xref: /openbmc/linux/fs/namespace.c (revision fa3354e4)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/fs/namespace.c
4  *
5  * (C) Copyright Al Viro 2000, 2001
6  *
7  * Based on code from fs/super.c, copyright Linus Torvalds and others.
8  * Heavily rewritten.
9  */
10 
11 #include <linux/syscalls.h>
12 #include <linux/export.h>
13 #include <linux/capability.h>
14 #include <linux/mnt_namespace.h>
15 #include <linux/user_namespace.h>
16 #include <linux/namei.h>
17 #include <linux/security.h>
18 #include <linux/cred.h>
19 #include <linux/idr.h>
20 #include <linux/init.h>		/* init_rootfs */
21 #include <linux/fs_struct.h>	/* get_fs_root et.al. */
22 #include <linux/fsnotify.h>	/* fsnotify_vfsmount_delete */
23 #include <linux/file.h>
24 #include <linux/uaccess.h>
25 #include <linux/proc_ns.h>
26 #include <linux/magic.h>
27 #include <linux/memblock.h>
28 #include <linux/task_work.h>
29 #include <linux/sched/task.h>
30 #include <uapi/linux/mount.h>
31 #include <linux/fs_context.h>
32 #include <linux/shmem_fs.h>
33 
34 #include "pnode.h"
35 #include "internal.h"
36 
37 /* Maximum number of mounts in a mount namespace */
38 unsigned int sysctl_mount_max __read_mostly = 100000;
39 
40 static unsigned int m_hash_mask __read_mostly;
41 static unsigned int m_hash_shift __read_mostly;
42 static unsigned int mp_hash_mask __read_mostly;
43 static unsigned int mp_hash_shift __read_mostly;
44 
45 static __initdata unsigned long mhash_entries;
46 static int __init set_mhash_entries(char *str)
47 {
48 	if (!str)
49 		return 0;
50 	mhash_entries = simple_strtoul(str, &str, 0);
51 	return 1;
52 }
53 __setup("mhash_entries=", set_mhash_entries);
54 
55 static __initdata unsigned long mphash_entries;
56 static int __init set_mphash_entries(char *str)
57 {
58 	if (!str)
59 		return 0;
60 	mphash_entries = simple_strtoul(str, &str, 0);
61 	return 1;
62 }
63 __setup("mphash_entries=", set_mphash_entries);
64 
65 static u64 event;
66 static DEFINE_IDA(mnt_id_ida);
67 static DEFINE_IDA(mnt_group_ida);
68 
69 static struct hlist_head *mount_hashtable __read_mostly;
70 static struct hlist_head *mountpoint_hashtable __read_mostly;
71 static struct kmem_cache *mnt_cache __read_mostly;
72 static DECLARE_RWSEM(namespace_sem);
73 static HLIST_HEAD(unmounted);	/* protected by namespace_sem */
74 static LIST_HEAD(ex_mountpoints); /* protected by namespace_sem */
75 
76 /* /sys/fs */
77 struct kobject *fs_kobj;
78 EXPORT_SYMBOL_GPL(fs_kobj);
79 
80 /*
81  * vfsmount lock may be taken for read to prevent changes to the
82  * vfsmount hash, ie. during mountpoint lookups or walking back
83  * up the tree.
84  *
85  * It should be taken for write in all cases where the vfsmount
86  * tree or hash is modified or when a vfsmount structure is modified.
87  */
88 __cacheline_aligned_in_smp DEFINE_SEQLOCK(mount_lock);
89 
90 static inline struct hlist_head *m_hash(struct vfsmount *mnt, struct dentry *dentry)
91 {
92 	unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
93 	tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
94 	tmp = tmp + (tmp >> m_hash_shift);
95 	return &mount_hashtable[tmp & m_hash_mask];
96 }
97 
98 static inline struct hlist_head *mp_hash(struct dentry *dentry)
99 {
100 	unsigned long tmp = ((unsigned long)dentry / L1_CACHE_BYTES);
101 	tmp = tmp + (tmp >> mp_hash_shift);
102 	return &mountpoint_hashtable[tmp & mp_hash_mask];
103 }
104 
105 static int mnt_alloc_id(struct mount *mnt)
106 {
107 	int res = ida_alloc(&mnt_id_ida, GFP_KERNEL);
108 
109 	if (res < 0)
110 		return res;
111 	mnt->mnt_id = res;
112 	return 0;
113 }
114 
115 static void mnt_free_id(struct mount *mnt)
116 {
117 	ida_free(&mnt_id_ida, mnt->mnt_id);
118 }
119 
120 /*
121  * Allocate a new peer group ID
122  */
123 static int mnt_alloc_group_id(struct mount *mnt)
124 {
125 	int res = ida_alloc_min(&mnt_group_ida, 1, GFP_KERNEL);
126 
127 	if (res < 0)
128 		return res;
129 	mnt->mnt_group_id = res;
130 	return 0;
131 }
132 
133 /*
134  * Release a peer group ID
135  */
136 void mnt_release_group_id(struct mount *mnt)
137 {
138 	ida_free(&mnt_group_ida, mnt->mnt_group_id);
139 	mnt->mnt_group_id = 0;
140 }
141 
142 /*
143  * vfsmount lock must be held for read
144  */
145 static inline void mnt_add_count(struct mount *mnt, int n)
146 {
147 #ifdef CONFIG_SMP
148 	this_cpu_add(mnt->mnt_pcp->mnt_count, n);
149 #else
150 	preempt_disable();
151 	mnt->mnt_count += n;
152 	preempt_enable();
153 #endif
154 }
155 
156 /*
157  * vfsmount lock must be held for write
158  */
159 unsigned int mnt_get_count(struct mount *mnt)
160 {
161 #ifdef CONFIG_SMP
162 	unsigned int count = 0;
163 	int cpu;
164 
165 	for_each_possible_cpu(cpu) {
166 		count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
167 	}
168 
169 	return count;
170 #else
171 	return mnt->mnt_count;
172 #endif
173 }
174 
175 static struct mount *alloc_vfsmnt(const char *name)
176 {
177 	struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
178 	if (mnt) {
179 		int err;
180 
181 		err = mnt_alloc_id(mnt);
182 		if (err)
183 			goto out_free_cache;
184 
185 		if (name) {
186 			mnt->mnt_devname = kstrdup_const(name, GFP_KERNEL);
187 			if (!mnt->mnt_devname)
188 				goto out_free_id;
189 		}
190 
191 #ifdef CONFIG_SMP
192 		mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
193 		if (!mnt->mnt_pcp)
194 			goto out_free_devname;
195 
196 		this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
197 #else
198 		mnt->mnt_count = 1;
199 		mnt->mnt_writers = 0;
200 #endif
201 
202 		INIT_HLIST_NODE(&mnt->mnt_hash);
203 		INIT_LIST_HEAD(&mnt->mnt_child);
204 		INIT_LIST_HEAD(&mnt->mnt_mounts);
205 		INIT_LIST_HEAD(&mnt->mnt_list);
206 		INIT_LIST_HEAD(&mnt->mnt_expire);
207 		INIT_LIST_HEAD(&mnt->mnt_share);
208 		INIT_LIST_HEAD(&mnt->mnt_slave_list);
209 		INIT_LIST_HEAD(&mnt->mnt_slave);
210 		INIT_HLIST_NODE(&mnt->mnt_mp_list);
211 		INIT_LIST_HEAD(&mnt->mnt_umounting);
212 		INIT_HLIST_HEAD(&mnt->mnt_stuck_children);
213 	}
214 	return mnt;
215 
216 #ifdef CONFIG_SMP
217 out_free_devname:
218 	kfree_const(mnt->mnt_devname);
219 #endif
220 out_free_id:
221 	mnt_free_id(mnt);
222 out_free_cache:
223 	kmem_cache_free(mnt_cache, mnt);
224 	return NULL;
225 }
226 
227 /*
228  * Most r/o checks on a fs are for operations that take
229  * discrete amounts of time, like a write() or unlink().
230  * We must keep track of when those operations start
231  * (for permission checks) and when they end, so that
232  * we can determine when writes are able to occur to
233  * a filesystem.
234  */
235 /*
236  * __mnt_is_readonly: check whether a mount is read-only
237  * @mnt: the mount to check for its write status
238  *
239  * This shouldn't be used directly ouside of the VFS.
240  * It does not guarantee that the filesystem will stay
241  * r/w, just that it is right *now*.  This can not and
242  * should not be used in place of IS_RDONLY(inode).
243  * mnt_want/drop_write() will _keep_ the filesystem
244  * r/w.
245  */
246 bool __mnt_is_readonly(struct vfsmount *mnt)
247 {
248 	return (mnt->mnt_flags & MNT_READONLY) || sb_rdonly(mnt->mnt_sb);
249 }
250 EXPORT_SYMBOL_GPL(__mnt_is_readonly);
251 
252 static inline void mnt_inc_writers(struct mount *mnt)
253 {
254 #ifdef CONFIG_SMP
255 	this_cpu_inc(mnt->mnt_pcp->mnt_writers);
256 #else
257 	mnt->mnt_writers++;
258 #endif
259 }
260 
261 static inline void mnt_dec_writers(struct mount *mnt)
262 {
263 #ifdef CONFIG_SMP
264 	this_cpu_dec(mnt->mnt_pcp->mnt_writers);
265 #else
266 	mnt->mnt_writers--;
267 #endif
268 }
269 
270 static unsigned int mnt_get_writers(struct mount *mnt)
271 {
272 #ifdef CONFIG_SMP
273 	unsigned int count = 0;
274 	int cpu;
275 
276 	for_each_possible_cpu(cpu) {
277 		count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
278 	}
279 
280 	return count;
281 #else
282 	return mnt->mnt_writers;
283 #endif
284 }
285 
286 static int mnt_is_readonly(struct vfsmount *mnt)
287 {
288 	if (mnt->mnt_sb->s_readonly_remount)
289 		return 1;
290 	/* Order wrt setting s_flags/s_readonly_remount in do_remount() */
291 	smp_rmb();
292 	return __mnt_is_readonly(mnt);
293 }
294 
295 /*
296  * Most r/o & frozen checks on a fs are for operations that take discrete
297  * amounts of time, like a write() or unlink().  We must keep track of when
298  * those operations start (for permission checks) and when they end, so that we
299  * can determine when writes are able to occur to a filesystem.
300  */
301 /**
302  * __mnt_want_write - get write access to a mount without freeze protection
303  * @m: the mount on which to take a write
304  *
305  * This tells the low-level filesystem that a write is about to be performed to
306  * it, and makes sure that writes are allowed (mnt it read-write) before
307  * returning success. This operation does not protect against filesystem being
308  * frozen. When the write operation is finished, __mnt_drop_write() must be
309  * called. This is effectively a refcount.
310  */
311 int __mnt_want_write(struct vfsmount *m)
312 {
313 	struct mount *mnt = real_mount(m);
314 	int ret = 0;
315 
316 	preempt_disable();
317 	mnt_inc_writers(mnt);
318 	/*
319 	 * The store to mnt_inc_writers must be visible before we pass
320 	 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
321 	 * incremented count after it has set MNT_WRITE_HOLD.
322 	 */
323 	smp_mb();
324 	while (READ_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD)
325 		cpu_relax();
326 	/*
327 	 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
328 	 * be set to match its requirements. So we must not load that until
329 	 * MNT_WRITE_HOLD is cleared.
330 	 */
331 	smp_rmb();
332 	if (mnt_is_readonly(m)) {
333 		mnt_dec_writers(mnt);
334 		ret = -EROFS;
335 	}
336 	preempt_enable();
337 
338 	return ret;
339 }
340 
341 /**
342  * mnt_want_write - get write access to a mount
343  * @m: the mount on which to take a write
344  *
345  * This tells the low-level filesystem that a write is about to be performed to
346  * it, and makes sure that writes are allowed (mount is read-write, filesystem
347  * is not frozen) before returning success.  When the write operation is
348  * finished, mnt_drop_write() must be called.  This is effectively a refcount.
349  */
350 int mnt_want_write(struct vfsmount *m)
351 {
352 	int ret;
353 
354 	sb_start_write(m->mnt_sb);
355 	ret = __mnt_want_write(m);
356 	if (ret)
357 		sb_end_write(m->mnt_sb);
358 	return ret;
359 }
360 EXPORT_SYMBOL_GPL(mnt_want_write);
361 
362 /**
363  * mnt_clone_write - get write access to a mount
364  * @mnt: the mount on which to take a write
365  *
366  * This is effectively like mnt_want_write, except
367  * it must only be used to take an extra write reference
368  * on a mountpoint that we already know has a write reference
369  * on it. This allows some optimisation.
370  *
371  * After finished, mnt_drop_write must be called as usual to
372  * drop the reference.
373  */
374 int mnt_clone_write(struct vfsmount *mnt)
375 {
376 	/* superblock may be r/o */
377 	if (__mnt_is_readonly(mnt))
378 		return -EROFS;
379 	preempt_disable();
380 	mnt_inc_writers(real_mount(mnt));
381 	preempt_enable();
382 	return 0;
383 }
384 EXPORT_SYMBOL_GPL(mnt_clone_write);
385 
386 /**
387  * __mnt_want_write_file - get write access to a file's mount
388  * @file: the file who's mount on which to take a write
389  *
390  * This is like __mnt_want_write, but it takes a file and can
391  * do some optimisations if the file is open for write already
392  */
393 int __mnt_want_write_file(struct file *file)
394 {
395 	if (!(file->f_mode & FMODE_WRITER))
396 		return __mnt_want_write(file->f_path.mnt);
397 	else
398 		return mnt_clone_write(file->f_path.mnt);
399 }
400 
401 /**
402  * mnt_want_write_file - get write access to a file's mount
403  * @file: the file who's mount on which to take a write
404  *
405  * This is like mnt_want_write, but it takes a file and can
406  * do some optimisations if the file is open for write already
407  */
408 int mnt_want_write_file(struct file *file)
409 {
410 	int ret;
411 
412 	sb_start_write(file_inode(file)->i_sb);
413 	ret = __mnt_want_write_file(file);
414 	if (ret)
415 		sb_end_write(file_inode(file)->i_sb);
416 	return ret;
417 }
418 EXPORT_SYMBOL_GPL(mnt_want_write_file);
419 
420 /**
421  * __mnt_drop_write - give up write access to a mount
422  * @mnt: the mount on which to give up write access
423  *
424  * Tells the low-level filesystem that we are done
425  * performing writes to it.  Must be matched with
426  * __mnt_want_write() call above.
427  */
428 void __mnt_drop_write(struct vfsmount *mnt)
429 {
430 	preempt_disable();
431 	mnt_dec_writers(real_mount(mnt));
432 	preempt_enable();
433 }
434 
435 /**
436  * mnt_drop_write - give up write access to a mount
437  * @mnt: the mount on which to give up write access
438  *
439  * Tells the low-level filesystem that we are done performing writes to it and
440  * also allows filesystem to be frozen again.  Must be matched with
441  * mnt_want_write() call above.
442  */
443 void mnt_drop_write(struct vfsmount *mnt)
444 {
445 	__mnt_drop_write(mnt);
446 	sb_end_write(mnt->mnt_sb);
447 }
448 EXPORT_SYMBOL_GPL(mnt_drop_write);
449 
450 void __mnt_drop_write_file(struct file *file)
451 {
452 	__mnt_drop_write(file->f_path.mnt);
453 }
454 
455 void mnt_drop_write_file(struct file *file)
456 {
457 	__mnt_drop_write_file(file);
458 	sb_end_write(file_inode(file)->i_sb);
459 }
460 EXPORT_SYMBOL(mnt_drop_write_file);
461 
462 static int mnt_make_readonly(struct mount *mnt)
463 {
464 	int ret = 0;
465 
466 	lock_mount_hash();
467 	mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
468 	/*
469 	 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
470 	 * should be visible before we do.
471 	 */
472 	smp_mb();
473 
474 	/*
475 	 * With writers on hold, if this value is zero, then there are
476 	 * definitely no active writers (although held writers may subsequently
477 	 * increment the count, they'll have to wait, and decrement it after
478 	 * seeing MNT_READONLY).
479 	 *
480 	 * It is OK to have counter incremented on one CPU and decremented on
481 	 * another: the sum will add up correctly. The danger would be when we
482 	 * sum up each counter, if we read a counter before it is incremented,
483 	 * but then read another CPU's count which it has been subsequently
484 	 * decremented from -- we would see more decrements than we should.
485 	 * MNT_WRITE_HOLD protects against this scenario, because
486 	 * mnt_want_write first increments count, then smp_mb, then spins on
487 	 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
488 	 * we're counting up here.
489 	 */
490 	if (mnt_get_writers(mnt) > 0)
491 		ret = -EBUSY;
492 	else
493 		mnt->mnt.mnt_flags |= MNT_READONLY;
494 	/*
495 	 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
496 	 * that become unheld will see MNT_READONLY.
