xref: /openbmc/linux/fs/namespace.c (revision f42b3800)
1 /*
2  *  linux/fs/namespace.c
3  *
4  * (C) Copyright Al Viro 2000, 2001
5  *	Released under GPL v2.
6  *
7  * Based on code from fs/super.c, copyright Linus Torvalds and others.
8  * Heavily rewritten.
9  */
10 
11 #include <linux/syscalls.h>
12 #include <linux/slab.h>
13 #include <linux/sched.h>
14 #include <linux/smp_lock.h>
15 #include <linux/init.h>
16 #include <linux/kernel.h>
17 #include <linux/quotaops.h>
18 #include <linux/acct.h>
19 #include <linux/capability.h>
20 #include <linux/module.h>
21 #include <linux/sysfs.h>
22 #include <linux/seq_file.h>
23 #include <linux/mnt_namespace.h>
24 #include <linux/namei.h>
25 #include <linux/security.h>
26 #include <linux/mount.h>
27 #include <linux/ramfs.h>
28 #include <linux/log2.h>
29 #include <asm/uaccess.h>
30 #include <asm/unistd.h>
31 #include "pnode.h"
32 #include "internal.h"
33 
34 #define HASH_SHIFT ilog2(PAGE_SIZE / sizeof(struct list_head))
35 #define HASH_SIZE (1UL << HASH_SHIFT)
36 
37 /* spinlock for vfsmount related operations, inplace of dcache_lock */
38 __cacheline_aligned_in_smp DEFINE_SPINLOCK(vfsmount_lock);
39 
40 static int event;
41 
42 static struct list_head *mount_hashtable __read_mostly;
43 static struct kmem_cache *mnt_cache __read_mostly;
44 static struct rw_semaphore namespace_sem;
45 
46 /* /sys/fs */
47 struct kobject *fs_kobj;
48 EXPORT_SYMBOL_GPL(fs_kobj);
49 
50 static inline unsigned long hash(struct vfsmount *mnt, struct dentry *dentry)
51 {
52 	unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
53 	tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
54 	tmp = tmp + (tmp >> HASH_SHIFT);
55 	return tmp & (HASH_SIZE - 1);
56 }
57 
58 struct vfsmount *alloc_vfsmnt(const char *name)
59 {
60 	struct vfsmount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
61 	if (mnt) {
62 		atomic_set(&mnt->mnt_count, 1);
63 		INIT_LIST_HEAD(&mnt->mnt_hash);
64 		INIT_LIST_HEAD(&mnt->mnt_child);
65 		INIT_LIST_HEAD(&mnt->mnt_mounts);
66 		INIT_LIST_HEAD(&mnt->mnt_list);
67 		INIT_LIST_HEAD(&mnt->mnt_expire);
68 		INIT_LIST_HEAD(&mnt->mnt_share);
69 		INIT_LIST_HEAD(&mnt->mnt_slave_list);
70 		INIT_LIST_HEAD(&mnt->mnt_slave);
71 		if (name) {
72 			int size = strlen(name) + 1;
73 			char *newname = kmalloc(size, GFP_KERNEL);
74 			if (newname) {
75 				memcpy(newname, name, size);
76 				mnt->mnt_devname = newname;
77 			}
78 		}
79 	}
80 	return mnt;
81 }
82 
83 int simple_set_mnt(struct vfsmount *mnt, struct super_block *sb)
84 {
85 	mnt->mnt_sb = sb;
86 	mnt->mnt_root = dget(sb->s_root);
87 	return 0;
88 }
89 
90 EXPORT_SYMBOL(simple_set_mnt);
91 
92 void free_vfsmnt(struct vfsmount *mnt)
93 {
94 	kfree(mnt->mnt_devname);
95 	kmem_cache_free(mnt_cache, mnt);
96 }
97 
98 /*
99  * find the first or last mount at @dentry on vfsmount @mnt depending on
100  * @dir. If @dir is set return the first mount else return the last mount.
101  */
102 struct vfsmount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry,
103 			      int dir)
104 {
105 	struct list_head *head = mount_hashtable + hash(mnt, dentry);
106 	struct list_head *tmp = head;
107 	struct vfsmount *p, *found = NULL;
108 
109 	for (;;) {
110 		tmp = dir ? tmp->next : tmp->prev;
111 		p = NULL;
112 		if (tmp == head)
113 			break;
114 		p = list_entry(tmp, struct vfsmount, mnt_hash);
115 		if (p->mnt_parent == mnt && p->mnt_mountpoint == dentry) {
116 			found = p;
117 			break;
118 		}
119 	}
120 	return found;
121 }
122 
123 /*
124  * lookup_mnt increments the ref count before returning
125  * the vfsmount struct.
126  */
127 struct vfsmount *lookup_mnt(struct vfsmount *mnt, struct dentry *dentry)
128 {
129 	struct vfsmount *child_mnt;
130 	spin_lock(&vfsmount_lock);
131 	if ((child_mnt = __lookup_mnt(mnt, dentry, 1)))
132 		mntget(child_mnt);
133 	spin_unlock(&vfsmount_lock);
134 	return child_mnt;
135 }
136 
137 static inline int check_mnt(struct vfsmount *mnt)
138 {
139 	return mnt->mnt_ns == current->nsproxy->mnt_ns;
140 }
141 
142 static void touch_mnt_namespace(struct mnt_namespace *ns)
143 {
144 	if (ns) {
145 		ns->event = ++event;
146 		wake_up_interruptible(&ns->poll);
147 	}
148 }
149 
150 static void __touch_mnt_namespace(struct mnt_namespace *ns)
151 {
152 	if (ns && ns->event != event) {
153 		ns->event = event;
154 		wake_up_interruptible(&ns->poll);
155 	}
156 }
157 
158 static void detach_mnt(struct vfsmount *mnt, struct path *old_path)
159 {
160 	old_path->dentry = mnt->mnt_mountpoint;
161 	old_path->mnt = mnt->mnt_parent;
162 	mnt->mnt_parent = mnt;
163 	mnt->mnt_mountpoint = mnt->mnt_root;
164 	list_del_init(&mnt->mnt_child);
165 	list_del_init(&mnt->mnt_hash);
166 	old_path->dentry->d_mounted--;
167 }
168 
169 void mnt_set_mountpoint(struct vfsmount *mnt, struct dentry *dentry,
170 			struct vfsmount *child_mnt)
171 {
172 	child_mnt->mnt_parent = mntget(mnt);
173 	child_mnt->mnt_mountpoint = dget(dentry);
174 	dentry->d_mounted++;
175 }
176 
177 static void attach_mnt(struct vfsmount *mnt, struct path *path)
178 {
179 	mnt_set_mountpoint(path->mnt, path->dentry, mnt);
180 	list_add_tail(&mnt->mnt_hash, mount_hashtable +
181 			hash(path->mnt, path->dentry));
182 	list_add_tail(&mnt->mnt_child, &path->mnt->mnt_mounts);
183 }
184 
185 /*
186  * the caller must hold vfsmount_lock
187  */
188 static void commit_tree(struct vfsmount *mnt)
189 {
190 	struct vfsmount *parent = mnt->mnt_parent;
191 	struct vfsmount *m;
192 	LIST_HEAD(head);
193 	struct mnt_namespace *n = parent->mnt_ns;
194 
195 	BUG_ON(parent == mnt);
196 
197 	list_add_tail(&head, &mnt->mnt_list);
198 	list_for_each_entry(m, &head, mnt_list)
199 		m->mnt_ns = n;
200 	list_splice(&head, n->list.prev);
201 
202 	list_add_tail(&mnt->mnt_hash, mount_hashtable +
203 				hash(parent, mnt->mnt_mountpoint));
204 	list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
205 	touch_mnt_namespace(n);
206 }
207 
208 static struct vfsmount *next_mnt(struct vfsmount *p, struct vfsmount *root)
209 {
210 	struct list_head *next = p->mnt_mounts.next;
211 	if (next == &p->mnt_mounts) {
212 		while (1) {
213 			if (p == root)
214 				return NULL;
215 			next = p->mnt_child.next;
216 			if (next != &p->mnt_parent->mnt_mounts)
217 				break;
218 			p = p->mnt_parent;
219 		}
220 	}
221 	return list_entry(next, struct vfsmount, mnt_child);
222 }
223 
224 static struct vfsmount *skip_mnt_tree(struct vfsmount *p)
225 {
226 	struct list_head *prev = p->mnt_mounts.prev;
227 	while (prev != &p->mnt_mounts) {
228 		p = list_entry(prev, struct vfsmount, mnt_child);
229 		prev = p->mnt_mounts.prev;
230 	}
231 	return p;
232 }
233 
234 static struct vfsmount *clone_mnt(struct vfsmount *old, struct dentry *root,
235 					int flag)
236 {
237 	struct super_block *sb = old->mnt_sb;
238 	struct vfsmount *mnt = alloc_vfsmnt(old->mnt_devname);
239 
240 	if (mnt) {
241 		mnt->mnt_flags = old->mnt_flags;
