1250 1251 /* 1252 * If filesystem uses generic_show_options(), this function should be 1253 * called from the fill_super() callback. 1254 * 1255 * The .remount_fs callback usually needs to be handled in a special 1256 * way, to make sure, that previous options are not overwritten if the 1257 * remount fails. 1258 * 1259 * Also note, that if the filesystem's .remount_fs function doesn't 1260 * reset all options to their default value, but changes only newly 1261 * given options, then the displayed options will not reflect reality 1262 * any more. 1263 */ 1264 void save_mount_options(struct super_block *sb, char *options) 1265 { 1266 BUG_ON(sb->s_options); 1267 rcu_assign_pointer(sb->s_options, kstrdup(options, GFP_KERNEL)); 1268 } 1269 EXPORT_SYMBOL(save_mount_options); 1270 1271 void replace_mount_options(struct super_block *sb, char *options) 1272 { 1273 char *old = sb->s_options; 1274 rcu_assign_pointer(sb->s_options, options); 1275 if (old) { 1276 synchronize_rcu(); 1277 kfree(old); 1278 } 1279 } 1280 EXPORT_SYMBOL(replace_mount_options); 1281 1282 #ifdef CONFIG_PROC_FS 1283 /* iterator; we want it to have access to namespace_sem, thus here... */ 1284 static void *m_start(struct seq_file *m, loff_t *pos) 1285 { 1286 struct proc_mounts *p = m->private; 1287 1288 down_read(&namespace_sem); 1289 if (p->cached_event == p->ns->event) { 1290 void *v = p->cached_mount; 1291 if (*pos == p->cached_index) 1292 return v; 1293 if (*pos == p->cached_index + 1) { 1294 v = seq_list_next(v, &p->ns->list, &p->cached_index); 1295 return p->cached_mount = v; 1296 } 1297 } 1298 1299 p->cached_event = p->ns->event; 1300 p->cached_mount = seq_list_start(&p->ns->list, *pos); 1301 p->cached_index = *pos; 1302 return p->cached_mount; 1303 } 1304 1305 static void *m_next(struct seq_file *m, void *v, loff_t *pos) 1306 { 1307 struct proc_mounts *p = m->private; 1308 1309 p->cached_mount = seq_list_next(v, &p->ns->list, pos); 1310 p->cached_index = *pos; 1311 return p->cached_mount; 1312 } 1313 1314 static void m_stop(struct seq_file *m, void *v) 1315 { 1316 up_read(&namespace_sem); 1317 } 1318 1319 static int m_show(struct seq_file *m, void *v) 1320 { 1321 struct proc_mounts *p = m->private; 1322 struct mount *r = list_entry(v, struct mount, mnt_list); 1323 return p->show(m, &r->mnt); 1324 } 1325 1326 const struct seq_operations mounts_op = { 1327 .start = m_start, 1328 .next = m_next, 1329 .stop = m_stop, 1330 .show = m_show, 1331 }; 1332 #endif /* CONFIG_PROC_FS */ 1333 1334 /** 1335 * may_umount_tree - check if a mount tree is busy 1336 * @mnt: root of mount tree 1337 * 1338 * This is called to check if a tree of mounts has any 1339 * open files, pwds, chroots or sub mounts that are 1340 * busy. 1341 */ 1342 int may_umount_tree(struct vfsmount *m) 1343 { 1344 struct mount *mnt = real_mount(m); 1345 int actual_refs = 0; 1346 int minimum_refs = 0; 1347 struct mount *p; 1348 BUG_ON(!m); 1349 1350 /* write lock needed for mnt_get_count */ 1351 lock_mount_hash(); 1352 for (p = mnt; p; p = next_mnt(p, mnt)) { 1353 actual_refs += mnt_get_count(p); 1354 minimum_refs += 2; 1355 } 1356 unlock_mount_hash(); 1357 1358 if (actual_refs > minimum_refs) 1359 return 0; 1360 1361 return 1; 1362 } 1363 1364 EXPORT_SYMBOL(may_umount_tree); 1365 1366 /** 1367 * may_umount - check if a mount point is busy 1368 * @mnt: root of mount 1369 * 1370 * This is called to check if a mount point has any 1371 * open files, pwds, chroots or sub mounts. If the 1372 * mount has sub mounts this will return busy 1373 * regardless of whether the sub mounts are busy. 1374 * 1375 * Doesn't take quota and stuff into account. IOW, in some cases it will 1376 * give false negatives. The main reason why it's here is that we need 1377 * a non-destructive way to look for easily umountable filesystems. 1378 */ 1379 int may_umount(struct vfsmount *mnt) 1380 { 1381 int ret = 1; 1382 down_read(&namespace_sem); 1383 lock_mount_hash(); 1384 if (propagate_mount_busy(real_mount(mnt), 2)) 1385 ret = 0; 1386 unlock_mount_hash(); 1387 up_read(&namespace_sem); 1388 return ret; 1389 } 1390 1391 EXPORT_SYMBOL(may_umount); 1392 1393 static HLIST_HEAD(unmounted); /* protected by namespace_sem */ 1394 1395 static void namespace_unlock(void) 1396 { 1397 struct hlist_head head; 1398 1399 hlist_move_list(&unmounted, &head); 1400 1401 up_write(&namespace_sem); 1402 1403 if (likely(hlist_empty(&head))) 1404 return; 1405 1406 synchronize_rcu(); 1407 1408 group_pin_kill(&head); 1409 } 1410 1411 static inline void namespace_lock(void) 1412 { 1413 down_write(&namespace_sem); 1414 } 1415 1416 enum umount_tree_flags { 1417 UMOUNT_SYNC = 1, 1418 UMOUNT_PROPAGATE = 2, 1419 UMOUNT_CONNECTED = 4, 1420 }; 1421 1422 static bool disconnect_mount(struct mount *mnt, enum umount_tree_flags how) 1423 { 1424 /* Leaving mounts connected is only valid for lazy umounts */ 1425 if (how & UMOUNT_SYNC) 1426 return true; 1427 1428 /* A mount without a parent has nothing to be connected to */ 1429 if (!mnt_has_parent(mnt)) 1430 return true; 1431 1432 /* Because the reference counting rules change when mounts are 1433 * unmounted and connected, umounted mounts may not be 1434 * connected to mounted mounts. 1435 */ 1436 if (!(mnt->mnt_parent->mnt.mnt_flags & MNT_UMOUNT)) 1437 return true; 1438 1439 /* Has it been requested that the mount remain connected? */ 1440 if (how & UMOUNT_CONNECTED) 1441 return false; 1442 1443 /* Is the mount locked such that it needs to remain connected? */ 1444 if (IS_MNT_LOCKED(mnt)) 1445 return false; 1446 1447 /* By default disconnect the mount */ 1448 return true; 1449 } 1450 1451 /* 1452 * mount_lock must be held 1453 * namespace_sem must be held for write 1454 */ 1455 static void umount_tree(struct mount *mnt, enum umount_tree_flags how) 1456 { 1457 LIST_HEAD(tmp_list); 1458 struct mount *p; 1459 1460 if (how & UMOUNT_PROPAGATE) 1461 propagate_mount_unlock(mnt); 1462 1463 /* Gather the mounts to umount */ 1464 for (p = mnt; p; p = next_mnt(p, mnt)) { 1465 p->mnt.mnt_flags |= MNT_UMOUNT; 1466 list_move(&p->mnt_list, &tmp_list); 1467 } 1468 1469 /* Hide the mounts from mnt_mounts */ 1470 list_for_each_entry(p, &tmp_list, mnt_list) { 1471 list_del_init(&p->mnt_child); 1472 } 1473 1474 /* Add propogated mounts to the tmp_list */ 1475 if (how & UMOUNT_PROPAGATE) 1476 propagate_umount(&tmp_list); 1477 1478 while (!list_empty(&tmp_list)) { 1479 struct mnt_namespace *ns; 1480 bool disconnect; 1481 p = list_first_entry(&tmp_list, struct mount, mnt_list); 1482 list_del_init(&p->mnt_expire); 1483 list_del_init(&p->mnt_list); 1484 ns = p->mnt_ns; 1485 if (ns) { 1486 ns->mounts--; 1487 __touch_mnt_namespace(ns); 1488 } 1489 p->mnt_ns = NULL; 1490 if (how & UMOUNT_SYNC) 1491 p->mnt.mnt_flags |= MNT_SYNC_UMOUNT; 1492 1493 disconnect = disconnect_mount(p, how); 1494 1495 pin_insert_group(&p->mnt_umount, &p->mnt_parent->mnt, 1496 disconnect ? &unmounted : NULL); 1497 if (mnt_has_parent(p)) { 1498 mnt_add_count(p->mnt_parent, -1); 1499 if (!disconnect) { 1500 /* Don't forget about p */ 1501 list_add_tail(&p->mnt_child, &p->mnt_parent->mnt_mounts); 1502 } else { 1503 umount_mnt(p); 1504 } 1505 } 1506 change_mnt_propagation(p, MS_PRIVATE); 1507 } 1508 } 1509 1510 static void shrink_submounts(struct mount *mnt); 1511 1512 static int do_umount(struct mount *mnt, int flags) 1513 { 1514 struct super_block *sb = mnt->mnt.mnt_sb; 1515 int retval; 1516 1517 retval = security_sb_umount(&mnt->mnt, flags); 1518 if (retval) 1519 return retval; 1520 1521 /* 1522 * Allow userspace to request a mountpoint be expired rather than 1523 * unmounting unconditionally. Unmount only happens if: 1524 * (1) the mark is already set (the mark is cleared by mntput()) 1525 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount] 1526 */ 1527 if (flags & MNT_EXPIRE) { 1528 if (&mnt->mnt == current->fs->root.mnt || 1529 flags & (MNT_FORCE | MNT_DETACH)) 1530 return -EINVAL; 1531 1532 /* 1533 * probably don't strictly need the lock here if we examined 1534 * all race cases, but it's a slowpath. 