497 	 */
498 	smp_wmb();
499 	mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
500 	unlock_mount_hash();
501 	return ret;
502 }
503 
504 static int __mnt_unmake_readonly(struct mount *mnt)
505 {
506 	lock_mount_hash();
507 	mnt->mnt.mnt_flags &= ~MNT_READONLY;
508 	unlock_mount_hash();
509 	return 0;
510 }
511 
512 int sb_prepare_remount_readonly(struct super_block *sb)
513 {
514 	struct mount *mnt;
515 	int err = 0;
516 
517 	/* Racy optimization.  Recheck the counter under MNT_WRITE_HOLD */
518 	if (atomic_long_read(&sb->s_remove_count))
519 		return -EBUSY;
520 
521 	lock_mount_hash();
522 	list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
523 		if (!(mnt->mnt.mnt_flags & MNT_READONLY)) {
524 			mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
525 			smp_mb();
526 			if (mnt_get_writers(mnt) > 0) {
527 				err = -EBUSY;
528 				break;
529 			}
530 		}
531 	}
532 	if (!err && atomic_long_read(&sb->s_remove_count))
533 		err = -EBUSY;
534 
535 	if (!err) {
536 		sb->s_readonly_remount = 1;
537 		smp_wmb();
538 	}
539 	list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
540 		if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
541 			mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
542 	}
543 	unlock_mount_hash();
544 
545 	return err;
546 }
547 
548 static void free_vfsmnt(struct mount *mnt)
549 {
550 	kfree_const(mnt->mnt_devname);
551 #ifdef CONFIG_SMP
552 	free_percpu(mnt->mnt_pcp);
553 #endif
554 	kmem_cache_free(mnt_cache, mnt);
555 }
556 
557 static void delayed_free_vfsmnt(struct rcu_head *head)
558 {
559 	free_vfsmnt(container_of(head, struct mount, mnt_rcu));
560 }
561 
562 /* call under rcu_read_lock */
563 int __legitimize_mnt(struct vfsmount *bastard, unsigned seq)
564 {
565 	struct mount *mnt;
566 	if (read_seqretry(&mount_lock, seq))
567 		return 1;
568 	if (bastard == NULL)
569 		return 0;
570 	mnt = real_mount(bastard);
571 	mnt_add_count(mnt, 1);
572 	smp_mb();			// see mntput_no_expire()
573 	if (likely(!read_seqretry(&mount_lock, seq)))
574 		return 0;
575 	if (bastard->mnt_flags & MNT_SYNC_UMOUNT) {
576 		mnt_add_count(mnt, -1);
577 		return 1;
578 	}
579 	lock_mount_hash();
580 	if (unlikely(bastard->mnt_flags & MNT_DOOMED)) {
581 		mnt_add_count(mnt, -1);
582 		unlock_mount_hash();
583 		return 1;
584 	}
585 	unlock_mount_hash();
586 	/* caller will mntput() */
587 	return -1;
588 }
589 
590 /* call under rcu_read_lock */
591 bool legitimize_mnt(struct vfsmount *bastard, unsigned seq)
592 {
593 	int res = __legitimize_mnt(bastard, seq);
594 	if (likely(!res))
595 		return true;
596 	if (unlikely(res < 0)) {
597 		rcu_read_unlock();
598 		mntput(bastard);
599 		rcu_read_lock();
600 	}
601 	return false;
602 }
603 
604 /*
605  * find the first mount at @dentry on vfsmount @mnt.
606  * call under rcu_read_lock()
607  */
608 struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry)
609 {
610 	struct hlist_head *head = m_hash(mnt, dentry);
611 	struct mount *p;
612 
613 	hlist_for_each_entry_rcu(p, head, mnt_hash)
614 		if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry)
615 			return p;
616 	return NULL;
617 }
618 
619 /*
620  * lookup_mnt - Return the first child mount mounted at path
621  *
622  * "First" means first mounted chronologically.  If you create the
623  * following mounts:
624  *
625  * mount /dev/sda1 /mnt
626  * mount /dev/sda2 /mnt
627  * mount /dev/sda3 /mnt
628  *
629  * Then lookup_mnt() on the base /mnt dentry in the root mount will
630  * return successively the root dentry and vfsmount of /dev/sda1, then
631  * /dev/sda2, then /dev/sda3, then NULL.
632  *
633  * lookup_mnt takes a reference to the found vfsmount.
634  */
635 struct vfsmount *lookup_mnt(const struct path *path)
636 {
637 	struct mount *child_mnt;
638 	struct vfsmount *m;
639 	unsigned seq;
640 
641 	rcu_read_lock();
642 	do {
643 		seq = read_seqbegin(&mount_lock);
644 		child_mnt = __lookup_mnt(path->mnt, path->dentry);
645 		m = child_mnt ? &child_mnt->mnt : NULL;
646 	} while (!legitimize_mnt(m, seq));
647 	rcu_read_unlock();
648 	return m;
649 }
650 
651 static inline void lock_ns_list(struct mnt_namespace *ns)
652 {
653 	spin_lock(&ns->ns_lock);
654 }
655 
656 static inline void unlock_ns_list(struct mnt_namespace *ns)
657 {
658 	spin_unlock(&ns->ns_lock);
659 }
660 
661 static inline bool mnt_is_cursor(struct mount *mnt)
662 {
663 	return mnt->mnt.mnt_flags & MNT_CURSOR;
664 }
665 
666 /*
667  * __is_local_mountpoint - Test to see if dentry is a mountpoint in the
668  *                         current mount namespace.
669  *
670  * The common case is dentries are not mountpoints at all and that
671  * test is handled inline.  For the slow case when we are actually
672  * dealing with a mountpoint of some kind, walk through all of the
673  * mounts in the current mount namespace and test to see if the dentry
674  * is a mountpoint.
675  *
676  * The mount_hashtable is not usable in the context because we
677  * need to identify all mounts that may be in the current mount
678  * namespace not just a mount that happens to have some specified
679  * parent mount.
680  */
681 bool __is_local_mountpoint(struct dentry *dentry)
682 {
683 	struct mnt_namespace *ns = current->nsproxy->mnt_ns;
684 	struct mount *mnt;
685 	bool is_covered = false;
686 
687 	if (!d_mountpoint(dentry))
688 		goto out;
689 
690 	down_read(&namespace_sem);
691 	lock_ns_list(ns);
692 	list_for_each_entry(mnt, &ns->list, mnt_list) {
693 		if (mnt_is_cursor(mnt))
694 			continue;
695 		is_covered = (mnt->mnt_mountpoint == dentry);
696 		if (is_covered)
697 			break;
698 	}
699 	unlock_ns_list(ns);
700 	up_read(&namespace_sem);
701 out:
702 	return is_covered;
703 }
704 
705 static struct mountpoint *lookup_mountpoint(struct dentry *dentry)
706 {
707 	struct hlist_head *chain = mp_hash(dentry);
708 	struct mountpoint *mp;
709 
710 	hlist_for_each_entry(mp, chain, m_hash) {
711 		if (mp->m_dentry == dentry) {
712 			mp->m_count++;
713 			return mp;
714 		}
715 	}
716 	return NULL;
717 }
718 
719 static struct mountpoint *get_mountpoint(struct dentry *dentry)
720 {
721 	struct mountpoint *mp, *new = NULL;
722 	int ret;
723 
724 	if (d_mountpoint(dentry)) {
725 		/* might be worth a WARN_ON() */
726 		if (d_unlinked(dentry))
727 			return ERR_PTR(-ENOENT);
728 mountpoint:
729 		read_seqlock_excl(&mount_lock);
730 		mp = lookup_mountpoint(dentry);
731 		read_sequnlock_excl(&mount_lock);
732 		if (mp)
733 			goto done;
734 	}
735 
736 	if (!new)
737 		new = kmalloc(sizeof(struct mountpoint), GFP_KERNEL);
738 	if (!new)
739 		return ERR_PTR(-ENOMEM);
740 
741 
742 	/* Exactly one processes may set d_mounted */
743 	ret = d_set_mounted(dentry);
744 
745 	/* Someone else set d_mounted? */
746 	if (ret == -EBUSY)
747 		goto mountpoint;
748 
749 	/* The dentry is not available as a mountpoint? */
750 	mp = ERR_PTR(ret);
751 	if (ret)
752 		goto done;
753 
754 	/* Add the new mountpoint to the hash table */
755 	read_seqlock_excl(&mount_lock);
756 	new->m_dentry = dget(dentry);
757 	new->m_count = 1;
758 	hlist_add_head(&new->m_hash, mp_hash(dentry));
759 	INIT_HLIST_HEAD(&new->m_list);
760 	read_sequnlock_excl(&mount_lock);
761 
762 	mp = new;
763 	new = NULL;
764 done:
765 	kfree(new);
766 	return mp;
767 }
768 
769 /*
770  * vfsmount lock must be held.  Additionally, the caller is responsible
771  * for serializing calls for given disposal list.
772  */
773 static void __put_mountpoint(struct mountpoint *mp, struct list_head *list)
774 {
775 	if (!--mp->m_count) {
776 		struct dentry *dentry = mp->m_dentry;
777 		BUG_ON(!hlist_empty(&mp->m_list));
778 		spin_lock(&dentry->d_lock);
779 		dentry->d_flags &= ~DCACHE_MOUNTED;
780 		spin_unlock(&dentry->d_lock);
781 		dput_to_list(dentry, list);
782 		hlist_del(&mp->m_hash);
783 		kfree(mp);
784 	}
785 }
786 
787 /* called with namespace_lock and vfsmount lock */
788 static void put_mountpoint(struct mountpoint *mp)
789 {
790 	__put_mountpoint(mp, &ex_mountpoints);
791 }
792 
793 static inline int check_mnt(struct mount *mnt)
794 {
795 	return mnt->mnt_ns == current->nsproxy->mnt_ns;
796 }
797 
798 /*
799  * vfsmount lock must be held for write
800  */
801 static void touch_mnt_namespace(struct mnt_namespace *ns)
802 {
803 	if (ns) {
804 		ns->event = ++event;
805 		wake_up_interruptible(&ns->poll);
806 	}
807 }
808 
809 /*
810  * vfsmount lock must be held for write
811  */
812 static void __touch_mnt_namespace(struct mnt_namespace *ns)
813 {
814 	if (ns && ns->event != event) {
815 		ns->event = event;
816 		wake_up_interruptible(&ns->poll);
817 	}
818 }
819 
820 /*
821  * vfsmount lock must be held for write
822  */
823 static struct mountpoint *unhash_mnt(struct mount *mnt)
824 {
825 	struct mountpoint *mp;
826 	mnt->mnt_parent = mnt;
827 	mnt->mnt_mountpoint = mnt->mnt.mnt_root;
828 	list_del_init(&mnt->mnt_child);
829 	hlist_del_init_rcu(&mnt->mnt_hash);
830 	hlist_del_init(&mnt->mnt_mp_list);
831 	mp = mnt->mnt_mp;
832 	mnt->mnt_mp = NULL;
833 	return mp;
834 }
835 
836 /*
837  * vfsmount lock must be held for write
838  */
839 static void umount_mnt(struct mount *mnt)
840 {
841 	put_mountpoint(unhash_mnt(mnt));
842 }
843 
844 /*
845  * vfsmount lock must be held for write
846  */
847 void mnt_set_mountpoint(struct mount *mnt,
848 			struct mountpoint *mp,
849 			struct mount *child_mnt)
850 {
851 	mp->m_count++;
852 	mnt_add_count(mnt, 1);	/* essentially, that's mntget */
853 	child_mnt->mnt_mountpoint = mp->m_dentry;
854 	child_mnt->mnt_parent = mnt;
855 	child_mnt->mnt_mp = mp;
856 	hlist_add_head(&child_mnt->mnt_mp_list, &mp->m_list);
857 }
858 
859 static void __attach_mnt(struct mount *mnt, struct mount *parent)
860 {
861 	hlist_add_head_rcu(&mnt->mnt_hash,
862 			   m_hash(&parent->mnt, mnt->mnt_mountpoint));
863 	list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
864 }
865 
866 /*
867  * vfsmount lock must be held for write
868  */
869 static void attach_mnt(struct mount *mnt,
870 			struct mount *parent,
871 			struct mountpoint *mp)
872 {
873 	mnt_set_mountpoint(parent, mp, mnt);
874 	__attach_mnt(mnt, parent);
875 }
876 
877 void mnt_change_mountpoint(struct mount *parent, struct mountpoint *mp, struct mount *mnt)
878 {
879 	struct mountpoint *old_mp = mnt->mnt_mp;
880 	struct mount *old_parent = mnt->mnt_parent;
881 
882 	list_del_init(&mnt->mnt_child);
883 	hlist_del_init(&mnt->mnt_mp_list);
884 	hlist_del_init_rcu(&mnt->mnt_hash);
885 
886 	attach_mnt(mnt, parent, mp);
887 
888 	put_mountpoint(old_mp);
889 	mnt_add_count(old_parent, -1);
890 }
891 
892 /*
893  * vfsmount lock must be held for write
894  */
895 static void commit_tree(struct mount *mnt)
896 {
897 	struct mount *parent = mnt->mnt_parent;
898 	struct mount *m;
899 	LIST_HEAD(head);
900 	struct mnt_namespace *n = parent->mnt_ns;
901 
902 	BUG_ON(parent == mnt);
903 
904 	list_add_tail(&head, &mnt->mnt_list);
905 	list_for_each_entry(m, &head, mnt_list)
906 		m->mnt_ns = n;
907 
908 	list_splice(&head, n->list.prev);
909 
910 	n->mounts += n->pending_mounts;
911 	n->pending_mounts = 0;
912 
913 	__attach_mnt(mnt, parent);
914 	touch_mnt_namespace(n);
915 }
916 
917 static struct mount *next_mnt(struct mount *p, struct mount *root)
918 {
919 	struct list_head *next = p->mnt_mounts.next;
920 	if (next == &p->mnt_mounts) {
921 		while (1) {
922 			if (p == root)
923 				return NULL;
924 			next = p->mnt_child.next;
925 			if (next != &p->mnt_parent->mnt_mounts)
926 				break;
927 			p = p->mnt_parent;
928 		}
929 	}
930 	return list_entry(next, struct mount, mnt_child);
931 }
932 
933 static struct mount *skip_mnt_tree(struct mount *p)
934 {
935 	struct list_head *prev = p->mnt_mounts.prev;
936 	while (prev != &p->mnt_mounts) {
937 		p = list_entry(prev, struct mount, mnt_child);
938 		prev = p->mnt_mounts.prev;
939 	}
940 	return p;
941 }
942 
943 /**
944  * vfs_create_mount - Create a mount for a configured superblock
945  * @fc: The configuration context with the superblock attached
946  *
947  * Create a mount to an already configured superblock.  If necessary, the
948  * caller should invoke vfs_get_tree() before calling this.
949  *
950  * Note that this does not attach the mount to anything.
951  */
952 struct vfsmount *vfs_create_mount(struct fs_context *fc)
953 {
954 	struct mount *mnt;
955 
956 	if (!fc->root)
957 		return ERR_PTR(-EINVAL);
958 
959 	mnt = alloc_vfsmnt(fc->source ?: "none");
960 	if (!mnt)
961 		return ERR_PTR(-ENOMEM);
962 
963 	if (fc->sb_flags & SB_KERNMOUNT)
964 		mnt->mnt.mnt_flags = MNT_INTERNAL;
965 
966 	atomic_inc(&fc->root->d_sb->s_active);
967 	mnt->mnt.mnt_sb		= fc->root->d_sb;
968 	mnt->mnt.mnt_root	= dget(fc->root);
969 	mnt->mnt_mountpoint	= mnt->mnt.mnt_root;
970 	mnt->mnt_parent		= mnt;
971 
972 	lock_mount_hash();
973 	list_add_tail(&mnt->mnt_instance, &mnt->mnt.mnt_sb->s_mounts);
974 	unlock_mount_hash();
975 	return &mnt->mnt;
976 }
977 EXPORT_SYMBOL(vfs_create_mount);
978 
979 struct vfsmount *fc_mount(struct fs_context *fc)
980 {
981 	int err = vfs_get_tree(fc);
982 	if (!err) {
983 		up_write(&fc->root->d_sb->s_umount);
984 		return vfs_create_mount(fc);
985 	}
986 	return ERR_PTR(err);
987 }
988 EXPORT_SYMBOL(fc_mount);
989 
990 struct vfsmount *vfs_kern_mount(struct file_system_type *type,
991 				int flags, const char *name,
992 				void *data)
993 {
994 	struct fs_context *fc;
995 	struct vfsmount *mnt;
996 	int ret = 0;
997 
998 	if (!type)
999 		return ERR_PTR(-EINVAL);
1000 
1001 	fc = fs_context_for_mount(type, flags);
1002 	if (IS_ERR(fc))
1003 		return ERR_CAST(fc);
1004 
1005 	if (name)
1006 		ret = vfs_parse_fs_string(fc, "source",
1007 					  name, strlen(name));
1008 	if (!ret)
1009 		ret = parse_monolithic_mount_data(fc, data);
1010 	if (!ret)
1011 		mnt = fc_mount(fc);
1012 	else
1013 		mnt = ERR_PTR(ret);
1014 
1015 	put_fs_context(fc);
1016 	return mnt;
1017 }
1018 EXPORT_SYMBOL_GPL(vfs_kern_mount);
1019 
1020 struct vfsmount *
1021 vfs_submount(const struct dentry *mountpoint, struct file_system_type *type,
1022 	     const char *name, void *data)
1023 {
1024 	/* Until it is worked out how to pass the user namespace
1025 	 * through from the parent mount to the submount don't support
1026 	 * unprivileged mounts with submounts.
1027 	 */
1028 	if (mountpoint->d_sb->s_user_ns != &init_user_ns)
1029 		return ERR_PTR(-EPERM);
1030 
1031 	return vfs_kern_mount(type, SB_SUBMOUNT, name, data);
1032 }
1033 EXPORT_SYMBOL_GPL(vfs_submount);
1034 
1035 static struct mount *clone_mnt(struct mount *old, struct dentry *root,
1036 					int flag)
1037 {
1038 	struct super_block *sb = old->mnt.mnt_sb;
1039 	struct mount *mnt;
1040 	int err;
1041 
1042 	mnt = alloc_vfsmnt(old->mnt_devname);
1043 	if (!mnt)
1044 		return ERR_PTR(-ENOMEM);
1045 
1046 	if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE))
1047 		mnt->mnt_group_id = 0; /* not a peer of original */
1048 	else
1049 		mnt->mnt_group_id = old->mnt_group_id;
1050 
1051 	if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
1052 		err = mnt_alloc_group_id(mnt);
1053 		if (err)
1054 			goto out_free;
1055 	}
1056 
1057 	mnt->mnt.mnt_flags = old->mnt.mnt_flags;
1058 	mnt->mnt.mnt_flags &= ~(MNT_WRITE_HOLD|MNT_MARKED|MNT_INTERNAL);
1059 
1060 	atomic_inc(&sb->s_active);
1061 	mnt->mnt.mnt_sb = sb;
1062 	mnt->mnt.mnt_root = dget(root);
1063 	mnt->mnt_mountpoint = mnt->mnt.mnt_root;
1064 	mnt->mnt_parent = mnt;
1065 	lock_mount_hash();
1066 	list_add_tail(&mnt->mnt_instance, &sb->s_mounts);
1067 	unlock_mount_hash();
1068 
1069 	if ((flag & CL_SLAVE) ||
1070 	    ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) {
1071 		list_add(&mnt->mnt_slave, &old->mnt_slave_list);
1072 		mnt->mnt_master = old;
1073 		CLEAR_MNT_SHARED(mnt);
1074 	} else if (!(flag & CL_PRIVATE)) {
1075 		if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
1076 			list_add(&mnt->mnt_share, &old->mnt_share);
1077 		if (IS_MNT_SLAVE(old))
1078 			list_add(&mnt->mnt_slave, &old->mnt_slave);
1079 		mnt->mnt_master = old->mnt_master;
1080 	} else {
1081 		CLEAR_MNT_SHARED(mnt);
1082 	}
1083 	if (flag & CL_MAKE_SHARED)
1084 		set_mnt_shared(mnt);
1085 
1086 	/* stick the duplicate mount on the same expiry list
1087 	 * as the original if that was on one */
1088 	if (flag & CL_EXPIRE) {
1089 		if (!list_empty(&old->mnt_expire))
1090 			list_add(&mnt->mnt_expire, &old->mnt_expire);
1091 	}
1092 
1093 	return mnt;
1094 
1095  out_free:
1096 	mnt_free_id(mnt);
1097 	free_vfsmnt(mnt);
1098 	return ERR_PTR(err);
1099 }
1100 
1101 static void cleanup_mnt(struct mount *mnt)
1102 {
1103 	struct hlist_node *p;
1104 	struct mount *m;
1105 	/*
1106 	 * The warning here probably indicates that somebody messed
1107 	 * up a mnt_want/drop_write() pair.  If this happens, the
1108 	 * filesystem was probably unable to make r/w->r/o transitions.
