1 /* 2 * linux/fs/namespace.c 3 * 4 * (C) Copyright Al Viro 2000, 2001 5 * Released under GPL v2. 6 * 7 * Based on code from fs/super.c, copyright Linus Torvalds and others. 8 * Heavily rewritten. 9 */ 10 11 #include <linux/syscalls.h> 12 #include <linux/export.h> 13 #include <linux/capability.h> 14 #include <linux/mnt_namespace.h> 15 #include <linux/user_namespace.h> 16 #include <linux/namei.h> 17 #include <linux/security.h> 18 #include <linux/cred.h> 19 #include <linux/idr.h> 20 #include <linux/init.h> /* init_rootfs */ 21 #include <linux/fs_struct.h> /* get_fs_root et.al. */ 22 #include <linux/fsnotify.h> /* fsnotify_vfsmount_delete */ 23 #include <linux/uaccess.h> 24 #include <linux/proc_ns.h> 25 #include <linux/magic.h> 26 #include <linux/memblock.h> 27 #include <linux/task_work.h> 28 #include <linux/sched/task.h> 29 30 #include "pnode.h" 31 #include "internal.h" 32 33 /* Maximum number of mounts in a mount namespace */ 34 unsigned int sysctl_mount_max __read_mostly = 100000; 35 36 static unsigned int m_hash_mask __read_mostly; 37 static unsigned int m_hash_shift __read_mostly; 38 static unsigned int mp_hash_mask __read_mostly; 39 static unsigned int mp_hash_shift __read_mostly; 40 41 static __initdata unsigned long mhash_entries; 42 static int __init set_mhash_entries(char *str) 43 { 44 if (!str) 45 return 0; 46 mhash_entries = simple_strtoul(str, &str, 0); 47 return 1; 48 } 49 __setup("mhash_entries=", set_mhash_entries); 50 51 static __initdata unsigned long mphash_entries; 52 static int __init set_mphash_entries(char *str) 53 { 54 if (!str) 55 return 0; 56 mphash_entries = simple_strtoul(str, &str, 0); 57 return 1; 58 } 59 __setup("mphash_entries=", set_mphash_entries); 60 61 static u64 event; 62 static DEFINE_IDA(mnt_id_ida); 63 static DEFINE_IDA(mnt_group_ida); 64 65 static struct hlist_head *mount_hashtable __read_mostly; 66 static struct hlist_head *mountpoint_hashtable __read_mostly; 67 static struct kmem_cache *mnt_cache __read_mostly; 68 static DECLARE_RWSEM(namespace_sem); 69 70 /* /sys/fs */ 71 struct kobject *fs_kobj; 72 EXPORT_SYMBOL_GPL(fs_kobj); 73 74 /* 75 * vfsmount lock may be taken for read to prevent changes to the 76 * vfsmount hash, ie. during mountpoint lookups or walking back 77 * up the tree. 78 * 79 * It should be taken for write in all cases where the vfsmount 80 * tree or hash is modified or when a vfsmount structure is modified. 81 */ 82 __cacheline_aligned_in_smp DEFINE_SEQLOCK(mount_lock); 83 84 static inline struct hlist_head *m_hash(struct vfsmount *mnt, struct dentry *dentry) 85 { 86 unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES); 87 tmp += ((unsigned long)dentry / L1_CACHE_BYTES); 88 tmp = tmp + (tmp >> m_hash_shift); 89 return &mount_hashtable[tmp & m_hash_mask]; 90 } 91 92 static inline struct hlist_head *mp_hash(struct dentry *dentry) 93 { 94 unsigned long tmp = ((unsigned long)dentry / L1_CACHE_BYTES); 95 tmp = tmp + (tmp >> mp_hash_shift); 96 return &mountpoint_hashtable[tmp & mp_hash_mask]; 97 } 98 99 static int mnt_alloc_id(struct mount *mnt) 100 { 101 int res = ida_alloc(&mnt_id_ida, GFP_KERNEL); 102 103 if (res < 0) 104 return res; 105 mnt->mnt_id = res; 106 return 0; 107 } 108 109 static void mnt_free_id(struct mount *mnt) 110 { 111 ida_free(&mnt_id_ida, mnt->mnt_id); 112 } 113 114 /* 115 * Allocate a new peer group ID 116 */ 117 static int mnt_alloc_group_id(struct mount *mnt) 118 { 119 int res = ida_alloc_min(&mnt_group_ida, 1, GFP_KERNEL); 120 121 if (res < 0) 122 return res; 123 mnt->mnt_group_id = res; 124 return 0; 125 } 126 127 /* 128 * Release a peer group ID 129 */ 130 void mnt_release_group_id(struct mount *mnt) 131 { 132 ida_free(&mnt_group_ida, mnt->mnt_group_id); 133 mnt->mnt_group_id = 0; 134 } 135 136 /* 137 * vfsmount lock must be held for read 138 */ 139 static inline void mnt_add_count(struct mount *mnt, int n) 140 { 141 #ifdef CONFIG_SMP 142 this_cpu_add(mnt->mnt_pcp->mnt_count, n); 143 #else 144 preempt_disable(); 145 mnt->mnt_count += n; 146 preempt_enable(); 147 #endif 148 } 149 150 /* 151 * vfsmount lock must be held for write 152 */ 153 unsigned int mnt_get_count(struct mount *mnt) 154 { 155 #ifdef CONFIG_SMP 156 unsigned int count = 0; 157 int cpu; 158 159 for_each_possible_cpu(cpu) { 160 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count; 161 } 162 163 return count; 164 #else 165 return mnt->mnt_count; 166 #endif 167 } 168 169 static void drop_mountpoint(struct fs_pin *p) 170 { 171 struct mount *m = container_of(p, struct mount, mnt_umount); 172 dput(m->mnt_ex_mountpoint); 173 pin_remove(p); 174 mntput(&m->mnt); 175 } 176 177 static struct mount *alloc_vfsmnt(const char *name) 178 { 179 struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL); 180 if (mnt) { 181 int err; 182 183 err = mnt_alloc_id(mnt); 184 if (err) 185 goto out_free_cache; 186 187 if (name) { 188 mnt->mnt_devname = kstrdup_const(name, GFP_KERNEL); 189 if (!mnt->mnt_devname) 190 goto out_free_id; 191 } 192 193 #ifdef CONFIG_SMP 194 mnt->mnt_pcp = alloc_percpu(struct mnt_pcp); 195 if (!mnt->mnt_pcp) 196 goto out_free_devname; 197 198 this_cpu_add(mnt->mnt_pcp->mnt_count, 1); 199 #else 200 mnt->mnt_count = 1; 201 mnt->mnt_writers = 0; 202 #endif 203 204 INIT_HLIST_NODE(&mnt->mnt_hash); 205 INIT_LIST_HEAD(&mnt->mnt_child); 206 INIT_LIST_HEAD(&mnt->mnt_mounts); 207 INIT_LIST_HEAD(&mnt->mnt_list); 208 INIT_LIST_HEAD(&mnt->mnt_expire); 209 INIT_LIST_HEAD(&mnt->mnt_share); 210 INIT_LIST_HEAD(&mnt->mnt_slave_list); 211 INIT_LIST_HEAD(&mnt->mnt_slave); 212 INIT_HLIST_NODE(&mnt->mnt_mp_list); 213 INIT_LIST_HEAD(&mnt->mnt_umounting); 214 init_fs_pin(&mnt->mnt_umount, drop_mountpoint); 215 } 216 return mnt; 217 218 #ifdef CONFIG_SMP 219 out_free_devname: 220 kfree_const(mnt->mnt_devname); 221 #endif 222 out_free_id: 223 mnt_free_id(mnt); 224 out_free_cache: 225 kmem_cache_free(mnt_cache, mnt); 226 return NULL; 227 } 228 229 /* 230 * Most r/o checks on a fs are for operations that take 231 * discrete amounts of time, like a write() or unlink(). 232 * We must keep track of when those operations start 233 * (for permission checks) and when they end, so that 234 * we can determine when writes are able to occur to 235 * a filesystem. 236 */ 237 /* 238 * __mnt_is_readonly: check whether a mount is read-only 239 * @mnt: the mount to check for its write status 240 * 241 * This shouldn't be used directly ouside of the VFS. 242 * It does not guarantee that the filesystem will stay 243 * r/w, just that it is right *now*. This can not and 244 * should not be used in place of IS_RDONLY(inode). 245 * mnt_want/drop_write() will _keep_ the filesystem 246 * r/w. 247 */ 248 int __mnt_is_readonly(struct vfsmount *mnt) 249 { 250 if (mnt->mnt_flags & MNT_READONLY) 251 return 1; 252 if (sb_rdonly(mnt->mnt_sb)) 253 return 1; 254 return 0; 255 } 256 EXPORT_SYMBOL_GPL(__mnt_is_readonly); 257 258 static inline void mnt_inc_writers(struct mount *mnt) 259 { 260 #ifdef CONFIG_SMP 261 this_cpu_inc(mnt->mnt_pcp->mnt_writers); 262 #else 263 mnt->mnt_writers++; 264 #endif 265 } 266 267 static inline void mnt_dec_writers(struct mount *mnt) 268 { 269 #ifdef CONFIG_SMP 270 this_cpu_dec(mnt->mnt_pcp->mnt_writers); 271 #else 272 mnt->mnt_writers--; 273 #endif 274 } 275 276 static unsigned int mnt_get_writers(struct mount *mnt) 277 { 278 #ifdef CONFIG_SMP 279 unsigned int count = 0; 280 int cpu; 281 282 for_each_possible_cpu(cpu) { 283 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers; 284 } 285 286 return count; 287 #else 288 return mnt->mnt_writers; 289 #endif 290 } 291 292 static int mnt_is_readonly(struct vfsmount *mnt) 293 { 294 if (mnt->mnt_sb->s_readonly_remount) 295 return 1; 296 /* Order wrt setting s_flags/s_readonly_remount in do_remount() */ 297 smp_rmb(); 298 return __mnt_is_readonly(mnt); 299 } 300 301 /* 302 * Most r/o & frozen checks on a fs are for operations that take discrete 303 * amounts of time, like a write() or unlink(). We must keep track of when 304 * those operations start (for permission checks) and when they end, so that we 305 * can determine when writes are able to occur to a filesystem. 306 */ 307 /** 308 * __mnt_want_write - get write access to a mount without freeze protection 309 * @m: the mount on which to take a write 310 * 311 * This tells the low-level filesystem that a write is about to be performed to 312 * it, and makes sure that writes are allowed (mnt it read-write) before 313 * returning success. This operation does not protect against filesystem being 314 * frozen. When the write operation is finished, __mnt_drop_write() must be 315 * called. This is effectively a refcount. 316 */ 317 int __mnt_want_write(struct vfsmount *m) 318 { 319 struct mount *mnt = real_mount(m); 320 int ret = 0; 321 322 preempt_disable(); 323 mnt_inc_writers(mnt); 324 /* 325 * The store to mnt_inc_writers must be visible before we pass 326 * MNT_WRITE_HOLD loop below, so that the slowpath can see our 327 * incremented count after it has set MNT_WRITE_HOLD. 328 */ 329 smp_mb(); 330 while (READ_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD) 331 cpu_relax(); 332 /* 333 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will 334 * be set to match its requirements. So we must not load that until 335 * MNT_WRITE_HOLD is cleared. 336 */ 337 smp_rmb(); 338 if (mnt_is_readonly(m)) { 339 mnt_dec_writers(mnt); 340 ret = -EROFS; 341 } 342 preempt_enable(); 343 344 return ret; 345 } 346 347 /** 348 * mnt_want_write - get write access to a mount 349 * @m: the mount on which to take a write 350 * 351 * This tells the low-level filesystem that a write is about to be performed to 352 * it, and makes sure that writes are allowed (mount is read-write, filesystem 353 * is not frozen) before returning success. When the write operation is 354 * finished, mnt_drop_write() must be called. This is effectively a refcount. 355 */ 356 int mnt_want_write(struct vfsmount *m) 357 { 358 int ret; 359 360 sb_start_write(m->mnt_sb); 361 ret = __mnt_want_write(m); 362 if (ret) 363 sb_end_write(m->mnt_sb); 364 return ret; 365 } 366 EXPORT_SYMBOL_GPL(mnt_want_write); 367 368 /** 369 * mnt_clone_write - get write access to a mount 370 * @mnt: the mount on which to take a write 371 * 372 * This is effectively like mnt_want_write, except 373 * it must only be used to take an extra write reference 374 * on a mountpoint that we already know has a write reference 375 * on it. This allows some optimisation. 376 * 377 * After finished, mnt_drop_write must be called as usual to 378 * drop the reference. 379 */ 380 int mnt_clone_write(struct vfsmount *mnt) 381 { 382 /* superblock may be r/o */ 383 if (__mnt_is_readonly(mnt)) 384 return -EROFS; 385 preempt_disable(); 386 mnt_inc_writers(real_mount(mnt)); 387 preempt_enable(); 388 return 0; 389 } 390 EXPORT_SYMBOL_GPL(mnt_clone_write); 391 392 /** 393 * __mnt_want_write_file - get write access to a file's mount 394 * @file: the file who's mount on which to take a write 395 * 396 * This is like __mnt_want_write, but it takes a file and can 397 * do some optimisations if the file is open for write already 398 */ 399 int __mnt_want_write_file(struct file *file) 400 { 401 if (!(file->f_mode & FMODE_WRITER)) 402 return __mnt_want_write(file->f_path.mnt); 403 else 404 return mnt_clone_write(file->f_path.mnt); 405 } 406 407 /** 408 * mnt_want_write_file - get write access to a file's mount 409 * @file: the file who's mount on which to take a write 410 * 411 * This is like mnt_want_write, but it takes a file and can 412 * do some optimisations if the file is open for write already 413 */ 414 int mnt_want_write_file(struct file *file) 415 { 416 int ret; 417 418 sb_start_write(file_inode(file)->i_sb); 419 ret = __mnt_want_write_file(file); 420 if (ret) 421 sb_end_write(file_inode(file)->i_sb); 422 return ret; 423 } 424 EXPORT_SYMBOL_GPL(mnt_want_write_file); 425 426 /** 427 * __mnt_drop_write - give up write access to a mount 428 * @mnt: the mount on which to give up write access 429 * 430 * Tells the low-level filesystem that we are done 431 * performing writes to it. Must be matched with 432 * __mnt_want_write() call above. 