xref: /openbmc/linux/fs/namespace.c (revision fc28ab18)
1 /*
2  *  linux/fs/namespace.c
3  *
4  * (C) Copyright Al Viro 2000, 2001
5  *	Released under GPL v2.
6  *
7  * Based on code from fs/super.c, copyright Linus Torvalds and others.
8  * Heavily rewritten.
9  */
10 
11 #include <linux/syscalls.h>
12 #include <linux/export.h>
13 #include <linux/capability.h>
14 #include <linux/mnt_namespace.h>
15 #include <linux/user_namespace.h>
16 #include <linux/namei.h>
17 #include <linux/security.h>
18 #include <linux/idr.h>
19 #include <linux/init.h>		/* init_rootfs */
20 #include <linux/fs_struct.h>	/* get_fs_root et.al. */
21 #include <linux/fsnotify.h>	/* fsnotify_vfsmount_delete */
22 #include <linux/uaccess.h>
23 #include <linux/proc_ns.h>
24 #include <linux/magic.h>
25 #include <linux/bootmem.h>
26 #include <linux/task_work.h>
27 #include "pnode.h"
28 #include "internal.h"
29 
30 /* Maximum number of mounts in a mount namespace */
31 unsigned int sysctl_mount_max __read_mostly = 100000;
32 
33 static unsigned int m_hash_mask __read_mostly;
34 static unsigned int m_hash_shift __read_mostly;
35 static unsigned int mp_hash_mask __read_mostly;
36 static unsigned int mp_hash_shift __read_mostly;
37 
38 static __initdata unsigned long mhash_entries;
39 static int __init set_mhash_entries(char *str)
40 {
41 	if (!str)
42 		return 0;
43 	mhash_entries = simple_strtoul(str, &str, 0);
44 	return 1;
45 }
46 __setup("mhash_entries=", set_mhash_entries);
47 
48 static __initdata unsigned long mphash_entries;
49 static int __init set_mphash_entries(char *str)
50 {
51 	if (!str)
52 		return 0;
53 	mphash_entries = simple_strtoul(str, &str, 0);
54 	return 1;
55 }
56 __setup("mphash_entries=", set_mphash_entries);
57 
58 static u64 event;
59 static DEFINE_IDA(mnt_id_ida);
60 static DEFINE_IDA(mnt_group_ida);
61 static DEFINE_SPINLOCK(mnt_id_lock);
62 static int mnt_id_start = 0;
63 static int mnt_group_start = 1;
64 
65 static struct hlist_head *mount_hashtable __read_mostly;
66 static struct hlist_head *mountpoint_hashtable __read_mostly;
67 static struct kmem_cache *mnt_cache __read_mostly;
68 static DECLARE_RWSEM(namespace_sem);
69 
70 /* /sys/fs */
71 struct kobject *fs_kobj;
72 EXPORT_SYMBOL_GPL(fs_kobj);
73 
74 /*
75  * vfsmount lock may be taken for read to prevent changes to the
76  * vfsmount hash, ie. during mountpoint lookups or walking back
77  * up the tree.
78  *
79  * It should be taken for write in all cases where the vfsmount
80  * tree or hash is modified or when a vfsmount structure is modified.
81  */
82 __cacheline_aligned_in_smp DEFINE_SEQLOCK(mount_lock);
83 
84 static inline struct hlist_head *m_hash(struct vfsmount *mnt, struct dentry *dentry)
85 {
86 	unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
87 	tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
88 	tmp = tmp + (tmp >> m_hash_shift);
89 	return &mount_hashtable[tmp & m_hash_mask];
90 }
91 
92 static inline struct hlist_head *mp_hash(struct dentry *dentry)
93 {
94 	unsigned long tmp = ((unsigned long)dentry / L1_CACHE_BYTES);
95 	tmp = tmp + (tmp >> mp_hash_shift);
96 	return &mountpoint_hashtable[tmp & mp_hash_mask];
97 }
98 
99 static int mnt_alloc_id(struct mount *mnt)
100 {
101 	int res;
102 
103 retry:
104 	ida_pre_get(&mnt_id_ida, GFP_KERNEL);
105 	spin_lock(&mnt_id_lock);
106 	res = ida_get_new_above(&mnt_id_ida, mnt_id_start, &mnt->mnt_id);
107 	if (!res)
108 		mnt_id_start = mnt->mnt_id + 1;
109 	spin_unlock(&mnt_id_lock);
110 	if (res == -EAGAIN)
111 		goto retry;
112 
113 	return res;
114 }
115 
116 static void mnt_free_id(struct mount *mnt)
117 {
118 	int id = mnt->mnt_id;
119 	spin_lock(&mnt_id_lock);
120 	ida_remove(&mnt_id_ida, id);
121 	if (mnt_id_start > id)
122 		mnt_id_start = id;
123 	spin_unlock(&mnt_id_lock);
124 }
125 
126 /*
127  * Allocate a new peer group ID
128  *
129  * mnt_group_ida is protected by namespace_sem
130  */
131 static int mnt_alloc_group_id(struct mount *mnt)
132 {
133 	int res;
134 
135 	if (!ida_pre_get(&mnt_group_ida, GFP_KERNEL))
136 		return -ENOMEM;
137 
138 	res = ida_get_new_above(&mnt_group_ida,
139 				mnt_group_start,
140 				&mnt->mnt_group_id);
141 	if (!res)
142 		mnt_group_start = mnt->mnt_group_id + 1;
143 
144 	return res;
145 }
146 
147 /*
148  * Release a peer group ID
149  */
150 void mnt_release_group_id(struct mount *mnt)
151 {
152 	int id = mnt->mnt_group_id;
153 	ida_remove(&mnt_group_ida, id);
154 	if (mnt_group_start > id)
155 		mnt_group_start = id;
156 	mnt->mnt_group_id = 0;
157 }
158 
159 /*
160  * vfsmount lock must be held for read
161  */
162 static inline void mnt_add_count(struct mount *mnt, int n)
163 {
164 #ifdef CONFIG_SMP
165 	this_cpu_add(mnt->mnt_pcp->mnt_count, n);
166 #else
167 	preempt_disable();
168 	mnt->mnt_count += n;
169 	preempt_enable();
170 #endif
171 }
172 
173 /*
174  * vfsmount lock must be held for write
175  */
176 unsigned int mnt_get_count(struct mount *mnt)
177 {
178 #ifdef CONFIG_SMP
179 	unsigned int count = 0;
180 	int cpu;
181 
182 	for_each_possible_cpu(cpu) {
183 		count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
184 	}
185 
186 	return count;
187 #else
188 	return mnt->mnt_count;
189 #endif
190 }
191 
192 static void drop_mountpoint(struct fs_pin *p)
193 {
194 	struct mount *m = container_of(p, struct mount, mnt_umount);
195 	dput(m->mnt_ex_mountpoint);
196 	pin_remove(p);
197 	mntput(&m->mnt);
198 }
199 
200 static struct mount *alloc_vfsmnt(const char *name)
201 {
202 	struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
203 	if (mnt) {
204 		int err;
205 
206 		err = mnt_alloc_id(mnt);
207 		if (err)
208 			goto out_free_cache;
209 
210 		if (name) {
211 			mnt->mnt_devname = kstrdup_const(name, GFP_KERNEL);
212 			if (!mnt->mnt_devname)
213 				goto out_free_id;
214 		}
215 
216 #ifdef CONFIG_SMP
217 		mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
218 		if (!mnt->mnt_pcp)
219 			goto out_free_devname;
220 
221 		this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
222 #else
223 		mnt->mnt_count = 1;
224 		mnt->mnt_writers = 0;
225 #endif
226 
227 		INIT_HLIST_NODE(&mnt->mnt_hash);
228 		INIT_LIST_HEAD(&mnt->mnt_child);
229 		INIT_LIST_HEAD(&mnt->mnt_mounts);
230 		INIT_LIST_HEAD(&mnt->mnt_list);
231 		INIT_LIST_HEAD(&mnt->mnt_expire);
232 		INIT_LIST_HEAD(&mnt->mnt_share);
233 		INIT_LIST_HEAD(&mnt->mnt_slave_list);
234 		INIT_LIST_HEAD(&mnt->mnt_slave);
235 		INIT_HLIST_NODE(&mnt->mnt_mp_list);
236 #ifdef CONFIG_FSNOTIFY
237 		INIT_HLIST_HEAD(&mnt->mnt_fsnotify_marks);
238 #endif
239 		init_fs_pin(&mnt->mnt_umount, drop_mountpoint);
240 	}
241 	return mnt;
242 
243 #ifdef CONFIG_SMP
244 out_free_devname:
245 	kfree_const(mnt->mnt_devname);
246 #endif
247 out_free_id:
248 	mnt_free_id(mnt);
249 out_free_cache:
250 	kmem_cache_free(mnt_cache, mnt);
251 	return NULL;
252 }
253 
254 /*
255  * Most r/o checks on a fs are for operations that take
256  * discrete amounts of time, like a write() or unlink().
257  * We must keep track of when those operations start
258  * (for permission checks) and when they end, so that
259  * we can determine when writes are able to occur to
260  * a filesystem.
261  */
262 /*
263  * __mnt_is_readonly: check whether a mount is read-only
264  * @mnt: the mount to check for its write status
265  *
266  * This shouldn't be used directly ouside of the VFS.
267  * It does not guarantee that the filesystem will stay
268  * r/w, just that it is right *now*.  This can not and
269  * should not be used in place of IS_RDONLY(inode).
270  * mnt_want/drop_write() will _keep_ the filesystem
271  * r/w.
272  */
273 int __mnt_is_readonly(struct vfsmount *mnt)
274 {
275 	if (mnt->mnt_flags & MNT_READONLY)
276 		return 1;
277 	if (mnt->mnt_sb->s_flags & MS_RDONLY)
278 		return 1;
279 	return 0;
280 }
281 EXPORT_SYMBOL_GPL(__mnt_is_readonly);
282 
283 static inline void mnt_inc_writers(struct mount *mnt)
284 {
285 #ifdef CONFIG_SMP
286 	this_cpu_inc(mnt->mnt_pcp->mnt_writers);
287 #else
288 	mnt->mnt_writers++;
289 #endif
290 }
291 
292 static inline void mnt_dec_writers(struct mount *mnt)
293 {
294 #ifdef CONFIG_SMP
295 	this_cpu_dec(mnt->mnt_pcp->mnt_writers);
296 #else
297 	mnt->mnt_writers--;
298 #endif
299 }
300 
301 static unsigned int mnt_get_writers(struct mount *mnt)
302 {
303 #ifdef CONFIG_SMP
304 	unsigned int count = 0;
305 	int cpu;
306 
307 	for_each_possible_cpu(cpu) {
308 		count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
309 	}
310 
311 	return count;
312 #else
313 	return mnt->mnt_writers;
314 #endif
315 }
316 
317 static int mnt_is_readonly(struct vfsmount *mnt)
318 {
319 	if (mnt->mnt_sb->s_readonly_remount)
320 		return 1;
321 	/* Order wrt setting s_flags/s_readonly_remount in do_remount() */
322 	smp_rmb();
323 	return __mnt_is_readonly(mnt);
324 }
325 
326 /*
327  * Most r/o & frozen checks on a fs are for operations that take discrete
328  * amounts of time, like a write() or unlink().  We must keep track of when
329  * those operations start (for permission checks) and when they end, so that we
330  * can determine when writes are able to occur to a filesystem.
331  */
332 /**
333  * __mnt_want_write - get write access to a mount without freeze protection
334  * @m: the mount on which to take a write
335  *
336  * This tells the low-level filesystem that a write is about to be performed to
337  * it, and makes sure that writes are allowed (mnt it read-write) before
338  * returning success. This operation does not protect against filesystem being
339  * frozen. When the write operation is finished, __mnt_drop_write() must be
340  * called. This is effectively a refcount.
341  */
342 int __mnt_want_write(struct vfsmount *m)
343 {
344 	struct mount *mnt = real_mount(m);
345 	int ret = 0;
346 
347 	preempt_disable();
348 	mnt_inc_writers(mnt);
349 	/*
350 	 * The store to mnt_inc_writers must be visible before we pass
351 	 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
352 	 * incremented count after it has set MNT_WRITE_HOLD.
353 	 */
354 	smp_mb();
355 	while (ACCESS_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD)
356 		cpu_relax();
357 	/*
358 	 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
359 	 * be set to match its requirements. So we must not load that until
360 	 * MNT_WRITE_HOLD is cleared.
361 	 */
362 	smp_rmb();
363 	if (mnt_is_readonly(m)) {
364 		mnt_dec_writers(mnt);
365 		ret = -EROFS;
366 	}
367 	preempt_enable();
368 
369 	return ret;
370 }
371 
372 /**
373  * mnt_want_write - get write access to a mount
374  * @m: the mount on which to take a write
375  *
376  * This tells the low-level filesystem that a write is about to be performed to
377  * it, and makes sure that writes are allowed (mount is read-write, filesystem
378  * is not frozen) before returning success.  When the write operation is
379  * finished, mnt_drop_write() must be called.  This is effectively a refcount.
380  */
381 int mnt_want_write(struct vfsmount *m)
382 {
383 	int ret;
384 
385 	sb_start_write(m->mnt_sb);
386 	ret = __mnt_want_write(m);
387 	if (ret)
388 		sb_end_write(m->mnt_sb);
389 	return ret;
390 }
391 EXPORT_SYMBOL_GPL(mnt_want_write);
392 
393 /**
394  * mnt_clone_write - get write access to a mount
395  * @mnt: the mount on which to take a write
396  *
397  * This is effectively like mnt_want_write, except
398  * it must only be used to take an extra write reference
399  * on a mountpoint that we already know has a write reference
400  * on it. This allows some optimisation.
401  *
402  * After finished, mnt_drop_write must be called as usual to
403  * drop the reference.
404  */
405 int mnt_clone_write(struct vfsmount *mnt)
406 {
407 	/* superblock may be r/o */
408 	if (__mnt_is_readonly(mnt))
409 		return -EROFS;
410 	preempt_disable();
411 	mnt_inc_writers(real_mount(mnt));
412 	preempt_enable();
413 	return 0;
414 }
415 EXPORT_SYMBOL_GPL(mnt_clone_write);
416 
417 /**
418  * __mnt_want_write_file - get write access to a file's mount
419  * @file: the file who's mount on which to take a write
420  *
421  * This is like __mnt_want_write, but it takes a file and can
422  * do some optimisations if the file is open for write already
423  */
424 int __mnt_want_write_file(struct file *file)
425 {
426 	if (!(file->f_mode & FMODE_WRITER))
427 		return __mnt_want_write(file->f_path.mnt);
428 	else
429 		return mnt_clone_write(file->f_path.mnt);
430 }
431 
432 /**
433  * mnt_want_write_file - get write access to a file's mount
434  * @file: the file who's mount on which to take a write
435  *
436  * This is like mnt_want_write, but it takes a file and can
437  * do some optimisations if the file is open for write already
438  */
439 int mnt_want_write_file(struct file *file)
440 {
441 	int ret;
442 
443 	sb_start_write(file->f_path.mnt->mnt_sb);
444 	ret = __mnt_want_write_file(file);
445 	if (ret)
446 		sb_end_write(file->f_path.mnt->mnt_sb);
447 	return ret;
448 }
449 EXPORT_SYMBOL_GPL(mnt_want_write_file);
450 
451 /**
452  * __mnt_drop_write - give up write access to a mount
453  * @mnt: the mount on which to give up write access
454  *
455  * Tells the low-level filesystem that we are done
456  * performing writes to it.  Must be matched with
457  * __mnt_want_write() call above.