242 		atomic_inc(&sb->s_active);
243 		mnt->mnt_sb = sb;
244 		mnt->mnt_root = dget(root);
245 		mnt->mnt_mountpoint = mnt->mnt_root;
246 		mnt->mnt_parent = mnt;
247 
248 		if (flag & CL_SLAVE) {
249 			list_add(&mnt->mnt_slave, &old->mnt_slave_list);
250 			mnt->mnt_master = old;
251 			CLEAR_MNT_SHARED(mnt);
252 		} else if (!(flag & CL_PRIVATE)) {
253 			if ((flag & CL_PROPAGATION) || IS_MNT_SHARED(old))
254 				list_add(&mnt->mnt_share, &old->mnt_share);
255 			if (IS_MNT_SLAVE(old))
256 				list_add(&mnt->mnt_slave, &old->mnt_slave);
257 			mnt->mnt_master = old->mnt_master;
258 		}
259 		if (flag & CL_MAKE_SHARED)
260 			set_mnt_shared(mnt);
261 
262 		/* stick the duplicate mount on the same expiry list
263 		 * as the original if that was on one */
264 		if (flag & CL_EXPIRE) {
265 			if (!list_empty(&old->mnt_expire))
266 				list_add(&mnt->mnt_expire, &old->mnt_expire);
267 		}
268 	}
269 	return mnt;
270 }
271 
272 static inline void __mntput(struct vfsmount *mnt)
273 {
274 	struct super_block *sb = mnt->mnt_sb;
275 	dput(mnt->mnt_root);
276 	free_vfsmnt(mnt);
277 	deactivate_super(sb);
278 }
279 
280 void mntput_no_expire(struct vfsmount *mnt)
281 {
282 repeat:
283 	if (atomic_dec_and_lock(&mnt->mnt_count, &vfsmount_lock)) {
284 		if (likely(!mnt->mnt_pinned)) {
285 			spin_unlock(&vfsmount_lock);
286 			__mntput(mnt);
287 			return;
288 		}
289 		atomic_add(mnt->mnt_pinned + 1, &mnt->mnt_count);
290 		mnt->mnt_pinned = 0;
291 		spin_unlock(&vfsmount_lock);
292 		acct_auto_close_mnt(mnt);
293 		security_sb_umount_close(mnt);
294 		goto repeat;
295 	}
296 }
297 
298 EXPORT_SYMBOL(mntput_no_expire);
299 
300 void mnt_pin(struct vfsmount *mnt)
301 {
302 	spin_lock(&vfsmount_lock);
303 	mnt->mnt_pinned++;
304 	spin_unlock(&vfsmount_lock);
305 }
306 
307 EXPORT_SYMBOL(mnt_pin);
308 
309 void mnt_unpin(struct vfsmount *mnt)
310 {
311 	spin_lock(&vfsmount_lock);
312 	if (mnt->mnt_pinned) {
313 		atomic_inc(&mnt->mnt_count);
314 		mnt->mnt_pinned--;
315 	}
316 	spin_unlock(&vfsmount_lock);
317 }
318 
319 EXPORT_SYMBOL(mnt_unpin);
320 
321 static inline void mangle(struct seq_file *m, const char *s)
322 {
323 	seq_escape(m, s, " \t\n\\");
324 }
325 
326 /*
327  * Simple .show_options callback for filesystems which don't want to
328  * implement more complex mount option showing.
329  *
330  * See also save_mount_options().
331  */
332 int generic_show_options(struct seq_file *m, struct vfsmount *mnt)
333 {
334 	const char *options = mnt->mnt_sb->s_options;
335 
336 	if (options != NULL && options[0]) {
337 		seq_putc(m, ',');
338 		mangle(m, options);
339 	}
340 
341 	return 0;
342 }
343 EXPORT_SYMBOL(generic_show_options);
344 
345 /*
346  * If filesystem uses generic_show_options(), this function should be
347  * called from the fill_super() callback.
348  *
349  * The .remount_fs callback usually needs to be handled in a special
350  * way, to make sure, that previous options are not overwritten if the
351  * remount fails.
352  *
353  * Also note, that if the filesystem's .remount_fs function doesn't
354  * reset all options to their default value, but changes only newly
355  * given options, then the displayed options will not reflect reality
356  * any more.
357  */
358 void save_mount_options(struct super_block *sb, char *options)
359 {
360 	kfree(sb->s_options);
361 	sb->s_options = kstrdup(options, GFP_KERNEL);
362 }
363 EXPORT_SYMBOL(save_mount_options);
364 
365 /* iterator */
366 static void *m_start(struct seq_file *m, loff_t *pos)
367 {
368 	struct mnt_namespace *n = m->private;
369 
370 	down_read(&namespace_sem);
371 	return seq_list_start(&n->list, *pos);
372 }
373 
374 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
375 {
376 	struct mnt_namespace *n = m->private;
377 
378 	return seq_list_next(v, &n->list, pos);
379 }
380 
381 static void m_stop(struct seq_file *m, void *v)
382 {
383 	up_read(&namespace_sem);
384 }
385 
386 static int show_vfsmnt(struct seq_file *m, void *v)
387 {
388 	struct vfsmount *mnt = list_entry(v, struct vfsmount, mnt_list);
389 	int err = 0;
390 	static struct proc_fs_info {
391 		int flag;
392 		char *str;
393 	} fs_info[] = {
394 		{ MS_SYNCHRONOUS, ",sync" },
395 		{ MS_DIRSYNC, ",dirsync" },
396 		{ MS_MANDLOCK, ",mand" },
397 		{ 0, NULL }
398 	};
399 	static struct proc_fs_info mnt_info[] = {
400 		{ MNT_NOSUID, ",nosuid" },
401 		{ MNT_NODEV, ",nodev" },
402 		{ MNT_NOEXEC, ",noexec" },
403 		{ MNT_NOATIME, ",noatime" },
404 		{ MNT_NODIRATIME, ",nodiratime" },
405 		{ MNT_RELATIME, ",relatime" },
406 		{ 0, NULL }
407 	};
408 	struct proc_fs_info *fs_infop;
409 	struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt };
410 
411 	mangle(m, mnt->mnt_devname ? mnt->mnt_devname : "none");
412 	seq_putc(m, ' ');
413 	seq_path(m, &mnt_path, " \t\n\\");
414 	seq_putc(m, ' ');
415 	mangle(m, mnt->mnt_sb->s_type->name);
416 	if (mnt->mnt_sb->s_subtype && mnt->mnt_sb->s_subtype[0]) {
417 		seq_putc(m, '.');
418 		mangle(m, mnt->mnt_sb->s_subtype);
419 	}
420 	seq_puts(m, mnt->mnt_sb->s_flags & MS_RDONLY ? " ro" : " rw");
421 	for (fs_infop = fs_info; fs_infop->flag; fs_infop++) {
422 		if (mnt->mnt_sb->s_flags & fs_infop->flag)
423 			seq_puts(m, fs_infop->str);
424 	}
425 	for (fs_infop = mnt_info; fs_infop->flag; fs_infop++) {
426 		if (mnt->mnt_flags & fs_infop->flag)
427 			seq_puts(m, fs_infop->str);
428 	}
429 	if (mnt->mnt_sb->s_op->show_options)
430 		err = mnt->mnt_sb->s_op->show_options(m, mnt);
431 	seq_puts(m, " 0 0\n");
432 	return err;
433 }
434 
435 struct seq_operations mounts_op = {
436 	.start	= m_start,
437 	.next	= m_next,
438 	.stop	= m_stop,
439 	.show	= show_vfsmnt
440 };
441 
442 static int show_vfsstat(struct seq_file *m, void *v)
443 {
444 	struct vfsmount *mnt = list_entry(v, struct vfsmount, mnt_list);
445 	struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt };
446 	int err = 0;
447 
448 	/* device */
449 	if (mnt->mnt_devname) {
450 		seq_puts(m, "device ");
451 		mangle(m, mnt->mnt_devname);
452 	} else
453 		seq_puts(m, "no device");
454 
455 	/* mount point */
456 	seq_puts(m, " mounted on ");
457 	seq_path(m, &mnt_path, " \t\n\\");
458 	seq_putc(m, ' ');
459 
460 	/* file system type */
461 	seq_puts(m, "with fstype ");
462 	mangle(m, mnt->mnt_sb->s_type->name);
463 
464 	/* optional statistics */
465 	if (mnt->mnt_sb->s_op->show_stats) {
466 		seq_putc(m, ' ');
467 		err = mnt->mnt_sb->s_op->show_stats(m, mnt);
468 	}
469 
470 	seq_putc(m, '\n');
471 	return err;
472 }
473 
474 struct seq_operations mountstats_op = {
475 	.start	= m_start,
476 	.next	= m_next,
477 	.stop	= m_stop,
478 	.show	= show_vfsstat,
479 };
480 
481 /**
482  * may_umount_tree - check if a mount tree is busy
483  * @mnt: root of mount tree
484  *
485  * This is called to check if a tree of mounts has any
486  * open files, pwds, chroots or sub mounts that are
487  * busy.
