xref: /openbmc/linux/fs/namespace.c (revision f2748c6d)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/fs/namespace.c
4  *
5  * (C) Copyright Al Viro 2000, 2001
6  *
7  * Based on code from fs/super.c, copyright Linus Torvalds and others.
8  * Heavily rewritten.
9  */
10 
11 #include <linux/syscalls.h>
12 #include <linux/export.h>
13 #include <linux/capability.h>
14 #include <linux/mnt_namespace.h>
15 #include <linux/user_namespace.h>
16 #include <linux/namei.h>
17 #include <linux/security.h>
18 #include <linux/cred.h>
19 #include <linux/idr.h>
20 #include <linux/init.h>		/* init_rootfs */
21 #include <linux/fs_struct.h>	/* get_fs_root et.al. */
22 #include <linux/fsnotify.h>	/* fsnotify_vfsmount_delete */
23 #include <linux/file.h>
24 #include <linux/uaccess.h>
25 #include <linux/proc_ns.h>
26 #include <linux/magic.h>
27 #include <linux/memblock.h>
28 #include <linux/proc_fs.h>
29 #include <linux/task_work.h>
30 #include <linux/sched/task.h>
31 #include <uapi/linux/mount.h>
32 #include <linux/fs_context.h>
33 #include <linux/shmem_fs.h>
34 #include <linux/mnt_idmapping.h>
35 
36 #include "pnode.h"
37 #include "internal.h"
38 
39 /* Maximum number of mounts in a mount namespace */
40 static unsigned int sysctl_mount_max __read_mostly = 100000;
41 
42 static unsigned int m_hash_mask __read_mostly;
43 static unsigned int m_hash_shift __read_mostly;
44 static unsigned int mp_hash_mask __read_mostly;
45 static unsigned int mp_hash_shift __read_mostly;
46 
47 static __initdata unsigned long mhash_entries;
48 static int __init set_mhash_entries(char *str)
49 {
50 	if (!str)
51 		return 0;
52 	mhash_entries = simple_strtoul(str, &str, 0);
53 	return 1;
54 }
55 __setup("mhash_entries=", set_mhash_entries);
56 
57 static __initdata unsigned long mphash_entries;
58 static int __init set_mphash_entries(char *str)
59 {
60 	if (!str)
61 		return 0;
62 	mphash_entries = simple_strtoul(str, &str, 0);
63 	return 1;
64 }
65 __setup("mphash_entries=", set_mphash_entries);
66 
67 static u64 event;
68 static DEFINE_IDA(mnt_id_ida);
69 static DEFINE_IDA(mnt_group_ida);
70 
71 static struct hlist_head *mount_hashtable __read_mostly;
72 static struct hlist_head *mountpoint_hashtable __read_mostly;
73 static struct kmem_cache *mnt_cache __read_mostly;
74 static DECLARE_RWSEM(namespace_sem);
75 static HLIST_HEAD(unmounted);	/* protected by namespace_sem */
76 static LIST_HEAD(ex_mountpoints); /* protected by namespace_sem */
77 
78 struct mount_kattr {
79 	unsigned int attr_set;
80 	unsigned int attr_clr;
81 	unsigned int propagation;
82 	unsigned int lookup_flags;
83 	bool recurse;
84 	struct user_namespace *mnt_userns;
85 	struct mnt_idmap *mnt_idmap;
86 };
87 
88 /* /sys/fs */
89 struct kobject *fs_kobj;
90 EXPORT_SYMBOL_GPL(fs_kobj);
91 
92 /*
93  * vfsmount lock may be taken for read to prevent changes to the
94  * vfsmount hash, ie. during mountpoint lookups or walking back
95  * up the tree.
96  *
97  * It should be taken for write in all cases where the vfsmount
98  * tree or hash is modified or when a vfsmount structure is modified.
99  */
100 __cacheline_aligned_in_smp DEFINE_SEQLOCK(mount_lock);
101 
102 static inline void lock_mount_hash(void)
103 {
104 	write_seqlock(&mount_lock);
105 }
106 
107 static inline void unlock_mount_hash(void)
108 {
109 	write_sequnlock(&mount_lock);
110 }
111 
112 static inline struct hlist_head *m_hash(struct vfsmount *mnt, struct dentry *dentry)
113 {
114 	unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
115 	tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
116 	tmp = tmp + (tmp >> m_hash_shift);
117 	return &mount_hashtable[tmp & m_hash_mask];
118 }
119 
120 static inline struct hlist_head *mp_hash(struct dentry *dentry)
121 {
122 	unsigned long tmp = ((unsigned long)dentry / L1_CACHE_BYTES);
123 	tmp = tmp + (tmp >> mp_hash_shift);
124 	return &mountpoint_hashtable[tmp & mp_hash_mask];
125 }
126 
127 static int mnt_alloc_id(struct mount *mnt)
128 {
129 	int res = ida_alloc(&mnt_id_ida, GFP_KERNEL);
130 
131 	if (res < 0)
132 		return res;
133 	mnt->mnt_id = res;
134 	return 0;
135 }
136 
137 static void mnt_free_id(struct mount *mnt)
138 {
139 	ida_free(&mnt_id_ida, mnt->mnt_id);
140 }
141 
142 /*
143  * Allocate a new peer group ID
144  */
145 static int mnt_alloc_group_id(struct mount *mnt)
146 {
147 	int res = ida_alloc_min(&mnt_group_ida, 1, GFP_KERNEL);
148 
149 	if (res < 0)
150 		return res;
151 	mnt->mnt_group_id = res;
152 	return 0;
153 }
154 
155 /*
156  * Release a peer group ID
157  */
158 void mnt_release_group_id(struct mount *mnt)
159 {
160 	ida_free(&mnt_group_ida, mnt->mnt_group_id);
161 	mnt->mnt_group_id = 0;
162 }
163 
164 /*
165  * vfsmount lock must be held for read
166  */
167 static inline void mnt_add_count(struct mount *mnt, int n)
168 {
169 #ifdef CONFIG_SMP
170 	this_cpu_add(mnt->mnt_pcp->mnt_count, n);
171 #else
172 	preempt_disable();
173 	mnt->mnt_count += n;
174 	preempt_enable();
175 #endif
176 }
177 
178 /*
179  * vfsmount lock must be held for write
180  */
181 int mnt_get_count(struct mount *mnt)
182 {
183 #ifdef CONFIG_SMP
184 	int count = 0;
185 	int cpu;
186 
187 	for_each_possible_cpu(cpu) {
188 		count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
189 	}
190 
191 	return count;
192 #else
193 	return mnt->mnt_count;
194 #endif
195 }
196 
197 static struct mount *alloc_vfsmnt(const char *name)
198 {
199 	struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
200 	if (mnt) {
201 		int err;
202 
203 		err = mnt_alloc_id(mnt);
204 		if (err)
205 			goto out_free_cache;
206 
207 		if (name) {
208 			mnt->mnt_devname = kstrdup_const(name,
209 							 GFP_KERNEL_ACCOUNT);
210 			if (!mnt->mnt_devname)
211 				goto out_free_id;
212 		}
213 
214 #ifdef CONFIG_SMP
215 		mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
216 		if (!mnt->mnt_pcp)
217 			goto out_free_devname;
218 
219 		this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
220 #else
221 		mnt->mnt_count = 1;
222 		mnt->mnt_writers = 0;
223 #endif
224 
225 		INIT_HLIST_NODE(&mnt->mnt_hash);
226 		INIT_LIST_HEAD(&mnt->mnt_child);
227 		INIT_LIST_HEAD(&mnt->mnt_mounts);
228 		INIT_LIST_HEAD(&mnt->mnt_list);
229 		INIT_LIST_HEAD(&mnt->mnt_expire);
230 		INIT_LIST_HEAD(&mnt->mnt_share);
231 		INIT_LIST_HEAD(&mnt->mnt_slave_list);
232 		INIT_LIST_HEAD(&mnt->mnt_slave);
233 		INIT_HLIST_NODE(&mnt->mnt_mp_list);
234 		INIT_LIST_HEAD(&mnt->mnt_umounting);
235 		INIT_HLIST_HEAD(&mnt->mnt_stuck_children);
236 		mnt->mnt.mnt_idmap = &nop_mnt_idmap;
237 	}
238 	return mnt;
239 
240 #ifdef CONFIG_SMP
241 out_free_devname:
242 	kfree_const(mnt->mnt_devname);
243 #endif
244 out_free_id:
245 	mnt_free_id(mnt);
246 out_free_cache:
247 	kmem_cache_free(mnt_cache, mnt);
248 	return NULL;
249 }
250 
251 /*
252  * Most r/o checks on a fs are for operations that take
253  * discrete amounts of time, like a write() or unlink().
254  * We must keep track of when those operations start
255  * (for permission checks) and when they end, so that
256  * we can determine when writes are able to occur to
257  * a filesystem.
258  */
259 /*
260  * __mnt_is_readonly: check whether a mount is read-only
261  * @mnt: the mount to check for its write status
262  *
263  * This shouldn't be used directly ouside of the VFS.
264  * It does not guarantee that the filesystem will stay
265  * r/w, just that it is right *now*.  This can not and
266  * should not be used in place of IS_RDONLY(inode).
267  * mnt_want/drop_write() will _keep_ the filesystem
268  * r/w.
269  */
270 bool __mnt_is_readonly(struct vfsmount *mnt)
271 {
272 	return (mnt->mnt_flags & MNT_READONLY) || sb_rdonly(mnt->mnt_sb);
273 }
274 EXPORT_SYMBOL_GPL(__mnt_is_readonly);
275 
276 static inline void mnt_inc_writers(struct mount *mnt)
277 {
278 #ifdef CONFIG_SMP
279 	this_cpu_inc(mnt->mnt_pcp->mnt_writers);
280 #else
281 	mnt->mnt_writers++;
282 #endif
283 }
284 
285 static inline void mnt_dec_writers(struct mount *mnt)
286 {
287 #ifdef CONFIG_SMP
288 	this_cpu_dec(mnt->mnt_pcp->mnt_writers);
289 #else
290 	mnt->mnt_writers--;
291 #endif
292 }
293 
294 static unsigned int mnt_get_writers(struct mount *mnt)
295 {
296 #ifdef CONFIG_SMP
297 	unsigned int count = 0;
298 	int cpu;
299 
300 	for_each_possible_cpu(cpu) {
301 		count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
302 	}
303 
304 	return count;
305 #else
306 	return mnt->mnt_writers;
307 #endif
308 }
309 
310 static int mnt_is_readonly(struct vfsmount *mnt)
311 {
312 	if (mnt->mnt_sb->s_readonly_remount)
313 		return 1;
314 	/* Order wrt setting s_flags/s_readonly_remount in do_remount() */
315 	smp_rmb();
316 	return __mnt_is_readonly(mnt);
317 }
318 
319 /*
320  * Most r/o & frozen checks on a fs are for operations that take discrete
321  * amounts of time, like a write() or unlink().  We must keep track of when
322  * those operations start (for permission checks) and when they end, so that we
323  * can determine when writes are able to occur to a filesystem.
324  */
325 /**
326  * __mnt_want_write - get write access to a mount without freeze protection
327  * @m: the mount on which to take a write
328  *
329  * This tells the low-level filesystem that a write is about to be performed to
330  * it, and makes sure that writes are allowed (mnt it read-write) before
331  * returning success. This operation does not protect against filesystem being
332  * frozen. When the write operation is finished, __mnt_drop_write() must be
333  * called. This is effectively a refcount.
334  */
335 int __mnt_want_write(struct vfsmount *m)
336 {
337 	struct mount *mnt = real_mount(m);
338 	int ret = 0;
339 
340 	preempt_disable();
341 	mnt_inc_writers(mnt);
342 	/*
343 	 * The store to mnt_inc_writers must be visible before we pass
344 	 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
345 	 * incremented count after it has set MNT_WRITE_HOLD.
346 	 */
347 	smp_mb();
348 	might_lock(&mount_lock.lock);
349 	while (READ_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD) {
350 		if (!IS_ENABLED(CONFIG_PREEMPT_RT)) {
351 			cpu_relax();
352 		} else {
353 			/*
354 			 * This prevents priority inversion, if the task
355 			 * setting MNT_WRITE_HOLD got preempted on a remote
356 			 * CPU, and it prevents life lock if the task setting
357 			 * MNT_WRITE_HOLD has a lower priority and is bound to
358 			 * the same CPU as the task that is spinning here.
359 			 */
360 			preempt_enable();
361 			lock_mount_hash();
362 			unlock_mount_hash();
363 			preempt_disable();
364 		}
365 	}
366 	/*
367 	 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
368 	 * be set to match its requirements. So we must not load that until
369 	 * MNT_WRITE_HOLD is cleared.
370 	 */
371 	smp_rmb();
372 	if (mnt_is_readonly(m)) {
373 		mnt_dec_writers(mnt);
374 		ret = -EROFS;
375 	}
376 	preempt_enable();
377 
378 	return ret;
379 }
380 
381 /**
382  * mnt_want_write - get write access to a mount
383  * @m: the mount on which to take a write
384  *
385  * This tells the low-level filesystem that a write is about to be performed to
386  * it, and makes sure that writes are allowed (mount is read-write, filesystem
387  * is not frozen) before returning success.  When the write operation is
388  * finished, mnt_drop_write() must be called.  This is effectively a refcount.
389  */
390 int mnt_want_write(struct vfsmount *m)
391 {
392 	int ret;
393 
394 	sb_start_write(m->mnt_sb);
395 	ret = __mnt_want_write(m);
396 	if (ret)
397 		sb_end_write(m->mnt_sb);
398 	return ret;
399 }
400 EXPORT_SYMBOL_GPL(mnt_want_write);
401 
402 /**
403  * __mnt_want_write_file - get write access to a file's mount
404  * @file: the file who's mount on which to take a write
405  *
406  * This is like __mnt_want_write, but if the file is already open for writing it
407  * skips incrementing mnt_writers (since the open file already has a reference)
408  * and instead only does the check for emergency r/o remounts.  This must be
409  * paired with __mnt_drop_write_file.
410  */
411 int __mnt_want_write_file(struct file *file)
412 {
413 	if (file->f_mode & FMODE_WRITER) {
414 		/*
415 		 * Superblock may have become readonly while there are still
416 		 * writable fd's, e.g. due to a fs error with errors=remount-ro
417 		 */
418 		if (__mnt_is_readonly(file->f_path.mnt))
419 			return -EROFS;
420 		return 0;
421 	}
422 	return __mnt_want_write(file->f_path.mnt);
423 }
424 
425 /**
426  * mnt_want_write_file - get write access to a file's mount
427  * @file: the file who's mount on which to take a write
428  *
429  * This is like mnt_want_write, but if the file is already open for writing it
430  * skips incrementing mnt_writers (since the open file already has a reference)
431  * and instead only does the freeze protection and the check for emergency r/o
432  * remounts.  This must be paired with mnt_drop_write_file.
433  */
434 int mnt_want_write_file(struct file *file)
435 {
436 	int ret;
437 
438 	sb_start_write(file_inode(file)->i_sb);
439 	ret = __mnt_want_write_file(file);
440 	if (ret)
441 		sb_end_write(file_inode(file)->i_sb);
442 	return ret;
443 }
444 EXPORT_SYMBOL_GPL(mnt_want_write_file);
445 
446 /**
447  * __mnt_drop_write - give up write access to a mount
448  * @mnt: the mount on which to give up write access
449  *
450  * Tells the low-level filesystem that we are done
451  * performing writes to it.  Must be matched with
452  * __mnt_want_write() call above.
453  */
454 void __mnt_drop_write(struct vfsmount *mnt)
455 {
456 	preempt_disable();
457 	mnt_dec_writers(real_mount(mnt));
458 	preempt_enable();
459 }
460 
461 /**
462  * mnt_drop_write - give up write access to a mount
463  * @mnt: the mount on which to give up write access
464  *
465  * Tells the low-level filesystem that we are done performing writes to it and
466  * also allows filesystem to be frozen again.  Must be matched with
467  * mnt_want_write() call above.
468  */
469 void mnt_drop_write(struct vfsmount *mnt)
470 {
471 	__mnt_drop_write(mnt);
472 	sb_end_write(mnt->mnt_sb);
473 }
474 EXPORT_SYMBOL_GPL(mnt_drop_write);
475 
476 void __mnt_drop_write_file(struct file *file)
477 {
478 	if (!(file->f_mode & FMODE_WRITER))
479 		__mnt_drop_write(file->f_path.mnt);
480 }
481 
482 void mnt_drop_write_file(struct file *file)
483 {
484 	__mnt_drop_write_file(file);
485 	sb_end_write(file_inode(file)->i_sb);
486 }
487 EXPORT_SYMBOL(mnt_drop_write_file);
488 
489 /**
490  * mnt_hold_writers - prevent write access to the given mount
491  * @mnt: mnt to prevent write access to
492  *
493  * Prevents write access to @mnt if there are no active writers for @mnt.
494  * This function needs to be called and return successfully before changing
495  * properties of @mnt that need to remain stable for callers with write access
496  * to @mnt.
497  *
498  * After this functions has been called successfully callers must pair it with
499  * a call to mnt_unhold_writers() in order to stop preventing write access to
500  * @mnt.
501  *
502  * Context: This function expects lock_mount_hash() to be held serializing
503  *          setting MNT_WRITE_HOLD.
504  * Return: On success 0 is returned.
505  *	   On error, -EBUSY is returned.
506  */
507 static inline int mnt_hold_writers(struct mount *mnt)
508 {
509 	mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
510 	/*
511 	 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
512 	 * should be visible before we do.
513 	 */
514 	smp_mb();
515 
516 	/*
517 	 * With writers on hold, if this value is zero, then there are
518 	 * definitely no active writers (although held writers may subsequently
519 	 * increment the count, they'll have to wait, and decrement it after
520 	 * seeing MNT_READONLY).
521 	 *
522 	 * It is OK to have counter incremented on one CPU and decremented on
523 	 * another: the sum will add up correctly. The danger would be when we
524 	 * sum up each counter, if we read a counter before it is incremented,
525 	 * but then read another CPU's count which it has been subsequently
526 	 * decremented from -- we would see more decrements than we should.
527 	 * MNT_WRITE_HOLD protects against this scenario, because
528 	 * mnt_want_write first increments count, then smp_mb, then spins on
529 	 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
530 	 * we're counting up here.
531 	 */
532 	if (mnt_get_writers(mnt) > 0)
533 		return -EBUSY;
534 
535 	return 0;
536 }
537 
538 /**
539  * mnt_unhold_writers - stop preventing write access to the given mount
540  * @mnt: mnt to stop preventing write access to
541  *
542  * Stop preventing write access to @mnt allowing callers to gain write access
543  * to @mnt again.
544  *
545  * This function can only be called after a successful call to
546  * mnt_hold_writers().
547  *
548  * Context: This function expects lock_mount_hash() to be held.
549  */
550 static inline void mnt_unhold_writers(struct mount *mnt)
551 {
552 	/*
553 	 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
554 	 * that become unheld will see MNT_READONLY.
555 	 */
556 	smp_wmb();
557 	mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
558 }
559 
560 static int mnt_make_readonly(struct mount *mnt)
561 {
562 	int ret;
563 
564 	ret = mnt_hold_writers(mnt);
565 	if (!ret)
566 		mnt->mnt.mnt_flags |= MNT_READONLY;
567 	mnt_unhold_writers(mnt);
568 	return ret;
569 }
570 
571 int sb_prepare_remount_readonly(struct super_block *sb)
572 {
573 	struct mount *mnt;
574 	int err = 0;
575 
576 	/* Racy optimization.  Recheck the counter under MNT_WRITE_HOLD */
577 	if (atomic_long_read(&sb->s_remove_count))
578 		return -EBUSY;
579 
580 	lock_mount_hash();
581 	list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
582 		if (!(mnt->mnt.mnt_flags & MNT_READONLY)) {
583 			err = mnt_hold_writers(mnt);
584 			if (err)
585 				break;
586 		}
587 	}
588 	if (!err && atomic_long_read(&sb->s_remove_count))
589 		err = -EBUSY;
590 
591 	if (!err) {
592 		sb->s_readonly_remount = 1;
593 		smp_wmb();
594 	}
595 	list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
596 		if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
597 			mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
598 	}
599 	unlock_mount_hash();
600 
601 	return err;
602 }
603 
604 static void free_vfsmnt(struct mount *mnt)
605 {
606 	mnt_idmap_put(mnt_idmap(&mnt->mnt));
607 	kfree_const(mnt->mnt_devname);
608 #ifdef CONFIG_SMP
609 	free_percpu(mnt->mnt_pcp);
610 #endif
611 	kmem_cache_free(mnt_cache, mnt);
612 }
613 
614 static void delayed_free_vfsmnt(struct rcu_head *head)
615 {
616 	free_vfsmnt(container_of(head, struct mount, mnt_rcu));
617 }
618 
619 /* call under rcu_read_lock */
620 int __legitimize_mnt(struct vfsmount *bastard, unsigned seq)
621 {
622 	struct mount *mnt;
623 	if (read_seqretry(&mount_lock, seq))
624 		return 1;
625 	if (bastard == NULL)
626 		return 0;
627 	mnt = real_mount(bastard);
628 	mnt_add_count(mnt, 1);
629 	smp_mb();			// see mntput_no_expire()
630 	if (likely(!read_seqretry(&mount_lock, seq)))
631 		return 0;
632 	if (bastard->mnt_flags & MNT_SYNC_UMOUNT) {
633 		mnt_add_count(mnt, -1);
634 		return 1;
635 	}
636 	lock_mount_hash();
637 	if (unlikely(bastard->mnt_flags & MNT_DOOMED)) {
638 		mnt_add_count(mnt, -1);
639 		unlock_mount_hash();
640 		return 1;
641 	}
642 	unlock_mount_hash();
643 	/* caller will mntput() */
644 	return -1;
645 }
646 
647 /* call under rcu_read_lock */
648 static bool legitimize_mnt(struct vfsmount *bastard, unsigned seq)
649 {
650 	int res = __legitimize_mnt(bastard, seq);
651 	if (likely(!res))
652 		return true;
653 	if (unlikely(res < 0)) {
654 		rcu_read_unlock();
655 		mntput(bastard);
656 		rcu_read_lock();
657 	}
658 	return false;
659 }
660 
661 /*
662  * find the first mount at @dentry on vfsmount @mnt.