1535 */ 1536 lock_mount_hash(); 1537 if (mnt_get_count(mnt) != 2) { 1538 unlock_mount_hash(); 1539 return -EBUSY; 1540 } 1541 unlock_mount_hash(); 1542 1543 if (!xchg(&mnt->mnt_expiry_mark, 1)) 1544 return -EAGAIN; 1545 } 1546 1547 /* 1548 * If we may have to abort operations to get out of this 1549 * mount, and they will themselves hold resources we must 1550 * allow the fs to do things. In the Unix tradition of 1551 * 'Gee thats tricky lets do it in userspace' the umount_begin 1552 * might fail to complete on the first run through as other tasks 1553 * must return, and the like. Thats for the mount program to worry 1554 * about for the moment. 1555 */ 1556 1557 if (flags & MNT_FORCE && sb->s_op->umount_begin) { 1558 sb->s_op->umount_begin(sb); 1559 } 1560 1561 /* 1562 * No sense to grab the lock for this test, but test itself looks 1563 * somewhat bogus. Suggestions for better replacement? 1564 * Ho-hum... In principle, we might treat that as umount + switch 1565 * to rootfs. GC would eventually take care of the old vfsmount. 1566 * Actually it makes sense, especially if rootfs would contain a 1567 * /reboot - static binary that would close all descriptors and 1568 * call reboot(9). Then init(8) could umount root and exec /reboot. 1569 */ 1570 if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) { 1571 /* 1572 * Special case for "unmounting" root ... 1573 * we just try to remount it readonly. 1574 */ 1575 if (!capable(CAP_SYS_ADMIN)) 1576 return -EPERM; 1577 down_write(&sb->s_umount); 1578 if (!(sb->s_flags & MS_RDONLY)) 1579 retval = do_remount_sb(sb, MS_RDONLY, NULL, 0); 1580 up_write(&sb->s_umount); 1581 return retval; 1582 } 1583 1584 namespace_lock(); 1585 lock_mount_hash(); 1586 event++; 1587 1588 if (flags & MNT_DETACH) { 1589 if (!list_empty(&mnt->mnt_list)) 1590 umount_tree(mnt, UMOUNT_PROPAGATE); 1591 retval = 0; 1592 } else { 1593 shrink_submounts(mnt); 1594 retval = -EBUSY; 1595 if (!propagate_mount_busy(mnt, 2)) { 1596 if (!list_empty(&mnt->mnt_list)) 1597 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC); 1598 retval = 0; 1599 } 1600 } 1601 unlock_mount_hash(); 1602 namespace_unlock(); 1603 return retval; 1604 } 1605 1606 /* 1607 * __detach_mounts - lazily unmount all mounts on the specified dentry 1608 * 1609 * During unlink, rmdir, and d_drop it is possible to loose the path 1610 * to an existing mountpoint, and wind up leaking the mount. 1611 * detach_mounts allows lazily unmounting those mounts instead of 1612 * leaking them. 1613 * 1614 * The caller may hold dentry->d_inode->i_mutex. 1615 */ 1616 void __detach_mounts(struct dentry *dentry) 1617 { 1618 struct mountpoint *mp; 1619 struct mount *mnt; 1620 1621 namespace_lock(); 1622 lock_mount_hash(); 1623 mp = lookup_mountpoint(dentry); 1624 if (IS_ERR_OR_NULL(mp)) 1625 goto out_unlock; 1626 1627 event++; 1628 while (!hlist_empty(&mp->m_list)) { 1629 mnt = hlist_entry(mp->m_list.first, struct mount, mnt_mp_list); 1630 if (mnt->mnt.mnt_flags & MNT_UMOUNT) { 1631 hlist_add_head(&mnt->mnt_umount.s_list, &unmounted); 1632 umount_mnt(mnt); 1633 } 1634 else umount_tree(mnt, UMOUNT_CONNECTED); 1635 } 1636 put_mountpoint(mp); 1637 out_unlock: 1638 unlock_mount_hash(); 1639 namespace_unlock(); 1640 } 1641 1642 /* 1643 * Is the caller allowed to modify his namespace? 1644 */ 1645 static inline bool may_mount(void) 1646 { 1647 return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN); 1648 } 1649 1650 static inline bool may_mandlock(void) 1651 { 1652 #ifndef CONFIG_MANDATORY_FILE_LOCKING 1653 return false; 1654 #endif 1655 return capable(CAP_SYS_ADMIN); 1656 } 1657 1658 /* 1659 * Now umount can handle mount points as well as block devices. 1660 * This is important for filesystems which use unnamed block devices. 1661 * 1662 * We now support a flag for forced unmount like the other 'big iron' 1663 * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD 1664 */ 1665 1666 SYSCALL_DEFINE2(umount, char __user *, name, int, flags) 1667 { 1668 struct path path; 1669 struct mount *mnt; 1670 int retval; 1671 int lookup_flags = 0; 1672 1673 if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW)) 1674 return -EINVAL; 1675 1676 if (!may_mount()) 1677 return -EPERM; 1678 1679 if (!(flags & UMOUNT_NOFOLLOW)) 1680 lookup_flags |= LOOKUP_FOLLOW; 1681 1682 retval = user_path_mountpoint_at(AT_FDCWD, name, lookup_flags, &path); 1683 if (retval) 1684 goto out; 1685 mnt = real_mount(path.mnt); 1686 retval = -EINVAL; 1687 if (path.dentry != path.mnt->mnt_root) 1688 goto dput_and_out; 1689 if (!check_mnt(mnt)) 1690 goto dput_and_out; 1691 if (mnt->mnt.mnt_flags & MNT_LOCKED) 1692 goto dput_and_out; 1693 retval = -EPERM; 1694 if (flags & MNT_FORCE && !capable(CAP_SYS_ADMIN)) 1695 goto dput_and_out; 1696 1697 retval = do_umount(mnt, flags); 1698 dput_and_out: 1699 /* we mustn't call path_put() as that would clear mnt_expiry_mark */ 1700 dput(path.dentry); 1701 mntput_no_expire(mnt); 1702 out: 1703 return retval; 1704 } 1705 1706 #ifdef __ARCH_WANT_SYS_OLDUMOUNT 1707 1708 /* 1709 * The 2.0 compatible umount. No flags. 1710 */ 1711 SYSCALL_DEFINE1(oldumount, char __user *, name) 1712 { 1713 return sys_umount(name, 0); 1714 } 1715 1716 #endif 1717 1718 static bool is_mnt_ns_file(struct dentry *dentry) 1719 { 1720 /* Is this a proxy for a mount namespace? */ 1721 return dentry->d_op == &ns_dentry_operations && 1722 dentry->d_fsdata == &mntns_operations; 1723 } 1724 1725 struct mnt_namespace *to_mnt_ns(struct ns_common *ns) 1726 { 1727 return container_of(ns, struct mnt_namespace, ns); 1728 } 1729 1730 static bool mnt_ns_loop(struct dentry *dentry) 1731 { 1732 /* Could bind mounting the mount namespace inode cause a 1733 * mount namespace loop? 1734 */ 1735 struct mnt_namespace *mnt_ns; 1736 if (!is_mnt_ns_file(dentry)) 1737 return false; 1738 1739 mnt_ns = to_mnt_ns(get_proc_ns(dentry->d_inode)); 1740 return current->nsproxy->mnt_ns->seq >= mnt_ns->seq; 1741 } 1742 1743 struct mount *copy_tree(struct mount *mnt, struct dentry *dentry, 1744 int flag) 1745 { 1746 struct mount *res, *p, *q, *r, *parent; 1747 1748 if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(mnt)) 1749 return ERR_PTR(-EINVAL); 1750 1751 if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry)) 1752 return ERR_PTR(-EINVAL); 1753 1754 res = q = clone_mnt(mnt, dentry, flag); 1755 if (IS_ERR(q)) 1756 return q; 1757 1758 q->mnt_mountpoint = mnt->mnt_mountpoint; 1759 1760 p = mnt; 1761 list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) { 1762 struct mount *s; 1763 if (!is_subdir(r->mnt_mountpoint, dentry)) 1764 continue; 1765 1766 for (s = r; s; s = next_mnt(s, r)) { 1767 struct mount *t = NULL; 1768 if (!(flag & CL_COPY_UNBINDABLE) && 1769 IS_MNT_UNBINDABLE(s)) { 1770 s = skip_mnt_tree(s); 1771 continue; 1772 } 1773 if (!(flag & CL_COPY_MNT_NS_FILE) && 1774 is_mnt_ns_file(s->mnt.mnt_root)) { 1775 s = skip_mnt_tree(s); 1776 continue; 1777 } 1778 while (p != s->mnt_parent) { 1779 p = p->mnt_parent; 1780 q = q->mnt_parent; 1781 } 1782 p = s; 1783 parent = q; 1784 q = clone_mnt(p, p->mnt.mnt_root, flag); 1785 if (IS_ERR(q)) 1786 goto out; 1787 lock_mount_hash(); 1788 list_add_tail(&q->mnt_list, &res->mnt_list); 1789 mnt_set_mountpoint(parent, p->mnt_mp, q); 1790 if (!list_empty(&parent->mnt_mounts)) { 1791 t = list_last_entry(&parent->mnt_mounts, 1792 struct mount, mnt_child); 1793 if (t->mnt_mp != p->mnt_mp) 1794 t = NULL; 1795 } 1796 attach_shadowed(q, parent, t); 1797 unlock_mount_hash(); 1798 } 1799 } 1800 return res; 1801 out: 1802 if (res) { 1803 lock_mount_hash(); 1804 umount_tree(res, UMOUNT_SYNC); 1805 unlock_mount_hash(); 1806 } 1807 return q; 1808 } 1809 1810 /* Caller should check returned pointer for errors */ 1811 1812 struct vfsmount *collect_mounts(const struct path *path) 1813 { 1814 struct mount *tree; 1815 namespace_lock(); 1816 if (!check_mnt(real_mount(path->mnt))) 1817 tree = ERR_PTR(-EINVAL); 1818 else 1819 tree = copy_tree(real_mount(path->mnt), path->dentry, 1820 CL_COPY_ALL | CL_PRIVATE); 1821 namespace_unlock(); 1822 if (IS_ERR(tree)) 1823 return ERR_CAST(tree); 1824 return &tree->mnt; 1825 } 1826 1827 void drop_collected_mounts(struct vfsmount *mnt) 1828 { 1829 namespace_lock(); 1830 lock_mount_hash(); 1831 umount_tree(real_mount(mnt), UMOUNT_SYNC); 1832 unlock_mount_hash(); 1833 namespace_unlock(); 1834 } 1835 1836 /** 1837 * clone_private_mount - create a private clone of a path 1838 * 1839 * This creates a new vfsmount, which will be the clone of @path. The new will 1840 * not be attached anywhere in the namespace and will be private (i.e. changes 1841 * to the originating mount won't be propagated into this). 