488  */
489 int may_umount_tree(struct vfsmount *mnt)
490 {
491 	int actual_refs = 0;
492 	int minimum_refs = 0;
493 	struct vfsmount *p;
494 
495 	spin_lock(&vfsmount_lock);
496 	for (p = mnt; p; p = next_mnt(p, mnt)) {
497 		actual_refs += atomic_read(&p->mnt_count);
498 		minimum_refs += 2;
499 	}
500 	spin_unlock(&vfsmount_lock);
501 
502 	if (actual_refs > minimum_refs)
503 		return 0;
504 
505 	return 1;
506 }
507 
508 EXPORT_SYMBOL(may_umount_tree);
509 
510 /**
511  * may_umount - check if a mount point is busy
512  * @mnt: root of mount
513  *
514  * This is called to check if a mount point has any
515  * open files, pwds, chroots or sub mounts. If the
516  * mount has sub mounts this will return busy
517  * regardless of whether the sub mounts are busy.
518  *
519  * Doesn't take quota and stuff into account. IOW, in some cases it will
520  * give false negatives. The main reason why it's here is that we need
521  * a non-destructive way to look for easily umountable filesystems.
522  */
523 int may_umount(struct vfsmount *mnt)
524 {
525 	int ret = 1;
526 	spin_lock(&vfsmount_lock);
527 	if (propagate_mount_busy(mnt, 2))
528 		ret = 0;
529 	spin_unlock(&vfsmount_lock);
530 	return ret;
531 }
532 
533 EXPORT_SYMBOL(may_umount);
534 
535 void release_mounts(struct list_head *head)
536 {
537 	struct vfsmount *mnt;
538 	while (!list_empty(head)) {
539 		mnt = list_first_entry(head, struct vfsmount, mnt_hash);
540 		list_del_init(&mnt->mnt_hash);
541 		if (mnt->mnt_parent != mnt) {
542 			struct dentry *dentry;
543 			struct vfsmount *m;
544 			spin_lock(&vfsmount_lock);
545 			dentry = mnt->mnt_mountpoint;
546 			m = mnt->mnt_parent;
547 			mnt->mnt_mountpoint = mnt->mnt_root;
548 			mnt->mnt_parent = mnt;
549 			m->mnt_ghosts--;
550 			spin_unlock(&vfsmount_lock);
551 			dput(dentry);
552 			mntput(m);
553 		}
554 		mntput(mnt);
555 	}
556 }
557 
558 void umount_tree(struct vfsmount *mnt, int propagate, struct list_head *kill)
559 {
560 	struct vfsmount *p;
561 
562 	for (p = mnt; p; p = next_mnt(p, mnt))
563 		list_move(&p->mnt_hash, kill);
564 
565 	if (propagate)
566 		propagate_umount(kill);
567 
568 	list_for_each_entry(p, kill, mnt_hash) {
569 		list_del_init(&p->mnt_expire);
570 		list_del_init(&p->mnt_list);
571 		__touch_mnt_namespace(p->mnt_ns);
572 		p->mnt_ns = NULL;
573 		list_del_init(&p->mnt_child);
574 		if (p->mnt_parent != p) {
575 			p->mnt_parent->mnt_ghosts++;
576 			p->mnt_mountpoint->d_mounted--;
577 		}
578 		change_mnt_propagation(p, MS_PRIVATE);
579 	}
580 }
581 
582 static void shrink_submounts(struct vfsmount *mnt, struct list_head *umounts);
583 
584 static int do_umount(struct vfsmount *mnt, int flags)
585 {
586 	struct super_block *sb = mnt->mnt_sb;
587 	int retval;
588 	LIST_HEAD(umount_list);
589 
590 	retval = security_sb_umount(mnt, flags);
591 	if (retval)
592 		return retval;
593 
594 	/*
595 	 * Allow userspace to request a mountpoint be expired rather than
596 	 * unmounting unconditionally. Unmount only happens if:
597 	 *  (1) the mark is already set (the mark is cleared by mntput())
598 	 *  (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
599 	 */
600 	if (flags & MNT_EXPIRE) {
601 		if (mnt == current->fs->root.mnt ||
602 		    flags & (MNT_FORCE | MNT_DETACH))
603 			return -EINVAL;
604 
605 		if (atomic_read(&mnt->mnt_count) != 2)
606 			return -EBUSY;
607 
608 		if (!xchg(&mnt->mnt_expiry_mark, 1))
609 			return -EAGAIN;
610 	}
611 
612 	/*
613 	 * If we may have to abort operations to get out of this
614 	 * mount, and they will themselves hold resources we must
615 	 * allow the fs to do things. In the Unix tradition of
616 	 * 'Gee thats tricky lets do it in userspace' the umount_begin
617 	 * might fail to complete on the first run through as other tasks
618 	 * must return, and the like. Thats for the mount program to worry
619 	 * about for the moment.
620 	 */
621 
622 	lock_kernel();
623 	if (sb->s_op->umount_begin)
624 		sb->s_op->umount_begin(mnt, flags);
625 	unlock_kernel();
626 
627 	/*
628 	 * No sense to grab the lock for this test, but test itself looks
629 	 * somewhat bogus. Suggestions for better replacement?
630 	 * Ho-hum... In principle, we might treat that as umount + switch
631 	 * to rootfs. GC would eventually take care of the old vfsmount.
632 	 * Actually it makes sense, especially if rootfs would contain a
633 	 * /reboot - static binary that would close all descriptors and
634 	 * call reboot(9). Then init(8) could umount root and exec /reboot.
635 	 */
636 	if (mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
637 		/*
638 		 * Special case for "unmounting" root ...
639 		 * we just try to remount it readonly.
640 		 */
641 		down_write(&sb->s_umount);
642 		if (!(sb->s_flags & MS_RDONLY)) {
643 			lock_kernel();
644 			DQUOT_OFF(sb);
645 			retval = do_remount_sb(sb, MS_RDONLY, NULL, 0);
646 			unlock_kernel();
647 		}
648 		up_write(&sb->s_umount);
649 		return retval;
650 	}
651 
652 	down_write(&namespace_sem);
653 	spin_lock(&vfsmount_lock);
654 	event++;
655 
656 	if (!(flags & MNT_DETACH))
657 		shrink_submounts(mnt, &umount_list);
658 
659 	retval = -EBUSY;
660 	if (flags & MNT_DETACH || !propagate_mount_busy(mnt, 2)) {
661 		if (!list_empty(&mnt->mnt_list))
662 			umount_tree(mnt, 1, &umount_list);
663 		retval = 0;
664 	}
665 	spin_unlock(&vfsmount_lock);
666 	if (retval)
667 		security_sb_umount_busy(mnt);
668 	up_write(&namespace_sem);
669 	release_mounts(&umount_list);
670 	return retval;
671 }
672 
673 /*
674  * Now umount can handle mount points as well as block devices.
675  * This is important for filesystems which use unnamed block devices.
676  *
677  * We now support a flag for forced unmount like the other 'big iron'
678  * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
679  */
680 
681 asmlinkage long sys_umount(char __user * name, int flags)
682 {
683 	struct nameidata nd;
684 	int retval;
685 
686 	retval = __user_walk(name, LOOKUP_FOLLOW, &nd);
687 	if (retval)
688 		goto out;
689 	retval = -EINVAL;
690 	if (nd.path.dentry != nd.path.mnt->mnt_root)
691 		goto dput_and_out;
692 	if (!check_mnt(nd.path.mnt))
693 		goto dput_and_out;
694 
695 	retval = -EPERM;
696 	if (!capable(CAP_SYS_ADMIN))
697 		goto dput_and_out;
698 
699 	retval = do_umount(nd.path.mnt, flags);
700 dput_and_out:
701 	/* we mustn't call path_put() as that would clear mnt_expiry_mark */
702 	dput(nd.path.dentry);
703 	mntput_no_expire(nd.path.mnt);
704 out:
705 	return retval;
706 }
707 
708 #ifdef __ARCH_WANT_SYS_OLDUMOUNT
709 
710 /*
711  *	The 2.0 compatible umount. No flags.