1109 	 * The locking used to deal with mnt_count decrement provides barriers,
1110 	 * so mnt_get_writers() below is safe.
1111 	 */
1112 	WARN_ON(mnt_get_writers(mnt));
1113 	if (unlikely(mnt->mnt_pins.first))
1114 		mnt_pin_kill(mnt);
1115 	hlist_for_each_entry_safe(m, p, &mnt->mnt_stuck_children, mnt_umount) {
1116 		hlist_del(&m->mnt_umount);
1117 		mntput(&m->mnt);
1118 	}
1119 	fsnotify_vfsmount_delete(&mnt->mnt);
1120 	dput(mnt->mnt.mnt_root);
1121 	deactivate_super(mnt->mnt.mnt_sb);
1122 	mnt_free_id(mnt);
1123 	call_rcu(&mnt->mnt_rcu, delayed_free_vfsmnt);
1124 }
1125 
1126 static void __cleanup_mnt(struct rcu_head *head)
1127 {
1128 	cleanup_mnt(container_of(head, struct mount, mnt_rcu));
1129 }
1130 
1131 static LLIST_HEAD(delayed_mntput_list);
1132 static void delayed_mntput(struct work_struct *unused)
1133 {
1134 	struct llist_node *node = llist_del_all(&delayed_mntput_list);
1135 	struct mount *m, *t;
1136 
1137 	llist_for_each_entry_safe(m, t, node, mnt_llist)
1138 		cleanup_mnt(m);
1139 }
1140 static DECLARE_DELAYED_WORK(delayed_mntput_work, delayed_mntput);
1141 
1142 static void mntput_no_expire(struct mount *mnt)
1143 {
1144 	LIST_HEAD(list);
1145 
1146 	rcu_read_lock();
1147 	if (likely(READ_ONCE(mnt->mnt_ns))) {
1148 		/*
1149 		 * Since we don't do lock_mount_hash() here,
1150 		 * ->mnt_ns can change under us.  However, if it's
1151 		 * non-NULL, then there's a reference that won't
1152 		 * be dropped until after an RCU delay done after
1153 		 * turning ->mnt_ns NULL.  So if we observe it
1154 		 * non-NULL under rcu_read_lock(), the reference
1155 		 * we are dropping is not the final one.
1156 		 */
1157 		mnt_add_count(mnt, -1);
1158 		rcu_read_unlock();
1159 		return;
1160 	}
1161 	lock_mount_hash();
1162 	/*
1163 	 * make sure that if __legitimize_mnt() has not seen us grab
1164 	 * mount_lock, we'll see their refcount increment here.
1165 	 */
1166 	smp_mb();
1167 	mnt_add_count(mnt, -1);
1168 	if (mnt_get_count(mnt)) {
1169 		rcu_read_unlock();
1170 		unlock_mount_hash();
1171 		return;
1172 	}
1173 	if (unlikely(mnt->mnt.mnt_flags & MNT_DOOMED)) {
1174 		rcu_read_unlock();
1175 		unlock_mount_hash();
1176 		return;
1177 	}
1178 	mnt->mnt.mnt_flags |= MNT_DOOMED;
1179 	rcu_read_unlock();
1180 
1181 	list_del(&mnt->mnt_instance);
1182 
1183 	if (unlikely(!list_empty(&mnt->mnt_mounts))) {
1184 		struct mount *p, *tmp;
1185 		list_for_each_entry_safe(p, tmp, &mnt->mnt_mounts,  mnt_child) {
1186 			__put_mountpoint(unhash_mnt(p), &list);
1187 			hlist_add_head(&p->mnt_umount, &mnt->mnt_stuck_children);
1188 		}
1189 	}
1190 	unlock_mount_hash();
1191 	shrink_dentry_list(&list);
1192 
1193 	if (likely(!(mnt->mnt.mnt_flags & MNT_INTERNAL))) {
1194 		struct task_struct *task = current;
1195 		if (likely(!(task->flags & PF_KTHREAD))) {
1196 			init_task_work(&mnt->mnt_rcu, __cleanup_mnt);
1197 			if (!task_work_add(task, &mnt->mnt_rcu, true))
1198 				return;
1199 		}
1200 		if (llist_add(&mnt->mnt_llist, &delayed_mntput_list))
1201 			schedule_delayed_work(&delayed_mntput_work, 1);
1202 		return;
1203 	}
1204 	cleanup_mnt(mnt);
1205 }
1206 
1207 void mntput(struct vfsmount *mnt)
1208 {
1209 	if (mnt) {
1210 		struct mount *m = real_mount(mnt);
1211 		/* avoid cacheline pingpong, hope gcc doesn't get "smart" */
1212 		if (unlikely(m->mnt_expiry_mark))
1213 			m->mnt_expiry_mark = 0;
1214 		mntput_no_expire(m);
1215 	}
1216 }
1217 EXPORT_SYMBOL(mntput);
1218 
1219 struct vfsmount *mntget(struct vfsmount *mnt)
1220 {
1221 	if (mnt)
1222 		mnt_add_count(real_mount(mnt), 1);
1223 	return mnt;
1224 }
1225 EXPORT_SYMBOL(mntget);
1226 
1227 /* path_is_mountpoint() - Check if path is a mount in the current
1228  *                          namespace.
1229  *
1230  *  d_mountpoint() can only be used reliably to establish if a dentry is
1231  *  not mounted in any namespace and that common case is handled inline.
1232  *  d_mountpoint() isn't aware of the possibility there may be multiple
1233  *  mounts using a given dentry in a different namespace. This function
1234  *  checks if the passed in path is a mountpoint rather than the dentry
1235  *  alone.
1236  */
1237 bool path_is_mountpoint(const struct path *path)
1238 {
1239 	unsigned seq;
1240 	bool res;
1241 
1242 	if (!d_mountpoint(path->dentry))
1243 		return false;
1244 
1245 	rcu_read_lock();
1246 	do {
1247 		seq = read_seqbegin(&mount_lock);
1248 		res = __path_is_mountpoint(path);
1249 	} while (read_seqretry(&mount_lock, seq));
1250 	rcu_read_unlock();
1251 
1252 	return res;
1253 }
1254 EXPORT_SYMBOL(path_is_mountpoint);
1255 
1256 struct vfsmount *mnt_clone_internal(const struct path *path)
1257 {
1258 	struct mount *p;
1259 	p = clone_mnt(real_mount(path->mnt), path->dentry, CL_PRIVATE);
1260 	if (IS_ERR(p))
1261 		return ERR_CAST(p);
1262 	p->mnt.mnt_flags |= MNT_INTERNAL;
1263 	return &p->mnt;
1264 }
1265 
1266 #ifdef CONFIG_PROC_FS
1267 static struct mount *mnt_list_next(struct mnt_namespace *ns,
1268 				   struct list_head *p)
1269 {
1270 	struct mount *mnt, *ret = NULL;
1271 
1272 	lock_ns_list(ns);
1273 	list_for_each_continue(p, &ns->list) {
1274 		mnt = list_entry(p, typeof(*mnt), mnt_list);
1275 		if (!mnt_is_cursor(mnt)) {
1276 			ret = mnt;
1277 			break;
1278 		}
1279 	}
1280 	unlock_ns_list(ns);
1281 
1282 	return ret;
1283 }
1284 
1285 /* iterator; we want it to have access to namespace_sem, thus here... */
1286 static void *m_start(struct seq_file *m, loff_t *pos)
1287 {
1288 	struct proc_mounts *p = m->private;
1289 	struct list_head *prev;
1290 
1291 	down_read(&namespace_sem);
1292 	if (!*pos) {
1293 		prev = &p->ns->list;
1294 	} else {
1295 		prev = &p->cursor.mnt_list;
1296 
1297 		/* Read after we'd reached the end? */
1298 		if (list_empty(prev))
1299 			return NULL;
1300 	}
1301 
1302 	return mnt_list_next(p->ns, prev);
1303 }
1304 
1305 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
1306 {
1307 	struct proc_mounts *p = m->private;
1308 	struct mount *mnt = v;
1309 
1310 	++*pos;
1311 	return mnt_list_next(p->ns, &mnt->mnt_list);
1312 }
1313 
1314 static void m_stop(struct seq_file *m, void *v)
1315 {
1316 	struct proc_mounts *p = m->private;
1317 	struct mount *mnt = v;
1318 
1319 	lock_ns_list(p->ns);
1320 	if (mnt)
1321 		list_move_tail(&p->cursor.mnt_list, &mnt->mnt_list);
1322 	else
1323 		list_del_init(&p->cursor.mnt_list);
1324 	unlock_ns_list(p->ns);
1325 	up_read(&namespace_sem);
1326 }
1327 
1328 static int m_show(struct seq_file *m, void *v)
1329 {
1330 	struct proc_mounts *p = m->private;
1331 	struct mount *r = v;
1332 	return p->show(m, &r->mnt);
1333 }
1334 
1335 const struct seq_operations mounts_op = {
1336 	.start	= m_start,
1337 	.next	= m_next,
1338 	.stop	= m_stop,
1339 	.show	= m_show,
1340 };
1341 
1342 void mnt_cursor_del(struct mnt_namespace *ns, struct mount *cursor)
1343 {
1344 	down_read(&namespace_sem);
1345 	lock_ns_list(ns);
1346 	list_del(&cursor->mnt_list);
1347 	unlock_ns_list(ns);
1348 	up_read(&namespace_sem);
1349 }
1350 #endif  /* CONFIG_PROC_FS */
1351 
1352 /**
1353  * may_umount_tree - check if a mount tree is busy
1354  * @mnt: root of mount tree
1355  *
1356  * This is called to check if a tree of mounts has any
1357  * open files, pwds, chroots or sub mounts that are
1358  * busy.
1359  */
1360 int may_umount_tree(struct vfsmount *m)
1361 {
1362 	struct mount *mnt = real_mount(m);
1363 	int actual_refs = 0;
1364 	int minimum_refs = 0;
1365 	struct mount *p;
1366 	BUG_ON(!m);
1367 
1368 	/* write lock needed for mnt_get_count */
1369 	lock_mount_hash();
1370 	for (p = mnt; p; p = next_mnt(p, mnt)) {
1371 		actual_refs += mnt_get_count(p);
1372 		minimum_refs += 2;
1373 	}
1374 	unlock_mount_hash();
1375 
1376 	if (actual_refs > minimum_refs)
1377 		return 0;
1378 
1379 	return 1;
1380 }
1381 
1382 EXPORT_SYMBOL(may_umount_tree);
1383 
1384 /**
1385  * may_umount - check if a mount point is busy
1386  * @mnt: root of mount
1387  *
1388  * This is called to check if a mount point has any
1389  * open files, pwds, chroots or sub mounts. If the
1390  * mount has sub mounts this will return busy
1391  * regardless of whether the sub mounts are busy.
1392  *
1393  * Doesn't take quota and stuff into account. IOW, in some cases it will
1394  * give false negatives. The main reason why it's here is that we need
1395  * a non-destructive way to look for easily umountable filesystems.
1396  */
1397 int may_umount(struct vfsmount *mnt)
1398 {
1399 	int ret = 1;
1400 	down_read(&namespace_sem);
1401 	lock_mount_hash();
1402 	if (propagate_mount_busy(real_mount(mnt), 2))
1403 		ret = 0;
1404 	unlock_mount_hash();
1405 	up_read(&namespace_sem);
1406 	return ret;
1407 }
1408 
1409 EXPORT_SYMBOL(may_umount);
1410 
1411 static void namespace_unlock(void)
1412 {
1413 	struct hlist_head head;
1414 	struct hlist_node *p;
1415 	struct mount *m;
1416 	LIST_HEAD(list);
1417 
1418 	hlist_move_list(&unmounted, &head);
1419 	list_splice_init(&ex_mountpoints, &list);
1420 
1421 	up_write(&namespace_sem);
1422 
1423 	shrink_dentry_list(&list);
1424 
1425 	if (likely(hlist_empty(&head)))
1426 		return;
1427 
1428 	synchronize_rcu_expedited();
1429 
1430 	hlist_for_each_entry_safe(m, p, &head, mnt_umount) {
1431 		hlist_del(&m->mnt_umount);
1432 		mntput(&m->mnt);
1433 	}
1434 }
1435 
1436 static inline void namespace_lock(void)
1437 {
1438 	down_write(&namespace_sem);
1439 }
1440 
1441 enum umount_tree_flags {
1442 	UMOUNT_SYNC = 1,
1443 	UMOUNT_PROPAGATE = 2,
1444 	UMOUNT_CONNECTED = 4,
1445 };
1446 
1447 static bool disconnect_mount(struct mount *mnt, enum umount_tree_flags how)
1448 {
1449 	/* Leaving mounts connected is only valid for lazy umounts */
1450 	if (how & UMOUNT_SYNC)
1451 		return true;
1452 
1453 	/* A mount without a parent has nothing to be connected to */
1454 	if (!mnt_has_parent(mnt))
1455 		return true;
1456 
1457 	/* Because the reference counting rules change when mounts are
1458 	 * unmounted and connected, umounted mounts may not be
1459 	 * connected to mounted mounts.
1460 	 */
1461 	if (!(mnt->mnt_parent->mnt.mnt_flags & MNT_UMOUNT))
1462 		return true;
1463 
1464 	/* Has it been requested that the mount remain connected? */
1465 	if (how & UMOUNT_CONNECTED)
1466 		return false;
1467 
1468 	/* Is the mount locked such that it needs to remain connected? */
1469 	if (IS_MNT_LOCKED(mnt))
1470 		return false;
1471 
1472 	/* By default disconnect the mount */
1473 	return true;
1474 }
1475 
1476 /*
1477  * mount_lock must be held
1478  * namespace_sem must be held for write
1479  */
1480 static void umount_tree(struct mount *mnt, enum umount_tree_flags how)
1481 {
1482 	LIST_HEAD(tmp_list);
1483 	struct mount *p;
1484 
1485 	if (how & UMOUNT_PROPAGATE)
1486 		propagate_mount_unlock(mnt);
1487 
1488 	/* Gather the mounts to umount */
1489 	for (p = mnt; p; p = next_mnt(p, mnt)) {
1490 		p->mnt.mnt_flags |= MNT_UMOUNT;
1491 		list_move(&p->mnt_list, &tmp_list);
1492 	}
1493 
1494 	/* Hide the mounts from mnt_mounts */
1495 	list_for_each_entry(p, &tmp_list, mnt_list) {
1496 		list_del_init(&p->mnt_child);
1497 	}
1498 
1499 	/* Add propogated mounts to the tmp_list */
1500 	if (how & UMOUNT_PROPAGATE)
1501 		propagate_umount(&tmp_list);
1502 
1503 	while (!list_empty(&tmp_list)) {
1504 		struct mnt_namespace *ns;
1505 		bool disconnect;
1506 		p = list_first_entry(&tmp_list, struct mount, mnt_list);
1507 		list_del_init(&p->mnt_expire);
1508 		list_del_init(&p->mnt_list);
1509 		ns = p->mnt_ns;
1510 		if (ns) {
1511 			ns->mounts--;
1512 			__touch_mnt_namespace(ns);
1513 		}
1514 		p->mnt_ns = NULL;
1515 		if (how & UMOUNT_SYNC)
1516 			p->mnt.mnt_flags |= MNT_SYNC_UMOUNT;
1517 
1518 		disconnect = disconnect_mount(p, how);
1519 		if (mnt_has_parent(p)) {
1520 			mnt_add_count(p->mnt_parent, -1);
1521 			if (!disconnect) {
1522 				/* Don't forget about p */
1523 				list_add_tail(&p->mnt_child, &p->mnt_parent->mnt_mounts);
1524 			} else {
1525 				umount_mnt(p);
1526 			}
1527 		}
1528 		change_mnt_propagation(p, MS_PRIVATE);
1529 		if (disconnect)
1530 			hlist_add_head(&p->mnt_umount, &unmounted);
1531 	}
1532 }
1533 
1534 static void shrink_submounts(struct mount *mnt);
1535 
1536 static int do_umount_root(struct super_block *sb)
1537 {
1538 	int ret = 0;
1539 
1540 	down_write(&sb->s_umount);
1541 	if (!sb_rdonly(sb)) {
1542 		struct fs_context *fc;
1543 
1544 		fc = fs_context_for_reconfigure(sb->s_root, SB_RDONLY,
1545 						SB_RDONLY);
1546 		if (IS_ERR(fc)) {
1547 			ret = PTR_ERR(fc);
1548 		} else {
1549 			ret = parse_monolithic_mount_data(fc, NULL);
1550 			if (!ret)
1551 				ret = reconfigure_super(fc);
1552 			put_fs_context(fc);
1553 		}
1554 	}
1555 	up_write(&sb->s_umount);
1556 	return ret;
1557 }
1558 
1559 static int do_umount(struct mount *mnt, int flags)
1560 {
1561 	struct super_block *sb = mnt->mnt.mnt_sb;
1562 	int retval;
1563 
1564 	retval = security_sb_umount(&mnt->mnt, flags);
1565 	if (retval)
1566 		return retval;
1567 
1568 	/*
1569 	 * Allow userspace to request a mountpoint be expired rather than
1570 	 * unmounting unconditionally. Unmount only happens if:
1571 	 *  (1) the mark is already set (the mark is cleared by mntput())
1572 	 *  (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1573 	 */
1574 	if (flags & MNT_EXPIRE) {
1575 		if (&mnt->mnt == current->fs->root.mnt ||
1576 		    flags & (MNT_FORCE | MNT_DETACH))
1577 			return -EINVAL;
1578 
1579 		/*
1580 		 * probably don't strictly need the lock here if we examined
1581 		 * all race cases, but it's a slowpath.