458  */
459 void __mnt_drop_write(struct vfsmount *mnt)
460 {
461 	preempt_disable();
462 	mnt_dec_writers(real_mount(mnt));
463 	preempt_enable();
464 }
465 
466 /**
467  * mnt_drop_write - give up write access to a mount
468  * @mnt: the mount on which to give up write access
469  *
470  * Tells the low-level filesystem that we are done performing writes to it and
471  * also allows filesystem to be frozen again.  Must be matched with
472  * mnt_want_write() call above.
473  */
474 void mnt_drop_write(struct vfsmount *mnt)
475 {
476 	__mnt_drop_write(mnt);
477 	sb_end_write(mnt->mnt_sb);
478 }
479 EXPORT_SYMBOL_GPL(mnt_drop_write);
480 
481 void __mnt_drop_write_file(struct file *file)
482 {
483 	__mnt_drop_write(file->f_path.mnt);
484 }
485 
486 void mnt_drop_write_file(struct file *file)
487 {
488 	mnt_drop_write(file->f_path.mnt);
489 }
490 EXPORT_SYMBOL(mnt_drop_write_file);
491 
492 static int mnt_make_readonly(struct mount *mnt)
493 {
494 	int ret = 0;
495 
496 	lock_mount_hash();
497 	mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
498 	/*
499 	 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
500 	 * should be visible before we do.
501 	 */
502 	smp_mb();
503 
504 	/*
505 	 * With writers on hold, if this value is zero, then there are
506 	 * definitely no active writers (although held writers may subsequently
507 	 * increment the count, they'll have to wait, and decrement it after
508 	 * seeing MNT_READONLY).
509 	 *
510 	 * It is OK to have counter incremented on one CPU and decremented on
511 	 * another: the sum will add up correctly. The danger would be when we
512 	 * sum up each counter, if we read a counter before it is incremented,
513 	 * but then read another CPU's count which it has been subsequently
514 	 * decremented from -- we would see more decrements than we should.
515 	 * MNT_WRITE_HOLD protects against this scenario, because
516 	 * mnt_want_write first increments count, then smp_mb, then spins on
517 	 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
518 	 * we're counting up here.
519 	 */
520 	if (mnt_get_writers(mnt) > 0)
521 		ret = -EBUSY;
522 	else
523 		mnt->mnt.mnt_flags |= MNT_READONLY;
524 	/*
525 	 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
526 	 * that become unheld will see MNT_READONLY.
527 	 */
528 	smp_wmb();
529 	mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
530 	unlock_mount_hash();
531 	return ret;
532 }
533 
534 static void __mnt_unmake_readonly(struct mount *mnt)
535 {
536 	lock_mount_hash();
537 	mnt->mnt.mnt_flags &= ~MNT_READONLY;
538 	unlock_mount_hash();
539 }
540 
541 int sb_prepare_remount_readonly(struct super_block *sb)
542 {
543 	struct mount *mnt;
544 	int err = 0;
545 
546 	/* Racy optimization.  Recheck the counter under MNT_WRITE_HOLD */
547 	if (atomic_long_read(&sb->s_remove_count))
548 		return -EBUSY;
549 
550 	lock_mount_hash();
551 	list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
552 		if (!(mnt->mnt.mnt_flags & MNT_READONLY)) {
553 			mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
554 			smp_mb();
555 			if (mnt_get_writers(mnt) > 0) {
556 				err = -EBUSY;
557 				break;
558 			}
559 		}
560 	}
561 	if (!err && atomic_long_read(&sb->s_remove_count))
562 		err = -EBUSY;
563 
564 	if (!err) {
565 		sb->s_readonly_remount = 1;
566 		smp_wmb();
567 	}
568 	list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
569 		if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
570 			mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
571 	}
572 	unlock_mount_hash();
573 
574 	return err;
575 }
576 
577 static void free_vfsmnt(struct mount *mnt)
578 {
579 	kfree_const(mnt->mnt_devname);
580 #ifdef CONFIG_SMP
581 	free_percpu(mnt->mnt_pcp);
582 #endif
583 	kmem_cache_free(mnt_cache, mnt);
584 }
585 
586 static void delayed_free_vfsmnt(struct rcu_head *head)
587 {
588 	free_vfsmnt(container_of(head, struct mount, mnt_rcu));
589 }
590 
591 /* call under rcu_read_lock */
592 int __legitimize_mnt(struct vfsmount *bastard, unsigned seq)
593 {
594 	struct mount *mnt;
595 	if (read_seqretry(&mount_lock, seq))
596 		return 1;
597 	if (bastard == NULL)
598 		return 0;
599 	mnt = real_mount(bastard);
600 	mnt_add_count(mnt, 1);
601 	if (likely(!read_seqretry(&mount_lock, seq)))
602 		return 0;
603 	if (bastard->mnt_flags & MNT_SYNC_UMOUNT) {
604 		mnt_add_count(mnt, -1);
605 		return 1;
606 	}
607 	return -1;
608 }
609 
610 /* call under rcu_read_lock */
611 bool legitimize_mnt(struct vfsmount *bastard, unsigned seq)
612 {
613 	int res = __legitimize_mnt(bastard, seq);
614 	if (likely(!res))
615 		return true;
616 	if (unlikely(res < 0)) {
617 		rcu_read_unlock();
618 		mntput(bastard);
619 		rcu_read_lock();
620 	}
621 	return false;
622 }
623 
624 /*
625  * find the first mount at @dentry on vfsmount @mnt.
626  * call under rcu_read_lock()
627  */
628 struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry)
629 {
630 	struct hlist_head *head = m_hash(mnt, dentry);
631 	struct mount *p;
632 
633 	hlist_for_each_entry_rcu(p, head, mnt_hash)
634 		if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry)
635 			return p;
636 	return NULL;
637 }
638 
639 /*
640  * find the last mount at @dentry on vfsmount @mnt.
641  * mount_lock must be held.
642  */
643 struct mount *__lookup_mnt_last(struct vfsmount *mnt, struct dentry *dentry)
644 {
645 	struct mount *p, *res = NULL;
646 	p = __lookup_mnt(mnt, dentry);
647 	if (!p)
648 		goto out;
649 	if (!(p->mnt.mnt_flags & MNT_UMOUNT))
650 		res = p;
651 	hlist_for_each_entry_continue(p, mnt_hash) {
652 		if (&p->mnt_parent->mnt != mnt || p->mnt_mountpoint != dentry)
653 			break;
654 		if (!(p->mnt.mnt_flags & MNT_UMOUNT))
655 			res = p;
656 	}
657 out:
658 	return res;
659 }
660 
661 /*
662  * lookup_mnt - Return the first child mount mounted at path
663  *
664  * "First" means first mounted chronologically.  If you create the
665  * following mounts:
666  *
667  * mount /dev/sda1 /mnt
668  * mount /dev/sda2 /mnt
669  * mount /dev/sda3 /mnt
670  *
671  * Then lookup_mnt() on the base /mnt dentry in the root mount will
672  * return successively the root dentry and vfsmount of /dev/sda1, then
673  * /dev/sda2, then /dev/sda3, then NULL.
674  *
675  * lookup_mnt takes a reference to the found vfsmount.
676  */
677 struct vfsmount *lookup_mnt(const struct path *path)
678 {
679 	struct mount *child_mnt;
680 	struct vfsmount *m;
681 	unsigned seq;
682 
683 	rcu_read_lock();
684 	do {
685 		seq = read_seqbegin(&mount_lock);
686 		child_mnt = __lookup_mnt(path->mnt, path->dentry);
687 		m = child_mnt ? &child_mnt->mnt : NULL;
688 	} while (!legitimize_mnt(m, seq));
689 	rcu_read_unlock();
690 	return m;
691 }
692 
693 /*
694  * __is_local_mountpoint - Test to see if dentry is a mountpoint in the
695  *                         current mount namespace.
696  *
697  * The common case is dentries are not mountpoints at all and that
698  * test is handled inline.  For the slow case when we are actually
699  * dealing with a mountpoint of some kind, walk through all of the
700  * mounts in the current mount namespace and test to see if the dentry
701  * is a mountpoint.
702  *
703  * The mount_hashtable is not usable in the context because we
704  * need to identify all mounts that may be in the current mount
705  * namespace not just a mount that happens to have some specified
706  * parent mount.
707  */
708 bool __is_local_mountpoint(struct dentry *dentry)
709 {
710 	struct mnt_namespace *ns = current->nsproxy->mnt_ns;
711 	struct mount *mnt;
712 	bool is_covered = false;
713 
714 	if (!d_mountpoint(dentry))
715 		goto out;
716 
717 	down_read(&namespace_sem);
718 	list_for_each_entry(mnt, &ns->list, mnt_list) {
719 		is_covered = (mnt->mnt_mountpoint == dentry);
720 		if (is_covered)
721 			break;
722 	}
723 	up_read(&namespace_sem);
724 out:
725 	return is_covered;
726 }
727 
728 static struct mountpoint *lookup_mountpoint(struct dentry *dentry)
729 {
730 	struct hlist_head *chain = mp_hash(dentry);
731 	struct mountpoint *mp;
732 
733 	hlist_for_each_entry(mp, chain, m_hash) {
734 		if (mp->m_dentry == dentry) {
735 			/* might be worth a WARN_ON() */
736 			if (d_unlinked(dentry))
737 				return ERR_PTR(-ENOENT);
738 			mp->m_count++;
739 			return mp;
740 		}
741 	}
742 	return NULL;
743 }
744 
745 static struct mountpoint *get_mountpoint(struct dentry *dentry)
746 {
747 	struct mountpoint *mp, *new = NULL;
748 	int ret;
749 
750 	if (d_mountpoint(dentry)) {
751 mountpoint:
752 		read_seqlock_excl(&mount_lock);
753 		mp = lookup_mountpoint(dentry);
754 		read_sequnlock_excl(&mount_lock);
755 		if (mp)
756 			goto done;
757 	}
758 
759 	if (!new)
760 		new = kmalloc(sizeof(struct mountpoint), GFP_KERNEL);
761 	if (!new)
762 		return ERR_PTR(-ENOMEM);
763 
764 
765 	/* Exactly one processes may set d_mounted */
766 	ret = d_set_mounted(dentry);
767 
768 	/* Someone else set d_mounted? */
769 	if (ret == -EBUSY)
770 		goto mountpoint;
771 
772 	/* The dentry is not available as a mountpoint? */
773 	mp = ERR_PTR(ret);
774 	if (ret)
775 		goto done;
776 
777 	/* Add the new mountpoint to the hash table */
778 	read_seqlock_excl(&mount_lock);
779 	new->m_dentry = dentry;
780 	new->m_count = 1;
781 	hlist_add_head(&new->m_hash, mp_hash(dentry));
782 	INIT_HLIST_HEAD(&new->m_list);
783 	read_sequnlock_excl(&mount_lock);
784 
785 	mp = new;
786 	new = NULL;
787 done:
788 	kfree(new);
789 	return mp;
790 }
791 
792 static void put_mountpoint(struct mountpoint *mp)
793 {
794 	if (!--mp->m_count) {
795 		struct dentry *dentry = mp->m_dentry;
796 		BUG_ON(!hlist_empty(&mp->m_list));
797 		spin_lock(&dentry->d_lock);
798 		dentry->d_flags &= ~DCACHE_MOUNTED;
799 		spin_unlock(&dentry->d_lock);
800 		hlist_del(&mp->m_hash);
801 		kfree(mp);
802 	}
803 }
804 
805 static inline int check_mnt(struct mount *mnt)
806 {
807 	return mnt->mnt_ns == current->nsproxy->mnt_ns;
808 }
809 
810 /*
811  * vfsmount lock must be held for write
812  */
813 static void touch_mnt_namespace(struct mnt_namespace *ns)
814 {
815 	if (ns) {
816 		ns->event = ++event;
817 		wake_up_interruptible(&ns->poll);
818 	}
819 }
820 
821 /*
822  * vfsmount lock must be held for write
823  */
824 static void __touch_mnt_namespace(struct mnt_namespace *ns)
825 {
826 	if (ns && ns->event != event) {
827 		ns->event = event;
828 		wake_up_interruptible(&ns->poll);
829 	}
830 }
831 
832 /*
833  * vfsmount lock must be held for write
834  */
835 static void unhash_mnt(struct mount *mnt)
836 {
837 	mnt->mnt_parent = mnt;
838 	mnt->mnt_mountpoint = mnt->mnt.mnt_root;
839 	list_del_init(&mnt->mnt_child);
840 	hlist_del_init_rcu(&mnt->mnt_hash);
841 	hlist_del_init(&mnt->mnt_mp_list);
842 	put_mountpoint(mnt->mnt_mp);
843 	mnt->mnt_mp = NULL;
844 }
845 
846 /*
847  * vfsmount lock must be held for write
848  */
849 static void detach_mnt(struct mount *mnt, struct path *old_path)
850 {
851 	old_path->dentry = mnt->mnt_mountpoint;
852 	old_path->mnt = &mnt->mnt_parent->mnt;
853 	unhash_mnt(mnt);
854 }
855 
856 /*
857  * vfsmount lock must be held for write
858  */
859 static void umount_mnt(struct mount *mnt)
860 {
861 	/* old mountpoint will be dropped when we can do that */
862 	mnt->mnt_ex_mountpoint = mnt->mnt_mountpoint;
863 	unhash_mnt(mnt);
864 }
865 
866 /*
867  * vfsmount lock must be held for write
868  */
869 void mnt_set_mountpoint(struct mount *mnt,
870 			struct mountpoint *mp,
871 			struct mount *child_mnt)
872 {
873 	mp->m_count++;
874 	mnt_add_count(mnt, 1);	/* essentially, that's mntget */
875 	child_mnt->mnt_mountpoint = dget(mp->m_dentry);
876 	child_mnt->mnt_parent = mnt;
877 	child_mnt->mnt_mp = mp;
878 	hlist_add_head(&child_mnt->mnt_mp_list, &mp->m_list);
879 }
880 
881 /*
882  * vfsmount lock must be held for write
883  */
884 static void attach_mnt(struct mount *mnt,
885 			struct mount *parent,
886 			struct mountpoint *mp)
887 {
888 	mnt_set_mountpoint(parent, mp, mnt);
889 	hlist_add_head_rcu(&mnt->mnt_hash, m_hash(&parent->mnt, mp->m_dentry));
890 	list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
891 }
892 
893 static void attach_shadowed(struct mount *mnt,
894 			struct mount *parent,
895 			struct mount *shadows)
896 {
897 	if (shadows) {
898 		hlist_add_behind_rcu(&mnt->mnt_hash, &shadows->mnt_hash);
899 		list_add(&mnt->mnt_child, &shadows->mnt_child);
900 	} else {
901 		hlist_add_head_rcu(&mnt->mnt_hash,
902 				m_hash(&parent->mnt, mnt->mnt_mountpoint));
903 		list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
904 	}
905 }
906 
907 /*
908  * vfsmount lock must be held for write
909  */
910 static void commit_tree(struct mount *mnt, struct mount *shadows)
911 {