712  */
713 asmlinkage long sys_oldumount(char __user * name)
714 {
715 	return sys_umount(name, 0);
716 }
717 
718 #endif
719 
720 static int mount_is_safe(struct nameidata *nd)
721 {
722 	if (capable(CAP_SYS_ADMIN))
723 		return 0;
724 	return -EPERM;
725 #ifdef notyet
726 	if (S_ISLNK(nd->path.dentry->d_inode->i_mode))
727 		return -EPERM;
728 	if (nd->path.dentry->d_inode->i_mode & S_ISVTX) {
729 		if (current->uid != nd->path.dentry->d_inode->i_uid)
730 			return -EPERM;
731 	}
732 	if (vfs_permission(nd, MAY_WRITE))
733 		return -EPERM;
734 	return 0;
735 #endif
736 }
737 
738 static int lives_below_in_same_fs(struct dentry *d, struct dentry *dentry)
739 {
740 	while (1) {
741 		if (d == dentry)
742 			return 1;
743 		if (d == NULL || d == d->d_parent)
744 			return 0;
745 		d = d->d_parent;
746 	}
747 }
748 
749 struct vfsmount *copy_tree(struct vfsmount *mnt, struct dentry *dentry,
750 					int flag)
751 {
752 	struct vfsmount *res, *p, *q, *r, *s;
753 	struct path path;
754 
755 	if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(mnt))
756 		return NULL;
757 
758 	res = q = clone_mnt(mnt, dentry, flag);
759 	if (!q)
760 		goto Enomem;
761 	q->mnt_mountpoint = mnt->mnt_mountpoint;
762 
763 	p = mnt;
764 	list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
765 		if (!lives_below_in_same_fs(r->mnt_mountpoint, dentry))
766 			continue;
767 
768 		for (s = r; s; s = next_mnt(s, r)) {
769 			if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(s)) {
770 				s = skip_mnt_tree(s);
771 				continue;
772 			}
773 			while (p != s->mnt_parent) {
774 				p = p->mnt_parent;
775 				q = q->mnt_parent;
776 			}
777 			p = s;
778 			path.mnt = q;
779 			path.dentry = p->mnt_mountpoint;
780 			q = clone_mnt(p, p->mnt_root, flag);
781 			if (!q)
782 				goto Enomem;
783 			spin_lock(&vfsmount_lock);
784 			list_add_tail(&q->mnt_list, &res->mnt_list);
785 			attach_mnt(q, &path);
786 			spin_unlock(&vfsmount_lock);
787 		}
788 	}
789 	return res;
790 Enomem:
791 	if (res) {
792 		LIST_HEAD(umount_list);
793 		spin_lock(&vfsmount_lock);
794 		umount_tree(res, 0, &umount_list);
795 		spin_unlock(&vfsmount_lock);
796 		release_mounts(&umount_list);
797 	}
798 	return NULL;
799 }
800 
801 struct vfsmount *collect_mounts(struct vfsmount *mnt, struct dentry *dentry)
802 {
803 	struct vfsmount *tree;
804 	down_read(&namespace_sem);
805 	tree = copy_tree(mnt, dentry, CL_COPY_ALL | CL_PRIVATE);
806 	up_read(&namespace_sem);
807 	return tree;
808 }
809 
810 void drop_collected_mounts(struct vfsmount *mnt)
811 {
812 	LIST_HEAD(umount_list);
813 	down_read(&namespace_sem);
814 	spin_lock(&vfsmount_lock);
815 	umount_tree(mnt, 0, &umount_list);
816 	spin_unlock(&vfsmount_lock);
817 	up_read(&namespace_sem);
818 	release_mounts(&umount_list);
819 }
820 
821 /*
822  *  @source_mnt : mount tree to be attached
823  *  @nd         : place the mount tree @source_mnt is attached
824  *  @parent_nd  : if non-null, detach the source_mnt from its parent and
825  *  		   store the parent mount and mountpoint dentry.
826  *  		   (done when source_mnt is moved)
827  *
828  *  NOTE: in the table below explains the semantics when a source mount
829  *  of a given type is attached to a destination mount of a given type.
830  * ---------------------------------------------------------------------------
831  * |         BIND MOUNT OPERATION                                            |
832  * |**************************************************************************
833  * | source-->| shared        |       private  |       slave    | unbindable |
834  * | dest     |               |                |                |            |
835  * |   |      |               |                |                |            |
836  * |   v      |               |                |                |            |
837  * |**************************************************************************
838  * |  shared  | shared (++)   |     shared (+) |     shared(+++)|  invalid   |
839  * |          |               |                |                |            |
840  * |non-shared| shared (+)    |      private   |      slave (*) |  invalid   |
841  * ***************************************************************************
842  * A bind operation clones the source mount and mounts the clone on the
843  * destination mount.
844  *
845  * (++)  the cloned mount is propagated to all the mounts in the propagation
846  * 	 tree of the destination mount and the cloned mount is added to
847  * 	 the peer group of the source mount.
848  * (+)   the cloned mount is created under the destination mount and is marked
849  *       as shared. The cloned mount is added to the peer group of the source
850  *       mount.
851  * (+++) the mount is propagated to all the mounts in the propagation tree
852  *       of the destination mount and the cloned mount is made slave
853  *       of the same master as that of the source mount. The cloned mount
854  *       is marked as 'shared and slave'.
855  * (*)   the cloned mount is made a slave of the same master as that of the
856  * 	 source mount.
857  *
858  * ---------------------------------------------------------------------------
859  * |         		MOVE MOUNT OPERATION                                 |
860  * |**************************************************************************
861  * | source-->| shared        |       private  |       slave    | unbindable |
862  * | dest     |               |                |                |            |
863  * |   |      |               |                |                |            |
864  * |   v      |               |                |                |            |
865  * |**************************************************************************
866  * |  shared  | shared (+)    |     shared (+) |    shared(+++) |  invalid   |
867  * |          |               |                |                |            |
868  * |non-shared| shared (+*)   |      private   |    slave (*)   | unbindable |
869  * ***************************************************************************
870  *
871  * (+)  the mount is moved to the destination. And is then propagated to
872  * 	all the mounts in the propagation tree of the destination mount.
873  * (+*)  the mount is moved to the destination.
874  * (+++)  the mount is moved to the destination and is then propagated to
875  * 	all the mounts belonging to the destination mount's propagation tree.
876  * 	the mount is marked as 'shared and slave'.
877  * (*)	the mount continues to be a slave at the new location.
878  *
879  * if the source mount is a tree, the operations explained above is
880  * applied to each mount in the tree.
881  * Must be called without spinlocks held, since this function can sleep
882  * in allocations.
883  */
884 static int attach_recursive_mnt(struct vfsmount *source_mnt,
885 			struct path *path, struct path *parent_path)
886 {
887 	LIST_HEAD(tree_list);
888 	struct vfsmount *dest_mnt = path->mnt;
889 	struct dentry *dest_dentry = path->dentry;
890 	struct vfsmount *child, *p;
891 
892 	if (propagate_mnt(dest_mnt, dest_dentry, source_mnt, &tree_list))
893 		return -EINVAL;
894 
895 	if (IS_MNT_SHARED(dest_mnt)) {
896 		for (p = source_mnt; p; p = next_mnt(p, source_mnt))
897 			set_mnt_shared(p);
898 	}
899 
900 	spin_lock(&vfsmount_lock);
901 	if (parent_path) {
902 		detach_mnt(source_mnt, parent_path);
903 		attach_mnt(source_mnt, path);
904 		touch_mnt_namespace(current->nsproxy->mnt_ns);
905 	} else {
906 		mnt_set_mountpoint(dest_mnt, dest_dentry, source_mnt);
907 		commit_tree(source_mnt);
908 	}
909 
910 	list_for_each_entry_safe(child, p, &tree_list, mnt_hash) {
911 		list_del_init(&child->mnt_hash);
912 		commit_tree(child);
913 	}
914 	spin_unlock(&vfsmount_lock);
915 	return 0;
916 }
917 
918 static int graft_tree(struct vfsmount *mnt, struct nameidata *nd)
919 {
920 	int err;
921 	if (mnt->mnt_sb->s_flags & MS_NOUSER)
922 		return -EINVAL;
923 
924 	if (S_ISDIR(nd->path.dentry->d_inode->i_mode) !=
925 	      S_ISDIR(mnt->mnt_root->d_inode->i_mode))
926 		return -ENOTDIR;
927 
928 	err = -ENOENT;
929 	mutex_lock(&nd->path.dentry->d_inode->i_mutex);
930 	if (IS_DEADDIR(nd->path.dentry->d_inode))
931 		goto out_unlock;
932 
933 	err = security_sb_check_sb(mnt, nd);
934 	if (err)
935 		goto out_unlock;
936 
937 	err = -ENOENT;
938 	if (IS_ROOT(nd->path.dentry) || !d_unhashed(nd->path.dentry))
939 		err = attach_recursive_mnt(mnt, &nd->path, NULL);
940 out_unlock:
941 	mutex_unlock(&nd->path.dentry->d_inode->i_mutex);
942 	if (!err)
943 		security_sb_post_addmount(mnt, nd);
944 	return err;
945 }
946 
947 /*
948  * recursively change the type of the mountpoint.