1842 * 1843 * Release with mntput(). 1844 */ 1845 struct vfsmount *clone_private_mount(const struct path *path) 1846 { 1847 struct mount *old_mnt = real_mount(path->mnt); 1848 struct mount *new_mnt; 1849 1850 if (IS_MNT_UNBINDABLE(old_mnt)) 1851 return ERR_PTR(-EINVAL); 1852 1853 new_mnt = clone_mnt(old_mnt, path->dentry, CL_PRIVATE); 1854 if (IS_ERR(new_mnt)) 1855 return ERR_CAST(new_mnt); 1856 1857 return &new_mnt->mnt; 1858 } 1859 EXPORT_SYMBOL_GPL(clone_private_mount); 1860 1861 int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg, 1862 struct vfsmount *root) 1863 { 1864 struct mount *mnt; 1865 int res = f(root, arg); 1866 if (res) 1867 return res; 1868 list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) { 1869 res = f(&mnt->mnt, arg); 1870 if (res) 1871 return res; 1872 } 1873 return 0; 1874 } 1875 1876 static void cleanup_group_ids(struct mount *mnt, struct mount *end) 1877 { 1878 struct mount *p; 1879 1880 for (p = mnt; p != end; p = next_mnt(p, mnt)) { 1881 if (p->mnt_group_id && !IS_MNT_SHARED(p)) 1882 mnt_release_group_id(p); 1883 } 1884 } 1885 1886 static int invent_group_ids(struct mount *mnt, bool recurse) 1887 { 1888 struct mount *p; 1889 1890 for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) { 1891 if (!p->mnt_group_id && !IS_MNT_SHARED(p)) { 1892 int err = mnt_alloc_group_id(p); 1893 if (err) { 1894 cleanup_group_ids(mnt, p); 1895 return err; 1896 } 1897 } 1898 } 1899 1900 return 0; 1901 } 1902 1903 int count_mounts(struct mnt_namespace *ns, struct mount *mnt) 1904 { 1905 unsigned int max = READ_ONCE(sysctl_mount_max); 1906 unsigned int mounts = 0, old, pending, sum; 1907 struct mount *p; 1908 1909 for (p = mnt; p; p = next_mnt(p, mnt)) 1910 mounts++; 1911 1912 old = ns->mounts; 1913 pending = ns->pending_mounts; 1914 sum = old + pending; 1915 if ((old > sum) || 1916 (pending > sum) || 1917 (max < sum) || 1918 (mounts > (max - sum))) 1919 return -ENOSPC; 1920 1921 ns->pending_mounts = pending + mounts; 1922 return 0; 1923 } 1924 1925 /* 1926 * @source_mnt : mount tree to be attached 1927 * @nd : place the mount tree @source_mnt is attached 1928 * @parent_nd : if non-null, detach the source_mnt from its parent and 1929 * store the parent mount and mountpoint dentry. 1930 * (done when source_mnt is moved) 1931 * 1932 * NOTE: in the table below explains the semantics when a source mount 1933 * of a given type is attached to a destination mount of a given type. 1934 * --------------------------------------------------------------------------- 1935 * | BIND MOUNT OPERATION | 1936 * |************************************************************************** 1937 * | source-->| shared | private | slave | unbindable | 1938 * | dest | | | | | 1939 * | | | | | | | 1940 * | v | | | | | 1941 * |************************************************************************** 1942 * | shared | shared (++) | shared (+) | shared(+++)| invalid | 1943 * | | | | | | 1944 * |non-shared| shared (+) | private | slave (*) | invalid | 1945 * *************************************************************************** 1946 * A bind operation clones the source mount and mounts the clone on the 1947 * destination mount. 1948 * 1949 * (++) the cloned mount is propagated to all the mounts in the propagation 1950 * tree of the destination mount and the cloned mount is added to 1951 * the peer group of the source mount. 1952 * (+) the cloned mount is created under the destination mount and is marked 1953 * as shared. The cloned mount is added to the peer group of the source 1954 * mount. 1955 * (+++) the mount is propagated to all the mounts in the propagation tree 1956 * of the destination mount and the cloned mount is made slave 1957 * of the same master as that of the source mount. The cloned mount 1958 * is marked as 'shared and slave'. 1959 * (*) the cloned mount is made a slave of the same master as that of the 1960 * source mount. 1961 * 1962 * --------------------------------------------------------------------------- 1963 * | MOVE MOUNT OPERATION | 1964 * |************************************************************************** 1965 * | source-->| shared | private | slave | unbindable | 1966 * | dest | | | | | 1967 * | | | | | | | 1968 * | v | | | | | 1969 * |************************************************************************** 1970 * | shared | shared (+) | shared (+) | shared(+++) | invalid | 1971 * | | | | | | 1972 * |non-shared| shared (+*) | private | slave (*) | unbindable | 1973 * *************************************************************************** 1974 * 1975 * (+) the mount is moved to the destination. And is then propagated to 1976 * all the mounts in the propagation tree of the destination mount. 1977 * (+*) the mount is moved to the destination. 1978 * (+++) the mount is moved to the destination and is then propagated to 1979 * all the mounts belonging to the destination mount's propagation tree. 1980 * the mount is marked as 'shared and slave'. 1981 * (*) the mount continues to be a slave at the new location. 1982 * 1983 * if the source mount is a tree, the operations explained above is 1984 * applied to each mount in the tree. 1985 * Must be called without spinlocks held, since this function can sleep 1986 * in allocations. 1987 */ 1988 static int attach_recursive_mnt(struct mount *source_mnt, 1989 struct mount *dest_mnt, 1990 struct mountpoint *dest_mp, 1991 struct path *parent_path) 1992 { 1993 HLIST_HEAD(tree_list); 1994 struct mnt_namespace *ns = dest_mnt->mnt_ns; 1995 struct mount *child, *p; 1996 struct hlist_node *n; 1997 int err; 1998 1999 /* Is there space to add these mounts to the mount namespace? */ 2000 if (!parent_path) { 2001 err = count_mounts(ns, source_mnt); 2002 if (err) 2003 goto out; 2004 } 2005 2006 if (IS_MNT_SHARED(dest_mnt)) { 2007 err = invent_group_ids(source_mnt, true); 2008 if (err) 2009 goto out; 2010 err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list); 2011 lock_mount_hash(); 2012 if (err) 2013 goto out_cleanup_ids; 2014 for (p = source_mnt; p; p = next_mnt(p, source_mnt)) 2015 set_mnt_shared(p); 2016 } else { 2017 lock_mount_hash(); 2018 } 2019 if (parent_path) { 2020 detach_mnt(source_mnt, parent_path); 2021 attach_mnt(source_mnt, dest_mnt, dest_mp); 2022 touch_mnt_namespace(source_mnt->mnt_ns); 2023 } else { 2024 mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt); 2025 commit_tree(source_mnt, NULL); 2026 } 2027 2028 hlist_for_each_entry_safe(child, n, &tree_list, mnt_hash) { 2029 struct mount *q; 2030 hlist_del_init(&child->mnt_hash); 2031 q = __lookup_mnt_last(&child->mnt_parent->mnt, 2032 child->mnt_mountpoint); 2033 commit_tree(child, q); 2034 } 2035 unlock_mount_hash(); 2036 2037 return 0; 2038 2039 out_cleanup_ids: 2040 while (!hlist_empty(&tree_list)) { 2041 child = hlist_entry(tree_list.first, struct mount, mnt_hash); 2042 child->mnt_parent->mnt_ns->pending_mounts = 0; 2043 umount_tree(child, UMOUNT_SYNC); 2044 } 2045 unlock_mount_hash(); 2046 cleanup_group_ids(source_mnt, NULL); 2047 out: 2048 ns->pending_mounts = 0; 2049 return err; 2050 } 2051 2052 static struct mountpoint *lock_mount(struct path *path) 2053 { 2054 