1582 		 */
1583 		lock_mount_hash();
1584 		if (mnt_get_count(mnt) != 2) {
1585 			unlock_mount_hash();
1586 			return -EBUSY;
1587 		}
1588 		unlock_mount_hash();
1589 
1590 		if (!xchg(&mnt->mnt_expiry_mark, 1))
1591 			return -EAGAIN;
1592 	}
1593 
1594 	/*
1595 	 * If we may have to abort operations to get out of this
1596 	 * mount, and they will themselves hold resources we must
1597 	 * allow the fs to do things. In the Unix tradition of
1598 	 * 'Gee thats tricky lets do it in userspace' the umount_begin
1599 	 * might fail to complete on the first run through as other tasks
1600 	 * must return, and the like. Thats for the mount program to worry
1601 	 * about for the moment.
1602 	 */
1603 
1604 	if (flags & MNT_FORCE && sb->s_op->umount_begin) {
1605 		sb->s_op->umount_begin(sb);
1606 	}
1607 
1608 	/*
1609 	 * No sense to grab the lock for this test, but test itself looks
1610 	 * somewhat bogus. Suggestions for better replacement?
1611 	 * Ho-hum... In principle, we might treat that as umount + switch
1612 	 * to rootfs. GC would eventually take care of the old vfsmount.
1613 	 * Actually it makes sense, especially if rootfs would contain a
1614 	 * /reboot - static binary that would close all descriptors and
1615 	 * call reboot(9). Then init(8) could umount root and exec /reboot.
1616 	 */
1617 	if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1618 		/*
1619 		 * Special case for "unmounting" root ...
1620 		 * we just try to remount it readonly.
1621 		 */
1622 		if (!ns_capable(sb->s_user_ns, CAP_SYS_ADMIN))
1623 			return -EPERM;
1624 		return do_umount_root(sb);
1625 	}
1626 
1627 	namespace_lock();
1628 	lock_mount_hash();
1629 
1630 	/* Recheck MNT_LOCKED with the locks held */
1631 	retval = -EINVAL;
1632 	if (mnt->mnt.mnt_flags & MNT_LOCKED)
1633 		goto out;
1634 
1635 	event++;
1636 	if (flags & MNT_DETACH) {
1637 		if (!list_empty(&mnt->mnt_list))
1638 			umount_tree(mnt, UMOUNT_PROPAGATE);
1639 		retval = 0;
1640 	} else {
1641 		shrink_submounts(mnt);
1642 		retval = -EBUSY;
1643 		if (!propagate_mount_busy(mnt, 2)) {
1644 			if (!list_empty(&mnt->mnt_list))
1645 				umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
1646 			retval = 0;
1647 		}
1648 	}
1649 out:
1650 	unlock_mount_hash();
1651 	namespace_unlock();
1652 	return retval;
1653 }
1654 
1655 /*
1656  * __detach_mounts - lazily unmount all mounts on the specified dentry
1657  *
1658  * During unlink, rmdir, and d_drop it is possible to loose the path
1659  * to an existing mountpoint, and wind up leaking the mount.
1660  * detach_mounts allows lazily unmounting those mounts instead of
1661  * leaking them.
1662  *
1663  * The caller may hold dentry->d_inode->i_mutex.
1664  */
1665 void __detach_mounts(struct dentry *dentry)
1666 {
1667 	struct mountpoint *mp;
1668 	struct mount *mnt;
1669 
1670 	namespace_lock();
1671 	lock_mount_hash();
1672 	mp = lookup_mountpoint(dentry);
1673 	if (!mp)
1674 		goto out_unlock;
1675 
1676 	event++;
1677 	while (!hlist_empty(&mp->m_list)) {
1678 		mnt = hlist_entry(mp->m_list.first, struct mount, mnt_mp_list);
1679 		if (mnt->mnt.mnt_flags & MNT_UMOUNT) {
1680 			umount_mnt(mnt);
1681 			hlist_add_head(&mnt->mnt_umount, &unmounted);
1682 		}
1683 		else umount_tree(mnt, UMOUNT_CONNECTED);
1684 	}
1685 	put_mountpoint(mp);
1686 out_unlock:
1687 	unlock_mount_hash();
1688 	namespace_unlock();
1689 }
1690 
1691 /*
1692  * Is the caller allowed to modify his namespace?
1693  */
1694 static inline bool may_mount(void)
1695 {
1696 	return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN);
1697 }
1698 
1699 #ifdef	CONFIG_MANDATORY_FILE_LOCKING
1700 static inline bool may_mandlock(void)
1701 {
1702 	return capable(CAP_SYS_ADMIN);
1703 }
1704 #else
1705 static inline bool may_mandlock(void)
1706 {
1707 	pr_warn("VFS: \"mand\" mount option not supported");
1708 	return false;
1709 }
1710 #endif
1711 
1712 /*
1713  * Now umount can handle mount points as well as block devices.
1714  * This is important for filesystems which use unnamed block devices.
1715  *
1716  * We now support a flag for forced unmount like the other 'big iron'
1717  * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
1718  */
1719 
1720 int ksys_umount(char __user *name, int flags)
1721 {
1722 	struct path path;
1723 	struct mount *mnt;
1724 	int retval;
1725 	int lookup_flags = LOOKUP_MOUNTPOINT;
1726 
1727 	if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
1728 		return -EINVAL;
1729 
1730 	if (!may_mount())
1731 		return -EPERM;
1732 
1733 	if (!(flags & UMOUNT_NOFOLLOW))
1734 		lookup_flags |= LOOKUP_FOLLOW;
1735 
1736 	retval = user_path_at(AT_FDCWD, name, lookup_flags, &path);
1737 	if (retval)
1738 		goto out;
1739 	mnt = real_mount(path.mnt);
1740 	retval = -EINVAL;
1741 	if (path.dentry != path.mnt->mnt_root)
1742 		goto dput_and_out;
1743 	if (!check_mnt(mnt))
1744 		goto dput_and_out;
1745 	if (mnt->mnt.mnt_flags & MNT_LOCKED) /* Check optimistically */
1746 		goto dput_and_out;
1747 	retval = -EPERM;
1748 	if (flags & MNT_FORCE && !capable(CAP_SYS_ADMIN))
1749 		goto dput_and_out;
1750 
1751 	retval = do_umount(mnt, flags);
1752 dput_and_out:
1753 	/* we mustn't call path_put() as that would clear mnt_expiry_mark */
1754 	dput(path.dentry);
1755 	mntput_no_expire(mnt);
1756 out:
1757 	return retval;
1758 }
1759 
1760 SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
1761 {
1762 	return ksys_umount(name, flags);
1763 }
1764 
1765 #ifdef __ARCH_WANT_SYS_OLDUMOUNT
1766 
1767 /*
1768  *	The 2.0 compatible umount. No flags.
1769  */
1770 SYSCALL_DEFINE1(oldumount, char __user *, name)
1771 {
1772 	return ksys_umount(name, 0);
1773 }
1774 
1775 #endif
1776 
1777 static bool is_mnt_ns_file(struct dentry *dentry)
1778 {
1779 	/* Is this a proxy for a mount namespace? */
1780 	return dentry->d_op == &ns_dentry_operations &&
1781 	       dentry->d_fsdata == &mntns_operations;
1782 }
1783 
1784 static struct mnt_namespace *to_mnt_ns(struct ns_common *ns)
1785 {
1786 	return container_of(ns, struct mnt_namespace, ns);
1787 }
1788 
1789 static bool mnt_ns_loop(struct dentry *dentry)
1790 {
1791 	/* Could bind mounting the mount namespace inode cause a
1792 	 * mount namespace loop?
1793 	 */
1794 	struct mnt_namespace *mnt_ns;
1795 	if (!is_mnt_ns_file(dentry))
1796 		return false;
1797 
1798 	mnt_ns = to_mnt_ns(get_proc_ns(dentry->d_inode));
1799 	return current->nsproxy->mnt_ns->seq >= mnt_ns->seq;
1800 }
1801 
1802 struct mount *copy_tree(struct mount *mnt, struct dentry *dentry,
1803 					int flag)
1804 {
1805 	struct mount *res, *p, *q, *r, *parent;
1806 
1807 	if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(mnt))
1808 		return ERR_PTR(-EINVAL);
1809 
1810 	if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry))
1811 		return ERR_PTR(-EINVAL);
1812 
1813 	res = q = clone_mnt(mnt, dentry, flag);
1814 	if (IS_ERR(q))
1815 		return q;
1816 
1817 	q->mnt_mountpoint = mnt->mnt_mountpoint;
1818 
1819 	p = mnt;
1820 	list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
1821 		struct mount *s;
1822 		if (!is_subdir(r->mnt_mountpoint, dentry))
1823 			continue;
1824 
1825 		for (s = r; s; s = next_mnt(s, r)) {
1826 			if (!(flag & CL_COPY_UNBINDABLE) &&
1827 			    IS_MNT_UNBINDABLE(s)) {
1828 				if (s->mnt.mnt_flags & MNT_LOCKED) {
1829 					/* Both unbindable and locked. */
1830 					q = ERR_PTR(-EPERM);
1831 					goto out;
1832 				} else {
1833 					s = skip_mnt_tree(s);
1834 					continue;
1835 				}
1836 			}
1837 			if (!(flag & CL_COPY_MNT_NS_FILE) &&
1838 			    is_mnt_ns_file(s->mnt.mnt_root)) {
1839 				s = skip_mnt_tree(s);
1840 				continue;
1841 			}
1842 			while (p != s->mnt_parent) {
1843 				p = p->mnt_parent;
1844 				q = q->mnt_parent;
1845 			}
1846 			p = s;
1847 			parent = q;
1848 			q = clone_mnt(p, p->mnt.mnt_root, flag);
1849 			if (IS_ERR(q))
1850 				goto out;
1851 			lock_mount_hash();
1852 			list_add_tail(&q->mnt_list, &res->mnt_list);
1853 			attach_mnt(q, parent, p->mnt_mp);
1854 			unlock_mount_hash();
1855 		}
1856 	}
1857 	return res;
1858 out:
1859 	if (res) {
1860 		lock_mount_hash();
1861 		umount_tree(res, UMOUNT_SYNC);
1862 		unlock_mount_hash();
1863 	}
1864 	return q;
1865 }
1866 
1867 /* Caller should check returned pointer for errors */
1868 
1869 struct vfsmount *collect_mounts(const struct path *path)
1870 {
1871 	struct mount *tree;
1872 	namespace_lock();
1873 	if (!check_mnt(real_mount(path->mnt)))
1874 		tree = ERR_PTR(-EINVAL);
1875 	else
1876 		tree = copy_tree(real_mount(path->mnt), path->dentry,
1877 				 CL_COPY_ALL | CL_PRIVATE);
1878 	namespace_unlock();
1879 	if (IS_ERR(tree))
1880 		return ERR_CAST(tree);
1881 	return &tree->mnt;
1882 }
1883 
1884 static void free_mnt_ns(struct mnt_namespace *);
1885 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *, bool);
1886 
1887 void dissolve_on_fput(struct vfsmount *mnt)
1888 {
1889 	struct mnt_namespace *ns;
1890 	namespace_lock();
1891 	lock_mount_hash();
1892 	ns = real_mount(mnt)->mnt_ns;
1893 	if (ns) {
1894 		if (is_anon_ns(ns))
1895 			umount_tree(real_mount(mnt), UMOUNT_CONNECTED);
1896 		else
1897 			ns = NULL;
1898 	}
1899 	unlock_mount_hash();
1900 	namespace_unlock();
1901 	if (ns)
1902 		free_mnt_ns(ns);
1903 }
1904 
1905 void drop_collected_mounts(struct vfsmount *mnt)
1906 {
1907 	namespace_lock();
1908 	lock_mount_hash();
1909 	umount_tree(real_mount(mnt), 0);
1910 	unlock_mount_hash();
1911 	namespace_unlock();
1912 }
1913 
1914 /**
1915  * clone_private_mount - create a private clone of a path
1916  *
1917  * This creates a new vfsmount, which will be the clone of @path.  The new will
1918  * not be attached anywhere in the namespace and will be private (i.e. changes
1919  * to the originating mount won't be propagated into this).
1920  *
1921  * Release with mntput().
1922  */
1923 struct vfsmount *clone_private_mount(const struct path *path)
1924 {
1925 	struct mount *old_mnt = real_mount(path->mnt);
1926 	struct mount *new_mnt;
1927 
1928 	if (IS_MNT_UNBINDABLE(old_mnt))
1929 		return ERR_PTR(-EINVAL);
1930 
1931 	new_mnt = clone_mnt(old_mnt, path->dentry, CL_PRIVATE);
1932 	if (IS_ERR(new_mnt))
1933 		return ERR_CAST(new_mnt);
1934 
1935 	return &new_mnt->mnt;
1936 }
1937 EXPORT_SYMBOL_GPL(clone_private_mount);
1938 
1939 int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
1940 		   struct vfsmount *root)
1941 {
1942 	struct mount *mnt;
1943 	int res = f(root, arg);
1944 	if (res)
1945 		return res;
1946 	list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) {
1947 		res = f(&mnt->mnt, arg);
1948 		if (res)
1949 			return res;
1950 	}
1951 	return 0;
1952 }
1953 
1954 static void lock_mnt_tree(struct mount *mnt)
1955 {
1956 	struct mount *p;
1957 
1958 	for (p = mnt; p; p = next_mnt(p, mnt)) {
1959 		int flags = p->mnt.mnt_flags;
1960 		/* Don't allow unprivileged users to change mount flags */
1961 		flags |= MNT_LOCK_ATIME;
1962 
1963 		if (flags & MNT_READONLY)
1964 			flags |= MNT_LOCK_READONLY;
1965 
1966 		if (flags & MNT_NODEV)
1967 			flags |= MNT_LOCK_NODEV;
1968 
1969 		if (flags & MNT_NOSUID)
1970 			flags |= MNT_LOCK_NOSUID;
1971 
1972 		if (flags & MNT_NOEXEC)
1973 			flags |= MNT_LOCK_NOEXEC;
1974 		/* Don't allow unprivileged users to reveal what is under a mount */
1975 		if (list_empty(&p->mnt_expire))
1976 			flags |= MNT_LOCKED;
1977 		p->mnt.mnt_flags = flags;
1978 	}
1979 }
1980 
1981 static void cleanup_group_ids(struct mount *mnt, struct mount *end)
1982 {
1983 	struct mount *p;
1984 
1985 	for (p = mnt; p != end; p = next_mnt(p, mnt)) {
1986 		if (p->mnt_group_id && !IS_MNT_SHARED(p))
1987 			mnt_release_group_id(p);
1988 	}
1989 }
1990 
1991 static int invent_group_ids(struct mount *mnt, bool recurse)
1992 {
1993 	struct mount *p;
1994 
1995 	for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
1996 		if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
1997 			int err = mnt_alloc_group_id(p);
1998 			if (err) {
1999 				cleanup_group_ids(mnt, p);
2000 				return err;
2001 			}
2002 		}
2003 	}
2004 
2005 	return 0;
2006 }
2007 
2008 int count_mounts(struct mnt_namespace *ns, struct mount *mnt)
2009 {
2010 	unsigned int max = READ_ONCE(sysctl_mount_max);
2011 	unsigned int mounts = 0, old, pending, sum;
2012 	struct mount *p;
2013 
2014 	for (p = mnt; p; p = next_mnt(p, mnt))
2015 		mounts++;
2016 
2017 	old = ns->mounts;
2018 	pending = ns->pending_mounts;
2019 	sum = old + pending;
2020 	if ((old > sum) ||
2021 	    (pending > sum) ||
2022 	    (max < sum) ||
2023 	    (mounts > (max - sum)))
2024 		return -ENOSPC;
2025 
2026 	ns->pending_mounts = pending + mounts;
2027 	return 0;
2028 }
2029 
2030 /*
2031  *  @source_mnt : mount tree to be attached
2032  *  @nd         : place the mount tree @source_mnt is attached
2033  *  @parent_nd  : if non-null, detach the source_mnt from its parent and
2034  *  		   store the parent mount and mountpoint dentry.
2035  *  		   (done when source_mnt is moved)
2036  *
2037  *  NOTE: in the table below explains the semantics when a source mount
2038  *  of a given type is attached to a destination mount of a given type.
2039  * ---------------------------------------------------------------------------
2040  * |         BIND MOUNT OPERATION                                            |
2041  * |**************************************************************************
2042  * | source-->| shared        |       private  |       slave    | unbindable |
2043  * | dest     |               |                |                |            |
2044  * |   |      |               |                |                |            |
2045  * |   v      |               |                |                |            |
2046  * |**************************************************************************
2047  * |  shared  | shared (++)   |     shared (+) |     shared(+++)|  invalid   |
2048  * |          |               |                |                |            |
2049  * |non-shared| shared (+)    |      private   |      slave (*) |  invalid   |
2050  * ***************************************************************************
2051  * A bind operation clones the source mount and mounts the clone on the
2052  * destination mount.
2053  *
2054  * (++)  the cloned mount is propagated to all the mounts in the propagation
2055  * 	 tree of the destination mount and the cloned mount is added to
2056  * 	 the peer group of the source mount.
2057  * (+)   the cloned mount is created under the destination mount and is marked
2058  *       as shared. The cloned mount is added to the peer group of the source
2059  *       mount.
2060  * (+++) the mount is propagated to all the mounts in the propagation tree
2061  *       of the destination mount and the cloned mount is made slave
2062  *       of the same master as that of the source mount. The cloned mount
2063  *       is marked as 'shared and slave'.
2064  * (*)   the cloned mount is made a slave of the same master as that of the
2065  * 	 source mount.
2066  *
2067  * ---------------------------------------------------------------------------
2068  * |         		MOVE MOUNT OPERATION                                 |
2069  * |**************************************************************************
2070  * | source-->| shared        |       private  |       slave    | unbindable |
2071  * | dest     |               |                |                |            |
2072  * |   |      |               |                |                |            |
2073  * |   v      |               |                |                |            |
2074  * |**************************************************************************
2075  * |  shared  | shared (+)    |     shared (+) |    shared(+++) |  invalid   |
2076  * |          |               |                |                |            |
2077  * |non-shared| shared (+*)   |      private   |    slave (*)   | unbindable |
2078  * ***************************************************************************
2079  *
2080  * (+)  the mount is moved to the destination. And is then propagated to
2081  * 	all the mounts in the propagation tree of the destination mount.