912 	struct mount *parent = mnt->mnt_parent;
913 	struct mount *m;
914 	LIST_HEAD(head);
915 	struct mnt_namespace *n = parent->mnt_ns;
916 
917 	BUG_ON(parent == mnt);
918 
919 	list_add_tail(&head, &mnt->mnt_list);
920 	list_for_each_entry(m, &head, mnt_list)
921 		m->mnt_ns = n;
922 
923 	list_splice(&head, n->list.prev);
924 
925 	n->mounts += n->pending_mounts;
926 	n->pending_mounts = 0;
927 
928 	attach_shadowed(mnt, parent, shadows);
929 	touch_mnt_namespace(n);
930 }
931 
932 static struct mount *next_mnt(struct mount *p, struct mount *root)
933 {
934 	struct list_head *next = p->mnt_mounts.next;
935 	if (next == &p->mnt_mounts) {
936 		while (1) {
937 			if (p == root)
938 				return NULL;
939 			next = p->mnt_child.next;
940 			if (next != &p->mnt_parent->mnt_mounts)
941 				break;
942 			p = p->mnt_parent;
943 		}
944 	}
945 	return list_entry(next, struct mount, mnt_child);
946 }
947 
948 static struct mount *skip_mnt_tree(struct mount *p)
949 {
950 	struct list_head *prev = p->mnt_mounts.prev;
951 	while (prev != &p->mnt_mounts) {
952 		p = list_entry(prev, struct mount, mnt_child);
953 		prev = p->mnt_mounts.prev;
954 	}
955 	return p;
956 }
957 
958 struct vfsmount *
959 vfs_kern_mount(struct file_system_type *type, int flags, const char *name, void *data)
960 {
961 	struct mount *mnt;
962 	struct dentry *root;
963 
964 	if (!type)
965 		return ERR_PTR(-ENODEV);
966 
967 	mnt = alloc_vfsmnt(name);
968 	if (!mnt)
969 		return ERR_PTR(-ENOMEM);
970 
971 	if (flags & MS_KERNMOUNT)
972 		mnt->mnt.mnt_flags = MNT_INTERNAL;
973 
974 	root = mount_fs(type, flags, name, data);
975 	if (IS_ERR(root)) {
976 		mnt_free_id(mnt);
977 		free_vfsmnt(mnt);
978 		return ERR_CAST(root);
979 	}
980 
981 	mnt->mnt.mnt_root = root;
982 	mnt->mnt.mnt_sb = root->d_sb;
983 	mnt->mnt_mountpoint = mnt->mnt.mnt_root;
984 	mnt->mnt_parent = mnt;
985 	lock_mount_hash();
986 	list_add_tail(&mnt->mnt_instance, &root->d_sb->s_mounts);
987 	unlock_mount_hash();
988 	return &mnt->mnt;
989 }
990 EXPORT_SYMBOL_GPL(vfs_kern_mount);
991 
992 static struct mount *clone_mnt(struct mount *old, struct dentry *root,
993 					int flag)
994 {
995 	struct super_block *sb = old->mnt.mnt_sb;
996 	struct mount *mnt;
997 	int err;
998 
999 	mnt = alloc_vfsmnt(old->mnt_devname);
1000 	if (!mnt)
1001 		return ERR_PTR(-ENOMEM);
1002 
1003 	if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE))
1004 		mnt->mnt_group_id = 0; /* not a peer of original */
1005 	else
1006 		mnt->mnt_group_id = old->mnt_group_id;
1007 
1008 	if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
1009 		err = mnt_alloc_group_id(mnt);
1010 		if (err)
1011 			goto out_free;
1012 	}
1013 
1014 	mnt->mnt.mnt_flags = old->mnt.mnt_flags & ~(MNT_WRITE_HOLD|MNT_MARKED);
1015 	/* Don't allow unprivileged users to change mount flags */
1016 	if (flag & CL_UNPRIVILEGED) {
1017 		mnt->mnt.mnt_flags |= MNT_LOCK_ATIME;
1018 
1019 		if (mnt->mnt.mnt_flags & MNT_READONLY)
1020 			mnt->mnt.mnt_flags |= MNT_LOCK_READONLY;
1021 
1022 		if (mnt->mnt.mnt_flags & MNT_NODEV)
1023 			mnt->mnt.mnt_flags |= MNT_LOCK_NODEV;
1024 
1025 		if (mnt->mnt.mnt_flags & MNT_NOSUID)
1026 			mnt->mnt.mnt_flags |= MNT_LOCK_NOSUID;
1027 
1028 		if (mnt->mnt.mnt_flags & MNT_NOEXEC)
1029 			mnt->mnt.mnt_flags |= MNT_LOCK_NOEXEC;
1030 	}
1031 
1032 	/* Don't allow unprivileged users to reveal what is under a mount */
1033 	if ((flag & CL_UNPRIVILEGED) &&
1034 	    (!(flag & CL_EXPIRE) || list_empty(&old->mnt_expire)))
1035 		mnt->mnt.mnt_flags |= MNT_LOCKED;
1036 
1037 	atomic_inc(&sb->s_active);
1038 	mnt->mnt.mnt_sb = sb;
1039 	mnt->mnt.mnt_root = dget(root);
1040 	mnt->mnt_mountpoint = mnt->mnt.mnt_root;
1041 	mnt->mnt_parent = mnt;
1042 	lock_mount_hash();
1043 	list_add_tail(&mnt->mnt_instance, &sb->s_mounts);
1044 	unlock_mount_hash();
1045 
1046 	if ((flag & CL_SLAVE) ||
1047 	    ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) {
1048 		list_add(&mnt->mnt_slave, &old->mnt_slave_list);
1049 		mnt->mnt_master = old;
1050 		CLEAR_MNT_SHARED(mnt);
1051 	} else if (!(flag & CL_PRIVATE)) {
1052 		if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
1053 			list_add(&mnt->mnt_share, &old->mnt_share);
1054 		if (IS_MNT_SLAVE(old))
1055 			list_add(&mnt->mnt_slave, &old->mnt_slave);
1056 		mnt->mnt_master = old->mnt_master;
1057 	} else {
1058 		CLEAR_MNT_SHARED(mnt);
1059 	}
1060 	if (flag & CL_MAKE_SHARED)
1061 		set_mnt_shared(mnt);
1062 
1063 	/* stick the duplicate mount on the same expiry list
1064 	 * as the original if that was on one */
1065 	if (flag & CL_EXPIRE) {
1066 		if (!list_empty(&old->mnt_expire))
1067 			list_add(&mnt->mnt_expire, &old->mnt_expire);
1068 	}
1069 
1070 	return mnt;
1071 
1072  out_free:
1073 	mnt_free_id(mnt);
1074 	free_vfsmnt(mnt);
1075 	return ERR_PTR(err);
1076 }
1077 
1078 static void cleanup_mnt(struct mount *mnt)
1079 {
1080 	/*
1081 	 * This probably indicates that somebody messed
1082 	 * up a mnt_want/drop_write() pair.  If this
1083 	 * happens, the filesystem was probably unable
1084 	 * to make r/w->r/o transitions.
1085 	 */
1086 	/*
1087 	 * The locking used to deal with mnt_count decrement provides barriers,
1088 	 * so mnt_get_writers() below is safe.
1089 	 */
1090 	WARN_ON(mnt_get_writers(mnt));
1091 	if (unlikely(mnt->mnt_pins.first))
1092 		mnt_pin_kill(mnt);
1093 	fsnotify_vfsmount_delete(&mnt->mnt);
1094 	dput(mnt->mnt.mnt_root);
1095 	deactivate_super(mnt->mnt.mnt_sb);
1096 	mnt_free_id(mnt);
1097 	call_rcu(&mnt->mnt_rcu, delayed_free_vfsmnt);
1098 }
1099 
1100 static void __cleanup_mnt(struct rcu_head *head)
1101 {
1102 	cleanup_mnt(container_of(head, struct mount, mnt_rcu));
1103 }
1104 
1105 static LLIST_HEAD(delayed_mntput_list);
1106 static void delayed_mntput(struct work_struct *unused)
1107 {
1108 	struct llist_node *node = llist_del_all(&delayed_mntput_list);
1109 	struct llist_node *next;
1110 
1111 	for (; node; node = next) {
1112 		next = llist_next(node);
1113 		cleanup_mnt(llist_entry(node, struct mount, mnt_llist));
1114 	}
1115 }
1116 static DECLARE_DELAYED_WORK(delayed_mntput_work, delayed_mntput);
1117 
1118 static void mntput_no_expire(struct mount *mnt)
1119 {
1120 	rcu_read_lock();
1121 	mnt_add_count(mnt, -1);
1122 	if (likely(mnt->mnt_ns)) { /* shouldn't be the last one */
1123 		rcu_read_unlock();
1124 		return;
1125 	}
1126 	lock_mount_hash();
1127 	if (mnt_get_count(mnt)) {
1128 		rcu_read_unlock();
1129 		unlock_mount_hash();
1130 		return;
1131 	}
1132 	if (unlikely(mnt->mnt.mnt_flags & MNT_DOOMED)) {
1133 		rcu_read_unlock();
1134 		unlock_mount_hash();
1135 		return;
1136 	}
1137 	mnt->mnt.mnt_flags |= MNT_DOOMED;
1138 	rcu_read_unlock();
1139 
1140 	list_del(&mnt->mnt_instance);
1141 
1142 	if (unlikely(!list_empty(&mnt->mnt_mounts))) {
1143 		struct mount *p, *tmp;
1144 		list_for_each_entry_safe(p, tmp, &mnt->mnt_mounts,  mnt_child) {
1145 			umount_mnt(p);
1146 		}
1147 	}
1148 	unlock_mount_hash();
1149 
1150 	if (likely(!(mnt->mnt.mnt_flags & MNT_INTERNAL))) {
1151 		struct task_struct *task = current;
1152 		if (likely(!(task->flags & PF_KTHREAD))) {
1153 			init_task_work(&mnt->mnt_rcu, __cleanup_mnt);
1154 			if (!task_work_add(task, &mnt->mnt_rcu, true))
1155 				return;
1156 		}
1157 		if (llist_add(&mnt->mnt_llist, &delayed_mntput_list))
1158 			schedule_delayed_work(&delayed_mntput_work, 1);
1159 		return;
1160 	}
1161 	cleanup_mnt(mnt);
1162 }
1163 
1164 void mntput(struct vfsmount *mnt)
1165 {
1166 	if (mnt) {
1167 		struct mount *m = real_mount(mnt);
1168 		/* avoid cacheline pingpong, hope gcc doesn't get "smart" */
1169 		if (unlikely(m->mnt_expiry_mark))
1170 			m->mnt_expiry_mark = 0;
1171 		mntput_no_expire(m);
1172 	}
1173 }
1174 EXPORT_SYMBOL(mntput);
1175 
1176 struct vfsmount *mntget(struct vfsmount *mnt)
1177 {
1178 	if (mnt)
1179 		mnt_add_count(real_mount(mnt), 1);
1180 	return mnt;
1181 }
1182 EXPORT_SYMBOL(mntget);
1183 
1184 /* path_is_mountpoint() - Check if path is a mount in the current
1185  *                          namespace.
1186  *
1187  *  d_mountpoint() can only be used reliably to establish if a dentry is
1188  *  not mounted in any namespace and that common case is handled inline.
1189  *  d_mountpoint() isn't aware of the possibility there may be multiple
1190  *  mounts using a given dentry in a different namespace. This function
1191  *  checks if the passed in path is a mountpoint rather than the dentry
1192  *  alone.
1193  */
1194 bool path_is_mountpoint(const struct path *path)
1195 {
1196 	unsigned seq;
1197 	bool res;
1198 
1199 	if (!d_mountpoint(path->dentry))
1200 		return false;
1201 
1202 	rcu_read_lock();
1203 	do {
1204 		seq = read_seqbegin(&mount_lock);
1205 		res = __path_is_mountpoint(path);
1206 	} while (read_seqretry(&mount_lock, seq));
1207 	rcu_read_unlock();
1208 
1209 	return res;
1210 }
1211 EXPORT_SYMBOL(path_is_mountpoint);
1212 
1213 struct vfsmount *mnt_clone_internal(const struct path *path)
1214 {
1215 	struct mount *p;
1216 	p = clone_mnt(real_mount(path->mnt), path->dentry, CL_PRIVATE);
1217 	if (IS_ERR(p))
1218 		return ERR_CAST(p);
1219 	p->mnt.mnt_flags |= MNT_INTERNAL;
1220 	return &p->mnt;
1221 }
1222 
1223 static inline void mangle(struct seq_file *m, const char *s)
1224 {
1225 	seq_escape(m, s, " \t\n\\");
1226 }
1227 
1228 /*
1229  * Simple .show_options callback for filesystems which don't want to
1230  * implement more complex mount option showing.
1231  *
1232  * See also save_mount_options().
1233  */
1234 int generic_show_options(struct seq_file *m, struct dentry *root)
1235 {
1236 	const char *options;
1237 
1238 	rcu_read_lock();
1239 	options = rcu_dereference(root->d_sb->s_options);
1240 
1241 	if (options != NULL && options[0]) {
1242 		seq_putc(m, ',');
1243 		mangle(m, options);
1244 	}
1245 	rcu_read_unlock();
1246 
1247 	return 0;
1248 }
1249 EXPORT_SYMBOL(generic_show_options);
1250 
1251 /*
1252  * If filesystem uses generic_show_options(), this function should be
1253  * called from the fill_super() callback.
1254  *
1255  * The .remount_fs callback usually needs to be handled in a special
1256  * way, to make sure, that previous options are not overwritten if the
1257  * remount fails.
1258  *
1259  * Also note, that if the filesystem's .remount_fs function doesn't
1260  * reset all options to their default value, but changes only newly
1261  * given options, then the displayed options will not reflect reality
1262  * any more.
1263  */
1264 void save_mount_options(struct super_block *sb, char *options)
1265 {
1266 	BUG_ON(sb->s_options);
1267 	rcu_assign_pointer(sb->s_options, kstrdup(options, GFP_KERNEL));
1268 }
1269 EXPORT_SYMBOL(save_mount_options);
1270 
1271 void replace_mount_options(struct super_block *sb, char *options)
1272 {
1273 	char *old = sb->s_options;
1274 	rcu_assign_pointer(sb->s_options, options);
1275 	if (old) {
1276 		synchronize_rcu();
1277 		kfree(old);
1278 	}
1279 }
1280 EXPORT_SYMBOL(replace_mount_options);
1281 
1282 #ifdef CONFIG_PROC_FS
1283 /* iterator; we want it to have access to namespace_sem, thus here... */
1284 static void *m_start(struct seq_file *m, loff_t *pos)
1285 {
1286 	struct proc_mounts *p = m->private;
1287 
1288 	down_read(&namespace_sem);
1289 	if (p->cached_event == p->ns->event) {
1290 		void *v = p->cached_mount;
1291 		if (*pos == p->cached_index)
1292 			return v;
1293 		if (*pos == p->cached_index + 1) {
1294 			v = seq_list_next(v, &p->ns->list, &p->cached_index);
1295 			return p->cached_mount = v;
1296 		}
1297 	}
1298 
1299 	p->cached_event = p->ns->event;
1300 	p->cached_mount = seq_list_start(&p->ns->list, *pos);
1301 	p->cached_index = *pos;
1302 	return p->cached_mount;
1303 }
1304 
1305 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
1306 {
1307 	struct proc_mounts *p = m->private;
1308 
1309 	p->cached_mount = seq_list_next(v, &p->ns->list, pos);
1310 	p->cached_index = *pos;
1311 	return p->cached_mount;
1312 }
1313 
1314 static void m_stop(struct seq_file *m, void *v)
1315 {
1316 	up_read(&namespace_sem);
1317 }
1318 
1319 static int m_show(struct seq_file *m, void *v)
1320 {
1321 	struct proc_mounts *p = m->private;
1322 	struct mount *r = list_entry(v, struct mount, mnt_list);
1323 	return p->show(m, &r->mnt);
1324 }
1325 
1326 const struct seq_operations mounts_op = {
1327 	.start	= m_start,
1328 	.next	= m_next,
1329 	.stop	= m_stop,
1330 	.show	= m_show,
1331 };
1332 #endif  /* CONFIG_PROC_FS */
1333 
1334 /**
1335  * may_umount_tree - check if a mount tree is busy
1336  * @mnt: root of mount tree
1337  *
1338  * This is called to check if a tree of mounts has any
1339  * open files, pwds, chroots or sub mounts that are
1340  * busy.