663  * call under rcu_read_lock()
664  */
665 struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry)
666 {
667 	struct hlist_head *head = m_hash(mnt, dentry);
668 	struct mount *p;
669 
670 	hlist_for_each_entry_rcu(p, head, mnt_hash)
671 		if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry)
672 			return p;
673 	return NULL;
674 }
675 
676 /*
677  * lookup_mnt - Return the first child mount mounted at path
678  *
679  * "First" means first mounted chronologically.  If you create the
680  * following mounts:
681  *
682  * mount /dev/sda1 /mnt
683  * mount /dev/sda2 /mnt
684  * mount /dev/sda3 /mnt
685  *
686  * Then lookup_mnt() on the base /mnt dentry in the root mount will
687  * return successively the root dentry and vfsmount of /dev/sda1, then
688  * /dev/sda2, then /dev/sda3, then NULL.
689  *
690  * lookup_mnt takes a reference to the found vfsmount.
691  */
692 struct vfsmount *lookup_mnt(const struct path *path)
693 {
694 	struct mount *child_mnt;
695 	struct vfsmount *m;
696 	unsigned seq;
697 
698 	rcu_read_lock();
699 	do {
700 		seq = read_seqbegin(&mount_lock);
701 		child_mnt = __lookup_mnt(path->mnt, path->dentry);
702 		m = child_mnt ? &child_mnt->mnt : NULL;
703 	} while (!legitimize_mnt(m, seq));
704 	rcu_read_unlock();
705 	return m;
706 }
707 
708 static inline void lock_ns_list(struct mnt_namespace *ns)
709 {
710 	spin_lock(&ns->ns_lock);
711 }
712 
713 static inline void unlock_ns_list(struct mnt_namespace *ns)
714 {
715 	spin_unlock(&ns->ns_lock);
716 }
717 
718 static inline bool mnt_is_cursor(struct mount *mnt)
719 {
720 	return mnt->mnt.mnt_flags & MNT_CURSOR;
721 }
722 
723 /*
724  * __is_local_mountpoint - Test to see if dentry is a mountpoint in the
725  *                         current mount namespace.
726  *
727  * The common case is dentries are not mountpoints at all and that
728  * test is handled inline.  For the slow case when we are actually
729  * dealing with a mountpoint of some kind, walk through all of the
730  * mounts in the current mount namespace and test to see if the dentry
731  * is a mountpoint.
732  *
733  * The mount_hashtable is not usable in the context because we
734  * need to identify all mounts that may be in the current mount
735  * namespace not just a mount that happens to have some specified
736  * parent mount.
737  */
738 bool __is_local_mountpoint(struct dentry *dentry)
739 {
740 	struct mnt_namespace *ns = current->nsproxy->mnt_ns;
741 	struct mount *mnt;
742 	bool is_covered = false;
743 
744 	down_read(&namespace_sem);
745 	lock_ns_list(ns);
746 	list_for_each_entry(mnt, &ns->list, mnt_list) {
747 		if (mnt_is_cursor(mnt))
748 			continue;
749 		is_covered = (mnt->mnt_mountpoint == dentry);
750 		if (is_covered)
751 			break;
752 	}
753 	unlock_ns_list(ns);
754 	up_read(&namespace_sem);
755 
756 	return is_covered;
757 }
758 
759 static struct mountpoint *lookup_mountpoint(struct dentry *dentry)
760 {
761 	struct hlist_head *chain = mp_hash(dentry);
762 	struct mountpoint *mp;
763 
764 	hlist_for_each_entry(mp, chain, m_hash) {
765 		if (mp->m_dentry == dentry) {
766 			mp->m_count++;
767 			return mp;
768 		}
769 	}
770 	return NULL;
771 }
772 
773 static struct mountpoint *get_mountpoint(struct dentry *dentry)
774 {
775 	struct mountpoint *mp, *new = NULL;
776 	int ret;
777 
778 	if (d_mountpoint(dentry)) {
779 		/* might be worth a WARN_ON() */
780 		if (d_unlinked(dentry))
781 			return ERR_PTR(-ENOENT);
782 mountpoint:
783 		read_seqlock_excl(&mount_lock);
784 		mp = lookup_mountpoint(dentry);
785 		read_sequnlock_excl(&mount_lock);
786 		if (mp)
787 			goto done;
788 	}
789 
790 	if (!new)
791 		new = kmalloc(sizeof(struct mountpoint), GFP_KERNEL);
792 	if (!new)
793 		return ERR_PTR(-ENOMEM);
794 
795 
796 	/* Exactly one processes may set d_mounted */
797 	ret = d_set_mounted(dentry);
798 
799 	/* Someone else set d_mounted? */
800 	if (ret == -EBUSY)
801 		goto mountpoint;
802 
803 	/* The dentry is not available as a mountpoint? */
804 	mp = ERR_PTR(ret);
805 	if (ret)
806 		goto done;
807 
808 	/* Add the new mountpoint to the hash table */
809 	read_seqlock_excl(&mount_lock);
810 	new->m_dentry = dget(dentry);
811 	new->m_count = 1;
812 	hlist_add_head(&new->m_hash, mp_hash(dentry));
813 	INIT_HLIST_HEAD(&new->m_list);
814 	read_sequnlock_excl(&mount_lock);
815 
816 	mp = new;
817 	new = NULL;
818 done:
819 	kfree(new);
820 	return mp;
821 }
822 
823 /*
824  * vfsmount lock must be held.  Additionally, the caller is responsible
825  * for serializing calls for given disposal list.
826  */
827 static void __put_mountpoint(struct mountpoint *mp, struct list_head *list)
828 {
829 	if (!--mp->m_count) {
830 		struct dentry *dentry = mp->m_dentry;
831 		BUG_ON(!hlist_empty(&mp->m_list));
832 		spin_lock(&dentry->d_lock);
833 		dentry->d_flags &= ~DCACHE_MOUNTED;
834 		spin_unlock(&dentry->d_lock);
835 		dput_to_list(dentry, list);
836 		hlist_del(&mp->m_hash);
837 		kfree(mp);
838 	}
839 }
840 
841 /* called with namespace_lock and vfsmount lock */
842 static void put_mountpoint(struct mountpoint *mp)
843 {
844 	__put_mountpoint(mp, &ex_mountpoints);
845 }
846 
847 static inline int check_mnt(struct mount *mnt)
848 {
849 	return mnt->mnt_ns == current->nsproxy->mnt_ns;
850 }
851 
852 /*
853  * vfsmount lock must be held for write
854  */
855 static void touch_mnt_namespace(struct mnt_namespace *ns)
856 {
857 	if (ns) {
858 		ns->event = ++event;
859 		wake_up_interruptible(&ns->poll);
860 	}
861 }
862 
863 /*
864  * vfsmount lock must be held for write
865  */
866 static void __touch_mnt_namespace(struct mnt_namespace *ns)
867 {
868 	if (ns && ns->event != event) {
869 		ns->event = event;
870 		wake_up_interruptible(&ns->poll);
871 	}
872 }
873 
874 /*
875  * vfsmount lock must be held for write
876  */
877 static struct mountpoint *unhash_mnt(struct mount *mnt)
878 {
879 	struct mountpoint *mp;
880 	mnt->mnt_parent = mnt;
881 	mnt->mnt_mountpoint = mnt->mnt.mnt_root;
882 	list_del_init(&mnt->mnt_child);
883 	hlist_del_init_rcu(&mnt->mnt_hash);
884 	hlist_del_init(&mnt->mnt_mp_list);
885 	mp = mnt->mnt_mp;
886 	mnt->mnt_mp = NULL;
887 	return mp;
888 }
889 
890 /*
891  * vfsmount lock must be held for write
892  */
893 static void umount_mnt(struct mount *mnt)
894 {
895 	put_mountpoint(unhash_mnt(mnt));
896 }
897 
898 /*
899  * vfsmount lock must be held for write
900  */
901 void mnt_set_mountpoint(struct mount *mnt,
902 			struct mountpoint *mp,
903 			struct mount *child_mnt)
904 {
905 	mp->m_count++;
906 	mnt_add_count(mnt, 1);	/* essentially, that's mntget */
907 	child_mnt->mnt_mountpoint = mp->m_dentry;
908 	child_mnt->mnt_parent = mnt;
909 	child_mnt->mnt_mp = mp;
910 	hlist_add_head(&child_mnt->mnt_mp_list, &mp->m_list);
911 }
912 
913 static void __attach_mnt(struct mount *mnt, struct mount *parent)
914 {
915 	hlist_add_head_rcu(&mnt->mnt_hash,
916 			   m_hash(&parent->mnt, mnt->mnt_mountpoint));
917 	list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
918 }
919 
920 /*
921  * vfsmount lock must be held for write
922  */
923 static void attach_mnt(struct mount *mnt,
924 			struct mount *parent,
925 			struct mountpoint *mp)
926 {
927 	mnt_set_mountpoint(parent, mp, mnt);
928 	__attach_mnt(mnt, parent);
929 }
930 
931 void mnt_change_mountpoint(struct mount *parent, struct mountpoint *mp, struct mount *mnt)
932 {
933 	struct mountpoint *old_mp = mnt->mnt_mp;
934 	struct mount *old_parent = mnt->mnt_parent;
935 
936 	list_del_init(&mnt->mnt_child);
937 	hlist_del_init(&mnt->mnt_mp_list);
938 	hlist_del_init_rcu(&mnt->mnt_hash);
939 
940 	attach_mnt(mnt, parent, mp);
941 
942 	put_mountpoint(old_mp);
943 	mnt_add_count(old_parent, -1);
944 }
945 
946 /*
947  * vfsmount lock must be held for write
948  */
949 static void commit_tree(struct mount *mnt)
950 {
951 	struct mount *parent = mnt->mnt_parent;
952 	struct mount *m;
953 	LIST_HEAD(head);
954 	struct mnt_namespace *n = parent->mnt_ns;
955 
956 	BUG_ON(parent == mnt);
957 
958 	list_add_tail(&head, &mnt->mnt_list);
959 	list_for_each_entry(m, &head, mnt_list)
960 		m->mnt_ns = n;
961 
962 	list_splice(&head, n->list.prev);
963 
964 	n->mounts += n->pending_mounts;
965 	n->pending_mounts = 0;
966 
967 	__attach_mnt(mnt, parent);
968 	touch_mnt_namespace(n);
969 }
970 
971 static struct mount *next_mnt(struct mount *p, struct mount *root)
972 {
973 	struct list_head *next = p->mnt_mounts.next;
974 	if (next == &p->mnt_mounts) {
975 		while (1) {
976 			if (p == root)
977 				return NULL;
978 			next = p->mnt_child.next;
979 			if (next != &p->mnt_parent->mnt_mounts)
980 				break;
981 			p = p->mnt_parent;
982 		}
983 	}
984 	return list_entry(next, struct mount, mnt_child);
985 }
986 
987 static struct mount *skip_mnt_tree(struct mount *p)
988 {
989 	struct list_head *prev = p->mnt_mounts.prev;
990 	while (prev != &p->mnt_mounts) {
991 		p = list_entry(prev, struct mount, mnt_child);
992 		prev = p->mnt_mounts.prev;
993 	}
994 	return p;
995 }
996 
997 /**
998  * vfs_create_mount - Create a mount for a configured superblock
999  * @fc: The configuration context with the superblock attached
1000  *
1001  * Create a mount to an already configured superblock.  If necessary, the
1002  * caller should invoke vfs_get_tree() before calling this.
1003  *
1004  * Note that this does not attach the mount to anything.
1005  */
1006 struct vfsmount *vfs_create_mount(struct fs_context *fc)
1007 {
1008 	struct mount *mnt;
1009 
1010 	if (!fc->root)
1011 		return ERR_PTR(-EINVAL);
1012 
1013 	mnt = alloc_vfsmnt(fc->source ?: "none");
1014 	if (!mnt)
1015 		return ERR_PTR(-ENOMEM);
1016 
1017 	if (fc->sb_flags & SB_KERNMOUNT)
1018 		mnt->mnt.mnt_flags = MNT_INTERNAL;
1019 
1020 	atomic_inc(&fc->root->d_sb->s_active);
1021 	mnt->mnt.mnt_sb		= fc->root->d_sb;
1022 	mnt->mnt.mnt_root	= dget(fc->root);
1023 	mnt->mnt_mountpoint	= mnt->mnt.mnt_root;
1024 	mnt->mnt_parent		= mnt;
1025 
1026 	lock_mount_hash();
1027 	list_add_tail(&mnt->mnt_instance, &mnt->mnt.mnt_sb->s_mounts);
1028 	unlock_mount_hash();
1029 	return &mnt->mnt;
1030 }
1031 EXPORT_SYMBOL(vfs_create_mount);
1032 
1033 struct vfsmount *fc_mount(struct fs_context *fc)
1034 {
1035 	int err = vfs_get_tree(fc);
1036 	if (!err) {
1037 		up_write(&fc->root->d_sb->s_umount);
1038 		return vfs_create_mount(fc);
1039 	}
1040 	return ERR_PTR(err);
1041 }
1042 EXPORT_SYMBOL(fc_mount);
1043 
1044 struct vfsmount *vfs_kern_mount(struct file_system_type *type,
1045 				int flags, const char *name,
1046 				void *data)
1047 {
1048 	struct fs_context *fc;
1049 	struct vfsmount *mnt;
1050 	int ret = 0;
1051 
1052 	if (!type)
1053 		return ERR_PTR(-EINVAL);
1054 
1055 	fc = fs_context_for_mount(type, flags);
1056 	if (IS_ERR(fc))
1057 		return ERR_CAST(fc);
1058 
1059 	if (name)
1060 		ret = vfs_parse_fs_string(fc, "source",
1061 					  name, strlen(name));
1062 	if (!ret)
1063 		ret = parse_monolithic_mount_data(fc, data);
1064 	if (!ret)
1065 		mnt = fc_mount(fc);
1066 	else
1067 		mnt = ERR_PTR(ret);
1068 
1069 	put_fs_context(fc);
1070 	return mnt;
1071 }
1072 EXPORT_SYMBOL_GPL(vfs_kern_mount);
1073 
1074 struct vfsmount *
1075 vfs_submount(const struct dentry *mountpoint, struct file_system_type *type,
1076 	     const char *name, void *data)
1077 {
1078 	/* Until it is worked out how to pass the user namespace
1079 	 * through from the parent mount to the submount don't support
1080 	 * unprivileged mounts with submounts.
1081 	 */
1082 	if (mountpoint->d_sb->s_user_ns != &init_user_ns)
1083 		return ERR_PTR(-EPERM);
1084 
1085 	return vfs_kern_mount(type, SB_SUBMOUNT, name, data);
1086 }
1087 EXPORT_SYMBOL_GPL(vfs_submount);
1088 
1089 static struct mount *clone_mnt(struct mount *old, struct dentry *root,
1090 					int flag)
1091 {
1092 	struct super_block *sb = old->mnt.mnt_sb;
1093 	struct mount *mnt;
1094 	int err;
1095 
1096 	mnt = alloc_vfsmnt(old->mnt_devname);
1097 	if (!mnt)
1098 		return ERR_PTR(-ENOMEM);
1099 
1100 	if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE))
1101 		mnt->mnt_group_id = 0; /* not a peer of original */
1102 	else
1103 		mnt->mnt_group_id = old->mnt_group_id;
1104 
1105 	if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
1106 		err = mnt_alloc_group_id(mnt);
1107 		if (err)
1108 			goto out_free;
1109 	}
1110 
1111 	mnt->mnt.mnt_flags = old->mnt.mnt_flags;
1112 	mnt->mnt.mnt_flags &= ~(MNT_WRITE_HOLD|MNT_MARKED|MNT_INTERNAL);
1113 
1114 	atomic_inc(&sb->s_active);
1115 	mnt->mnt.mnt_idmap = mnt_idmap_get(mnt_idmap(&old->mnt));
1116 
1117 	mnt->mnt.mnt_sb = sb;
1118 	mnt->mnt.mnt_root = dget(root);
1119 	mnt->mnt_mountpoint = mnt->mnt.mnt_root;
1120 	mnt->mnt_parent = mnt;
1121 	lock_mount_hash();
1122 	list_add_tail(&mnt->mnt_instance, &sb->s_mounts);
1123 	unlock_mount_hash();
1124 
1125 	if ((flag & CL_SLAVE) ||
1126 	    ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) {
1127 		list_add(&mnt->mnt_slave, &old->mnt_slave_list);
1128 		mnt->mnt_master = old;
1129 		CLEAR_MNT_SHARED(mnt);
1130 	} else if (!(flag & CL_PRIVATE)) {
1131 		if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
1132 			list_add(&mnt->mnt_share, &old->mnt_share);
1133 		if (IS_MNT_SLAVE(old))
1134 			list_add(&mnt->mnt_slave, &old->mnt_slave);
1135 		mnt->mnt_master = old->mnt_master;
1136 	} else {
1137 		CLEAR_MNT_SHARED(mnt);
1138 	}
1139 	if (flag & CL_MAKE_SHARED)
1140 		set_mnt_shared(mnt);
1141 
1142 	/* stick the duplicate mount on the same expiry list
1143 	 * as the original if that was on one */
1144 	if (flag & CL_EXPIRE) {
1145 		if (!list_empty(&old->mnt_expire))
1146 			list_add(&mnt->mnt_expire, &old->mnt_expire);
1147 	}
1148 
1149 	return mnt;
1150 
1151  out_free:
1152 	mnt_free_id(mnt);
1153 	free_vfsmnt(mnt);
1154 	return ERR_PTR(err);
1155 }
1156 
1157 static void cleanup_mnt(struct mount *mnt)
1158 {
1159 	struct hlist_node *p;
1160 	struct mount *m;
1161 	/*
1162 	 * The warning here probably indicates that somebody messed
1163 	 * up a mnt_want/drop_write() pair.  If this happens, the
1164 	 * filesystem was probably unable to make r/w->r/o transitions.
1165 	 * The locking used to deal with mnt_count decrement provides barriers,
1166 	 * so mnt_get_writers() below is safe.
1167 	 */
1168 	WARN_ON(mnt_get_writers(mnt));
1169 	if (unlikely(mnt->mnt_pins.first))
1170 		mnt_pin_kill(mnt);
1171 	hlist_for_each_entry_safe(m, p, &mnt->mnt_stuck_children, mnt_umount) {
1172 		hlist_del(&m->mnt_umount);
1173 		mntput(&m->mnt);
1174 	}
1175 	fsnotify_vfsmount_delete(&mnt->mnt);
1176 	dput(mnt->mnt.mnt_root);
1177 	deactivate_super(mnt->mnt.mnt_sb);
1178 	mnt_free_id(mnt);
1179 	call_rcu(&mnt->mnt_rcu, delayed_free_vfsmnt);
1180 }
1181 
1182 static void __cleanup_mnt(struct rcu_head *head)
1183 {
1184 	cleanup_mnt(container_of(head, struct mount, mnt_rcu));
1185 }
1186 
1187 static LLIST_HEAD(delayed_mntput_list);
1188 static void delayed_mntput(struct work_struct *unused)
1189 {
1190 	struct llist_node *node = llist_del_all(&delayed_mntput_list);
1191 	struct mount *m, *t;
1192 
1193 	llist_for_each_entry_safe(m, t, node, mnt_llist)
1194 		cleanup_mnt(m);
1195 }
1196 static DECLARE_DELAYED_WORK(delayed_mntput_work, delayed_mntput);
1197 
1198 static void mntput_no_expire(struct mount *mnt)
1199 {
1200 	LIST_HEAD(list);
1201 	int count;
1202 
1203 	rcu_read_lock();
1204 	if (likely(READ_ONCE(mnt->mnt_ns))) {
1205 		/*
1206 		 * Since we don't do lock_mount_hash() here,
1207 		 * ->mnt_ns can change under us.  However, if it's
1208 		 * non-NULL, then there's a reference that won't
1209 		 * be dropped until after an RCU delay done after
1210 		 * turning ->mnt_ns NULL.  So if we observe it
1211 		 * non-NULL under rcu_read_lock(), the reference
1212 		 * we are dropping is not the final one.
1213 		 */
1214 		mnt_add_count(mnt, -1);
1215 		rcu_read_unlock();
1216 		return;
1217 	}
1218 	lock_mount_hash();
1219 	/*
1220 	 * make sure that if __legitimize_mnt() has not seen us grab
1221 	 * mount_lock, we'll see their refcount increment here.