2082  * (+*)  the mount is moved to the destination.
2083  * (+++)  the mount is moved to the destination and is then propagated to
2084  * 	all the mounts belonging to the destination mount's propagation tree.
2085  * 	the mount is marked as 'shared and slave'.
2086  * (*)	the mount continues to be a slave at the new location.
2087  *
2088  * if the source mount is a tree, the operations explained above is
2089  * applied to each mount in the tree.
2090  * Must be called without spinlocks held, since this function can sleep
2091  * in allocations.
2092  */
2093 static int attach_recursive_mnt(struct mount *source_mnt,
2094 			struct mount *dest_mnt,
2095 			struct mountpoint *dest_mp,
2096 			bool moving)
2097 {
2098 	struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns;
2099 	HLIST_HEAD(tree_list);
2100 	struct mnt_namespace *ns = dest_mnt->mnt_ns;
2101 	struct mountpoint *smp;
2102 	struct mount *child, *p;
2103 	struct hlist_node *n;
2104 	int err;
2105 
2106 	/* Preallocate a mountpoint in case the new mounts need
2107 	 * to be tucked under other mounts.
2108 	 */
2109 	smp = get_mountpoint(source_mnt->mnt.mnt_root);
2110 	if (IS_ERR(smp))
2111 		return PTR_ERR(smp);
2112 
2113 	/* Is there space to add these mounts to the mount namespace? */
2114 	if (!moving) {
2115 		err = count_mounts(ns, source_mnt);
2116 		if (err)
2117 			goto out;
2118 	}
2119 
2120 	if (IS_MNT_SHARED(dest_mnt)) {
2121 		err = invent_group_ids(source_mnt, true);
2122 		if (err)
2123 			goto out;
2124 		err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list);
2125 		lock_mount_hash();
2126 		if (err)
2127 			goto out_cleanup_ids;
2128 		for (p = source_mnt; p; p = next_mnt(p, source_mnt))
2129 			set_mnt_shared(p);
2130 	} else {
2131 		lock_mount_hash();
2132 	}
2133 	if (moving) {
2134 		unhash_mnt(source_mnt);
2135 		attach_mnt(source_mnt, dest_mnt, dest_mp);
2136 		touch_mnt_namespace(source_mnt->mnt_ns);
2137 	} else {
2138 		if (source_mnt->mnt_ns) {
2139 			/* move from anon - the caller will destroy */
2140 			list_del_init(&source_mnt->mnt_ns->list);
2141 		}
2142 		mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt);
2143 		commit_tree(source_mnt);
2144 	}
2145 
2146 	hlist_for_each_entry_safe(child, n, &tree_list, mnt_hash) {
2147 		struct mount *q;
2148 		hlist_del_init(&child->mnt_hash);
2149 		q = __lookup_mnt(&child->mnt_parent->mnt,
2150 				 child->mnt_mountpoint);
2151 		if (q)
2152 			mnt_change_mountpoint(child, smp, q);
2153 		/* Notice when we are propagating across user namespaces */
2154 		if (child->mnt_parent->mnt_ns->user_ns != user_ns)
2155 			lock_mnt_tree(child);
2156 		child->mnt.mnt_flags &= ~MNT_LOCKED;
2157 		commit_tree(child);
2158 	}
2159 	put_mountpoint(smp);
2160 	unlock_mount_hash();
2161 
2162 	return 0;
2163 
2164  out_cleanup_ids:
2165 	while (!hlist_empty(&tree_list)) {
2166 		child = hlist_entry(tree_list.first, struct mount, mnt_hash);
2167 		child->mnt_parent->mnt_ns->pending_mounts = 0;
2168 		umount_tree(child, UMOUNT_SYNC);
2169 	}
2170 	unlock_mount_hash();
2171 	cleanup_group_ids(source_mnt, NULL);
2172  out:
2173 	ns->pending_mounts = 0;
2174 
2175 	read_seqlock_excl(&mount_lock);
2176 	put_mountpoint(smp);
2177 	read_sequnlock_excl(&mount_lock);
2178 
2179 	return err;
2180 }
2181 
2182 static struct mountpoint *lock_mount(struct path *path)
2183 {
2184 	struct vfsmount *mnt;
2185 	struct dentry *dentry = path->dentry;
2186 retry:
2187 	inode_lock(dentry->d_inode);
2188 	if (unlikely(cant_mount(dentry))) {
2189 		inode_unlock(dentry->d_inode);
2190 		return ERR_PTR(-ENOENT);
2191 	}
2192 	namespace_lock();
2193 	mnt = lookup_mnt(path);
2194 	if (likely(!mnt)) {
2195 		struct mountpoint *mp = get_mountpoint(dentry);
2196 		if (IS_ERR(mp)) {
2197 			namespace_unlock();
2198 			inode_unlock(dentry->d_inode);
2199 			return mp;
2200 		}
2201 		return mp;
2202 	}
2203 	namespace_unlock();
2204 	inode_unlock(path->dentry->d_inode);
2205 	path_put(path);
2206 	path->mnt = mnt;
2207 	dentry = path->dentry = dget(mnt->mnt_root);
2208 	goto retry;
2209 }
2210 
2211 static void unlock_mount(struct mountpoint *where)
2212 {
2213 	struct dentry *dentry = where->m_dentry;
2214 
2215 	read_seqlock_excl(&mount_lock);
2216 	put_mountpoint(where);
2217 	read_sequnlock_excl(&mount_lock);
2218 
2219 	namespace_unlock();
2220 	inode_unlock(dentry->d_inode);
2221 }
2222 
2223 static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp)
2224 {
2225 	if (mnt->mnt.mnt_sb->s_flags & SB_NOUSER)
2226 		return -EINVAL;
2227 
2228 	if (d_is_dir(mp->m_dentry) !=
2229 	      d_is_dir(mnt->mnt.mnt_root))
2230 		return -ENOTDIR;
2231 
2232 	return attach_recursive_mnt(mnt, p, mp, false);
2233 }
2234 
2235 /*
2236  * Sanity check the flags to change_mnt_propagation.
2237  */
2238 
2239 static int flags_to_propagation_type(int ms_flags)
2240 {
2241 	int type = ms_flags & ~(MS_REC | MS_SILENT);
2242 
2243 	/* Fail if any non-propagation flags are set */
2244 	if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2245 		return 0;
2246 	/* Only one propagation flag should be set */
2247 	if (!is_power_of_2(type))
2248 		return 0;
2249 	return type;
2250 }
2251 
2252 /*
2253  * recursively change the type of the mountpoint.
2254  */
2255 static int do_change_type(struct path *path, int ms_flags)
2256 {
2257 	struct mount *m;
2258 	struct mount *mnt = real_mount(path->mnt);
2259 	int recurse = ms_flags & MS_REC;
2260 	int type;
2261 	int err = 0;
2262 
2263 	if (path->dentry != path->mnt->mnt_root)
2264 		return -EINVAL;
2265 
2266 	type = flags_to_propagation_type(ms_flags);
2267 	if (!type)
2268 		return -EINVAL;
2269 
2270 	namespace_lock();
2271 	if (type == MS_SHARED) {
2272 		err = invent_group_ids(mnt, recurse);
2273 		if (err)
2274 			goto out_unlock;
2275 	}
2276 
2277 	lock_mount_hash();
2278 	for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
2279 		change_mnt_propagation(m, type);
2280 	unlock_mount_hash();
2281 
2282  out_unlock:
2283 	namespace_unlock();
2284 	return err;
2285 }
2286 
2287 static bool has_locked_children(struct mount *mnt, struct dentry *dentry)
2288 {
2289 	struct mount *child;
2290 	list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
2291 		if (!is_subdir(child->mnt_mountpoint, dentry))
2292 			continue;
2293 
2294 		if (child->mnt.mnt_flags & MNT_LOCKED)
2295 			return true;
2296 	}
2297 	return false;
2298 }
2299 
2300 static struct mount *__do_loopback(struct path *old_path, int recurse)
2301 {
2302 	struct mount *mnt = ERR_PTR(-EINVAL), *old = real_mount(old_path->mnt);
2303 
2304 	if (IS_MNT_UNBINDABLE(old))
2305 		return mnt;
2306 
2307 	if (!check_mnt(old) && old_path->dentry->d_op != &ns_dentry_operations)
2308 		return mnt;
2309 
2310 	if (!recurse && has_locked_children(old, old_path->dentry))
2311 		return mnt;
2312 
2313 	if (recurse)
2314 		mnt = copy_tree(old, old_path->dentry, CL_COPY_MNT_NS_FILE);
2315 	else
2316 		mnt = clone_mnt(old, old_path->dentry, 0);
2317 
2318 	if (!IS_ERR(mnt))
2319 		mnt->mnt.mnt_flags &= ~MNT_LOCKED;
2320 
2321 	return mnt;
2322 }
2323 
2324 /*
2325  * do loopback mount.
2326  */
2327 static int do_loopback(struct path *path, const char *old_name,
2328 				int recurse)
2329 {
2330 	struct path old_path;
2331 	struct mount *mnt = NULL, *parent;
2332 	struct mountpoint *mp;
2333 	int err;
2334 	if (!old_name || !*old_name)
2335 		return -EINVAL;
2336 	err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
2337 	if (err)
2338 		return err;
2339 
2340 	err = -EINVAL;
2341 	if (mnt_ns_loop(old_path.dentry))
2342 		goto out;
2343 
2344 	mp = lock_mount(path);
2345 	if (IS_ERR(mp)) {
2346 		err = PTR_ERR(mp);
2347 		goto out;
2348 	}
2349 
2350 	parent = real_mount(path->mnt);
2351 	if (!check_mnt(parent))
2352 		goto out2;
2353 
2354 	mnt = __do_loopback(&old_path, recurse);
2355 	if (IS_ERR(mnt)) {
2356 		err = PTR_ERR(mnt);
2357 		goto out2;
2358 	}
2359 
2360 	err = graft_tree(mnt, parent, mp);
2361 	if (err) {
2362 		lock_mount_hash();
2363 		umount_tree(mnt, UMOUNT_SYNC);
2364 		unlock_mount_hash();
2365 	}
2366 out2:
2367 	unlock_mount(mp);
2368 out:
2369 	path_put(&old_path);
2370 	return err;
2371 }
2372 
2373 static struct file *open_detached_copy(struct path *path, bool recursive)
2374 {
2375 	struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns;
2376 	struct mnt_namespace *ns = alloc_mnt_ns(user_ns, true);
2377 	struct mount *mnt, *p;
2378 	struct file *file;
2379 
2380 	if (IS_ERR(ns))
2381 		return ERR_CAST(ns);
2382 
2383 	namespace_lock();
2384 	mnt = __do_loopback(path, recursive);
2385 	if (IS_ERR(mnt)) {
2386 		namespace_unlock();
2387 		free_mnt_ns(ns);
2388 		return ERR_CAST(mnt);
2389 	}
2390 
2391 	lock_mount_hash();
2392 	for (p = mnt; p; p = next_mnt(p, mnt)) {
2393 		p->mnt_ns = ns;
2394 		ns->mounts++;
2395 	}
2396 	ns->root = mnt;
2397 	list_add_tail(&ns->list, &mnt->mnt_list);
2398 	mntget(&mnt->mnt);
2399 	unlock_mount_hash();
2400 	namespace_unlock();
2401 
2402 	mntput(path->mnt);
2403 	path->mnt = &mnt->mnt;
2404 	file = dentry_open(path, O_PATH, current_cred());
2405 	if (IS_ERR(file))
2406 		dissolve_on_fput(path->mnt);
2407 	else
2408 		file->f_mode |= FMODE_NEED_UNMOUNT;
2409 	return file;
2410 }
2411 
2412 SYSCALL_DEFINE3(open_tree, int, dfd, const char __user *, filename, unsigned, flags)
2413 {
2414 	struct file *file;
2415 	struct path path;
2416 	int lookup_flags = LOOKUP_AUTOMOUNT | LOOKUP_FOLLOW;
2417 	bool detached = flags & OPEN_TREE_CLONE;
2418 	int error;
2419 	int fd;
2420 
2421 	BUILD_BUG_ON(OPEN_TREE_CLOEXEC != O_CLOEXEC);
2422 
2423 	if (flags & ~(AT_EMPTY_PATH | AT_NO_AUTOMOUNT | AT_RECURSIVE |
2424 		      AT_SYMLINK_NOFOLLOW | OPEN_TREE_CLONE |
2425 		      OPEN_TREE_CLOEXEC))
2426 		return -EINVAL;
2427 
2428 	if ((flags & (AT_RECURSIVE | OPEN_TREE_CLONE)) == AT_RECURSIVE)
2429 		return -EINVAL;
2430 
2431 	if (flags & AT_NO_AUTOMOUNT)
2432 		lookup_flags &= ~LOOKUP_AUTOMOUNT;
2433 	if (flags & AT_SYMLINK_NOFOLLOW)
2434 		lookup_flags &= ~LOOKUP_FOLLOW;
2435 	if (flags & AT_EMPTY_PATH)
2436 		lookup_flags |= LOOKUP_EMPTY;
2437 
2438 	if (detached && !may_mount())
2439 		return -EPERM;
2440 
2441 	fd = get_unused_fd_flags(flags & O_CLOEXEC);
2442 	if (fd < 0)
2443 		return fd;
2444 
2445 	error = user_path_at(dfd, filename, lookup_flags, &path);
2446 	if (unlikely(error)) {
2447 		file = ERR_PTR(error);
2448 	} else {
2449 		if (detached)
2450 			file = open_detached_copy(&path, flags & AT_RECURSIVE);
2451 		else
2452 			file = dentry_open(&path, O_PATH, current_cred());
2453 		path_put(&path);
2454 	}
2455 	if (IS_ERR(file)) {
2456 		put_unused_fd(fd);
2457 		return PTR_ERR(file);
2458 	}
2459 	fd_install(fd, file);
2460 	return fd;
2461 }
2462 
2463 /*
2464  * Don't allow locked mount flags to be cleared.
2465  *
2466  * No locks need to be held here while testing the various MNT_LOCK
2467  * flags because those flags can never be cleared once they are set.
2468  */
2469 static bool can_change_locked_flags(struct mount *mnt, unsigned int mnt_flags)
2470 {
2471 	unsigned int fl = mnt->mnt.mnt_flags;
2472 
2473 	if ((fl & MNT_LOCK_READONLY) &&
2474 	    !(mnt_flags & MNT_READONLY))
2475 		return false;
2476 
2477 	if ((fl & MNT_LOCK_NODEV) &&
2478 	    !(mnt_flags & MNT_NODEV))
2479 		return false;
2480 
2481 	if ((fl & MNT_LOCK_NOSUID) &&
2482 	    !(mnt_flags & MNT_NOSUID))
2483 		return false;
2484 
2485 	if ((fl & MNT_LOCK_NOEXEC) &&
2486 	    !(mnt_flags & MNT_NOEXEC))
2487 		return false;
2488 
2489 	if ((fl & MNT_LOCK_ATIME) &&
2490 	    ((fl & MNT_ATIME_MASK) != (mnt_flags & MNT_ATIME_MASK)))
2491 		return false;
2492 
2493 	return true;
2494 }
2495 
2496 static int change_mount_ro_state(struct mount *mnt, unsigned int mnt_flags)
2497 {
2498 	bool readonly_request = (mnt_flags & MNT_READONLY);
2499 
2500 	if (readonly_request == __mnt_is_readonly(&mnt->mnt))
2501 		return 0;
2502 
2503 	if (readonly_request)
2504 		return mnt_make_readonly(mnt);
2505 
2506 	return __mnt_unmake_readonly(mnt);
2507 }
2508 
2509 /*
2510  * Update the user-settable attributes on a mount.  The caller must hold
2511  * sb->s_umount for writing.
2512  */
2513 static void set_mount_attributes(struct mount *mnt, unsigned int mnt_flags)
2514 {
2515 	lock_mount_hash();
2516 	mnt_flags |= mnt->mnt.mnt_flags & ~MNT_USER_SETTABLE_MASK;
2517 	mnt->mnt.mnt_flags = mnt_flags;
2518 	touch_mnt_namespace(mnt->mnt_ns);
2519 	unlock_mount_hash();
2520 }
2521 
2522 static void mnt_warn_timestamp_expiry(struct path *mountpoint, struct vfsmount *mnt)
2523 {
2524 	struct super_block *sb = mnt->mnt_sb;
2525 
2526 	if (!__mnt_is_readonly(mnt) &&
2527 	   (ktime_get_real_seconds() + TIME_UPTIME_SEC_MAX > sb->s_time_max)) {
2528 		char *buf = (char *)__get_free_page(GFP_KERNEL);
2529 		char *mntpath = buf ? d_path(mountpoint, buf, PAGE_SIZE) : ERR_PTR(-ENOMEM);
2530 		struct tm tm;
2531 
2532 		time64_to_tm(sb->s_time_max, 0, &tm);
2533 
2534 		pr_warn("%s filesystem being %s at %s supports timestamps until %04ld (0x%llx)\n",
2535 			sb->s_type->name,
2536 			is_mounted(mnt) ? "remounted" : "mounted",
2537 			mntpath,
2538 			tm.tm_year+1900, (unsigned long long)sb->s_time_max);
2539 
2540 		free_page((unsigned long)buf);
2541 	}
2542 }
2543 
2544 /*
2545  * Handle reconfiguration of the mountpoint only without alteration of the
2546  * superblock it refers to.  This is triggered by specifying MS_REMOUNT|MS_BIND
2547  * to mount(2).
2548  */
2549 static int do_reconfigure_mnt(struct path *path, unsigned int mnt_flags)
2550 {
2551 	struct super_block *sb = path->mnt->mnt_sb;
2552 	struct mount *mnt = real_mount(path->mnt);
2553 	int ret;
2554 
2555 	if (!check_mnt(mnt))
2556 		return -EINVAL;
2557 
2558 	if (path->dentry != mnt->mnt.mnt_root)
2559 		return -EINVAL;
2560 
2561 	if (!can_change_locked_flags(mnt, mnt_flags))
2562 		return -EPERM;
2563 
2564 	down_write(&sb->s_umount);
2565 	ret = change_mount_ro_state(mnt, mnt_flags);
2566 	if (ret == 0)
2567 		set_mount_attributes(mnt, mnt_flags);
2568 	up_write(&sb->s_umount);
2569 
2570 	mnt_warn_timestamp_expiry(path, &mnt->mnt);
2571 
2572 	return ret;
2573 }
2574 
2575 /*
2576  * change filesystem flags. dir should be a physical root of filesystem.