1341  */
1342 int may_umount_tree(struct vfsmount *m)
1343 {
1344 	struct mount *mnt = real_mount(m);
1345 	int actual_refs = 0;
1346 	int minimum_refs = 0;
1347 	struct mount *p;
1348 	BUG_ON(!m);
1349 
1350 	/* write lock needed for mnt_get_count */
1351 	lock_mount_hash();
1352 	for (p = mnt; p; p = next_mnt(p, mnt)) {
1353 		actual_refs += mnt_get_count(p);
1354 		minimum_refs += 2;
1355 	}
1356 	unlock_mount_hash();
1357 
1358 	if (actual_refs > minimum_refs)
1359 		return 0;
1360 
1361 	return 1;
1362 }
1363 
1364 EXPORT_SYMBOL(may_umount_tree);
1365 
1366 /**
1367  * may_umount - check if a mount point is busy
1368  * @mnt: root of mount
1369  *
1370  * This is called to check if a mount point has any
1371  * open files, pwds, chroots or sub mounts. If the
1372  * mount has sub mounts this will return busy
1373  * regardless of whether the sub mounts are busy.
1374  *
1375  * Doesn't take quota and stuff into account. IOW, in some cases it will
1376  * give false negatives. The main reason why it's here is that we need
1377  * a non-destructive way to look for easily umountable filesystems.
1378  */
1379 int may_umount(struct vfsmount *mnt)
1380 {
1381 	int ret = 1;
1382 	down_read(&namespace_sem);
1383 	lock_mount_hash();
1384 	if (propagate_mount_busy(real_mount(mnt), 2))
1385 		ret = 0;
1386 	unlock_mount_hash();
1387 	up_read(&namespace_sem);
1388 	return ret;
1389 }
1390 
1391 EXPORT_SYMBOL(may_umount);
1392 
1393 static HLIST_HEAD(unmounted);	/* protected by namespace_sem */
1394 
1395 static void namespace_unlock(void)
1396 {
1397 	struct hlist_head head;
1398 
1399 	hlist_move_list(&unmounted, &head);
1400 
1401 	up_write(&namespace_sem);
1402 
1403 	if (likely(hlist_empty(&head)))
1404 		return;
1405 
1406 	synchronize_rcu();
1407 
1408 	group_pin_kill(&head);
1409 }
1410 
1411 static inline void namespace_lock(void)
1412 {
1413 	down_write(&namespace_sem);
1414 }
1415 
1416 enum umount_tree_flags {
1417 	UMOUNT_SYNC = 1,
1418 	UMOUNT_PROPAGATE = 2,
1419 	UMOUNT_CONNECTED = 4,
1420 };
1421 
1422 static bool disconnect_mount(struct mount *mnt, enum umount_tree_flags how)
1423 {
1424 	/* Leaving mounts connected is only valid for lazy umounts */
1425 	if (how & UMOUNT_SYNC)
1426 		return true;
1427 
1428 	/* A mount without a parent has nothing to be connected to */
1429 	if (!mnt_has_parent(mnt))
1430 		return true;
1431 
1432 	/* Because the reference counting rules change when mounts are
1433 	 * unmounted and connected, umounted mounts may not be
1434 	 * connected to mounted mounts.
1435 	 */
1436 	if (!(mnt->mnt_parent->mnt.mnt_flags & MNT_UMOUNT))
1437 		return true;
1438 
1439 	/* Has it been requested that the mount remain connected? */
1440 	if (how & UMOUNT_CONNECTED)
1441 		return false;
1442 
1443 	/* Is the mount locked such that it needs to remain connected? */
1444 	if (IS_MNT_LOCKED(mnt))
1445 		return false;
1446 
1447 	/* By default disconnect the mount */
1448 	return true;
1449 }
1450 
1451 /*
1452  * mount_lock must be held
1453  * namespace_sem must be held for write
1454  */
1455 static void umount_tree(struct mount *mnt, enum umount_tree_flags how)
1456 {
1457 	LIST_HEAD(tmp_list);
1458 	struct mount *p;
1459 
1460 	if (how & UMOUNT_PROPAGATE)
1461 		propagate_mount_unlock(mnt);
1462 
1463 	/* Gather the mounts to umount */
1464 	for (p = mnt; p; p = next_mnt(p, mnt)) {
1465 		p->mnt.mnt_flags |= MNT_UMOUNT;
1466 		list_move(&p->mnt_list, &tmp_list);
1467 	}
1468 
1469 	/* Hide the mounts from mnt_mounts */
1470 	list_for_each_entry(p, &tmp_list, mnt_list) {
1471 		list_del_init(&p->mnt_child);
1472 	}
1473 
1474 	/* Add propogated mounts to the tmp_list */
1475 	if (how & UMOUNT_PROPAGATE)
1476 		propagate_umount(&tmp_list);
1477 
1478 	while (!list_empty(&tmp_list)) {
1479 		struct mnt_namespace *ns;
1480 		bool disconnect;
1481 		p = list_first_entry(&tmp_list, struct mount, mnt_list);
1482 		list_del_init(&p->mnt_expire);
1483 		list_del_init(&p->mnt_list);
1484 		ns = p->mnt_ns;
1485 		if (ns) {
1486 			ns->mounts--;
1487 			__touch_mnt_namespace(ns);
1488 		}
1489 		p->mnt_ns = NULL;
1490 		if (how & UMOUNT_SYNC)
1491 			p->mnt.mnt_flags |= MNT_SYNC_UMOUNT;
1492 
1493 		disconnect = disconnect_mount(p, how);
1494 
1495 		pin_insert_group(&p->mnt_umount, &p->mnt_parent->mnt,
1496 				 disconnect ? &unmounted : NULL);
1497 		if (mnt_has_parent(p)) {
1498 			mnt_add_count(p->mnt_parent, -1);
1499 			if (!disconnect) {
1500 				/* Don't forget about p */
1501 				list_add_tail(&p->mnt_child, &p->mnt_parent->mnt_mounts);
1502 			} else {
1503 				umount_mnt(p);
1504 			}
1505 		}
1506 		change_mnt_propagation(p, MS_PRIVATE);
1507 	}
1508 }
1509 
1510 static void shrink_submounts(struct mount *mnt);
1511 
1512 static int do_umount(struct mount *mnt, int flags)
1513 {
1514 	struct super_block *sb = mnt->mnt.mnt_sb;
1515 	int retval;
1516 
1517 	retval = security_sb_umount(&mnt->mnt, flags);
1518 	if (retval)
1519 		return retval;
1520 
1521 	/*
1522 	 * Allow userspace to request a mountpoint be expired rather than
1523 	 * unmounting unconditionally. Unmount only happens if:
1524 	 *  (1) the mark is already set (the mark is cleared by mntput())
1525 	 *  (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1526 	 */
1527 	if (flags & MNT_EXPIRE) {
1528 		if (&mnt->mnt == current->fs->root.mnt ||
1529 		    flags & (MNT_FORCE | MNT_DETACH))
1530 			return -EINVAL;
1531 
1532 		/*
1533 		 * probably don't strictly need the lock here if we examined
1534 		 * all race cases, but it's a slowpath.
1535 		 */
1536 		lock_mount_hash();
1537 		if (mnt_get_count(mnt) != 2) {
1538 			unlock_mount_hash();
1539 			return -EBUSY;
1540 		}
1541 		unlock_mount_hash();
1542 
1543 		if (!xchg(&mnt->mnt_expiry_mark, 1))
1544 			return -EAGAIN;
1545 	}
1546 
1547 	/*
1548 	 * If we may have to abort operations to get out of this
1549 	 * mount, and they will themselves hold resources we must
1550 	 * allow the fs to do things. In the Unix tradition of
1551 	 * 'Gee thats tricky lets do it in userspace' the umount_begin
1552 	 * might fail to complete on the first run through as other tasks
1553 	 * must return, and the like. Thats for the mount program to worry
1554 	 * about for the moment.
1555 	 */
1556 
1557 	if (flags & MNT_FORCE && sb->s_op->umount_begin) {
1558 		sb->s_op->umount_begin(sb);
1559 	}
1560 
1561 	/*
1562 	 * No sense to grab the lock for this test, but test itself looks
1563 	 * somewhat bogus. Suggestions for better replacement?
1564 	 * Ho-hum... In principle, we might treat that as umount + switch
1565 	 * to rootfs. GC would eventually take care of the old vfsmount.
1566 	 * Actually it makes sense, especially if rootfs would contain a
1567 	 * /reboot - static binary that would close all descriptors and
1568 	 * call reboot(9). Then init(8) could umount root and exec /reboot.
1569 	 */
1570 	if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1571 		/*
1572 		 * Special case for "unmounting" root ...
1573 		 * we just try to remount it readonly.
1574 		 */
1575 		if (!capable(CAP_SYS_ADMIN))
1576 			return -EPERM;
1577 		down_write(&sb->s_umount);
1578 		if (!(sb->s_flags & MS_RDONLY))
1579 			retval = do_remount_sb(sb, MS_RDONLY, NULL, 0);
1580 		up_write(&sb->s_umount);
1581 		return retval;
1582 	}
1583 
1584 	namespace_lock();
1585 	lock_mount_hash();
1586 	event++;
1587 
1588 	if (flags & MNT_DETACH) {
1589 		if (!list_empty(&mnt->mnt_list))
1590 			umount_tree(mnt, UMOUNT_PROPAGATE);
1591 		retval = 0;
1592 	} else {
1593 		shrink_submounts(mnt);
1594 		retval = -EBUSY;
1595 		if (!propagate_mount_busy(mnt, 2)) {
1596 			if (!list_empty(&mnt->mnt_list))
1597 				umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
1598 			retval = 0;
1599 		}
1600 	}
1601 	unlock_mount_hash();
1602 	namespace_unlock();
1603 	return retval;
1604 }
1605 
1606 /*
1607  * __detach_mounts - lazily unmount all mounts on the specified dentry
1608  *
1609  * During unlink, rmdir, and d_drop it is possible to loose the path
1610  * to an existing mountpoint, and wind up leaking the mount.
1611  * detach_mounts allows lazily unmounting those mounts instead of
1612  * leaking them.
1613  *
1614  * The caller may hold dentry->d_inode->i_mutex.
1615  */
1616 void __detach_mounts(struct dentry *dentry)
1617 {
1618 	struct mountpoint *mp;
1619 	struct mount *mnt;
1620 
1621 	namespace_lock();
1622 	lock_mount_hash();
1623 	mp = lookup_mountpoint(dentry);
1624 	if (IS_ERR_OR_NULL(mp))
1625 		goto out_unlock;
1626 
1627 	event++;
1628 	while (!hlist_empty(&mp->m_list)) {
1629 		mnt = hlist_entry(mp->m_list.first, struct mount, mnt_mp_list);
1630 		if (mnt->mnt.mnt_flags & MNT_UMOUNT) {
1631 			hlist_add_head(&mnt->mnt_umount.s_list, &unmounted);
1632 			umount_mnt(mnt);
1633 		}
1634 		else umount_tree(mnt, UMOUNT_CONNECTED);
1635 	}
1636 	put_mountpoint(mp);
1637 out_unlock:
1638 	unlock_mount_hash();
1639 	namespace_unlock();
1640 }
1641 
1642 /*
1643  * Is the caller allowed to modify his namespace?
1644  */
1645 static inline bool may_mount(void)
1646 {
1647 	return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN);
1648 }
1649 
1650 static inline bool may_mandlock(void)
1651 {
1652 #ifndef	CONFIG_MANDATORY_FILE_LOCKING
1653 	return false;
1654 #endif
1655 	return capable(CAP_SYS_ADMIN);
1656 }
1657 
1658 /*
1659  * Now umount can handle mount points as well as block devices.
1660  * This is important for filesystems which use unnamed block devices.
1661  *
1662  * We now support a flag for forced unmount like the other 'big iron'
1663  * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
1664  */
1665 
1666 SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
1667 {
1668 	struct path path;
1669 	struct mount *mnt;
1670 	int retval;
1671 	int lookup_flags = 0;
1672 
1673 	if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
1674 		return -EINVAL;
1675 
1676 	if (!may_mount())
1677 		return -EPERM;
1678 
1679 	if (!(flags & UMOUNT_NOFOLLOW))
1680 		lookup_flags |= LOOKUP_FOLLOW;
1681 
1682 	retval = user_path_mountpoint_at(AT_FDCWD, name, lookup_flags, &path);
1683 	if (retval)
1684 		goto out;
1685 	mnt = real_mount(path.mnt);
1686 	retval = -EINVAL;
1687 	if (path.dentry != path.mnt->mnt_root)
1688 		goto dput_and_out;
1689 	if (!check_mnt(mnt))
1690 		goto dput_and_out;
1691 	if (mnt->mnt.mnt_flags & MNT_LOCKED)
1692 		goto dput_and_out;
1693 	retval = -EPERM;
1694 	if (flags & MNT_FORCE && !capable(CAP_SYS_ADMIN))
1695 		goto dput_and_out;
1696 
1697 	retval = do_umount(mnt, flags);
1698 dput_and_out:
1699 	/* we mustn't call path_put() as that would clear mnt_expiry_mark */
1700 	dput(path.dentry);
1701 	mntput_no_expire(mnt);
1702 out:
1703 	return retval;
1704 }
1705 
1706 #ifdef __ARCH_WANT_SYS_OLDUMOUNT
1707 
1708 /*
1709  *	The 2.0 compatible umount. No flags.
1710  */
1711 SYSCALL_DEFINE1(oldumount, char __user *, name)
1712 {
1713 	return sys_umount(name, 0);
1714 }
1715 
1716 #endif
1717 
1718 static bool is_mnt_ns_file(struct dentry *dentry)
1719 {
1720 	/* Is this a proxy for a mount namespace? */
1721 	return dentry->d_op == &ns_dentry_operations &&
1722 	       dentry->d_fsdata == &mntns_operations;
1723 }
1724 
1725 struct mnt_namespace *to_mnt_ns(struct ns_common *ns)
1726 {
1727 	return container_of(ns, struct mnt_namespace, ns);
1728 }
1729 
1730 static bool mnt_ns_loop(struct dentry *dentry)
1731 {
1732 	/* Could bind mounting the mount namespace inode cause a
1733 	 * mount namespace loop?
