xref: /openbmc/linux/fs/namespace.c (revision f1770e3c)
1 /*
2  *  linux/fs/namespace.c
3  *
4  * (C) Copyright Al Viro 2000, 2001
5  *	Released under GPL v2.
6  *
7  * Based on code from fs/super.c, copyright Linus Torvalds and others.
8  * Heavily rewritten.
9  */
10 
11 #include <linux/syscalls.h>
12 #include <linux/export.h>
13 #include <linux/capability.h>
14 #include <linux/mnt_namespace.h>
15 #include <linux/user_namespace.h>
16 #include <linux/namei.h>
17 #include <linux/security.h>
18 #include <linux/cred.h>
19 #include <linux/idr.h>
20 #include <linux/init.h>		/* init_rootfs */
21 #include <linux/fs_struct.h>	/* get_fs_root et.al. */
22 #include <linux/fsnotify.h>	/* fsnotify_vfsmount_delete */
23 #include <linux/uaccess.h>
24 #include <linux/proc_ns.h>
25 #include <linux/magic.h>
26 #include <linux/memblock.h>
27 #include <linux/task_work.h>
28 #include <linux/sched/task.h>
29 
30 #include "pnode.h"
31 #include "internal.h"
32 
33 /* Maximum number of mounts in a mount namespace */
34 unsigned int sysctl_mount_max __read_mostly = 100000;
35 
36 static unsigned int m_hash_mask __read_mostly;
37 static unsigned int m_hash_shift __read_mostly;
38 static unsigned int mp_hash_mask __read_mostly;
39 static unsigned int mp_hash_shift __read_mostly;
40 
41 static __initdata unsigned long mhash_entries;
42 static int __init set_mhash_entries(char *str)
43 {
44 	if (!str)
45 		return 0;
46 	mhash_entries = simple_strtoul(str, &str, 0);
47 	return 1;
48 }
49 __setup("mhash_entries=", set_mhash_entries);
50 
51 static __initdata unsigned long mphash_entries;
52 static int __init set_mphash_entries(char *str)
53 {
54 	if (!str)
55 		return 0;
56 	mphash_entries = simple_strtoul(str, &str, 0);
57 	return 1;
58 }
59 __setup("mphash_entries=", set_mphash_entries);
60 
61 static u64 event;
62 static DEFINE_IDA(mnt_id_ida);
63 static DEFINE_IDA(mnt_group_ida);
64 
65 static struct hlist_head *mount_hashtable __read_mostly;
66 static struct hlist_head *mountpoint_hashtable __read_mostly;
67 static struct kmem_cache *mnt_cache __read_mostly;
68 static DECLARE_RWSEM(namespace_sem);
69 
70 /* /sys/fs */
71 struct kobject *fs_kobj;
72 EXPORT_SYMBOL_GPL(fs_kobj);
73 
74 /*
75  * vfsmount lock may be taken for read to prevent changes to the
76  * vfsmount hash, ie. during mountpoint lookups or walking back
77  * up the tree.
78  *
79  * It should be taken for write in all cases where the vfsmount
80  * tree or hash is modified or when a vfsmount structure is modified.
81  */
82 __cacheline_aligned_in_smp DEFINE_SEQLOCK(mount_lock);
83 
84 static inline struct hlist_head *m_hash(struct vfsmount *mnt, struct dentry *dentry)
85 {
86 	unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
87 	tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
88 	tmp = tmp + (tmp >> m_hash_shift);
89 	return &mount_hashtable[tmp & m_hash_mask];
90 }
91 
92 static inline struct hlist_head *mp_hash(struct dentry *dentry)
93 {
94 	unsigned long tmp = ((unsigned long)dentry / L1_CACHE_BYTES);
95 	tmp = tmp + (tmp >> mp_hash_shift);
96 	return &mountpoint_hashtable[tmp & mp_hash_mask];
97 }
98 
99 static int mnt_alloc_id(struct mount *mnt)
100 {
101 	int res = ida_alloc(&mnt_id_ida, GFP_KERNEL);
102 
103 	if (res < 0)
104 		return res;
105 	mnt->mnt_id = res;
106 	return 0;
107 }
108 
109 static void mnt_free_id(struct mount *mnt)
110 {
111 	ida_free(&mnt_id_ida, mnt->mnt_id);
112 }
113 
114 /*
115  * Allocate a new peer group ID
116  */
117 static int mnt_alloc_group_id(struct mount *mnt)
118 {
119 	int res = ida_alloc_min(&mnt_group_ida, 1, GFP_KERNEL);
120 
121 	if (res < 0)
122 		return res;
123 	mnt->mnt_group_id = res;
124 	return 0;
125 }
126 
127 /*
128  * Release a peer group ID
129  */
130 void mnt_release_group_id(struct mount *mnt)
131 {
132 	ida_free(&mnt_group_ida, mnt->mnt_group_id);
133 	mnt->mnt_group_id = 0;
134 }
135 
136 /*
137  * vfsmount lock must be held for read
138  */
139 static inline void mnt_add_count(struct mount *mnt, int n)
140 {
141 #ifdef CONFIG_SMP
142 	this_cpu_add(mnt->mnt_pcp->mnt_count, n);
143 #else
144 	preempt_disable();
145 	mnt->mnt_count += n;
146 	preempt_enable();
147 #endif
148 }
149 
150 /*
151  * vfsmount lock must be held for write
152  */
153 unsigned int mnt_get_count(struct mount *mnt)
154 {
155 #ifdef CONFIG_SMP
156 	unsigned int count = 0;
157 	int cpu;
158 
159 	for_each_possible_cpu(cpu) {
160 		count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
161 	}
162 
163 	return count;
164 #else
165 	return mnt->mnt_count;
166 #endif
167 }
168 
169 static void drop_mountpoint(struct fs_pin *p)
170 {
171 	struct mount *m = container_of(p, struct mount, mnt_umount);
172 	dput(m->mnt_ex_mountpoint);
173 	pin_remove(p);
174 	mntput(&m->mnt);
175 }
176 
177 static struct mount *alloc_vfsmnt(const char *name)