1222 	 */
1223 	smp_mb();
1224 	mnt_add_count(mnt, -1);
1225 	count = mnt_get_count(mnt);
1226 	if (count != 0) {
1227 		WARN_ON(count < 0);
1228 		rcu_read_unlock();
1229 		unlock_mount_hash();
1230 		return;
1231 	}
1232 	if (unlikely(mnt->mnt.mnt_flags & MNT_DOOMED)) {
1233 		rcu_read_unlock();
1234 		unlock_mount_hash();
1235 		return;
1236 	}
1237 	mnt->mnt.mnt_flags |= MNT_DOOMED;
1238 	rcu_read_unlock();
1239 
1240 	list_del(&mnt->mnt_instance);
1241 
1242 	if (unlikely(!list_empty(&mnt->mnt_mounts))) {
1243 		struct mount *p, *tmp;
1244 		list_for_each_entry_safe(p, tmp, &mnt->mnt_mounts,  mnt_child) {
1245 			__put_mountpoint(unhash_mnt(p), &list);
1246 			hlist_add_head(&p->mnt_umount, &mnt->mnt_stuck_children);
1247 		}
1248 	}
1249 	unlock_mount_hash();
1250 	shrink_dentry_list(&list);
1251 
1252 	if (likely(!(mnt->mnt.mnt_flags & MNT_INTERNAL))) {
1253 		struct task_struct *task = current;
1254 		if (likely(!(task->flags & PF_KTHREAD))) {
1255 			init_task_work(&mnt->mnt_rcu, __cleanup_mnt);
1256 			if (!task_work_add(task, &mnt->mnt_rcu, TWA_RESUME))
1257 				return;
1258 		}
1259 		if (llist_add(&mnt->mnt_llist, &delayed_mntput_list))
1260 			schedule_delayed_work(&delayed_mntput_work, 1);
1261 		return;
1262 	}
1263 	cleanup_mnt(mnt);
1264 }
1265 
1266 void mntput(struct vfsmount *mnt)
1267 {
1268 	if (mnt) {
1269 		struct mount *m = real_mount(mnt);
1270 		/* avoid cacheline pingpong, hope gcc doesn't get "smart" */
1271 		if (unlikely(m->mnt_expiry_mark))
1272 			m->mnt_expiry_mark = 0;
1273 		mntput_no_expire(m);
1274 	}
1275 }
1276 EXPORT_SYMBOL(mntput);
1277 
1278 struct vfsmount *mntget(struct vfsmount *mnt)
1279 {
1280 	if (mnt)
1281 		mnt_add_count(real_mount(mnt), 1);
1282 	return mnt;
1283 }
1284 EXPORT_SYMBOL(mntget);
1285 
1286 /*
1287  * Make a mount point inaccessible to new lookups.
1288  * Because there may still be current users, the caller MUST WAIT
1289  * for an RCU grace period before destroying the mount point.
1290  */
1291 void mnt_make_shortterm(struct vfsmount *mnt)
1292 {
1293 	if (mnt)
1294 		real_mount(mnt)->mnt_ns = NULL;
1295 }
1296 
1297 /**
1298  * path_is_mountpoint() - Check if path is a mount in the current namespace.
1299  * @path: path to check
1300  *
1301  *  d_mountpoint() can only be used reliably to establish if a dentry is
1302  *  not mounted in any namespace and that common case is handled inline.
1303  *  d_mountpoint() isn't aware of the possibility there may be multiple
1304  *  mounts using a given dentry in a different namespace. This function
1305  *  checks if the passed in path is a mountpoint rather than the dentry
1306  *  alone.
1307  */
1308 bool path_is_mountpoint(const struct path *path)
1309 {
1310 	unsigned seq;
1311 	bool res;
1312 
1313 	if (!d_mountpoint(path->dentry))
1314 		return false;
1315 
1316 	rcu_read_lock();
1317 	do {
1318 		seq = read_seqbegin(&mount_lock);
1319 		res = __path_is_mountpoint(path);
1320 	} while (read_seqretry(&mount_lock, seq));
1321 	rcu_read_unlock();
1322 
1323 	return res;
1324 }
1325 EXPORT_SYMBOL(path_is_mountpoint);
1326 
1327 struct vfsmount *mnt_clone_internal(const struct path *path)
1328 {
1329 	struct mount *p;
1330 	p = clone_mnt(real_mount(path->mnt), path->dentry, CL_PRIVATE);
1331 	if (IS_ERR(p))
1332 		return ERR_CAST(p);
1333 	p->mnt.mnt_flags |= MNT_INTERNAL;
1334 	return &p->mnt;
1335 }
1336 
1337 #ifdef CONFIG_PROC_FS
1338 static struct mount *mnt_list_next(struct mnt_namespace *ns,
1339 				   struct list_head *p)
1340 {
1341 	struct mount *mnt, *ret = NULL;
1342 
1343 	lock_ns_list(ns);
1344 	list_for_each_continue(p, &ns->list) {
1345 		mnt = list_entry(p, typeof(*mnt), mnt_list);
1346 		if (!mnt_is_cursor(mnt)) {
1347 			ret = mnt;
1348 			break;
1349 		}
1350 	}
1351 	unlock_ns_list(ns);
1352 
1353 	return ret;
1354 }
1355 
1356 /* iterator; we want it to have access to namespace_sem, thus here... */
1357 static void *m_start(struct seq_file *m, loff_t *pos)
1358 {
1359 	struct proc_mounts *p = m->private;
1360 	struct list_head *prev;
1361 
1362 	down_read(&namespace_sem);
1363 	if (!*pos) {
1364 		prev = &p->ns->list;
1365 	} else {
1366 		prev = &p->cursor.mnt_list;
1367 
1368 		/* Read after we'd reached the end? */
1369 		if (list_empty(prev))
1370 			return NULL;
1371 	}
1372 
1373 	return mnt_list_next(p->ns, prev);
1374 }
1375 
1376 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
1377 {
1378 	struct proc_mounts *p = m->private;
1379 	struct mount *mnt = v;
1380 
1381 	++*pos;
1382 	return mnt_list_next(p->ns, &mnt->mnt_list);
1383 }
1384 
1385 static void m_stop(struct seq_file *m, void *v)
1386 {
1387 	struct proc_mounts *p = m->private;
1388 	struct mount *mnt = v;
1389 
1390 	lock_ns_list(p->ns);
1391 	if (mnt)
1392 		list_move_tail(&p->cursor.mnt_list, &mnt->mnt_list);
1393 	else
1394 		list_del_init(&p->cursor.mnt_list);
1395 	unlock_ns_list(p->ns);
1396 	up_read(&namespace_sem);
1397 }
1398 
1399 static int m_show(struct seq_file *m, void *v)
1400 {
1401 	struct proc_mounts *p = m->private;
1402 	struct mount *r = v;
1403 	return p->show(m, &r->mnt);
1404 }
1405 
1406 const struct seq_operations mounts_op = {
1407 	.start	= m_start,
1408 	.next	= m_next,
1409 	.stop	= m_stop,
1410 	.show	= m_show,
1411 };
1412 
1413 void mnt_cursor_del(struct mnt_namespace *ns, struct mount *cursor)
1414 {
1415 	down_read(&namespace_sem);
1416 	lock_ns_list(ns);
1417 	list_del(&cursor->mnt_list);
1418 	unlock_ns_list(ns);
1419 	up_read(&namespace_sem);
1420 }
1421 #endif  /* CONFIG_PROC_FS */
1422 
1423 /**
1424  * may_umount_tree - check if a mount tree is busy
1425  * @m: root of mount tree
1426  *
1427  * This is called to check if a tree of mounts has any
1428  * open files, pwds, chroots or sub mounts that are
1429  * busy.
1430  */
1431 int may_umount_tree(struct vfsmount *m)
1432 {
1433 	struct mount *mnt = real_mount(m);
1434 	int actual_refs = 0;
1435 	int minimum_refs = 0;
1436 	struct mount *p;
1437 	BUG_ON(!m);
1438 
1439 	/* write lock needed for mnt_get_count */
1440 	lock_mount_hash();
1441 	for (p = mnt; p; p = next_mnt(p, mnt)) {
1442 		actual_refs += mnt_get_count(p);
1443 		minimum_refs += 2;
1444 	}
1445 	unlock_mount_hash();
1446 
1447 	if (actual_refs > minimum_refs)
1448 		return 0;
1449 
1450 	return 1;
1451 }
1452 
1453 EXPORT_SYMBOL(may_umount_tree);
1454 
1455 /**
1456  * may_umount - check if a mount point is busy
1457  * @mnt: root of mount
1458  *
1459  * This is called to check if a mount point has any
1460  * open files, pwds, chroots or sub mounts. If the
1461  * mount has sub mounts this will return busy
1462  * regardless of whether the sub mounts are busy.
1463  *
1464  * Doesn't take quota and stuff into account. IOW, in some cases it will
1465  * give false negatives. The main reason why it's here is that we need
1466  * a non-destructive way to look for easily umountable filesystems.
1467  */
1468 int may_umount(struct vfsmount *mnt)
1469 {
1470 	int ret = 1;
1471 	down_read(&namespace_sem);
1472 	lock_mount_hash();
1473 	if (propagate_mount_busy(real_mount(mnt), 2))
1474 		ret = 0;
1475 	unlock_mount_hash();
1476 	up_read(&namespace_sem);
1477 	return ret;
1478 }
1479 
1480 EXPORT_SYMBOL(may_umount);
1481 
1482 static void namespace_unlock(void)
1483 {
1484 	struct hlist_head head;
1485 	struct hlist_node *p;
1486 	struct mount *m;
1487 	LIST_HEAD(list);
1488 
1489 	hlist_move_list(&unmounted, &head);
1490 	list_splice_init(&ex_mountpoints, &list);
1491 
1492 	up_write(&namespace_sem);
1493 
1494 	shrink_dentry_list(&list);
1495 
1496 	if (likely(hlist_empty(&head)))
1497 		return;
1498 
1499 	synchronize_rcu_expedited();
1500 
1501 	hlist_for_each_entry_safe(m, p, &head, mnt_umount) {
1502 		hlist_del(&m->mnt_umount);
1503 		mntput(&m->mnt);
1504 	}
1505 }
1506 
1507 static inline void namespace_lock(void)
1508 {
1509 	down_write(&namespace_sem);
1510 }
1511 
1512 enum umount_tree_flags {
1513 	UMOUNT_SYNC = 1,
1514 	UMOUNT_PROPAGATE = 2,
1515 	UMOUNT_CONNECTED = 4,
1516 };
1517 
1518 static bool disconnect_mount(struct mount *mnt, enum umount_tree_flags how)
1519 {
1520 	/* Leaving mounts connected is only valid for lazy umounts */
1521 	if (how & UMOUNT_SYNC)
1522 		return true;
1523 
1524 	/* A mount without a parent has nothing to be connected to */
1525 	if (!mnt_has_parent(mnt))
1526 		return true;
1527 
1528 	/* Because the reference counting rules change when mounts are
1529 	 * unmounted and connected, umounted mounts may not be
1530 	 * connected to mounted mounts.
1531 	 */
1532 	if (!(mnt->mnt_parent->mnt.mnt_flags & MNT_UMOUNT))
1533 		return true;
1534 
1535 	/* Has it been requested that the mount remain connected? */
1536 	if (how & UMOUNT_CONNECTED)
1537 		return false;
1538 
1539 	/* Is the mount locked such that it needs to remain connected? */
1540 	if (IS_MNT_LOCKED(mnt))
1541 		return false;
1542 
1543 	/* By default disconnect the mount */
1544 	return true;
1545 }
1546 
1547 /*
1548  * mount_lock must be held
1549  * namespace_sem must be held for write
1550  */
1551 static void umount_tree(struct mount *mnt, enum umount_tree_flags how)
1552 {
1553 	LIST_HEAD(tmp_list);
1554 	struct mount *p;
1555 
1556 	if (how & UMOUNT_PROPAGATE)
1557 		propagate_mount_unlock(mnt);
1558 
1559 	/* Gather the mounts to umount */
1560 	for (p = mnt; p; p = next_mnt(p, mnt)) {
1561 		p->mnt.mnt_flags |= MNT_UMOUNT;
1562 		list_move(&p->mnt_list, &tmp_list);
1563 	}
1564 
1565 	/* Hide the mounts from mnt_mounts */
1566 	list_for_each_entry(p, &tmp_list, mnt_list) {
1567 		list_del_init(&p->mnt_child);
1568 	}
1569 
1570 	/* Add propogated mounts to the tmp_list */
1571 	if (how & UMOUNT_PROPAGATE)
1572 		propagate_umount(&tmp_list);
1573 
1574 	while (!list_empty(&tmp_list)) {
1575 		struct mnt_namespace *ns;
1576 		bool disconnect;
1577 		p = list_first_entry(&tmp_list, struct mount, mnt_list);
1578 		list_del_init(&p->mnt_expire);
1579 		list_del_init(&p->mnt_list);
1580 		ns = p->mnt_ns;
1581 		if (ns) {
1582 			ns->mounts--;
1583 			__touch_mnt_namespace(ns);
1584 		}
1585 		p->mnt_ns = NULL;
1586 		if (how & UMOUNT_SYNC)
1587 			p->mnt.mnt_flags |= MNT_SYNC_UMOUNT;
1588 
1589 		disconnect = disconnect_mount(p, how);
1590 		if (mnt_has_parent(p)) {
1591 			mnt_add_count(p->mnt_parent, -1);
1592 			if (!disconnect) {
1593 				/* Don't forget about p */
1594 				list_add_tail(&p->mnt_child, &p->mnt_parent->mnt_mounts);
1595 			} else {
1596 				umount_mnt(p);
1597 			}
1598 		}
1599 		change_mnt_propagation(p, MS_PRIVATE);
1600 		if (disconnect)
1601 			hlist_add_head(&p->mnt_umount, &unmounted);
1602 	}
1603 }
1604 
1605 static void shrink_submounts(struct mount *mnt);
1606 
1607 static int do_umount_root(struct super_block *sb)
1608 {
1609 	int ret = 0;
1610 
1611 	down_write(&sb->s_umount);
1612 	if (!sb_rdonly(sb)) {
1613 		struct fs_context *fc;
1614 
1615 		fc = fs_context_for_reconfigure(sb->s_root, SB_RDONLY,
1616 						SB_RDONLY);
1617 		if (IS_ERR(fc)) {
1618 			ret = PTR_ERR(fc);
1619 		} else {
1620 			ret = parse_monolithic_mount_data(fc, NULL);
1621 			if (!ret)
1622 				ret = reconfigure_super(fc);
1623 			put_fs_context(fc);
1624 		}
1625 	}
1626 	up_write(&sb->s_umount);
1627 	return ret;
1628 }
1629 
1630 static int do_umount(struct mount *mnt, int flags)
1631 {
1632 	struct super_block *sb = mnt->mnt.mnt_sb;
1633 	int retval;
1634 
1635 	retval = security_sb_umount(&mnt->mnt, flags);
1636 	if (retval)
1637 		return retval;
1638 
1639 	/*
1640 	 * Allow userspace to request a mountpoint be expired rather than
1641 	 * unmounting unconditionally. Unmount only happens if:
1642 	 *  (1) the mark is already set (the mark is cleared by mntput())
1643 	 *  (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1644 	 */
1645 	if (flags & MNT_EXPIRE) {
1646 		if (&mnt->mnt == current->fs->root.mnt ||
1647 		    flags & (MNT_FORCE | MNT_DETACH))
1648 			return -EINVAL;
1649 
1650 		/*
1651 		 * probably don't strictly need the lock here if we examined
1652 		 * all race cases, but it's a slowpath.
1653 		 */
1654 		lock_mount_hash();
1655 		if (mnt_get_count(mnt) != 2) {
1656 			unlock_mount_hash();
1657 			return -EBUSY;
1658 		}
1659 		unlock_mount_hash();
1660 
1661 		if (!xchg(&mnt->mnt_expiry_mark, 1))
1662 			return -EAGAIN;
1663 	}
1664 
1665 	/*
1666 	 * If we may have to abort operations to get out of this
1667 	 * mount, and they will themselves hold resources we must
1668 	 * allow the fs to do things. In the Unix tradition of
1669 	 * 'Gee thats tricky lets do it in userspace' the umount_begin
1670 	 * might fail to complete on the first run through as other tasks
1671 	 * must return, and the like. Thats for the mount program to worry
1672 	 * about for the moment.
1673 	 */
1674 
1675 	if (flags & MNT_FORCE && sb->s_op->umount_begin) {
1676 		sb->s_op->umount_begin(sb);
1677 	}
1678 
1679 	/*
1680 	 * No sense to grab the lock for this test, but test itself looks
1681 	 * somewhat bogus. Suggestions for better replacement?
1682 	 * Ho-hum... In principle, we might treat that as umount + switch
1683 	 * to rootfs. GC would eventually take care of the old vfsmount.
1684 	 * Actually it makes sense, especially if rootfs would contain a
1685 	 * /reboot - static binary that would close all descriptors and
1686 	 * call reboot(9). Then init(8) could umount root and exec /reboot.
1687 	 */
1688 	if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1689 		/*
1690 		 * Special case for "unmounting" root ...
1691 		 * we just try to remount it readonly.
1692 		 */
1693 		if (!ns_capable(sb->s_user_ns, CAP_SYS_ADMIN))
1694 			return -EPERM;
1695 		return do_umount_root(sb);
1696 	}
1697 
1698 	namespace_lock();
1699 	lock_mount_hash();
1700 
1701 	/* Recheck MNT_LOCKED with the locks held */
1702 	retval = -EINVAL;
1703 	if (mnt->mnt.mnt_flags & MNT_LOCKED)
1704 		goto out;
1705 
1706 	event++;
1707 	if (flags & MNT_DETACH) {
1708 		if (!list_empty(&mnt->mnt_list))
1709 			umount_tree(mnt, UMOUNT_PROPAGATE);
1710 		retval = 0;
1711 	} else {
1712 		shrink_submounts(mnt);
1713 		retval = -EBUSY;
1714 		if (!propagate_mount_busy(mnt, 2)) {
1715 			if (!list_empty(&mnt->mnt_list))
1716 				umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
1717 			retval = 0;
1718 		}
1719 	}
1720 out:
1721 	unlock_mount_hash();
1722 	namespace_unlock();
1723 	return retval;
1724 }
1725 
1726 /*
1727  * __detach_mounts - lazily unmount all mounts on the specified dentry
1728  *
1729  * During unlink, rmdir, and d_drop it is possible to loose the path
1730  * to an existing mountpoint, and wind up leaking the mount.
1731  * detach_mounts allows lazily unmounting those mounts instead of
1732  * leaking them.
1733  *
1734  * The caller may hold dentry->d_inode->i_mutex.
1735  */
1736 void __detach_mounts(struct dentry *dentry)
1737 {
1738 	struct mountpoint *mp;
1739 	struct mount *mnt;
1740 
1741 	namespace_lock();
1742 	lock_mount_hash();
1743 	mp = lookup_mountpoint(dentry);
1744 	if (!mp)
1745 		goto out_unlock;
1746 
1747 	event++;
1748 	while (!hlist_empty(&mp->m_list)) {
1749 		mnt = hlist_entry(mp->m_list.first, struct mount, mnt_mp_list);
1750 		if (mnt->mnt.mnt_flags & MNT_UMOUNT) {
1751 			umount_mnt(mnt);
1752 			hlist_add_head(&mnt->mnt_umount, &unmounted);
1753 		}
1754 		else umount_tree(mnt, UMOUNT_CONNECTED);
1755 	}
1756 	put_mountpoint(mp);
1757 out_unlock:
1758 	unlock_mount_hash();
1759 	namespace_unlock();
1760 }
1761 
1762 /*
1763  * Is the caller allowed to modify his namespace?
1764  */
1765 bool may_mount(void)
1766 {
1767 	return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN);
1768 }
1769 
1770 static void warn_mandlock(void)
1771 {
1772 	pr_warn_once("=======================================================\n"
1773 		     "WARNING: The mand mount option has been deprecated and\n"
1774 		     "         and is ignored by this kernel. Remove the mand\n"
1775 		     "         option from the mount to silence this warning.\n"
1776 		     "=======================================================\n");
1777 }
1778 
1779 static int can_umount(const struct path *path, int flags)
1780 {
1781 	struct mount *mnt = real_mount(path->mnt);
1782 
1783 	if (!may_mount())
1784 		return -EPERM;
1785 	if (path->dentry != path->mnt->mnt_root)
1786 		return -EINVAL;
1787 	if (!check_mnt(mnt))
1788 		return -EINVAL;
1789 	if (mnt->mnt.mnt_flags & MNT_LOCKED) /* Check optimistically */
1790 		return -EINVAL;
1791 	if (flags & MNT_FORCE && !capable(CAP_SYS_ADMIN))
1792 		return -EPERM;
1793 	return 0;
1794 }
1795 
1796 // caller is responsible for flags being sane
1797 int path_umount(struct path *path, int flags)
1798 {
1799 	struct mount *mnt = real_mount(path->mnt);
1800 	int ret;
1801 
1802 	ret = can_umount(path, flags);
1803 	if (!ret)
1804 		ret = do_umount(mnt, flags);
1805 
1806 	/* we mustn't call path_put() as that would clear mnt_expiry_mark */
1807 	dput(path->dentry);
1808 	mntput_no_expire(mnt);
1809 	return ret;
1810 }
1811 
1812 static int ksys_umount(char __user *name, int flags)
1813 {
1814 	int lookup_flags = LOOKUP_MOUNTPOINT;
1815 	struct path path;
1816 	int ret;
1817 
1818 	// basic validity checks done first
1819 	if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
1820 		return -EINVAL;
1821 
1822 	if (!(flags & UMOUNT_NOFOLLOW))
1823 		lookup_flags |= LOOKUP_FOLLOW;
1824 	ret = user_path_at(AT_FDCWD, name, lookup_flags, &path);
1825 	if (ret)
1826 		return ret;
1827 	return path_umount(&path, flags);
1828 }
1829 
1830 SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
1831 {
1832 	return ksys_umount(name, flags);
1833 }
1834 
1835 #ifdef __ARCH_WANT_SYS_OLDUMOUNT
1836 
1837 /*
1838  *	The 2.0 compatible umount. No flags.