struct vfsmount *mnt; 2055 struct dentry *dentry = path->dentry; 2056 retry: 2057 inode_lock(dentry->d_inode); 2058 if (unlikely(cant_mount(dentry))) { 2059 inode_unlock(dentry->d_inode); 2060 return ERR_PTR(-ENOENT); 2061 } 2062 namespace_lock(); 2063 mnt = lookup_mnt(path); 2064 if (likely(!mnt)) { 2065 struct mountpoint *mp = get_mountpoint(dentry); 2066 if (IS_ERR(mp)) { 2067 namespace_unlock(); 2068 inode_unlock(dentry->d_inode); 2069 return mp; 2070 } 2071 return mp; 2072 } 2073 namespace_unlock(); 2074 inode_unlock(path->dentry->d_inode); 2075 path_put(path); 2076 path->mnt = mnt; 2077 dentry = path->dentry = dget(mnt->mnt_root); 2078 goto retry; 2079 } 2080 2081 static void unlock_mount(struct mountpoint *where) 2082 { 2083 struct dentry *dentry = where->m_dentry; 2084 2085 read_seqlock_excl(&mount_lock); 2086 put_mountpoint(where); 2087 read_sequnlock_excl(&mount_lock); 2088 2089 namespace_unlock(); 2090 inode_unlock(dentry->d_inode); 2091 } 2092 2093 static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp) 2094 { 2095 if (mnt->mnt.mnt_sb->s_flags & MS_NOUSER) 2096 return -EINVAL; 2097 2098 if (d_is_dir(mp->m_dentry) != 2099 d_is_dir(mnt->mnt.mnt_root)) 2100 return -ENOTDIR; 2101 2102 return attach_recursive_mnt(mnt, p, mp, NULL); 2103 } 2104 2105 /* 2106 * Sanity check the flags to change_mnt_propagation. 2107 */ 2108 2109 static int flags_to_propagation_type(int flags) 2110 { 2111 int type = flags & ~(MS_REC | MS_SILENT); 2112 2113 /* Fail if any non-propagation flags are set */ 2114 if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE)) 2115 return 0; 2116 /* Only one propagation flag should be set */ 2117 if (!is_power_of_2(type)) 2118 return 0; 2119 return type; 2120 } 2121 2122 /* 2123 * recursively change the type of the mountpoint. 2124 */ 2125 static int do_change_type(struct path *path, int flag) 2126 { 2127 struct mount *m; 2128 struct mount *mnt = real_mount(path->mnt); 2129 int recurse = flag & MS_REC; 2130 int type; 2131 int err = 0; 2132 2133 if (path->dentry != path->mnt->mnt_root) 2134 return -EINVAL; 2135 2136 type = flags_to_propagation_type(flag); 2137 if (!type) 2138 return -EINVAL; 2139 2140 namespace_lock(); 2141 if (type == MS_SHARED) { 2142 err = invent_group_ids(mnt, recurse); 2143 if (err) 2144 goto out_unlock; 2145 } 2146 2147 lock_mount_hash(); 2148 for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL)) 2149 change_mnt_propagation(m, type); 2150 unlock_mount_hash(); 2151 2152 out_unlock: 2153 namespace_unlock(); 2154 return err; 2155 } 2156 2157 static bool has_locked_children(struct mount *mnt, struct dentry *dentry) 2158 { 2159 struct mount *child; 2160 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) { 2161 if (!is_subdir(child->mnt_mountpoint, dentry)) 2162 continue; 2163 2164 if (child->mnt.mnt_flags & MNT_LOCKED) 2165 return true; 2166 } 2167 return false; 2168 } 2169 2170 /* 2171 * do loopback mount. 2172 */ 2173 static int do_loopback(struct path *path, const char *old_name, 2174 int recurse) 2175 { 2176 struct path old_path; 2177 struct mount *mnt = NULL, *old, *parent; 2178 struct mountpoint *mp; 2179 int err; 2180 if (!old_name || !*old_name) 2181 return -EINVAL; 2182 err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path); 2183 if (err) 2184 return err; 2185 2186 err = -EINVAL; 2187 if (mnt_ns_loop(old_path.dentry)) 2188 goto out; 2189 2190 mp = lock_mount(path); 2191 err = PTR_ERR(mp); 2192 if (IS_ERR(mp)) 2193 goto out; 2194 2195 old = real_mount(old_path.mnt); 2196 parent = real_mount(path->mnt); 2197 2198 err = -EINVAL; 2199 if (IS_MNT_UNBINDABLE(old)) 2200 goto out2; 2201 2202 if (!check_mnt(parent)) 2203 goto out2; 2204 2205 if (!check_mnt(old) && old_path.dentry->d_op != &ns_dentry_operations) 2206 goto out2; 2207 2208 if (!recurse && has_locked_children(old, old_path.dentry)) 2209 goto out2; 2210 2211 if (recurse) 2212 mnt = copy_tree(old, old_path.dentry, CL_COPY_MNT_NS_FILE); 2213 else 2214 mnt = clone_mnt(old, old_path.dentry, 0); 2215 2216 if (IS_ERR(mnt)) { 2217 err = PTR_ERR(mnt); 2218 goto out2; 2219 } 2220 2221 mnt->mnt.mnt_flags &= ~MNT_LOCKED; 2222 2223 err = graft_tree(mnt, parent, mp); 2224 if (err) { 2225 lock_mount_hash(); 2226 umount_tree(mnt, UMOUNT_SYNC); 2227 unlock_mount_hash(); 2228 } 2229 out2: 2230 unlock_mount(mp); 2231 out: 2232 path_put(&old_path); 2233 return err; 2234 } 2235 2236 static int change_mount_flags(struct vfsmount *mnt, int ms_flags) 2237 { 2238 int error = 0; 2239 int readonly_request = 0; 2240 2241 if (ms_flags & MS_RDONLY) 2242 readonly_request = 1; 2243 if (readonly_request == __mnt_is_readonly(mnt)) 2244 return 0; 2245 2246 if (readonly_request) 2247 error = mnt_make_readonly(real_mount(mnt)); 2248 else 2249 __mnt_unmake_readonly(real_mount(mnt)); 2250 return error; 2251 } 2252 2253 /* 2254 * change filesystem flags. dir should be a physical root of filesystem. 2255 * If you've mounted a non-root directory somewhere and want to do remount 2256 * on it - tough luck. 2257 */ 2258 static int do_remount(struct path *path, int flags, int mnt_flags, 2259 void *data) 2260 { 2261 int err; 2262 struct super_block *sb = path->mnt->mnt_sb; 2263 struct mount *mnt = real_mount(path->mnt); 2264 2265 if (!check_mnt(mnt)) 2266 return -EINVAL; 2267 2268 if (path->dentry != path->mnt->mnt_root) 2269 return -EINVAL; 2270 2271 /* Don't allow changing of locked mnt flags. 2272 * 2273 * No locks need to be held here while testing the various 2274 * MNT_LOCK flags because those flags can never be cleared 2275 * once they are set. 2276 */ 2277 if ((mnt->mnt.mnt_flags & MNT_LOCK_READONLY) && 2278 !(mnt_flags & MNT_READONLY)) { 2279 return -EPERM; 2280 } 2281 if ((mnt->mnt.mnt_flags & MNT_LOCK_NODEV) && 2282 !(mnt_flags & MNT_NODEV)) { 2283 return -EPERM; 2284 } 2285 if ((mnt->mnt.mnt_flags & MNT_LOCK_NOSUID) && 2286 !(mnt_flags & MNT_NOSUID)) { 2287 return -EPERM; 2288 } 2289 if ((mnt->mnt.mnt_flags & MNT_LOCK_NOEXEC) && 2290 !(mnt_flags & MNT_NOEXEC)) { 2291 return -EPERM; 2292 } 2293 if ((mnt->mnt.mnt_flags & MNT_LOCK_ATIME) && 2294 ((mnt->mnt.mnt_flags & MNT_ATIME_MASK) != (mnt_flags & MNT_ATIME_MASK))) { 2295 return -EPERM; 2296 } 2297 2298 err = security_sb_remount(sb, data); 2299 if (err) 2300 return err; 2301 2302 down_write(&sb->s_umount); 2303 if (flags & MS_BIND) 2304 err = change_mount_flags(path->mnt, flags); 2305 else if (!capable(CAP_SYS_ADMIN)) 2306 err = -EPERM; 2307 else 2308 err = do_remount_sb(sb, flags, data, 0); 2309 if (!err) { 2310 lock_mount_hash(); 2311 mnt_flags |= mnt->mnt.mnt_flags & ~MNT_USER_SETTABLE_MASK; 2312 mnt->mnt.mnt_flags = mnt_flags; 2313 touch_mnt_namespace(mnt->mnt_ns); 2314 unlock_mount_hash(); 2315 } 2316 up_write(&sb->s_umount); 2317 return err; 2318 } 2319 2320 static inline int tree_contains_unbindable(struct mount *mnt) 2321 { 2322 struct mount *p; 2323 for (p = mnt; p; p = next_mnt(p, mnt)) { 2324 if (IS_MNT_UNBINDABLE(p)) 2325 return 1; 2326 } 2327 return 0; 2328 } 2329 2330 static int do_move_mount(struct path *path, const char *old_name) 2331 { 2332 struct path old_path, parent_path; 2333 struct mount *p; 2334 struct mount *old; 2335 struct mountpoint *mp; 2336 int err; 2337 if (!old_name || !*old_name) 2338 return -EINVAL; 2339 err = kern_path(old_name, LOOKUP_FOLLOW, &old_path); 2340 if (err) 2341 return err; 2342 2343 mp = lock_mount(path); 2344 err = PTR_ERR(mp); 2345 if (IS_ERR(mp)) 2346 goto out; 2347 2348 old = real_mount(old_path.mnt); 2349 p = real_mount(path->mnt); 2350 2351 err = -EINVAL; 2352 if (!check_mnt(p) || !check_mnt(old)) 2353 goto out1; 2354 2355 if (old->mnt.mnt_flags & MNT_LOCKED) 2356 goto out1; 2357 2358 err = -EINVAL; 2359 if (old_path.dentry != old_path.mnt->mnt_root) 2360 goto out1; 2361 2362 if (!mnt_has_parent(old)) 2363 goto out1; 2364 2365 if (d_is_dir(path->dentry) != 2366 d_is_dir(old_path.dentry)) 2367 goto out1; 2368 /* 2369 * Don't move a mount residing in a shared parent. 