178 {
179 	struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
180 	if (mnt) {
181 		int err;
182 
183 		err = mnt_alloc_id(mnt);
184 		if (err)
185 			goto out_free_cache;
186 
187 		if (name) {
188 			mnt->mnt_devname = kstrdup_const(name, GFP_KERNEL);
189 			if (!mnt->mnt_devname)
190 				goto out_free_id;
191 		}
192 
193 #ifdef CONFIG_SMP
194 		mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
195 		if (!mnt->mnt_pcp)
196 			goto out_free_devname;
197 
198 		this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
199 #else
200 		mnt->mnt_count = 1;
201 		mnt->mnt_writers = 0;
202 #endif
203 
204 		INIT_HLIST_NODE(&mnt->mnt_hash);
205 		INIT_LIST_HEAD(&mnt->mnt_child);
206 		INIT_LIST_HEAD(&mnt->mnt_mounts);
207 		INIT_LIST_HEAD(&mnt->mnt_list);
208 		INIT_LIST_HEAD(&mnt->mnt_expire);
209 		INIT_LIST_HEAD(&mnt->mnt_share);
210 		INIT_LIST_HEAD(&mnt->mnt_slave_list);
211 		INIT_LIST_HEAD(&mnt->mnt_slave);
212 		INIT_HLIST_NODE(&mnt->mnt_mp_list);
213 		INIT_LIST_HEAD(&mnt->mnt_umounting);
214 		init_fs_pin(&mnt->mnt_umount, drop_mountpoint);
215 	}
216 	return mnt;
217 
218 #ifdef CONFIG_SMP
219 out_free_devname:
220 	kfree_const(mnt->mnt_devname);
221 #endif
222 out_free_id:
223 	mnt_free_id(mnt);
224 out_free_cache:
225 	kmem_cache_free(mnt_cache, mnt);
226 	return NULL;
227 }
228 
229 /*
230  * Most r/o checks on a fs are for operations that take
231  * discrete amounts of time, like a write() or unlink().
232  * We must keep track of when those operations start
233  * (for permission checks) and when they end, so that
234  * we can determine when writes are able to occur to
235  * a filesystem.
236  */
237 /*
238  * __mnt_is_readonly: check whether a mount is read-only
239  * @mnt: the mount to check for its write status
240  *
241  * This shouldn't be used directly ouside of the VFS.
242  * It does not guarantee that the filesystem will stay
243  * r/w, just that it is right *now*.  This can not and
244  * should not be used in place of IS_RDONLY(inode).
245  * mnt_want/drop_write() will _keep_ the filesystem
246  * r/w.
247  */
248 int __mnt_is_readonly(struct vfsmount *mnt)
249 {
250 	if (mnt->mnt_flags & MNT_READONLY)
251 		return 1;
252 	if (sb_rdonly(mnt->mnt_sb))
253 		return 1;
254 	return 0;
255 }
256 EXPORT_SYMBOL_GPL(__mnt_is_readonly);
257 
258 static inline void mnt_inc_writers(struct mount *mnt)
259 {
260 #ifdef CONFIG_SMP
261 	this_cpu_inc(mnt->mnt_pcp->mnt_writers);
262 #else
263 	mnt->mnt_writers++;
264 #endif
265 }
266 
267 static inline void mnt_dec_writers(struct mount *mnt)
268 {
269 #ifdef CONFIG_SMP
270 	this_cpu_dec(mnt->mnt_pcp->mnt_writers);
271 #else
272 	mnt->mnt_writers--;
273 #endif
274 }
275 
276 static unsigned int mnt_get_writers(struct mount *mnt)
277 {
278 #ifdef CONFIG_SMP
279 	unsigned int count = 0;
280 	int cpu;
281 
282 	for_each_possible_cpu(cpu) {
283 		count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
284 	}
285 
286 	return count;
287 #else
288 	return mnt->mnt_writers;
289 #endif
290 }
291 
292 static int mnt_is_readonly(struct vfsmount *mnt)
293 {
294 	if (mnt->mnt_sb->s_readonly_remount)
295 		return 1;
296 	/* Order wrt setting s_flags/s_readonly_remount in do_remount() */
297 	smp_rmb();
298 	return __mnt_is_readonly(mnt);
299 }
300 
301 /*
302  * Most r/o & frozen checks on a fs are for operations that take discrete
303  * amounts of time, like a write() or unlink().  We must keep track of when
304  * those operations start (for permission checks) and when they end, so that we
305  * can determine when writes are able to occur to a filesystem.
306  */
307 /**
308  * __mnt_want_write - get write access to a mount without freeze protection
309  * @m: the mount on which to take a write
310  *
311  * This tells the low-level filesystem that a write is about to be performed to
312  * it, and makes sure that writes are allowed (mnt it read-write) before
313  * returning success. This operation does not protect against filesystem being
314  * frozen. When the write operation is finished, __mnt_drop_write() must be
315  * called. This is effectively a refcount.
316  */
317 int __mnt_want_write(struct vfsmount *m)
318 {
319 	struct mount *mnt = real_mount(m);
320 	int ret = 0;
321 
322 	preempt_disable();
323 	mnt_inc_writers(mnt);
324 	/*
325 	 * The store to mnt_inc_writers must be visible before we pass
326 	 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
327 	 * incremented count after it has set MNT_WRITE_HOLD.
328 	 */
329 	smp_mb();
330 	while (READ_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD)
331 		cpu_relax();
332 	/*
333 	 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
334 	 * be set to match its requirements. So we must not load that until
335 	 * MNT_WRITE_HOLD is cleared.