1839  */
1840 SYSCALL_DEFINE1(oldumount, char __user *, name)
1841 {
1842 	return ksys_umount(name, 0);
1843 }
1844 
1845 #endif
1846 
1847 static bool is_mnt_ns_file(struct dentry *dentry)
1848 {
1849 	/* Is this a proxy for a mount namespace? */
1850 	return dentry->d_op == &ns_dentry_operations &&
1851 	       dentry->d_fsdata == &mntns_operations;
1852 }
1853 
1854 static struct mnt_namespace *to_mnt_ns(struct ns_common *ns)
1855 {
1856 	return container_of(ns, struct mnt_namespace, ns);
1857 }
1858 
1859 struct ns_common *from_mnt_ns(struct mnt_namespace *mnt)
1860 {
1861 	return &mnt->ns;
1862 }
1863 
1864 static bool mnt_ns_loop(struct dentry *dentry)
1865 {
1866 	/* Could bind mounting the mount namespace inode cause a
1867 	 * mount namespace loop?
1868 	 */
1869 	struct mnt_namespace *mnt_ns;
1870 	if (!is_mnt_ns_file(dentry))
1871 		return false;
1872 
1873 	mnt_ns = to_mnt_ns(get_proc_ns(dentry->d_inode));
1874 	return current->nsproxy->mnt_ns->seq >= mnt_ns->seq;
1875 }
1876 
1877 struct mount *copy_tree(struct mount *mnt, struct dentry *dentry,
1878 					int flag)
1879 {
1880 	struct mount *res, *p, *q, *r, *parent;
1881 
1882 	if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(mnt))
1883 		return ERR_PTR(-EINVAL);
1884 
1885 	if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry))
1886 		return ERR_PTR(-EINVAL);
1887 
1888 	res = q = clone_mnt(mnt, dentry, flag);
1889 	if (IS_ERR(q))
1890 		return q;
1891 
1892 	q->mnt_mountpoint = mnt->mnt_mountpoint;
1893 
1894 	p = mnt;
1895 	list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
1896 		struct mount *s;
1897 		if (!is_subdir(r->mnt_mountpoint, dentry))
1898 			continue;
1899 
1900 		for (s = r; s; s = next_mnt(s, r)) {
1901 			if (!(flag & CL_COPY_UNBINDABLE) &&
1902 			    IS_MNT_UNBINDABLE(s)) {
1903 				if (s->mnt.mnt_flags & MNT_LOCKED) {
1904 					/* Both unbindable and locked. */
1905 					q = ERR_PTR(-EPERM);
1906 					goto out;
1907 				} else {
1908 					s = skip_mnt_tree(s);
1909 					continue;
1910 				}
1911 			}
1912 			if (!(flag & CL_COPY_MNT_NS_FILE) &&
1913 			    is_mnt_ns_file(s->mnt.mnt_root)) {
1914 				s = skip_mnt_tree(s);
1915 				continue;
1916 			}
1917 			while (p != s->mnt_parent) {
1918 				p = p->mnt_parent;
1919 				q = q->mnt_parent;
1920 			}
1921 			p = s;
1922 			parent = q;
1923 			q = clone_mnt(p, p->mnt.mnt_root, flag);
1924 			if (IS_ERR(q))
1925 				goto out;
1926 			lock_mount_hash();
1927 			list_add_tail(&q->mnt_list, &res->mnt_list);
1928 			attach_mnt(q, parent, p->mnt_mp);
1929 			unlock_mount_hash();
1930 		}
1931 	}
1932 	return res;
1933 out:
1934 	if (res) {
1935 		lock_mount_hash();
1936 		umount_tree(res, UMOUNT_SYNC);
1937 		unlock_mount_hash();
1938 	}
1939 	return q;
1940 }
1941 
1942 /* Caller should check returned pointer for errors */
1943 
1944 struct vfsmount *collect_mounts(const struct path *path)
1945 {
1946 	struct mount *tree;
1947 	namespace_lock();
1948 	if (!check_mnt(real_mount(path->mnt)))
1949 		tree = ERR_PTR(-EINVAL);
1950 	else
1951 		tree = copy_tree(real_mount(path->mnt), path->dentry,
1952 				 CL_COPY_ALL | CL_PRIVATE);
1953 	namespace_unlock();
1954 	if (IS_ERR(tree))
1955 		return ERR_CAST(tree);
1956 	return &tree->mnt;
1957 }
1958 
1959 static void free_mnt_ns(struct mnt_namespace *);
1960 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *, bool);
1961 
1962 void dissolve_on_fput(struct vfsmount *mnt)
1963 {
1964 	struct mnt_namespace *ns;
1965 	namespace_lock();
1966 	lock_mount_hash();
1967 	ns = real_mount(mnt)->mnt_ns;
1968 	if (ns) {
1969 		if (is_anon_ns(ns))
1970 			umount_tree(real_mount(mnt), UMOUNT_CONNECTED);
1971 		else
1972 			ns = NULL;
1973 	}
1974 	unlock_mount_hash();
1975 	namespace_unlock();
1976 	if (ns)
1977 		free_mnt_ns(ns);
1978 }
1979 
1980 void drop_collected_mounts(struct vfsmount *mnt)
1981 {
1982 	namespace_lock();
1983 	lock_mount_hash();
1984 	umount_tree(real_mount(mnt), 0);
1985 	unlock_mount_hash();
1986 	namespace_unlock();
1987 }
1988 
1989 static bool has_locked_children(struct mount *mnt, struct dentry *dentry)
1990 {
1991 	struct mount *child;
1992 
1993 	list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
1994 		if (!is_subdir(child->mnt_mountpoint, dentry))
1995 			continue;
1996 
1997 		if (child->mnt.mnt_flags & MNT_LOCKED)
1998 			return true;
1999 	}
2000 	return false;
2001 }
2002 
2003 /**
2004  * clone_private_mount - create a private clone of a path
2005  * @path: path to clone
2006  *
2007  * This creates a new vfsmount, which will be the clone of @path.  The new mount
2008  * will not be attached anywhere in the namespace and will be private (i.e.
2009  * changes to the originating mount won't be propagated into this).
2010  *
2011  * Release with mntput().
2012  */
2013 struct vfsmount *clone_private_mount(const struct path *path)
2014 {
2015 	struct mount *old_mnt = real_mount(path->mnt);
2016 	struct mount *new_mnt;
2017 
2018 	down_read(&namespace_sem);
2019 	if (IS_MNT_UNBINDABLE(old_mnt))
2020 		goto invalid;
2021 
2022 	if (!check_mnt(old_mnt))
2023 		goto invalid;
2024 
2025 	if (has_locked_children(old_mnt, path->dentry))
2026 		goto invalid;
2027 
2028 	new_mnt = clone_mnt(old_mnt, path->dentry, CL_PRIVATE);
2029 	up_read(&namespace_sem);
2030 
2031 	if (IS_ERR(new_mnt))
2032 		return ERR_CAST(new_mnt);
2033 
2034 	/* Longterm mount to be removed by kern_unmount*() */
2035 	new_mnt->mnt_ns = MNT_NS_INTERNAL;
2036 
2037 	return &new_mnt->mnt;
2038 
2039 invalid:
2040 	up_read(&namespace_sem);
2041 	return ERR_PTR(-EINVAL);
2042 }
2043 EXPORT_SYMBOL_GPL(clone_private_mount);
2044 
2045 int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
2046 		   struct vfsmount *root)
2047 {
2048 	struct mount *mnt;
2049 	int res = f(root, arg);
2050 	if (res)
2051 		return res;
2052 	list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) {
2053 		res = f(&mnt->mnt, arg);
2054 		if (res)
2055 			return res;
2056 	}
2057 	return 0;
2058 }
2059 
2060 static void lock_mnt_tree(struct mount *mnt)
2061 {
2062 	struct mount *p;
2063 
2064 	for (p = mnt; p; p = next_mnt(p, mnt)) {
2065 		int flags = p->mnt.mnt_flags;
2066 		/* Don't allow unprivileged users to change mount flags */
2067 		flags |= MNT_LOCK_ATIME;
2068 
2069 		if (flags & MNT_READONLY)
2070 			flags |= MNT_LOCK_READONLY;
2071 
2072 		if (flags & MNT_NODEV)
2073 			flags |= MNT_LOCK_NODEV;
2074 
2075 		if (flags & MNT_NOSUID)
2076 			flags |= MNT_LOCK_NOSUID;
2077 
2078 		if (flags & MNT_NOEXEC)
2079 			flags |= MNT_LOCK_NOEXEC;
2080 		/* Don't allow unprivileged users to reveal what is under a mount */
2081 		if (list_empty(&p->mnt_expire))
2082 			flags |= MNT_LOCKED;
2083 		p->mnt.mnt_flags = flags;
2084 	}
2085 }
2086 
2087 static void cleanup_group_ids(struct mount *mnt, struct mount *end)
2088 {
2089 	struct mount *p;
2090 
2091 	for (p = mnt; p != end; p = next_mnt(p, mnt)) {
2092 		if (p->mnt_group_id && !IS_MNT_SHARED(p))
2093 			mnt_release_group_id(p);
2094 	}
2095 }
2096 
2097 static int invent_group_ids(struct mount *mnt, bool recurse)
2098 {
2099 	struct mount *p;
2100 
2101 	for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
2102 		if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
2103 			int err = mnt_alloc_group_id(p);
2104 			if (err) {
2105 				cleanup_group_ids(mnt, p);
2106 				return err;
2107 			}
2108 		}
2109 	}
2110 
2111 	return 0;
2112 }
2113 
2114 int count_mounts(struct mnt_namespace *ns, struct mount *mnt)
2115 {
2116 	unsigned int max = READ_ONCE(sysctl_mount_max);
2117 	unsigned int mounts = 0;
2118 	struct mount *p;
2119 
2120 	if (ns->mounts >= max)
2121 		return -ENOSPC;
2122 	max -= ns->mounts;
2123 	if (ns->pending_mounts >= max)
2124 		return -ENOSPC;
2125 	max -= ns->pending_mounts;
2126 
2127 	for (p = mnt; p; p = next_mnt(p, mnt))
2128 		mounts++;
2129 
2130 	if (mounts > max)
2131 		return -ENOSPC;
2132 
2133 	ns->pending_mounts += mounts;
2134 	return 0;
2135 }
2136 
2137 /*
2138  *  @source_mnt : mount tree to be attached
2139  *  @nd         : place the mount tree @source_mnt is attached
2140  *  @parent_nd  : if non-null, detach the source_mnt from its parent and
2141  *  		   store the parent mount and mountpoint dentry.
2142  *  		   (done when source_mnt is moved)
2143  *
2144  *  NOTE: in the table below explains the semantics when a source mount
2145  *  of a given type is attached to a destination mount of a given type.
2146  * ---------------------------------------------------------------------------
2147  * |         BIND MOUNT OPERATION                                            |
2148  * |**************************************************************************
2149  * | source-->| shared        |       private  |       slave    | unbindable |
2150  * | dest     |               |                |                |            |
2151  * |   |      |               |                |                |            |
2152  * |   v      |               |                |                |            |
2153  * |**************************************************************************
2154  * |  shared  | shared (++)   |     shared (+) |     shared(+++)|  invalid   |
2155  * |          |               |                |                |            |
2156  * |non-shared| shared (+)    |      private   |      slave (*) |  invalid   |
2157  * ***************************************************************************
2158  * A bind operation clones the source mount and mounts the clone on the
2159  * destination mount.
2160  *
2161  * (++)  the cloned mount is propagated to all the mounts in the propagation
2162  * 	 tree of the destination mount and the cloned mount is added to
2163  * 	 the peer group of the source mount.
2164  * (+)   the cloned mount is created under the destination mount and is marked
2165  *       as shared. The cloned mount is added to the peer group of the source
2166  *       mount.
2167  * (+++) the mount is propagated to all the mounts in the propagation tree
2168  *       of the destination mount and the cloned mount is made slave
2169  *       of the same master as that of the source mount. The cloned mount
2170  *       is marked as 'shared and slave'.
2171  * (*)   the cloned mount is made a slave of the same master as that of the
2172  * 	 source mount.
2173  *
2174  * ---------------------------------------------------------------------------
2175  * |         		MOVE MOUNT OPERATION                                 |
2176  * |**************************************************************************
2177  * | source-->| shared        |       private  |       slave    | unbindable |
2178  * | dest     |               |                |                |            |
2179  * |   |      |               |                |                |            |
2180  * |   v      |               |                |                |            |
2181  * |**************************************************************************
2182  * |  shared  | shared (+)    |     shared (+) |    shared(+++) |  invalid   |
2183  * |          |               |                |                |            |
2184  * |non-shared| shared (+*)   |      private   |    slave (*)   | unbindable |
2185  * ***************************************************************************
2186  *
2187  * (+)  the mount is moved to the destination. And is then propagated to
2188  * 	all the mounts in the propagation tree of the destination mount.
2189  * (+*)  the mount is moved to the destination.
2190  * (+++)  the mount is moved to the destination and is then propagated to
2191  * 	all the mounts belonging to the destination mount's propagation tree.
2192  * 	the mount is marked as 'shared and slave'.
2193  * (*)	the mount continues to be a slave at the new location.
2194  *
2195  * if the source mount is a tree, the operations explained above is
2196  * applied to each mount in the tree.
2197  * Must be called without spinlocks held, since this function can sleep
2198  * in allocations.
2199  */
2200 static int attach_recursive_mnt(struct mount *source_mnt,
2201 			struct mount *dest_mnt,
2202 			struct mountpoint *dest_mp,
2203 			bool moving)
2204 {
2205 	struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns;
2206 	HLIST_HEAD(tree_list);
2207 	struct mnt_namespace *ns = dest_mnt->mnt_ns;
2208 	struct mountpoint *smp;
2209 	struct mount *child, *p;
2210 	struct hlist_node *n;
2211 	int err;
2212 
2213 	/* Preallocate a mountpoint in case the new mounts need
2214 	 * to be tucked under other mounts.
2215 	 */
2216 	smp = get_mountpoint(source_mnt->mnt.mnt_root);
2217 	if (IS_ERR(smp))
2218 		return PTR_ERR(smp);
2219 
2220 	/* Is there space to add these mounts to the mount namespace? */
2221 	if (!moving) {
2222 		err = count_mounts(ns, source_mnt);
2223 		if (err)
2224 			goto out;
2225 	}
2226 
2227 	if (IS_MNT_SHARED(dest_mnt)) {
2228 		err = invent_group_ids(source_mnt, true);
2229 		if (err)
2230 			goto out;
2231 		err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list);
2232 		lock_mount_hash();
2233 		if (err)
2234 			goto out_cleanup_ids;
2235 		for (p = source_mnt; p; p = next_mnt(p, source_mnt))
2236 			set_mnt_shared(p);
2237 	} else {
2238 		lock_mount_hash();
2239 	}
2240 	if (moving) {
2241 		unhash_mnt(source_mnt);
2242 		attach_mnt(source_mnt, dest_mnt, dest_mp);
2243 		touch_mnt_namespace(source_mnt->mnt_ns);
2244 	} else {
2245 		if (source_mnt->mnt_ns) {
2246 			/* move from anon - the caller will destroy */
2247 			list_del_init(&source_mnt->mnt_ns->list);
2248 		}
2249 		mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt);
2250 		commit_tree(source_mnt);
2251 	}
2252 
2253 	hlist_for_each_entry_safe(child, n, &tree_list, mnt_hash) {
2254 		struct mount *q;
2255 		hlist_del_init(&child->mnt_hash);
2256 		q = __lookup_mnt(&child->mnt_parent->mnt,
2257 				 child->mnt_mountpoint);
2258 		if (q)
2259 			mnt_change_mountpoint(child, smp, q);
2260 		/* Notice when we are propagating across user namespaces */
2261 		if (child->mnt_parent->mnt_ns->user_ns != user_ns)
2262 			lock_mnt_tree(child);
2263 		child->mnt.mnt_flags &= ~MNT_LOCKED;
2264 		commit_tree(child);
2265 	}
2266 	put_mountpoint(smp);
2267 	unlock_mount_hash();
2268 
2269 	return 0;
2270 
2271  out_cleanup_ids:
2272 	while (!hlist_empty(&tree_list)) {
2273 		child = hlist_entry(tree_list.first, struct mount, mnt_hash);
2274 		child->mnt_parent->mnt_ns->pending_mounts = 0;
2275 		umount_tree(child, UMOUNT_SYNC);
2276 	}
2277 	unlock_mount_hash();
2278 	cleanup_group_ids(source_mnt, NULL);
2279  out:
2280 	ns->pending_mounts = 0;
2281 
2282 	read_seqlock_excl(&mount_lock);
2283 	put_mountpoint(smp);
2284 	read_sequnlock_excl(&mount_lock);
2285 
2286 	return err;
2287 }
2288 
2289 static struct mountpoint *lock_mount(struct path *path)
2290 {
2291 	struct vfsmount *mnt;
2292 	struct dentry *dentry = path->dentry;
2293 retry:
2294 	inode_lock(dentry->d_inode);
2295 	if (unlikely(cant_mount(dentry))) {
2296 		inode_unlock(dentry->d_inode);
2297 		return ERR_PTR(-ENOENT);
2298 	}
2299 	namespace_lock();
2300 	mnt = lookup_mnt(path);
2301 	if (likely(!mnt)) {
2302 		struct mountpoint *mp = get_mountpoint(dentry);
2303 		if (IS_ERR(mp)) {
2304 			namespace_unlock();
2305 			inode_unlock(dentry->d_inode);
2306 			return mp;
2307 		}
2308 		return mp;
2309 	}
2310 	namespace_unlock();
2311 	inode_unlock(path->dentry->d_inode);
2312 	path_put(path);
2313 	path->mnt = mnt;
2314 	dentry = path->dentry = dget(mnt->mnt_root);
2315 	goto retry;
2316 }
2317 
2318 static void unlock_mount(struct mountpoint *where)
2319 {
2320 	struct dentry *dentry = where->m_dentry;
2321 
2322 	read_seqlock_excl(&mount_lock);
2323 	put_mountpoint(where);
2324 	read_sequnlock_excl(&mount_lock);
2325 
2326 	namespace_unlock();
2327 	inode_unlock(dentry->d_inode);
2328 }
2329 
2330 static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp)
2331 {
2332 	if (mnt->mnt.mnt_sb->s_flags & SB_NOUSER)
2333 		return -EINVAL;
2334 
2335 	if (d_is_dir(mp->m_dentry) !=
2336 	      d_is_dir(mnt->mnt.mnt_root))
2337 		return -ENOTDIR;
2338 
2339 	return attach_recursive_mnt(mnt, p, mp, false);
2340 }
2341 
2342 /*
2343  * Sanity check the flags to change_mnt_propagation.
2344  */
2345 
2346 static int flags_to_propagation_type(int ms_flags)
2347 {
2348 	int type = ms_flags & ~(MS_REC | MS_SILENT);
2349 
2350 	/* Fail if any non-propagation flags are set */
2351 	if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2352 		return 0;
2353 	/* Only one propagation flag should be set */
2354 	if (!is_power_of_2(type))
2355 		return 0;
2356 	return type;
2357 }
2358 
2359 /*
2360  * recursively change the type of the mountpoint.
2361  */
2362 static int do_change_type(struct path *path, int ms_flags)
2363 {
2364 	struct mount *m;
2365 	struct mount *mnt = real_mount(path->mnt);
2366 	int recurse = ms_flags & MS_REC;
2367 	int type;
2368 	int err = 0;
2369 
2370 	if (path->dentry != path->mnt->mnt_root)
2371 		return -EINVAL;
2372 
2373 	type = flags_to_propagation_type(ms_flags);
2374 	if (!type)
2375 		return -EINVAL;
2376 
2377 	namespace_lock();
2378 	if (type == MS_SHARED) {
2379 		err = invent_group_ids(mnt, recurse);
2380 		if (err)
2381 			goto out_unlock;
2382 	}
2383 
2384 	lock_mount_hash();
2385 	for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
2386 		change_mnt_propagation(m, type);
2387 	unlock_mount_hash();
2388 
2389  out_unlock:
2390 	namespace_unlock();
2391 	return err;
2392 }
2393 
2394 static struct mount *__do_loopback(struct path *old_path, int recurse)
2395 {
2396 	struct mount *mnt = ERR_PTR(-EINVAL), *old = real_mount(old_path->mnt);
2397 
2398 	if (IS_MNT_UNBINDABLE(old))
2399 		return mnt;
2400 
2401 	if (!check_mnt(old) && old_path->dentry->d_op != &ns_dentry_operations)
2402 		return mnt;
2403 
2404 	if (!recurse && has_locked_children(old, old_path->dentry))
2405 		return mnt;
2406 
2407 	if (recurse)
2408 		mnt = copy_tree(old, old_path->dentry, CL_COPY_MNT_NS_FILE);
2409 	else
2410 		mnt = clone_mnt(old, old_path->dentry, 0);
2411 
2412 	if (!IS_ERR(mnt))
2413 		mnt->mnt.mnt_flags &= ~MNT_LOCKED;
2414 
2415 	return mnt;
2416 }
2417 
2418 /*
2419  * do loopback mount.