433 */ 434 void __mnt_drop_write(struct vfsmount *mnt) 435 { 436 preempt_disable(); 437 mnt_dec_writers(real_mount(mnt)); 438 preempt_enable(); 439 } 440 441 /** 442 * mnt_drop_write - give up write access to a mount 443 * @mnt: the mount on which to give up write access 444 * 445 * Tells the low-level filesystem that we are done performing writes to it and 446 * also allows filesystem to be frozen again. Must be matched with 447 * mnt_want_write() call above. 448 */ 449 void mnt_drop_write(struct vfsmount *mnt) 450 { 451 __mnt_drop_write(mnt); 452 sb_end_write(mnt->mnt_sb); 453 } 454 EXPORT_SYMBOL_GPL(mnt_drop_write); 455 456 void __mnt_drop_write_file(struct file *file) 457 { 458 __mnt_drop_write(file->f_path.mnt); 459 } 460 461 void mnt_drop_write_file(struct file *file) 462 { 463 __mnt_drop_write_file(file); 464 sb_end_write(file_inode(file)->i_sb); 465 } 466 EXPORT_SYMBOL(mnt_drop_write_file); 467 468 static int mnt_make_readonly(struct mount *mnt) 469 { 470 int ret = 0; 471 472 lock_mount_hash(); 473 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD; 474 /* 475 * After storing MNT_WRITE_HOLD, we'll read the counters. This store 476 * should be visible before we do. 477 */ 478 smp_mb(); 479 480 /* 481 * With writers on hold, if this value is zero, then there are 482 * definitely no active writers (although held writers may subsequently 483 * increment the count, they'll have to wait, and decrement it after 484 * seeing MNT_READONLY). 485 * 486 * It is OK to have counter incremented on one CPU and decremented on 487 * another: the sum will add up correctly. The danger would be when we 488 * sum up each counter, if we read a counter before it is incremented, 489 * but then read another CPU's count which it has been subsequently 490 * decremented from -- we would see more decrements than we should. 491 * MNT_WRITE_HOLD protects against this scenario, because 492 * mnt_want_write first increments count, then smp_mb, then spins on 493 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while 494 * we're counting up here. 495 */ 496 if (mnt_get_writers(mnt) > 0) 497 ret = -EBUSY; 498 else 499 mnt->mnt.mnt_flags |= MNT_READONLY; 500 /* 501 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers 502 * that become unheld will see MNT_READONLY. 503 */ 504 smp_wmb(); 505 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD; 506 unlock_mount_hash(); 507 return ret; 508 } 509 510 static void __mnt_unmake_readonly(struct mount *mnt) 511 { 512 lock_mount_hash(); 513 mnt->mnt.mnt_flags &= ~MNT_READONLY; 514 unlock_mount_hash(); 515 } 516 517 int sb_prepare_remount_readonly(struct super_block *sb) 518 { 519 struct mount *mnt; 520 int err = 0; 521 522 /* Racy optimization. Recheck the counter under MNT_WRITE_HOLD */ 523 if (atomic_long_read(&sb->s_remove_count)) 524 return -EBUSY; 525 526 lock_mount_hash(); 527 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) { 528 if (!(mnt->mnt.mnt_flags & MNT_READONLY)) { 529 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD; 530 smp_mb(); 531 if (mnt_get_writers(mnt) > 0) { 532 err = -EBUSY; 533 break; 534 } 535 } 536 } 537 if (!err && atomic_long_read(&sb->s_remove_count)) 538 err = -EBUSY; 539 540 if (!err) { 541 sb->s_readonly_remount = 1; 542 smp_wmb(); 543 } 544 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) { 545 if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD) 546 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD; 547 } 548 unlock_mount_hash(); 549 550 return err; 551 } 552 553 static void free_vfsmnt(struct mount *mnt) 554 { 555 kfree_const(mnt->mnt_devname); 556 #ifdef CONFIG_SMP 557 free_percpu(mnt->mnt_pcp); 558 #endif 559 kmem_cache_free(mnt_cache, mnt); 560 } 561 562 static void delayed_free_vfsmnt(struct rcu_head *head) 563 { 564 free_vfsmnt(container_of(head, struct mount, mnt_rcu)); 565 } 566 567 /* call under rcu_read_lock */ 568 int __legitimize_mnt(struct vfsmount *bastard, unsigned seq) 569 { 570 struct mount *mnt; 571 if (read_seqretry(&mount_lock, seq)) 572 return 1; 573 if (bastard == NULL) 574 return 0; 575 mnt = real_mount(bastard); 576 mnt_add_count(mnt, 1); 577 smp_mb(); // see mntput_no_expire() 578 if (likely(!read_seqretry(&mount_lock, seq))) 579 return 0; 580 if (bastard->mnt_flags & MNT_SYNC_UMOUNT) { 581 mnt_add_count(mnt, -1); 582 return 1; 583 } 584 lock_mount_hash(); 585 if (unlikely(bastard->mnt_flags & MNT_DOOMED)) { 586 mnt_add_count(mnt, -1); 587 unlock_mount_hash(); 588 return 1; 589 } 590 unlock_mount_hash(); 591 /* caller will mntput() */ 592 return -1; 593 } 594 595 /* call under rcu_read_lock */ 596 bool legitimize_mnt(struct vfsmount *bastard, unsigned seq) 597 { 598 int res = __legitimize_mnt(bastard, seq); 599 if (likely(!res)) 600 return true; 601 if (unlikely(res < 0)) { 602 rcu_read_unlock(); 603 mntput(bastard); 604 rcu_read_lock(); 605 } 606 return false; 607 } 608 609 /* 610 * find the first mount at @dentry on vfsmount @mnt. 611 * call under rcu_read_lock() 612 */ 613 struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry) 614 { 615 struct hlist_head *head = m_hash(mnt, dentry); 616 struct mount *p; 617 618 hlist_for_each_entry_rcu(p, head, mnt_hash) 619 if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry) 620 return p; 621 return NULL; 622 } 623 624 /* 625 * lookup_mnt - Return the first child mount mounted at path 626 * 627 * "First" means first mounted chronologically. If you create the 628 * following mounts: 629 * 630 * mount /dev/sda1 /mnt 631 * mount /dev/sda2 /mnt 632 * mount /dev/sda3 /mnt 633 * 634 * Then lookup_mnt() on the base /mnt dentry in the root mount will 635 * return successively the root dentry and vfsmount of /dev/sda1, then 636 * /dev/sda2, then /dev/sda3, then NULL. 637 * 638 * lookup_mnt takes a reference to the found vfsmount. 639 */ 640 struct vfsmount *lookup_mnt(const struct path *path) 641 { 642 struct mount *child_mnt; 643 struct vfsmount *m; 644 unsigned seq; 645 646 rcu_read_lock(); 647 do { 648 seq = read_seqbegin(&mount_lock); 649 child_mnt = __lookup_mnt(path->mnt, path->dentry); 650 m = child_mnt ? &child_mnt->mnt : NULL; 651 } while (!legitimize_mnt(m, seq)); 652 rcu_read_unlock(); 653 return m; 654 } 655 656 /* 657 * __is_local_mountpoint - Test to see if dentry is a mountpoint in the 658 * current mount namespace. 659 * 660 * The common case is dentries are not mountpoints at all and that 661 * test is handled inline. For the slow case when we are actually 662 * dealing with a mountpoint of some kind, walk through all of the 663 * mounts in the current mount namespace and test to see if the dentry 664 * is a mountpoint. 665 * 666 * The mount_hashtable is not usable in the context because we 667 * need to identify all mounts that may be in the current mount 668 * namespace not just a mount that happens to have some specified 669 * parent mount. 670 */ 671 bool __is_local_mountpoint(struct dentry *dentry) 672 { 673 struct mnt_namespace *ns = current->nsproxy->mnt_ns; 674 struct mount *mnt; 675 bool is_covered = false; 676 677 if (!d_mountpoint(dentry)) 678 goto out; 679 680 down_read(&namespace_sem); 681 list_for_each_entry(mnt, &ns->list, mnt_list) { 682 is_covered = (mnt->mnt_mountpoint == dentry); 683 if (is_covered) 684 break; 685 } 686 up_read(&namespace_sem); 687 out: 688 return is_covered; 689 } 690 691 static struct mountpoint *lookup_mountpoint(struct dentry *dentry) 692 { 693 struct hlist_head *chain = mp_hash(dentry); 694 struct mountpoint *mp; 695 696 hlist_for_each_entry(mp, chain, m_hash) { 697 if (mp->m_dentry == dentry) { 698 mp->m_count++; 699 return mp; 700 } 701 } 702 return NULL; 703 } 704 705 static struct mountpoint *get_mountpoint(struct dentry *dentry) 706 { 707 struct mountpoint *mp, *new = NULL; 708 int ret; 709 710 if (d_mountpoint(dentry)) { 711 /* might be worth a WARN_ON() */ 712 if (d_unlinked(dentry)) 713 return ERR_PTR(-ENOENT); 714 mountpoint: 715 read_seqlock_excl(&mount_lock); 716 mp = lookup_mountpoint(dentry); 717 read_sequnlock_excl(&mount_lock); 718 if (mp) 719 goto done; 720 } 721 722 if (!new) 723 new = kmalloc(sizeof(struct mountpoint), GFP_KERNEL); 724 if (!new) 725 return ERR_PTR(-ENOMEM); 726 727 728 /* Exactly one processes may set d_mounted */ 729 ret = d_set_mounted(dentry); 730 731 /* Someone else set d_mounted? */ 732 if (ret == -EBUSY) 733 goto mountpoint; 734 735 /* The dentry is not available as a mountpoint? */ 736 mp = ERR_PTR(ret); 737 if (ret) 738 goto done; 739 740 /* Add the new mountpoint to the hash table */ 741 read_seqlock_excl(&mount_lock); 742 new->m_dentry = dentry; 743 new->m_count = 1; 744 hlist_add_head(&new->m_hash, mp_hash(dentry)); 745 INIT_HLIST_HEAD(&new->m_list); 746 read_sequnlock_excl(&mount_lock); 747 748 mp = new; 749 new = NULL; 750 done: 751 kfree(new); 752 return mp; 753 } 754 755 static void put_mountpoint(struct mountpoint *mp) 756 { 757 if (!--mp->m_count) { 758 struct dentry *dentry = mp->m_dentry; 759 BUG_ON(!hlist_empty(&mp->m_list)); 760 spin_lock(&dentry->d_lock); 761 dentry->d_flags &= ~DCACHE_MOUNTED; 762 spin_unlock(&dentry->d_lock); 763 hlist_del(&mp->m_hash); 764 kfree(mp); 765 } 766 } 767 768 static inline int check_mnt(struct mount *mnt) 769 { 770 return mnt->mnt_ns == current->nsproxy->mnt_ns; 771 } 772 773 /* 774 * vfsmount lock must be held for write 775 */ 776 static void touch_mnt_namespace(struct mnt_namespace *ns) 777 { 778 if (ns) { 779 ns->event = ++event; 780 wake_up_interruptible(&ns->poll); 781 } 782 } 783 784 /* 785 * vfsmount lock must be held for write 786 */ 787 static void __touch_mnt_namespace(struct mnt_namespace *ns) 788 { 789 if (ns && ns->event != event) { 790 ns->event = event; 791 wake_up_interruptible(&ns->poll); 792 } 793 } 794 795 /* 796 * vfsmount lock must be held for write 797 */ 798 static void unhash_mnt(struct mount *mnt) 799 { 800 mnt->mnt_parent = mnt; 801 mnt->mnt_mountpoint = mnt->mnt.mnt_root; 802 list_del_init(&mnt->mnt_child); 803 hlist_del_init_rcu(&mnt->mnt_hash); 804 hlist_del_init(&mnt->mnt_mp_list); 805 put_mountpoint(mnt->mnt_mp); 806 mnt->mnt_mp = NULL; 807 } 808 809 /* 810 * vfsmount lock must be held for write 811 */ 812 static void detach_mnt(struct mount *mnt, struct path *old_path) 813 { 814 old_path->dentry = mnt->mnt_mountpoint; 815 old_path->mnt = &mnt->mnt_parent->mnt; 816 unhash_mnt(mnt); 817 } 818 819 /* 820 * vfsmount lock must be held for write 821 */ 822 static void umount_mnt(struct mount *mnt) 823 { 824 /* old mountpoint will be dropped when we can do that */ 825 mnt->mnt_ex_mountpoint = mnt->mnt_mountpoint; 826 unhash_mnt(mnt); 827 } 828 829 /* 830 * vfsmount lock must be held for write 831 */ 832 void mnt_set_mountpoint(struct mount *mnt, 833 struct mountpoint *mp, 834 struct mount *child_mnt) 835 { 836 mp->m_count++; 837 mnt_add_count(mnt, 1); /* essentially, that's mntget */ 838 child_mnt->mnt_mountpoint = dget(mp->m_dentry); 839 child_mnt->mnt_parent = mnt; 840 child_mnt->mnt_mp = mp; 841 hlist_add_head(&child_mnt->mnt_mp_list, &mp->m_list); 842 } 843 844 static void __attach_mnt(struct mount *mnt, struct mount *parent) 845 { 846 hlist_add_head_rcu(&mnt->mnt_hash, 847 m_hash(&parent->mnt, mnt->mnt_mountpoint)); 848 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts); 849 } 850 851 /* 852 * vfsmount lock must be held for write 853 */ 854 static void attach_mnt(struct mount *mnt, 855 struct mount *parent, 856 struct mountpoint *mp) 857 { 858 mnt_set_mountpoint(parent, mp, mnt); 859 __attach_mnt(mnt, parent); 860 } 861 862 void mnt_change_mountpoint(struct mount *parent, struct mountpoint *mp, struct mount *mnt) 863 { 864 struct mountpoint *old_mp = mnt->mnt_mp; 865 struct dentry *old_mountpoint = mnt->mnt_mountpoint; 866 struct mount *old_parent = mnt->mnt_parent; 867 868 list_del_init(&mnt->mnt_child); 869 hlist_del_init(&mnt->mnt_mp_list); 870 hlist_del_init_rcu(&mnt->mnt_hash); 871 872 attach_mnt(mnt, parent, mp); 873 874 put_mountpoint(old_mp); 875 876 /* 877 * Safely avoid even the suggestion this code might sleep or 878 * lock the mount hash by taking advantage of the knowledge that 879 * mnt_change_mountpoint will not release the final reference 880 * to a mountpoint. 881 * 882 * During mounting, the mount passed in as the parent mount will 883 * continue to use the old mountpoint and during unmounting, the 884 * old mountpoint will continue to exist until namespace_unlock, 885 * which happens well after mnt_change_mountpoint. 