2577  * If you've mounted a non-root directory somewhere and want to do remount
2578  * on it - tough luck.
2579  */
2580 static int do_remount(struct path *path, int ms_flags, int sb_flags,
2581 		      int mnt_flags, void *data)
2582 {
2583 	int err;
2584 	struct super_block *sb = path->mnt->mnt_sb;
2585 	struct mount *mnt = real_mount(path->mnt);
2586 	struct fs_context *fc;
2587 
2588 	if (!check_mnt(mnt))
2589 		return -EINVAL;
2590 
2591 	if (path->dentry != path->mnt->mnt_root)
2592 		return -EINVAL;
2593 
2594 	if (!can_change_locked_flags(mnt, mnt_flags))
2595 		return -EPERM;
2596 
2597 	fc = fs_context_for_reconfigure(path->dentry, sb_flags, MS_RMT_MASK);
2598 	if (IS_ERR(fc))
2599 		return PTR_ERR(fc);
2600 
2601 	err = parse_monolithic_mount_data(fc, data);
2602 	if (!err) {
2603 		down_write(&sb->s_umount);
2604 		err = -EPERM;
2605 		if (ns_capable(sb->s_user_ns, CAP_SYS_ADMIN)) {
2606 			err = reconfigure_super(fc);
2607 			if (!err)
2608 				set_mount_attributes(mnt, mnt_flags);
2609 		}
2610 		up_write(&sb->s_umount);
2611 	}
2612 
2613 	mnt_warn_timestamp_expiry(path, &mnt->mnt);
2614 
2615 	put_fs_context(fc);
2616 	return err;
2617 }
2618 
2619 static inline int tree_contains_unbindable(struct mount *mnt)
2620 {
2621 	struct mount *p;
2622 	for (p = mnt; p; p = next_mnt(p, mnt)) {
2623 		if (IS_MNT_UNBINDABLE(p))
2624 			return 1;
2625 	}
2626 	return 0;
2627 }
2628 
2629 /*
2630  * Check that there aren't references to earlier/same mount namespaces in the
2631  * specified subtree.  Such references can act as pins for mount namespaces
2632  * that aren't checked by the mount-cycle checking code, thereby allowing
2633  * cycles to be made.
2634  */
2635 static bool check_for_nsfs_mounts(struct mount *subtree)
2636 {
2637 	struct mount *p;
2638 	bool ret = false;
2639 
2640 	lock_mount_hash();
2641 	for (p = subtree; p; p = next_mnt(p, subtree))
2642 		if (mnt_ns_loop(p->mnt.mnt_root))
2643 			goto out;
2644 
2645 	ret = true;
2646 out:
2647 	unlock_mount_hash();
2648 	return ret;
2649 }
2650 
2651 static int do_move_mount(struct path *old_path, struct path *new_path)
2652 {
2653 	struct mnt_namespace *ns;
2654 	struct mount *p;
2655 	struct mount *old;
2656 	struct mount *parent;
2657 	struct mountpoint *mp, *old_mp;
2658 	int err;
2659 	bool attached;
2660 
2661 	mp = lock_mount(new_path);
2662 	if (IS_ERR(mp))
2663 		return PTR_ERR(mp);
2664 
2665 	old = real_mount(old_path->mnt);
2666 	p = real_mount(new_path->mnt);
2667 	parent = old->mnt_parent;
2668 	attached = mnt_has_parent(old);
2669 	old_mp = old->mnt_mp;
2670 	ns = old->mnt_ns;
2671 
2672 	err = -EINVAL;
2673 	/* The mountpoint must be in our namespace. */
2674 	if (!check_mnt(p))
2675 		goto out;
2676 
2677 	/* The thing moved must be mounted... */
2678 	if (!is_mounted(&old->mnt))
2679 		goto out;
2680 
2681 	/* ... and either ours or the root of anon namespace */
2682 	if (!(attached ? check_mnt(old) : is_anon_ns(ns)))
2683 		goto out;
2684 
2685 	if (old->mnt.mnt_flags & MNT_LOCKED)
2686 		goto out;
2687 
2688 	if (old_path->dentry != old_path->mnt->mnt_root)
2689 		goto out;
2690 
2691 	if (d_is_dir(new_path->dentry) !=
2692 	    d_is_dir(old_path->dentry))
2693 		goto out;
2694 	/*
2695 	 * Don't move a mount residing in a shared parent.
2696 	 */
2697 	if (attached && IS_MNT_SHARED(parent))
2698 		goto out;
2699 	/*
2700 	 * Don't move a mount tree containing unbindable mounts to a destination
2701 	 * mount which is shared.
2702 	 */
2703 	if (IS_MNT_SHARED(p) && tree_contains_unbindable(old))
2704 		goto out;
2705 	err = -ELOOP;
2706 	if (!check_for_nsfs_mounts(old))
2707 		goto out;
2708 	for (; mnt_has_parent(p); p = p->mnt_parent)
2709 		if (p == old)
2710 			goto out;
2711 
2712 	err = attach_recursive_mnt(old, real_mount(new_path->mnt), mp,
2713 				   attached);
2714 	if (err)
2715 		goto out;
2716 
2717 	/* if the mount is moved, it should no longer be expire
2718 	 * automatically */
2719 	list_del_init(&old->mnt_expire);
2720 	if (attached)
2721 		put_mountpoint(old_mp);
2722 out:
2723 	unlock_mount(mp);
2724 	if (!err) {
2725 		if (attached)
2726 			mntput_no_expire(parent);
2727 		else
2728 			free_mnt_ns(ns);
2729 	}
2730 	return err;
2731 }
2732 
2733 static int do_move_mount_old(struct path *path, const char *old_name)
2734 {
2735 	struct path old_path;
2736 	int err;
2737 
2738 	if (!old_name || !*old_name)
2739 		return -EINVAL;
2740 
2741 	err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
2742 	if (err)
2743 		return err;
2744 
2745 	err = do_move_mount(&old_path, path);
2746 	path_put(&old_path);
2747 	return err;
2748 }
2749 
2750 /*
2751  * add a mount into a namespace's mount tree
2752  */
2753 static int do_add_mount(struct mount *newmnt, struct mountpoint *mp,
2754 			struct path *path, int mnt_flags)
2755 {
2756 	struct mount *parent = real_mount(path->mnt);
2757 
2758 	mnt_flags &= ~MNT_INTERNAL_FLAGS;
2759 
2760 	if (unlikely(!check_mnt(parent))) {
2761 		/* that's acceptable only for automounts done in private ns */
2762 		if (!(mnt_flags & MNT_SHRINKABLE))
2763 			return -EINVAL;
2764 		/* ... and for those we'd better have mountpoint still alive */
2765 		if (!parent->mnt_ns)
2766 			return -EINVAL;
2767 	}
2768 
2769 	/* Refuse the same filesystem on the same mount point */
2770 	if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb &&
2771 	    path->mnt->mnt_root == path->dentry)
2772 		return -EBUSY;
2773 
2774 	if (d_is_symlink(newmnt->mnt.mnt_root))
2775 		return -EINVAL;
2776 
2777 	newmnt->mnt.mnt_flags = mnt_flags;
2778 	return graft_tree(newmnt, parent, mp);
2779 }
2780 
2781 static bool mount_too_revealing(const struct super_block *sb, int *new_mnt_flags);
2782 
2783 /*
2784  * Create a new mount using a superblock configuration and request it
2785  * be added to the namespace tree.
2786  */
2787 static int do_new_mount_fc(struct fs_context *fc, struct path *mountpoint,
2788 			   unsigned int mnt_flags)
2789 {
2790 	struct vfsmount *mnt;
2791 	struct mountpoint *mp;
2792 	struct super_block *sb = fc->root->d_sb;
2793 	int error;
2794 
2795 	error = security_sb_kern_mount(sb);
2796 	if (!error && mount_too_revealing(sb, &mnt_flags))
2797 		error = -EPERM;
2798 
2799 	if (unlikely(error)) {
2800 		fc_drop_locked(fc);
2801 		return error;
2802 	}
2803 
2804 	up_write(&sb->s_umount);
2805 
2806 	mnt = vfs_create_mount(fc);
2807 	if (IS_ERR(mnt))
2808 		return PTR_ERR(mnt);
2809 
2810 	mnt_warn_timestamp_expiry(mountpoint, mnt);
2811 
2812 	mp = lock_mount(mountpoint);
2813 	if (IS_ERR(mp)) {
2814 		mntput(mnt);
2815 		return PTR_ERR(mp);
2816 	}
2817 	error = do_add_mount(real_mount(mnt), mp, mountpoint, mnt_flags);
2818 	unlock_mount(mp);
2819 	if (error < 0)
2820 		mntput(mnt);
2821 	return error;
2822 }
2823 
2824 /*
2825  * create a new mount for userspace and request it to be added into the
2826  * namespace's tree
2827  */
2828 static int do_new_mount(struct path *path, const char *fstype, int sb_flags,
2829 			int mnt_flags, const char *name, void *data)
2830 {
2831 	struct file_system_type *type;
2832 	struct fs_context *fc;
2833 	const char *subtype = NULL;
2834 	int err = 0;
2835 
2836 	if (!fstype)
2837 		return -EINVAL;
2838 
2839 	type = get_fs_type(fstype);
2840 	if (!type)
2841 		return -ENODEV;
2842 
2843 	if (type->fs_flags & FS_HAS_SUBTYPE) {
2844 		subtype = strchr(fstype, '.');
2845 		if (subtype) {
2846 			subtype++;
2847 			if (!*subtype) {
2848 				put_filesystem(type);
2849 				return -EINVAL;
2850 			}
2851 		}
2852 	}
2853 
2854 	fc = fs_context_for_mount(type, sb_flags);
2855 	put_filesystem(type);
2856 	if (IS_ERR(fc))
2857 		return PTR_ERR(fc);
2858 
2859 	if (subtype)
2860 		err = vfs_parse_fs_string(fc, "subtype",
2861 					  subtype, strlen(subtype));
2862 	if (!err && name)
2863 		err = vfs_parse_fs_string(fc, "source", name, strlen(name));
2864 	if (!err)
2865 		err = parse_monolithic_mount_data(fc, data);
2866 	if (!err && !mount_capable(fc))
2867 		err = -EPERM;
2868 	if (!err)
2869 		err = vfs_get_tree(fc);
2870 	if (!err)
2871 		err = do_new_mount_fc(fc, path, mnt_flags);
2872 
2873 	put_fs_context(fc);
2874 	return err;
2875 }
2876 
2877 int finish_automount(struct vfsmount *m, struct path *path)
2878 {
2879 	struct dentry *dentry = path->dentry;
2880 	struct mountpoint *mp;
2881 	struct mount *mnt;
2882 	int err;
2883 
2884 	if (!m)
2885 		return 0;
2886 	if (IS_ERR(m))
2887 		return PTR_ERR(m);
2888 
2889 	mnt = real_mount(m);
2890 	/* The new mount record should have at least 2 refs to prevent it being
2891 	 * expired before we get a chance to add it
2892 	 */
2893 	BUG_ON(mnt_get_count(mnt) < 2);
2894 
2895 	if (m->mnt_sb == path->mnt->mnt_sb &&
2896 	    m->mnt_root == dentry) {
2897 		err = -ELOOP;
2898 		goto discard;
2899 	}
2900 
2901 	/*
2902 	 * we don't want to use lock_mount() - in this case finding something
2903 	 * that overmounts our mountpoint to be means "quitely drop what we've
2904 	 * got", not "try to mount it on top".
2905 	 */
2906 	inode_lock(dentry->d_inode);
2907 	namespace_lock();
2908 	if (unlikely(cant_mount(dentry))) {
2909 		err = -ENOENT;
2910 		goto discard_locked;
2911 	}
2912 	rcu_read_lock();
2913 	if (unlikely(__lookup_mnt(path->mnt, dentry))) {
2914 		rcu_read_unlock();
2915 		err = 0;
2916 		goto discard_locked;
2917 	}
2918 	rcu_read_unlock();
2919 	mp = get_mountpoint(dentry);
2920 	if (IS_ERR(mp)) {
2921 		err = PTR_ERR(mp);
2922 		goto discard_locked;
2923 	}
2924 
2925 	err = do_add_mount(mnt, mp, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
2926 	unlock_mount(mp);
2927 	if (unlikely(err))
2928 		goto discard;
2929 	mntput(m);
2930 	return 0;
2931 
2932 discard_locked:
2933 	namespace_unlock();
2934 	inode_unlock(dentry->d_inode);
2935 discard:
2936 	/* remove m from any expiration list it may be on */
2937 	if (!list_empty(&mnt->mnt_expire)) {
2938 		namespace_lock();
2939 		list_del_init(&mnt->mnt_expire);
2940 		namespace_unlock();
2941 	}
2942 	mntput(m);
2943 	mntput(m);
2944 	return err;
2945 }
2946 
2947 /**
2948  * mnt_set_expiry - Put a mount on an expiration list
2949  * @mnt: The mount to list.
2950  * @expiry_list: The list to add the mount to.
2951  */
2952 void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
2953 {
2954 	namespace_lock();
2955 
2956 	list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
2957 
2958 	namespace_unlock();
2959 }
2960 EXPORT_SYMBOL(mnt_set_expiry);
2961 
2962 /*
2963  * process a list of expirable mountpoints with the intent of discarding any
2964  * mountpoints that aren't in use and haven't been touched since last we came
2965  * here
2966  */
2967 void mark_mounts_for_expiry(struct list_head *mounts)
2968 {
2969 	struct mount *mnt, *next;
2970 	LIST_HEAD(graveyard);
2971 
2972 	if (list_empty(mounts))
2973 		return;
2974 
2975 	namespace_lock();
2976 	lock_mount_hash();
2977 
2978 	/* extract from the expiration list every vfsmount that matches the
2979 	 * following criteria:
2980 	 * - only referenced by its parent vfsmount
2981 	 * - still marked for expiry (marked on the last call here; marks are
2982 	 *   cleared by mntput())
2983 	 */
2984 	list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
2985 		if (!xchg(&mnt->mnt_expiry_mark, 1) ||
2986 			propagate_mount_busy(mnt, 1))
2987 			continue;
2988 		list_move(&mnt->mnt_expire, &graveyard);
2989 	}
2990 	while (!list_empty(&graveyard)) {
2991 		mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
2992 		touch_mnt_namespace(mnt->mnt_ns);
2993 		umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
2994 	}
2995 	unlock_mount_hash();
2996 	namespace_unlock();
2997 }
2998 
2999 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
3000 
3001 /*
3002  * Ripoff of 'select_parent()'
3003  *
3004  * search the list of submounts for a given mountpoint, and move any
3005  * shrinkable submounts to the 'graveyard' list.
3006  */
3007 static int select_submounts(struct mount *parent, struct list_head *graveyard)
3008 {
3009 	struct mount *this_parent = parent;
3010 	struct list_head *next;
3011 	int found = 0;
3012 
3013 repeat:
3014 	next = this_parent->mnt_mounts.next;
3015 resume:
3016 	while (next != &this_parent->mnt_mounts) {
3017 		struct list_head *tmp = next;
3018 		struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
3019 
3020 		next = tmp->next;
3021 		if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
3022 			continue;
3023 		/*
3024 		 * Descend a level if the d_mounts list is non-empty.
3025 		 */
3026 		if (!list_empty(&mnt->mnt_mounts)) {
3027 			this_parent = mnt;
3028 			goto repeat;
3029 		}
3030 
3031 		if (!propagate_mount_busy(mnt, 1)) {
3032 			list_move_tail(&mnt->mnt_expire, graveyard);
3033 			found++;
3034 		}
3035 	}
3036 	/*
3037 	 * All done at this level ... ascend and resume the search
3038 	 */
3039 	if (this_parent != parent) {
3040 		next = this_parent->mnt_child.next;
3041 		this_parent = this_parent->mnt_parent;
3042 		goto resume;
3043 	}
3044 	return found;
3045 }
3046 
3047 /*
3048  * process a list of expirable mountpoints with the intent of discarding any
3049  * submounts of a specific parent mountpoint
3050  *
3051  * mount_lock must be held for write
3052  */
3053 static void shrink_submounts(struct mount *mnt)
3054 {
3055 	LIST_HEAD(graveyard);
3056 	struct mount *m;
3057 
3058 	/* extract submounts of 'mountpoint' from the expiration list */
3059 	while (select_submounts(mnt, &graveyard)) {
3060 		while (!list_empty(&graveyard)) {
3061 			m = list_first_entry(&graveyard, struct mount,
3062 						mnt_expire);
3063 			touch_mnt_namespace(m->mnt_ns);
3064 			umount_tree(m, UMOUNT_PROPAGATE|UMOUNT_SYNC);
3065 		}
3066 	}
3067 }
3068 
3069 void *copy_mount_options(const void __user * data)
3070 {
3071 	char *copy;
3072 	unsigned size;
3073 
3074 	if (!data)
3075 		return NULL;
3076 
3077 	copy = kmalloc(PAGE_SIZE, GFP_KERNEL);
3078 	if (!copy)
3079 		return ERR_PTR(-ENOMEM);
3080 
3081 	size = PAGE_SIZE - offset_in_page(data);
3082 
3083 	if (copy_from_user(copy, data, size)) {
3084 		kfree(copy);
3085 		return ERR_PTR(-EFAULT);
3086 	}
3087 	if (size != PAGE_SIZE) {
3088 		if (copy_from_user(copy + size, data + size, PAGE_SIZE - size))
3089 			memset(copy + size, 0, PAGE_SIZE - size);
3090 	}
3091 	return copy;
3092 }
3093 
3094 char *copy_mount_string(const void __user *data)
3095 {
3096 	return data ? strndup_user(data, PATH_MAX) : NULL;
3097 }
3098 
3099 /*
3100  * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
3101  * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
3102  *
3103  * data is a (void *) that can point to any structure up to
3104  * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
3105  * information (or be NULL).
3106  *
3107  * Pre-0.97 versions of mount() didn't have a flags word.
3108  * When the flags word was introduced its top half was required
3109  * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
3110  * Therefore, if this magic number is present, it carries no information
3111  * and must be discarded.