336 	 */
337 	smp_rmb();
338 	if (mnt_is_readonly(m)) {
339 		mnt_dec_writers(mnt);
340 		ret = -EROFS;
341 	}
342 	preempt_enable();
343 
344 	return ret;
345 }
346 
347 /**
348  * mnt_want_write - get write access to a mount
349  * @m: the mount on which to take a write
350  *
351  * This tells the low-level filesystem that a write is about to be performed to
352  * it, and makes sure that writes are allowed (mount is read-write, filesystem
353  * is not frozen) before returning success.  When the write operation is
354  * finished, mnt_drop_write() must be called.  This is effectively a refcount.
355  */
356 int mnt_want_write(struct vfsmount *m)
357 {
358 	int ret;
359 
360 	sb_start_write(m->mnt_sb);
361 	ret = __mnt_want_write(m);
362 	if (ret)
363 		sb_end_write(m->mnt_sb);
364 	return ret;
365 }
366 EXPORT_SYMBOL_GPL(mnt_want_write);
367 
368 /**
369  * mnt_clone_write - get write access to a mount
370  * @mnt: the mount on which to take a write
371  *
372  * This is effectively like mnt_want_write, except
373  * it must only be used to take an extra write reference
374  * on a mountpoint that we already know has a write reference
375  * on it. This allows some optimisation.
376  *
377  * After finished, mnt_drop_write must be called as usual to
378  * drop the reference.
379  */
380 int mnt_clone_write(struct vfsmount *mnt)
381 {
382 	/* superblock may be r/o */
383 	if (__mnt_is_readonly(mnt))
384 		return -EROFS;
385 	preempt_disable();
386 	mnt_inc_writers(real_mount(mnt));
387 	preempt_enable();
388 	return 0;
389 }
390 EXPORT_SYMBOL_GPL(mnt_clone_write);
391 
392 /**
393  * __mnt_want_write_file - get write access to a file's mount
394  * @file: the file who's mount on which to take a write
395  *
396  * This is like __mnt_want_write, but it takes a file and can
397  * do some optimisations if the file is open for write already
398  */
399 int __mnt_want_write_file(struct file *file)
400 {
401 	if (!(file->f_mode & FMODE_WRITER))
402 		return __mnt_want_write(file->f_path.mnt);
403 	else
404 		return mnt_clone_write(file->f_path.mnt);
405 }
406 
407 /**
408  * mnt_want_write_file - get write access to a file's mount
409  * @file: the file who's mount on which to take a write
410  *
411  * This is like mnt_want_write, but it takes a file and can
412  * do some optimisations if the file is open for write already
413  */
414 int mnt_want_write_file(struct file *file)
415 {
416 	int ret;
417 
418 	sb_start_write(file_inode(file)->i_sb);
419 	ret = __mnt_want_write_file(file);
420 	if (ret)
421 		sb_end_write(file_inode(file)->i_sb);
422 	return ret;
423 }
424 EXPORT_SYMBOL_GPL(mnt_want_write_file);
425 
426 /**
427  * __mnt_drop_write - give up write access to a mount
428  * @mnt: the mount on which to give up write access
429  *
430  * Tells the low-level filesystem that we are done
431  * performing writes to it.  Must be matched with
432  * __mnt_want_write() call above.
433  */
434 void __mnt_drop_write(struct vfsmount *mnt)
435 {
436 	preempt_disable();
437 	mnt_dec_writers(real_mount(mnt));
438 	preempt_enable();
439 }
440 
441 /**
442  * mnt_drop_write - give up write access to a mount
443  * @mnt: the mount on which to give up write access
444  *
445  * Tells the low-level filesystem that we are done performing writes to it and
446  * also allows filesystem to be frozen again.  Must be matched with
447  * mnt_want_write() call above.
448  */
449 void mnt_drop_write(struct vfsmount *mnt)
450 {
451 	__mnt_drop_write(mnt);
452 	sb_end_write(mnt->mnt_sb);
453 }
454 EXPORT_SYMBOL_GPL(mnt_drop_write);
455 
456 void __mnt_drop_write_file(struct file *file)
457 {
458 	__mnt_drop_write(file->f_path.mnt);
459 }
460 
461 void mnt_drop_write_file(struct file *file)
462 {
463 	__mnt_drop_write_file(file);
464 	sb_end_write(file_inode(file)->i_sb);
465 }
466 EXPORT_SYMBOL(mnt_drop_write_file);
467 
468 static int mnt_make_readonly(struct mount *mnt)
469 {
470 	int ret = 0;
471 
472 	lock_mount_hash();
473 	mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
474 	/*
475 	 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
476 	 * should be visible before we do.
477 	 */
478 	smp_mb();
479 
480 	/*
481 	 * With writers on hold, if this value is zero, then there are
482 	 * definitely no active writers (although held writers may subsequently
483 	 * increment the count, they'll have to wait, and decrement it after
484 	 * seeing MNT_READONLY).
485 	 *
486 	 * It is OK to have counter incremented on one CPU and decremented on
487 	 * another: the sum will add up correctly. The danger would be when we
488 	 * sum up each counter, if we read a counter before it is incremented,
489 	 * but then read another CPU's count which it has been subsequently
490 	 * decremented from -- we would see more decrements than we should.
491 	 * MNT_WRITE_HOLD protects against this scenario, because
492 	 * mnt_want_write first increments count, then smp_mb, then spins on
493 	 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
494 	 * we're counting up here.
495 	 */
496 	if (mnt_get_writers(mnt) > 0)
497 		ret = -EBUSY;
498 	else
499 		mnt->mnt.mnt_flags |= MNT_READONLY;
500 	/*
501 	 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
502 	 * that become unheld will see MNT_READONLY.