2420  */
2421 static int do_loopback(struct path *path, const char *old_name,
2422 				int recurse)
2423 {
2424 	struct path old_path;
2425 	struct mount *mnt = NULL, *parent;
2426 	struct mountpoint *mp;
2427 	int err;
2428 	if (!old_name || !*old_name)
2429 		return -EINVAL;
2430 	err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
2431 	if (err)
2432 		return err;
2433 
2434 	err = -EINVAL;
2435 	if (mnt_ns_loop(old_path.dentry))
2436 		goto out;
2437 
2438 	mp = lock_mount(path);
2439 	if (IS_ERR(mp)) {
2440 		err = PTR_ERR(mp);
2441 		goto out;
2442 	}
2443 
2444 	parent = real_mount(path->mnt);
2445 	if (!check_mnt(parent))
2446 		goto out2;
2447 
2448 	mnt = __do_loopback(&old_path, recurse);
2449 	if (IS_ERR(mnt)) {
2450 		err = PTR_ERR(mnt);
2451 		goto out2;
2452 	}
2453 
2454 	err = graft_tree(mnt, parent, mp);
2455 	if (err) {
2456 		lock_mount_hash();
2457 		umount_tree(mnt, UMOUNT_SYNC);
2458 		unlock_mount_hash();
2459 	}
2460 out2:
2461 	unlock_mount(mp);
2462 out:
2463 	path_put(&old_path);
2464 	return err;
2465 }
2466 
2467 static struct file *open_detached_copy(struct path *path, bool recursive)
2468 {
2469 	struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns;
2470 	struct mnt_namespace *ns = alloc_mnt_ns(user_ns, true);
2471 	struct mount *mnt, *p;
2472 	struct file *file;
2473 
2474 	if (IS_ERR(ns))
2475 		return ERR_CAST(ns);
2476 
2477 	namespace_lock();
2478 	mnt = __do_loopback(path, recursive);
2479 	if (IS_ERR(mnt)) {
2480 		namespace_unlock();
2481 		free_mnt_ns(ns);
2482 		return ERR_CAST(mnt);
2483 	}
2484 
2485 	lock_mount_hash();
2486 	for (p = mnt; p; p = next_mnt(p, mnt)) {
2487 		p->mnt_ns = ns;
2488 		ns->mounts++;
2489 	}
2490 	ns->root = mnt;
2491 	list_add_tail(&ns->list, &mnt->mnt_list);
2492 	mntget(&mnt->mnt);
2493 	unlock_mount_hash();
2494 	namespace_unlock();
2495 
2496 	mntput(path->mnt);
2497 	path->mnt = &mnt->mnt;
2498 	file = dentry_open(path, O_PATH, current_cred());
2499 	if (IS_ERR(file))
2500 		dissolve_on_fput(path->mnt);
2501 	else
2502 		file->f_mode |= FMODE_NEED_UNMOUNT;
2503 	return file;
2504 }
2505 
2506 SYSCALL_DEFINE3(open_tree, int, dfd, const char __user *, filename, unsigned, flags)
2507 {
2508 	struct file *file;
2509 	struct path path;
2510 	int lookup_flags = LOOKUP_AUTOMOUNT | LOOKUP_FOLLOW;
2511 	bool detached = flags & OPEN_TREE_CLONE;
2512 	int error;
2513 	int fd;
2514 
2515 	BUILD_BUG_ON(OPEN_TREE_CLOEXEC != O_CLOEXEC);
2516 
2517 	if (flags & ~(AT_EMPTY_PATH | AT_NO_AUTOMOUNT | AT_RECURSIVE |
2518 		      AT_SYMLINK_NOFOLLOW | OPEN_TREE_CLONE |
2519 		      OPEN_TREE_CLOEXEC))
2520 		return -EINVAL;
2521 
2522 	if ((flags & (AT_RECURSIVE | OPEN_TREE_CLONE)) == AT_RECURSIVE)
2523 		return -EINVAL;
2524 
2525 	if (flags & AT_NO_AUTOMOUNT)
2526 		lookup_flags &= ~LOOKUP_AUTOMOUNT;
2527 	if (flags & AT_SYMLINK_NOFOLLOW)
2528 		lookup_flags &= ~LOOKUP_FOLLOW;
2529 	if (flags & AT_EMPTY_PATH)
2530 		lookup_flags |= LOOKUP_EMPTY;
2531 
2532 	if (detached && !may_mount())
2533 		return -EPERM;
2534 
2535 	fd = get_unused_fd_flags(flags & O_CLOEXEC);
2536 	if (fd < 0)
2537 		return fd;
2538 
2539 	error = user_path_at(dfd, filename, lookup_flags, &path);
2540 	if (unlikely(error)) {
2541 		file = ERR_PTR(error);
2542 	} else {
2543 		if (detached)
2544 			file = open_detached_copy(&path, flags & AT_RECURSIVE);
2545 		else
2546 			file = dentry_open(&path, O_PATH, current_cred());
2547 		path_put(&path);
2548 	}
2549 	if (IS_ERR(file)) {
2550 		put_unused_fd(fd);
2551 		return PTR_ERR(file);
2552 	}
2553 	fd_install(fd, file);
2554 	return fd;
2555 }
2556 
2557 /*
2558  * Don't allow locked mount flags to be cleared.
2559  *
2560  * No locks need to be held here while testing the various MNT_LOCK
2561  * flags because those flags can never be cleared once they are set.
2562  */
2563 static bool can_change_locked_flags(struct mount *mnt, unsigned int mnt_flags)
2564 {
2565 	unsigned int fl = mnt->mnt.mnt_flags;
2566 
2567 	if ((fl & MNT_LOCK_READONLY) &&
2568 	    !(mnt_flags & MNT_READONLY))
2569 		return false;
2570 
2571 	if ((fl & MNT_LOCK_NODEV) &&
2572 	    !(mnt_flags & MNT_NODEV))
2573 		return false;
2574 
2575 	if ((fl & MNT_LOCK_NOSUID) &&
2576 	    !(mnt_flags & MNT_NOSUID))
2577 		return false;
2578 
2579 	if ((fl & MNT_LOCK_NOEXEC) &&
2580 	    !(mnt_flags & MNT_NOEXEC))
2581 		return false;
2582 
2583 	if ((fl & MNT_LOCK_ATIME) &&
2584 	    ((fl & MNT_ATIME_MASK) != (mnt_flags & MNT_ATIME_MASK)))
2585 		return false;
2586 
2587 	return true;
2588 }
2589 
2590 static int change_mount_ro_state(struct mount *mnt, unsigned int mnt_flags)
2591 {
2592 	bool readonly_request = (mnt_flags & MNT_READONLY);
2593 
2594 	if (readonly_request == __mnt_is_readonly(&mnt->mnt))
2595 		return 0;
2596 
2597 	if (readonly_request)
2598 		return mnt_make_readonly(mnt);
2599 
2600 	mnt->mnt.mnt_flags &= ~MNT_READONLY;
2601 	return 0;
2602 }
2603 
2604 static void set_mount_attributes(struct mount *mnt, unsigned int mnt_flags)
2605 {
2606 	mnt_flags |= mnt->mnt.mnt_flags & ~MNT_USER_SETTABLE_MASK;
2607 	mnt->mnt.mnt_flags = mnt_flags;
2608 	touch_mnt_namespace(mnt->mnt_ns);
2609 }
2610 
2611 static void mnt_warn_timestamp_expiry(struct path *mountpoint, struct vfsmount *mnt)
2612 {
2613 	struct super_block *sb = mnt->mnt_sb;
2614 
2615 	if (!__mnt_is_readonly(mnt) &&
2616 	   (!(sb->s_iflags & SB_I_TS_EXPIRY_WARNED)) &&
2617 	   (ktime_get_real_seconds() + TIME_UPTIME_SEC_MAX > sb->s_time_max)) {
2618 		char *buf = (char *)__get_free_page(GFP_KERNEL);
2619 		char *mntpath = buf ? d_path(mountpoint, buf, PAGE_SIZE) : ERR_PTR(-ENOMEM);
2620 
2621 		pr_warn("%s filesystem being %s at %s supports timestamps until %ptTd (0x%llx)\n",
2622 			sb->s_type->name,
2623 			is_mounted(mnt) ? "remounted" : "mounted",
2624 			mntpath, &sb->s_time_max,
2625 			(unsigned long long)sb->s_time_max);
2626 
2627 		free_page((unsigned long)buf);
2628 		sb->s_iflags |= SB_I_TS_EXPIRY_WARNED;
2629 	}
2630 }
2631 
2632 /*
2633  * Handle reconfiguration of the mountpoint only without alteration of the
2634  * superblock it refers to.  This is triggered by specifying MS_REMOUNT|MS_BIND
2635  * to mount(2).
2636  */
2637 static int do_reconfigure_mnt(struct path *path, unsigned int mnt_flags)
2638 {
2639 	struct super_block *sb = path->mnt->mnt_sb;
2640 	struct mount *mnt = real_mount(path->mnt);
2641 	int ret;
2642 
2643 	if (!check_mnt(mnt))
2644 		return -EINVAL;
2645 
2646 	if (path->dentry != mnt->mnt.mnt_root)
2647 		return -EINVAL;
2648 
2649 	if (!can_change_locked_flags(mnt, mnt_flags))
2650 		return -EPERM;
2651 
2652 	/*
2653 	 * We're only checking whether the superblock is read-only not
2654 	 * changing it, so only take down_read(&sb->s_umount).
2655 	 */
2656 	down_read(&sb->s_umount);
2657 	lock_mount_hash();
2658 	ret = change_mount_ro_state(mnt, mnt_flags);
2659 	if (ret == 0)
2660 		set_mount_attributes(mnt, mnt_flags);
2661 	unlock_mount_hash();
2662 	up_read(&sb->s_umount);
2663 
2664 	mnt_warn_timestamp_expiry(path, &mnt->mnt);
2665 
2666 	return ret;
2667 }
2668 
2669 /*
2670  * change filesystem flags. dir should be a physical root of filesystem.
2671  * If you've mounted a non-root directory somewhere and want to do remount
2672  * on it - tough luck.
2673  */
2674 static int do_remount(struct path *path, int ms_flags, int sb_flags,
2675 		      int mnt_flags, void *data)
2676 {
2677 	int err;
2678 	struct super_block *sb = path->mnt->mnt_sb;
2679 	struct mount *mnt = real_mount(path->mnt);
2680 	struct fs_context *fc;
2681 
2682 	if (!check_mnt(mnt))
2683 		return -EINVAL;
2684 
2685 	if (path->dentry != path->mnt->mnt_root)
2686 		return -EINVAL;
2687 
2688 	if (!can_change_locked_flags(mnt, mnt_flags))
2689 		return -EPERM;
2690 
2691 	fc = fs_context_for_reconfigure(path->dentry, sb_flags, MS_RMT_MASK);
2692 	if (IS_ERR(fc))
2693 		return PTR_ERR(fc);
2694 
2695 	fc->oldapi = true;
2696 	err = parse_monolithic_mount_data(fc, data);
2697 	if (!err) {
2698 		down_write(&sb->s_umount);
2699 		err = -EPERM;
2700 		if (ns_capable(sb->s_user_ns, CAP_SYS_ADMIN)) {
2701 			err = reconfigure_super(fc);
2702 			if (!err) {
2703 				lock_mount_hash();
2704 				set_mount_attributes(mnt, mnt_flags);
2705 				unlock_mount_hash();
2706 			}
2707 		}
2708 		up_write(&sb->s_umount);
2709 	}
2710 
2711 	mnt_warn_timestamp_expiry(path, &mnt->mnt);
2712 
2713 	put_fs_context(fc);
2714 	return err;
2715 }
2716 
2717 static inline int tree_contains_unbindable(struct mount *mnt)
2718 {
2719 	struct mount *p;
2720 	for (p = mnt; p; p = next_mnt(p, mnt)) {
2721 		if (IS_MNT_UNBINDABLE(p))
2722 			return 1;
2723 	}
2724 	return 0;
2725 }
2726 
2727 /*
2728  * Check that there aren't references to earlier/same mount namespaces in the
2729  * specified subtree.  Such references can act as pins for mount namespaces
2730  * that aren't checked by the mount-cycle checking code, thereby allowing
2731  * cycles to be made.
2732  */
2733 static bool check_for_nsfs_mounts(struct mount *subtree)
2734 {
2735 	struct mount *p;
2736 	bool ret = false;
2737 
2738 	lock_mount_hash();
2739 	for (p = subtree; p; p = next_mnt(p, subtree))
2740 		if (mnt_ns_loop(p->mnt.mnt_root))
2741 			goto out;
2742 
2743 	ret = true;
2744 out:
2745 	unlock_mount_hash();
2746 	return ret;
2747 }
2748 
2749 static int do_set_group(struct path *from_path, struct path *to_path)
2750 {
2751 	struct mount *from, *to;
2752 	int err;
2753 
2754 	from = real_mount(from_path->mnt);
2755 	to = real_mount(to_path->mnt);
2756 
2757 	namespace_lock();
2758 
2759 	err = -EINVAL;
2760 	/* To and From must be mounted */
2761 	if (!is_mounted(&from->mnt))
2762 		goto out;
2763 	if (!is_mounted(&to->mnt))
2764 		goto out;
2765 
2766 	err = -EPERM;
2767 	/* We should be allowed to modify mount namespaces of both mounts */
2768 	if (!ns_capable(from->mnt_ns->user_ns, CAP_SYS_ADMIN))
2769 		goto out;
2770 	if (!ns_capable(to->mnt_ns->user_ns, CAP_SYS_ADMIN))
2771 		goto out;
2772 
2773 	err = -EINVAL;
2774 	/* To and From paths should be mount roots */
2775 	if (from_path->dentry != from_path->mnt->mnt_root)
2776 		goto out;
2777 	if (to_path->dentry != to_path->mnt->mnt_root)
2778 		goto out;
2779 
2780 	/* Setting sharing groups is only allowed across same superblock */
2781 	if (from->mnt.mnt_sb != to->mnt.mnt_sb)
2782 		goto out;
2783 
2784 	/* From mount root should be wider than To mount root */
2785 	if (!is_subdir(to->mnt.mnt_root, from->mnt.mnt_root))
2786 		goto out;
2787 
2788 	/* From mount should not have locked children in place of To's root */
2789 	if (has_locked_children(from, to->mnt.mnt_root))
2790 		goto out;
2791 
2792 	/* Setting sharing groups is only allowed on private mounts */
2793 	if (IS_MNT_SHARED(to) || IS_MNT_SLAVE(to))
2794 		goto out;
2795 
2796 	/* From should not be private */
2797 	if (!IS_MNT_SHARED(from) && !IS_MNT_SLAVE(from))
2798 		goto out;
2799 
2800 	if (IS_MNT_SLAVE(from)) {
2801 		struct mount *m = from->mnt_master;
2802 
2803 		list_add(&to->mnt_slave, &m->mnt_slave_list);
2804 		to->mnt_master = m;
2805 	}
2806 
2807 	if (IS_MNT_SHARED(from)) {
2808 		to->mnt_group_id = from->mnt_group_id;
2809 		list_add(&to->mnt_share, &from->mnt_share);
2810 		lock_mount_hash();
2811 		set_mnt_shared(to);
2812 		unlock_mount_hash();
2813 	}
2814 
2815 	err = 0;
2816 out:
2817 	namespace_unlock();
2818 	return err;
2819 }
2820 
2821 static int do_move_mount(struct path *old_path, struct path *new_path)
2822 {
2823 	struct mnt_namespace *ns;
2824 	struct mount *p;
2825 	struct mount *old;
2826 	struct mount *parent;
2827 	struct mountpoint *mp, *old_mp;
2828 	int err;
2829 	bool attached;
2830 
2831 	mp = lock_mount(new_path);
2832 	if (IS_ERR(mp))
2833 		return PTR_ERR(mp);
2834 
2835 	old = real_mount(old_path->mnt);
2836 	p = real_mount(new_path->mnt);
2837 	parent = old->mnt_parent;
2838 	attached = mnt_has_parent(old);
2839 	old_mp = old->mnt_mp;
2840 	ns = old->mnt_ns;
2841 
2842 	err = -EINVAL;
2843 	/* The mountpoint must be in our namespace. */
2844 	if (!check_mnt(p))
2845 		goto out;
2846 
2847 	/* The thing moved must be mounted... */
2848 	if (!is_mounted(&old->mnt))
2849 		goto out;
2850 
2851 	/* ... and either ours or the root of anon namespace */
2852 	if (!(attached ? check_mnt(old) : is_anon_ns(ns)))
2853 		goto out;
2854 
2855 	if (old->mnt.mnt_flags & MNT_LOCKED)
2856 		goto out;
2857 
2858 	if (old_path->dentry != old_path->mnt->mnt_root)
2859 		goto out;
2860 
2861 	if (d_is_dir(new_path->dentry) !=
2862 	    d_is_dir(old_path->dentry))
2863 		goto out;
2864 	/*
2865 	 * Don't move a mount residing in a shared parent.
2866 	 */
2867 	if (attached && IS_MNT_SHARED(parent))
2868 		goto out;
2869 	/*
2870 	 * Don't move a mount tree containing unbindable mounts to a destination
2871 	 * mount which is shared.
2872 	 */
2873 	if (IS_MNT_SHARED(p) && tree_contains_unbindable(old))
2874 		goto out;
2875 	err = -ELOOP;
2876 	if (!check_for_nsfs_mounts(old))
2877 		goto out;
2878 	for (; mnt_has_parent(p); p = p->mnt_parent)
2879 		if (p == old)
2880 			goto out;
2881 
2882 	err = attach_recursive_mnt(old, real_mount(new_path->mnt), mp,
2883 				   attached);
2884 	if (err)
2885 		goto out;
2886 
2887 	/* if the mount is moved, it should no longer be expire
2888 	 * automatically */
2889 	list_del_init(&old->mnt_expire);
2890 	if (attached)
2891 		put_mountpoint(old_mp);
2892 out:
2893 	unlock_mount(mp);
2894 	if (!err) {
2895 		if (attached)
2896 			mntput_no_expire(parent);
2897 		else
2898 			free_mnt_ns(ns);
2899 	}
2900 	return err;
2901 }
2902 
2903 static int do_move_mount_old(struct path *path, const char *old_name)
2904 {
2905 	struct path old_path;
2906 	int err;
2907 
2908 	if (!old_name || !*old_name)
2909 		return -EINVAL;
2910 
2911 	err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
2912 	if (err)
2913 		return err;
2914 
2915 	err = do_move_mount(&old_path, path);
2916 	path_put(&old_path);
2917 	return err;
2918 }
2919 
2920 /*
2921  * add a mount into a namespace's mount tree
2922  */
2923 static int do_add_mount(struct mount *newmnt, struct mountpoint *mp,
2924 			const struct path *path, int mnt_flags)
2925 {
2926 	struct mount *parent = real_mount(path->mnt);
2927 
2928 	mnt_flags &= ~MNT_INTERNAL_FLAGS;
2929 
2930 	if (unlikely(!check_mnt(parent))) {
2931 		/* that's acceptable only for automounts done in private ns */
2932 		if (!(mnt_flags & MNT_SHRINKABLE))
2933 			return -EINVAL;
2934 		/* ... and for those we'd better have mountpoint still alive */
2935 		if (!parent->mnt_ns)
2936 			return -EINVAL;
2937 	}
2938 
2939 	/* Refuse the same filesystem on the same mount point */
2940 	if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb &&
2941 	    path->mnt->mnt_root == path->dentry)
2942 		return -EBUSY;
2943 
2944 	if (d_is_symlink(newmnt->mnt.mnt_root))
2945 		return -EINVAL;
2946 
2947 	newmnt->mnt.mnt_flags = mnt_flags;
2948 	return graft_tree(newmnt, parent, mp);
2949 }
2950 
2951 static bool mount_too_revealing(const struct super_block *sb, int *new_mnt_flags);
2952 
2953 /*
2954  * Create a new mount using a superblock configuration and request it
2955  * be added to the namespace tree.
2956  */
2957 static int do_new_mount_fc(struct fs_context *fc, struct path *mountpoint,
2958 			   unsigned int mnt_flags)
2959 {
2960 	struct vfsmount *mnt;
2961 	struct mountpoint *mp;
2962 	struct super_block *sb = fc->root->d_sb;
2963 	int error;
2964 
2965 	error = security_sb_kern_mount(sb);
2966 	if (!error && mount_too_revealing(sb, &mnt_flags))
2967 		error = -EPERM;
2968 
2969 	if (unlikely(error)) {
2970 		fc_drop_locked(fc);
2971 		return error;
2972 	}
2973 
2974 	up_write(&sb->s_umount);
2975 
2976 	mnt = vfs_create_mount(fc);
2977 	if (IS_ERR(mnt))
2978 		return PTR_ERR(mnt);
2979 
2980 	mnt_warn_timestamp_expiry(mountpoint, mnt);
2981 
2982 	mp = lock_mount(mountpoint);
2983 	if (IS_ERR(mp)) {
2984 		mntput(mnt);
2985 		return PTR_ERR(mp);
2986 	}
2987 	error = do_add_mount(real_mount(mnt), mp, mountpoint, mnt_flags);
2988 	unlock_mount(mp);
2989 	if (error < 0)
2990 		mntput(mnt);
2991 	return error;
2992 }
2993 
2994 /*
2995  * create a new mount for userspace and request it to be added into the
2996  * namespace's tree
2997  */
2998 static int do_new_mount(struct path *path, const char *fstype, int sb_flags,
2999 			int mnt_flags, const char *name, void *data)
3000 {
3001 	struct file_system_type *type;
3002 	struct fs_context *fc;
3003 	const char *subtype = NULL;
3004 	int err = 0;
3005 
3006 	if (!fstype)
3007 		return -EINVAL;
3008 
3009 	type = get_fs_type(fstype);
3010 	if (!type)
3011 		return -ENODEV;
3012 
3013 	if (type->fs_flags & FS_HAS_SUBTYPE) {
3014 		subtype = strchr(fstype, '.');
3015 		if (subtype) {
3016 			subtype++;
3017 			if (!*subtype) {
3018 				put_filesystem(type);
3019 				return -EINVAL;
3020 			}
3021 		}
3022 	}
3023 
3024 	fc = fs_context_for_mount(type, sb_flags);
3025 	put_filesystem(type);
3026 	if (IS_ERR(fc))
3027 		return PTR_ERR(fc);
3028 
3029 	if (subtype)
3030 		err = vfs_parse_fs_string(fc, "subtype",
3031 					  subtype, strlen(subtype));
3032 	if (!err && name)
3033 		err = vfs_parse_fs_string(fc, "source", name, strlen(name));
3034 	if (!err)
3035 		err = parse_monolithic_mount_data(fc, data);
3036 	if (!err && !mount_capable(fc))
3037 		err = -EPERM;
3038 	if (!err)
3039 		err = vfs_get_tree(fc);
3040 	if (!err)
3041 		err = do_new_mount_fc(fc, path, mnt_flags);
3042 
3043 	put_fs_context(fc);
3044 	return err;
3045 }
3046 
3047 int finish_automount(struct vfsmount *m, const struct path *path)
3048 {
3049 	struct dentry *dentry = path->dentry;
3050 	struct mountpoint *mp;
3051 	struct mount *mnt;
3052 	int err;
3053 
3054 	if (!m)
3055 		return 0;
3056 	if (IS_ERR(m))
3057 		return PTR_ERR(m);
3058 
3059 	mnt = real_mount(m);
3060 	/* The new mount record should have at least 2 refs to prevent it being
3061 	 * expired before we get a chance to add it
3062 	 */
3063 	BUG_ON(mnt_get_count(mnt) < 2);
3064 
3065 	if (m->mnt_sb == path->mnt->mnt_sb &&
3066 	    m->mnt_root == dentry) {
3067 		err = -ELOOP;
3068 		goto discard;
3069 	}
3070 
3071 	/*
3072 	 * we don't want to use lock_mount() - in this case finding something
3073 	 * that overmounts our mountpoint to be means "quitely drop what we've
3074 	 * got", not "try to mount it on top".