2370 */ 2371 if (IS_MNT_SHARED(old->mnt_parent)) 2372 goto out1; 2373 /* 2374 * Don't move a mount tree containing unbindable mounts to a destination 2375 * mount which is shared. 2376 */ 2377 if (IS_MNT_SHARED(p) && tree_contains_unbindable(old)) 2378 goto out1; 2379 err = -ELOOP; 2380 for (; mnt_has_parent(p); p = p->mnt_parent) 2381 if (p == old) 2382 goto out1; 2383 2384 err = attach_recursive_mnt(old, real_mount(path->mnt), mp, &parent_path); 2385 if (err) 2386 goto out1; 2387 2388 /* if the mount is moved, it should no longer be expire 2389 * automatically */ 2390 list_del_init(&old->mnt_expire); 2391 out1: 2392 unlock_mount(mp); 2393 out: 2394 if (!err) 2395 path_put(&parent_path); 2396 path_put(&old_path); 2397 return err; 2398 } 2399 2400 static struct vfsmount *fs_set_subtype(struct vfsmount *mnt, const char *fstype) 2401 { 2402 int err; 2403 const char *subtype = strchr(fstype, '.'); 2404 if (subtype) { 2405 subtype++; 2406 err = -EINVAL; 2407 if (!subtype[0]) 2408 goto err; 2409 } else 2410 subtype = ""; 2411 2412 mnt->mnt_sb->s_subtype = kstrdup(subtype, GFP_KERNEL); 2413 err = -ENOMEM; 2414 if (!mnt->mnt_sb->s_subtype) 2415 goto err; 2416 return mnt; 2417 2418 err: 2419 mntput(mnt); 2420 return ERR_PTR(err); 2421 } 2422 2423 /* 2424 * add a mount into a namespace's mount tree 2425 */ 2426 static int do_add_mount(struct mount *newmnt, struct path *path, int mnt_flags) 2427 { 2428 struct mountpoint *mp; 2429 struct mount *parent; 2430 int err; 2431 2432 mnt_flags &= ~MNT_INTERNAL_FLAGS; 2433 2434 mp = lock_mount(path); 2435 if (IS_ERR(mp)) 2436 return PTR_ERR(mp); 2437 2438 parent = real_mount(path->mnt); 2439 err = -EINVAL; 2440 if (unlikely(!check_mnt(parent))) { 2441 /* that's acceptable only for automounts done in private ns */ 2442 if (!(mnt_flags & MNT_SHRINKABLE)) 2443 goto unlock; 2444 /* ... and for those we'd better have mountpoint still alive */ 2445 if (!parent->mnt_ns) 2446 goto unlock; 2447 } 2448 2449 /* Refuse the same filesystem on the same mount point */ 2450 err = -EBUSY; 2451 if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb && 2452 path->mnt->mnt_root == path->dentry) 2453 goto unlock; 2454 2455 err = -EINVAL; 2456 if (d_is_symlink(newmnt->mnt.mnt_root)) 2457 goto unlock; 2458 2459 newmnt->mnt.mnt_flags = mnt_flags; 2460 err = graft_tree(newmnt, parent, mp); 2461 2462 unlock: 2463 unlock_mount(mp); 2464 return err; 2465 } 2466 2467 static bool mount_too_revealing(struct vfsmount *mnt, int *new_mnt_flags); 2468 2469 /* 2470 * create a new mount for userspace and request it to be added into the 2471 * namespace's tree 2472 */ 2473 static int do_new_mount(struct path *path, const char *fstype, int flags, 2474 int mnt_flags, const char *name, void *data) 2475 { 2476 struct file_system_type *type; 2477 struct vfsmount *mnt; 2478 int err; 2479 2480 if (!fstype) 2481 return -EINVAL; 2482 2483 type = get_fs_type(fstype); 2484 if (!type) 2485 return -ENODEV; 2486 2487 mnt = vfs_kern_mount(type, flags, name, data); 2488 if (!IS_ERR(mnt) && (type->fs_flags & FS_HAS_SUBTYPE) && 2489 !mnt->mnt_sb->s_subtype) 2490 mnt = fs_set_subtype(mnt, fstype); 2491 2492 put_filesystem(type); 2493 if (IS_ERR(mnt)) 2494 return PTR_ERR(mnt); 2495 2496 if (mount_too_revealing(mnt, &mnt_flags)) { 2497 mntput(mnt); 2498 return -EPERM; 2499 } 2500 2501 err = do_add_mount(real_mount(mnt), path, mnt_flags); 2502 if (err) 2503 mntput(mnt); 2504 return err; 2505 } 2506 2507 int finish_automount(struct vfsmount *m, struct path *path) 2508 { 2509 struct mount *mnt = real_mount(m); 2510 int err; 2511 /* The new mount record should have at least 2 refs to prevent it being 2512 * expired before we get a chance to add it 2513 */ 2514 BUG_ON(mnt_get_count(mnt) < 2); 2515 2516 if (m->mnt_sb == path->mnt->mnt_sb && 2517 m->mnt_root == path->dentry) { 2518 err = -ELOOP; 2519 goto fail; 2520 } 2521 2522 err = do_add_mount(mnt, path, path->mnt->mnt_flags | MNT_SHRINKABLE); 2523 if (!err) 2524 return 0; 2525 fail: 2526 /* remove m from any expiration list it may be on */ 2527 if (!list_empty(&mnt->mnt_expire)) { 2528 namespace_lock(); 2529 list_del_init(&mnt->mnt_expire); 2530 namespace_unlock(); 2531 } 2532 mntput(m); 2533 mntput(m); 2534 return err; 2535 } 2536 2537 /** 2538 * mnt_set_expiry - Put a mount on an expiration list 2539 * @mnt: The mount to list. 2540 * @expiry_list: The list to add the mount to. 2541 */ 2542 void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list) 2543 { 2544 namespace_lock(); 2545 2546 list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list); 2547 2548 namespace_unlock(); 2549 } 2550 EXPORT_SYMBOL(mnt_set_expiry); 2551 2552 /* 2553 * process a list of expirable mountpoints with the intent of discarding any 2554 * mountpoints that aren't in use and haven't been touched since last we came 2555 * here 2556 */ 2557 void mark_mounts_for_expiry(struct list_head *mounts) 2558 { 2559 struct mount *mnt, *next; 2560 LIST_HEAD(graveyard); 2561 2562 if (list_empty(mounts)) 2563 return; 2564 2565 namespace_lock(); 2566 lock_mount_hash(); 2567 2568 /* extract from the expiration list every vfsmount that matches the 2569 * following criteria: 2570 * - only referenced by its parent vfsmount 2571 * - still marked for expiry (marked on the last call here; marks are 2572 * cleared by mntput()) 2573 */ 2574 list_for_each_entry_safe(mnt, next, mounts, mnt_expire) { 2575 if (!xchg(&mnt->mnt_expiry_mark, 1) || 2576 propagate_mount_busy(mnt, 1)) 2577 continue; 2578 list_move(&mnt->mnt_expire, &graveyard); 2579 } 2580 while (!list_empty(&graveyard)) { 2581 mnt = list_first_entry(&graveyard, struct mount, mnt_expire); 2582 touch_mnt_namespace(mnt->mnt_ns); 2583 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC); 2584 } 2585 unlock_mount_hash(); 2586 namespace_unlock(); 2587 } 2588 2589 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry); 2590 2591 /* 2592 * Ripoff of 'select_parent()' 2593 * 2594 * search the list of submounts for a given mountpoint, and move any 2595 * shrinkable submounts to the 'graveyard' list. 2596 */ 2597 static int select_submounts(struct mount *parent, struct list_head *graveyard) 2598 { 2599 struct mount *this_parent = parent; 2600 struct list_head *next; 2601 int found = 0; 2602 2603 repeat: 2604 next = this_parent->mnt_mounts.next; 2605 resume: 2606 while (next != &this_parent->mnt_mounts) { 2607 struct list_head *tmp = next; 2608 struct mount *mnt = list_entry(tmp, struct mount, mnt_child); 2609 2610 next = tmp->next; 2611 if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE)) 2612 continue; 2613 /* 2614 * Descend a level if the d_mounts list is non-empty. 2615 */ 2616 if (!list_empty(&mnt->mnt_mounts)) { 2617 this_parent = mnt; 2618 goto repeat; 2619 } 2620 2621 if (!propagate_mount_busy(mnt, 1)) { 2622 list_move_tail(&mnt->mnt_expire, graveyard); 2623 found++; 2624 } 2625 } 2626 /* 2627 * All done at this level ... ascend and resume the search 2628 */ 2629 if (this_parent != parent) { 2630 next = this_parent->mnt_child.next; 2631 this_parent = this_parent->mnt_parent; 2632 goto resume; 2633 } 2634 return found; 2635 } 2636 2637 /* 2638 * process a list of expirable mountpoints with the intent of discarding any 2639 * submounts of a specific parent mountpoint 2640 * 2641 * mount_lock must be held for write 2642 */ 2643 static void shrink_submounts(struct mount *mnt) 2644 { 2645 LIST_HEAD(graveyard); 2646 struct mount *m; 2647 2648 /* extract submounts of 'mountpoint' from the expiration list */ 2649 while (select_submounts(mnt, &graveyard)) { 2650 while (!list_empty(&graveyard)) { 2651 m = list_first_entry(&graveyard, struct mount, 2652 mnt_expire); 2653 touch_mnt_namespace(m->mnt_ns); 2654 umount_tree(m, UMOUNT_PROPAGATE|UMOUNT_SYNC); 2655 } 2656 } 2657 } 2658 2659 /* 2660 * Some copy_from_user() implementations do not return the exact number of 2661 * bytes remaining to copy on a fault. But copy_mount_options() requires that. 2662 * Note that