503 	 */
504 	smp_wmb();
505 	mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
506 	unlock_mount_hash();
507 	return ret;
508 }
509 
510 static void __mnt_unmake_readonly(struct mount *mnt)
511 {
512 	lock_mount_hash();
513 	mnt->mnt.mnt_flags &= ~MNT_READONLY;
514 	unlock_mount_hash();
515 }
516 
517 int sb_prepare_remount_readonly(struct super_block *sb)
518 {
519 	struct mount *mnt;
520 	int err = 0;
521 
522 	/* Racy optimization.  Recheck the counter under MNT_WRITE_HOLD */
523 	if (atomic_long_read(&sb->s_remove_count))
524 		return -EBUSY;
525 
526 	lock_mount_hash();
527 	list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
528 		if (!(mnt->mnt.mnt_flags & MNT_READONLY)) {
529 			mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
530 			smp_mb();
531 			if (mnt_get_writers(mnt) > 0) {
532 				err = -EBUSY;
533 				break;
534 			}
535 		}
536 	}
537 	if (!err && atomic_long_read(&sb->s_remove_count))
538 		err = -EBUSY;
539 
540 	if (!err) {
541 		sb->s_readonly_remount = 1;
542 		smp_wmb();
543 	}
544 	list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
545 		if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
546 			mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
547 	}
548 	unlock_mount_hash();
549 
550 	return err;
551 }
552 
553 static void free_vfsmnt(struct mount *mnt)
554 {
555 	kfree_const(mnt->mnt_devname);
556 #ifdef CONFIG_SMP
557 	free_percpu(mnt->mnt_pcp);
558 #endif
559 	kmem_cache_free(mnt_cache, mnt);
560 }
561 
562 static void delayed_free_vfsmnt(struct rcu_head *head)
563 {
564 	free_vfsmnt(container_of(head, struct mount, mnt_rcu));
565 }
566 
567 /* call under rcu_read_lock */
568 int __legitimize_mnt(struct vfsmount *bastard, unsigned seq)
569 {
570 	struct mount *mnt;
571 	if (read_seqretry(&mount_lock, seq))
572 		return 1;
573 	if (bastard == NULL)
574 		return 0;
575 	mnt = real_mount(bastard);
576 	mnt_add_count(mnt, 1);
577 	smp_mb();			// see mntput_no_expire()
578 	if (likely(!read_seqretry(&mount_lock, seq)))
579 		return 0;
580 	if (bastard->mnt_flags & MNT_SYNC_UMOUNT) {
581 		mnt_add_count(mnt, -1);
582 		return 1;
583 	}
584 	lock_mount_hash();
585 	if (unlikely(bastard->mnt_flags & MNT_DOOMED)) {
586 		mnt_add_count(mnt, -1);
587 		unlock_mount_hash();
588 		return 1;
589 	}
590 	unlock_mount_hash();
591 	/* caller will mntput() */
592 	return -1;
593 }
594 
595 /* call under rcu_read_lock */
596 bool legitimize_mnt(struct vfsmount *bastard, unsigned seq)
597 {
598 	int res = __legitimize_mnt(bastard, seq);
599 	if (likely(!res))
600 		return true;
601 	if (unlikely(res < 0)) {
602 		rcu_read_unlock();
603 		mntput(bastard);
604 		rcu_read_lock();
605 	}
606 	return false;
607 }
608 
609 /*
610  * find the first mount at @dentry on vfsmount @mnt.
611  * call under rcu_read_lock()
612  */
613 struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry)
614 {
615 	struct hlist_head *head = m_hash(mnt, dentry);
616 	struct mount *p;
617 
618 	hlist_for_each_entry_rcu(p, head, mnt_hash)
619 		if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry)
620 			return p;
621 	return NULL;
622 }
623 
624 /*
625  * lookup_mnt - Return the first child mount mounted at path
626  *
627  * "First" means first mounted chronologically.  If you create the
628  * following mounts:
629  *
630  * mount /dev/sda1 /mnt
631  * mount /dev/sda2 /mnt
632  * mount /dev/sda3 /mnt
633  *
634  * Then lookup_mnt() on the base /mnt dentry in the root mount will
635  * return successively the root dentry and vfsmount of /dev/sda1, then
636  * /dev/sda2, then /dev/sda3, then NULL.
637  *
638  * lookup_mnt takes a reference to the found vfsmount.
639  */
640 struct vfsmount *lookup_mnt(const struct path *path)
641 {
642 	struct mount *child_mnt;
643 	struct vfsmount *m;
644 	unsigned seq;
645 
646 	rcu_read_lock();
647 	do {
648 		seq = read_seqbegin(&mount_lock);
649 		child_mnt = __lookup_mnt(path->mnt, path->dentry);
650 		m = child_mnt ? &child_mnt->mnt : NULL;
651 	} while (!legitimize_mnt(m, seq));
652 	rcu_read_unlock();
653 	return m;
654 }
655 
656 /*
657  * __is_local_mountpoint - Test to see if dentry is a mountpoint in the
658  *                         current mount namespace.
659  *
660  * The common case is dentries are not mountpoints at all and that
661  * test is handled inline.  For the slow case when we are actually
662  * dealing with a mountpoint of some kind, walk through all of the
663  * mounts in the current mount namespace and test to see if the dentry
664  * is a mountpoint.
665  *
666  * The mount_hashtable is not usable in the context because we
667  * need to identify all mounts that may be in the current mount
668  * namespace not just a mount that happens to have some specified
669  * parent mount.