949  * noinline this do_mount helper to save do_mount stack space.
950  */
951 static noinline int do_change_type(struct nameidata *nd, int flag)
952 {
953 	struct vfsmount *m, *mnt = nd->path.mnt;
954 	int recurse = flag & MS_REC;
955 	int type = flag & ~MS_REC;
956 
957 	if (!capable(CAP_SYS_ADMIN))
958 		return -EPERM;
959 
960 	if (nd->path.dentry != nd->path.mnt->mnt_root)
961 		return -EINVAL;
962 
963 	down_write(&namespace_sem);
964 	spin_lock(&vfsmount_lock);
965 	for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
966 		change_mnt_propagation(m, type);
967 	spin_unlock(&vfsmount_lock);
968 	up_write(&namespace_sem);
969 	return 0;
970 }
971 
972 /*
973  * do loopback mount.
974  * noinline this do_mount helper to save do_mount stack space.
975  */
976 static noinline int do_loopback(struct nameidata *nd, char *old_name,
977 				int recurse)
978 {
979 	struct nameidata old_nd;
980 	struct vfsmount *mnt = NULL;
981 	int err = mount_is_safe(nd);
982 	if (err)
983 		return err;
984 	if (!old_name || !*old_name)
985 		return -EINVAL;
986 	err = path_lookup(old_name, LOOKUP_FOLLOW, &old_nd);
987 	if (err)
988 		return err;
989 
990 	down_write(&namespace_sem);
991 	err = -EINVAL;
992 	if (IS_MNT_UNBINDABLE(old_nd.path.mnt))
993 		goto out;
994 
995 	if (!check_mnt(nd->path.mnt) || !check_mnt(old_nd.path.mnt))
996 		goto out;
997 
998 	err = -ENOMEM;
999 	if (recurse)
1000 		mnt = copy_tree(old_nd.path.mnt, old_nd.path.dentry, 0);
1001 	else
1002 		mnt = clone_mnt(old_nd.path.mnt, old_nd.path.dentry, 0);
1003 
1004 	if (!mnt)
1005 		goto out;
1006 
1007 	err = graft_tree(mnt, nd);
1008 	if (err) {
1009 		LIST_HEAD(umount_list);
1010 		spin_lock(&vfsmount_lock);
1011 		umount_tree(mnt, 0, &umount_list);
1012 		spin_unlock(&vfsmount_lock);
1013 		release_mounts(&umount_list);
1014 	}
1015 
1016 out:
1017 	up_write(&namespace_sem);
1018 	path_put(&old_nd.path);
1019 	return err;
1020 }
1021 
1022 /*
1023  * change filesystem flags. dir should be a physical root of filesystem.
1024  * If you've mounted a non-root directory somewhere and want to do remount
1025  * on it - tough luck.
1026  * noinline this do_mount helper to save do_mount stack space.
1027  */
1028 static noinline int do_remount(struct nameidata *nd, int flags, int mnt_flags,
1029 		      void *data)
1030 {
1031 	int err;
1032 	struct super_block *sb = nd->path.mnt->mnt_sb;
1033 
1034 	if (!capable(CAP_SYS_ADMIN))
1035 		return -EPERM;
1036 
1037 	if (!check_mnt(nd->path.mnt))
1038 		return -EINVAL;
1039 
1040 	if (nd->path.dentry != nd->path.mnt->mnt_root)
1041 		return -EINVAL;
1042 
1043 	down_write(&sb->s_umount);
1044 	err = do_remount_sb(sb, flags, data, 0);
1045 	if (!err)
1046 		nd->path.mnt->mnt_flags = mnt_flags;
1047 	up_write(&sb->s_umount);
1048 	if (!err)
1049 		security_sb_post_remount(nd->path.mnt, flags, data);
1050 	return err;
1051 }
1052 
1053 static inline int tree_contains_unbindable(struct vfsmount *mnt)
1054 {
1055 	struct vfsmount *p;
1056 	for (p = mnt; p; p = next_mnt(p, mnt)) {
1057 		if (IS_MNT_UNBINDABLE(p))
1058 			return 1;
1059 	}
1060 	return 0;
1061 }
1062 
1063 /*
1064  * noinline this do_mount helper to save do_mount stack space.
1065  */
1066 static noinline int do_move_mount(struct nameidata *nd, char *old_name)
1067 {
1068 	struct nameidata old_nd;
1069 	struct path parent_path;
1070 	struct vfsmount *p;
1071 	int err = 0;
1072 	if (!capable(CAP_SYS_ADMIN))
1073 		return -EPERM;
1074 	if (!old_name || !*old_name)
1075 		return -EINVAL;
1076 	err = path_lookup(old_name, LOOKUP_FOLLOW, &old_nd);
1077 	if (err)
1078 		return err;
1079 
1080 	down_write(&namespace_sem);
1081 	while (d_mountpoint(nd->path.dentry) &&
1082 	       follow_down(&nd->path.mnt, &nd->path.dentry))
1083 		;
1084 	err = -EINVAL;
1085 	if (!check_mnt(nd->path.mnt) || !check_mnt(old_nd.path.mnt))
1086 		goto out;
1087 
1088 	err = -ENOENT;
1089 	mutex_lock(&nd->path.dentry->d_inode->i_mutex);
1090 	if (IS_DEADDIR(nd->path.dentry->d_inode))
1091 		goto out1;
1092 
1093 	if (!IS_ROOT(nd->path.dentry) && d_unhashed(nd->path.dentry))
1094 		goto out1;
1095 
1096 	err = -EINVAL;
1097 	if (old_nd.path.dentry != old_nd.path.mnt->mnt_root)
1098 		goto out1;
1099 
1100 	if (old_nd.path.mnt == old_nd.path.mnt->mnt_parent)
1101 		goto out1;
1102 
1103 	if (S_ISDIR(nd->path.dentry->d_inode->i_mode) !=
1104 	      S_ISDIR(old_nd.path.dentry->d_inode->i_mode))
1105 		goto out1;
1106 	/*
1107 	 * Don't move a mount residing in a shared parent.
1108 	 */
1109 	if (old_nd.path.mnt->mnt_parent &&
1110 	    IS_MNT_SHARED(old_nd.path.mnt->mnt_parent))
1111 		goto out1;
1112 	/*
1113 	 * Don't move a mount tree containing unbindable mounts to a destination
1114 	 * mount which is shared.
1115 	 */
1116 	if (IS_MNT_SHARED(nd->path.mnt) &&
1117 	    tree_contains_unbindable(old_nd.path.mnt))
1118 		goto out1;
1119 	err = -ELOOP;
1120 	for (p = nd->path.mnt; p->mnt_parent != p; p = p->mnt_parent)
1121 		if (p == old_nd.path.mnt)
1122 			goto out1;
1123 
1124 	err = attach_recursive_mnt(old_nd.path.mnt, &nd->path, &parent_path);
1125 	if (err)
1126 		goto out1;
1127 
1128 	/* if the mount is moved, it should no longer be expire
1129 	 * automatically */
1130 	list_del_init(&old_nd.path.mnt->mnt_expire);
1131 out1:
1132 	mutex_unlock(&nd->path.dentry->d_inode->i_mutex);
1133 out:
1134 	up_write(&namespace_sem);
1135 	if (!err)
1136 		path_put(&parent_path);
1137 	path_put(&old_nd.path);
1138 	return err;
1139 }
1140 
1141 /*
1142  * create a new mount for userspace and request it to be added into the
1143  * namespace's tree
1144  * noinline this do_mount helper to save do_mount stack space.