this function differs from copy_from_user() in that it will oops 2663 * on bad values of `to', rather than returning a short copy. 2664 */ 2665 static long exact_copy_from_user(void *to, const void __user * from, 2666 unsigned long n) 2667 { 2668 char *t = to; 2669 const char __user *f = from; 2670 char c; 2671 2672 if (!access_ok(VERIFY_READ, from, n)) 2673 return n; 2674 2675 while (n) { 2676 if (__get_user(c, f)) { 2677 memset(t, 0, n); 2678 break; 2679 } 2680 *t++ = c; 2681 f++; 2682 n--; 2683 } 2684 return n; 2685 } 2686 2687 void *copy_mount_options(const void __user * data) 2688 { 2689 int i; 2690 unsigned long size; 2691 char *copy; 2692 2693 if (!data) 2694 return NULL; 2695 2696 copy = kmalloc(PAGE_SIZE, GFP_KERNEL); 2697 if (!copy) 2698 return ERR_PTR(-ENOMEM); 2699 2700 /* We only care that *some* data at the address the user 2701 * gave us is valid. Just in case, we'll zero 2702 * the remainder of the page. 2703 */ 2704 /* copy_from_user cannot cross TASK_SIZE ! */ 2705 size = TASK_SIZE - (unsigned long)data; 2706 if (size > PAGE_SIZE) 2707 size = PAGE_SIZE; 2708 2709 i = size - exact_copy_from_user(copy, data, size); 2710 if (!i) { 2711 kfree(copy); 2712 return ERR_PTR(-EFAULT); 2713 } 2714 if (i != PAGE_SIZE) 2715 memset(copy + i, 0, PAGE_SIZE - i); 2716 return copy; 2717 } 2718 2719 char *copy_mount_string(const void __user *data) 2720 { 2721 return data ? strndup_user(data, PAGE_SIZE) : NULL; 2722 } 2723 2724 /* 2725 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to 2726 * be given to the mount() call (ie: read-only, no-dev, no-suid etc). 2727 * 2728 * data is a (void *) that can point to any structure up to 2729 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent 2730 * information (or be NULL). 2731 * 2732 * Pre-0.97 versions of mount() didn't have a flags word. 2733 * When the flags word was introduced its top half was required 2734 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9. 2735 * Therefore, if this magic number is present, it carries no information 2736 * and must be discarded. 2737 */ 2738 long do_mount(const char *dev_name, const char __user *dir_name, 2739 const char *type_page, unsigned long flags, void *data_page) 2740 { 2741 struct path path; 2742 int retval = 0; 2743 int mnt_flags = 0; 2744 2745 /* Discard magic */ 2746 if ((flags & MS_MGC_MSK) == MS_MGC_VAL) 2747 flags &= ~MS_MGC_MSK; 2748 2749 /* Basic sanity checks */ 2750 if (data_page) 2751 ((char *)data_page)[PAGE_SIZE - 1] = 0; 2752 2753 /* ... and get the mountpoint */ 2754 retval = user_path(dir_name, &path); 2755 if (retval) 2756 return retval; 2757 2758 retval = security_sb_mount(dev_name, &path, 2759 type_page, flags, data_page); 2760 if (!retval && !may_mount()) 2761 retval = -EPERM; 2762 if (!retval && (flags & MS_MANDLOCK) && !may_mandlock()) 2763 retval = -EPERM; 2764 if (retval) 2765 goto dput_out; 2766 2767 /* Default to relatime unless overriden */ 2768 if (!(flags & MS_NOATIME)) 2769 mnt_flags |= MNT_RELATIME; 2770 2771 /* Separate the per-mountpoint flags */ 2772 if (flags & MS_NOSUID) 2773 mnt_flags |= MNT_NOSUID; 2774 if (flags & MS_NODEV) 2775 mnt_flags |= MNT_NODEV; 2776 if (flags & MS_NOEXEC) 2777 mnt_flags |= MNT_NOEXEC; 2778 if (flags & MS_NOATIME) 2779 mnt_flags |= MNT_NOATIME; 2780 if (flags & MS_NODIRATIME) 2781 mnt_flags |= MNT_NODIRATIME; 2782 if (flags & MS_STRICTATIME) 2783 mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME); 2784 if (flags & MS_RDONLY) 2785 mnt_flags |= MNT_READONLY; 2786 2787 /* The default atime for remount is preservation */ 2788 if ((flags & MS_REMOUNT) && 2789 ((flags & (MS_NOATIME | MS_NODIRATIME | MS_RELATIME | 2790 MS_STRICTATIME)) == 0)) { 2791 mnt_flags &= ~MNT_ATIME_MASK; 2792 mnt_flags |= path.mnt->mnt_flags & MNT_ATIME_MASK; 2793 } 2794 2795 flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE | MS_BORN | 2796 MS_NOATIME | MS_NODIRATIME | MS_RELATIME| MS_KERNMOUNT | 2797 MS_STRICTATIME | MS_NOREMOTELOCK); 2798 2799 if (flags & MS_REMOUNT) 2800 retval = do_remount(&path, flags & ~MS_REMOUNT, mnt_flags, 2801 data_page); 2802 else if (flags & MS_BIND) 2803 retval = do_loopback(&path, dev_name, flags & MS_REC); 2804 else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE)) 2805 retval = do_change_type(&path, flags); 2806 else if (flags & MS_MOVE) 2807 retval = do_move_mount(&path, dev_name); 2808 else 2809 retval = do_new_mount(&path, type_page, flags, mnt_flags, 2810 dev_name, data_page); 2811 dput_out: 2812 path_put(&path); 2813 return retval; 2814 } 2815 2816 static struct ucounts *inc_mnt_namespaces(struct user_namespace *ns) 2817 { 2818 return inc_ucount(ns, current_euid(), UCOUNT_MNT_NAMESPACES); 2819 } 2820 2821 static void dec_mnt_namespaces(struct ucounts *ucounts) 2822 { 2823 dec_ucount(ucounts, UCOUNT_MNT_NAMESPACES); 2824 } 2825 2826 static void free_mnt_ns(struct mnt_namespace *ns) 2827 { 2828 ns_free_inum(&ns->ns); 2829 dec_mnt_namespaces(ns->ucounts); 2830 put_user_ns(ns->user_ns); 2831 kfree(ns); 2832 } 2833 2834 /* 2835 * Assign a sequence number so we can detect when we attempt to bind 2836 * mount a reference to an older mount namespace into the current 2837 * mount namespace, preventing reference counting loops. A 64bit 2838 * number incrementing at 10Ghz will take 12,427 years to wrap which 2839 * is effectively never, so we can ignore the possibility. 2840 */ 2841 static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1); 2842 2843 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns) 2844 { 2845 struct mnt_namespace *new_ns; 2846 struct ucounts *ucounts; 2847 int ret; 2848 2849 ucounts = inc_mnt_namespaces(user_ns); 2850 if (!ucounts) 2851 return ERR_PTR(-ENOSPC); 2852 2853 new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL); 2854 if (!new_ns) { 2855 dec_mnt_namespaces(ucounts); 2856 return ERR_PTR(-ENOMEM); 2857 } 2858 ret = ns_alloc_inum(&new_ns->ns); 2859 if (ret) { 2860 kfree(new_ns); 2861 dec_mnt_namespaces(ucounts); 2862 return ERR_PTR(ret); 2863 } 2864 new_ns->ns.ops = &mntns_operations; 2865 new_ns->seq = atomic64_add_return(1, &mnt_ns_seq); 2866 atomic_set(&new_ns->count, 1); 2867 new_ns->root = NULL; 2868 INIT_LIST_HEAD(&new_ns->list); 2869 init_waitqueue_head(&new_ns->poll); 2870 new_ns->event = 0; 2871 new_ns->user_ns = get_user_ns(user_ns); 2872 new_ns->ucounts = ucounts; 2873 new_ns->mounts = 0; 2874 new_ns->pending_mounts = 0; 2875 return new_ns; 2876 } 2877 2878 __latent_entropy 2879 struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns, 2880 struct user_namespace *user_ns, struct fs_struct *new_fs) 2881 { 2882 struct mnt_namespace *new_ns; 2883 struct vfsmount *rootmnt = NULL, *pwdmnt = NULL; 2884 struct mount *p, *q; 2885 struct mount *old; 2886 struct mount *new; 2887 int copy_flags; 2888 2889 BUG_ON(!ns); 2890 2891 if (likely(!(flags & CLONE_NEWNS))) { 2892 get_mnt_ns(ns); 2893 return ns; 2894 } 2895 2896 old = ns->root; 2897 2898 new_ns = alloc_mnt_ns(user_ns); 2899 if (IS_ERR(new_ns)) 2900 return new_ns; 2901 2902 namespace_lock(); 2903 /* First pass: copy the tree topology */ 2904 copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE; 2905 if (user_ns != ns->user_ns) 2906 copy_flags |= CL_SHARED_TO_SLAVE | CL_UNPRIVILEGED; 2907 new = copy_tree(old, old->mnt.mnt_root, copy_flags); 2908 if (IS_ERR(new)) { 2909 namespace_unlock(); 2910 free_mnt_ns(new_ns); 2911 return ERR_CAST(new); 2912 } 2913 new_ns->root = new; 2914 list_add_tail(&new_ns->list, &new->mnt_list); 2915 2916 /* 2917 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts 2918 * as belonging to new namespace. We have already acquired a private 2919 * fs_struct, so tsk->fs->lock is not needed. 