670  */
671 bool __is_local_mountpoint(struct dentry *dentry)
672 {
673 	struct mnt_namespace *ns = current->nsproxy->mnt_ns;
674 	struct mount *mnt;
675 	bool is_covered = false;
676 
677 	if (!d_mountpoint(dentry))
678 		goto out;
679 
680 	down_read(&namespace_sem);
681 	list_for_each_entry(mnt, &ns->list, mnt_list) {
682 		is_covered = (mnt->mnt_mountpoint == dentry);
683 		if (is_covered)
684 			break;
685 	}
686 	up_read(&namespace_sem);
687 out:
688 	return is_covered;
689 }
690 
691 static struct mountpoint *lookup_mountpoint(struct dentry *dentry)
692 {
693 	struct hlist_head *chain = mp_hash(dentry);
694 	struct mountpoint *mp;
695 
696 	hlist_for_each_entry(mp, chain, m_hash) {
697 		if (mp->m_dentry == dentry) {
698 			mp->m_count++;
699 			return mp;
700 		}
701 	}
702 	return NULL;
703 }
704 
705 static struct mountpoint *get_mountpoint(struct dentry *dentry)
706 {
707 	struct mountpoint *mp, *new = NULL;
708 	int ret;
709 
710 	if (d_mountpoint(dentry)) {
711 		/* might be worth a WARN_ON() */
712 		if (d_unlinked(dentry))
713 			return ERR_PTR(-ENOENT);
714 mountpoint:
715 		read_seqlock_excl(&mount_lock);
716 		mp = lookup_mountpoint(dentry);
717 		read_sequnlock_excl(&mount_lock);
718 		if (mp)
719 			goto done;
720 	}
721 
722 	if (!new)
723 		new = kmalloc(sizeof(struct mountpoint), GFP_KERNEL);
724 	if (!new)
725 		return ERR_PTR(-ENOMEM);
726 
727 
728 	/* Exactly one processes may set d_mounted */
729 	ret = d_set_mounted(dentry);
730 
731 	/* Someone else set d_mounted? */
732 	if (ret == -EBUSY)
733 		goto mountpoint;
734 
735 	/* The dentry is not available as a mountpoint? */
736 	mp = ERR_PTR(ret);
737 	if (ret)
738 		goto done;
739 
740 	/* Add the new mountpoint to the hash table */
741 	read_seqlock_excl(&mount_lock);
742 	new->m_dentry = dentry;
743 	new->m_count = 1;
744 	hlist_add_head(&new->m_hash, mp_hash(dentry));
745 	INIT_HLIST_HEAD(&new->m_list);
746 	read_sequnlock_excl(&mount_lock);
747 
748 	mp = new;
749 	new = NULL;
750 done:
751 	kfree(new);
752 	return mp;
753 }
754 
755 static void put_mountpoint(struct mountpoint *mp)
756 {
757 	if (!--mp->m_count) {
758 		struct dentry *dentry = mp->m_dentry;
759 		BUG_ON(!hlist_empty(&mp->m_list));
760 		spin_lock(&dentry->d_lock);
761 		dentry->d_flags &= ~DCACHE_MOUNTED;
762 		spin_unlock(&dentry->d_lock);
763 		hlist_del(&mp->m_hash);
764 		kfree(mp);
765 	}
766 }
767 
768 static inline int check_mnt(struct mount *mnt)
769 {
770 	return mnt->mnt_ns == current->nsproxy->mnt_ns;
771 }
772 
773 /*
774  * vfsmount lock must be held for write
775  */
776 static void touch_mnt_namespace(struct mnt_namespace *ns)
777 {
778 	if (ns) {
779 		ns->event = ++event;
780 		wake_up_interruptible(&ns->poll);
781 	}
782 }
783 
784 /*
785  * vfsmount lock must be held for write
786  */
787 static void __touch_mnt_namespace(struct mnt_namespace *ns)
788 {
789 	if (ns && ns->event != event) {
790 		ns->event = event;
791 		wake_up_interruptible(&ns->poll);
792 	}
793 }
794 
795 /*
796  * vfsmount lock must be held for write
797  */
798 static void unhash_mnt(struct mount *mnt)
799 {
800 	mnt->mnt_parent = mnt;
801 	mnt->mnt_mountpoint = mnt->mnt.mnt_root;
802 	list_del_init(&mnt->mnt_child);
803 	hlist_del_init_rcu(&mnt->mnt_hash);
804 	hlist_del_init(&mnt->mnt_mp_list);
805 	put_mountpoint(mnt->mnt_mp);
806 	mnt->mnt_mp = NULL;
807 }
808 
809 /*
810  * vfsmount lock must be held for write
811  */
812 static void detach_mnt(struct mount *mnt, struct path *old_path)
813 {
814 	old_path->dentry = mnt->mnt_mountpoint;
815 	old_path->mnt = &mnt->mnt_parent->mnt;
816 	unhash_mnt(mnt);
817 }
818 
819 /*
820  * vfsmount lock must be held for write
821  */
822 static void umount_mnt(struct mount *mnt)
823 {
824 	/* old mountpoint will be dropped when we can do that */
825 	mnt->mnt_ex_mountpoint = mnt->mnt_mountpoint;
826 	unhash_mnt(mnt);
827 }
828 
829 /*
830  * vfsmount lock must be held for write
831  */
832 void mnt_set_mountpoint(struct mount *mnt,
833 			struct mountpoint *mp,
834 			struct mount *child_mnt)
835 {
836 	mp->m_count++;
837 	mnt_add_count(mnt, 1);	/* essentially, that's mntget */
838 	child_mnt->mnt_mountpoint = dget(mp->m_dentry);
839 	child_mnt->mnt_parent = mnt;
840 	child_mnt->mnt_mp = mp;
841 	hlist_add_head(&child_mnt->mnt_mp_list, &mp->m_list);
842 }
843 
844 static void __attach_mnt(struct mount *mnt, struct mount *parent)
845 {
846 	hlist_add_head_rcu(&mnt->mnt_hash,
847 			   m_hash(&parent->mnt, mnt->mnt_mountpoint));
848 	list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
849 }
850 
851 /*
852  * vfsmount lock must be held for write
853  */
854 static void attach_mnt(struct mount *mnt,
855 			struct mount *parent,
856 			struct mountpoint *mp)
857 {
858 	mnt_set_mountpoint(parent, mp, mnt);
859 	__attach_mnt(mnt, parent);
860 }
861 
862 void mnt_change_mountpoint(struct mount *parent, struct mountpoint *mp, struct mount *mnt)
863 {
864 	struct mountpoint *old_mp = mnt->mnt_mp;
865 	struct dentry *old_mountpoint = mnt->mnt_mountpoint;
866 	struct mount *old_parent = mnt->mnt_parent;
867 
868 	list_del_init(&mnt->mnt_child);
869 	hlist_del_init(&mnt->mnt_mp_list);
870 	hlist_del_init_rcu(&mnt->mnt_hash);
871 
872 	attach_mnt(mnt, parent, mp);
873 
874 	put_mountpoint(old_mp);
875 
876 	/*
877 	 * Safely avoid even the suggestion this code might sleep or
878 	 * lock the mount hash by taking advantage of the knowledge that
879 	 * mnt_change_mountpoint will not release the final reference
880 	 * to a mountpoint.