3112  */
3113 long do_mount(const char *dev_name, const char __user *dir_name,
3114 		const char *type_page, unsigned long flags, void *data_page)
3115 {
3116 	struct path path;
3117 	unsigned int mnt_flags = 0, sb_flags;
3118 	int retval = 0;
3119 
3120 	/* Discard magic */
3121 	if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
3122 		flags &= ~MS_MGC_MSK;
3123 
3124 	/* Basic sanity checks */
3125 	if (data_page)
3126 		((char *)data_page)[PAGE_SIZE - 1] = 0;
3127 
3128 	if (flags & MS_NOUSER)
3129 		return -EINVAL;
3130 
3131 	/* ... and get the mountpoint */
3132 	retval = user_path_at(AT_FDCWD, dir_name, LOOKUP_FOLLOW, &path);
3133 	if (retval)
3134 		return retval;
3135 
3136 	retval = security_sb_mount(dev_name, &path,
3137 				   type_page, flags, data_page);
3138 	if (!retval && !may_mount())
3139 		retval = -EPERM;
3140 	if (!retval && (flags & SB_MANDLOCK) && !may_mandlock())
3141 		retval = -EPERM;
3142 	if (retval)
3143 		goto dput_out;
3144 
3145 	/* Default to relatime unless overriden */
3146 	if (!(flags & MS_NOATIME))
3147 		mnt_flags |= MNT_RELATIME;
3148 
3149 	/* Separate the per-mountpoint flags */
3150 	if (flags & MS_NOSUID)
3151 		mnt_flags |= MNT_NOSUID;
3152 	if (flags & MS_NODEV)
3153 		mnt_flags |= MNT_NODEV;
3154 	if (flags & MS_NOEXEC)
3155 		mnt_flags |= MNT_NOEXEC;
3156 	if (flags & MS_NOATIME)
3157 		mnt_flags |= MNT_NOATIME;
3158 	if (flags & MS_NODIRATIME)
3159 		mnt_flags |= MNT_NODIRATIME;
3160 	if (flags & MS_STRICTATIME)
3161 		mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
3162 	if (flags & MS_RDONLY)
3163 		mnt_flags |= MNT_READONLY;
3164 
3165 	/* The default atime for remount is preservation */
3166 	if ((flags & MS_REMOUNT) &&
3167 	    ((flags & (MS_NOATIME | MS_NODIRATIME | MS_RELATIME |
3168 		       MS_STRICTATIME)) == 0)) {
3169 		mnt_flags &= ~MNT_ATIME_MASK;
3170 		mnt_flags |= path.mnt->mnt_flags & MNT_ATIME_MASK;
3171 	}
3172 
3173 	sb_flags = flags & (SB_RDONLY |
3174 			    SB_SYNCHRONOUS |
3175 			    SB_MANDLOCK |
3176 			    SB_DIRSYNC |
3177 			    SB_SILENT |
3178 			    SB_POSIXACL |
3179 			    SB_LAZYTIME |
3180 			    SB_I_VERSION);
3181 
3182 	if ((flags & (MS_REMOUNT | MS_BIND)) == (MS_REMOUNT | MS_BIND))
3183 		retval = do_reconfigure_mnt(&path, mnt_flags);
3184 	else if (flags & MS_REMOUNT)
3185 		retval = do_remount(&path, flags, sb_flags, mnt_flags,
3186 				    data_page);
3187 	else if (flags & MS_BIND)
3188 		retval = do_loopback(&path, dev_name, flags & MS_REC);
3189 	else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
3190 		retval = do_change_type(&path, flags);
3191 	else if (flags & MS_MOVE)
3192 		retval = do_move_mount_old(&path, dev_name);
3193 	else
3194 		retval = do_new_mount(&path, type_page, sb_flags, mnt_flags,
3195 				      dev_name, data_page);
3196 dput_out:
3197 	path_put(&path);
3198 	return retval;
3199 }
3200 
3201 static struct ucounts *inc_mnt_namespaces(struct user_namespace *ns)
3202 {
3203 	return inc_ucount(ns, current_euid(), UCOUNT_MNT_NAMESPACES);
3204 }
3205 
3206 static void dec_mnt_namespaces(struct ucounts *ucounts)
3207 {
3208 	dec_ucount(ucounts, UCOUNT_MNT_NAMESPACES);
3209 }
3210 
3211 static void free_mnt_ns(struct mnt_namespace *ns)
3212 {
3213 	if (!is_anon_ns(ns))
3214 		ns_free_inum(&ns->ns);
3215 	dec_mnt_namespaces(ns->ucounts);
3216 	put_user_ns(ns->user_ns);
3217 	kfree(ns);
3218 }
3219 
3220 /*
3221  * Assign a sequence number so we can detect when we attempt to bind
3222  * mount a reference to an older mount namespace into the current
3223  * mount namespace, preventing reference counting loops.  A 64bit
3224  * number incrementing at 10Ghz will take 12,427 years to wrap which
3225  * is effectively never, so we can ignore the possibility.
3226  */
3227 static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1);
3228 
3229 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns, bool anon)
3230 {
3231 	struct mnt_namespace *new_ns;
3232 	struct ucounts *ucounts;
3233 	int ret;
3234 
3235 	ucounts = inc_mnt_namespaces(user_ns);
3236 	if (!ucounts)
3237 		return ERR_PTR(-ENOSPC);
3238 
3239 	new_ns = kzalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
3240 	if (!new_ns) {
3241 		dec_mnt_namespaces(ucounts);
3242 		return ERR_PTR(-ENOMEM);
3243 	}
3244 	if (!anon) {
3245 		ret = ns_alloc_inum(&new_ns->ns);
3246 		if (ret) {
3247 			kfree(new_ns);
3248 			dec_mnt_namespaces(ucounts);
3249 			return ERR_PTR(ret);
3250 		}
3251 	}
3252 	new_ns->ns.ops = &mntns_operations;
3253 	if (!anon)
3254 		new_ns->seq = atomic64_add_return(1, &mnt_ns_seq);
3255 	atomic_set(&new_ns->count, 1);
3256 	INIT_LIST_HEAD(&new_ns->list);
3257 	init_waitqueue_head(&new_ns->poll);
3258 	spin_lock_init(&new_ns->ns_lock);
3259 	new_ns->user_ns = get_user_ns(user_ns);
3260 	new_ns->ucounts = ucounts;
3261 	return new_ns;
3262 }
3263 
3264 __latent_entropy
3265 struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
3266 		struct user_namespace *user_ns, struct fs_struct *new_fs)
3267 {
3268 	struct mnt_namespace *new_ns;
3269 	struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
3270 	struct mount *p, *q;
3271 	struct mount *old;
3272 	struct mount *new;
3273 	int copy_flags;
3274 
3275 	BUG_ON(!ns);
3276 
3277 	if (likely(!(flags & CLONE_NEWNS))) {
3278 		get_mnt_ns(ns);
3279 		return ns;
3280 	}
3281 
3282 	old = ns->root;
3283 
3284 	new_ns = alloc_mnt_ns(user_ns, false);
3285 	if (IS_ERR(new_ns))
3286 		return new_ns;
3287 
3288 	namespace_lock();
3289 	/* First pass: copy the tree topology */
3290 	copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE;
3291 	if (user_ns != ns->user_ns)
3292 		copy_flags |= CL_SHARED_TO_SLAVE;
3293 	new = copy_tree(old, old->mnt.mnt_root, copy_flags);
3294 	if (IS_ERR(new)) {
3295 		namespace_unlock();
3296 		free_mnt_ns(new_ns);
3297 		return ERR_CAST(new);
3298 	}
3299 	if (user_ns != ns->user_ns) {
3300 		lock_mount_hash();
3301 		lock_mnt_tree(new);
3302 		unlock_mount_hash();
3303 	}
3304 	new_ns->root = new;
3305 	list_add_tail(&new_ns->list, &new->mnt_list);
3306 
3307 	/*
3308 	 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
3309 	 * as belonging to new namespace.  We have already acquired a private
3310 	 * fs_struct, so tsk->fs->lock is not needed.
3311 	 */
3312 	p = old;
3313 	q = new;
3314 	while (p) {
3315 		q->mnt_ns = new_ns;
3316 		new_ns->mounts++;
3317 		if (new_fs) {
3318 			if (&p->mnt == new_fs->root.mnt) {
3319 				new_fs->root.mnt = mntget(&q->mnt);
3320 				rootmnt = &p->mnt;
3321 			}
3322 			if (&p->mnt == new_fs->pwd.mnt) {
3323 				new_fs->pwd.mnt = mntget(&q->mnt);
3324 				pwdmnt = &p->mnt;
3325 			}
3326 		}
3327 		p = next_mnt(p, old);
3328 		q = next_mnt(q, new);
3329 		if (!q)
3330 			break;
3331 		while (p->mnt.mnt_root != q->mnt.mnt_root)
3332 			p = next_mnt(p, old);
3333 	}
3334 	namespace_unlock();
3335 
3336 	if (rootmnt)
3337 		mntput(rootmnt);
3338 	if (pwdmnt)
3339 		mntput(pwdmnt);
3340 
3341 	return new_ns;
3342 }
3343 
3344 struct dentry *mount_subtree(struct vfsmount *m, const char *name)
3345 {
3346 	struct mount *mnt = real_mount(m);
3347 	struct mnt_namespace *ns;
3348 	struct super_block *s;
3349 	struct path path;
3350 	int err;
3351 
3352 	ns = alloc_mnt_ns(&init_user_ns, true);
3353 	if (IS_ERR(ns)) {
3354 		mntput(m);
3355 		return ERR_CAST(ns);
3356 	}
3357 	mnt->mnt_ns = ns;
3358 	ns->root = mnt;
3359 	ns->mounts++;
3360 	list_add(&mnt->mnt_list, &ns->list);
3361 
3362 	err = vfs_path_lookup(m->mnt_root, m,
3363 			name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
3364 
3365 	put_mnt_ns(ns);
3366 
3367 	if (err)
3368 		return ERR_PTR(err);
3369 
3370 	/* trade a vfsmount reference for active sb one */
3371 	s = path.mnt->mnt_sb;
3372 	atomic_inc(&s->s_active);
3373 	mntput(path.mnt);
3374 	/* lock the sucker */
3375 	down_write(&s->s_umount);
3376 	/* ... and return the root of (sub)tree on it */
3377 	return path.dentry;
3378 }
3379 EXPORT_SYMBOL(mount_subtree);
3380 
3381 SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
3382 		char __user *, type, unsigned long, flags, void __user *, data)
3383 {
3384 	int ret;
3385 	char *kernel_type;
3386 	char *kernel_dev;
3387 	void *options;
3388 
3389 	kernel_type = copy_mount_string(type);
3390 	ret = PTR_ERR(kernel_type);
3391 	if (IS_ERR(kernel_type))
3392 		goto out_type;
3393 
3394 	kernel_dev = copy_mount_string(dev_name);
3395 	ret = PTR_ERR(kernel_dev);
3396 	if (IS_ERR(kernel_dev))
3397 		goto out_dev;
3398 
3399 	options = copy_mount_options(data);
3400 	ret = PTR_ERR(options);
3401 	if (IS_ERR(options))
3402 		goto out_data;
3403 
3404 	ret = do_mount(kernel_dev, dir_name, kernel_type, flags, options);
3405 
3406 	kfree(options);
3407 out_data:
3408 	kfree(kernel_dev);
3409 out_dev:
3410 	kfree(kernel_type);
3411 out_type:
3412 	return ret;
3413 }
3414 
3415 /*
3416  * Create a kernel mount representation for a new, prepared superblock
3417  * (specified by fs_fd) and attach to an open_tree-like file descriptor.
3418  */
3419 SYSCALL_DEFINE3(fsmount, int, fs_fd, unsigned int, flags,
3420 		unsigned int, attr_flags)
3421 {
3422 	struct mnt_namespace *ns;
3423 	struct fs_context *fc;
3424 	struct file *file;
3425 	struct path newmount;
3426 	struct mount *mnt;
3427 	struct fd f;
3428 	unsigned int mnt_flags = 0;
3429 	long ret;
3430 
3431 	if (!may_mount())
3432 		return -EPERM;
3433 
3434 	if ((flags & ~(FSMOUNT_CLOEXEC)) != 0)
3435 		return -EINVAL;
3436 
3437 	if (attr_flags & ~(MOUNT_ATTR_RDONLY |
3438 			   MOUNT_ATTR_NOSUID |
3439 			   MOUNT_ATTR_NODEV |
3440 			   MOUNT_ATTR_NOEXEC |
3441 			   MOUNT_ATTR__ATIME |
3442 			   MOUNT_ATTR_NODIRATIME))
3443 		return -EINVAL;
3444 
3445 	if (attr_flags & MOUNT_ATTR_RDONLY)
3446 		mnt_flags |= MNT_READONLY;
3447 	if (attr_flags & MOUNT_ATTR_NOSUID)
3448 		mnt_flags |= MNT_NOSUID;
3449 	if (attr_flags & MOUNT_ATTR_NODEV)
3450 		mnt_flags |= MNT_NODEV;
3451 	if (attr_flags & MOUNT_ATTR_NOEXEC)
3452 		mnt_flags |= MNT_NOEXEC;
3453 	if (attr_flags & MOUNT_ATTR_NODIRATIME)
3454 		mnt_flags |= MNT_NODIRATIME;
3455 
3456 	switch (attr_flags & MOUNT_ATTR__ATIME) {
3457 	case MOUNT_ATTR_STRICTATIME:
3458 		break;
3459 	case MOUNT_ATTR_NOATIME:
3460 		mnt_flags |= MNT_NOATIME;
3461 		break;
3462 	case MOUNT_ATTR_RELATIME:
3463 		mnt_flags |= MNT_RELATIME;
3464 		break;
3465 	default:
3466 		return -EINVAL;
3467 	}
3468 
3469 	f = fdget(fs_fd);
3470 	if (!f.file)
3471 		return -EBADF;
3472 
3473 	ret = -EINVAL;
3474 	if (f.file->f_op != &fscontext_fops)
3475 		goto err_fsfd;
3476 
3477 	fc = f.file->private_data;
3478 
3479 	ret = mutex_lock_interruptible(&fc->uapi_mutex);
3480 	if (ret < 0)
3481 		goto err_fsfd;
3482 
3483 	/* There must be a valid superblock or we can't mount it */
3484 	ret = -EINVAL;
3485 	if (!fc->root)
3486 		goto err_unlock;
3487 
3488 	ret = -EPERM;
3489 	if (mount_too_revealing(fc->root->d_sb, &mnt_flags)) {
3490 		pr_warn("VFS: Mount too revealing\n");
3491 		goto err_unlock;
3492 	}
3493 
3494 	ret = -EBUSY;
3495 	if (fc->phase != FS_CONTEXT_AWAITING_MOUNT)
3496 		goto err_unlock;
3497 
3498 	ret = -EPERM;
3499 	if ((fc->sb_flags & SB_MANDLOCK) && !may_mandlock())
3500 		goto err_unlock;
3501 
3502 	newmount.mnt = vfs_create_mount(fc);
3503 	if (IS_ERR(newmount.mnt)) {
3504 		ret = PTR_ERR(newmount.mnt);
3505 		goto err_unlock;
3506 	}
3507 	newmount.dentry = dget(fc->root);
3508 	newmount.mnt->mnt_flags = mnt_flags;
3509 
3510 	/* We've done the mount bit - now move the file context into more or
3511 	 * less the same state as if we'd done an fspick().  We don't want to
3512 	 * do any memory allocation or anything like that at this point as we
3513 	 * don't want to have to handle any errors incurred.
3514 	 */
3515 	vfs_clean_context(fc);
3516 
3517 	ns = alloc_mnt_ns(current->nsproxy->mnt_ns->user_ns, true);
3518 	if (IS_ERR(ns)) {
3519 		ret = PTR_ERR(ns);
3520 		goto err_path;
3521 	}
3522 	mnt = real_mount(newmount.mnt);
3523 	mnt->mnt_ns = ns;
3524 	ns->root = mnt;
3525 	ns->mounts = 1;
3526 	list_add(&mnt->mnt_list, &ns->list);
3527 	mntget(newmount.mnt);
3528 
3529 	/* Attach to an apparent O_PATH fd with a note that we need to unmount
3530 	 * it, not just simply put it.
3531 	 */
3532 	file = dentry_open(&newmount, O_PATH, fc->cred);
3533 	if (IS_ERR(file)) {
3534 		dissolve_on_fput(newmount.mnt);
3535 		ret = PTR_ERR(file);
3536 		goto err_path;
3537 	}
3538 	file->f_mode |= FMODE_NEED_UNMOUNT;
3539 
3540 	ret = get_unused_fd_flags((flags & FSMOUNT_CLOEXEC) ? O_CLOEXEC : 0);
3541 	if (ret >= 0)
3542 		fd_install(ret, file);
3543 	else
3544 		fput(file);
3545 
3546 err_path:
3547 	path_put(&newmount);
3548 err_unlock:
3549 	mutex_unlock(&fc->uapi_mutex);
3550 err_fsfd:
3551 	fdput(f);
3552 	return ret;
3553 }
3554 
3555 /*
3556  * Move a mount from one place to another.  In combination with
3557  * fsopen()/fsmount() this is used to install a new mount and in combination
3558  * with open_tree(OPEN_TREE_CLONE [| AT_RECURSIVE]) it can be used to copy
3559  * a mount subtree.
3560  *
3561  * Note the flags value is a combination of MOVE_MOUNT_* flags.
3562  */
3563 SYSCALL_DEFINE5(move_mount,
3564 		int, from_dfd, const char __user *, from_pathname,
3565 		int, to_dfd, const char __user *, to_pathname,
3566 		unsigned int, flags)
3567 {
3568 	struct path from_path, to_path;
3569 	unsigned int lflags;
3570 	int ret = 0;
3571 
3572 	if (!may_mount())
3573 		return -EPERM;
3574 
3575 	if (flags & ~MOVE_MOUNT__MASK)
3576 		return -EINVAL;
3577 
3578 	/* If someone gives a pathname, they aren't permitted to move
3579 	 * from an fd that requires unmount as we can't get at the flag
3580 	 * to clear it afterwards.