2920 */ 2921 p = old; 2922 q = new; 2923 while (p) { 2924 q->mnt_ns = new_ns; 2925 new_ns->mounts++; 2926 if (new_fs) { 2927 if (&p->mnt == new_fs->root.mnt) { 2928 new_fs->root.mnt = mntget(&q->mnt); 2929 rootmnt = &p->mnt; 2930 } 2931 if (&p->mnt == new_fs->pwd.mnt) { 2932 new_fs->pwd.mnt = mntget(&q->mnt); 2933 pwdmnt = &p->mnt; 2934 } 2935 } 2936 p = next_mnt(p, old); 2937 q = next_mnt(q, new); 2938 if (!q) 2939 break; 2940 while (p->mnt.mnt_root != q->mnt.mnt_root) 2941 p = next_mnt(p, old); 2942 } 2943 namespace_unlock(); 2944 2945 if (rootmnt) 2946 mntput(rootmnt); 2947 if (pwdmnt) 2948 mntput(pwdmnt); 2949 2950 return new_ns; 2951 } 2952 2953 /** 2954 * create_mnt_ns - creates a private namespace and adds a root filesystem 2955 * @mnt: pointer to the new root filesystem mountpoint 2956 */ 2957 static struct mnt_namespace *create_mnt_ns(struct vfsmount *m) 2958 { 2959 struct mnt_namespace *new_ns = alloc_mnt_ns(&init_user_ns); 2960 if (!IS_ERR(new_ns)) { 2961 struct mount *mnt = real_mount(m); 2962 mnt->mnt_ns = new_ns; 2963 new_ns->root = mnt; 2964 new_ns->mounts++; 2965 list_add(&mnt->mnt_list, &new_ns->list); 2966 } else { 2967 mntput(m); 2968 } 2969 return new_ns; 2970 } 2971 2972 struct dentry *mount_subtree(struct vfsmount *mnt, const char *name) 2973 { 2974 struct mnt_namespace *ns; 2975 struct super_block *s; 2976 struct path path; 2977 int err; 2978 2979 ns = create_mnt_ns(mnt); 2980 if (IS_ERR(ns)) 2981 return ERR_CAST(ns); 2982 2983 err = vfs_path_lookup(mnt->mnt_root, mnt, 2984 name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path); 2985 2986 put_mnt_ns(ns); 2987 2988 if (err) 2989 return ERR_PTR(err); 2990 2991 /* trade a vfsmount reference for active sb one */ 2992 s = path.mnt->mnt_sb; 2993 atomic_inc(&s->s_active); 2994 mntput(path.mnt); 2995 /* lock the sucker */ 2996 down_write(&s->s_umount); 2997 /* ... and return the root of (sub)tree on it */ 2998 return path.dentry; 2999 } 3000 EXPORT_SYMBOL(mount_subtree); 3001 3002 SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name, 3003 char __user *, type, unsigned long, flags, void __user *, data) 3004 { 3005 int ret; 3006 char *kernel_type; 3007 char *kernel_dev; 3008 void *options; 3009 3010 kernel_type = copy_mount_string(type); 3011 ret = PTR_ERR(kernel_type); 3012 if (IS_ERR(kernel_type)) 3013 goto out_type; 3014 3015 kernel_dev = copy_mount_string(dev_name); 3016 ret = PTR_ERR(kernel_dev); 3017 if (IS_ERR(kernel_dev)) 3018 goto out_dev; 3019 3020 options = copy_mount_options(data); 3021 ret = PTR_ERR(options); 3022 if (IS_ERR(options)) 3023 goto out_data; 3024 3025 ret = do_mount(kernel_dev, dir_name, kernel_type, flags, options); 3026 3027 kfree(options); 3028 out_data: 3029 kfree(kernel_dev); 3030 out_dev: 3031 kfree(kernel_type); 3032 out_type: 3033 return ret; 3034 } 3035 3036 /* 3037 * Return true if path is reachable from root 3038 * 3039 * namespace_sem or mount_lock is held 3040 */ 3041 bool is_path_reachable(struct mount *mnt, struct dentry *dentry, 3042 const struct path *root) 3043 { 3044 while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) { 3045 dentry = mnt->mnt_mountpoint; 3046 mnt = mnt->mnt_parent; 3047 } 3048 return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry); 3049 } 3050 3051 bool path_is_under(const struct path *path1, const struct path *path2) 3052 { 3053 bool res; 3054 read_seqlock_excl(&mount_lock); 3055 res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2); 3056 read_sequnlock_excl(&mount_lock); 3057 return res; 3058 } 3059 EXPORT_SYMBOL(path_is_under); 3060 3061 /* 3062 * pivot_root Semantics: 3063 * Moves the root file system of the current process to the directory put_old, 3064 * makes new_root as the new root file system of the current process, and sets 3065 * root/cwd of all processes which had them on the current root to new_root. 3066 * 3067 * Restrictions: 3068 * The new_root and put_old must be directories, and must not be on the 3069 * same file system as the current process root. The put_old must be 3070 * underneath new_root, i.e. adding a non-zero number of /.. to the string 3071 * pointed to by put_old must yield the same directory as new_root. No other 3072 * file system may be mounted on put_old. After all, new_root is a mountpoint. 3073 * 3074 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem. 3075 * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives 3076 * in this situation. 3077 * 3078 * Notes: 3079 * - we don't move root/cwd if they are not at the root (reason: if something 3080 * cared enough to change them, it's probably wrong to force them elsewhere) 3081 * - it's okay to pick a root that isn't the root of a file system, e.g. 3082 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint, 3083 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root 3084 * first. 3085 */ 3086 SYSCALL_DEFINE2(pivot_root, const char __user *, new_root, 3087 const char __user *, put_old) 3088 { 3089 struct path new, old, parent_path, root_parent, root; 3090 struct mount *new_mnt, *root_mnt, *old_mnt; 3091 struct mountpoint *old_mp, *root_mp; 3092 int error; 3093 3094 if (!may_mount()) 3095 return -EPERM; 3096 3097 error = user_path_dir(new_root, &new); 3098 if (error) 3099 goto out0; 3100 3101 error = user_path_dir(put_old, &old); 3102 if (error) 3103 goto out1; 3104 3105 error = security_sb_pivotroot(&old, &new); 3106 if (error) 3107 goto out2; 3108 3109 get_fs_root(current->fs, &root); 3110 old_mp = lock_mount(&old); 3111 error = PTR_ERR(old_mp); 3112 if (IS_ERR(old_mp)) 3113 goto out3; 3114 3115 error = -EINVAL; 3116 new_mnt = real_mount(new.mnt); 3117 root_mnt = real_mount(root.mnt); 3118 old_mnt = real_mount(old.mnt); 3119 if (IS_MNT_SHARED(old_mnt) || 3120 IS_MNT_SHARED(new_mnt->mnt_parent) || 3121 IS_MNT_SHARED(root_mnt->mnt_parent)) 3122 goto out4; 3123 if (!check_mnt(root_mnt) || !check_mnt(new_mnt)) 3124 goto out4; 3125 if (new_mnt->mnt.mnt_flags & MNT_LOCKED) 3126 goto out4; 3127 error = -ENOENT; 3128 if (d_unlinked(new.dentry)) 3129 goto out4; 3130 error = -EBUSY; 3131 if (new_mnt == root_mnt || old_mnt == root_mnt) 3132 goto out4; /* loop, on the same file system */ 3133 error = -EINVAL; 3134 if (root.mnt->mnt_root != root.dentry) 3135 goto out4; /* not a mountpoint */ 3136 if (!mnt_has_parent(root_mnt)) 3137 goto out4; /* not attached */ 3138 root_mp = root_mnt->mnt_mp; 3139 if (new.mnt->mnt_root != new.dentry) 3140 goto out4; /* not a mountpoint */ 3141 if (!mnt_has_parent(new_mnt)) 3142 goto out4; /* not attached */ 3143 /* make sure we can reach put_old from new_root */ 3144 if (!is_path_reachable(old_mnt, old.dentry, &new)) 3145 goto out4; 3146 /* make certain new is below the root */ 3147 if (!is_path_reachable(new_mnt, new.dentry, &root)) 3148 goto out4; 3149 root_mp->m_count++; /* pin it so it won't go away */ 3150 lock_mount_hash(); 3151 detach_mnt(new_mnt, &parent_path); 3152 detach_mnt(root_mnt, &root_parent); 3153 if (root_mnt->mnt.mnt_flags & MNT_LOCKED) { 3154 new_mnt->mnt.mnt_flags |= MNT_LOCKED; 3155 root_mnt->mnt.mnt_flags &= ~MNT_LOCKED; 3156 } 3157 /* mount old root on put_old */ 3158 attach_mnt(root_mnt, old_mnt, old_mp); 3159 /* mount new_root on / */ 3160 attach_mnt(new_mnt, real_mount(root_parent.mnt), root_mp); 3161 touch_mnt_namespace(current->nsproxy->mnt_ns); 3162 /* A moved mount should not expire automatically */ 3163 list_del_init(&new_mnt->mnt_expire); 3164 put_mountpoint(root_mp); 3165 unlock_mount_hash(); 3166 chroot_fs_refs(&root, &new); 3167 error = 0; 3168 out4: 3169 unlock_mount(old_mp); 3170 if (!error) { 3171 path_put(&root_parent); 3172 path_put(&parent_path); 3173 } 3174 out3: 3175 path_put(&root); 3176 out2: 3177 path_put(&old); 3178 out1: 3179 path_put(&new); 3180 out0: 3181 return error; 3182 } 3183 3184 static void __init init_mount_tree(void) 3185 { 3186 struct vfsmount *mnt; 3187 struct mnt_namespace *ns; 3188 struct path root; 3189 struct file_system_type *type; 3190 3191 type = get_fs_type("rootfs"); 3192 if (!type) 3193 panic("Can't find rootfs type"); 3194 mnt = vfs_kern_mount(type, 0, "rootfs", NULL); 3195 put_filesystem(type); 3196 if (IS_ERR(mnt)) 3197 panic("Can't create rootfs"); 3198 3199 ns = create_mnt_ns(mnt); 3200 if (IS_ERR(ns)) 3201 