881 	 *
882 	 * During mounting, the mount passed in as the parent mount will
883 	 * continue to use the old mountpoint and during unmounting, the
884 	 * old mountpoint will continue to exist until namespace_unlock,
885 	 * which happens well after mnt_change_mountpoint.
886 	 */
887 	spin_lock(&old_mountpoint->d_lock);
888 	old_mountpoint->d_lockref.count--;
889 	spin_unlock(&old_mountpoint->d_lock);
890 
891 	mnt_add_count(old_parent, -1);
892 }
893 
894 /*
895  * vfsmount lock must be held for write
896  */
897 static void commit_tree(struct mount *mnt)
898 {
899 	struct mount *parent = mnt->mnt_parent;
900 	struct mount *m;
901 	LIST_HEAD(head);
902 	struct mnt_namespace *n = parent->mnt_ns;
903 
904 	BUG_ON(parent == mnt);
905 
906 	list_add_tail(&head, &mnt->mnt_list);
907 	list_for_each_entry(m, &head, mnt_list)
908 		m->mnt_ns = n;
909 
910 	list_splice(&head, n->list.prev);
911 
912 	n->mounts += n->pending_mounts;
913 	n->pending_mounts = 0;
914 
915 	__attach_mnt(mnt, parent);
916 	touch_mnt_namespace(n);
917 }
918 
919 static struct mount *next_mnt(struct mount *p, struct mount *root)
920 {
921 	struct list_head *next = p->mnt_mounts.next;
922 	if (next == &p->mnt_mounts) {
923 		while (1) {
924 			if (p == root)
925 				return NULL;
926 			next = p->mnt_child.next;
927 			if (next != &p->mnt_parent->mnt_mounts)
928 				break;
929 			p = p->mnt_parent;
930 		}
931 	}
932 	return list_entry(next, struct mount, mnt_child);
933 }
934 
935 static struct mount *skip_mnt_tree(struct mount *p)
936 {
937 	struct list_head *prev = p->mnt_mounts.prev;
938 	while (prev != &p->mnt_mounts) {
939 		p = list_entry(prev, struct mount, mnt_child);
940 		prev = p->mnt_mounts.prev;
941 	}
942 	return p;
943 }
944 
945 struct vfsmount *
946 vfs_kern_mount(struct file_system_type *type, int flags, const char *name, void *data)
947 {
948 	struct mount *mnt;
949 	struct dentry *root;
950 
951 	if (!type)
952 		return ERR_PTR(-ENODEV);
953 
954 	mnt = alloc_vfsmnt(name);
955 	if (!mnt)
956 		return ERR_PTR(-ENOMEM);
957 
958 	if (flags & SB_KERNMOUNT)
959 		mnt->mnt.mnt_flags = MNT_INTERNAL;
960 
961 	root = mount_fs(type, flags, name, data);
962 	if (IS_ERR(root)) {
963 		mnt_free_id(mnt);
964 		free_vfsmnt(mnt);
965 		return ERR_CAST(root);
966 	}
967 
968 	mnt->mnt.mnt_root = root;
969 	mnt->mnt.mnt_sb = root->d_sb;
970 	mnt->mnt_mountpoint = mnt->mnt.mnt_root;
971 	mnt->mnt_parent = mnt;
972 	lock_mount_hash();
973 	list_add_tail(&mnt->mnt_instance, &root->d_sb->s_mounts);
974 	unlock_mount_hash();
975 	return &mnt->mnt;
976 }
977 EXPORT_SYMBOL_GPL(vfs_kern_mount);
978 
979 struct vfsmount *
980 vfs_submount(const struct dentry *mountpoint, struct file_system_type *type,
981 	     const char *name, void *data)
982 {
983 	/* Until it is worked out how to pass the user namespace
984 	 * through from the parent mount to the submount don't support
985 	 * unprivileged mounts with submounts.