1734 	 */
1735 	struct mnt_namespace *mnt_ns;
1736 	if (!is_mnt_ns_file(dentry))
1737 		return false;
1738 
1739 	mnt_ns = to_mnt_ns(get_proc_ns(dentry->d_inode));
1740 	return current->nsproxy->mnt_ns->seq >= mnt_ns->seq;
1741 }
1742 
1743 struct mount *copy_tree(struct mount *mnt, struct dentry *dentry,
1744 					int flag)
1745 {
1746 	struct mount *res, *p, *q, *r, *parent;
1747 
1748 	if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(mnt))
1749 		return ERR_PTR(-EINVAL);
1750 
1751 	if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry))
1752 		return ERR_PTR(-EINVAL);
1753 
1754 	res = q = clone_mnt(mnt, dentry, flag);
1755 	if (IS_ERR(q))
1756 		return q;
1757 
1758 	q->mnt_mountpoint = mnt->mnt_mountpoint;
1759 
1760 	p = mnt;
1761 	list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
1762 		struct mount *s;
1763 		if (!is_subdir(r->mnt_mountpoint, dentry))
1764 			continue;
1765 
1766 		for (s = r; s; s = next_mnt(s, r)) {
1767 			struct mount *t = NULL;
1768 			if (!(flag & CL_COPY_UNBINDABLE) &&
1769 			    IS_MNT_UNBINDABLE(s)) {
1770 				s = skip_mnt_tree(s);
1771 				continue;
1772 			}
1773 			if (!(flag & CL_COPY_MNT_NS_FILE) &&
1774 			    is_mnt_ns_file(s->mnt.mnt_root)) {
1775 				s = skip_mnt_tree(s);
1776 				continue;
1777 			}
1778 			while (p != s->mnt_parent) {
1779 				p = p->mnt_parent;
1780 				q = q->mnt_parent;
1781 			}
1782 			p = s;
1783 			parent = q;
1784 			q = clone_mnt(p, p->mnt.mnt_root, flag);
1785 			if (IS_ERR(q))
1786 				goto out;
1787 			lock_mount_hash();
1788 			list_add_tail(&q->mnt_list, &res->mnt_list);
1789 			mnt_set_mountpoint(parent, p->mnt_mp, q);
1790 			if (!list_empty(&parent->mnt_mounts)) {
1791 				t = list_last_entry(&parent->mnt_mounts,
1792 					struct mount, mnt_child);
1793 				if (t->mnt_mp != p->mnt_mp)
1794 					t = NULL;
1795 			}
1796 			attach_shadowed(q, parent, t);
1797 			unlock_mount_hash();
1798 		}
1799 	}
1800 	return res;
1801 out:
1802 	if (res) {
1803 		lock_mount_hash();
1804 		umount_tree(res, UMOUNT_SYNC);
1805 		unlock_mount_hash();
1806 	}
1807 	return q;
1808 }
1809 
1810 /* Caller should check returned pointer for errors */
1811 
1812 struct vfsmount *collect_mounts(const struct path *path)
1813 {
1814 	struct mount *tree;
1815 	namespace_lock();
1816 	if (!check_mnt(real_mount(path->mnt)))
1817 		tree = ERR_PTR(-EINVAL);
1818 	else
1819 		tree = copy_tree(real_mount(path->mnt), path->dentry,
1820 				 CL_COPY_ALL | CL_PRIVATE);
1821 	namespace_unlock();
1822 	if (IS_ERR(tree))
1823 		return ERR_CAST(tree);
1824 	return &tree->mnt;
1825 }
1826 
1827 void drop_collected_mounts(struct vfsmount *mnt)
1828 {
1829 	namespace_lock();
1830 	lock_mount_hash();
1831 	umount_tree(real_mount(mnt), UMOUNT_SYNC);
1832 	unlock_mount_hash();
1833 	namespace_unlock();
1834 }
1835 
1836 /**
1837  * clone_private_mount - create a private clone of a path
1838  *
1839  * This creates a new vfsmount, which will be the clone of @path.  The new will
1840  * not be attached anywhere in the namespace and will be private (i.e. changes
1841  * to the originating mount won't be propagated into this).
1842  *
1843  * Release with mntput().
1844  */
1845 struct vfsmount *clone_private_mount(const struct path *path)
1846 {
1847 	struct mount *old_mnt = real_mount(path->mnt);
1848 	struct mount *new_mnt;
1849 
1850 	if (IS_MNT_UNBINDABLE(old_mnt))
1851 		return ERR_PTR(-EINVAL);
1852 
1853 	new_mnt = clone_mnt(old_mnt, path->dentry, CL_PRIVATE);
1854 	if (IS_ERR(new_mnt))
1855 		return ERR_CAST(new_mnt);
1856 
1857 	return &new_mnt->mnt;
1858 }
1859 EXPORT_SYMBOL_GPL(clone_private_mount);
1860 
1861 int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
1862 		   struct vfsmount *root)
1863 {
1864 	struct mount *mnt;
1865 	int res = f(root, arg);
1866 	if (res)
1867 		return res;
1868 	list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) {
1869 		res = f(&mnt->mnt, arg);
1870 		if (res)
1871 			return res;
1872 	}
1873 	return 0;
1874 }
1875 
1876 static void cleanup_group_ids(struct mount *mnt, struct mount *end)
1877 {
1878 	struct mount *p;
1879 
1880 	for (p = mnt; p != end; p = next_mnt(p, mnt)) {
1881 		if (p->mnt_group_id && !IS_MNT_SHARED(p))
1882 			mnt_release_group_id(p);
1883 	}
1884 }
1885 
1886 static int invent_group_ids(struct mount *mnt, bool recurse)
1887 {
1888 	struct mount *p;
1889 
1890 	for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
1891 		if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
1892 			int err = mnt_alloc_group_id(p);
1893 			if (err) {
1894 				cleanup_group_ids(mnt, p);
1895 				return err;
1896 			}
1897 		}
1898 	}
1899 
1900 	return 0;
1901 }
1902 
1903 int count_mounts(struct mnt_namespace *ns, struct mount *mnt)
1904 {
1905 	unsigned int max = READ_ONCE(sysctl_mount_max);
1906 	unsigned int mounts = 0, old, pending, sum;
1907 	struct mount *p;
1908 
1909 	for (p = mnt; p; p = next_mnt(p, mnt))
1910 		mounts++;
1911 
1912 	old = ns->mounts;
1913 	pending = ns->pending_mounts;
1914 	sum = old + pending;
1915 	if ((old > sum) ||
1916 	    (pending > sum) ||
1917 	    (max < sum) ||
1918 	    (mounts > (max - sum)))
1919 		return -ENOSPC;
1920 
1921 	ns->pending_mounts = pending + mounts;
1922 	return 0;
1923 }
1924 
1925 /*
1926  *  @source_mnt : mount tree to be attached
1927  *  @nd         : place the mount tree @source_mnt is attached
1928  *  @parent_nd  : if non-null, detach the source_mnt from its parent and
1929  *  		   store the parent mount and mountpoint dentry.
1930  *  		   (done when source_mnt is moved)
1931  *
1932  *  NOTE: in the table below explains the semantics when a source mount
1933  *  of a given type is attached to a destination mount of a given type.
1934  * ---------------------------------------------------------------------------
1935  * |         BIND MOUNT OPERATION                                            |
1936  * |**************************************************************************
1937  * | source-->| shared        |       private  |       slave    | unbindable |
1938  * | dest     |               |                |                |            |
1939  * |   |      |               |                |                |            |
1940  * |   v      |               |                |                |            |
1941  * |**************************************************************************
1942  * |  shared  | shared (++)   |     shared (+) |     shared(+++)|  invalid   |
1943  * |          |               |                |                |            |
1944  * |non-shared| shared (+)    |      private   |      slave (*) |  invalid   |
1945  * ***************************************************************************
1946  * A bind operation clones the source mount and mounts the clone on the
1947  * destination mount.
1948  *
1949  * (++)  the cloned mount is propagated to all the mounts in the propagation
1950  * 	 tree of the destination mount and the cloned mount is added to
1951  * 	 the peer group of the source mount.
1952  * (+)   the cloned mount is created under the destination mount and is marked
1953  *       as shared. The cloned mount is added to the peer group of the source
1954  *       mount.
1955  * (+++) the mount is propagated to all the mounts in the propagation tree
1956  *       of the destination mount and the cloned mount is made slave
1957  *       of the same master as that of the source mount. The cloned mount
1958  *       is marked as 'shared and slave'.
1959  * (*)   the cloned mount is made a slave of the same master as that of the
1960  * 	 source mount.
1961  *
1962  * ---------------------------------------------------------------------------
1963  * |         		MOVE MOUNT OPERATION                                 |
1964  * |**************************************************************************
1965  * | source-->| shared        |       private  |       slave    | unbindable |
1966  * | dest     |               |                |                |            |
1967  * |   |      |               |                |                |            |
1968  * |   v      |               |                |                |            |
1969  * |**************************************************************************
1970  * |  shared  | shared (+)    |     shared (+) |    shared(+++) |  invalid   |
1971  * |          |               |                |                |            |
1972  * |non-shared| shared (+*)   |      private   |    slave (*)   | unbindable |
1973  * ***************************************************************************
1974  *
1975  * (+)  the mount is moved to the destination. And is then propagated to
1976  * 	all the mounts in the propagation tree of the destination mount.
1977  * (+*)  the mount is moved to the destination.
1978  * (+++)  the mount is moved to the destination and is then propagated to
1979  * 	all the mounts belonging to the destination mount's propagation tree.
1980  * 	the mount is marked as 'shared and slave'.
1981  * (*)	the mount continues to be a slave at the new location.
1982  *
1983  * if the source mount is a tree, the operations explained above is
1984  * applied to each mount in the tree.
1985  * Must be called without spinlocks held, since this function can sleep
1986  * in allocations.
1987  */
1988 static int attach_recursive_mnt(struct mount *source_mnt,
1989 			struct mount *dest_mnt,
1990 			struct mountpoint *dest_mp,
1991 			struct path *parent_path)
1992 {
1993 	HLIST_HEAD(tree_list);
1994 	struct mnt_namespace *ns = dest_mnt->mnt_ns;
1995 	struct mount *child, *p;
1996 	struct hlist_node *n;
1997 	int err;
1998 
1999 	/* Is there space to add these mounts to the mount namespace? */
2000 	if (!parent_path) {
2001 		err = count_mounts(ns, source_mnt);
2002 		if (err)
2003 			goto out;
2004 	}
2005 
2006 	if (IS_MNT_SHARED(dest_mnt)) {
2007 		err = invent_group_ids(source_mnt, true);
2008 		if (err)
2009 			goto out;
2010 		err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list);
2011 		lock_mount_hash();
2012 		if (err)
2013 			goto out_cleanup_ids;
2014 		for (p = source_mnt; p; p = next_mnt(p, source_mnt))
2015 			set_mnt_shared(p);
2016 	} else {
2017 		lock_mount_hash();
2018 	}
2019 	if (parent_path) {
2020 		detach_mnt(source_mnt, parent_path);
2021 		attach_mnt(source_mnt, dest_mnt, dest_mp);
2022 		touch_mnt_namespace(source_mnt->mnt_ns);
2023 	} else {
2024 		mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt);
2025 		commit_tree(source_mnt, NULL);
2026 	}
2027 
2028 	hlist_for_each_entry_safe(child, n, &tree_list, mnt_hash) {
2029 		struct mount *q;
2030 		hlist_del_init(&child->mnt_hash);
2031 		q = __lookup_mnt_last(&child->mnt_parent->mnt,
2032 				      child->mnt_mountpoint);
2033 		commit_tree(child, q);
2034 	}
2035 	unlock_mount_hash();
2036 
2037 	return 0;
2038 
2039  out_cleanup_ids:
2040 	while (!hlist_empty(&tree_list)) {
2041 		child = hlist_entry(tree_list.first, struct mount, mnt_hash);
2042 		child->mnt_parent->mnt_ns->pending_mounts = 0;
2043 		umount_tree(child, UMOUNT_SYNC);
2044 	}
2045 	unlock_mount_hash();
2046 	cleanup_group_ids(source_mnt, NULL);
2047  out:
2048 	ns->pending_mounts = 0;
2049 	return err;
2050 }
2051 
2052 static struct mountpoint *lock_mount(struct path *path)
2053 {
2054 	struct vfsmount *mnt;
2055 	struct dentry *dentry = path->dentry;
2056 retry:
2057 	inode_lock(dentry->d_inode);
2058 	if (unlikely(cant_mount(dentry))) {
2059 		inode_unlock(dentry->d_inode);
2060 		return ERR_PTR(-ENOENT);
2061 	}
2062 	namespace_lock();
2063 	mnt = lookup_mnt(path);
2064 	if (likely(!mnt)) {
2065 		struct mountpoint *mp = get_mountpoint(dentry);
2066 		if (IS_ERR(mp)) {
2067 			namespace_unlock();
2068 			inode_unlock(dentry->d_inode);
2069 			return mp;
2070 		}
2071 		return mp;
2072 	}
2073 	namespace_unlock();
2074 	inode_unlock(path->dentry->d_inode);
2075 	path_put(path);
2076 	path->mnt = mnt;
2077 	dentry = path->dentry = dget(mnt->mnt_root);
2078 	goto retry;
2079 }
2080 
2081 static void unlock_mount(struct mountpoint *where)
2082 {
2083 	struct dentry *dentry = where->m_dentry;
2084 
2085 	read_seqlock_excl(&mount_lock);
2086 	put_mountpoint(where);
2087 	read_sequnlock_excl(&mount_lock);
2088 
2089 	namespace_unlock();
2090 	inode_unlock(dentry->d_inode);
2091 }
2092 
2093 static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp)
2094 {
2095 	if (mnt->mnt.mnt_sb->s_flags & MS_NOUSER)
2096 		return -EINVAL;
2097 
2098 	if (d_is_dir(mp->m_dentry) !=
2099 	      d_is_dir(mnt->mnt.mnt_root))
2100 		return -ENOTDIR;
2101 
2102 	return attach_recursive_mnt(mnt, p, mp, NULL);
2103 }
2104 
2105 /*
2106  * Sanity check the flags to change_mnt_propagation.
2107  */
2108 
2109 static int flags_to_propagation_type(int flags)
2110 {
2111 	int type = flags & ~(MS_REC | MS_SILENT);
2112 
2113 	/* Fail if any non-propagation flags are set */
2114 	if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2115 		return 0;
2116 	/* Only one propagation flag should be set */
2117 	if (!is_power_of_2(type))
2118 		return 0;
2119 	return type;
2120 }
2121 
2122 /*
2123  * recursively change the type of the mountpoint.
2124  */
2125 static int do_change_type(struct path *path, int flag)
2126 {
2127 	struct mount *m;
2128 	struct mount *mnt = real_mount(path->mnt);
2129 	int recurse = flag & MS_REC;
2130 	int type;
2131 	int err = 0;
2132 
2133 	if (path->dentry != path->mnt->mnt_root)
2134 		return -EINVAL;
2135 
2136 	type = flags_to_propagation_type(flag);
2137 	if (!type)
2138 		return -EINVAL;
2139 
2140 	namespace_lock();
2141 	if (type == MS_SHARED) {
2142 		err = invent_group_ids(mnt, recurse);
2143 		if (err)
2144 			goto out_unlock;
2145 	}
2146 
2147 	lock_mount_hash();
2148 	for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
2149 		change_mnt_propagation(m, type);
2150 	unlock_mount_hash();
2151 
2152  out_unlock:
2153 	namespace_unlock();
2154 	return err;
2155 }
2156 
2157 static bool has_locked_children(struct mount *mnt, struct dentry *dentry)
2158 {
2159 	struct mount *child;
2160 	list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
2161 		if (!is_subdir(child->mnt_mountpoint, dentry))
2162 			continue;
2163 
2164 		if (child->mnt.mnt_flags & MNT_LOCKED)
2165 			return true;
2166 	}
2167 	return false;
2168 }
2169 
2170 /*
2171  * do loopback mount.