3075 	 */
3076 	inode_lock(dentry->d_inode);
3077 	namespace_lock();
3078 	if (unlikely(cant_mount(dentry))) {
3079 		err = -ENOENT;
3080 		goto discard_locked;
3081 	}
3082 	rcu_read_lock();
3083 	if (unlikely(__lookup_mnt(path->mnt, dentry))) {
3084 		rcu_read_unlock();
3085 		err = 0;
3086 		goto discard_locked;
3087 	}
3088 	rcu_read_unlock();
3089 	mp = get_mountpoint(dentry);
3090 	if (IS_ERR(mp)) {
3091 		err = PTR_ERR(mp);
3092 		goto discard_locked;
3093 	}
3094 
3095 	err = do_add_mount(mnt, mp, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
3096 	unlock_mount(mp);
3097 	if (unlikely(err))
3098 		goto discard;
3099 	mntput(m);
3100 	return 0;
3101 
3102 discard_locked:
3103 	namespace_unlock();
3104 	inode_unlock(dentry->d_inode);
3105 discard:
3106 	/* remove m from any expiration list it may be on */
3107 	if (!list_empty(&mnt->mnt_expire)) {
3108 		namespace_lock();
3109 		list_del_init(&mnt->mnt_expire);
3110 		namespace_unlock();
3111 	}
3112 	mntput(m);
3113 	mntput(m);
3114 	return err;
3115 }
3116 
3117 /**
3118  * mnt_set_expiry - Put a mount on an expiration list
3119  * @mnt: The mount to list.
3120  * @expiry_list: The list to add the mount to.
3121  */
3122 void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
3123 {
3124 	namespace_lock();
3125 
3126 	list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
3127 
3128 	namespace_unlock();
3129 }
3130 EXPORT_SYMBOL(mnt_set_expiry);
3131 
3132 /*
3133  * process a list of expirable mountpoints with the intent of discarding any
3134  * mountpoints that aren't in use and haven't been touched since last we came
3135  * here
3136  */
3137 void mark_mounts_for_expiry(struct list_head *mounts)
3138 {
3139 	struct mount *mnt, *next;
3140 	LIST_HEAD(graveyard);
3141 
3142 	if (list_empty(mounts))
3143 		return;
3144 
3145 	namespace_lock();
3146 	lock_mount_hash();
3147 
3148 	/* extract from the expiration list every vfsmount that matches the
3149 	 * following criteria:
3150 	 * - only referenced by its parent vfsmount
3151 	 * - still marked for expiry (marked on the last call here; marks are
3152 	 *   cleared by mntput())
3153 	 */
3154 	list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
3155 		if (!xchg(&mnt->mnt_expiry_mark, 1) ||
3156 			propagate_mount_busy(mnt, 1))
3157 			continue;
3158 		list_move(&mnt->mnt_expire, &graveyard);
3159 	}
3160 	while (!list_empty(&graveyard)) {
3161 		mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
3162 		touch_mnt_namespace(mnt->mnt_ns);
3163 		umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
3164 	}
3165 	unlock_mount_hash();
3166 	namespace_unlock();
3167 }
3168 
3169 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
3170 
3171 /*
3172  * Ripoff of 'select_parent()'
3173  *
3174  * search the list of submounts for a given mountpoint, and move any
3175  * shrinkable submounts to the 'graveyard' list.
3176  */
3177 static int select_submounts(struct mount *parent, struct list_head *graveyard)
3178 {
3179 	struct mount *this_parent = parent;
3180 	struct list_head *next;
3181 	int found = 0;
3182 
3183 repeat:
3184 	next = this_parent->mnt_mounts.next;
3185 resume:
3186 	while (next != &this_parent->mnt_mounts) {
3187 		struct list_head *tmp = next;
3188 		struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
3189 
3190 		next = tmp->next;
3191 		if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
3192 			continue;
3193 		/*
3194 		 * Descend a level if the d_mounts list is non-empty.
3195 		 */
3196 		if (!list_empty(&mnt->mnt_mounts)) {
3197 			this_parent = mnt;
3198 			goto repeat;
3199 		}
3200 
3201 		if (!propagate_mount_busy(mnt, 1)) {
3202 			list_move_tail(&mnt->mnt_expire, graveyard);
3203 			found++;
3204 		}
3205 	}
3206 	/*
3207 	 * All done at this level ... ascend and resume the search
3208 	 */
3209 	if (this_parent != parent) {
3210 		next = this_parent->mnt_child.next;
3211 		this_parent = this_parent->mnt_parent;
3212 		goto resume;
3213 	}
3214 	return found;
3215 }
3216 
3217 /*
3218  * process a list of expirable mountpoints with the intent of discarding any
3219  * submounts of a specific parent mountpoint
3220  *
3221  * mount_lock must be held for write
3222  */
3223 static void shrink_submounts(struct mount *mnt)
3224 {
3225 	LIST_HEAD(graveyard);
3226 	struct mount *m;
3227 
3228 	/* extract submounts of 'mountpoint' from the expiration list */
3229 	while (select_submounts(mnt, &graveyard)) {
3230 		while (!list_empty(&graveyard)) {
3231 			m = list_first_entry(&graveyard, struct mount,
3232 						mnt_expire);
3233 			touch_mnt_namespace(m->mnt_ns);
3234 			umount_tree(m, UMOUNT_PROPAGATE|UMOUNT_SYNC);
3235 		}
3236 	}
3237 }
3238 
3239 static void *copy_mount_options(const void __user * data)
3240 {
3241 	char *copy;
3242 	unsigned left, offset;
3243 
3244 	if (!data)
3245 		return NULL;
3246 
3247 	copy = kmalloc(PAGE_SIZE, GFP_KERNEL);
3248 	if (!copy)
3249 		return ERR_PTR(-ENOMEM);
3250 
3251 	left = copy_from_user(copy, data, PAGE_SIZE);
3252 
3253 	/*
3254 	 * Not all architectures have an exact copy_from_user(). Resort to
3255 	 * byte at a time.
3256 	 */
3257 	offset = PAGE_SIZE - left;
3258 	while (left) {
3259 		char c;
3260 		if (get_user(c, (const char __user *)data + offset))
3261 			break;
3262 		copy[offset] = c;
3263 		left--;
3264 		offset++;
3265 	}
3266 
3267 	if (left == PAGE_SIZE) {
3268 		kfree(copy);
3269 		return ERR_PTR(-EFAULT);
3270 	}
3271 
3272 	return copy;
3273 }
3274 
3275 static char *copy_mount_string(const void __user *data)
3276 {
3277 	return data ? strndup_user(data, PATH_MAX) : NULL;
3278 }
3279 
3280 /*
3281  * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
3282  * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
3283  *
3284  * data is a (void *) that can point to any structure up to
3285  * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
3286  * information (or be NULL).
3287  *
3288  * Pre-0.97 versions of mount() didn't have a flags word.
3289  * When the flags word was introduced its top half was required
3290  * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
3291  * Therefore, if this magic number is present, it carries no information
3292  * and must be discarded.
3293  */
3294 int path_mount(const char *dev_name, struct path *path,
3295 		const char *type_page, unsigned long flags, void *data_page)
3296 {
3297 	unsigned int mnt_flags = 0, sb_flags;
3298 	int ret;
3299 
3300 	/* Discard magic */
3301 	if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
3302 		flags &= ~MS_MGC_MSK;
3303 
3304 	/* Basic sanity checks */
3305 	if (data_page)
3306 		((char *)data_page)[PAGE_SIZE - 1] = 0;
3307 
3308 	if (flags & MS_NOUSER)
3309 		return -EINVAL;
3310 
3311 	ret = security_sb_mount(dev_name, path, type_page, flags, data_page);
3312 	if (ret)
3313 		return ret;
3314 	if (!may_mount())
3315 		return -EPERM;
3316 	if (flags & SB_MANDLOCK)
3317 		warn_mandlock();
3318 
3319 	/* Default to relatime unless overriden */
3320 	if (!(flags & MS_NOATIME))
3321 		mnt_flags |= MNT_RELATIME;
3322 
3323 	/* Separate the per-mountpoint flags */
3324 	if (flags & MS_NOSUID)
3325 		mnt_flags |= MNT_NOSUID;
3326 	if (flags & MS_NODEV)
3327 		mnt_flags |= MNT_NODEV;
3328 	if (flags & MS_NOEXEC)
3329 		mnt_flags |= MNT_NOEXEC;
3330 	if (flags & MS_NOATIME)
3331 		mnt_flags |= MNT_NOATIME;
3332 	if (flags & MS_NODIRATIME)
3333 		mnt_flags |= MNT_NODIRATIME;
3334 	if (flags & MS_STRICTATIME)
3335 		mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
3336 	if (flags & MS_RDONLY)
3337 		mnt_flags |= MNT_READONLY;
3338 	if (flags & MS_NOSYMFOLLOW)
3339 		mnt_flags |= MNT_NOSYMFOLLOW;
3340 
3341 	/* The default atime for remount is preservation */
3342 	if ((flags & MS_REMOUNT) &&
3343 	    ((flags & (MS_NOATIME | MS_NODIRATIME | MS_RELATIME |
3344 		       MS_STRICTATIME)) == 0)) {
3345 		mnt_flags &= ~MNT_ATIME_MASK;
3346 		mnt_flags |= path->mnt->mnt_flags & MNT_ATIME_MASK;
3347 	}
3348 
3349 	sb_flags = flags & (SB_RDONLY |
3350 			    SB_SYNCHRONOUS |
3351 			    SB_MANDLOCK |
3352 			    SB_DIRSYNC |
3353 			    SB_SILENT |
3354 			    SB_POSIXACL |
3355 			    SB_LAZYTIME |
3356 			    SB_I_VERSION);
3357 
3358 	if ((flags & (MS_REMOUNT | MS_BIND)) == (MS_REMOUNT | MS_BIND))
3359 		return do_reconfigure_mnt(path, mnt_flags);
3360 	if (flags & MS_REMOUNT)
3361 		return do_remount(path, flags, sb_flags, mnt_flags, data_page);
3362 	if (flags & MS_BIND)
3363 		return do_loopback(path, dev_name, flags & MS_REC);
3364 	if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
3365 		return do_change_type(path, flags);
3366 	if (flags & MS_MOVE)
3367 		return do_move_mount_old(path, dev_name);
3368 
3369 	return do_new_mount(path, type_page, sb_flags, mnt_flags, dev_name,
3370 			    data_page);
3371 }
3372 
3373 long do_mount(const char *dev_name, const char __user *dir_name,
3374 		const char *type_page, unsigned long flags, void *data_page)
3375 {
3376 	struct path path;
3377 	int ret;
3378 
3379 	ret = user_path_at(AT_FDCWD, dir_name, LOOKUP_FOLLOW, &path);
3380 	if (ret)
3381 		return ret;
3382 	ret = path_mount(dev_name, &path, type_page, flags, data_page);
3383 	path_put(&path);
3384 	return ret;
3385 }
3386 
3387 static struct ucounts *inc_mnt_namespaces(struct user_namespace *ns)
3388 {
3389 	return inc_ucount(ns, current_euid(), UCOUNT_MNT_NAMESPACES);
3390 }
3391 
3392 static void dec_mnt_namespaces(struct ucounts *ucounts)
3393 {
3394 	dec_ucount(ucounts, UCOUNT_MNT_NAMESPACES);
3395 }
3396 
3397 static void free_mnt_ns(struct mnt_namespace *ns)
3398 {
3399 	if (!is_anon_ns(ns))
3400 		ns_free_inum(&ns->ns);
3401 	dec_mnt_namespaces(ns->ucounts);
3402 	put_user_ns(ns->user_ns);
3403 	kfree(ns);
3404 }
3405 
3406 /*
3407  * Assign a sequence number so we can detect when we attempt to bind
3408  * mount a reference to an older mount namespace into the current
3409  * mount namespace, preventing reference counting loops.  A 64bit
3410  * number incrementing at 10Ghz will take 12,427 years to wrap which
3411  * is effectively never, so we can ignore the possibility.
3412  */
3413 static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1);
3414 
3415 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns, bool anon)
3416 {
3417 	struct mnt_namespace *new_ns;
3418 	struct ucounts *ucounts;
3419 	int ret;
3420 
3421 	ucounts = inc_mnt_namespaces(user_ns);
3422 	if (!ucounts)
3423 		return ERR_PTR(-ENOSPC);
3424 
3425 	new_ns = kzalloc(sizeof(struct mnt_namespace), GFP_KERNEL_ACCOUNT);
3426 	if (!new_ns) {
3427 		dec_mnt_namespaces(ucounts);
3428 		return ERR_PTR(-ENOMEM);
3429 	}
3430 	if (!anon) {
3431 		ret = ns_alloc_inum(&new_ns->ns);
3432 		if (ret) {
3433 			kfree(new_ns);
3434 			dec_mnt_namespaces(ucounts);
3435 			return ERR_PTR(ret);
3436 		}
3437 	}
3438 	new_ns->ns.ops = &mntns_operations;
3439 	if (!anon)
3440 		new_ns->seq = atomic64_add_return(1, &mnt_ns_seq);
3441 	refcount_set(&new_ns->ns.count, 1);
3442 	INIT_LIST_HEAD(&new_ns->list);
3443 	init_waitqueue_head(&new_ns->poll);
3444 	spin_lock_init(&new_ns->ns_lock);
3445 	new_ns->user_ns = get_user_ns(user_ns);
3446 	new_ns->ucounts = ucounts;
3447 	return new_ns;
3448 }
3449 
3450 __latent_entropy
3451 struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
3452 		struct user_namespace *user_ns, struct fs_struct *new_fs)
3453 {
3454 	struct mnt_namespace *new_ns;
3455 	struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
3456 	struct mount *p, *q;
3457 	struct mount *old;
3458 	struct mount *new;
3459 	int copy_flags;
3460 
3461 	BUG_ON(!ns);
3462 
3463 	if (likely(!(flags & CLONE_NEWNS))) {
3464 		get_mnt_ns(ns);
3465 		return ns;
3466 	}
3467 
3468 	old = ns->root;
3469 
3470 	new_ns = alloc_mnt_ns(user_ns, false);
3471 	if (IS_ERR(new_ns))
3472 		return new_ns;
3473 
3474 	namespace_lock();
3475 	/* First pass: copy the tree topology */
3476 	copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE;
3477 	if (user_ns != ns->user_ns)
3478 		copy_flags |= CL_SHARED_TO_SLAVE;
3479 	new = copy_tree(old, old->mnt.mnt_root, copy_flags);
3480 	if (IS_ERR(new)) {
3481 		namespace_unlock();
3482 		free_mnt_ns(new_ns);
3483 		return ERR_CAST(new);
3484 	}
3485 	if (user_ns != ns->user_ns) {
3486 		lock_mount_hash();
3487 		lock_mnt_tree(new);
3488 		unlock_mount_hash();
3489 	}
3490 	new_ns->root = new;
3491 	list_add_tail(&new_ns->list, &new->mnt_list);
3492 
3493 	/*
3494 	 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
3495 	 * as belonging to new namespace.  We have already acquired a private
3496 	 * fs_struct, so tsk->fs->lock is not needed.
3497 	 */
3498 	p = old;
3499 	q = new;
3500 	while (p) {
3501 		q->mnt_ns = new_ns;
3502 		new_ns->mounts++;
3503 		if (new_fs) {
3504 			if (&p->mnt == new_fs->root.mnt) {
3505 				new_fs->root.mnt = mntget(&q->mnt);
3506 				rootmnt = &p->mnt;
3507 			}
3508 			if (&p->mnt == new_fs->pwd.mnt) {
3509 				new_fs->pwd.mnt = mntget(&q->mnt);
3510 				pwdmnt = &p->mnt;
3511 			}
3512 		}
3513 		p = next_mnt(p, old);
3514 		q = next_mnt(q, new);
3515 		if (!q)
3516 			break;
3517 		// an mntns binding we'd skipped?
3518 		while (p->mnt.mnt_root != q->mnt.mnt_root)
3519 			p = next_mnt(skip_mnt_tree(p), old);
3520 	}
3521 	namespace_unlock();
3522 
3523 	if (rootmnt)
3524 		mntput(rootmnt);
3525 	if (pwdmnt)
3526 		mntput(pwdmnt);
3527 
3528 	return new_ns;
3529 }
3530 
3531 struct dentry *mount_subtree(struct vfsmount *m, const char *name)
3532 {
3533 	struct mount *mnt = real_mount(m);
3534 	struct mnt_namespace *ns;
3535 	struct super_block *s;
3536 	struct path path;
3537 	int err;
3538 
3539 	ns = alloc_mnt_ns(&init_user_ns, true);
3540 	if (IS_ERR(ns)) {
3541 		mntput(m);
3542 		return ERR_CAST(ns);
3543 	}
3544 	mnt->mnt_ns = ns;
3545 	ns->root = mnt;
3546 	ns->mounts++;
3547 	list_add(&mnt->mnt_list, &ns->list);
3548 
3549 	err = vfs_path_lookup(m->mnt_root, m,
3550 			name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
3551 
3552 	put_mnt_ns(ns);
3553 
3554 	if (err)
3555 		return ERR_PTR(err);
3556 
3557 	/* trade a vfsmount reference for active sb one */
3558 	s = path.mnt->mnt_sb;
3559 	atomic_inc(&s->s_active);
3560 	mntput(path.mnt);
3561 	/* lock the sucker */
3562 	down_write(&s->s_umount);
3563 	/* ... and return the root of (sub)tree on it */
3564 	return path.dentry;
3565 }
3566 EXPORT_SYMBOL(mount_subtree);
3567 
3568 SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
3569 		char __user *, type, unsigned long, flags, void __user *, data)
3570 {
3571 	int ret;
3572 	char *kernel_type;
3573 	char *kernel_dev;
3574 	void *options;
3575 
3576 	kernel_type = copy_mount_string(type);
3577 	ret = PTR_ERR(kernel_type);
3578 	if (IS_ERR(kernel_type))
3579 		goto out_type;
3580 
3581 	kernel_dev = copy_mount_string(dev_name);
3582 	ret = PTR_ERR(kernel_dev);
3583 	if (IS_ERR(kernel_dev))
3584 		goto out_dev;
3585 
3586 	options = copy_mount_options(data);
3587 	ret = PTR_ERR(options);
3588 	if (IS_ERR(options))
3589 		goto out_data;
3590 
3591 	ret = do_mount(kernel_dev, dir_name, kernel_type, flags, options);
3592 
3593 	kfree(options);
3594 out_data:
3595 	kfree(kernel_dev);
3596 out_dev:
3597 	kfree(kernel_type);
3598 out_type:
3599 	return ret;
3600 }
3601 
3602 #define FSMOUNT_VALID_FLAGS                                                    \
3603 	(MOUNT_ATTR_RDONLY | MOUNT_ATTR_NOSUID | MOUNT_ATTR_NODEV |            \
3604 	 MOUNT_ATTR_NOEXEC | MOUNT_ATTR__ATIME | MOUNT_ATTR_NODIRATIME |       \
3605 	 MOUNT_ATTR_NOSYMFOLLOW)
3606 
3607 #define MOUNT_SETATTR_VALID_FLAGS (FSMOUNT_VALID_FLAGS | MOUNT_ATTR_IDMAP)
3608 
3609 #define MOUNT_SETATTR_PROPAGATION_FLAGS \
3610 	(MS_UNBINDABLE | MS_PRIVATE | MS_SLAVE | MS_SHARED)
3611 
3612 static unsigned int attr_flags_to_mnt_flags(u64 attr_flags)
3613 {
3614 	unsigned int mnt_flags = 0;
3615 
3616 	if (attr_flags & MOUNT_ATTR_RDONLY)
3617 		mnt_flags |= MNT_READONLY;
3618 	if (attr_flags & MOUNT_ATTR_NOSUID)
3619 		mnt_flags |= MNT_NOSUID;
3620 	if (attr_flags & MOUNT_ATTR_NODEV)
3621 		mnt_flags |= MNT_NODEV;
3622 	if (attr_flags & MOUNT_ATTR_NOEXEC)
3623 		mnt_flags |= MNT_NOEXEC;
3624 	if (attr_flags & MOUNT_ATTR_NODIRATIME)
3625 		mnt_flags |= MNT_NODIRATIME;
3626 	if (attr_flags & MOUNT_ATTR_NOSYMFOLLOW)
3627 		mnt_flags |= MNT_NOSYMFOLLOW;
3628 
3629 	return mnt_flags;
3630 }
3631 
3632 /*
3633  * Create a kernel mount representation for a new, prepared superblock
3634  * (specified by fs_fd) and attach to an open_tree-like file descriptor.