886 */ 887 spin_lock(&old_mountpoint->d_lock); 888 old_mountpoint->d_lockref.count--; 889 spin_unlock(&old_mountpoint->d_lock); 890 891 mnt_add_count(old_parent, -1); 892 } 893 894 /* 895 * vfsmount lock must be held for write 896 */ 897 static void commit_tree(struct mount *mnt) 898 { 899 struct mount *parent = mnt->mnt_parent; 900 struct mount *m; 901 LIST_HEAD(head); 902 struct mnt_namespace *n = parent->mnt_ns; 903 904 BUG_ON(parent == mnt); 905 906 list_add_tail(&head, &mnt->mnt_list); 907 list_for_each_entry(m, &head, mnt_list) 908 m->mnt_ns = n; 909 910 list_splice(&head, n->list.prev); 911 912 n->mounts += n->pending_mounts; 913 n->pending_mounts = 0; 914 915 __attach_mnt(mnt, parent); 916 touch_mnt_namespace(n); 917 } 918 919 static struct mount *next_mnt(struct mount *p, struct mount *root) 920 { 921 struct list_head *next = p->mnt_mounts.next; 922 if (next == &p->mnt_mounts) { 923 while (1) { 924 if (p == root) 925 return NULL; 926 next = p->mnt_child.next; 927 if (next != &p->mnt_parent->mnt_mounts) 928 break; 929 p = p->mnt_parent; 930 } 931 } 932 return list_entry(next, struct mount, mnt_child); 933 } 934 935 static struct mount *skip_mnt_tree(struct mount *p) 936 { 937 struct list_head *prev = p->mnt_mounts.prev; 938 while (prev != &p->mnt_mounts) { 939 p = list_entry(prev, struct mount, mnt_child); 940 prev = p->mnt_mounts.prev; 941 } 942 return p; 943 } 944 945 struct vfsmount * 946 vfs_kern_mount(struct file_system_type *type, int flags, const char *name, void *data) 947 { 948 struct mount *mnt; 949 struct dentry *root; 950 951 if (!type) 952 return ERR_PTR(-ENODEV); 953 954 mnt = alloc_vfsmnt(name); 955 if (!mnt) 956 return ERR_PTR(-ENOMEM); 957 958 if (flags & SB_KERNMOUNT) 959 mnt->mnt.mnt_flags = MNT_INTERNAL; 960 961 root = mount_fs(type, flags, name, data); 962 if (IS_ERR(root)) { 963 mnt_free_id(mnt); 964 free_vfsmnt(mnt); 965 return ERR_CAST(root); 966 } 967 968 mnt->mnt.mnt_root = root; 969 mnt->mnt.mnt_sb = root->d_sb; 970 mnt->mnt_mountpoint = mnt->mnt.mnt_root; 971 mnt->mnt_parent = mnt; 972 lock_mount_hash(); 973 list_add_tail(&mnt->mnt_instance, &root->d_sb->s_mounts); 974 unlock_mount_hash(); 975 return &mnt->mnt; 976 } 977 EXPORT_SYMBOL_GPL(vfs_kern_mount); 978 979 struct vfsmount * 980 vfs_submount(const struct dentry *mountpoint, struct file_system_type *type, 981 const char *name, void *data) 982 { 983 /* Until it is worked out how to pass the user namespace 984 * through from the parent mount to the submount don't support 985 * unprivileged mounts with submounts. 986 */ 987 if (mountpoint->d_sb->s_user_ns != &init_user_ns) 988 return ERR_PTR(-EPERM); 989 990 return vfs_kern_mount(type, SB_SUBMOUNT, name, data); 991 } 992 EXPORT_SYMBOL_GPL(vfs_submount); 993 994 static struct mount *clone_mnt(struct mount *old, struct dentry *root, 995 int flag) 996 { 997 struct super_block *sb = old->mnt.mnt_sb; 998 struct mount *mnt; 999 int err; 1000 1001 mnt = alloc_vfsmnt(old->mnt_devname); 1002 if (!mnt) 1003 return ERR_PTR(-ENOMEM); 1004 1005 if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE)) 1006 mnt->mnt_group_id = 0; /* not a peer of original */ 1007 else 1008 mnt->mnt_group_id = old->mnt_group_id; 1009 1010 if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) { 1011 err = mnt_alloc_group_id(mnt); 1012 if (err) 1013 goto out_free; 1014 } 1015 1016 mnt->mnt.mnt_flags = old->mnt.mnt_flags; 1017 mnt->mnt.mnt_flags &= ~(MNT_WRITE_HOLD|MNT_MARKED|MNT_INTERNAL); 1018 /* Don't allow unprivileged users to change mount flags */ 1019 if (flag & CL_UNPRIVILEGED) { 1020 mnt->mnt.mnt_flags |= MNT_LOCK_ATIME; 1021 1022 if (mnt->mnt.mnt_flags & MNT_READONLY) 1023 mnt->mnt.mnt_flags |= MNT_LOCK_READONLY; 1024 1025 if (mnt->mnt.mnt_flags & MNT_NODEV) 1026 mnt->mnt.mnt_flags |= MNT_LOCK_NODEV; 1027 1028 if (mnt->mnt.mnt_flags & MNT_NOSUID) 1029 mnt->mnt.mnt_flags |= MNT_LOCK_NOSUID; 1030 1031 if (mnt->mnt.mnt_flags & MNT_NOEXEC) 1032 mnt->mnt.mnt_flags |= MNT_LOCK_NOEXEC; 1033 } 1034 1035 /* Don't allow unprivileged users to reveal what is under a mount */ 1036 if ((flag & CL_UNPRIVILEGED) && 1037 (!(flag & CL_EXPIRE) || list_empty(&old->mnt_expire))) 1038 mnt->mnt.mnt_flags |= MNT_LOCKED; 1039 1040 atomic_inc(&sb->s_active); 1041 mnt->mnt.mnt_sb = sb; 1042 mnt->mnt.mnt_root = dget(root); 1043 mnt->mnt_mountpoint = mnt->mnt.mnt_root; 1044 mnt->mnt_parent = mnt; 1045 lock_mount_hash(); 1046 list_add_tail(&mnt->mnt_instance, &sb->s_mounts); 1047 unlock_mount_hash(); 1048 1049 if ((flag & CL_SLAVE) || 1050 ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) { 1051 list_add(&mnt->mnt_slave, &old->mnt_slave_list); 1052 mnt->mnt_master = old; 1053 CLEAR_MNT_SHARED(mnt); 1054 } else if (!(flag & CL_PRIVATE)) { 1055 if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old)) 1056 list_add(&mnt->mnt_share, &old->mnt_share); 1057 if (IS_MNT_SLAVE(old)) 1058 list_add(&mnt->mnt_slave, &old->mnt_slave); 1059 mnt->mnt_master = old->mnt_master; 1060 } else { 1061 CLEAR_MNT_SHARED(mnt); 1062 } 1063 if (flag & CL_MAKE_SHARED) 1064 set_mnt_shared(mnt); 1065 1066 /* stick the duplicate mount on the same expiry list 1067 * as the original if that was on one */ 1068 if (flag & CL_EXPIRE) { 1069 if (!list_empty(&old->mnt_expire)) 1070 list_add(&mnt->mnt_expire, &old->mnt_expire); 1071 } 1072 1073 return mnt; 1074 1075 out_free: 1076 mnt_free_id(mnt); 1077 free_vfsmnt(mnt); 1078 return ERR_PTR(err); 1079 } 1080 1081 static void cleanup_mnt(struct mount *mnt) 1082 { 1083 /* 1084 * This probably indicates that somebody messed 1085 * up a mnt_want/drop_write() pair. If this 1086 * happens, the filesystem was probably unable 1087 * to make r/w->r/o transitions. 1088 */ 1089 /* 1090 * The locking used to deal with mnt_count decrement provides barriers, 1091 * so mnt_get_writers() below is safe. 1092 */ 1093 WARN_ON(mnt_get_writers(mnt)); 1094 if (unlikely(mnt->mnt_pins.first)) 1095 mnt_pin_kill(mnt); 1096 fsnotify_vfsmount_delete(&mnt->mnt); 1097 dput(mnt->mnt.mnt_root); 1098 deactivate_super(mnt->mnt.mnt_sb); 1099 mnt_free_id(mnt); 1100 call_rcu(&mnt->mnt_rcu, delayed_free_vfsmnt); 1101 } 1102 1103 static void __cleanup_mnt(struct rcu_head *head) 1104 { 1105 cleanup_mnt(container_of(head, struct mount, mnt_rcu)); 1106 } 1107 1108 static LLIST_HEAD(delayed_mntput_list); 1109 static void delayed_mntput(struct work_struct *unused) 1110 { 1111 struct llist_node *node = llist_del_all(&delayed_mntput_list); 1112 struct mount *m, *t; 1113 1114 llist_for_each_entry_safe(m, t, node, mnt_llist) 1115 cleanup_mnt(m); 1116 } 1117 static DECLARE_DELAYED_WORK(delayed_mntput_work, delayed_mntput); 1118 1119 static void mntput_no_expire(struct mount *mnt) 1120 { 1121 rcu_read_lock(); 1122 if (likely(READ_ONCE(mnt->mnt_ns))) { 1123 /* 1124 * Since we don't do lock_mount_hash() here, 1125 * ->mnt_ns can change under us. However, if it's 1126 * non-NULL, then there's a reference that won't 1127 * be dropped until after an RCU delay done after 1128 * turning ->mnt_ns NULL. So if we observe it 1129 * non-NULL under rcu_read_lock(), the reference 1130 * we are dropping is not the final one. 1131 */ 1132 mnt_add_count(mnt, -1); 1133 rcu_read_unlock(); 1134 return; 1135 } 1136 lock_mount_hash(); 1137 /* 1138 * make sure that if __legitimize_mnt() has not seen us grab 1139 * mount_lock, we'll see their refcount increment here. 1140 */ 1141 smp_mb(); 1142 mnt_add_count(mnt, -1); 1143 if (mnt_get_count(mnt)) { 1144 rcu_read_unlock(); 1145 unlock_mount_hash(); 1146 return; 1147 } 1148 if (unlikely(mnt->mnt.mnt_flags & MNT_DOOMED)) { 1149 rcu_read_unlock(); 1150 unlock_mount_hash(); 1151 return; 1152 } 1153 mnt->mnt.mnt_flags |= MNT_DOOMED; 1154 rcu_read_unlock(); 1155 1156 list_del(&mnt->mnt_instance); 1157 1158 if (unlikely(!list_empty(&mnt->mnt_mounts))) { 1159 struct mount *p, *tmp; 1160 list_for_each_entry_safe(p, tmp, &mnt->mnt_mounts, mnt_child) { 1161 umount_mnt(p); 1162 } 1163 } 1164 unlock_mount_hash(); 1165 1166 if (likely(!(mnt->mnt.mnt_flags & MNT_INTERNAL))) { 1167 struct task_struct *task = current; 1168 if (likely(!(task->flags & PF_KTHREAD))) { 1169 init_task_work(&mnt->mnt_rcu, __cleanup_mnt); 1170 if (!task_work_add(task, &mnt->mnt_rcu, true)) 1171 return; 1172 } 1173 if (llist_add(&mnt->mnt_llist, &delayed_mntput_list)) 1174 schedule_delayed_work(&delayed_mntput_work, 1); 1175 return; 1176 } 1177 cleanup_mnt(mnt); 1178 } 1179 1180 void mntput(struct vfsmount *mnt) 1181 { 1182 if (mnt) { 1183 struct mount *m = real_mount(mnt); 1184 /* avoid cacheline pingpong, hope gcc doesn't get "smart" */ 1185 if (unlikely(m->mnt_expiry_mark)) 1186 m->mnt_expiry_mark = 0; 1187 mntput_no_expire(m); 1188 } 1189 } 1190 EXPORT_SYMBOL(mntput); 1191 1192 struct vfsmount *mntget(struct vfsmount *mnt) 1193 { 1194 if (mnt) 1195 mnt_add_count(real_mount(mnt), 1); 1196 return mnt; 1197 } 1198 EXPORT_SYMBOL(mntget); 1199 1200 /* path_is_mountpoint() - Check if path is a mount in the current 1201 * namespace. 1202 * 1203 * d_mountpoint() can only be used reliably to establish if a dentry is 1204 * not mounted in any namespace and that common case is handled inline. 1205 * d_mountpoint() isn't aware of the possibility there may be multiple 1206 * mounts using a given dentry in a different namespace. This function 1207 * checks if the passed in path is a mountpoint rather than the dentry 1208 * alone. 1209 */ 1210 bool path_is_mountpoint(const struct path *path) 1211 { 1212 unsigned seq; 1213 bool res; 1214 1215 if (!d_mountpoint(path->dentry)) 1216 return false; 1217 1218 rcu_read_lock(); 1219 do { 1220 seq = read_seqbegin(&mount_lock); 1221 res = __path_is_mountpoint(path); 1222 } while (read_seqretry(&mount_lock, seq)); 1223 rcu_read_unlock(); 1224 1225 return res; 1226 } 1227 EXPORT_SYMBOL(path_is_mountpoint); 1228 1229 struct vfsmount *mnt_clone_internal(const struct path *path) 1230 { 1231 struct mount *p; 1232 p = clone_mnt(real_mount(path->mnt), path->dentry, CL_PRIVATE); 1233 if (IS_ERR(p)) 1234 return ERR_CAST(p); 1235 p->mnt.mnt_flags |= MNT_INTERNAL; 1236 return &p->mnt; 1237 } 1238 1239 #ifdef CONFIG_PROC_FS 1240 /* iterator; we want it to have access to namespace_sem, thus here... */ 1241 static void *m_start(struct seq_file *m, loff_t *pos) 1242 { 1243 struct proc_mounts *p = m->private; 1244 1245 down_read(&namespace_sem); 1246 if (p->cached_event == p->ns->event) { 1247 void *v = p->cached_mount; 1248 if (*pos == p->cached_index) 1249 return v; 1250 if (*pos == p->cached_index + 1) { 1251 v = seq_list_next(v, &p->ns->list, &p->cached_index); 1252 return p->cached_mount = v; 1253 } 1254 } 1255 1256 p->cached_event = p->ns->event; 1257 p->cached_mount = seq_list_start(&p->ns->list, *pos); 1258 p->cached_index = *pos; 1259 return p->cached_mount; 1260 } 1261 1262 static void *m_next(struct seq_file *m, void *v, loff_t *pos) 1263 { 1264 struct proc_mounts *p = m->private; 1265 1266 p->cached_mount = seq_list_next(v, &p->ns->list, pos); 1267 p->cached_index = *pos; 1268 return p->cached_mount; 1269 } 1270 1271 static void m_stop(struct seq_file *m, void *v) 1272 { 1273 up_read(&namespace_sem); 1274 } 1275 1276 static int m_show(struct seq_file *m, void *v) 1277 { 1278 struct proc_mounts *p = m->private; 1279 struct mount *r = list_entry(v, struct mount, mnt_list); 1280 return p->show(m, &r->mnt); 1281 } 1282 1283 const struct seq_operations mounts_op = { 1284 .start = m_start, 1285 .next = m_next, 1286 .stop = m_stop, 1287 .show = m_show, 1288 }; 1289 #endif /* CONFIG_PROC_FS */ 1290 1291 /** 1292 * may_umount_tree - check if a mount tree is busy 1293 * @mnt: root of mount tree 1294 * 1295 * This is called to check if a tree of mounts has any 1296 * open files, pwds, chroots or sub mounts that are 1297 * busy. 1298 */ 1299 int may_umount_tree(struct vfsmount *m) 1300 { 1301 struct mount *mnt = real_mount(m); 1302 int actual_refs = 0; 1303 int minimum_refs = 0; 1304 struct mount *p; 1305 BUG_ON(!m); 1306 1307 /* write lock needed for mnt_get_count */ 1308 lock_mount_hash(); 1309 for (p = mnt; p; p = next_mnt(p, mnt)) { 1310 actual_refs += mnt_get_count(p); 1311 minimum_refs += 2; 1312 } 1313 unlock_mount_hash(); 1314 1315 if (actual_refs > minimum_refs) 1316 return 0; 1317 1318 return 1; 1319 } 1320 1321 EXPORT_SYMBOL(may_umount_tree); 1322 1323 /** 1324 * may_umount - check if a mount point is busy 1325 * @mnt: root of mount 1326 * 1327 * This is called to check if a mount point has any 1328 * open files, pwds, chroots or sub mounts. If the 1329 * mount has sub mounts this will return busy 1330 * regardless of whether the sub mounts are busy. 1331 * 1332 * Doesn't take quota and stuff into account. IOW, in some cases it will 1333 * give false negatives. The main reason why it's here is that we need 1334 * a non-destructive way to look for easily umountable filesystems. 