panic("Can't allocate initial namespace"); 3202 3203 init_task.nsproxy->mnt_ns = ns; 3204 get_mnt_ns(ns); 3205 3206 root.mnt = mnt; 3207 root.dentry = mnt->mnt_root; 3208 mnt->mnt_flags |= MNT_LOCKED; 3209 3210 set_fs_pwd(current->fs, &root); 3211 set_fs_root(current->fs, &root); 3212 } 3213 3214 void __init mnt_init(void) 3215 { 3216 unsigned u; 3217 int err; 3218 3219 mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount), 3220 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL); 3221 3222 mount_hashtable = alloc_large_system_hash("Mount-cache", 3223 sizeof(struct hlist_head), 3224 mhash_entries, 19, 3225 0, 3226 &m_hash_shift, &m_hash_mask, 0, 0); 3227 mountpoint_hashtable = alloc_large_system_hash("Mountpoint-cache", 3228 sizeof(struct hlist_head), 3229 mphash_entries, 19, 3230 0, 3231 &mp_hash_shift, &mp_hash_mask, 0, 0); 3232 3233 if (!mount_hashtable || !mountpoint_hashtable) 3234 panic("Failed to allocate mount hash table\n"); 3235 3236 for (u = 0; u <= m_hash_mask; u++) 3237 INIT_HLIST_HEAD(&mount_hashtable[u]); 3238 for (u = 0; u <= mp_hash_mask; u++) 3239 INIT_HLIST_HEAD(&mountpoint_hashtable[u]); 3240 3241 kernfs_init(); 3242 3243 err = sysfs_init(); 3244 if (err) 3245 printk(KERN_WARNING "%s: sysfs_init error: %d\n", 3246 __func__, err); 3247 fs_kobj = kobject_create_and_add("fs", NULL); 3248 if (!fs_kobj) 3249 printk(KERN_WARNING "%s: kobj create error\n", __func__); 3250 init_rootfs(); 3251 init_mount_tree(); 3252 } 3253 3254 void put_mnt_ns(struct mnt_namespace *ns) 3255 { 3256 if (!atomic_dec_and_test(&ns->count)) 3257 return; 3258 drop_collected_mounts(&ns->root->mnt); 3259 free_mnt_ns(ns); 3260 } 3261 3262 struct vfsmount *kern_mount_data(struct file_system_type *type, void *data) 3263 { 3264 struct vfsmount *mnt; 3265 mnt = vfs_kern_mount(type, MS_KERNMOUNT, type->name, data); 3266 if (!IS_ERR(mnt)) { 3267 /* 3268 * it is a longterm mount, don't release mnt until 3269 * we unmount before file sys is unregistered 3270 */ 3271 real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL; 3272 } 3273 return mnt; 3274 } 3275 EXPORT_SYMBOL_GPL(kern_mount_data); 3276 3277 void kern_unmount(struct vfsmount *mnt) 3278 { 3279 /* release long term mount so mount point can be released */ 3280 if (!IS_ERR_OR_NULL(mnt)) { 3281 real_mount(mnt)->mnt_ns = NULL; 3282 synchronize_rcu(); /* yecchhh... */ 3283 mntput(mnt); 3284 } 3285 } 3286 EXPORT_SYMBOL(kern_unmount); 3287 3288 bool our_mnt(struct vfsmount *mnt) 3289 { 3290 return check_mnt(real_mount(mnt)); 3291 } 3292 3293 bool current_chrooted(void) 3294 { 3295 /* Does the current process have a non-standard root */ 3296 struct path ns_root; 3297 struct path fs_root; 3298 bool chrooted; 3299 3300 /* Find the namespace root */ 3301 ns_root.mnt = ¤t->nsproxy->mnt_ns->root->mnt; 3302 ns_root.dentry = ns_root.mnt->mnt_root; 3303 path_get(&ns_root); 3304 while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root)) 3305 ; 3306 3307 get_fs_root(current->fs, &fs_root); 3308 3309 chrooted = !path_equal(&fs_root, &ns_root); 3310 3311 path_put(&fs_root); 3312 path_put(&ns_root); 3313 3314 return chrooted; 3315 } 3316 3317 static bool mnt_already_visible(struct mnt_namespace *ns, struct vfsmount *new, 3318 int *new_mnt_flags) 3319 { 3320 int new_flags = *new_mnt_flags; 3321 struct mount *mnt; 3322 bool visible = false; 3323 3324 down_read(&namespace_sem); 3325 list_for_each_entry(mnt, &ns->list, mnt_list) { 3326 struct mount *child; 3327 int mnt_flags; 3328 3329 if (mnt->mnt.mnt_sb->s_type != new->mnt_sb->s_type) 3330 continue; 3331 3332 /* This mount is not fully visible if it's root directory 3333 * is not the root directory of the filesystem. 3334 */ 3335 if (mnt->mnt.mnt_root != mnt->mnt.mnt_sb->s_root) 3336 continue; 3337 3338 /* A local view of the mount flags */ 3339 mnt_flags = mnt->mnt.mnt_flags; 3340 3341 /* Don't miss readonly hidden in the superblock flags */ 3342 if (mnt->mnt.mnt_sb->s_flags & MS_RDONLY) 3343 mnt_flags |= MNT_LOCK_READONLY; 3344 3345 /* Verify the mount flags are equal to or more permissive 3346 * than the proposed new mount. 3347 */ 3348 if ((mnt_flags & MNT_LOCK_READONLY) && 3349 !(new_flags & MNT_READONLY)) 3350 continue; 3351 if ((mnt_flags & MNT_LOCK_ATIME) && 3352 ((mnt_flags & MNT_ATIME_MASK) != (new_flags & MNT_ATIME_MASK))) 3353 continue; 3354 3355 /* This mount is not fully visible if there are any 3356 * locked child mounts that cover anything except for 3357 * empty directories. 3358 */ 3359 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) { 3360 struct inode *inode = child->mnt_mountpoint->d_inode; 3361 /* Only worry about locked mounts */ 3362 if (!(child->mnt.mnt_flags & MNT_LOCKED)) 3363 continue; 3364 /* Is the directory permanetly empty? */ 3365 if (!is_empty_dir_inode(inode)) 3366 goto next; 3367 } 3368 /* Preserve the locked attributes */ 3369 *new_mnt_flags |= mnt_flags & (MNT_LOCK_READONLY | \ 3370 MNT_LOCK_ATIME); 3371 visible = true; 3372 goto found; 3373 next: ; 3374 } 3375 found: 3376 up_read(&namespace_sem); 3377 return visible; 3378 } 3379 3380 static bool mount_too_revealing(struct vfsmount *mnt, int *new_mnt_flags) 3381 { 3382 const unsigned long required_iflags = SB_I_NOEXEC | SB_I_NODEV; 3383 struct mnt_namespace *ns = current->nsproxy->mnt_ns; 3384 unsigned long s_iflags; 3385 3386 if (ns->user_ns == &init_user_ns) 3387 return false; 3388 3389 /* Can this filesystem be too revealing? */ 3390 s_iflags = mnt->mnt_sb->s_iflags; 3391 if (!(s_iflags & SB_I_USERNS_VISIBLE)) 3392 return false; 3393 3394 if ((s_iflags & required_iflags) != required_iflags) { 3395 WARN_ONCE(1, "Expected s_iflags to contain 0x%lx\n", 3396 required_iflags); 3397 return true; 3398 } 3399 3400 return !mnt_already_visible(ns, mnt, new_mnt_flags); 3401 } 3402 3403 bool mnt_may_suid(struct vfsmount *mnt) 3404 { 3405 /* 3406 * Foreign mounts (accessed via fchdir or through /proc 3407 * symlinks) are always treated as if they are nosuid. This 3408 * prevents namespaces from trusting potentially unsafe 3409 * suid/sgid bits, file caps, or security labels that originate 3410 * in other namespaces. 3411 */ 3412 return !(mnt->mnt_flags & MNT_NOSUID) && check_mnt(real_mount(mnt)) && 3413 current_in_userns(mnt->mnt_sb->s_user_ns); 3414 } 3415 3416 static struct ns_common *mntns_get(struct task_struct *task) 3417 { 3418 struct ns_common *ns = NULL; 3419 struct nsproxy *nsproxy; 3420 3421 task_lock(task); 3422 nsproxy = task->nsproxy; 3423 if (nsproxy) { 3424 ns = &nsproxy->mnt_ns->ns; 3425 get_mnt_ns(to_mnt_ns(ns)); 3426 } 3427 task_unlock(task); 3428 3429 return ns; 3430 } 3431 3432 static void mntns_put(struct ns_common *ns) 3433 { 3434 put_mnt_ns(to_mnt_ns(ns)); 3435 } 3436 3437 static int mntns_install(struct nsproxy *nsproxy, struct ns_common *ns) 3438 { 3439 struct fs_struct *fs = current->fs; 3440 struct mnt_namespace *mnt_ns = to_mnt_ns(ns); 3441 struct path root; 3442 3443 if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) || 3444 !ns_capable(current_user_ns(), CAP_SYS_CHROOT) || 3445 !ns_capable(current_user_ns(), CAP_SYS_ADMIN)) 3446 return -EPERM; 3447 3448 if (fs->users != 1) 3449 return -EINVAL; 3450 3451 get_mnt_ns(mnt_ns); 3452 put_mnt_ns(nsproxy->mnt_ns); 3453 nsproxy->mnt_ns = mnt_ns; 3454 3455 /* Find the root */ 3456 root.mnt = &mnt_ns->root->mnt; 3457 root.dentry = mnt_ns->root->mnt.mnt_root; 3458 path_get(&root); 3459 while(d_mountpoint(root.dentry) && follow_down_one(&root)) 3460 ; 3461 3462 /* Update the pwd and root */ 3463 set_fs_pwd(fs, &root); 3464 set_fs_root(fs, &root); 3465 3466 path_put(&root); 3467 return 0; 3468 } 3469 3470 static struct user_namespace *mntns_owner(struct ns_common *ns) 3471 { 3472 return to_mnt_ns(ns)->user_ns; 3473 } 3474 3475 const struct proc_ns_operations mntns_operations = { 3476 .name = "mnt", 3477 .type = CLONE_NEWNS, 3478 .get = mntns_get, 3479 .put = mntns_put, 3480 .install = mntns_install, 3481 .owner = mntns_owner, 3482 }; 3483