3635  */
3636 SYSCALL_DEFINE3(fsmount, int, fs_fd, unsigned int, flags,
3637 		unsigned int, attr_flags)
3638 {
3639 	struct mnt_namespace *ns;
3640 	struct fs_context *fc;
3641 	struct file *file;
3642 	struct path newmount;
3643 	struct mount *mnt;
3644 	struct fd f;
3645 	unsigned int mnt_flags = 0;
3646 	long ret;
3647 
3648 	if (!may_mount())
3649 		return -EPERM;
3650 
3651 	if ((flags & ~(FSMOUNT_CLOEXEC)) != 0)
3652 		return -EINVAL;
3653 
3654 	if (attr_flags & ~FSMOUNT_VALID_FLAGS)
3655 		return -EINVAL;
3656 
3657 	mnt_flags = attr_flags_to_mnt_flags(attr_flags);
3658 
3659 	switch (attr_flags & MOUNT_ATTR__ATIME) {
3660 	case MOUNT_ATTR_STRICTATIME:
3661 		break;
3662 	case MOUNT_ATTR_NOATIME:
3663 		mnt_flags |= MNT_NOATIME;
3664 		break;
3665 	case MOUNT_ATTR_RELATIME:
3666 		mnt_flags |= MNT_RELATIME;
3667 		break;
3668 	default:
3669 		return -EINVAL;
3670 	}
3671 
3672 	f = fdget(fs_fd);
3673 	if (!f.file)
3674 		return -EBADF;
3675 
3676 	ret = -EINVAL;
3677 	if (f.file->f_op != &fscontext_fops)
3678 		goto err_fsfd;
3679 
3680 	fc = f.file->private_data;
3681 
3682 	ret = mutex_lock_interruptible(&fc->uapi_mutex);
3683 	if (ret < 0)
3684 		goto err_fsfd;
3685 
3686 	/* There must be a valid superblock or we can't mount it */
3687 	ret = -EINVAL;
3688 	if (!fc->root)
3689 		goto err_unlock;
3690 
3691 	ret = -EPERM;
3692 	if (mount_too_revealing(fc->root->d_sb, &mnt_flags)) {
3693 		pr_warn("VFS: Mount too revealing\n");
3694 		goto err_unlock;
3695 	}
3696 
3697 	ret = -EBUSY;
3698 	if (fc->phase != FS_CONTEXT_AWAITING_MOUNT)
3699 		goto err_unlock;
3700 
3701 	if (fc->sb_flags & SB_MANDLOCK)
3702 		warn_mandlock();
3703 
3704 	newmount.mnt = vfs_create_mount(fc);
3705 	if (IS_ERR(newmount.mnt)) {
3706 		ret = PTR_ERR(newmount.mnt);
3707 		goto err_unlock;
3708 	}
3709 	newmount.dentry = dget(fc->root);
3710 	newmount.mnt->mnt_flags = mnt_flags;
3711 
3712 	/* We've done the mount bit - now move the file context into more or
3713 	 * less the same state as if we'd done an fspick().  We don't want to
3714 	 * do any memory allocation or anything like that at this point as we
3715 	 * don't want to have to handle any errors incurred.
3716 	 */
3717 	vfs_clean_context(fc);
3718 
3719 	ns = alloc_mnt_ns(current->nsproxy->mnt_ns->user_ns, true);
3720 	if (IS_ERR(ns)) {
3721 		ret = PTR_ERR(ns);
3722 		goto err_path;
3723 	}
3724 	mnt = real_mount(newmount.mnt);
3725 	mnt->mnt_ns = ns;
3726 	ns->root = mnt;
3727 	ns->mounts = 1;
3728 	list_add(&mnt->mnt_list, &ns->list);
3729 	mntget(newmount.mnt);
3730 
3731 	/* Attach to an apparent O_PATH fd with a note that we need to unmount
3732 	 * it, not just simply put it.
3733 	 */
3734 	file = dentry_open(&newmount, O_PATH, fc->cred);
3735 	if (IS_ERR(file)) {
3736 		dissolve_on_fput(newmount.mnt);
3737 		ret = PTR_ERR(file);
3738 		goto err_path;
3739 	}
3740 	file->f_mode |= FMODE_NEED_UNMOUNT;
3741 
3742 	ret = get_unused_fd_flags((flags & FSMOUNT_CLOEXEC) ? O_CLOEXEC : 0);
3743 	if (ret >= 0)
3744 		fd_install(ret, file);
3745 	else
3746 		fput(file);
3747 
3748 err_path:
3749 	path_put(&newmount);
3750 err_unlock:
3751 	mutex_unlock(&fc->uapi_mutex);
3752 err_fsfd:
3753 	fdput(f);
3754 	return ret;
3755 }
3756 
3757 /*
3758  * Move a mount from one place to another.  In combination with
3759  * fsopen()/fsmount() this is used to install a new mount and in combination
3760  * with open_tree(OPEN_TREE_CLONE [| AT_RECURSIVE]) it can be used to copy
3761  * a mount subtree.
3762  *
3763  * Note the flags value is a combination of MOVE_MOUNT_* flags.
3764  */
3765 SYSCALL_DEFINE5(move_mount,
3766 		int, from_dfd, const char __user *, from_pathname,
3767 		int, to_dfd, const char __user *, to_pathname,
3768 		unsigned int, flags)
3769 {
3770 	struct path from_path, to_path;
3771 	unsigned int lflags;
3772 	int ret = 0;
3773 
3774 	if (!may_mount())
3775 		return -EPERM;
3776 
3777 	if (flags & ~MOVE_MOUNT__MASK)
3778 		return -EINVAL;
3779 
3780 	/* If someone gives a pathname, they aren't permitted to move
3781 	 * from an fd that requires unmount as we can't get at the flag
3782 	 * to clear it afterwards.
3783 	 */
3784 	lflags = 0;
3785 	if (flags & MOVE_MOUNT_F_SYMLINKS)	lflags |= LOOKUP_FOLLOW;
3786 	if (flags & MOVE_MOUNT_F_AUTOMOUNTS)	lflags |= LOOKUP_AUTOMOUNT;
3787 	if (flags & MOVE_MOUNT_F_EMPTY_PATH)	lflags |= LOOKUP_EMPTY;
3788 
3789 	ret = user_path_at(from_dfd, from_pathname, lflags, &from_path);
3790 	if (ret < 0)
3791 		return ret;
3792 
3793 	lflags = 0;
3794 	if (flags & MOVE_MOUNT_T_SYMLINKS)	lflags |= LOOKUP_FOLLOW;
3795 	if (flags & MOVE_MOUNT_T_AUTOMOUNTS)	lflags |= LOOKUP_AUTOMOUNT;
3796 	if (flags & MOVE_MOUNT_T_EMPTY_PATH)	lflags |= LOOKUP_EMPTY;
3797 
3798 	ret = user_path_at(to_dfd, to_pathname, lflags, &to_path);
3799 	if (ret < 0)
3800 		goto out_from;
3801 
3802 	ret = security_move_mount(&from_path, &to_path);
3803 	if (ret < 0)
3804 		goto out_to;
3805 
3806 	if (flags & MOVE_MOUNT_SET_GROUP)
3807 		ret = do_set_group(&from_path, &to_path);
3808 	else
3809 		ret = do_move_mount(&from_path, &to_path);
3810 
3811 out_to:
3812 	path_put(&to_path);
3813 out_from:
3814 	path_put(&from_path);
3815 	return ret;
3816 }
3817 
3818 /*
3819  * Return true if path is reachable from root
3820  *
3821  * namespace_sem or mount_lock is held
3822  */
3823 bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
3824 			 const struct path *root)
3825 {
3826 	while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
3827 		dentry = mnt->mnt_mountpoint;
3828 		mnt = mnt->mnt_parent;
3829 	}
3830 	return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
3831 }
3832 
3833 bool path_is_under(const struct path *path1, const struct path *path2)
3834 {
3835 	bool res;
3836 	read_seqlock_excl(&mount_lock);
3837 	res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
3838 	read_sequnlock_excl(&mount_lock);
3839 	return res;
3840 }
3841 EXPORT_SYMBOL(path_is_under);
3842 
3843 /*
3844  * pivot_root Semantics:
3845  * Moves the root file system of the current process to the directory put_old,
3846  * makes new_root as the new root file system of the current process, and sets
3847  * root/cwd of all processes which had them on the current root to new_root.
3848  *
3849  * Restrictions:
3850  * The new_root and put_old must be directories, and  must not be on the
3851  * same file  system as the current process root. The put_old  must  be
3852  * underneath new_root,  i.e. adding a non-zero number of /.. to the string
3853  * pointed to by put_old must yield the same directory as new_root. No other
3854  * file system may be mounted on put_old. After all, new_root is a mountpoint.
3855  *
3856  * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
3857  * See Documentation/filesystems/ramfs-rootfs-initramfs.rst for alternatives
3858  * in this situation.
3859  *
3860  * Notes:
3861  *  - we don't move root/cwd if they are not at the root (reason: if something
3862  *    cared enough to change them, it's probably wrong to force them elsewhere)
3863  *  - it's okay to pick a root that isn't the root of a file system, e.g.
3864  *    /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
3865  *    though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
3866  *    first.
3867  */
3868 SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
3869 		const char __user *, put_old)
3870 {
3871 	struct path new, old, root;
3872 	struct mount *new_mnt, *root_mnt, *old_mnt, *root_parent, *ex_parent;
3873 	struct mountpoint *old_mp, *root_mp;
3874 	int error;
3875 
3876 	if (!may_mount())
3877 		return -EPERM;
3878 
3879 	error = user_path_at(AT_FDCWD, new_root,
3880 			     LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &new);
3881 	if (error)
3882 		goto out0;
3883 
3884 	error = user_path_at(AT_FDCWD, put_old,
3885 			     LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &old);
3886 	if (error)
3887 		goto out1;
3888 
3889 	error = security_sb_pivotroot(&old, &new);
3890 	if (error)
3891 		goto out2;
3892 
3893 	get_fs_root(current->fs, &root);
3894 	old_mp = lock_mount(&old);
3895 	error = PTR_ERR(old_mp);
3896 	if (IS_ERR(old_mp))
3897 		goto out3;
3898 
3899 	error = -EINVAL;
3900 	new_mnt = real_mount(new.mnt);
3901 	root_mnt = real_mount(root.mnt);
3902 	old_mnt = real_mount(old.mnt);
3903 	ex_parent = new_mnt->mnt_parent;
3904 	root_parent = root_mnt->mnt_parent;
3905 	if (IS_MNT_SHARED(old_mnt) ||
3906 		IS_MNT_SHARED(ex_parent) ||
3907 		IS_MNT_SHARED(root_parent))
3908 		goto out4;
3909 	if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
3910 		goto out4;
3911 	if (new_mnt->mnt.mnt_flags & MNT_LOCKED)
3912 		goto out4;
3913 	error = -ENOENT;
3914 	if (d_unlinked(new.dentry))
3915 		goto out4;
3916 	error = -EBUSY;
3917 	if (new_mnt == root_mnt || old_mnt == root_mnt)
3918 		goto out4; /* loop, on the same file system  */
3919 	error = -EINVAL;
3920 	if (root.mnt->mnt_root != root.dentry)
3921 		goto out4; /* not a mountpoint */
3922 	if (!mnt_has_parent(root_mnt))
3923 		goto out4; /* not attached */
3924 	if (new.mnt->mnt_root != new.dentry)
3925 		goto out4; /* not a mountpoint */
3926 	if (!mnt_has_parent(new_mnt))
3927 		goto out4; /* not attached */
3928 	/* make sure we can reach put_old from new_root */
3929 	if (!is_path_reachable(old_mnt, old.dentry, &new))
3930 		goto out4;
3931 	/* make certain new is below the root */
3932 	if (!is_path_reachable(new_mnt, new.dentry, &root))
3933 		goto out4;
3934 	lock_mount_hash();
3935 	umount_mnt(new_mnt);
3936 	root_mp = unhash_mnt(root_mnt);  /* we'll need its mountpoint */
3937 	if (root_mnt->mnt.mnt_flags & MNT_LOCKED) {
3938 		new_mnt->mnt.mnt_flags |= MNT_LOCKED;
3939 		root_mnt->mnt.mnt_flags &= ~MNT_LOCKED;
3940 	}
3941 	/* mount old root on put_old */
3942 	attach_mnt(root_mnt, old_mnt, old_mp);
3943 	/* mount new_root on / */
3944 	attach_mnt(new_mnt, root_parent, root_mp);
3945 	mnt_add_count(root_parent, -1);
3946 	touch_mnt_namespace(current->nsproxy->mnt_ns);
3947 	/* A moved mount should not expire automatically */
3948 	list_del_init(&new_mnt->mnt_expire);
3949 	put_mountpoint(root_mp);
3950 	unlock_mount_hash();
3951 	chroot_fs_refs(&root, &new);
3952 	error = 0;
3953 out4:
3954 	unlock_mount(old_mp);
3955 	if (!error)
3956 		mntput_no_expire(ex_parent);
3957 out3:
3958 	path_put(&root);
3959 out2:
3960 	path_put(&old);
3961 out1:
3962 	path_put(&new);
3963 out0:
3964 	return error;
3965 }
3966 
3967 static unsigned int recalc_flags(struct mount_kattr *kattr, struct mount *mnt)
3968 {
3969 	unsigned int flags = mnt->mnt.mnt_flags;
3970 
3971 	/*  flags to clear */
3972 	flags &= ~kattr->attr_clr;
3973 	/* flags to raise */
3974 	flags |= kattr->attr_set;
3975 
3976 	return flags;
3977 }
3978 
3979 static int can_idmap_mount(const struct mount_kattr *kattr, struct mount *mnt)
3980 {
3981 	struct vfsmount *m = &mnt->mnt;
3982 	struct user_namespace *fs_userns = m->mnt_sb->s_user_ns;
3983 
3984 	if (!kattr->mnt_idmap)
3985 		return 0;
3986 
3987 	/*
3988 	 * Creating an idmapped mount with the filesystem wide idmapping
3989 	 * doesn't make sense so block that. We don't allow mushy semantics.
3990 	 */
3991 	if (!check_fsmapping(kattr->mnt_idmap, m->mnt_sb))
3992 		return -EINVAL;
3993 
3994 	/*
3995 	 * Once a mount has been idmapped we don't allow it to change its
3996 	 * mapping. It makes things simpler and callers can just create
3997 	 * another bind-mount they can idmap if they want to.
3998 	 */
3999 	if (is_idmapped_mnt(m))
4000 		return -EPERM;
4001 
4002 	/* The underlying filesystem doesn't support idmapped mounts yet. */
4003 	if (!(m->mnt_sb->s_type->fs_flags & FS_ALLOW_IDMAP))
4004 		return -EINVAL;
4005 
4006 	/* We're not controlling the superblock. */
4007 	if (!ns_capable(fs_userns, CAP_SYS_ADMIN))
4008 		return -EPERM;
4009 
4010 	/* Mount has already been visible in the filesystem hierarchy. */
4011 	if (!is_anon_ns(mnt->mnt_ns))
4012 		return -EINVAL;
4013 
4014 	return 0;
4015 }
4016 
4017 /**
4018  * mnt_allow_writers() - check whether the attribute change allows writers
4019  * @kattr: the new mount attributes
4020  * @mnt: the mount to which @kattr will be applied
4021  *
4022  * Check whether thew new mount attributes in @kattr allow concurrent writers.
4023  *
4024  * Return: true if writers need to be held, false if not
4025  */
4026 static inline bool mnt_allow_writers(const struct mount_kattr *kattr,
4027 				     const struct mount *mnt)
4028 {
4029 	return (!(kattr->attr_set & MNT_READONLY) ||
4030 		(mnt->mnt.mnt_flags & MNT_READONLY)) &&
4031 	       !kattr->mnt_idmap;
4032 }
4033 
4034 static int mount_setattr_prepare(struct mount_kattr *kattr, struct mount *mnt)
4035 {
4036 	struct mount *m;
4037 	int err;
4038 
4039 	for (m = mnt; m; m = next_mnt(m, mnt)) {
4040 		if (!can_change_locked_flags(m, recalc_flags(kattr, m))) {
4041 			err = -EPERM;
4042 			break;
4043 		}
4044 
4045 		err = can_idmap_mount(kattr, m);
4046 		if (err)
4047 			break;
4048 
4049 		if (!mnt_allow_writers(kattr, m)) {
4050 			err = mnt_hold_writers(m);
4051 			if (err)
4052 				break;
4053 		}
4054 
4055 		if (!kattr->recurse)
4056 			return 0;
4057 	}
4058 
4059 	if (err) {
4060 		struct mount *p;
4061 
4062 		/*
4063 		 * If we had to call mnt_hold_writers() MNT_WRITE_HOLD will
4064 		 * be set in @mnt_flags. The loop unsets MNT_WRITE_HOLD for all
4065 		 * mounts and needs to take care to include the first mount.
4066 		 */
4067 		for (p = mnt; p; p = next_mnt(p, mnt)) {
4068 			/* If we had to hold writers unblock them. */
4069 			if (p->mnt.mnt_flags & MNT_WRITE_HOLD)
4070 				mnt_unhold_writers(p);
4071 
4072 			/*
4073 			 * We're done once the first mount we changed got
4074 			 * MNT_WRITE_HOLD unset.
4075 			 */
4076 			if (p == m)
4077 				break;
4078 		}
4079 	}
4080 	return err;
4081 }
4082 
4083 static void do_idmap_mount(const struct mount_kattr *kattr, struct mount *mnt)
4084 {
4085 	if (!kattr->mnt_idmap)
4086 		return;
4087 
4088 	/*
4089 	 * Pairs with smp_load_acquire() in mnt_idmap().
4090 	 *
4091 	 * Since we only allow a mount to change the idmapping once and
4092 	 * verified this in can_idmap_mount() we know that the mount has
4093 	 * @nop_mnt_idmap attached to it. So there's no need to drop any
4094 	 * references.
4095 	 */
4096 	smp_store_release(&mnt->mnt.mnt_idmap, mnt_idmap_get(kattr->mnt_idmap));
4097 }
4098 
4099 static void mount_setattr_commit(struct mount_kattr *kattr, struct mount *mnt)
4100 {
4101 	struct mount *m;
4102 
4103 	for (m = mnt; m; m = next_mnt(m, mnt)) {
4104 		unsigned int flags;
4105 
4106 		do_idmap_mount(kattr, m);
4107 		flags = recalc_flags(kattr, m);
4108 		WRITE_ONCE(m->mnt.mnt_flags, flags);
4109 
4110 		/* If we had to hold writers unblock them. */
4111 		if (m->mnt.mnt_flags & MNT_WRITE_HOLD)
4112 			mnt_unhold_writers(m);
4113 
4114 		if (kattr->propagation)
4115 			change_mnt_propagation(m, kattr->propagation);
4116 		if (!kattr->recurse)
4117 			break;
4118 	}
4119 	touch_mnt_namespace(mnt->mnt_ns);
4120 }
4121 
4122 static int do_mount_setattr(struct path *path, struct mount_kattr *kattr)
4123 {
4124 	struct mount *mnt = real_mount(path->mnt);
4125 	int err = 0;
4126 
4127 	if (path->dentry != mnt->mnt.mnt_root)
4128 		return -EINVAL;
4129 
4130 	if (kattr->mnt_userns) {
4131 		struct mnt_idmap *mnt_idmap;
4132 
4133 		mnt_idmap = alloc_mnt_idmap(kattr->mnt_userns);
4134 		if (IS_ERR(mnt_idmap))
4135 			return PTR_ERR(mnt_idmap);
4136 		kattr->mnt_idmap = mnt_idmap;
4137 	}
4138 
4139 	if (kattr->propagation) {
4140 		/*
4141 		 * Only take namespace_lock() if we're actually changing
4142 		 * propagation.
4143 		 */
4144 		namespace_lock();
4145 		if (kattr->propagation == MS_SHARED) {
4146 			err = invent_group_ids(mnt, kattr->recurse);
4147 			if (err) {
4148 				namespace_unlock();
4149 				return err;
4150 			}
4151 		}
4152 	}
4153 
4154 	err = -EINVAL;
4155 	lock_mount_hash();
4156 
4157 	/* Ensure that this isn't anything purely vfs internal. */
4158 	if (!is_mounted(&mnt->mnt))
4159 		goto out;
4160 
4161 	/*
4162 	 * If this is an attached mount make sure it's located in the callers
4163 	 * mount namespace. If it's not don't let the caller interact with it.
4164 	 * If this is a detached mount make sure it has an anonymous mount
4165 	 * namespace attached to it, i.e. we've created it via OPEN_TREE_CLONE.