1335 */ 1336 int may_umount(struct vfsmount *mnt) 1337 { 1338 int ret = 1; 1339 down_read(&namespace_sem); 1340 lock_mount_hash(); 1341 if (propagate_mount_busy(real_mount(mnt), 2)) 1342 ret = 0; 1343 unlock_mount_hash(); 1344 up_read(&namespace_sem); 1345 return ret; 1346 } 1347 1348 EXPORT_SYMBOL(may_umount); 1349 1350 static HLIST_HEAD(unmounted); /* protected by namespace_sem */ 1351 1352 static void namespace_unlock(void) 1353 { 1354 struct hlist_head head; 1355 1356 hlist_move_list(&unmounted, &head); 1357 1358 up_write(&namespace_sem); 1359 1360 if (likely(hlist_empty(&head))) 1361 return; 1362 1363 synchronize_rcu(); 1364 1365 group_pin_kill(&head); 1366 } 1367 1368 static inline void namespace_lock(void) 1369 { 1370 down_write(&namespace_sem); 1371 } 1372 1373 enum umount_tree_flags { 1374 UMOUNT_SYNC = 1, 1375 UMOUNT_PROPAGATE = 2, 1376 UMOUNT_CONNECTED = 4, 1377 }; 1378 1379 static bool disconnect_mount(struct mount *mnt, enum umount_tree_flags how) 1380 { 1381 /* Leaving mounts connected is only valid for lazy umounts */ 1382 if (how & UMOUNT_SYNC) 1383 return true; 1384 1385 /* A mount without a parent has nothing to be connected to */ 1386 if (!mnt_has_parent(mnt)) 1387 return true; 1388 1389 /* Because the reference counting rules change when mounts are 1390 * unmounted and connected, umounted mounts may not be 1391 * connected to mounted mounts. 1392 */ 1393 if (!(mnt->mnt_parent->mnt.mnt_flags & MNT_UMOUNT)) 1394 return true; 1395 1396 /* Has it been requested that the mount remain connected? */ 1397 if (how & UMOUNT_CONNECTED) 1398 return false; 1399 1400 /* Is the mount locked such that it needs to remain connected? */ 1401 if (IS_MNT_LOCKED(mnt)) 1402 return false; 1403 1404 /* By default disconnect the mount */ 1405 return true; 1406 } 1407 1408 /* 1409 * mount_lock must be held 1410 * namespace_sem must be held for write 1411 */ 1412 static void umount_tree(struct mount *mnt, enum umount_tree_flags how) 1413 { 1414 LIST_HEAD(tmp_list); 1415 struct mount *p; 1416 1417 if (how & UMOUNT_PROPAGATE) 1418 propagate_mount_unlock(mnt); 1419 1420 /* Gather the mounts to umount */ 1421 for (p = mnt; p; p = next_mnt(p, mnt)) { 1422 p->mnt.mnt_flags |= MNT_UMOUNT; 1423 list_move(&p->mnt_list, &tmp_list); 1424 } 1425 1426 /* Hide the mounts from mnt_mounts */ 1427 list_for_each_entry(p, &tmp_list, mnt_list) { 1428 list_del_init(&p->mnt_child); 1429 } 1430 1431 /* Add propogated mounts to the tmp_list */ 1432 if (how & UMOUNT_PROPAGATE) 1433 propagate_umount(&tmp_list); 1434 1435 while (!list_empty(&tmp_list)) { 1436 struct mnt_namespace *ns; 1437 bool disconnect; 1438 p = list_first_entry(&tmp_list, struct mount, mnt_list); 1439 list_del_init(&p->mnt_expire); 1440 list_del_init(&p->mnt_list); 1441 ns = p->mnt_ns; 1442 if (ns) { 1443 ns->mounts--; 1444 __touch_mnt_namespace(ns); 1445 } 1446 p->mnt_ns = NULL; 1447 if (how & UMOUNT_SYNC) 1448 p->mnt.mnt_flags |= MNT_SYNC_UMOUNT; 1449 1450 disconnect = disconnect_mount(p, how); 1451 1452 pin_insert_group(&p->mnt_umount, &p->mnt_parent->mnt, 1453 disconnect ? &unmounted : NULL); 1454 if (mnt_has_parent(p)) { 1455 mnt_add_count(p->mnt_parent, -1); 1456 if (!disconnect) { 1457 /* Don't forget about p */ 1458 list_add_tail(&p->mnt_child, &p->mnt_parent->mnt_mounts); 1459 } else { 1460 umount_mnt(p); 1461 } 1462 } 1463 change_mnt_propagation(p, MS_PRIVATE); 1464 } 1465 } 1466 1467 static void shrink_submounts(struct mount *mnt); 1468 1469 static int do_umount(struct mount *mnt, int flags) 1470 { 1471 struct super_block *sb = mnt->mnt.mnt_sb; 1472 int retval; 1473 1474 retval = security_sb_umount(&mnt->mnt, flags); 1475 if (retval) 1476 return retval; 1477 1478 /* 1479 * Allow userspace to request a mountpoint be expired rather than 1480 * unmounting unconditionally. Unmount only happens if: 1481 * (1) the mark is already set (the mark is cleared by mntput()) 1482 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount] 1483 */ 1484 if (flags & MNT_EXPIRE) { 1485 if (&mnt->mnt == current->fs->root.mnt || 1486 flags & (MNT_FORCE | MNT_DETACH)) 1487 return -EINVAL; 1488 1489 /* 1490 * probably don't strictly need the lock here if we examined 1491 * all race cases, but it's a slowpath. 1492 */ 1493 lock_mount_hash(); 1494 if (mnt_get_count(mnt) != 2) { 1495 unlock_mount_hash(); 1496 return -EBUSY; 1497 } 1498 unlock_mount_hash(); 1499 1500 if (!xchg(&mnt->mnt_expiry_mark, 1)) 1501 return -EAGAIN; 1502 } 1503 1504 /* 1505 * If we may have to abort operations to get out of this 1506 * mount, and they will themselves hold resources we must 1507 * allow the fs to do things. In the Unix tradition of 1508 * 'Gee thats tricky lets do it in userspace' the umount_begin 1509 * might fail to complete on the first run through as other tasks 1510 * must return, and the like. Thats for the mount program to worry 1511 * about for the moment. 1512 */ 1513 1514 if (flags & MNT_FORCE && sb->s_op->umount_begin) { 1515 sb->s_op->umount_begin(sb); 1516 } 1517 1518 /* 1519 * No sense to grab the lock for this test, but test itself looks 1520 * somewhat bogus. Suggestions for better replacement? 1521 * Ho-hum... In principle, we might treat that as umount + switch 1522 * to rootfs. GC would eventually take care of the old vfsmount. 1523 * Actually it makes sense, especially if rootfs would contain a 1524 * /reboot - static binary that would close all descriptors and 1525 * call reboot(9). Then init(8) could umount root and exec /reboot. 1526 */ 1527 if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) { 1528 /* 1529 * Special case for "unmounting" root ... 1530 * we just try to remount it readonly. 1531 */ 1532 if (!ns_capable(sb->s_user_ns, CAP_SYS_ADMIN)) 1533 return -EPERM; 1534 down_write(&sb->s_umount); 1535 if (!sb_rdonly(sb)) 1536 retval = do_remount_sb(sb, SB_RDONLY, NULL, 0); 1537 up_write(&sb->s_umount); 1538 return retval; 1539 } 1540 1541 namespace_lock(); 1542 lock_mount_hash(); 1543 1544 /* Recheck MNT_LOCKED with the locks held */ 1545 retval = -EINVAL; 1546 if (mnt->mnt.mnt_flags & MNT_LOCKED) 1547 goto out; 1548 1549 event++; 1550 if (flags & MNT_DETACH) { 1551 if (!list_empty(&mnt->mnt_list)) 1552 umount_tree(mnt, UMOUNT_PROPAGATE); 1553 retval = 0; 1554 } else { 1555 shrink_submounts(mnt); 1556 retval = -EBUSY; 1557 if (!propagate_mount_busy(mnt, 2)) { 1558 if (!list_empty(&mnt->mnt_list)) 1559 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC); 1560 retval = 0; 1561 } 1562 } 1563 out: 1564 unlock_mount_hash(); 1565 namespace_unlock(); 1566 return retval; 1567 } 1568 1569 /* 1570 * __detach_mounts - lazily unmount all mounts on the specified dentry 1571 * 1572 * During unlink, rmdir, and d_drop it is possible to loose the path 1573 * to an existing mountpoint, and wind up leaking the mount. 1574 * detach_mounts allows lazily unmounting those mounts instead of 1575 * leaking them. 1576 * 1577 * The caller may hold dentry->d_inode->i_mutex. 1578 */ 1579 void __detach_mounts(struct dentry *dentry) 1580 { 1581 struct mountpoint *mp; 1582 struct mount *mnt; 1583 1584 namespace_lock(); 1585 lock_mount_hash(); 1586 mp = lookup_mountpoint(dentry); 1587 if (IS_ERR_OR_NULL(mp)) 1588 goto out_unlock; 1589 1590 event++; 1591 while (!hlist_empty(&mp->m_list)) { 1592 mnt = hlist_entry(mp->m_list.first, struct mount, mnt_mp_list); 1593 if (mnt->mnt.mnt_flags & MNT_UMOUNT) { 1594 hlist_add_head(&mnt->mnt_umount.s_list, &unmounted); 1595 umount_mnt(mnt); 1596 } 1597 else umount_tree(mnt, UMOUNT_CONNECTED); 1598 } 1599 put_mountpoint(mp); 1600 out_unlock: 1601 unlock_mount_hash(); 1602 namespace_unlock(); 1603 } 1604 1605 /* 1606 * Is the caller allowed to modify his namespace? 1607 */ 1608 static inline bool may_mount(void) 1609 { 1610 return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN); 1611 } 1612 1613 static inline bool may_mandlock(void) 1614 { 1615 #ifndef CONFIG_MANDATORY_FILE_LOCKING 1616 return false; 1617 #endif 1618 return capable(CAP_SYS_ADMIN); 1619 } 1620 1621 /* 1622 * Now umount can handle mount points as well as block devices. 1623 * This is important for filesystems which use unnamed block devices. 1624 * 1625 * We now support a flag for forced unmount like the other 'big iron' 1626 * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD 1627 */ 1628 1629 int ksys_umount(char __user *name, int flags) 1630 { 1631 struct path path; 1632 struct mount *mnt; 1633 int retval; 1634 int lookup_flags = 0; 1635 1636 if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW)) 1637 return -EINVAL; 1638 1639 if (!may_mount()) 1640 return -EPERM; 1641 1642 if (!(flags & UMOUNT_NOFOLLOW)) 1643 lookup_flags |= LOOKUP_FOLLOW; 1644 1645 retval = user_path_mountpoint_at(AT_FDCWD, name, lookup_flags, &path); 1646 if (retval) 1647 goto out; 1648 mnt = real_mount(path.mnt); 1649 retval = -EINVAL; 1650 if (path.dentry != path.mnt->mnt_root) 1651 goto dput_and_out; 1652 if (!check_mnt(mnt)) 1653 goto dput_and_out; 1654 if (mnt->mnt.mnt_flags & MNT_LOCKED) /* Check optimistically */ 1655 goto dput_and_out; 1656 retval = -EPERM; 1657 if (flags & MNT_FORCE && !capable(CAP_SYS_ADMIN)) 1658 goto dput_and_out; 1659 1660 retval = do_umount(mnt, flags); 1661 dput_and_out: 1662 /* we mustn't call path_put() as that would clear mnt_expiry_mark */ 1663 dput(path.dentry); 1664 mntput_no_expire(mnt); 1665 out: 1666 return retval; 1667 } 1668 1669 SYSCALL_DEFINE2(umount, char __user *, name, int, flags) 1670 { 1671 return ksys_umount(name, flags); 1672 } 1673 1674 #ifdef __ARCH_WANT_SYS_OLDUMOUNT 1675 1676 /* 1677 * The 2.0 compatible umount. No flags. 1678 */ 1679 SYSCALL_DEFINE1(oldumount, char __user *, name) 1680 { 1681 return ksys_umount(name, 0); 1682 } 1683 1684 #endif 1685 1686 static bool is_mnt_ns_file(struct dentry *dentry) 1687 { 1688 /* Is this a proxy for a mount namespace? */ 1689 return dentry->d_op == &ns_dentry_operations && 1690 dentry->d_fsdata == &mntns_operations; 1691 } 1692 1693 struct mnt_namespace *to_mnt_ns(struct ns_common *ns) 1694 { 1695 return container_of(ns, struct mnt_namespace, ns); 1696 } 1697 1698 static bool mnt_ns_loop(struct dentry *dentry) 1699 { 1700 /* Could bind mounting the mount namespace inode cause a 1701 * mount namespace loop? 1702 */ 1703 struct mnt_namespace *mnt_ns; 1704 if (!is_mnt_ns_file(dentry)) 1705 return false; 1706 1707 mnt_ns = to_mnt_ns(get_proc_ns(dentry->d_inode)); 1708 return current->nsproxy->mnt_ns->seq >= mnt_ns->seq; 1709 } 1710 1711 struct mount *copy_tree(struct mount *mnt, struct dentry *dentry, 1712 int flag) 1713 { 1714 struct mount *res, *p, *q, *r, *parent; 1715 1716 if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(mnt)) 1717 return ERR_PTR(-EINVAL); 1718 1719 if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry)) 1720 return ERR_PTR(-EINVAL); 1721 1722 res = q = clone_mnt(mnt, dentry, flag); 1723 if (IS_ERR(q)) 1724 return q; 1725 1726 q->mnt_mountpoint = mnt->mnt_mountpoint; 1727 1728 p = mnt; 1729 list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) { 1730 struct mount *s; 1731 if (!is_subdir(r->mnt_mountpoint, dentry)) 1732 continue; 1733 1734 for (s = r; s; s = next_mnt(s, r)) { 1735 if (!(flag & CL_COPY_UNBINDABLE) && 1736 IS_MNT_UNBINDABLE(s)) { 1737 if (s->mnt.mnt_flags & MNT_LOCKED) { 1738 /* Both unbindable and locked. */ 1739 q = ERR_PTR(-EPERM); 1740 goto out; 1741 } else { 1742 s = skip_mnt_tree(s); 1743 continue; 1744 } 1745 } 1746 if (!