2172  */
2173 static int do_loopback(struct path *path, const char *old_name,
2174 				int recurse)
2175 {
2176 	struct path old_path;
2177 	struct mount *mnt = NULL, *old, *parent;
2178 	struct mountpoint *mp;
2179 	int err;
2180 	if (!old_name || !*old_name)
2181 		return -EINVAL;
2182 	err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
2183 	if (err)
2184 		return err;
2185 
2186 	err = -EINVAL;
2187 	if (mnt_ns_loop(old_path.dentry))
2188 		goto out;
2189 
2190 	mp = lock_mount(path);
2191 	err = PTR_ERR(mp);
2192 	if (IS_ERR(mp))
2193 		goto out;
2194 
2195 	old = real_mount(old_path.mnt);
2196 	parent = real_mount(path->mnt);
2197 
2198 	err = -EINVAL;
2199 	if (IS_MNT_UNBINDABLE(old))
2200 		goto out2;
2201 
2202 	if (!check_mnt(parent))
2203 		goto out2;
2204 
2205 	if (!check_mnt(old) && old_path.dentry->d_op != &ns_dentry_operations)
2206 		goto out2;
2207 
2208 	if (!recurse && has_locked_children(old, old_path.dentry))
2209 		goto out2;
2210 
2211 	if (recurse)
2212 		mnt = copy_tree(old, old_path.dentry, CL_COPY_MNT_NS_FILE);
2213 	else
2214 		mnt = clone_mnt(old, old_path.dentry, 0);
2215 
2216 	if (IS_ERR(mnt)) {
2217 		err = PTR_ERR(mnt);
2218 		goto out2;
2219 	}
2220 
2221 	mnt->mnt.mnt_flags &= ~MNT_LOCKED;
2222 
2223 	err = graft_tree(mnt, parent, mp);
2224 	if (err) {
2225 		lock_mount_hash();
2226 		umount_tree(mnt, UMOUNT_SYNC);
2227 		unlock_mount_hash();
2228 	}
2229 out2:
2230 	unlock_mount(mp);
2231 out:
2232 	path_put(&old_path);
2233 	return err;
2234 }
2235 
2236 static int change_mount_flags(struct vfsmount *mnt, int ms_flags)
2237 {
2238 	int error = 0;
2239 	int readonly_request = 0;
2240 
2241 	if (ms_flags & MS_RDONLY)
2242 		readonly_request = 1;
2243 	if (readonly_request == __mnt_is_readonly(mnt))
2244 		return 0;
2245 
2246 	if (readonly_request)
2247 		error = mnt_make_readonly(real_mount(mnt));
2248 	else
2249 		__mnt_unmake_readonly(real_mount(mnt));
2250 	return error;
2251 }
2252 
2253 /*
2254  * change filesystem flags. dir should be a physical root of filesystem.
2255  * If you've mounted a non-root directory somewhere and want to do remount
2256  * on it - tough luck.
2257  */
2258 static int do_remount(struct path *path, int flags, int mnt_flags,
2259 		      void *data)
2260 {
2261 	int err;
2262 	struct super_block *sb = path->mnt->mnt_sb;
2263 	struct mount *mnt = real_mount(path->mnt);
2264 
2265 	if (!check_mnt(mnt))
2266 		return -EINVAL;
2267 
2268 	if (path->dentry != path->mnt->mnt_root)
2269 		return -EINVAL;
2270 
2271 	/* Don't allow changing of locked mnt flags.
2272 	 *
2273 	 * No locks need to be held here while testing the various
2274 	 * MNT_LOCK flags because those flags can never be cleared
2275 	 * once they are set.
2276 	 */
2277 	if ((mnt->mnt.mnt_flags & MNT_LOCK_READONLY) &&
2278 	    !(mnt_flags & MNT_READONLY)) {
2279 		return -EPERM;
2280 	}
2281 	if ((mnt->mnt.mnt_flags & MNT_LOCK_NODEV) &&
2282 	    !(mnt_flags & MNT_NODEV)) {
2283 		return -EPERM;
2284 	}
2285 	if ((mnt->mnt.mnt_flags & MNT_LOCK_NOSUID) &&
2286 	    !(mnt_flags & MNT_NOSUID)) {
2287 		return -EPERM;
2288 	}
2289 	if ((mnt->mnt.mnt_flags & MNT_LOCK_NOEXEC) &&
2290 	    !(mnt_flags & MNT_NOEXEC)) {
2291 		return -EPERM;
2292 	}
2293 	if ((mnt->mnt.mnt_flags & MNT_LOCK_ATIME) &&
2294 	    ((mnt->mnt.mnt_flags & MNT_ATIME_MASK) != (mnt_flags & MNT_ATIME_MASK))) {
2295 		return -EPERM;
2296 	}
2297 
2298 	err = security_sb_remount(sb, data);
2299 	if (err)
2300 		return err;
2301 
2302 	down_write(&sb->s_umount);
2303 	if (flags & MS_BIND)
2304 		err = change_mount_flags(path->mnt, flags);
2305 	else if (!capable(CAP_SYS_ADMIN))
2306 		err = -EPERM;
2307 	else
2308 		err = do_remount_sb(sb, flags, data, 0);
2309 	if (!err) {
2310 		lock_mount_hash();
2311 		mnt_flags |= mnt->mnt.mnt_flags & ~MNT_USER_SETTABLE_MASK;
2312 		mnt->mnt.mnt_flags = mnt_flags;
2313 		touch_mnt_namespace(mnt->mnt_ns);
2314 		unlock_mount_hash();
2315 	}
2316 	up_write(&sb->s_umount);
2317 	return err;
2318 }
2319 
2320 static inline int tree_contains_unbindable(struct mount *mnt)
2321 {
2322 	struct mount *p;
2323 	for (p = mnt; p; p = next_mnt(p, mnt)) {
2324 		if (IS_MNT_UNBINDABLE(p))
2325 			return 1;
2326 	}
2327 	return 0;
2328 }
2329 
2330 static int do_move_mount(struct path *path, const char *old_name)
2331 {
2332 	struct path old_path, parent_path;
2333 	struct mount *p;
2334 	struct mount *old;
2335 	struct mountpoint *mp;
2336 	int err;
2337 	if (!old_name || !*old_name)
2338 		return -EINVAL;
2339 	err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
2340 	if (err)
2341 		return err;
2342 
2343 	mp = lock_mount(path);
2344 	err = PTR_ERR(mp);
2345 	if (IS_ERR(mp))
2346 		goto out;
2347 
2348 	old = real_mount(old_path.mnt);
2349 	p = real_mount(path->mnt);
2350 
2351 	err = -EINVAL;
2352 	if (!check_mnt(p) || !check_mnt(old))
2353 		goto out1;
2354 
2355 	if (old->mnt.mnt_flags & MNT_LOCKED)
2356 		goto out1;
2357 
2358 	err = -EINVAL;
2359 	if (old_path.dentry != old_path.mnt->mnt_root)
2360 		goto out1;
2361 
2362 	if (!mnt_has_parent(old))
2363 		goto out1;
2364 
2365 	if (d_is_dir(path->dentry) !=
2366 	      d_is_dir(old_path.dentry))
2367 		goto out1;
2368 	/*
2369 	 * Don't move a mount residing in a shared parent.
2370 	 */
2371 	if (IS_MNT_SHARED(old->mnt_parent))
2372 		goto out1;
2373 	/*
2374 	 * Don't move a mount tree containing unbindable mounts to a destination
2375 	 * mount which is shared.
2376 	 */
2377 	if (IS_MNT_SHARED(p) && tree_contains_unbindable(old))
2378 		goto out1;
2379 	err = -ELOOP;
2380 	for (; mnt_has_parent(p); p = p->mnt_parent)
2381 		if (p == old)
2382 			goto out1;
2383 
2384 	err = attach_recursive_mnt(old, real_mount(path->mnt), mp, &parent_path);
2385 	if (err)
2386 		goto out1;
2387 
2388 	/* if the mount is moved, it should no longer be expire
2389 	 * automatically */
2390 	list_del_init(&old->mnt_expire);
2391 out1:
2392 	unlock_mount(mp);
2393 out:
2394 	if (!err)
2395 		path_put(&parent_path);
2396 	path_put(&old_path);
2397 	return err;
2398 }
2399 
2400 static struct vfsmount *fs_set_subtype(struct vfsmount *mnt, const char *fstype)
2401 {
2402 	int err;
2403 	const char *subtype = strchr(fstype, '.');
2404 	if (subtype) {
2405 		subtype++;
2406 		err = -EINVAL;
2407 		if (!subtype[0])
2408 			goto err;
2409 	} else
2410 		subtype = "";
2411 
2412 	mnt->mnt_sb->s_subtype = kstrdup(subtype, GFP_KERNEL);
2413 	err = -ENOMEM;
2414 	if (!mnt->mnt_sb->s_subtype)
2415 		goto err;
2416 	return mnt;
2417 
2418  err:
2419 	mntput(mnt);
2420 	return ERR_PTR(err);
2421 }
2422 
2423 /*
2424  * add a mount into a namespace's mount tree
2425  */
2426 static int do_add_mount(struct mount *newmnt, struct path *path, int mnt_flags)
2427 {
2428 	struct mountpoint *mp;
2429 	struct mount *parent;
2430 	int err;
2431 
2432 	mnt_flags &= ~MNT_INTERNAL_FLAGS;
2433 
2434 	mp = lock_mount(path);
2435 	if (IS_ERR(mp))
2436 		return PTR_ERR(mp);
2437 
2438 	parent = real_mount(path->mnt);
2439 	err = -EINVAL;
2440 	if (unlikely(!check_mnt(parent))) {
2441 		/* that's acceptable only for automounts done in private ns */
2442 		if (!(mnt_flags & MNT_SHRINKABLE))
2443 			goto unlock;
2444 		/* ... and for those we'd better have mountpoint still alive */
2445 		if (!parent->mnt_ns)
2446 			goto unlock;
2447 	}
2448 
2449 	/* Refuse the same filesystem on the same mount point */
2450 	err = -EBUSY;
2451 	if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb &&
2452 	    path->mnt->mnt_root == path->dentry)
2453 		goto unlock;
2454 
2455 	err = -EINVAL;
2456 	if (d_is_symlink(newmnt->mnt.mnt_root))
2457 		goto unlock;
2458 
2459 	newmnt->mnt.mnt_flags = mnt_flags;
2460 	err = graft_tree(newmnt, parent, mp);
2461 
2462 unlock:
2463 	unlock_mount(mp);
2464 	return err;
2465 }
2466 
2467 static bool mount_too_revealing(struct vfsmount *mnt, int *new_mnt_flags);
2468 
2469 /*
2470  * create a new mount for userspace and request it to be added into the
2471  * namespace's tree
2472  */
2473 static int do_new_mount(struct path *path, const char *fstype, int flags,
2474 			int mnt_flags, const char *name, void *data)
2475 {
2476 	struct file_system_type *type;
2477 	struct vfsmount *mnt;
2478 	int err;
2479 
2480 	if (!fstype)
2481 		return -EINVAL;
2482 
2483 	type = get_fs_type(fstype);
2484 	if (!type)
2485 		return -ENODEV;
2486 
2487 	mnt = vfs_kern_mount(type, flags, name, data);
2488 	if (!IS_ERR(mnt) && (type->fs_flags & FS_HAS_SUBTYPE) &&
2489 	    !mnt->mnt_sb->s_subtype)
2490 		mnt = fs_set_subtype(mnt, fstype);
2491 
2492 	put_filesystem(type);
2493 	if (IS_ERR(mnt))
2494 		return PTR_ERR(mnt);
2495 
2496 	if (mount_too_revealing(mnt, &mnt_flags)) {
2497 		mntput(mnt);
2498 		return -EPERM;
2499 	}
2500 
2501 	err = do_add_mount(real_mount(mnt), path, mnt_flags);
2502 	if (err)
2503 		mntput(mnt);
2504 	return err;
2505 }
2506 
2507 int finish_automount(struct vfsmount *m, struct path *path)
2508 {
2509 	struct mount *mnt = real_mount(m);
2510 	int err;
2511 	/* The new mount record should have at least 2 refs to prevent it being
2512 	 * expired before we get a chance to add it
2513 	 */
2514 	BUG_ON(mnt_get_count(mnt) < 2);
2515 
2516 	if (m->mnt_sb == path->mnt->mnt_sb &&
2517 	    m->mnt_root == path->dentry) {
2518 		err = -ELOOP;
2519 		goto fail;
2520 	}
2521 
2522 	err = do_add_mount(mnt, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
2523 	if (!err)
2524 		return 0;
2525 fail:
2526 	/* remove m from any expiration list it may be on */
2527 	if (!list_empty(&mnt->mnt_expire)) {
2528 		namespace_lock();
2529 		list_del_init(&mnt->mnt_expire);
2530 		namespace_unlock();
2531 	}
2532 	mntput(m);
2533 	mntput(m);
2534 	return err;
2535 }
2536 
2537 /**
2538  * mnt_set_expiry - Put a mount on an expiration list
2539  * @mnt: The mount to list.
2540  * @expiry_list: The list to add the mount to.
2541  */
2542 void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
2543 {
2544 	namespace_lock();
2545 
2546 	list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
2547 
2548 	namespace_unlock();
2549 }
2550 EXPORT_SYMBOL(mnt_set_expiry);
2551 
2552 /*
2553  * process a list of expirable mountpoints with the intent of discarding any
2554  * mountpoints that aren't in use and haven't been touched since last we came
2555  * here
2556  */
2557 void mark_mounts_for_expiry(struct list_head *mounts)
2558 {
2559 	struct mount *mnt, *next;
2560 	LIST_HEAD(graveyard);
2561 
2562 	if (list_empty(mounts))
2563 		return;
2564 
2565 	namespace_lock();
2566 	lock_mount_hash();
2567 
2568 	/* extract from the expiration list every vfsmount that matches the
2569 	 * following criteria:
2570 	 * - only referenced by its parent vfsmount
2571 	 * - still marked for expiry (marked on the last call here; marks are
2572 	 *   cleared by mntput())
2573 	 */
2574 	list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
2575 		if (!xchg(&mnt->mnt_expiry_mark, 1) ||
2576 			propagate_mount_busy(mnt, 1))
2577 			continue;
2578 		list_move(&mnt->mnt_expire, &graveyard);
2579 	}
2580 	while (!list_empty(&graveyard)) {
2581 		mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
2582 		touch_mnt_namespace(mnt->mnt_ns);
2583 		umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
2584 	}
2585 	unlock_mount_hash();
2586 	namespace_unlock();
2587 }
2588 
2589 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
2590 
2591 /*
2592  * Ripoff of 'select_parent()'
2593  *
2594  * search the list of submounts for a given mountpoint, and move any
2595  * shrinkable submounts to the 'graveyard' list.
2596  */
2597 static int select_submounts(struct mount *parent, struct list_head *graveyard)
2598 {
2599 	struct mount *this_parent = parent;
2600 	struct list_head *next;
2601 	int found = 0;
2602 
2603 repeat:
2604 	next = this_parent->mnt_mounts.next;
2605 resume:
2606 	while (next != &this_parent->mnt_mounts) {
2607 		struct list_head *tmp = next;
2608 		struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
2609 
2610 		next = tmp->next;
2611 		if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
2612 			continue;
2613 		/*
2614 		 * Descend a level if the d_mounts list is non-empty.
2615 		 */
2616 		if (!list_empty(&mnt->mnt_mounts)) {
2617 			this_parent = mnt;
2618 			goto repeat;
2619 		}
2620 
2621 		if (!propagate_mount_busy(mnt, 1)) {
2622 			list_move_tail(&mnt->mnt_expire, graveyard);
2623 			found++;
2624 		}
2625 	}
2626 	/*
2627 	 * All done at this level ... ascend and resume the search
2628 	 */
2629 	if (this_parent != parent) {
2630 		next = this_parent->mnt_child.next;
2631 		this_parent = this_parent->mnt_parent;
2632 		goto resume;
2633 	}
2634 	return found;
2635 }
2636 
2637 /*
2638  * process a list of expirable mountpoints with the intent of discarding any
2639  * submounts of a specific parent mountpoint
2640  *
2641  * mount_lock must be held for write
2642  */
2643 static void shrink_submounts(struct mount *mnt)
2644 {
2645 	LIST_HEAD(graveyard);
2646 	struct mount *m;
2647 
2648 	/* extract submounts of 'mountpoint' from the expiration list */
2649 	while (select_submounts(mnt, &graveyard)) {
2650 		while (!list_empty(&graveyard)) {
2651 			m = list_first_entry(&graveyard, struct mount,
2652 						mnt_expire);
2653 			touch_mnt_namespace(m->mnt_ns);
2654 			umount_tree(m, UMOUNT_PROPAGATE|UMOUNT_SYNC);
2655 		}
2656 	}
2657 }
2658 
2659 /*
2660  * Some copy_from_user() implementations do not return the exact number of
2661  * bytes remaining to copy on a fault.  But copy_mount_options() requires that.