986 	 */
987 	if (mountpoint->d_sb->s_user_ns != &init_user_ns)
988 		return ERR_PTR(-EPERM);
989 
990 	return vfs_kern_mount(type, SB_SUBMOUNT, name, data);
991 }
992 EXPORT_SYMBOL_GPL(vfs_submount);
993 
994 static struct mount *clone_mnt(struct mount *old, struct dentry *root,
995 					int flag)
996 {
997 	struct super_block *sb = old->mnt.mnt_sb;
998 	struct mount *mnt;
999 	int err;
1000 
1001 	mnt = alloc_vfsmnt(old->mnt_devname);
1002 	if (!mnt)
1003 		return ERR_PTR(-ENOMEM);
1004 
1005 	if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE))
1006 		mnt->mnt_group_id = 0; /* not a peer of original */
1007 	else
1008 		mnt->mnt_group_id = old->mnt_group_id;
1009 
1010 	if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
1011 		err = mnt_alloc_group_id(mnt);
1012 		if (err)
1013 			goto out_free;
1014 	}
1015 
1016 	mnt->mnt.mnt_flags = old->mnt.mnt_flags;
1017 	mnt->mnt.mnt_flags &= ~(MNT_WRITE_HOLD|MNT_MARKED|MNT_INTERNAL);
1018 	/* Don't allow unprivileged users to change mount flags */
1019 	if (flag & CL_UNPRIVILEGED) {
1020 		mnt->mnt.mnt_flags |= MNT_LOCK_ATIME;
1021 
1022 		if (mnt->mnt.mnt_flags & MNT_READONLY)
1023 			mnt->mnt.mnt_flags |= MNT_LOCK_READONLY;
1024 
1025 		if (mnt->mnt.mnt_flags & MNT_NODEV)
1026 			mnt->mnt.mnt_flags |= MNT_LOCK_NODEV;
1027 
1028 		if (mnt->mnt.mnt_flags & MNT_NOSUID)
1029 			mnt->mnt.mnt_flags |= MNT_LOCK_NOSUID;
1030 
1031 		if (mnt->mnt.mnt_flags & MNT_NOEXEC)
1032 			mnt->mnt.mnt_flags |= MNT_LOCK_NOEXEC;
1033 	}
1034 
1035 	/* Don't allow unprivileged users to reveal what is under a mount */
1036 	if ((flag & CL_UNPRIVILEGED) &&
1037 	    (!(flag & CL_EXPIRE) || list_empty(&old->mnt_expire)))
1038 		mnt->mnt.mnt_flags |= MNT_LOCKED;
1039 
1040 	atomic_inc(&sb->s_active);
1041 	mnt->mnt.mnt_sb = sb;
1042 	mnt->mnt.mnt_root = dget(root);
1043 	mnt->mnt_mountpoint = mnt->mnt.mnt_root;
1044 	mnt->mnt_parent = mnt;
1045 	lock_mount_hash();
1046 	list_add_tail(&mnt->mnt_instance, &sb->s_mounts);
1047 	unlock_mount_hash();
1048 
1049 	if ((flag & CL_SLAVE) ||
1050 	    ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) {
1051 		list_add(&mnt->mnt_slave, &old->mnt_slave_list);
1052 		mnt->mnt_master = old;
1053 		CLEAR_MNT_SHARED(mnt);
1054 	} else if (!(flag & CL_PRIVATE)) {
1055 		if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
1056 			list_add(&mnt->mnt_share, &old->mnt_share);
1057 		if (IS_MNT_SLAVE(old))
1058 			list_add(&mnt->mnt_slave, &old->mnt_slave);
1059 		mnt->mnt_master = old->mnt_master;
1060 	} else {
1061 		CLEAR_MNT_SHARED(mnt);
1062 	}
1063 	if (flag & CL_MAKE_SHARED)
1064 		set_mnt_shared(mnt);
1065 
1066 	/* stick the duplicate mount on the same expiry list
1067 	 * as the original if that was on one */
1068 	if (flag & CL_EXPIRE) {
1069 		if (!list_empty(&old->mnt_expire))
1070 			list_add(&mnt->mnt_expire, &old->mnt_expire);
1071 	}
1072 
1073 	return mnt;
1074 
1075  out_free:
1076 	mnt_free_id(mnt);
1077 	free_vfsmnt(mnt);
1078 	return ERR_PTR(err);
1079 }
1080 
1081 static void cleanup_mnt(struct mount *mnt)
1082 {
1083 	/*
1084 	 * This probably indicates that somebody messed
1085 	 * up a mnt_want/drop_write() pair.  If this
1086 	 * happens, the filesystem was probably unable
1087 	 * to make r/w->r/o transitions.
1088 	 */
1089 	/*
1090 	 * The locking used to deal with mnt_count decrement provides barriers,
1091 	 * so mnt_get_writers() below is safe.
1092 	 */
1093 	WARN_ON(mnt_get_writers(mnt));
1094 	if (unlikely(mnt->mnt_pins.first))
1095 		mnt_pin_kill(mnt);
1096 	fsnotify_vfsmount_delete(&mnt->mnt);
1097 	dput(mnt->mnt.mnt_root);
1098 	deactivate_super(mnt->mnt.mnt_sb);
1099 	mnt_free_id(mnt);
1100 	call_rcu(&mnt->mnt_rcu, delayed_free_vfsmnt);
1101 }
1102 
1103 static void __cleanup_mnt(struct rcu_head *head)
1104 {
1105 	cleanup_mnt(container_of(head, struct mount, mnt_rcu));
1106 }
1107 
1108 static LLIST_HEAD(delayed_mntput_list);
1109 static void delayed_mntput(struct work_struct *unused)
1110 {
1111 	struct llist_node *node = llist_del_all(&delayed_mntput_list);
1112 	struct mount *m, *t;
1113 
1114 	llist_for_each_entry_safe(m, t, node, mnt_llist)
1115 		cleanup_mnt(m);
1116 }
1117 static DECLARE_DELAYED_WORK(delayed_mntput_work, delayed_mntput);
1118 
1119 static void mntput_no_expire(struct mount *mnt)
1120 {
1121 	rcu_read_lock();
1122 	if (likely(READ_ONCE(mnt->mnt_ns))) {
1123 		/*
1124 		 * Since we don't do lock_mount_hash() here,
1125 		 * ->mnt_ns can change under us.  However, if it's
1126 		 * non-NULL, then there's a reference that won't
1127 		 * be dropped until after an RCU delay done after
1128 		 * turning ->mnt_ns NULL.  So if we observe it
1129 		 * non-NULL under rcu_read_lock(), the reference
1130 		 * we are dropping is not the final one.