(flag & CL_COPY_MNT_NS_FILE) && 1747 is_mnt_ns_file(s->mnt.mnt_root)) { 1748 s = skip_mnt_tree(s); 1749 continue; 1750 } 1751 while (p != s->mnt_parent) { 1752 p = p->mnt_parent; 1753 q = q->mnt_parent; 1754 } 1755 p = s; 1756 parent = q; 1757 q = clone_mnt(p, p->mnt.mnt_root, flag); 1758 if (IS_ERR(q)) 1759 goto out; 1760 lock_mount_hash(); 1761 list_add_tail(&q->mnt_list, &res->mnt_list); 1762 attach_mnt(q, parent, p->mnt_mp); 1763 unlock_mount_hash(); 1764 } 1765 } 1766 return res; 1767 out: 1768 if (res) { 1769 lock_mount_hash(); 1770 umount_tree(res, UMOUNT_SYNC); 1771 unlock_mount_hash(); 1772 } 1773 return q; 1774 } 1775 1776 /* Caller should check returned pointer for errors */ 1777 1778 struct vfsmount *collect_mounts(const struct path *path) 1779 { 1780 struct mount *tree; 1781 namespace_lock(); 1782 if (!check_mnt(real_mount(path->mnt))) 1783 tree = ERR_PTR(-EINVAL); 1784 else 1785 tree = copy_tree(real_mount(path->mnt), path->dentry, 1786 CL_COPY_ALL | CL_PRIVATE); 1787 namespace_unlock(); 1788 if (IS_ERR(tree)) 1789 return ERR_CAST(tree); 1790 return &tree->mnt; 1791 } 1792 1793 void drop_collected_mounts(struct vfsmount *mnt) 1794 { 1795 namespace_lock(); 1796 lock_mount_hash(); 1797 umount_tree(real_mount(mnt), 0); 1798 unlock_mount_hash(); 1799 namespace_unlock(); 1800 } 1801 1802 /** 1803 * clone_private_mount - create a private clone of a path 1804 * 1805 * This creates a new vfsmount, which will be the clone of @path. The new will 1806 * not be attached anywhere in the namespace and will be private (i.e. changes 1807 * to the originating mount won't be propagated into this). 1808 * 1809 * Release with mntput(). 1810 */ 1811 struct vfsmount *clone_private_mount(const struct path *path) 1812 { 1813 struct mount *old_mnt = real_mount(path->mnt); 1814 struct mount *new_mnt; 1815 1816 if (IS_MNT_UNBINDABLE(old_mnt)) 1817 return ERR_PTR(-EINVAL); 1818 1819 new_mnt = clone_mnt(old_mnt, path->dentry, CL_PRIVATE); 1820 if (IS_ERR(new_mnt)) 1821 return ERR_CAST(new_mnt); 1822 1823 return &new_mnt->mnt; 1824 } 1825 EXPORT_SYMBOL_GPL(clone_private_mount); 1826 1827 int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg, 1828 struct vfsmount *root) 1829 { 1830 struct mount *mnt; 1831 int res = f(root, arg); 1832 if (res) 1833 return res; 1834 list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) { 1835 res = f(&mnt->mnt, arg); 1836 if (res) 1837 return res; 1838 } 1839 return 0; 1840 } 1841 1842 static void cleanup_group_ids(struct mount *mnt, struct mount *end) 1843 { 1844 struct mount *p; 1845 1846 for (p = mnt; p != end; p = next_mnt(p, mnt)) { 1847 if (p->mnt_group_id && !IS_MNT_SHARED(p)) 1848 mnt_release_group_id(p); 1849 } 1850 } 1851 1852 static int invent_group_ids(struct mount *mnt, bool recurse) 1853 { 1854 struct mount *p; 1855 1856 for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) { 1857 if (!p->mnt_group_id && !IS_MNT_SHARED(p)) { 1858 int err = mnt_alloc_group_id(p); 1859 if (err) { 1860 cleanup_group_ids(mnt, p); 1861 return err; 1862 } 1863 } 1864 } 1865 1866 return 0; 1867 } 1868 1869 int count_mounts(struct mnt_namespace *ns, struct mount *mnt) 1870 { 1871 unsigned int max = READ_ONCE(sysctl_mount_max); 1872 unsigned int mounts = 0, old, pending, sum; 1873 struct mount *p; 1874 1875 for (p = mnt; p; p = next_mnt(p, mnt)) 1876 mounts++; 1877 1878 old = ns->mounts; 1879 pending = ns->pending_mounts; 1880 sum = old + pending; 1881 if ((old > sum) || 1882 (pending > sum) || 1883 (max < sum) || 1884 (mounts > (max - sum))) 1885 return -ENOSPC; 1886 1887 ns->pending_mounts = pending + mounts; 1888 return 0; 1889 } 1890 1891 /* 1892 * @source_mnt : mount tree to be attached 1893 * @nd : place the mount tree @source_mnt is attached 1894 * @parent_nd : if non-null, detach the source_mnt from its parent and 1895 * store the parent mount and mountpoint dentry. 1896 * (done when source_mnt is moved) 1897 * 1898 * NOTE: in the table below explains the semantics when a source mount 1899 * of a given type is attached to a destination mount of a given type. 1900 * --------------------------------------------------------------------------- 1901 * | BIND MOUNT OPERATION | 1902 * |************************************************************************** 1903 * | source-->| shared | private | slave | unbindable | 1904 * | dest | | | | | 1905 * | | | | | | | 1906 * | v | | | | | 1907 * |************************************************************************** 1908 * | shared | shared (++) | shared (+) | shared(+++)| invalid | 1909 * | | | | | | 1910 * |non-shared| shared (+) | private | slave (*) | invalid | 1911 * *************************************************************************** 1912 * A bind operation clones the source mount and mounts the clone on the 1913 * destination mount. 1914 * 1915 * (++) the cloned mount is propagated to all the mounts in the propagation 1916 * tree of the destination mount and the cloned mount is added to 1917 * the peer group of the source mount. 1918 * (+) the cloned mount is created under the destination mount and is marked 1919 * as shared. The cloned mount is added to the peer group of the source 1920 * mount. 1921 * (+++) the mount is propagated to all the mounts in the propagation tree 1922 * of the destination mount and the cloned mount is made slave 1923 * of the same master as that of the source mount. The cloned mount 1924 * is marked as 'shared and slave'. 1925 * (*) the cloned mount is made a slave of the same master as that of the 1926 * source mount. 1927 * 1928 * --------------------------------------------------------------------------- 1929 * | MOVE MOUNT OPERATION | 1930 * |************************************************************************** 1931 * | source-->| shared | private | slave | unbindable | 1932 * | dest | | | | | 1933 * | | | | | | | 1934 * | v | | | | | 1935 * |************************************************************************** 1936 * | shared | shared (+) | shared (+) | shared(+++) | invalid | 1937 * | | | | | | 1938 * |non-shared| shared (+*) | private | slave (*) | unbindable | 1939 * *************************************************************************** 1940 * 1941 * (+) the mount is moved to the destination. And is then propagated to 1942 * all the mounts in the propagation tree of the destination mount. 1943 * (+*) the mount is moved to the destination. 1944 * (+++) the mount is moved to the destination and is then propagated to 1945 * all the mounts belonging to the destination mount's propagation tree. 1946 * the mount is marked as 'shared and slave'. 1947 * (*) the mount continues to be a slave at the new location. 1948 * 1949 * if the source mount is a tree, the operations explained above is 1950 * applied to each mount in the tree. 1951 * Must be called without spinlocks held, since this function can sleep 1952 * in allocations. 1953 */ 1954 static int attach_recursive_mnt(struct mount *source_mnt, 1955 struct mount *dest_mnt, 1956 struct mountpoint *dest_mp, 1957 struct path *parent_path) 1958 { 1959 HLIST_HEAD(tree_list); 1960 struct mnt_namespace *ns = dest_mnt->mnt_ns; 1961 struct mountpoint *smp; 1962 struct mount *child, *p; 1963 struct hlist_node *n; 1964 int err; 1965 1966 /* Preallocate a mountpoint in case the new mounts need 1967 * to be tucked under other mounts. 1968 */ 1969 smp = get_mountpoint(source_mnt->mnt.mnt_root); 1970 if (IS_ERR(smp)) 1971 return PTR_ERR(smp); 1972 1973 /* Is there space to add these mounts to the mount namespace? */ 1974 if (!parent_path) { 1975 err = count_mounts(ns, source_mnt); 1976 if (err) 1977 goto out; 1978 } 1979 1980 if (IS_MNT_SHARED(dest_mnt)) { 1981 err = invent_group_ids(source_mnt, true); 1982 if (err) 1983 goto out; 1984 err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list); 1985 lock_mount_hash(); 1986 if (err) 1987 goto out_cleanup_ids; 1988 for (p = source_mnt; p; p = next_mnt(p, source_mnt)) 1989 set_mnt_shared(p); 1990 } else { 1991 lock_mount_hash(); 1992 } 1993 if (parent_path) { 1994 detach_mnt(source_mnt, parent_path); 1995 attach_mnt(source_mnt, dest_mnt, dest_mp); 1996 touch_mnt_namespace(source_mnt->mnt_ns); 1997 } else { 1998 mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt); 1999 commit_tree(source_mnt); 2000 } 2001 2002 hlist_for_each_entry_safe(child, n, &tree_list, mnt_hash) { 2003 struct mount *q; 2004 hlist_del_init(&child->mnt_hash); 2005 q = __lookup_mnt(&child->mnt_parent->mnt, 2006 child->mnt_mountpoint); 2007 if (q) 2008 mnt_change_mountpoint(child, smp, q); 2009 commit_tree(child); 2010 } 2011 put_mountpoint(smp); 2012 unlock_mount_hash(); 2013 2014 return 0; 2015 2016 out_cleanup_ids: 2017 while (!hlist_empty(&tree_list)) { 2018 child = hlist_entry(tree_list.first, struct mount, mnt_hash); 2019 child->mnt_parent->mnt_ns->pending_mounts = 0; 2020 umount_tree(child, UMOUNT_SYNC); 2021 } 2022 unlock_mount_hash(); 2023 cleanup_group_ids(source_mnt, NULL); 2024 out: 2025 ns->pending_mounts = 0; 2026 2027 read_seqlock_excl(&mount_lock); 2028 put_mountpoint(smp); 2029 read_sequnlock_excl(&mount_lock); 2030 2031 return err; 2032 } 2033 2034 static struct mountpoint *lock_mount(struct path *path) 2035 { 2036 struct vfsmount *mnt; 2037 struct dentry *dentry = path->dentry; 2038 retry: 2039 inode_lock(dentry->d_inode); 2040 if (unlikely(cant_mount(dentry))) { 2041 inode_unlock(dentry->d_inode); 2042 return ERR_PTR(-ENOENT); 2043 } 2044 namespace_lock(); 2045 mnt = lookup_mnt(path); 2046 if (likely(!mnt)) { 2047 struct mountpoint *mp = get_mountpoint(dentry); 2048 if (IS_ERR(mp)) { 2049 namespace_unlock(); 2050 inode_unlock(dentry->d_inode); 2051 return mp; 2052 } 2053 return mp; 2054 } 2055 namespace_unlock(); 2056 inode_unlock(path->dentry->d_inode); 2057 path_put(path); 2058 path->mnt = mnt; 2059 dentry = path->dentry = dget(mnt->mnt_root); 2060 goto retry; 2061 } 2062 2063 static void unlock_mount(struct mountpoint *where) 2064 { 2065 struct dentry *dentry = where->m_dentry; 2066 2067 read_seqlock_excl(&mount_lock); 2068 put_mountpoint(where); 2069 read_sequnlock_excl(&mount_lock); 2070 2071 namespace_unlock(); 2072 inode_unlock(dentry->d_inode); 2073 } 2074 2075 static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp) 2076 { 2077 if (mnt->mnt.mnt_sb->s_flags & SB_NOUSER) 2078 return -EINVAL; 2079 2080 if (d_is_dir(mp->m_dentry) != 2081 d_is_dir(mnt->mnt.mnt_root)) 2082 return -ENOTDIR; 2083 2084 return attach_recursive_mnt(mnt, p, mp, NULL); 2085 } 2086 2087 /* 2088 * Sanity check the flags to change_mnt_propagation. 2089 */ 2090 2091 static int flags_to_propagation_type(int ms_flags) 2092 { 2093 int type = ms_flags & ~(MS_REC | MS_SILENT); 2094 2095 /* Fail if any non-propagation flags are set */ 2096 if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE)) 2097 return 0; 2098 /* Only one propagation flag should be set */ 2099 if (!is_power_of_2(type)) 2100 return 0; 2101 return type; 2102 } 2103 2104 /* 2105 * recursively change the type of the mountpoint. 2106 */ 2107 static int do_change_type(struct path *path, int ms_flags) 2108 { 2109 struct mount *m; 2110 struct mount *mnt = real_mount(path->mnt); 2111 int recurse = ms_flags & MS_REC; 2112 int type; 2113 int err = 0; 2114 2115 if (path->dentry != path->mnt->mnt_root) 2116 return -EINVAL; 2117 2118 type = flags_to_propagation_type(ms_flags); 2119 if (!type) 2120 return -EINVAL; 2121 2122 namespace_lock(); 2123 if (type == MS_SHARED) { 2124 err = invent_group_ids(mnt, recurse); 2125 if (err) 2126 goto out_unlock; 2127 } 2128 2129 lock_mount_hash(); 2130 for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL)) 2131 change_mnt_propagation(m, type); 2132 unlock_mount_hash(); 2133 2134 out_unlock: 2135 namespace_unlock(); 2136 return err; 2137 } 2138 2139 static bool has_locked_children(struct mount *mnt, struct dentry *dentry) 2140 { 2141 struct mount *child; 2142 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) { 2143 if (!is_subdir(child->mnt_mountpoint, dentry)) 2144 continue; 2145 2146 if (child->mnt.mnt_flags & MNT_LOCKED) 2147 return true; 2148 } 2149 return false; 2150 } 2151 2152 /* 2153 * do loopback mount. 2154 */ 2155 static int do_loopback(struct path *path, const char *old_name, 2156 int recurse) 2157 { 2158 struct path old_path; 2159 struct mount *mnt = NULL, *old, *parent; 2160 struct mountpoint *mp; 2161 int err; 2162 if (!old_name || !