2662  * Note that this function differs from copy_from_user() in that it will oops
2663  * on bad values of `to', rather than returning a short copy.
2664  */
2665 static long exact_copy_from_user(void *to, const void __user * from,
2666 				 unsigned long n)
2667 {
2668 	char *t = to;
2669 	const char __user *f = from;
2670 	char c;
2671 
2672 	if (!access_ok(VERIFY_READ, from, n))
2673 		return n;
2674 
2675 	while (n) {
2676 		if (__get_user(c, f)) {
2677 			memset(t, 0, n);
2678 			break;
2679 		}
2680 		*t++ = c;
2681 		f++;
2682 		n--;
2683 	}
2684 	return n;
2685 }
2686 
2687 void *copy_mount_options(const void __user * data)
2688 {
2689 	int i;
2690 	unsigned long size;
2691 	char *copy;
2692 
2693 	if (!data)
2694 		return NULL;
2695 
2696 	copy = kmalloc(PAGE_SIZE, GFP_KERNEL);
2697 	if (!copy)
2698 		return ERR_PTR(-ENOMEM);
2699 
2700 	/* We only care that *some* data at the address the user
2701 	 * gave us is valid.  Just in case, we'll zero
2702 	 * the remainder of the page.
2703 	 */
2704 	/* copy_from_user cannot cross TASK_SIZE ! */
2705 	size = TASK_SIZE - (unsigned long)data;
2706 	if (size > PAGE_SIZE)
2707 		size = PAGE_SIZE;
2708 
2709 	i = size - exact_copy_from_user(copy, data, size);
2710 	if (!i) {
2711 		kfree(copy);
2712 		return ERR_PTR(-EFAULT);
2713 	}
2714 	if (i != PAGE_SIZE)
2715 		memset(copy + i, 0, PAGE_SIZE - i);
2716 	return copy;
2717 }
2718 
2719 char *copy_mount_string(const void __user *data)
2720 {
2721 	return data ? strndup_user(data, PAGE_SIZE) : NULL;
2722 }
2723 
2724 /*
2725  * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
2726  * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
2727  *
2728  * data is a (void *) that can point to any structure up to
2729  * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
2730  * information (or be NULL).
2731  *
2732  * Pre-0.97 versions of mount() didn't have a flags word.
2733  * When the flags word was introduced its top half was required
2734  * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
2735  * Therefore, if this magic number is present, it carries no information
2736  * and must be discarded.
2737  */
2738 long do_mount(const char *dev_name, const char __user *dir_name,
2739 		const char *type_page, unsigned long flags, void *data_page)
2740 {
2741 	struct path path;
2742 	int retval = 0;
2743 	int mnt_flags = 0;
2744 
2745 	/* Discard magic */
2746 	if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
2747 		flags &= ~MS_MGC_MSK;
2748 
2749 	/* Basic sanity checks */
2750 	if (data_page)
2751 		((char *)data_page)[PAGE_SIZE - 1] = 0;
2752 
2753 	/* ... and get the mountpoint */
2754 	retval = user_path(dir_name, &path);
2755 	if (retval)
2756 		return retval;
2757 
2758 	retval = security_sb_mount(dev_name, &path,
2759 				   type_page, flags, data_page);
2760 	if (!retval && !may_mount())
2761 		retval = -EPERM;
2762 	if (!retval && (flags & MS_MANDLOCK) && !may_mandlock())
2763 		retval = -EPERM;
2764 	if (retval)
2765 		goto dput_out;
2766 
2767 	/* Default to relatime unless overriden */
2768 	if (!(flags & MS_NOATIME))
2769 		mnt_flags |= MNT_RELATIME;
2770 
2771 	/* Separate the per-mountpoint flags */
2772 	if (flags & MS_NOSUID)
2773 		mnt_flags |= MNT_NOSUID;
2774 	if (flags & MS_NODEV)
2775 		mnt_flags |= MNT_NODEV;
2776 	if (flags & MS_NOEXEC)
2777 		mnt_flags |= MNT_NOEXEC;
2778 	if (flags & MS_NOATIME)
2779 		mnt_flags |= MNT_NOATIME;
2780 	if (flags & MS_NODIRATIME)
2781 		mnt_flags |= MNT_NODIRATIME;
2782 	if (flags & MS_STRICTATIME)
2783 		mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
2784 	if (flags & MS_RDONLY)
2785 		mnt_flags |= MNT_READONLY;
2786 
2787 	/* The default atime for remount is preservation */
2788 	if ((flags & MS_REMOUNT) &&
2789 	    ((flags & (MS_NOATIME | MS_NODIRATIME | MS_RELATIME |
2790 		       MS_STRICTATIME)) == 0)) {
2791 		mnt_flags &= ~MNT_ATIME_MASK;
2792 		mnt_flags |= path.mnt->mnt_flags & MNT_ATIME_MASK;
2793 	}
2794 
2795 	flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE | MS_BORN |
2796 		   MS_NOATIME | MS_NODIRATIME | MS_RELATIME| MS_KERNMOUNT |
2797 		   MS_STRICTATIME | MS_NOREMOTELOCK);
2798 
2799 	if (flags & MS_REMOUNT)
2800 		retval = do_remount(&path, flags & ~MS_REMOUNT, mnt_flags,
2801 				    data_page);
2802 	else if (flags & MS_BIND)
2803 		retval = do_loopback(&path, dev_name, flags & MS_REC);
2804 	else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2805 		retval = do_change_type(&path, flags);
2806 	else if (flags & MS_MOVE)
2807 		retval = do_move_mount(&path, dev_name);
2808 	else
2809 		retval = do_new_mount(&path, type_page, flags, mnt_flags,
2810 				      dev_name, data_page);
2811 dput_out:
2812 	path_put(&path);
2813 	return retval;
2814 }
2815 
2816 static struct ucounts *inc_mnt_namespaces(struct user_namespace *ns)
2817 {
2818 	return inc_ucount(ns, current_euid(), UCOUNT_MNT_NAMESPACES);
2819 }
2820 
2821 static void dec_mnt_namespaces(struct ucounts *ucounts)
2822 {
2823 	dec_ucount(ucounts, UCOUNT_MNT_NAMESPACES);
2824 }
2825 
2826 static void free_mnt_ns(struct mnt_namespace *ns)
2827 {
2828 	ns_free_inum(&ns->ns);
2829 	dec_mnt_namespaces(ns->ucounts);
2830 	put_user_ns(ns->user_ns);
2831 	kfree(ns);
2832 }
2833 
2834 /*
2835  * Assign a sequence number so we can detect when we attempt to bind
2836  * mount a reference to an older mount namespace into the current
2837  * mount namespace, preventing reference counting loops.  A 64bit
2838  * number incrementing at 10Ghz will take 12,427 years to wrap which
2839  * is effectively never, so we can ignore the possibility.
2840  */
2841 static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1);
2842 
2843 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns)
2844 {
2845 	struct mnt_namespace *new_ns;
2846 	struct ucounts *ucounts;
2847 	int ret;
2848 
2849 	ucounts = inc_mnt_namespaces(user_ns);
2850 	if (!ucounts)
2851 		return ERR_PTR(-ENOSPC);
2852 
2853 	new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
2854 	if (!new_ns) {
2855 		dec_mnt_namespaces(ucounts);
2856 		return ERR_PTR(-ENOMEM);
2857 	}
2858 	ret = ns_alloc_inum(&new_ns->ns);
2859 	if (ret) {
2860 		kfree(new_ns);
2861 		dec_mnt_namespaces(ucounts);
2862 		return ERR_PTR(ret);
2863 	}
2864 	new_ns->ns.ops = &mntns_operations;
2865 	new_ns->seq = atomic64_add_return(1, &mnt_ns_seq);
2866 	atomic_set(&new_ns->count, 1);
2867 	new_ns->root = NULL;
2868 	INIT_LIST_HEAD(&new_ns->list);
2869 	init_waitqueue_head(&new_ns->poll);
2870 	new_ns->event = 0;
2871 	new_ns->user_ns = get_user_ns(user_ns);
2872 	new_ns->ucounts = ucounts;
2873 	new_ns->mounts = 0;
2874 	new_ns->pending_mounts = 0;
2875 	return new_ns;
2876 }
2877 
2878 __latent_entropy
2879 struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
2880 		struct user_namespace *user_ns, struct fs_struct *new_fs)
2881 {
2882 	struct mnt_namespace *new_ns;
2883 	struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
2884 	struct mount *p, *q;
2885 	struct mount *old;
2886 	struct mount *new;
2887 	int copy_flags;
2888 
2889 	BUG_ON(!ns);
2890 
2891 	if (likely(!(flags & CLONE_NEWNS))) {
2892 		get_mnt_ns(ns);
2893 		return ns;
2894 	}
2895 
2896 	old = ns->root;
2897 
2898 	new_ns = alloc_mnt_ns(user_ns);
2899 	if (IS_ERR(new_ns))
2900 		return new_ns;
2901 
2902 	namespace_lock();
2903 	/* First pass: copy the tree topology */
2904 	copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE;
2905 	if (user_ns != ns->user_ns)
2906 		copy_flags |= CL_SHARED_TO_SLAVE | CL_UNPRIVILEGED;
2907 	new = copy_tree(old, old->mnt.mnt_root, copy_flags);
2908 	if (IS_ERR(new)) {
2909 		namespace_unlock();
2910 		free_mnt_ns(new_ns);
2911 		return ERR_CAST(new);
2912 	}
2913 	new_ns->root = new;
2914 	list_add_tail(&new_ns->list, &new->mnt_list);
2915 
2916 	/*
2917 	 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
2918 	 * as belonging to new namespace.  We have already acquired a private
2919 	 * fs_struct, so tsk->fs->lock is not needed.
2920 	 */
2921 	p = old;
2922 	q = new;
2923 	while (p) {
2924 		q->mnt_ns = new_ns;
2925 		new_ns->mounts++;
2926 		if (new_fs) {
2927 			if (&p->mnt == new_fs->root.mnt) {
2928 				new_fs->root.mnt = mntget(&q->mnt);
2929 				rootmnt = &p->mnt;
2930 			}
2931 			if (&p->mnt == new_fs->pwd.mnt) {
2932 				new_fs->pwd.mnt = mntget(&q->mnt);
2933 				pwdmnt = &p->mnt;
2934 			}
2935 		}
2936 		p = next_mnt(p, old);
2937 		q = next_mnt(q, new);
2938 		if (!q)
2939 			break;
2940 		while (p->mnt.mnt_root != q->mnt.mnt_root)
2941 			p = next_mnt(p, old);
2942 	}
2943 	namespace_unlock();
2944 
2945 	if (rootmnt)
2946 		mntput(rootmnt);
2947 	if (pwdmnt)
2948 		mntput(pwdmnt);
2949 
2950 	return new_ns;
2951 }
2952 
2953 /**
2954  * create_mnt_ns - creates a private namespace and adds a root filesystem
2955  * @mnt: pointer to the new root filesystem mountpoint
2956  */
2957 static struct mnt_namespace *create_mnt_ns(struct vfsmount *m)
2958 {
2959 	struct mnt_namespace *new_ns = alloc_mnt_ns(&init_user_ns);
2960 	if (!IS_ERR(new_ns)) {
2961 		struct mount *mnt = real_mount(m);
2962 		mnt->mnt_ns = new_ns;
2963 		new_ns->root = mnt;
2964 		new_ns->mounts++;
2965 		list_add(&mnt->mnt_list, &new_ns->list);
2966 	} else {
2967 		mntput(m);
2968 	}
2969 	return new_ns;
2970 }
2971 
2972 struct dentry *mount_subtree(struct vfsmount *mnt, const char *name)
2973 {
2974 	struct mnt_namespace *ns;
2975 	struct super_block *s;
2976 	struct path path;
2977 	int err;
2978 
2979 	ns = create_mnt_ns(mnt);
2980 	if (IS_ERR(ns))
2981 		return ERR_CAST(ns);
2982 
2983 	err = vfs_path_lookup(mnt->mnt_root, mnt,
2984 			name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
2985 
2986 	put_mnt_ns(ns);
2987 
2988 	if (err)
2989 		return ERR_PTR(err);
2990 
2991 	/* trade a vfsmount reference for active sb one */
2992 	s = path.mnt->mnt_sb;
2993 	atomic_inc(&s->s_active);
2994 	mntput(path.mnt);
2995 	/* lock the sucker */
2996 	down_write(&s->s_umount);
2997 	/* ... and return the root of (sub)tree on it */
2998 	return path.dentry;
2999 }
3000 EXPORT_SYMBOL(mount_subtree);
3001 
3002 SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
3003 		char __user *, type, unsigned long, flags, void __user *, data)
3004 {
3005 	int ret;
3006 	char *kernel_type;
3007 	char *kernel_dev;
3008 	void *options;
3009 
3010 	kernel_type = copy_mount_string(type);
3011 	ret = PTR_ERR(kernel_type);
3012 	if (IS_ERR(kernel_type))
3013 		goto out_type;
3014 
3015 	kernel_dev = copy_mount_string(dev_name);
3016 	ret = PTR_ERR(kernel_dev);
3017 	if (IS_ERR(kernel_dev))
3018 		goto out_dev;
3019 
3020 	options = copy_mount_options(data);
3021 	ret = PTR_ERR(options);
3022 	if (IS_ERR(options))
3023 		goto out_data;
3024 
3025 	ret = do_mount(kernel_dev, dir_name, kernel_type, flags, options);
3026 
3027 	kfree(options);
3028 out_data:
3029 	kfree(kernel_dev);
3030 out_dev:
3031 	kfree(kernel_type);
3032 out_type:
3033 	return ret;
3034 }
3035 
3036 /*
3037  * Return true if path is reachable from root
3038  *
3039  * namespace_sem or mount_lock is held
3040  */
3041 bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
3042 			 const struct path *root)
3043 {
3044 	while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
3045 		dentry = mnt->mnt_mountpoint;
3046 		mnt = mnt->mnt_parent;
3047 	}
3048 	return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
3049 }
3050 
3051 bool path_is_under(const struct path *path1, const struct path *path2)
3052 {
3053 	bool res;
3054 	read_seqlock_excl(&mount_lock);
3055 	res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
3056 	read_sequnlock_excl(&mount_lock);
3057 	return res;
3058 }
3059 EXPORT_SYMBOL(path_is_under);
3060 
3061 /*
3062  * pivot_root Semantics:
3063  * Moves the root file system of the current process to the directory put_old,
3064  * makes new_root as the new root file system of the current process, and sets
3065  * root/cwd of all processes which had them on the current root to new_root.
3066  *
3067  * Restrictions:
3068  * The new_root and put_old must be directories, and  must not be on the
3069  * same file  system as the current process root. The put_old  must  be
3070  * underneath new_root,  i.e. adding a non-zero number of /.. to the string
3071  * pointed to by put_old must yield the same directory as new_root. No other
3072  * file system may be mounted on put_old. After all, new_root is a mountpoint.
3073  *
3074  * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
3075  * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
3076  * in this situation.
3077  *
3078  * Notes:
3079  *  - we don't move root/cwd if they are not at the root (reason: if something
3080  *    cared enough to change them, it's probably wrong to force them elsewhere)
3081  *  - it's okay to pick a root that isn't the root of a file system, e.g.