4166 	 */
4167 	if (!(mnt_has_parent(mnt) ? check_mnt(mnt) : is_anon_ns(mnt->mnt_ns)))
4168 		goto out;
4169 
4170 	/*
4171 	 * First, we get the mount tree in a shape where we can change mount
4172 	 * properties without failure. If we succeeded to do so we commit all
4173 	 * changes and if we failed we clean up.
4174 	 */
4175 	err = mount_setattr_prepare(kattr, mnt);
4176 	if (!err)
4177 		mount_setattr_commit(kattr, mnt);
4178 
4179 out:
4180 	unlock_mount_hash();
4181 
4182 	if (kattr->propagation) {
4183 		if (err)
4184 			cleanup_group_ids(mnt, NULL);
4185 		namespace_unlock();
4186 	}
4187 
4188 	return err;
4189 }
4190 
4191 static int build_mount_idmapped(const struct mount_attr *attr, size_t usize,
4192 				struct mount_kattr *kattr, unsigned int flags)
4193 {
4194 	int err = 0;
4195 	struct ns_common *ns;
4196 	struct user_namespace *mnt_userns;
4197 	struct fd f;
4198 
4199 	if (!((attr->attr_set | attr->attr_clr) & MOUNT_ATTR_IDMAP))
4200 		return 0;
4201 
4202 	/*
4203 	 * We currently do not support clearing an idmapped mount. If this ever
4204 	 * is a use-case we can revisit this but for now let's keep it simple
4205 	 * and not allow it.
4206 	 */
4207 	if (attr->attr_clr & MOUNT_ATTR_IDMAP)
4208 		return -EINVAL;
4209 
4210 	if (attr->userns_fd > INT_MAX)
4211 		return -EINVAL;
4212 
4213 	f = fdget(attr->userns_fd);
4214 	if (!f.file)
4215 		return -EBADF;
4216 
4217 	if (!proc_ns_file(f.file)) {
4218 		err = -EINVAL;
4219 		goto out_fput;
4220 	}
4221 
4222 	ns = get_proc_ns(file_inode(f.file));
4223 	if (ns->ops->type != CLONE_NEWUSER) {
4224 		err = -EINVAL;
4225 		goto out_fput;
4226 	}
4227 
4228 	/*
4229 	 * The initial idmapping cannot be used to create an idmapped
4230 	 * mount. We use the initial idmapping as an indicator of a mount
4231 	 * that is not idmapped. It can simply be passed into helpers that
4232 	 * are aware of idmapped mounts as a convenient shortcut. A user
4233 	 * can just create a dedicated identity mapping to achieve the same
4234 	 * result.
4235 	 */
4236 	mnt_userns = container_of(ns, struct user_namespace, ns);
4237 	if (mnt_userns == &init_user_ns) {
4238 		err = -EPERM;
4239 		goto out_fput;
4240 	}
4241 
4242 	/* We're not controlling the target namespace. */
4243 	if (!ns_capable(mnt_userns, CAP_SYS_ADMIN)) {
4244 		err = -EPERM;
4245 		goto out_fput;
4246 	}
4247 
4248 	kattr->mnt_userns = get_user_ns(mnt_userns);
4249 
4250 out_fput:
4251 	fdput(f);
4252 	return err;
4253 }
4254 
4255 static int build_mount_kattr(const struct mount_attr *attr, size_t usize,
4256 			     struct mount_kattr *kattr, unsigned int flags)
4257 {
4258 	unsigned int lookup_flags = LOOKUP_AUTOMOUNT | LOOKUP_FOLLOW;
4259 
4260 	if (flags & AT_NO_AUTOMOUNT)
4261 		lookup_flags &= ~LOOKUP_AUTOMOUNT;
4262 	if (flags & AT_SYMLINK_NOFOLLOW)
4263 		lookup_flags &= ~LOOKUP_FOLLOW;
4264 	if (flags & AT_EMPTY_PATH)
4265 		lookup_flags |= LOOKUP_EMPTY;
4266 
4267 	*kattr = (struct mount_kattr) {
4268 		.lookup_flags	= lookup_flags,
4269 		.recurse	= !!(flags & AT_RECURSIVE),
4270 	};
4271 
4272 	if (attr->propagation & ~MOUNT_SETATTR_PROPAGATION_FLAGS)
4273 		return -EINVAL;
4274 	if (hweight32(attr->propagation & MOUNT_SETATTR_PROPAGATION_FLAGS) > 1)
4275 		return -EINVAL;
4276 	kattr->propagation = attr->propagation;
4277 
4278 	if ((attr->attr_set | attr->attr_clr) & ~MOUNT_SETATTR_VALID_FLAGS)
4279 		return -EINVAL;
4280 
4281 	kattr->attr_set = attr_flags_to_mnt_flags(attr->attr_set);
4282 	kattr->attr_clr = attr_flags_to_mnt_flags(attr->attr_clr);
4283 
4284 	/*
4285 	 * Since the MOUNT_ATTR_<atime> values are an enum, not a bitmap,
4286 	 * users wanting to transition to a different atime setting cannot
4287 	 * simply specify the atime setting in @attr_set, but must also
4288 	 * specify MOUNT_ATTR__ATIME in the @attr_clr field.
4289 	 * So ensure that MOUNT_ATTR__ATIME can't be partially set in
4290 	 * @attr_clr and that @attr_set can't have any atime bits set if
4291 	 * MOUNT_ATTR__ATIME isn't set in @attr_clr.
4292 	 */
4293 	if (attr->attr_clr & MOUNT_ATTR__ATIME) {
4294 		if ((attr->attr_clr & MOUNT_ATTR__ATIME) != MOUNT_ATTR__ATIME)
4295 			return -EINVAL;
4296 
4297 		/*
4298 		 * Clear all previous time settings as they are mutually
4299 		 * exclusive.
4300 		 */
4301 		kattr->attr_clr |= MNT_RELATIME | MNT_NOATIME;
4302 		switch (attr->attr_set & MOUNT_ATTR__ATIME) {
4303 		case MOUNT_ATTR_RELATIME:
4304 			kattr->attr_set |= MNT_RELATIME;
4305 			break;
4306 		case MOUNT_ATTR_NOATIME:
4307 			kattr->attr_set |= MNT_NOATIME;
4308 			break;
4309 		case MOUNT_ATTR_STRICTATIME:
4310 			break;
4311 		default:
4312 			return -EINVAL;
4313 		}
4314 	} else {
4315 		if (attr->attr_set & MOUNT_ATTR__ATIME)
4316 			return -EINVAL;
4317 	}
4318 
4319 	return build_mount_idmapped(attr, usize, kattr, flags);
4320 }
4321 
4322 static void finish_mount_kattr(struct mount_kattr *kattr)
4323 {
4324 	put_user_ns(kattr->mnt_userns);
4325 	kattr->mnt_userns = NULL;
4326 
4327 	if (kattr->mnt_idmap)
4328 		mnt_idmap_put(kattr->mnt_idmap);
4329 }
4330 
4331 SYSCALL_DEFINE5(mount_setattr, int, dfd, const char __user *, path,
4332 		unsigned int, flags, struct mount_attr __user *, uattr,
4333 		size_t, usize)
4334 {
4335 	int err;
4336 	struct path target;
4337 	struct mount_attr attr;
4338 	struct mount_kattr kattr;
4339 
4340 	BUILD_BUG_ON(sizeof(struct mount_attr) != MOUNT_ATTR_SIZE_VER0);
4341 
4342 	if (flags & ~(AT_EMPTY_PATH |
4343 		      AT_RECURSIVE |
4344 		      AT_SYMLINK_NOFOLLOW |
4345 		      AT_NO_AUTOMOUNT))
4346 		return -EINVAL;
4347 
4348 	if (unlikely(usize > PAGE_SIZE))
4349 		return -E2BIG;
4350 	if (unlikely(usize < MOUNT_ATTR_SIZE_VER0))
4351 		return -EINVAL;
4352 
4353 	if (!may_mount())
4354 		return -EPERM;
4355 
4356 	err = copy_struct_from_user(&attr, sizeof(attr), uattr, usize);
4357 	if (err)
4358 		return err;
4359 
4360 	/* Don't bother walking through the mounts if this is a nop. */
4361 	if (attr.attr_set == 0 &&
4362 	    attr.attr_clr == 0 &&
4363 	    attr.propagation == 0)
4364 		return 0;
4365 
4366 	err = build_mount_kattr(&attr, usize, &kattr, flags);
4367 	if (err)
4368 		return err;
4369 
4370 	err = user_path_at(dfd, path, kattr.lookup_flags, &target);
4371 	if (!err) {
4372 		err = do_mount_setattr(&target, &kattr);
4373 		path_put(&target);
4374 	}
4375 	finish_mount_kattr(&kattr);
4376 	return err;
4377 }
4378 
4379 static void __init init_mount_tree(void)
4380 {
4381 	struct vfsmount *mnt;
4382 	struct mount *m;
4383 	struct mnt_namespace *ns;
4384 	struct path root;
4385 
4386 	mnt = vfs_kern_mount(&rootfs_fs_type, 0, "rootfs", NULL);
4387 	if (IS_ERR(mnt))
4388 		panic("Can't create rootfs");
4389 
4390 	ns = alloc_mnt_ns(&init_user_ns, false);
4391 	if (IS_ERR(ns))
4392 		panic("Can't allocate initial namespace");
4393 	m = real_mount(mnt);
4394 	m->mnt_ns = ns;
4395 	ns->root = m;
4396 	ns->mounts = 1;
4397 	list_add(&m->mnt_list, &ns->list);
4398 	init_task.nsproxy->mnt_ns = ns;
4399 	get_mnt_ns(ns);
4400 
4401 	root.mnt = mnt;
4402 	root.dentry = mnt->mnt_root;
4403 	mnt->mnt_flags |= MNT_LOCKED;
4404 
4405 	set_fs_pwd(current->fs, &root);
4406 	set_fs_root(current->fs, &root);
4407 }
4408 
4409 void __init mnt_init(void)
4410 {
4411 	int err;
4412 
4413 	mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
4414 			0, SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, NULL);
4415 
4416 	mount_hashtable = alloc_large_system_hash("Mount-cache",
4417 				sizeof(struct hlist_head),
4418 				mhash_entries, 19,
4419 				HASH_ZERO,
4420 				&m_hash_shift, &m_hash_mask, 0, 0);
4421 	mountpoint_hashtable = alloc_large_system_hash("Mountpoint-cache",
4422 				sizeof(struct hlist_head),
4423 				mphash_entries, 19,
4424 				HASH_ZERO,
4425 				&mp_hash_shift, &mp_hash_mask, 0, 0);
4426 
4427 	if (!mount_hashtable || !mountpoint_hashtable)
4428 		panic("Failed to allocate mount hash table\n");
4429 
4430 	kernfs_init();
4431 
4432 	err = sysfs_init();
4433 	if (err)
4434 		printk(KERN_WARNING "%s: sysfs_init error: %d\n",
4435 			__func__, err);
4436 	fs_kobj = kobject_create_and_add("fs", NULL);
4437 	if (!fs_kobj)
4438 		printk(KERN_WARNING "%s: kobj create error\n", __func__);
4439 	shmem_init();
4440 	init_rootfs();
4441 	init_mount_tree();
4442 }
4443 
4444 void put_mnt_ns(struct mnt_namespace *ns)
4445 {
4446 	if (!refcount_dec_and_test(&ns->ns.count))
4447 		return;
4448 	drop_collected_mounts(&ns->root->mnt);
4449 	free_mnt_ns(ns);
4450 }
4451 
4452 struct vfsmount *kern_mount(struct file_system_type *type)
4453 {
4454 	struct vfsmount *mnt;
4455 	mnt = vfs_kern_mount(type, SB_KERNMOUNT, type->name, NULL);
4456 	if (!IS_ERR(mnt)) {
4457 		/*
4458 		 * it is a longterm mount, don't release mnt until
4459 		 * we unmount before file sys is unregistered
4460 		*/
4461 		real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
4462 	}
4463 	return mnt;
4464 }
4465 EXPORT_SYMBOL_GPL(kern_mount);
4466 
4467 void kern_unmount(struct vfsmount *mnt)
4468 {
4469 	/* release long term mount so mount point can be released */
4470 	if (!IS_ERR(mnt)) {
4471 		mnt_make_shortterm(mnt);
4472 		synchronize_rcu();	/* yecchhh... */
4473 		mntput(mnt);
4474 	}
4475 }
4476 EXPORT_SYMBOL(kern_unmount);
4477 
4478 void kern_unmount_array(struct vfsmount *mnt[], unsigned int num)
4479 {
4480 	unsigned int i;
4481 
4482 	for (i = 0; i < num; i++)
4483 		mnt_make_shortterm(mnt[i]);
4484 	synchronize_rcu_expedited();
4485 	for (i = 0; i < num; i++)
4486 		mntput(mnt[i]);
4487 }
4488 EXPORT_SYMBOL(kern_unmount_array);
4489 
4490 bool our_mnt(struct vfsmount *mnt)
4491 {
4492 	return check_mnt(real_mount(mnt));
4493 }
4494 
4495 bool current_chrooted(void)
4496 {
4497 	/* Does the current process have a non-standard root */
4498 	struct path ns_root;
4499 	struct path fs_root;
4500 	bool chrooted;
4501 
4502 	/* Find the namespace root */
4503 	ns_root.mnt = &current->nsproxy->mnt_ns->root->mnt;
4504 	ns_root.dentry = ns_root.mnt->mnt_root;
4505 	path_get(&ns_root);
4506 	while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root))
4507 		;
4508 
4509 	get_fs_root(current->fs, &fs_root);
4510 
4511 	chrooted = !path_equal(&fs_root, &ns_root);
4512 
4513 	path_put(&fs_root);
4514 	path_put(&ns_root);
4515 
4516 	return chrooted;
4517 }
4518 
4519 static bool mnt_already_visible(struct mnt_namespace *ns,
4520 				const struct super_block *sb,
4521 				int *new_mnt_flags)
4522 {
4523 	int new_flags = *new_mnt_flags;
4524 	struct mount *mnt;
4525 	bool visible = false;
4526 
4527 	down_read(&namespace_sem);
4528 	lock_ns_list(ns);
4529 	list_for_each_entry(mnt, &ns->list, mnt_list) {
4530 		struct mount *child;
4531 		int mnt_flags;
4532 
4533 		if (mnt_is_cursor(mnt))
4534 			continue;
4535 
4536 		if (mnt->mnt.mnt_sb->s_type != sb->s_type)
4537 			continue;
4538 
4539 		/* This mount is not fully visible if it's root directory
4540 		 * is not the root directory of the filesystem.
4541 		 */
4542 		if (mnt->mnt.mnt_root != mnt->mnt.mnt_sb->s_root)
4543 			continue;
4544 
4545 		/* A local view of the mount flags */
4546 		mnt_flags = mnt->mnt.mnt_flags;
4547 
4548 		/* Don't miss readonly hidden in the superblock flags */
4549 		if (sb_rdonly(mnt->mnt.mnt_sb))
4550 			mnt_flags |= MNT_LOCK_READONLY;
4551 
4552 		/* Verify the mount flags are equal to or more permissive
4553 		 * than the proposed new mount.
4554 		 */
4555 		if ((mnt_flags & MNT_LOCK_READONLY) &&
4556 		    !(new_flags & MNT_READONLY))
4557 			continue;
4558 		if ((mnt_flags & MNT_LOCK_ATIME) &&
4559 		    ((mnt_flags & MNT_ATIME_MASK) != (new_flags & MNT_ATIME_MASK)))
4560 			continue;
4561 
4562 		/* This mount is not fully visible if there are any
4563 		 * locked child mounts that cover anything except for
4564 		 * empty directories.
4565 		 */
4566 		list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
4567 			struct inode *inode = child->mnt_mountpoint->d_inode;
4568 			/* Only worry about locked mounts */
4569 			if (!(child->mnt.mnt_flags & MNT_LOCKED))
4570 				continue;
4571 			/* Is the directory permanetly empty? */
4572 			if (!is_empty_dir_inode(inode))
4573 				goto next;
4574 		}
4575 		/* Preserve the locked attributes */
4576 		*new_mnt_flags |= mnt_flags & (MNT_LOCK_READONLY | \
4577 					       MNT_LOCK_ATIME);
4578 		visible = true;
4579 		goto found;
4580 	next:	;
4581 	}
4582 found:
4583 	unlock_ns_list(ns);
4584 	up_read(&namespace_sem);
4585 	return visible;
4586 }
4587 
4588 static bool mount_too_revealing(const struct super_block *sb, int *new_mnt_flags)
4589 {
4590 	const unsigned long required_iflags = SB_I_NOEXEC | SB_I_NODEV;
4591 	struct mnt_namespace *ns = current->nsproxy->mnt_ns;
4592 	unsigned long s_iflags;
4593 
4594 	if (ns->user_ns == &init_user_ns)
4595 		return false;
4596 
4597 	/* Can this filesystem be too revealing? */
4598 	s_iflags = sb->s_iflags;
4599 	if (!(s_iflags & SB_I_USERNS_VISIBLE))
4600 		return false;
4601 
4602 	if ((s_iflags & required_iflags) != required_iflags) {
4603 		WARN_ONCE(1, "Expected s_iflags to contain 0x%lx\n",
4604 			  required_iflags);
4605 		return true;
4606 	}
4607 
4608 	return !mnt_already_visible(ns, sb, new_mnt_flags);
4609 }
4610 
4611 bool mnt_may_suid(struct vfsmount *mnt)
4612 {
4613 	/*
4614 	 * Foreign mounts (accessed via fchdir or through /proc
4615 	 * symlinks) are always treated as if they are nosuid.  This
4616 	 * prevents namespaces from trusting potentially unsafe
4617 	 * suid/sgid bits, file caps, or security labels that originate
4618 	 * in other namespaces.
4619 	 */
4620 	return !(mnt->mnt_flags & MNT_NOSUID) && check_mnt(real_mount(mnt)) &&
4621 	       current_in_userns(mnt->mnt_sb->s_user_ns);
4622 }
4623 
4624 static struct ns_common *mntns_get(struct task_struct *task)
4625 {
4626 	struct ns_common *ns = NULL;
4627 	struct nsproxy *nsproxy;
4628 
4629 	task_lock(task);
4630 	nsproxy = task->nsproxy;
4631 	if (nsproxy) {
4632 		ns = &nsproxy->mnt_ns->ns;
4633 		get_mnt_ns(to_mnt_ns(ns));
4634 	}
4635 	task_unlock(task);
4636 
4637 	return ns;
4638 }
4639 
4640 static void mntns_put(struct ns_common *ns)
4641 {
4642 	put_mnt_ns(to_mnt_ns(ns));
4643 }
4644 
4645 static int mntns_install(struct nsset *nsset, struct ns_common *ns)
4646 {
4647 	struct nsproxy *nsproxy = nsset->nsproxy;
4648 	struct fs_struct *fs = nsset->fs;
4649 	struct mnt_namespace *mnt_ns = to_mnt_ns(ns), *old_mnt_ns;
4650 	struct user_namespace *user_ns = nsset->cred->user_ns;
4651 	struct path root;
4652 	int err;
4653 
4654 	if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) ||
4655 	    !ns_capable(user_ns, CAP_SYS_CHROOT) ||
4656 	    !ns_capable(user_ns, CAP_SYS_ADMIN))
4657 		return -EPERM;
4658 
4659 	if (is_anon_ns(mnt_ns))
4660 		return -EINVAL;
4661 
4662 	if (fs->users != 1)
4663 		return -EINVAL;
4664 
4665 	get_mnt_ns(mnt_ns);
4666 	old_mnt_ns = nsproxy->mnt_ns;
4667 	nsproxy->mnt_ns = mnt_ns;
4668 
4669 	/* Find the root */
4670 	err = vfs_path_lookup(mnt_ns->root->mnt.mnt_root, &mnt_ns->root->mnt,
4671 				"/", LOOKUP_DOWN, &root);
4672 	if (err) {
4673 		/* revert to old namespace */
4674 		nsproxy->mnt_ns = old_mnt_ns;
4675 		put_mnt_ns(mnt_ns);
4676 		return err;
4677 	}
4678 
4679 	put_mnt_ns(old_mnt_ns);
4680 
4681 	/* Update the pwd and root */
4682 	set_fs_pwd(fs, &root);
4683 	set_fs_root(fs, &root);
4684 
4685 	path_put(&root);
4686 	return 0;
4687 }
4688 
4689 static struct user_namespace *mntns_owner(struct ns_common *ns)
4690 {
4691 	return to_mnt_ns(ns)->user_ns;
4692 }
4693 
4694 const struct proc_ns_operations mntns_operations = {
4695 	.name		= "mnt",
4696 	.type		= CLONE_NEWNS,
4697 	.get		= mntns_get,
4698 	.put		= mntns_put,
4699 	.install	= mntns_install,
4700 	.owner		= mntns_owner,
4701 };
4702 
4703 #ifdef CONFIG_SYSCTL
4704 static struct ctl_table fs_namespace_sysctls[] = {
4705 	{
4706 		.procname	= "mount-max",
4707 		.data		= &sysctl_mount_max,
4708 		.maxlen		= sizeof(unsigned int),
4709 		.mode		= 0644,
4710 		.proc_handler	= proc_dointvec_minmax,
4711 		.extra1		= SYSCTL_ONE,
4712 	},
4713 	{ }
4714 };
4715 
4716 static int __init init_fs_namespace_sysctls(void)
4717 {
4718 	register_sysctl_init("fs", fs_namespace_sysctls);
4719 	return 0;
4720 }
4721 fs_initcall(init_fs_namespace_sysctls);
4722 
4723 #endif /* CONFIG_SYSCTL */
4724