*old_name) 2163 return -EINVAL; 2164 err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path); 2165 if (err) 2166 return err; 2167 2168 err = -EINVAL; 2169 if (mnt_ns_loop(old_path.dentry)) 2170 goto out; 2171 2172 mp = lock_mount(path); 2173 err = PTR_ERR(mp); 2174 if (IS_ERR(mp)) 2175 goto out; 2176 2177 old = real_mount(old_path.mnt); 2178 parent = real_mount(path->mnt); 2179 2180 err = -EINVAL; 2181 if (IS_MNT_UNBINDABLE(old)) 2182 goto out2; 2183 2184 if (!check_mnt(parent)) 2185 goto out2; 2186 2187 if (!check_mnt(old) && old_path.dentry->d_op != &ns_dentry_operations) 2188 goto out2; 2189 2190 if (!recurse && has_locked_children(old, old_path.dentry)) 2191 goto out2; 2192 2193 if (recurse) 2194 mnt = copy_tree(old, old_path.dentry, CL_COPY_MNT_NS_FILE); 2195 else 2196 mnt = clone_mnt(old, old_path.dentry, 0); 2197 2198 if (IS_ERR(mnt)) { 2199 err = PTR_ERR(mnt); 2200 goto out2; 2201 } 2202 2203 mnt->mnt.mnt_flags &= ~MNT_LOCKED; 2204 2205 err = graft_tree(mnt, parent, mp); 2206 if (err) { 2207 lock_mount_hash(); 2208 umount_tree(mnt, UMOUNT_SYNC); 2209 unlock_mount_hash(); 2210 } 2211 out2: 2212 unlock_mount(mp); 2213 out: 2214 path_put(&old_path); 2215 return err; 2216 } 2217 2218 static int change_mount_flags(struct vfsmount *mnt, int ms_flags) 2219 { 2220 int error = 0; 2221 int readonly_request = 0; 2222 2223 if (ms_flags & MS_RDONLY) 2224 readonly_request = 1; 2225 if (readonly_request == __mnt_is_readonly(mnt)) 2226 return 0; 2227 2228 if (readonly_request) 2229 error = mnt_make_readonly(real_mount(mnt)); 2230 else 2231 __mnt_unmake_readonly(real_mount(mnt)); 2232 return error; 2233 } 2234 2235 /* 2236 * change filesystem flags. dir should be a physical root of filesystem. 2237 * If you've mounted a non-root directory somewhere and want to do remount 2238 * on it - tough luck. 2239 */ 2240 static int do_remount(struct path *path, int ms_flags, int sb_flags, 2241 int mnt_flags, void *data) 2242 { 2243 int err; 2244 struct super_block *sb = path->mnt->mnt_sb; 2245 struct mount *mnt = real_mount(path->mnt); 2246 2247 if (!check_mnt(mnt)) 2248 return -EINVAL; 2249 2250 if (path->dentry != path->mnt->mnt_root) 2251 return -EINVAL; 2252 2253 /* Don't allow changing of locked mnt flags. 2254 * 2255 * No locks need to be held here while testing the various 2256 * MNT_LOCK flags because those flags can never be cleared 2257 * once they are set. 2258 */ 2259 if ((mnt->mnt.mnt_flags & MNT_LOCK_READONLY) && 2260 !(mnt_flags & MNT_READONLY)) { 2261 return -EPERM; 2262 } 2263 if ((mnt->mnt.mnt_flags & MNT_LOCK_NODEV) && 2264 !(mnt_flags & MNT_NODEV)) { 2265 return -EPERM; 2266 } 2267 if ((mnt->mnt.mnt_flags & MNT_LOCK_NOSUID) && 2268 !(mnt_flags & MNT_NOSUID)) { 2269 return -EPERM; 2270 } 2271 if ((mnt->mnt.mnt_flags & MNT_LOCK_NOEXEC) && 2272 !(mnt_flags & MNT_NOEXEC)) { 2273 return -EPERM; 2274 } 2275 if ((mnt->mnt.mnt_flags & MNT_LOCK_ATIME) && 2276 ((mnt->mnt.mnt_flags & MNT_ATIME_MASK) != (mnt_flags & MNT_ATIME_MASK))) { 2277 return -EPERM; 2278 } 2279 2280 err = security_sb_remount(sb, data); 2281 if (err) 2282 return err; 2283 2284 down_write(&sb->s_umount); 2285 if (ms_flags & MS_BIND) 2286 err = change_mount_flags(path->mnt, ms_flags); 2287 else if (!ns_capable(sb->s_user_ns, CAP_SYS_ADMIN)) 2288 err = -EPERM; 2289 else 2290 err = do_remount_sb(sb, sb_flags, data, 0); 2291 if (!err) { 2292 lock_mount_hash(); 2293 mnt_flags |= mnt->mnt.mnt_flags & ~MNT_USER_SETTABLE_MASK; 2294 mnt->mnt.mnt_flags = mnt_flags; 2295 touch_mnt_namespace(mnt->mnt_ns); 2296 unlock_mount_hash(); 2297 } 2298 up_write(&sb->s_umount); 2299 return err; 2300 } 2301 2302 static inline int tree_contains_unbindable(struct mount *mnt) 2303 { 2304 struct mount *p; 2305 for (p = mnt; p; p = next_mnt(p, mnt)) { 2306 if (IS_MNT_UNBINDABLE(p)) 2307 return 1; 2308 } 2309 return 0; 2310 } 2311 2312 static int do_move_mount(struct path *path, const char *old_name) 2313 { 2314 struct path old_path, parent_path; 2315 struct mount *p; 2316 struct mount *old; 2317 struct mountpoint *mp; 2318 int err; 2319 if (!old_name || !*old_name) 2320 return -EINVAL; 2321 err = kern_path(old_name, LOOKUP_FOLLOW, &old_path); 2322 if (err) 2323 return err; 2324 2325 mp = lock_mount(path); 2326 err = PTR_ERR(mp); 2327 if (IS_ERR(mp)) 2328 goto out; 2329 2330 old = real_mount(old_path.mnt); 2331 p = real_mount(path->mnt); 2332 2333 err = -EINVAL; 2334 if (!check_mnt(p) || !check_mnt(old)) 2335 goto out1; 2336 2337 if (old->mnt.mnt_flags & MNT_LOCKED) 2338 goto out1; 2339 2340 err = -EINVAL; 2341 if (old_path.dentry != old_path.mnt->mnt_root) 2342 goto out1; 2343 2344 if (!mnt_has_parent(old)) 2345 goto out1; 2346 2347 if (d_is_dir(path->dentry) != 2348 d_is_dir(old_path.dentry)) 2349 goto out1; 2350 /* 2351 * Don't move a mount residing in a shared parent. 2352 */ 2353 if (IS_MNT_SHARED(old->mnt_parent)) 2354 goto out1; 2355 /* 2356 * Don't move a mount tree containing unbindable mounts to a destination 2357 * mount which is shared. 2358 */ 2359 if (IS_MNT_SHARED(p) && tree_contains_unbindable(old)) 2360 goto out1; 2361 err = -ELOOP; 2362 for (; mnt_has_parent(p); p = p->mnt_parent) 2363 if (p == old) 2364 goto out1; 2365 2366 err = attach_recursive_mnt(old, real_mount(path->mnt), mp, &parent_path); 2367 if (err) 2368 goto out1; 2369 2370 /* if the mount is moved, it should no longer be expire 2371 * automatically */ 2372 list_del_init(&old->mnt_expire); 2373 out1: 2374 unlock_mount(mp); 2375 out: 2376 if (!err) 2377 path_put(&parent_path); 2378 path_put(&old_path); 2379 return err; 2380 } 2381 2382 static struct vfsmount *fs_set_subtype(struct vfsmount *mnt, const char *fstype) 2383 { 2384 int err; 2385 const char *subtype = strchr(fstype, '.'); 2386 if (subtype) { 2387 subtype++; 2388 err = -EINVAL; 2389 if (!subtype[0]) 2390 goto err; 2391 } else 2392 subtype = ""; 2393 2394 mnt->mnt_sb->s_subtype = kstrdup(subtype, GFP_KERNEL); 2395 err = -ENOMEM; 2396 if (!mnt->mnt_sb->s_subtype) 2397 goto err; 2398 return mnt; 2399 2400 err: 2401 mntput(mnt); 2402 return ERR_PTR(err); 2403 } 2404 2405 /* 2406 * add a mount into a namespace's mount tree 2407 */ 2408 static int do_add_mount(struct mount *newmnt, struct path *path, int mnt_flags) 2409 { 2410 struct mountpoint *mp; 2411 struct mount *parent; 2412 int err; 2413 2414 mnt_flags &= ~MNT_INTERNAL_FLAGS; 2415 2416 mp = lock_mount(path); 2417 if (IS_ERR(mp)) 2418 return PTR_ERR(mp); 2419 2420 parent = real_mount(path->mnt); 2421 err = -EINVAL; 2422 if (unlikely(!check_mnt(parent))) { 2423 /* that's acceptable only for automounts done in private ns */ 2424 if (!(mnt_flags & MNT_SHRINKABLE)) 2425 goto unlock; 2426 /* ... and for those we'd better have mountpoint still alive */ 2427 if (!parent->mnt_ns) 2428 goto unlock; 2429 } 2430 2431 /* Refuse the same filesystem on the same mount point */ 2432 err = -EBUSY; 2433 if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb && 2434 path->mnt->mnt_root == path->dentry) 2435 goto unlock; 2436 2437 err = -EINVAL; 2438 if (d_is_symlink(newmnt->mnt.mnt_root)) 2439 goto unlock; 2440 2441 newmnt->mnt.mnt_flags = mnt_flags; 2442 err = graft_tree(newmnt, parent, mp); 2443 2444 unlock: 2445 unlock_mount(mp); 2446 return err; 2447 } 2448 2449 static bool mount_too_revealing(struct vfsmount *mnt, int *new_mnt_flags); 2450 2451 /* 2452 * create a new mount for userspace and request it to be added into the 2453 * namespace's tree 2454 */ 2455 static int do_new_mount(struct path *path, const char *fstype, int sb_flags, 2456 int mnt_flags, const char *name, void *data) 2457 { 2458 struct file_system_type *type; 2459 struct vfsmount *mnt; 2460 int err; 2461 2462 if (!fstype) 2463 return -EINVAL; 2464 2465 type = get_fs_type(fstype); 2466 if (!type) 2467 return -ENODEV; 2468 2469 mnt = vfs_kern_mount(type, sb_flags, name, data); 2470 if (!IS_ERR(mnt) && (type->fs_flags & FS_HAS_SUBTYPE) && 2471 !mnt->mnt_sb->s_subtype) 2472 mnt = fs_set_subtype(mnt, fstype); 2473 2474 put_filesystem(type); 2475 if (IS_ERR(mnt)) 2476 return PTR_ERR(mnt); 2477 2478 if (mount_too_revealing(mnt, &mnt_flags)) { 2479 mntput(mnt); 2480 return -EPERM; 2481 } 2482 2483 err = do_add_mount(real_mount(mnt), path, mnt_flags); 2484 if (err) 2485 mntput(mnt); 2486 return err; 2487 } 2488 2489 int finish_automount(struct vfsmount *m, struct path *path) 2490 { 2491 struct mount *mnt = real_mount(m); 2492 int err; 2493 /* The new mount record should have at least 2 refs to prevent it being 2494 * expired before we get a chance to add it 2495 */ 2496 BUG_ON(mnt_get_count(mnt) < 2); 2497 2498 if (m->mnt_sb == path->mnt->mnt_sb && 2499 m->mnt_root == path->dentry) { 2500 err = -ELOOP; 2501 goto fail; 2502 } 2503 2504 err = do_add_mount(mnt, path, path->mnt->mnt_flags | MNT_SHRINKABLE); 2505 if (!err) 2506 return 0; 2507 fail: 2508 /* remove m from any expiration list it may be on */ 2509 if (!list_empty(&mnt->mnt_expire)) { 2510 namespace_lock(); 2511 list_del_init(&mnt->mnt_expire); 2512 namespace_unlock(); 2513 } 2514 mntput(m); 2515 mntput(m); 2516 return err; 2517 } 2518 2519 /** 2520 * mnt_set_expiry - Put a mount on an expiration list 2521 * @mnt: The mount to list. 2522 * @expiry_list: The list to add the mount to. 2523 */ 2524 void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list) 2525 { 2526 namespace_lock(); 2527 2528 list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list); 2529 2530 namespace_unlock(); 2531 } 2532 EXPORT_SYMBOL(mnt_set_expiry); 2533 2534 /* 2535 * process a list of expirable mountpoints with the intent of discarding any 2536 * mountpoints that aren't in use and haven't been touched since last we came 2537 * here 2538 */ 2539 void mark_mounts_for_expiry(struct list_head *mounts) 2540 { 2541 struct mount *mnt, *next; 2542 LIST_HEAD(graveyard); 2543 2544 if (list_empty(mounts)) 2545 return; 2546 2547 namespace_lock(); 2548 lock_mount_hash(); 2549 2550 /* extract from the expiration list every vfsmount that matches the 2551 * following criteria: 2552 * - only referenced by its parent vfsmount 2553 * - still marked for expiry (marked on the last call here; marks are 2554 * cleared by mntput()) 2555 */ 2556 list_for_each_entry_safe(mnt, next, mounts, mnt_expire) { 2557 if (!xchg(&mnt->mnt_expiry_mark, 1) || 2558 propagate_mount_busy(mnt, 1)) 2559 continue; 2560 list_move(&mnt->mnt_expire, &graveyard); 2561 } 2562 while (!list_empty(&graveyard)) { 2563 mnt = list_first_entry(&graveyard, struct mount, mnt_expire); 2564 touch_mnt_namespace(mnt->mnt_ns); 2565 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC); 2566 } 2567 unlock_mount_hash(); 2568 namespace_unlock(); 2569 } 2570 2571 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry); 2572 2573 /* 2574 * Ripoff of 'select_parent()' 2575 * 2576 * search the list of submounts for a given mountpoint, and move any 2577 * shrinkable submounts to the 'graveyard' list. 2578 */ 2579 static int select_submounts(struct mount *parent, struct list_head *graveyard) 2580 { 2581 struct mount *this_parent = parent; 2582 struct list_head *next; 2583 int found = 0; 2584 2585 repeat: 2586 next = this_parent->mnt_mounts.next; 2587 resume: 2588 while (next != &this_parent->mnt_mounts) { 2589 struct list_head *tmp = next; 2590 struct mount *mnt = list_entry(tmp, struct mount, mnt_child); 2591 2592 next = tmp->next; 2593 if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE)) 2594 continue; 2595 /* 2596 * Descend a level if the d_mounts list is non-empty. 