3082  *    /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
3083  *    though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
3084  *    first.
3085  */
3086 SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
3087 		const char __user *, put_old)
3088 {
3089 	struct path new, old, parent_path, root_parent, root;
3090 	struct mount *new_mnt, *root_mnt, *old_mnt;
3091 	struct mountpoint *old_mp, *root_mp;
3092 	int error;
3093 
3094 	if (!may_mount())
3095 		return -EPERM;
3096 
3097 	error = user_path_dir(new_root, &new);
3098 	if (error)
3099 		goto out0;
3100 
3101 	error = user_path_dir(put_old, &old);
3102 	if (error)
3103 		goto out1;
3104 
3105 	error = security_sb_pivotroot(&old, &new);
3106 	if (error)
3107 		goto out2;
3108 
3109 	get_fs_root(current->fs, &root);
3110 	old_mp = lock_mount(&old);
3111 	error = PTR_ERR(old_mp);
3112 	if (IS_ERR(old_mp))
3113 		goto out3;
3114 
3115 	error = -EINVAL;
3116 	new_mnt = real_mount(new.mnt);
3117 	root_mnt = real_mount(root.mnt);
3118 	old_mnt = real_mount(old.mnt);
3119 	if (IS_MNT_SHARED(old_mnt) ||
3120 		IS_MNT_SHARED(new_mnt->mnt_parent) ||
3121 		IS_MNT_SHARED(root_mnt->mnt_parent))
3122 		goto out4;
3123 	if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
3124 		goto out4;
3125 	if (new_mnt->mnt.mnt_flags & MNT_LOCKED)
3126 		goto out4;
3127 	error = -ENOENT;
3128 	if (d_unlinked(new.dentry))
3129 		goto out4;
3130 	error = -EBUSY;
3131 	if (new_mnt == root_mnt || old_mnt == root_mnt)
3132 		goto out4; /* loop, on the same file system  */
3133 	error = -EINVAL;
3134 	if (root.mnt->mnt_root != root.dentry)
3135 		goto out4; /* not a mountpoint */
3136 	if (!mnt_has_parent(root_mnt))
3137 		goto out4; /* not attached */
3138 	root_mp = root_mnt->mnt_mp;
3139 	if (new.mnt->mnt_root != new.dentry)
3140 		goto out4; /* not a mountpoint */
3141 	if (!mnt_has_parent(new_mnt))
3142 		goto out4; /* not attached */
3143 	/* make sure we can reach put_old from new_root */
3144 	if (!is_path_reachable(old_mnt, old.dentry, &new))
3145 		goto out4;
3146 	/* make certain new is below the root */
3147 	if (!is_path_reachable(new_mnt, new.dentry, &root))
3148 		goto out4;
3149 	root_mp->m_count++; /* pin it so it won't go away */
3150 	lock_mount_hash();
3151 	detach_mnt(new_mnt, &parent_path);
3152 	detach_mnt(root_mnt, &root_parent);
3153 	if (root_mnt->mnt.mnt_flags & MNT_LOCKED) {
3154 		new_mnt->mnt.mnt_flags |= MNT_LOCKED;
3155 		root_mnt->mnt.mnt_flags &= ~MNT_LOCKED;
3156 	}
3157 	/* mount old root on put_old */
3158 	attach_mnt(root_mnt, old_mnt, old_mp);
3159 	/* mount new_root on / */
3160 	attach_mnt(new_mnt, real_mount(root_parent.mnt), root_mp);
3161 	touch_mnt_namespace(current->nsproxy->mnt_ns);
3162 	/* A moved mount should not expire automatically */
3163 	list_del_init(&new_mnt->mnt_expire);
3164 	put_mountpoint(root_mp);
3165 	unlock_mount_hash();
3166 	chroot_fs_refs(&root, &new);
3167 	error = 0;
3168 out4:
3169 	unlock_mount(old_mp);
3170 	if (!error) {
3171 		path_put(&root_parent);
3172 		path_put(&parent_path);
3173 	}
3174 out3:
3175 	path_put(&root);
3176 out2:
3177 	path_put(&old);
3178 out1:
3179 	path_put(&new);
3180 out0:
3181 	return error;
3182 }
3183 
3184 static void __init init_mount_tree(void)
3185 {
3186 	struct vfsmount *mnt;
3187 	struct mnt_namespace *ns;
3188 	struct path root;
3189 	struct file_system_type *type;
3190 
3191 	type = get_fs_type("rootfs");
3192 	if (!type)
3193 		panic("Can't find rootfs type");
3194 	mnt = vfs_kern_mount(type, 0, "rootfs", NULL);
3195 	put_filesystem(type);
3196 	if (IS_ERR(mnt))
3197 		panic("Can't create rootfs");
3198 
3199 	ns = create_mnt_ns(mnt);
3200 	if (IS_ERR(ns))
3201 		panic("Can't allocate initial namespace");
3202 
3203 	init_task.nsproxy->mnt_ns = ns;
3204 	get_mnt_ns(ns);
3205 
3206 	root.mnt = mnt;
3207 	root.dentry = mnt->mnt_root;
3208 	mnt->mnt_flags |= MNT_LOCKED;
3209 
3210 	set_fs_pwd(current->fs, &root);
3211 	set_fs_root(current->fs, &root);
3212 }
3213 
3214 void __init mnt_init(void)
3215 {
3216 	unsigned u;
3217 	int err;
3218 
3219 	mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
3220 			0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
3221 
3222 	mount_hashtable = alloc_large_system_hash("Mount-cache",
3223 				sizeof(struct hlist_head),
3224 				mhash_entries, 19,
3225 				0,
3226 				&m_hash_shift, &m_hash_mask, 0, 0);
3227 	mountpoint_hashtable = alloc_large_system_hash("Mountpoint-cache",
3228 				sizeof(struct hlist_head),
3229 				mphash_entries, 19,
3230 				0,
3231 				&mp_hash_shift, &mp_hash_mask, 0, 0);
3232 
3233 	if (!mount_hashtable || !mountpoint_hashtable)
3234 		panic("Failed to allocate mount hash table\n");
3235 
3236 	for (u = 0; u <= m_hash_mask; u++)
3237 		INIT_HLIST_HEAD(&mount_hashtable[u]);
3238 	for (u = 0; u <= mp_hash_mask; u++)
3239 		INIT_HLIST_HEAD(&mountpoint_hashtable[u]);
3240 
3241 	kernfs_init();
3242 
3243 	err = sysfs_init();
3244 	if (err)
3245 		printk(KERN_WARNING "%s: sysfs_init error: %d\n",
3246 			__func__, err);
3247 	fs_kobj = kobject_create_and_add("fs", NULL);
3248 	if (!fs_kobj)
3249 		printk(KERN_WARNING "%s: kobj create error\n", __func__);
3250 	init_rootfs();
3251 	init_mount_tree();
3252 }
3253 
3254 void put_mnt_ns(struct mnt_namespace *ns)
3255 {
3256 	if (!atomic_dec_and_test(&ns->count))
3257 		return;
3258 	drop_collected_mounts(&ns->root->mnt);
3259 	free_mnt_ns(ns);
3260 }
3261 
3262 struct vfsmount *kern_mount_data(struct file_system_type *type, void *data)
3263 {
3264 	struct vfsmount *mnt;
3265 	mnt = vfs_kern_mount(type, MS_KERNMOUNT, type->name, data);
3266 	if (!IS_ERR(mnt)) {
3267 		/*
3268 		 * it is a longterm mount, don't release mnt until
3269 		 * we unmount before file sys is unregistered
3270 		*/
3271 		real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
3272 	}
3273 	return mnt;
3274 }
3275 EXPORT_SYMBOL_GPL(kern_mount_data);
3276 
3277 void kern_unmount(struct vfsmount *mnt)
3278 {
3279 	/* release long term mount so mount point can be released */
3280 	if (!IS_ERR_OR_NULL(mnt)) {
3281 		real_mount(mnt)->mnt_ns = NULL;
3282 		synchronize_rcu();	/* yecchhh... */
3283 		mntput(mnt);
3284 	}
3285 }
3286 EXPORT_SYMBOL(kern_unmount);
3287 
3288 bool our_mnt(struct vfsmount *mnt)
3289 {
3290 	return check_mnt(real_mount(mnt));
3291 }
3292 
3293 bool current_chrooted(void)
3294 {
3295 	/* Does the current process have a non-standard root */
3296 	struct path ns_root;
3297 	struct path fs_root;
3298 	bool chrooted;
3299 
3300 	/* Find the namespace root */
3301 	ns_root.mnt = &current->nsproxy->mnt_ns->root->mnt;
3302 	ns_root.dentry = ns_root.mnt->mnt_root;
3303 	path_get(&ns_root);
3304 	while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root))
3305 		;
3306 
3307 	get_fs_root(current->fs, &fs_root);
3308 
3309 	chrooted = !path_equal(&fs_root, &ns_root);
3310 
3311 	path_put(&fs_root);
3312 	path_put(&ns_root);
3313 
3314 	return chrooted;
3315 }
3316 
3317 static bool mnt_already_visible(struct mnt_namespace *ns, struct vfsmount *new,
3318 				int *new_mnt_flags)
3319 {
3320 	int new_flags = *new_mnt_flags;
3321 	struct mount *mnt;
3322 	bool visible = false;
3323 
3324 	down_read(&namespace_sem);
3325 	list_for_each_entry(mnt, &ns->list, mnt_list) {
3326 		struct mount *child;
3327 		int mnt_flags;
3328 
3329 		if (mnt->mnt.mnt_sb->s_type != new->mnt_sb->s_type)
3330 			continue;
3331 
3332 		/* This mount is not fully visible if it's root directory
3333 		 * is not the root directory of the filesystem.
3334 		 */
3335 		if (mnt->mnt.mnt_root != mnt->mnt.mnt_sb->s_root)
3336 			continue;
3337 
3338 		/* A local view of the mount flags */
3339 		mnt_flags = mnt->mnt.mnt_flags;
3340 
3341 		/* Don't miss readonly hidden in the superblock flags */
3342 		if (mnt->mnt.mnt_sb->s_flags & MS_RDONLY)
3343 			mnt_flags |= MNT_LOCK_READONLY;
3344 
3345 		/* Verify the mount flags are equal to or more permissive
3346 		 * than the proposed new mount.
3347 		 */
3348 		if ((mnt_flags & MNT_LOCK_READONLY) &&
3349 		    !(new_flags & MNT_READONLY))
3350 			continue;
3351 		if ((mnt_flags & MNT_LOCK_ATIME) &&
3352 		    ((mnt_flags & MNT_ATIME_MASK) != (new_flags & MNT_ATIME_MASK)))
3353 			continue;
3354 
3355 		/* This mount is not fully visible if there are any
3356 		 * locked child mounts that cover anything except for
3357 		 * empty directories.
3358 		 */
3359 		list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
3360 			struct inode *inode = child->mnt_mountpoint->d_inode;
3361 			/* Only worry about locked mounts */
3362 			if (!(child->mnt.mnt_flags & MNT_LOCKED))
3363 				continue;
3364 			/* Is the directory permanetly empty? */
3365 			if (!is_empty_dir_inode(inode))
3366 				goto next;
3367 		}
3368 		/* Preserve the locked attributes */
3369 		*new_mnt_flags |= mnt_flags & (MNT_LOCK_READONLY | \
3370 					       MNT_LOCK_ATIME);
3371 		visible = true;
3372 		goto found;
3373 	next:	;
3374 	}
3375 found:
3376 	up_read(&namespace_sem);
3377 	return visible;
3378 }
3379 
3380 static bool mount_too_revealing(struct vfsmount *mnt, int *new_mnt_flags)
3381 {
3382 	const unsigned long required_iflags = SB_I_NOEXEC | SB_I_NODEV;
3383 	struct mnt_namespace *ns = current->nsproxy->mnt_ns;
3384 	unsigned long s_iflags;
3385 
3386 	if (ns->user_ns == &init_user_ns)
3387 		return false;
3388 
3389 	/* Can this filesystem be too revealing? */
3390 	s_iflags = mnt->mnt_sb->s_iflags;
3391 	if (!(s_iflags & SB_I_USERNS_VISIBLE))
3392 		return false;
3393 
3394 	if ((s_iflags & required_iflags) != required_iflags) {
3395 		WARN_ONCE(1, "Expected s_iflags to contain 0x%lx\n",
3396 			  required_iflags);
3397 		return true;
3398 	}
3399 
3400 	return !mnt_already_visible(ns, mnt, new_mnt_flags);
3401 }
3402 
3403 bool mnt_may_suid(struct vfsmount *mnt)
3404 {
3405 	/*
3406 	 * Foreign mounts (accessed via fchdir or through /proc
3407 	 * symlinks) are always treated as if they are nosuid.  This
3408 	 * prevents namespaces from trusting potentially unsafe
3409 	 * suid/sgid bits, file caps, or security labels that originate
3410 	 * in other namespaces.
3411 	 */
3412 	return !(mnt->mnt_flags & MNT_NOSUID) && check_mnt(real_mount(mnt)) &&
3413 	       current_in_userns(mnt->mnt_sb->s_user_ns);
3414 }
3415 
3416 static struct ns_common *mntns_get(struct task_struct *task)
3417 {
3418 	struct ns_common *ns = NULL;
3419 	struct nsproxy *nsproxy;
3420 
3421 	task_lock(task);
3422 	nsproxy = task->nsproxy;
3423 	if (nsproxy) {
3424 		ns = &nsproxy->mnt_ns->ns;
3425 		get_mnt_ns(to_mnt_ns(ns));
3426 	}
3427 	task_unlock(task);
3428 
3429 	return ns;
3430 }
3431 
3432 static void mntns_put(struct ns_common *ns)
3433 {
3434 	put_mnt_ns(to_mnt_ns(ns));
3435 }
3436 
3437 static int mntns_install(struct nsproxy *nsproxy, struct ns_common *ns)
3438 {
3439 	struct fs_struct *fs = current->fs;
3440 	struct mnt_namespace *mnt_ns = to_mnt_ns(ns);
3441 	struct path root;
3442 
3443 	if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) ||
3444 	    !ns_capable(current_user_ns(), CAP_SYS_CHROOT) ||
3445 	    !ns_capable(current_user_ns(), CAP_SYS_ADMIN))
3446 		return -EPERM;
3447 
3448 	if (fs->users != 1)
3449 		return -EINVAL;
3450 
3451 	get_mnt_ns(mnt_ns);
3452 	put_mnt_ns(nsproxy->mnt_ns);
3453 	nsproxy->mnt_ns = mnt_ns;
3454 
3455 	/* Find the root */
3456 	root.mnt    = &mnt_ns->root->mnt;
3457 	root.dentry = mnt_ns->root->mnt.mnt_root;
3458 	path_get(&root);
3459 	while(d_mountpoint(root.dentry) && follow_down_one(&root))
3460 		;
3461 
3462 	/* Update the pwd and root */
3463 	set_fs_pwd(fs, &root);
3464 	set_fs_root(fs, &root);
3465 
3466 	path_put(&root);
3467 	return 0;
3468 }
3469 
3470 static struct user_namespace *mntns_owner(struct ns_common *ns)
3471 {
3472 	return to_mnt_ns(ns)->user_ns;
3473 }
3474 
3475 const struct proc_ns_operations mntns_operations = {
3476 	.name		= "mnt",
3477 	.type		= CLONE_NEWNS,
3478 	.get		= mntns_get,
3479 	.put		= mntns_put,
3480 	.install	= mntns_install,
3481 	.owner		= mntns_owner,
3482 };
3483