1145  */
1146 static noinline int do_new_mount(struct nameidata *nd, char *type, int flags,
1147 			int mnt_flags, char *name, void *data)
1148 {
1149 	struct vfsmount *mnt;
1150 
1151 	if (!type || !memchr(type, 0, PAGE_SIZE))
1152 		return -EINVAL;
1153 
1154 	/* we need capabilities... */
1155 	if (!capable(CAP_SYS_ADMIN))
1156 		return -EPERM;
1157 
1158 	mnt = do_kern_mount(type, flags, name, data);
1159 	if (IS_ERR(mnt))
1160 		return PTR_ERR(mnt);
1161 
1162 	return do_add_mount(mnt, nd, mnt_flags, NULL);
1163 }
1164 
1165 /*
1166  * add a mount into a namespace's mount tree
1167  * - provide the option of adding the new mount to an expiration list
1168  */
1169 int do_add_mount(struct vfsmount *newmnt, struct nameidata *nd,
1170 		 int mnt_flags, struct list_head *fslist)
1171 {
1172 	int err;
1173 
1174 	down_write(&namespace_sem);
1175 	/* Something was mounted here while we slept */
1176 	while (d_mountpoint(nd->path.dentry) &&
1177 	       follow_down(&nd->path.mnt, &nd->path.dentry))
1178 		;
1179 	err = -EINVAL;
1180 	if (!check_mnt(nd->path.mnt))
1181 		goto unlock;
1182 
1183 	/* Refuse the same filesystem on the same mount point */
1184 	err = -EBUSY;
1185 	if (nd->path.mnt->mnt_sb == newmnt->mnt_sb &&
1186 	    nd->path.mnt->mnt_root == nd->path.dentry)
1187 		goto unlock;
1188 
1189 	err = -EINVAL;
1190 	if (S_ISLNK(newmnt->mnt_root->d_inode->i_mode))
1191 		goto unlock;
1192 
1193 	newmnt->mnt_flags = mnt_flags;
1194 	if ((err = graft_tree(newmnt, nd)))
1195 		goto unlock;
1196 
1197 	if (fslist) /* add to the specified expiration list */
1198 		list_add_tail(&newmnt->mnt_expire, fslist);
1199 
1200 	up_write(&namespace_sem);
1201 	return 0;
1202 
1203 unlock:
1204 	up_write(&namespace_sem);
1205 	mntput(newmnt);
1206 	return err;
1207 }
1208 
1209 EXPORT_SYMBOL_GPL(do_add_mount);
1210 
1211 /*
1212  * process a list of expirable mountpoints with the intent of discarding any
1213  * mountpoints that aren't in use and haven't been touched since last we came
1214  * here
1215  */
1216 void mark_mounts_for_expiry(struct list_head *mounts)
1217 {
1218 	struct vfsmount *mnt, *next;
1219 	LIST_HEAD(graveyard);
1220 	LIST_HEAD(umounts);
1221 
1222 	if (list_empty(mounts))
1223 		return;
1224 
1225 	down_write(&namespace_sem);
1226 	spin_lock(&vfsmount_lock);
1227 
1228 	/* extract from the expiration list every vfsmount that matches the
1229 	 * following criteria:
1230 	 * - only referenced by its parent vfsmount
1231 	 * - still marked for expiry (marked on the last call here; marks are
1232 	 *   cleared by mntput())
1233 	 */
1234 	list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
1235 		if (!xchg(&mnt->mnt_expiry_mark, 1) ||
1236 			propagate_mount_busy(mnt, 1))
1237 			continue;
1238 		list_move(&mnt->mnt_expire, &graveyard);
1239 	}
1240 	while (!list_empty(&graveyard)) {
1241 		mnt = list_first_entry(&graveyard, struct vfsmount, mnt_expire);
1242 		touch_mnt_namespace(mnt->mnt_ns);
1243 		umount_tree(mnt, 1, &umounts);
1244 	}
1245 	spin_unlock(&vfsmount_lock);
1246 	up_write(&namespace_sem);
1247 
1248 	release_mounts(&umounts);
1249 }
1250 
1251 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
1252 
1253 /*
1254  * Ripoff of 'select_parent()'
1255  *
1256  * search the list of submounts for a given mountpoint, and move any
1257  * shrinkable submounts to the 'graveyard' list.
1258  */
1259 static int select_submounts(struct vfsmount *parent, struct list_head *graveyard)
1260 {
1261 	struct vfsmount *this_parent = parent;
1262 	struct list_head *next;
1263 	int found = 0;
1264 
1265 repeat:
1266 	next = this_parent->mnt_mounts.next;
1267 resume:
1268 	while (next != &this_parent->mnt_mounts) {
1269 		struct list_head *tmp = next;
1270 		struct vfsmount *mnt = list_entry(tmp, struct vfsmount, mnt_child);
1271 
1272 		next = tmp->next;
1273 		if (!(mnt->mnt_flags & MNT_SHRINKABLE))
1274 			continue;
1275 		/*
1276 		 * Descend a level if the d_mounts list is non-empty.
1277 		 */
1278 		if (!list_empty(&mnt->mnt_mounts)) {
1279 			this_parent = mnt;
1280 			goto repeat;
1281 		}
1282 
1283 		if (!propagate_mount_busy(mnt, 1)) {
1284 			list_move_tail(&mnt->mnt_expire, graveyard);
1285 			found++;
1286 		}
1287 	}
1288 	/*
1289 	 * All done at this level ... ascend and resume the search
1290 	 */
1291 	if (this_parent != parent) {
1292 		next = this_parent->mnt_child.next;
1293 		this_parent = this_parent->mnt_parent;
1294 		goto resume;
1295 	}
1296 	return found;
1297 }
1298 
1299 /*
1300  * process a list of expirable mountpoints with the intent of discarding any
1301  * submounts of a specific parent mountpoint
1302  */
1303 static void shrink_submounts(struct vfsmount *mnt, struct list_head *umounts)
1304 {
1305 	LIST_HEAD(graveyard);
1306 	struct vfsmount *m;
1307 
1308 	/* extract submounts of 'mountpoint' from the expiration list */
1309 	while (select_submounts(mnt, &graveyard)) {
1310 		while (!list_empty(&graveyard)) {
1311 			m = list_first_entry(&graveyard, struct vfsmount,
1312 						mnt_expire);
1313 			touch_mnt_namespace(mnt->mnt_ns);
1314 			umount_tree(mnt, 1, umounts);
1315 		}
1316 	}
1317 }
1318 
1319 /*
1320  * Some copy_from_user() implementations do not return the exact number of
1321  * bytes remaining to copy on a fault.  But copy_mount_options() requires that.
1322  * Note that this function differs from copy_from_user() in that it will oops
1323  * on bad values of `to', rather than returning a short copy.
1324  */
1325 static long exact_copy_from_user(void *to, const void __user * from,
1326 				 unsigned long n)
1327 {
1328 	char *t = to;
1329 	const char __user *f = from;
1330 	char c;
1331 
1332 	if (!access_ok(VERIFY_READ, from, n))
1333 		return n;
1334 
1335 	while (n) {
1336 		if (__get_user(c, f)) {
1337 			memset(t, 0, n);
1338 			break;
1339 		}
1340 		*t++ = c;
1341 		f++;
1342 		n--;
1343 	}
1344 	return n;
1345 }
1346 
1347 int copy_mount_options(const void __user * data, unsigned long *where)
1348 {
1349 	int i;
1350 	unsigned long page;
1351 	unsigned long size;
1352 
1353 	*where = 0;
1354 	if (!data)
1355 		return 0;
1356 
1357 	if (!(page = __get_free_page(GFP_KERNEL)))
1358 		return -ENOMEM;
1359 
1360 	/* We only care that *some* data at the address the user
1361 	 * gave us is valid.  Just in case, we'll zero
1362 	 * the remainder of the page.
1363 	 */
1364 	/* copy_from_user cannot cross TASK_SIZE ! */
1365 	size = TASK_SIZE - (unsigned long)data;
1366 	if (size > PAGE_SIZE)
1367 		size = PAGE_SIZE;
1368 
1369 	i = size - exact_copy_from_user((void *)page, data, size);
1370 	if (!i) {
1371 		free_page(page);
1372 		return -EFAULT;
1373 	}
1374 	if (i != PAGE_SIZE)
1375 		memset((char *)page + i, 0, PAGE_SIZE - i);
1376 	*where = page;
1377 	return 0;
1378 }
1379 
1380 /*
1381  * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
1382  * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
1383  *
1384  * data is a (void *) that can point to any structure up to
1385  * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
1386  * information (or be NULL).
1387  *
1388  * Pre-0.97 versions of mount() didn't have a flags word.
1389  * When the flags word was introduced its top half was required
1390  * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
1391  * Therefore, if this magic number is present, it carries no information
1392  * and must be discarded.