2597 */ 2598 if (!list_empty(&mnt->mnt_mounts)) { 2599 this_parent = mnt; 2600 goto repeat; 2601 } 2602 2603 if (!propagate_mount_busy(mnt, 1)) { 2604 list_move_tail(&mnt->mnt_expire, graveyard); 2605 found++; 2606 } 2607 } 2608 /* 2609 * All done at this level ... ascend and resume the search 2610 */ 2611 if (this_parent != parent) { 2612 next = this_parent->mnt_child.next; 2613 this_parent = this_parent->mnt_parent; 2614 goto resume; 2615 } 2616 return found; 2617 } 2618 2619 /* 2620 * process a list of expirable mountpoints with the intent of discarding any 2621 * submounts of a specific parent mountpoint 2622 * 2623 * mount_lock must be held for write 2624 */ 2625 static void shrink_submounts(struct mount *mnt) 2626 { 2627 LIST_HEAD(graveyard); 2628 struct mount *m; 2629 2630 /* extract submounts of 'mountpoint' from the expiration list */ 2631 while (select_submounts(mnt, &graveyard)) { 2632 while (!list_empty(&graveyard)) { 2633 m = list_first_entry(&graveyard, struct mount, 2634 mnt_expire); 2635 touch_mnt_namespace(m->mnt_ns); 2636 umount_tree(m, UMOUNT_PROPAGATE|UMOUNT_SYNC); 2637 } 2638 } 2639 } 2640 2641 /* 2642 * Some copy_from_user() implementations do not return the exact number of 2643 * bytes remaining to copy on a fault. But copy_mount_options() requires that. 2644 * Note that this function differs from copy_from_user() in that it will oops 2645 * on bad values of `to', rather than returning a short copy. 2646 */ 2647 static long exact_copy_from_user(void *to, const void __user * from, 2648 unsigned long n) 2649 { 2650 char *t = to; 2651 const char __user *f = from; 2652 char c; 2653 2654 if (!access_ok(VERIFY_READ, from, n)) 2655 return n; 2656 2657 current->kernel_uaccess_faults_ok++; 2658 while (n) { 2659 if (__get_user(c, f)) { 2660 memset(t, 0, n); 2661 break; 2662 } 2663 *t++ = c; 2664 f++; 2665 n--; 2666 } 2667 current->kernel_uaccess_faults_ok--; 2668 return n; 2669 } 2670 2671 void *copy_mount_options(const void __user * data) 2672 { 2673 int i; 2674 unsigned long size; 2675 char *copy; 2676 2677 if (!data) 2678 return NULL; 2679 2680 copy = kmalloc(PAGE_SIZE, GFP_KERNEL); 2681 if (!copy) 2682 return ERR_PTR(-ENOMEM); 2683 2684 /* We only care that *some* data at the address the user 2685 * gave us is valid. Just in case, we'll zero 2686 * the remainder of the page. 2687 */ 2688 /* copy_from_user cannot cross TASK_SIZE ! */ 2689 size = TASK_SIZE - (unsigned long)data; 2690 if (size > PAGE_SIZE) 2691 size = PAGE_SIZE; 2692 2693 i = size - exact_copy_from_user(copy, data, size); 2694 if (!i) { 2695 kfree(copy); 2696 return ERR_PTR(-EFAULT); 2697 } 2698 if (i != PAGE_SIZE) 2699 memset(copy + i, 0, PAGE_SIZE - i); 2700 return copy; 2701 } 2702 2703 char *copy_mount_string(const void __user *data) 2704 { 2705 return data ? strndup_user(data, PAGE_SIZE) : NULL; 2706 } 2707 2708 /* 2709 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to 2710 * be given to the mount() call (ie: read-only, no-dev, no-suid etc). 2711 * 2712 * data is a (void *) that can point to any structure up to 2713 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent 2714 * information (or be NULL). 2715 * 2716 * Pre-0.97 versions of mount() didn't have a flags word. 2717 * When the flags word was introduced its top half was required 2718 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9. 2719 * Therefore, if this magic number is present, it carries no information 2720 * and must be discarded. 2721 */ 2722 long do_mount(const char *dev_name, const char __user *dir_name, 2723 const char *type_page, unsigned long flags, void *data_page) 2724 { 2725 struct path path; 2726 unsigned int mnt_flags = 0, sb_flags; 2727 int retval = 0; 2728 2729 /* Discard magic */ 2730 if ((flags & MS_MGC_MSK) == MS_MGC_VAL) 2731 flags &= ~MS_MGC_MSK; 2732 2733 /* Basic sanity checks */ 2734 if (data_page) 2735 ((char *)data_page)[PAGE_SIZE - 1] = 0; 2736 2737 if (flags & MS_NOUSER) 2738 return -EINVAL; 2739 2740 /* ... and get the mountpoint */ 2741 retval = user_path(dir_name, &path); 2742 if (retval) 2743 return retval; 2744 2745 retval = security_sb_mount(dev_name, &path, 2746 type_page, flags, data_page); 2747 if (!retval && !may_mount()) 2748 retval = -EPERM; 2749 if (!retval && (flags & SB_MANDLOCK) && !may_mandlock()) 2750 retval = -EPERM; 2751 if (retval) 2752 goto dput_out; 2753 2754 /* Default to relatime unless overriden */ 2755 if (!(flags & MS_NOATIME)) 2756 mnt_flags |= MNT_RELATIME; 2757 2758 /* Separate the per-mountpoint flags */ 2759 if (flags & MS_NOSUID) 2760 mnt_flags |= MNT_NOSUID; 2761 if (flags & MS_NODEV) 2762 mnt_flags |= MNT_NODEV; 2763 if (flags & MS_NOEXEC) 2764 mnt_flags |= MNT_NOEXEC; 2765 if (flags & MS_NOATIME) 2766 mnt_flags |= MNT_NOATIME; 2767 if (flags & MS_NODIRATIME) 2768 mnt_flags |= MNT_NODIRATIME; 2769 if (flags & MS_STRICTATIME) 2770 mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME); 2771 if (flags & MS_RDONLY) 2772 mnt_flags |= MNT_READONLY; 2773 2774 /* The default atime for remount is preservation */ 2775 if ((flags & MS_REMOUNT) && 2776 ((flags & (MS_NOATIME | MS_NODIRATIME | MS_RELATIME | 2777 MS_STRICTATIME)) == 0)) { 2778 mnt_flags &= ~MNT_ATIME_MASK; 2779 mnt_flags |= path.mnt->mnt_flags & MNT_ATIME_MASK; 2780 } 2781 2782 sb_flags = flags & (SB_RDONLY | 2783 SB_SYNCHRONOUS | 2784 SB_MANDLOCK | 2785 SB_DIRSYNC | 2786 SB_SILENT | 2787 SB_POSIXACL | 2788 SB_LAZYTIME | 2789 SB_I_VERSION); 2790 2791 if (flags & MS_REMOUNT) 2792 retval = do_remount(&path, flags, sb_flags, mnt_flags, 2793 data_page); 2794 else if (flags & MS_BIND) 2795 retval = do_loopback(&path, dev_name, flags & MS_REC); 2796 else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE)) 2797 retval = do_change_type(&path, flags); 2798 else if (flags & MS_MOVE) 2799 retval = do_move_mount(&path, dev_name); 2800 else 2801 retval = do_new_mount(&path, type_page, sb_flags, mnt_flags, 2802 dev_name, data_page); 2803 dput_out: 2804 path_put(&path); 2805 return retval; 2806 } 2807 2808 static struct ucounts *inc_mnt_namespaces(struct user_namespace *ns) 2809 { 2810 return inc_ucount(ns, current_euid(), UCOUNT_MNT_NAMESPACES); 2811 } 2812 2813 static void dec_mnt_namespaces(struct ucounts *ucounts) 2814 { 2815 dec_ucount(ucounts, UCOUNT_MNT_NAMESPACES); 2816 } 2817 2818 static void free_mnt_ns(struct mnt_namespace *ns) 2819 { 2820 ns_free_inum(&ns->ns); 2821 dec_mnt_namespaces(ns->ucounts); 2822 put_user_ns(ns->user_ns); 2823 kfree(ns); 2824 } 2825 2826 /* 2827 * Assign a sequence number so we can detect when we attempt to bind 2828 * mount a reference to an older mount namespace into the current 2829 * mount namespace, preventing reference counting loops. A 64bit 2830 * number incrementing at 10Ghz will take 12,427 years to wrap which 2831 * is effectively never, so we can ignore the possibility. 2832 */ 2833 static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1); 2834 2835 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns) 2836 { 2837 struct mnt_namespace *new_ns; 2838 struct ucounts *ucounts; 2839 int ret; 2840 2841 ucounts = inc_mnt_namespaces(user_ns); 2842 if (!ucounts) 2843 return ERR_PTR(-ENOSPC); 2844 2845 new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL); 2846 if (!new_ns) { 2847 dec_mnt_namespaces(ucounts); 2848 return ERR_PTR(-ENOMEM); 2849 } 2850 ret = ns_alloc_inum(&new_ns->ns); 2851 if (ret) { 2852 kfree(new_ns); 2853 dec_mnt_namespaces(ucounts); 2854 return ERR_PTR(ret); 2855 } 2856 new_ns->ns.ops = &mntns_operations; 2857 new_ns->seq = atomic64_add_return(1, &mnt_ns_seq); 2858 atomic_set(&new_ns->count, 1); 2859 new_ns->root = NULL; 2860 INIT_LIST_HEAD(&new_ns->list); 2861 init_waitqueue_head(&new_ns->poll); 2862 new_ns->event = 0; 2863 new_ns->user_ns = get_user_ns(user_ns); 2864 new_ns->ucounts = ucounts; 2865 new_ns->mounts = 0; 2866 new_ns->pending_mounts = 0; 2867 return new_ns; 2868 } 2869 2870 __latent_entropy 2871 struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns, 2872 struct user_namespace *user_ns, struct fs_struct *new_fs) 2873 { 2874 struct mnt_namespace *new_ns; 2875 struct vfsmount *rootmnt = NULL, *pwdmnt = NULL; 2876 struct mount *p, *q; 2877 struct mount *old; 2878 struct mount *new; 2879 int copy_flags; 2880 2881 BUG_ON(!ns); 2882 2883 if (likely(!(flags & CLONE_NEWNS))) { 2884 get_mnt_ns(ns); 2885 return ns; 2886 } 2887 2888 old = ns->root; 2889 2890 new_ns = alloc_mnt_ns(user_ns); 2891 if (IS_ERR(new_ns)) 2892 return new_ns; 2893 2894 namespace_lock(); 2895 /* First pass: copy the tree topology */ 2896 copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE; 2897 if (user_ns != ns->user_ns) 2898 copy_flags |= CL_SHARED_TO_SLAVE | CL_UNPRIVILEGED; 2899 new = copy_tree(old, old->mnt.mnt_root, copy_flags); 2900 if (IS_ERR(new)) { 2901 namespace_unlock(); 2902 free_mnt_ns(new_ns); 2903 return ERR_CAST(new); 2904 } 2905 new_ns->root = new; 2906 list_add_tail(&new_ns->list, &new->mnt_list); 2907 2908 /* 2909 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts 2910 * as belonging to new namespace. We have already acquired a private 2911 * fs_struct, so tsk->fs->lock is not needed. 2912 */ 2913 p = old; 2914 q = new; 2915 while (p) { 2916 q->mnt_ns = new_ns; 2917 new_ns->mounts++; 2918 if (new_fs) { 2919 if (&p->mnt == new_fs->root.mnt) { 2920 new_fs->root.mnt = mntget(&q->mnt); 2921 rootmnt = &p->mnt; 2922 } 2923 if (&p->mnt == new_fs->pwd.mnt) { 2924 new_fs->pwd.mnt = mntget(&q->mnt); 2925 pwdmnt = &p->mnt; 2926 } 2927 } 2928 p = next_mnt(p, old); 2929 q = next_mnt(q, new); 2930 if (!q) 2931 break; 2932 while (p->mnt.mnt_root != q->mnt.mnt_root) 2933 p = next_mnt(p, old); 2934 } 2935 namespace_unlock(); 2936 2937 if (rootmnt) 2938 mntput(rootmnt); 2939 if (pwdmnt) 2940 mntput(pwdmnt); 2941 2942 return new_ns; 2943 } 2944 2945 /** 2946 * create_mnt_ns - creates a private namespace and adds a root filesystem 2947 * @mnt: pointer to the new root filesystem mountpoint 2948 */ 2949 static struct mnt_namespace *create_mnt_ns(struct vfsmount *m) 2950 { 2951 struct mnt_namespace *new_ns = alloc_mnt_ns(&init_user_ns); 2952 if (!IS_ERR(new_ns)) { 2953 struct mount *mnt = real_mount(m); 2954 mnt->mnt_ns = new_ns; 2955 new_ns->root = mnt; 2956 new_ns->mounts++; 2957 list_add(&mnt->mnt_list, &new_ns->list); 2958 } else { 2959 mntput(m); 2960 } 2961 return new_ns; 2962 } 2963 2964 struct dentry *mount_subtree(struct vfsmount *mnt, const char *name) 2965 { 2966 struct mnt_namespace *ns; 2967 struct super_block *s; 2968 struct path path; 2969 int err; 2970 2971 ns = create_mnt_ns(mnt); 2972 if (IS_ERR(ns)) 2973 return ERR_CAST(ns); 2974 2975 err = vfs_path_lookup(mnt->mnt_root, mnt, 2976 name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path); 2977 2978 put_mnt_ns(ns); 2979 2980 if (err) 2981 return ERR_PTR(err); 2982 2983 /* trade a vfsmount reference for active sb one */ 2984 s = path.mnt->mnt_sb; 2985 atomic_inc(&s->s_active); 2986 mntput(path.mnt); 2987 /* lock the sucker */ 2988 down_write(&s->s_umount); 2989 /* ... and return the root of (sub)tree on it */ 2990 return path.dentry; 2991 } 2992 EXPORT_SYMBOL(mount_subtree); 2993 2994 int ksys_mount(char __user *dev_name, char __user *dir_name, char __user *type, 2995 unsigned long flags, void __user *data) 2996 { 2997 int ret; 2998 char *kernel_type; 2999 char *kernel_dev; 3000 void *options; 3001 3002 kernel_type = copy_mount_string(type); 3003 ret = PTR_ERR(kernel_type); 3004 if (IS_ERR(kernel_type)) 3005 goto out_type; 3006 3007 kernel_dev = copy_mount_string(dev_name); 3008 ret = PTR_ERR(kernel_dev); 3009 if (IS_ERR(kernel_dev)) 3010 goto out_dev; 3011 3012 options = copy_mount_options(data); 3013 ret = PTR_ERR(options); 3014 if (IS_ERR(options)) 3015 goto out_data; 3016 3017 ret = do_mount(kernel_dev, dir_name, kernel_type, flags, options); 3018 3019 kfree(options); 3020 out_data: 3021 kfree(kernel_dev); 3022 out_dev: 3023 kfree(kernel_type); 3024 out_type: 3025 return ret; 3026 } 3027 3028 SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name, 3029 char __user *, type, unsigned long, flags, void __user *, data) 3030 { 3031 return ksys_mount(dev_name, dir_name, type, flags, data); 3032 } 3033 3034 /* 3035 * Return true if path is reachable from root 3036 * 3037 * namespace_sem or mount_lock is held 3038 */ 3039 bool is_path_reachable(struct mount *mnt, struct dentry *dentry, 3040 const struct path *root) 3041 { 3042 while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) { 3043 dentry = mnt->mnt_mountpoint; 3044 mnt = mnt->mnt_parent; 3045 } 3046 return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry); 3047 } 3048 3049 bool path_is_under(const struct path *path1, const struct path *path2) 3050 { 3051 bool res; 3052 read_seqlock_excl(&mount_lock); 3053 res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2); 3054 read_sequnlock_excl(&mount_lock); 3055 return res; 3056 } 3057 EXPORT_SYMBOL(path_is_under); 3058 3059 /* 3060 * pivot_root Semantics: 3061 * Moves the root file system of the current process to the directory put_old, 3062 * makes new_root as the new root file system of the current process, and sets 3063 * root/cwd of all processes which had them on the current root to new_root. 3064 * 3065 * Restrictions: 3066 * The new_root and put_old must be directories, and must not be on the 3067 * same file system as the current process root. The put_old must be 3068 * underneath new_root, i.e. adding a non-zero number of /.. to the string 3069 * pointed to by put_old must yield the same directory as new_root. No other 3070 * file system may be mounted on put_old. After all, new_root is a mountpoint. 