3581 	 */
3582 	lflags = 0;
3583 	if (flags & MOVE_MOUNT_F_SYMLINKS)	lflags |= LOOKUP_FOLLOW;
3584 	if (flags & MOVE_MOUNT_F_AUTOMOUNTS)	lflags |= LOOKUP_AUTOMOUNT;
3585 	if (flags & MOVE_MOUNT_F_EMPTY_PATH)	lflags |= LOOKUP_EMPTY;
3586 
3587 	ret = user_path_at(from_dfd, from_pathname, lflags, &from_path);
3588 	if (ret < 0)
3589 		return ret;
3590 
3591 	lflags = 0;
3592 	if (flags & MOVE_MOUNT_T_SYMLINKS)	lflags |= LOOKUP_FOLLOW;
3593 	if (flags & MOVE_MOUNT_T_AUTOMOUNTS)	lflags |= LOOKUP_AUTOMOUNT;
3594 	if (flags & MOVE_MOUNT_T_EMPTY_PATH)	lflags |= LOOKUP_EMPTY;
3595 
3596 	ret = user_path_at(to_dfd, to_pathname, lflags, &to_path);
3597 	if (ret < 0)
3598 		goto out_from;
3599 
3600 	ret = security_move_mount(&from_path, &to_path);
3601 	if (ret < 0)
3602 		goto out_to;
3603 
3604 	ret = do_move_mount(&from_path, &to_path);
3605 
3606 out_to:
3607 	path_put(&to_path);
3608 out_from:
3609 	path_put(&from_path);
3610 	return ret;
3611 }
3612 
3613 /*
3614  * Return true if path is reachable from root
3615  *
3616  * namespace_sem or mount_lock is held
3617  */
3618 bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
3619 			 const struct path *root)
3620 {
3621 	while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
3622 		dentry = mnt->mnt_mountpoint;
3623 		mnt = mnt->mnt_parent;
3624 	}
3625 	return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
3626 }
3627 
3628 bool path_is_under(const struct path *path1, const struct path *path2)
3629 {
3630 	bool res;
3631 	read_seqlock_excl(&mount_lock);
3632 	res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
3633 	read_sequnlock_excl(&mount_lock);
3634 	return res;
3635 }
3636 EXPORT_SYMBOL(path_is_under);
3637 
3638 /*
3639  * pivot_root Semantics:
3640  * Moves the root file system of the current process to the directory put_old,
3641  * makes new_root as the new root file system of the current process, and sets
3642  * root/cwd of all processes which had them on the current root to new_root.
3643  *
3644  * Restrictions:
3645  * The new_root and put_old must be directories, and  must not be on the
3646  * same file  system as the current process root. The put_old  must  be
3647  * underneath new_root,  i.e. adding a non-zero number of /.. to the string
3648  * pointed to by put_old must yield the same directory as new_root. No other
3649  * file system may be mounted on put_old. After all, new_root is a mountpoint.
3650  *
3651  * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
3652  * See Documentation/filesystems/ramfs-rootfs-initramfs.rst for alternatives
3653  * in this situation.
3654  *
3655  * Notes:
3656  *  - we don't move root/cwd if they are not at the root (reason: if something
3657  *    cared enough to change them, it's probably wrong to force them elsewhere)
3658  *  - it's okay to pick a root that isn't the root of a file system, e.g.
3659  *    /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
3660  *    though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
3661  *    first.
3662  */
3663 SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
3664 		const char __user *, put_old)
3665 {
3666 	struct path new, old, root;
3667 	struct mount *new_mnt, *root_mnt, *old_mnt, *root_parent, *ex_parent;
3668 	struct mountpoint *old_mp, *root_mp;
3669 	int error;
3670 
3671 	if (!may_mount())
3672 		return -EPERM;
3673 
3674 	error = user_path_at(AT_FDCWD, new_root,
3675 			     LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &new);
3676 	if (error)
3677 		goto out0;
3678 
3679 	error = user_path_at(AT_FDCWD, put_old,
3680 			     LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &old);
3681 	if (error)
3682 		goto out1;
3683 
3684 	error = security_sb_pivotroot(&old, &new);
3685 	if (error)
3686 		goto out2;
3687 
3688 	get_fs_root(current->fs, &root);
3689 	old_mp = lock_mount(&old);
3690 	error = PTR_ERR(old_mp);
3691 	if (IS_ERR(old_mp))
3692 		goto out3;
3693 
3694 	error = -EINVAL;
3695 	new_mnt = real_mount(new.mnt);
3696 	root_mnt = real_mount(root.mnt);
3697 	old_mnt = real_mount(old.mnt);
3698 	ex_parent = new_mnt->mnt_parent;
3699 	root_parent = root_mnt->mnt_parent;
3700 	if (IS_MNT_SHARED(old_mnt) ||
3701 		IS_MNT_SHARED(ex_parent) ||
3702 		IS_MNT_SHARED(root_parent))
3703 		goto out4;
3704 	if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
3705 		goto out4;
3706 	if (new_mnt->mnt.mnt_flags & MNT_LOCKED)
3707 		goto out4;
3708 	error = -ENOENT;
3709 	if (d_unlinked(new.dentry))
3710 		goto out4;
3711 	error = -EBUSY;
3712 	if (new_mnt == root_mnt || old_mnt == root_mnt)
3713 		goto out4; /* loop, on the same file system  */
3714 	error = -EINVAL;
3715 	if (root.mnt->mnt_root != root.dentry)
3716 		goto out4; /* not a mountpoint */
3717 	if (!mnt_has_parent(root_mnt))
3718 		goto out4; /* not attached */
3719 	if (new.mnt->mnt_root != new.dentry)
3720 		goto out4; /* not a mountpoint */
3721 	if (!mnt_has_parent(new_mnt))
3722 		goto out4; /* not attached */
3723 	/* make sure we can reach put_old from new_root */
3724 	if (!is_path_reachable(old_mnt, old.dentry, &new))
3725 		goto out4;
3726 	/* make certain new is below the root */
3727 	if (!is_path_reachable(new_mnt, new.dentry, &root))
3728 		goto out4;
3729 	lock_mount_hash();
3730 	umount_mnt(new_mnt);
3731 	root_mp = unhash_mnt(root_mnt);  /* we'll need its mountpoint */
3732 	if (root_mnt->mnt.mnt_flags & MNT_LOCKED) {
3733 		new_mnt->mnt.mnt_flags |= MNT_LOCKED;
3734 		root_mnt->mnt.mnt_flags &= ~MNT_LOCKED;
3735 	}
3736 	/* mount old root on put_old */
3737 	attach_mnt(root_mnt, old_mnt, old_mp);
3738 	/* mount new_root on / */
3739 	attach_mnt(new_mnt, root_parent, root_mp);
3740 	mnt_add_count(root_parent, -1);
3741 	touch_mnt_namespace(current->nsproxy->mnt_ns);
3742 	/* A moved mount should not expire automatically */
3743 	list_del_init(&new_mnt->mnt_expire);
3744 	put_mountpoint(root_mp);
3745 	unlock_mount_hash();
3746 	chroot_fs_refs(&root, &new);
3747 	error = 0;
3748 out4:
3749 	unlock_mount(old_mp);
3750 	if (!error)
3751 		mntput_no_expire(ex_parent);
3752 out3:
3753 	path_put(&root);
3754 out2:
3755 	path_put(&old);
3756 out1:
3757 	path_put(&new);
3758 out0:
3759 	return error;
3760 }
3761 
3762 static void __init init_mount_tree(void)
3763 {
3764 	struct vfsmount *mnt;
3765 	struct mount *m;
3766 	struct mnt_namespace *ns;
3767 	struct path root;
3768 
3769 	mnt = vfs_kern_mount(&rootfs_fs_type, 0, "rootfs", NULL);
3770 	if (IS_ERR(mnt))
3771 		panic("Can't create rootfs");
3772 
3773 	ns = alloc_mnt_ns(&init_user_ns, false);
3774 	if (IS_ERR(ns))
3775 		panic("Can't allocate initial namespace");
3776 	m = real_mount(mnt);
3777 	m->mnt_ns = ns;
3778 	ns->root = m;
3779 	ns->mounts = 1;
3780 	list_add(&m->mnt_list, &ns->list);
3781 	init_task.nsproxy->mnt_ns = ns;
3782 	get_mnt_ns(ns);
3783 
3784 	root.mnt = mnt;
3785 	root.dentry = mnt->mnt_root;
3786 	mnt->mnt_flags |= MNT_LOCKED;
3787 
3788 	set_fs_pwd(current->fs, &root);
3789 	set_fs_root(current->fs, &root);
3790 }
3791 
3792 void __init mnt_init(void)
3793 {
3794 	int err;
3795 
3796 	mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
3797 			0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
3798 
3799 	mount_hashtable = alloc_large_system_hash("Mount-cache",
3800 				sizeof(struct hlist_head),
3801 				mhash_entries, 19,
3802 				HASH_ZERO,
3803 				&m_hash_shift, &m_hash_mask, 0, 0);
3804 	mountpoint_hashtable = alloc_large_system_hash("Mountpoint-cache",
3805 				sizeof(struct hlist_head),
3806 				mphash_entries, 19,
3807 				HASH_ZERO,
3808 				&mp_hash_shift, &mp_hash_mask, 0, 0);
3809 
3810 	if (!mount_hashtable || !mountpoint_hashtable)
3811 		panic("Failed to allocate mount hash table\n");
3812 
3813 	kernfs_init();
3814 
3815 	err = sysfs_init();
3816 	if (err)
3817 		printk(KERN_WARNING "%s: sysfs_init error: %d\n",
3818 			__func__, err);
3819 	fs_kobj = kobject_create_and_add("fs", NULL);
3820 	if (!fs_kobj)
3821 		printk(KERN_WARNING "%s: kobj create error\n", __func__);
3822 	shmem_init();
3823 	init_rootfs();
3824 	init_mount_tree();
3825 }
3826 
3827 void put_mnt_ns(struct mnt_namespace *ns)
3828 {
3829 	if (!atomic_dec_and_test(&ns->count))
3830 		return;
3831 	drop_collected_mounts(&ns->root->mnt);
3832 	free_mnt_ns(ns);
3833 }
3834 
3835 struct vfsmount *kern_mount(struct file_system_type *type)
3836 {
3837 	struct vfsmount *mnt;
3838 	mnt = vfs_kern_mount(type, SB_KERNMOUNT, type->name, NULL);
3839 	if (!IS_ERR(mnt)) {
3840 		/*
3841 		 * it is a longterm mount, don't release mnt until
3842 		 * we unmount before file sys is unregistered
3843 		*/
3844 		real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
3845 	}
3846 	return mnt;
3847 }
3848 EXPORT_SYMBOL_GPL(kern_mount);
3849 
3850 void kern_unmount(struct vfsmount *mnt)
3851 {
3852 	/* release long term mount so mount point can be released */
3853 	if (!IS_ERR_OR_NULL(mnt)) {
3854 		real_mount(mnt)->mnt_ns = NULL;
3855 		synchronize_rcu();	/* yecchhh... */
3856 		mntput(mnt);
3857 	}
3858 }
3859 EXPORT_SYMBOL(kern_unmount);
3860 
3861 bool our_mnt(struct vfsmount *mnt)
3862 {
3863 	return check_mnt(real_mount(mnt));
3864 }
3865 
3866 bool current_chrooted(void)
3867 {
3868 	/* Does the current process have a non-standard root */
3869 	struct path ns_root;
3870 	struct path fs_root;
3871 	bool chrooted;
3872 
3873 	/* Find the namespace root */
3874 	ns_root.mnt = &current->nsproxy->mnt_ns->root->mnt;
3875 	ns_root.dentry = ns_root.mnt->mnt_root;
3876 	path_get(&ns_root);
3877 	while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root))
3878 		;
3879 
3880 	get_fs_root(current->fs, &fs_root);
3881 
3882 	chrooted = !path_equal(&fs_root, &ns_root);
3883 
3884 	path_put(&fs_root);
3885 	path_put(&ns_root);
3886 
3887 	return chrooted;
3888 }
3889 
3890 static bool mnt_already_visible(struct mnt_namespace *ns,
3891 				const struct super_block *sb,
3892 				int *new_mnt_flags)
3893 {
3894 	int new_flags = *new_mnt_flags;
3895 	struct mount *mnt;
3896 	bool visible = false;
3897 
3898 	down_read(&namespace_sem);
3899 	lock_ns_list(ns);
3900 	list_for_each_entry(mnt, &ns->list, mnt_list) {
3901 		struct mount *child;
3902 		int mnt_flags;
3903 
3904 		if (mnt_is_cursor(mnt))
3905 			continue;
3906 
3907 		if (mnt->mnt.mnt_sb->s_type != sb->s_type)
3908 			continue;
3909 
3910 		/* This mount is not fully visible if it's root directory
3911 		 * is not the root directory of the filesystem.
3912 		 */
3913 		if (mnt->mnt.mnt_root != mnt->mnt.mnt_sb->s_root)
3914 			continue;
3915 
3916 		/* A local view of the mount flags */
3917 		mnt_flags = mnt->mnt.mnt_flags;
3918 
3919 		/* Don't miss readonly hidden in the superblock flags */
3920 		if (sb_rdonly(mnt->mnt.mnt_sb))
3921 			mnt_flags |= MNT_LOCK_READONLY;
3922 
3923 		/* Verify the mount flags are equal to or more permissive
3924 		 * than the proposed new mount.
3925 		 */
3926 		if ((mnt_flags & MNT_LOCK_READONLY) &&
3927 		    !(new_flags & MNT_READONLY))
3928 			continue;
3929 		if ((mnt_flags & MNT_LOCK_ATIME) &&
3930 		    ((mnt_flags & MNT_ATIME_MASK) != (new_flags & MNT_ATIME_MASK)))
3931 			continue;
3932 
3933 		/* This mount is not fully visible if there are any
3934 		 * locked child mounts that cover anything except for
3935 		 * empty directories.
3936 		 */
3937 		list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
3938 			struct inode *inode = child->mnt_mountpoint->d_inode;
3939 			/* Only worry about locked mounts */
3940 			if (!(child->mnt.mnt_flags & MNT_LOCKED))
3941 				continue;
3942 			/* Is the directory permanetly empty? */
3943 			if (!is_empty_dir_inode(inode))
3944 				goto next;
3945 		}
3946 		/* Preserve the locked attributes */
3947 		*new_mnt_flags |= mnt_flags & (MNT_LOCK_READONLY | \
3948 					       MNT_LOCK_ATIME);
3949 		visible = true;
3950 		goto found;
3951 	next:	;
3952 	}
3953 found:
3954 	unlock_ns_list(ns);
3955 	up_read(&namespace_sem);
3956 	return visible;
3957 }
3958 
3959 static bool mount_too_revealing(const struct super_block *sb, int *new_mnt_flags)
3960 {
3961 	const unsigned long required_iflags = SB_I_NOEXEC | SB_I_NODEV;
3962 	struct mnt_namespace *ns = current->nsproxy->mnt_ns;
3963 	unsigned long s_iflags;
3964 
3965 	if (ns->user_ns == &init_user_ns)
3966 		return false;
3967 
3968 	/* Can this filesystem be too revealing? */
3969 	s_iflags = sb->s_iflags;
3970 	if (!(s_iflags & SB_I_USERNS_VISIBLE))
3971 		return false;
3972 
3973 	if ((s_iflags & required_iflags) != required_iflags) {
3974 		WARN_ONCE(1, "Expected s_iflags to contain 0x%lx\n",
3975 			  required_iflags);
3976 		return true;
3977 	}
3978 
3979 	return !mnt_already_visible(ns, sb, new_mnt_flags);
3980 }
3981 
3982 bool mnt_may_suid(struct vfsmount *mnt)
3983 {
3984 	/*
3985 	 * Foreign mounts (accessed via fchdir or through /proc
3986 	 * symlinks) are always treated as if they are nosuid.  This
3987 	 * prevents namespaces from trusting potentially unsafe
3988 	 * suid/sgid bits, file caps, or security labels that originate
3989 	 * in other namespaces.
3990 	 */
3991 	return !(mnt->mnt_flags & MNT_NOSUID) && check_mnt(real_mount(mnt)) &&
3992 	       current_in_userns(mnt->mnt_sb->s_user_ns);
3993 }
3994 
3995 static struct ns_common *mntns_get(struct task_struct *task)
3996 {
3997 	struct ns_common *ns = NULL;
3998 	struct nsproxy *nsproxy;
3999 
4000 	task_lock(task);
4001 	nsproxy = task->nsproxy;
4002 	if (nsproxy) {
4003 		ns = &nsproxy->mnt_ns->ns;
4004 		get_mnt_ns(to_mnt_ns(ns));
4005 	}
4006 	task_unlock(task);
4007 
4008 	return ns;
4009 }
4010 
4011 static void mntns_put(struct ns_common *ns)
4012 {
4013 	put_mnt_ns(to_mnt_ns(ns));
4014 }
4015 
4016 static int mntns_install(struct nsproxy *nsproxy, struct ns_common *ns)
4017 {
4018 	struct fs_struct *fs = current->fs;
4019 	struct mnt_namespace *mnt_ns = to_mnt_ns(ns), *old_mnt_ns;
4020 	struct path root;
4021 	int err;
4022 
4023 	if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) ||
4024 	    !ns_capable(current_user_ns(), CAP_SYS_CHROOT) ||
4025 	    !ns_capable(current_user_ns(), CAP_SYS_ADMIN))
4026 		return -EPERM;
4027 
4028 	if (is_anon_ns(mnt_ns))
4029 		return -EINVAL;
4030 
4031 	if (fs->users != 1)
4032 		return -EINVAL;
4033 
4034 	get_mnt_ns(mnt_ns);
4035 	old_mnt_ns = nsproxy->mnt_ns;
4036 	nsproxy->mnt_ns = mnt_ns;
4037 
4038 	/* Find the root */
4039 	err = vfs_path_lookup(mnt_ns->root->mnt.mnt_root, &mnt_ns->root->mnt,
4040 				"/", LOOKUP_DOWN, &root);
4041 	if (err) {
4042 		/* revert to old namespace */
4043 		nsproxy->mnt_ns = old_mnt_ns;
4044 		put_mnt_ns(mnt_ns);
4045 		return err;
4046 	}
4047 
4048 	put_mnt_ns(old_mnt_ns);
4049 
4050 	/* Update the pwd and root */
4051 	set_fs_pwd(fs, &root);
4052 	set_fs_root(fs, &root);
4053 
4054 	path_put(&root);
4055 	return 0;
4056 }
4057 
4058 static struct user_namespace *mntns_owner(struct ns_common *ns)
4059 {
4060 	return to_mnt_ns(ns)->user_ns;
4061 }
4062 
4063 const struct proc_ns_operations mntns_operations = {
4064 	.name		= "mnt",
4065 	.type		= CLONE_NEWNS,
4066 	.get		= mntns_get,
4067 	.put		= mntns_put,
4068 	.install	= mntns_install,
4069 	.owner		= mntns_owner,
4070 };
4071