1393  */
1394 long do_mount(char *dev_name, char *dir_name, char *type_page,
1395 		  unsigned long flags, void *data_page)
1396 {
1397 	struct nameidata nd;
1398 	int retval = 0;
1399 	int mnt_flags = 0;
1400 
1401 	/* Discard magic */
1402 	if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
1403 		flags &= ~MS_MGC_MSK;
1404 
1405 	/* Basic sanity checks */
1406 
1407 	if (!dir_name || !*dir_name || !memchr(dir_name, 0, PAGE_SIZE))
1408 		return -EINVAL;
1409 	if (dev_name && !memchr(dev_name, 0, PAGE_SIZE))
1410 		return -EINVAL;
1411 
1412 	if (data_page)
1413 		((char *)data_page)[PAGE_SIZE - 1] = 0;
1414 
1415 	/* Separate the per-mountpoint flags */
1416 	if (flags & MS_NOSUID)
1417 		mnt_flags |= MNT_NOSUID;
1418 	if (flags & MS_NODEV)
1419 		mnt_flags |= MNT_NODEV;
1420 	if (flags & MS_NOEXEC)
1421 		mnt_flags |= MNT_NOEXEC;
1422 	if (flags & MS_NOATIME)
1423 		mnt_flags |= MNT_NOATIME;
1424 	if (flags & MS_NODIRATIME)
1425 		mnt_flags |= MNT_NODIRATIME;
1426 	if (flags & MS_RELATIME)
1427 		mnt_flags |= MNT_RELATIME;
1428 
1429 	flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE |
1430 		   MS_NOATIME | MS_NODIRATIME | MS_RELATIME| MS_KERNMOUNT);
1431 
1432 	/* ... and get the mountpoint */
1433 	retval = path_lookup(dir_name, LOOKUP_FOLLOW, &nd);
1434 	if (retval)
1435 		return retval;
1436 
1437 	retval = security_sb_mount(dev_name, &nd, type_page, flags, data_page);
1438 	if (retval)
1439 		goto dput_out;
1440 
1441 	if (flags & MS_REMOUNT)
1442 		retval = do_remount(&nd, flags & ~MS_REMOUNT, mnt_flags,
1443 				    data_page);
1444 	else if (flags & MS_BIND)
1445 		retval = do_loopback(&nd, dev_name, flags & MS_REC);
1446 	else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
1447 		retval = do_change_type(&nd, flags);
1448 	else if (flags & MS_MOVE)
1449 		retval = do_move_mount(&nd, dev_name);
1450 	else
1451 		retval = do_new_mount(&nd, type_page, flags, mnt_flags,
1452 				      dev_name, data_page);
1453 dput_out:
1454 	path_put(&nd.path);
1455 	return retval;
1456 }
1457 
1458 /*
1459  * Allocate a new namespace structure and populate it with contents
1460  * copied from the namespace of the passed in task structure.
1461  */
1462 static struct mnt_namespace *dup_mnt_ns(struct mnt_namespace *mnt_ns,
1463 		struct fs_struct *fs)
1464 {
1465 	struct mnt_namespace *new_ns;
1466 	struct vfsmount *rootmnt = NULL, *pwdmnt = NULL, *altrootmnt = NULL;
1467 	struct vfsmount *p, *q;
1468 
1469 	new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
1470 	if (!new_ns)
1471 		return ERR_PTR(-ENOMEM);
1472 
1473 	atomic_set(&new_ns->count, 1);
1474 	INIT_LIST_HEAD(&new_ns->list);
1475 	init_waitqueue_head(&new_ns->poll);
1476 	new_ns->event = 0;
1477 
1478 	down_write(&namespace_sem);
1479 	/* First pass: copy the tree topology */
1480 	new_ns->root = copy_tree(mnt_ns->root, mnt_ns->root->mnt_root,
1481 					CL_COPY_ALL | CL_EXPIRE);
1482 	if (!new_ns->root) {
1483 		up_write(&namespace_sem);
1484 		kfree(new_ns);
1485 		return ERR_PTR(-ENOMEM);;
1486 	}
1487 	spin_lock(&vfsmount_lock);
1488 	list_add_tail(&new_ns->list, &new_ns->root->mnt_list);
1489 	spin_unlock(&vfsmount_lock);
1490 
1491 	/*
1492 	 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
1493 	 * as belonging to new namespace.  We have already acquired a private
1494 	 * fs_struct, so tsk->fs->lock is not needed.
1495 	 */
1496 	p = mnt_ns->root;
1497 	q = new_ns->root;
1498 	while (p) {
1499 		q->mnt_ns = new_ns;
1500 		if (fs) {
1501 			if (p == fs->root.mnt) {
1502 				rootmnt = p;
1503 				fs->root.mnt = mntget(q);
1504 			}
1505 			if (p == fs->pwd.mnt) {
1506 				pwdmnt = p;
1507 				fs->pwd.mnt = mntget(q);
1508 			}
1509 			if (p == fs->altroot.mnt) {
1510 				altrootmnt = p;
1511 				fs->altroot.mnt = mntget(q);
1512 			}
1513 		}
1514 		p = next_mnt(p, mnt_ns->root);
1515 		q = next_mnt(q, new_ns->root);
1516 	}
1517 	up_write(&namespace_sem);
1518 
1519 	if (rootmnt)
1520 		mntput(rootmnt);
1521 	if (pwdmnt)
1522 		mntput(pwdmnt);
1523 	if (altrootmnt)
1524 		mntput(altrootmnt);
1525 
1526 	return new_ns;
1527 }
1528 
1529 struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
1530 		struct fs_struct *new_fs)
1531 {
1532 	struct mnt_namespace *new_ns;
1533 
1534 	BUG_ON(!ns);
1535 	get_mnt_ns(ns);
1536 
1537 	if (!(flags & CLONE_NEWNS))
1538 		return ns;
1539 
1540 	new_ns = dup_mnt_ns(ns, new_fs);
1541 
1542 	put_mnt_ns(ns);
1543 	return new_ns;
1544 }
1545 
1546 asmlinkage long sys_mount(char __user * dev_name, char __user * dir_name,
1547 			  char __user * type, unsigned long flags,
1548 			  void __user * data)
1549 {
1550 	int retval;
1551 	unsigned long data_page;
1552 	unsigned long type_page;
1553 	unsigned long dev_page;
1554 	char *dir_page;
1555 
1556 	retval = copy_mount_options(type, &type_page);
1557 	if (retval < 0)
1558 		return retval;
1559 
1560 	dir_page = getname(dir_name);
1561 	retval = PTR_ERR(dir_page);
1562 	if (IS_ERR(dir_page))
1563 		goto out1;
1564 
1565 	retval = copy_mount_options(dev_name, &dev_page);
1566 	if (retval < 0)
1567 		goto out2;
1568 
1569 	retval = copy_mount_options(data, &data_page);
1570 	if (retval < 0)
1571 		goto out3;
1572 
1573 	lock_kernel();
1574 	retval = do_mount((char *)dev_page, dir_page, (char *)type_page,
1575 			  flags, (void *)data_page);
1576 	unlock_kernel();
1577 	free_page(data_page);
1578 
1579 out3:
1580 	free_page(dev_page);
1581 out2:
1582 	putname(dir_page);
1583 out1:
1584 	free_page(type_page);
1585 	return retval;
1586 }
1587 
1588 /*
1589  * Replace the fs->{rootmnt,root} with {mnt,dentry}. Put the old values.
1590  * It can block. Requires the big lock held.
1591  */
1592 void set_fs_root(struct fs_struct *fs, struct path *path)
1593 {
1594 	struct path old_root;
1595 
1596 	write_lock(&fs->lock);
1597 	old_root = fs->root;
1598 	fs->root = *path;
1599 	path_get(path);
1600 	write_unlock(&fs->lock);
1601 	if (old_root.dentry)
1602 		path_put(&old_root);
1603 }
1604 
1605 /*
1606  * Replace the fs->{pwdmnt,pwd} with {mnt,dentry}. Put the old values.
1607  * It can block. Requires the big lock held.
1608  */
1609 void set_fs_pwd(struct fs_struct *fs, struct path *path)
1610 {
1611 	struct path old_pwd;
1612 
1613 	write_lock(&fs->lock);
1614 	old_pwd = fs->pwd;
1615 	fs->pwd = *path;
1616 	path_get(path);
1617 	write_unlock(&fs->lock);
1618 
1619 	if (old_pwd.dentry)
1620 		path_put(&old_pwd);
1621 }
1622 
1623 static void chroot_fs_refs(struct path *old_root, struct path *new_root)
1624 {
1625 	struct task_struct *g, *p;
1626 	struct fs_struct *fs;
1627 
1628 	read_lock(&tasklist_lock);
1629 	do_each_thread(g, p) {
1630 		task_lock(p);
1631 		fs = p->fs;
1632 		if (fs) {
1633 			atomic_inc(&fs->count);
1634 			task_unlock(p);
1635 			if (fs->root.dentry == old_root->dentry
1636 			    && fs->root.mnt == old_root->mnt)
1637 				set_fs_root(fs, new_root);
1638 			if (fs->pwd.dentry == old_root->dentry
1639 			    && fs->pwd.mnt == old_root->mnt)
1640 				set_fs_pwd(fs, new_root);
1641 			put_fs_struct(fs);
1642 		} else
1643 			task_unlock(p);
1644 	} while_each_thread(g, p);
1645 	read_unlock(&tasklist_lock);
1646 }
1647 
1648 /*
1649  * pivot_root Semantics:
1650  * Moves the root file system of the current process to the directory put_old,
1651  * makes new_root as the new root file system of the current process, and sets
1652  * root/cwd of all processes which had them on the current root to new_root.