3071 * 3072 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem. 3073 * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives 3074 * in this situation. 3075 * 3076 * Notes: 3077 * - we don't move root/cwd if they are not at the root (reason: if something 3078 * cared enough to change them, it's probably wrong to force them elsewhere) 3079 * - it's okay to pick a root that isn't the root of a file system, e.g. 3080 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint, 3081 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root 3082 * first. 3083 */ 3084 SYSCALL_DEFINE2(pivot_root, const char __user *, new_root, 3085 const char __user *, put_old) 3086 { 3087 struct path new, old, parent_path, root_parent, root; 3088 struct mount *new_mnt, *root_mnt, *old_mnt; 3089 struct mountpoint *old_mp, *root_mp; 3090 int error; 3091 3092 if (!may_mount()) 3093 return -EPERM; 3094 3095 error = user_path_dir(new_root, &new); 3096 if (error) 3097 goto out0; 3098 3099 error = user_path_dir(put_old, &old); 3100 if (error) 3101 goto out1; 3102 3103 error = security_sb_pivotroot(&old, &new); 3104 if (error) 3105 goto out2; 3106 3107 get_fs_root(current->fs, &root); 3108 old_mp = lock_mount(&old); 3109 error = PTR_ERR(old_mp); 3110 if (IS_ERR(old_mp)) 3111 goto out3; 3112 3113 error = -EINVAL; 3114 new_mnt = real_mount(new.mnt); 3115 root_mnt = real_mount(root.mnt); 3116 old_mnt = real_mount(old.mnt); 3117 if (IS_MNT_SHARED(old_mnt) || 3118 IS_MNT_SHARED(new_mnt->mnt_parent) || 3119 IS_MNT_SHARED(root_mnt->mnt_parent)) 3120 goto out4; 3121 if (!check_mnt(root_mnt) || !check_mnt(new_mnt)) 3122 goto out4; 3123 if (new_mnt->mnt.mnt_flags & MNT_LOCKED) 3124 goto out4; 3125 error = -ENOENT; 3126 if (d_unlinked(new.dentry)) 3127 goto out4; 3128 error = -EBUSY; 3129 if (new_mnt == root_mnt || old_mnt == root_mnt) 3130 goto out4; /* loop, on the same file system */ 3131 error = -EINVAL; 3132 if (root.mnt->mnt_root != root.dentry) 3133 goto out4; /* not a mountpoint */ 3134 if (!mnt_has_parent(root_mnt)) 3135 goto out4; /* not attached */ 3136 root_mp = root_mnt->mnt_mp; 3137 if (new.mnt->mnt_root != new.dentry) 3138 goto out4; /* not a mountpoint */ 3139 if (!mnt_has_parent(new_mnt)) 3140 goto out4; /* not attached */ 3141 /* make sure we can reach put_old from new_root */ 3142 if (!is_path_reachable(old_mnt, old.dentry, &new)) 3143 goto out4; 3144 /* make certain new is below the root */ 3145 if (!is_path_reachable(new_mnt, new.dentry, &root)) 3146 goto out4; 3147 root_mp->m_count++; /* pin it so it won't go away */ 3148 lock_mount_hash(); 3149 detach_mnt(new_mnt, &parent_path); 3150 detach_mnt(root_mnt, &root_parent); 3151 if (root_mnt->mnt.mnt_flags & MNT_LOCKED) { 3152 new_mnt->mnt.mnt_flags |= MNT_LOCKED; 3153 root_mnt->mnt.mnt_flags &= ~MNT_LOCKED; 3154 } 3155 /* mount old root on put_old */ 3156 attach_mnt(root_mnt, old_mnt, old_mp); 3157 /* mount new_root on / */ 3158 attach_mnt(new_mnt, real_mount(root_parent.mnt), root_mp); 3159 touch_mnt_namespace(current->nsproxy->mnt_ns); 3160 /* A moved mount should not expire automatically */ 3161 list_del_init(&new_mnt->mnt_expire); 3162 put_mountpoint(root_mp); 3163 unlock_mount_hash(); 3164 chroot_fs_refs(&root, &new); 3165 error = 0; 3166 out4: 3167 unlock_mount(old_mp); 3168 if (!error) { 3169 path_put(&root_parent); 3170 path_put(&parent_path); 3171 } 3172 out3: 3173 path_put(&root); 3174 out2: 3175 path_put(&old); 3176 out1: 3177 path_put(&new); 3178 out0: 3179 return error; 3180 } 3181 3182 static void __init init_mount_tree(void) 3183 { 3184 struct vfsmount *mnt; 3185 struct mnt_namespace *ns; 3186 struct path root; 3187 struct file_system_type *type; 3188 3189 type = get_fs_type("rootfs"); 3190 if (!type) 3191 panic("Can't find rootfs type"); 3192 mnt = vfs_kern_mount(type, 0, "rootfs", NULL); 3193 put_filesystem(type); 3194 if (IS_ERR(mnt)) 3195 panic("Can't create rootfs"); 3196 3197 ns = create_mnt_ns(mnt); 3198 if (IS_ERR(ns)) 3199 panic("Can't allocate initial namespace"); 3200 3201 init_task.nsproxy->mnt_ns = ns; 3202 get_mnt_ns(ns); 3203 3204 root.mnt = mnt; 3205 root.dentry = mnt->mnt_root; 3206 mnt->mnt_flags |= MNT_LOCKED; 3207 3208 set_fs_pwd(current->fs, &root); 3209 set_fs_root(current->fs, &root); 3210 } 3211 3212 void __init mnt_init(void) 3213 { 3214 int err; 3215 3216 mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount), 3217 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL); 3218 3219 mount_hashtable = alloc_large_system_hash("Mount-cache", 3220 sizeof(struct hlist_head), 3221 mhash_entries, 19, 3222 HASH_ZERO, 3223 &m_hash_shift, &m_hash_mask, 0, 0); 3224 mountpoint_hashtable = alloc_large_system_hash("Mountpoint-cache", 3225 sizeof(struct hlist_head), 3226 mphash_entries, 19, 3227 HASH_ZERO, 3228 &mp_hash_shift, &mp_hash_mask, 0, 0); 3229 3230 if (!mount_hashtable || !mountpoint_hashtable) 3231 panic("Failed to allocate mount hash table\n"); 3232 3233 kernfs_init(); 3234 3235 err = sysfs_init(); 3236 if (err) 3237 printk(KERN_WARNING "%s: sysfs_init error: %d\n", 3238 __func__, err); 3239 fs_kobj = kobject_create_and_add("fs", NULL); 3240 if (!fs_kobj) 3241 printk(KERN_WARNING "%s: kobj create error\n", __func__); 3242 init_rootfs(); 3243 init_mount_tree(); 3244 } 3245 3246 void put_mnt_ns(struct mnt_namespace *ns) 3247 { 3248 if (!atomic_dec_and_test(&ns->count)) 3249 return; 3250 drop_collected_mounts(&ns->root->mnt); 3251 free_mnt_ns(ns); 3252 } 3253 3254 struct vfsmount *kern_mount_data(struct file_system_type *type, void *data) 3255 { 3256 struct vfsmount *mnt; 3257 mnt = vfs_kern_mount(type, SB_KERNMOUNT, type->name, data); 3258 if (!IS_ERR(mnt)) { 3259 /* 3260 * it is a longterm mount, don't release mnt until 3261 * we unmount before file sys is unregistered 3262 */ 3263 real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL; 3264 } 3265 return mnt; 3266 } 3267 EXPORT_SYMBOL_GPL(kern_mount_data); 3268 3269 void kern_unmount(struct vfsmount *mnt) 3270 { 3271 /* release long term mount so mount point can be released */ 3272 if (!IS_ERR_OR_NULL(mnt)) { 3273 real_mount(mnt)->mnt_ns = NULL; 3274 synchronize_rcu(); /* yecchhh... */ 3275 mntput(mnt); 3276 } 3277 } 3278 EXPORT_SYMBOL(kern_unmount); 3279 3280 bool our_mnt(struct vfsmount *mnt) 3281 { 3282 return check_mnt(real_mount(mnt)); 3283 } 3284 3285 bool current_chrooted(void) 3286 { 3287 /* Does the current process have a non-standard root */ 3288 struct path ns_root; 3289 struct path fs_root; 3290 bool chrooted; 3291 3292 /* Find the namespace root */ 3293 ns_root.mnt = ¤t->nsproxy->mnt_ns->root->mnt; 3294 ns_root.dentry = ns_root.mnt->mnt_root; 3295 path_get(&ns_root); 3296 while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root)) 3297 ; 3298 3299 get_fs_root(current->fs, &fs_root); 3300 3301 chrooted = !path_equal(&fs_root, &ns_root); 3302 3303 path_put(&fs_root); 3304 path_put(&ns_root); 3305 3306 return chrooted; 3307 } 3308 3309 static bool mnt_already_visible(struct mnt_namespace *ns, struct vfsmount *new, 3310 int *new_mnt_flags) 3311 { 3312 int new_flags = *new_mnt_flags; 3313 struct mount *mnt; 3314 bool visible = false; 3315 3316 down_read(&namespace_sem); 3317 list_for_each_entry(mnt, &ns->list, mnt_list) { 3318 struct mount *child; 3319 int mnt_flags; 3320 3321 if (mnt->mnt.mnt_sb->s_type != new->mnt_sb->s_type) 3322 continue; 3323 3324 /* This mount is not fully visible if it's root directory 3325 * is not the root directory of the filesystem. 3326 */ 3327 if (mnt->mnt.mnt_root != mnt->mnt.mnt_sb->s_root) 3328 continue; 3329 3330 /* A local view of the mount flags */ 3331 mnt_flags = mnt->mnt.mnt_flags; 3332 3333 /* Don't miss readonly hidden in the superblock flags */ 3334 if (sb_rdonly(mnt->mnt.mnt_sb)) 3335 mnt_flags |= MNT_LOCK_READONLY; 3336 3337 /* Verify the mount flags are equal to or more permissive 3338 * than the proposed new mount. 3339 */ 3340 if ((mnt_flags & MNT_LOCK_READONLY) && 3341 !(new_flags & MNT_READONLY)) 3342 continue; 3343 if ((mnt_flags & MNT_LOCK_ATIME) && 3344 ((mnt_flags & MNT_ATIME_MASK) != (new_flags & MNT_ATIME_MASK))) 3345 continue; 3346 3347 /* This mount is not fully visible if there are any 3348 * locked child mounts that cover anything except for 3349 * empty directories. 3350 */ 3351 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) { 3352 struct inode *inode = child->mnt_mountpoint->d_inode; 3353 /* Only worry about locked mounts */ 3354 if (!(child->mnt.mnt_flags & MNT_LOCKED)) 3355 continue; 3356 /* Is the directory permanetly empty? */ 3357 if (!is_empty_dir_inode(inode)) 3358 goto next; 3359 } 3360 /* Preserve the locked attributes */ 3361 *new_mnt_flags |= mnt_flags & (MNT_LOCK_READONLY | \ 3362 MNT_LOCK_ATIME); 3363 visible = true; 3364 goto found; 3365 next: ; 3366 } 3367 found: 3368 up_read(&namespace_sem); 3369 return visible; 3370 } 3371 3372 static bool mount_too_revealing(struct vfsmount *mnt, int *new_mnt_flags) 3373 { 3374 const unsigned long required_iflags = SB_I_NOEXEC | SB_I_NODEV; 3375 struct mnt_namespace *ns = current->nsproxy->mnt_ns; 3376 unsigned long s_iflags; 3377 3378 if (ns->user_ns == &init_user_ns) 3379 return false; 3380 3381 /* Can this filesystem be too revealing? */ 3382 s_iflags = mnt->mnt_sb->s_iflags; 3383 if (!(s_iflags & SB_I_USERNS_VISIBLE)) 3384 return false; 3385 3386 if ((s_iflags & required_iflags) != required_iflags) { 3387 WARN_ONCE(1, "Expected s_iflags to contain 0x%lx\n", 3388 required_iflags); 3389 return true; 3390 } 3391 3392 return !mnt_already_visible(ns, mnt, new_mnt_flags); 3393 } 3394 3395 bool mnt_may_suid(struct vfsmount *mnt) 3396 { 3397 /* 3398 * Foreign mounts (accessed via fchdir or through /proc 3399 * symlinks) are always treated as if they are nosuid. This 3400 * prevents namespaces from trusting potentially unsafe 3401 * suid/sgid bits, file caps, or security labels that originate 3402 * in other namespaces. 3403 */ 3404 return !(mnt->mnt_flags & MNT_NOSUID) && check_mnt(real_mount(mnt)) && 3405 current_in_userns(mnt->mnt_sb->s_user_ns); 3406 } 3407 3408 static struct ns_common *mntns_get(struct task_struct *task) 3409 { 3410 struct ns_common *ns = NULL; 3411 struct nsproxy *nsproxy; 3412 3413 task_lock(task); 3414 nsproxy = task->nsproxy; 3415 if (nsproxy) { 3416 ns = &nsproxy->mnt_ns->ns; 3417 get_mnt_ns(to_mnt_ns(ns)); 3418 } 3419 task_unlock(task); 3420 3421 return ns; 3422 } 3423 3424 static void mntns_put(struct ns_common *ns) 3425 { 3426 put_mnt_ns(to_mnt_ns(ns)); 3427 } 3428 3429 static int mntns_install(struct nsproxy *nsproxy, struct ns_common *ns) 3430 { 3431 struct fs_struct *fs = current->fs; 3432 struct mnt_namespace *mnt_ns = to_mnt_ns(ns), *old_mnt_ns; 3433 struct path root; 3434 int err; 3435 3436 if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) || 3437 !ns_capable(current_user_ns(), CAP_SYS_CHROOT) || 3438 !ns_capable(current_user_ns(), CAP_SYS_ADMIN)) 3439 return -EPERM; 3440 3441 if (fs->users != 1) 3442 return -EINVAL; 3443 3444 get_mnt_ns(mnt_ns); 3445 old_mnt_ns = nsproxy->mnt_ns; 3446 nsproxy->mnt_ns = mnt_ns; 3447 3448 /* Find the root */ 3449 err = vfs_path_lookup(mnt_ns->root->mnt.mnt_root, &mnt_ns->root->mnt, 3450 "/", LOOKUP_DOWN, &root); 3451 if (err) { 3452 /* revert to old namespace */ 3453 nsproxy->mnt_ns = old_mnt_ns; 3454 put_mnt_ns(mnt_ns); 3455 return err; 3456 } 3457 3458 put_mnt_ns(old_mnt_ns); 3459 3460 /* Update the pwd and root */ 3461 set_fs_pwd(fs, &root); 3462 set_fs_root(fs, &root); 3463 3464 path_put(&root); 3465 return 0; 3466 } 3467 3468 static struct user_namespace *mntns_owner(struct ns_common *ns) 3469 { 3470 return to_mnt_ns(ns)->user_ns; 3471 } 3472 3473 const struct proc_ns_operations mntns_operations = { 3474 .name = "mnt", 3475 .type = CLONE_NEWNS, 3476 .get = mntns_get, 3477 .put = mntns_put, 3478 .install = mntns_install, 3479 .owner = mntns_owner, 3480 }; 3481