1653  *
1654  * Restrictions:
1655  * The new_root and put_old must be directories, and  must not be on the
1656  * same file  system as the current process root. The put_old  must  be
1657  * underneath new_root,  i.e. adding a non-zero number of /.. to the string
1658  * pointed to by put_old must yield the same directory as new_root. No other
1659  * file system may be mounted on put_old. After all, new_root is a mountpoint.
1660  *
1661  * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
1662  * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
1663  * in this situation.
1664  *
1665  * Notes:
1666  *  - we don't move root/cwd if they are not at the root (reason: if something
1667  *    cared enough to change them, it's probably wrong to force them elsewhere)
1668  *  - it's okay to pick a root that isn't the root of a file system, e.g.
1669  *    /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
1670  *    though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
1671  *    first.
1672  */
1673 asmlinkage long sys_pivot_root(const char __user * new_root,
1674 			       const char __user * put_old)
1675 {
1676 	struct vfsmount *tmp;
1677 	struct nameidata new_nd, old_nd, user_nd;
1678 	struct path parent_path, root_parent;
1679 	int error;
1680 
1681 	if (!capable(CAP_SYS_ADMIN))
1682 		return -EPERM;
1683 
1684 	lock_kernel();
1685 
1686 	error = __user_walk(new_root, LOOKUP_FOLLOW | LOOKUP_DIRECTORY,
1687 			    &new_nd);
1688 	if (error)
1689 		goto out0;
1690 	error = -EINVAL;
1691 	if (!check_mnt(new_nd.path.mnt))
1692 		goto out1;
1693 
1694 	error = __user_walk(put_old, LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &old_nd);
1695 	if (error)
1696 		goto out1;
1697 
1698 	error = security_sb_pivotroot(&old_nd, &new_nd);
1699 	if (error) {
1700 		path_put(&old_nd.path);
1701 		goto out1;
1702 	}
1703 
1704 	read_lock(&current->fs->lock);
1705 	user_nd.path = current->fs->root;
1706 	path_get(&current->fs->root);
1707 	read_unlock(&current->fs->lock);
1708 	down_write(&namespace_sem);
1709 	mutex_lock(&old_nd.path.dentry->d_inode->i_mutex);
1710 	error = -EINVAL;
1711 	if (IS_MNT_SHARED(old_nd.path.mnt) ||
1712 		IS_MNT_SHARED(new_nd.path.mnt->mnt_parent) ||
1713 		IS_MNT_SHARED(user_nd.path.mnt->mnt_parent))
1714 		goto out2;
1715 	if (!check_mnt(user_nd.path.mnt))
1716 		goto out2;
1717 	error = -ENOENT;
1718 	if (IS_DEADDIR(new_nd.path.dentry->d_inode))
1719 		goto out2;
1720 	if (d_unhashed(new_nd.path.dentry) && !IS_ROOT(new_nd.path.dentry))
1721 		goto out2;
1722 	if (d_unhashed(old_nd.path.dentry) && !IS_ROOT(old_nd.path.dentry))
1723 		goto out2;
1724 	error = -EBUSY;
1725 	if (new_nd.path.mnt == user_nd.path.mnt ||
1726 	    old_nd.path.mnt == user_nd.path.mnt)
1727 		goto out2; /* loop, on the same file system  */
1728 	error = -EINVAL;
1729 	if (user_nd.path.mnt->mnt_root != user_nd.path.dentry)
1730 		goto out2; /* not a mountpoint */
1731 	if (user_nd.path.mnt->mnt_parent == user_nd.path.mnt)
1732 		goto out2; /* not attached */
1733 	if (new_nd.path.mnt->mnt_root != new_nd.path.dentry)
1734 		goto out2; /* not a mountpoint */
1735 	if (new_nd.path.mnt->mnt_parent == new_nd.path.mnt)
1736 		goto out2; /* not attached */
1737 	/* make sure we can reach put_old from new_root */
1738 	tmp = old_nd.path.mnt;
1739 	spin_lock(&vfsmount_lock);
1740 	if (tmp != new_nd.path.mnt) {
1741 		for (;;) {
1742 			if (tmp->mnt_parent == tmp)
1743 				goto out3; /* already mounted on put_old */
1744 			if (tmp->mnt_parent == new_nd.path.mnt)
1745 				break;
1746 			tmp = tmp->mnt_parent;
1747 		}
1748 		if (!is_subdir(tmp->mnt_mountpoint, new_nd.path.dentry))
1749 			goto out3;
1750 	} else if (!is_subdir(old_nd.path.dentry, new_nd.path.dentry))
1751 		goto out3;
1752 	detach_mnt(new_nd.path.mnt, &parent_path);
1753 	detach_mnt(user_nd.path.mnt, &root_parent);
1754 	/* mount old root on put_old */
1755 	attach_mnt(user_nd.path.mnt, &old_nd.path);
1756 	/* mount new_root on / */
1757 	attach_mnt(new_nd.path.mnt, &root_parent);
1758 	touch_mnt_namespace(current->nsproxy->mnt_ns);
1759 	spin_unlock(&vfsmount_lock);
1760 	chroot_fs_refs(&user_nd.path, &new_nd.path);
1761 	security_sb_post_pivotroot(&user_nd, &new_nd);
1762 	error = 0;
1763 	path_put(&root_parent);
1764 	path_put(&parent_path);
1765 out2:
1766 	mutex_unlock(&old_nd.path.dentry->d_inode->i_mutex);
1767 	up_write(&namespace_sem);
1768 	path_put(&user_nd.path);
1769 	path_put(&old_nd.path);
1770 out1:
1771 	path_put(&new_nd.path);
1772 out0:
1773 	unlock_kernel();
1774 	return error;
1775 out3:
1776 	spin_unlock(&vfsmount_lock);
1777 	goto out2;
1778 }
1779 
1780 static void __init init_mount_tree(void)
1781 {
1782 	struct vfsmount *mnt;
1783 	struct mnt_namespace *ns;
1784 	struct path root;
1785 
1786 	mnt = do_kern_mount("rootfs", 0, "rootfs", NULL);
1787 	if (IS_ERR(mnt))
1788 		panic("Can't create rootfs");
1789 	ns = kmalloc(sizeof(*ns), GFP_KERNEL);
1790 	if (!ns)
1791 		panic("Can't allocate initial namespace");
1792 	atomic_set(&ns->count, 1);
1793 	INIT_LIST_HEAD(&ns->list);
1794 	init_waitqueue_head(&ns->poll);
1795 	ns->event = 0;
1796 	list_add(&mnt->mnt_list, &ns->list);
1797 	ns->root = mnt;
1798 	mnt->mnt_ns = ns;
1799 
1800 	init_task.nsproxy->mnt_ns = ns;
1801 	get_mnt_ns(ns);
1802 
1803 	root.mnt = ns->root;
1804 	root.dentry = ns->root->mnt_root;
1805 
1806 	set_fs_pwd(current->fs, &root);
1807 	set_fs_root(current->fs, &root);
1808 }
1809 
1810 void __init mnt_init(void)
1811 {
1812 	unsigned u;
1813 	int err;
1814 
1815 	init_rwsem(&namespace_sem);
1816 
1817 	mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct vfsmount),
1818 			0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
1819 
1820 	mount_hashtable = (struct list_head *)__get_free_page(GFP_ATOMIC);
1821 
1822 	if (!mount_hashtable)
1823 		panic("Failed to allocate mount hash table\n");
1824 
1825 	printk("Mount-cache hash table entries: %lu\n", HASH_SIZE);
1826 
1827 	for (u = 0; u < HASH_SIZE; u++)
1828 		INIT_LIST_HEAD(&mount_hashtable[u]);
1829 
1830 	err = sysfs_init();
1831 	if (err)
1832 		printk(KERN_WARNING "%s: sysfs_init error: %d\n",
1833 			__FUNCTION__, err);
1834 	fs_kobj = kobject_create_and_add("fs", NULL);
1835 	if (!fs_kobj)
1836 		printk(KERN_WARNING "%s: kobj create error\n", __FUNCTION__);
1837 	init_rootfs();
1838 	init_mount_tree();
1839 }
1840 
1841 void __put_mnt_ns(struct mnt_namespace *ns)
1842 {
1843 	struct vfsmount *root = ns->root;
1844 	LIST_HEAD(umount_list);
1845 	ns->root = NULL;
1846 	spin_unlock(&vfsmount_lock);
1847 	down_write(&namespace_sem);
1848 	spin_lock(&vfsmount_lock);
1849 	umount_tree(root, 0, &umount_list);
1850 	spin_unlock(&vfsmount_lock);
1851 	up_write(&namespace_sem);
1852 	release_mounts(&umount_list);
1853 	kfree(ns);
1854 }
1855