1131 		 */
1132 		mnt_add_count(mnt, -1);
1133 		rcu_read_unlock();
1134 		return;
1135 	}
1136 	lock_mount_hash();
1137 	/*
1138 	 * make sure that if __legitimize_mnt() has not seen us grab
1139 	 * mount_lock, we'll see their refcount increment here.
1140 	 */
1141 	smp_mb();
1142 	mnt_add_count(mnt, -1);
1143 	if (mnt_get_count(mnt)) {
1144 		rcu_read_unlock();
1145 		unlock_mount_hash();
1146 		return;
1147 	}
1148 	if (unlikely(mnt->mnt.mnt_flags & MNT_DOOMED)) {
1149 		rcu_read_unlock();
1150 		unlock_mount_hash();
1151 		return;
1152 	}
1153 	mnt->mnt.mnt_flags |= MNT_DOOMED;
1154 	rcu_read_unlock();
1155 
1156 	list_del(&mnt->mnt_instance);
1157 
1158 	if (unlikely(!list_empty(&mnt->mnt_mounts))) {
1159 		struct mount *p, *tmp;
1160 		list_for_each_entry_safe(p, tmp, &mnt->mnt_mounts,  mnt_child) {
1161 			umount_mnt(p);
1162 		}
1163 	}
1164 	unlock_mount_hash();
1165 
1166 	if (likely(!(mnt->mnt.mnt_flags & MNT_INTERNAL))) {
1167 		struct task_struct *task = current;
1168 		if (likely(!(task->flags & PF_KTHREAD))) {
1169 			init_task_work(&mnt->mnt_rcu, __cleanup_mnt);
1170 			if (!task_work_add(task, &mnt->mnt_rcu, true))
1171 				return;
1172 		}
1173 		if (llist_add(&mnt->mnt_llist, &delayed_mntput_list))
1174 			schedule_delayed_work(&delayed_mntput_work, 1);
1175 		return;
1176 	}
1177 	cleanup_mnt(mnt);
1178 }
1179 
1180 void mntput(struct vfsmount *mnt)
1181 {
1182 	if (mnt) {
1183 		struct mount *m = real_mount(mnt);
1184 		/* avoid cacheline pingpong, hope gcc doesn't get "smart" */
1185 		if (unlikely(m->mnt_expiry_mark))
1186 			m->mnt_expiry_mark = 0;
1187 		mntput_no_expire(m);
1188 	}
1189 }
1190 EXPORT_SYMBOL(mntput);
1191 
1192 struct vfsmount *mntget(struct vfsmount *mnt)
1193 {
1194 	if (mnt)
1195 		mnt_add_count(real_mount(mnt), 1);
1196 	return mnt;
1197 }
1198 EXPORT_SYMBOL(mntget);
1199 
1200 /* path_is_mountpoint() - Check if path is a mount in the current
1201  *                          namespace.
1202  *
1203  *  d_mountpoint() can only be used reliably to establish if a dentry is
1204  *  not mounted in any namespace and that common case is handled inline.
1205  *  d_mountpoint() isn't aware of the possibility there may be multiple
1206  *  mounts using a given dentry in a different namespace. This function
1207  *  checks if the passed in path is a mountpoint rather than the dentry
1208  *  alone.
1209  */
1210 bool path_is_mountpoint(const struct path *path)
1211 {
1212 	unsigned seq;
1213 	bool res;
1214 
1215 	if (!d_mountpoint(path->dentry))
1216 		return false;
1217 
1218 	rcu_read_lock();
1219 	do {
1220 		seq = read_seqbegin(&mount_lock);
1221 		res = __path_is_mountpoint(path);
1222 	} while (read_seqretry(&mount_lock, seq));
1223 	rcu_read_unlock();
1224 
1225 	return res;
1226 }
1227 EXPORT_SYMBOL(path_is_mountpoint);
1228 
1229 struct vfsmount *mnt_clone_internal(const struct path *path)
1230 {
1231 	struct mount *p;
1232 	p = clone_mnt(real_mount(path->mnt), path->dentry, CL_PRIVATE);
1233 	if (IS_ERR(p))
1234 		return ERR_CAST(p);
1235 	p->mnt.mnt_flags |= MNT_INTERNAL;
1236 	return &p->mnt;
1237 }
1238 
1239 #ifdef CONFIG_PROC_FS
1240 /* iterator; we want it to have access to namespace_sem, thus here... */
1241 static void *m_start(struct seq_file *m, loff_t *pos)
1242 {
1243 	struct proc_mounts *p = m->private;
1244 
1245 	down_read(&namespace_sem);
1246 	if (p->cached_event == p->ns->event) {
1247 		void *v = p->cached_mount;
1248 		if (*pos == p->cached_index)
1249 			return v;
1250 		if (*pos == p->cached_index + 1) {
1251 			v = seq_list_next(v, &p->ns->list, &p->cached_index);
1252 			return p->cached_mount = v;
1253 		}
1254 	}
1255 
1256 	p->cached_event = p->ns->event;
1257 	p->cached_mount = seq_list_start(&p->ns->list, *pos);
1258 	p->cached_index = *pos;
1259 	return p->cached_mount;
1260 }
1261 
1262 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
1263 {
1264 	struct proc_mounts *p = m->private;
1265 
1266 	p->cached_mount = seq_list_next(v, &p->ns->list, pos);
1267 	p->cached_index = *pos;
1268 	return p->cached_mount;
1269 }
1270 
1271 static void m_stop(struct seq_file *m, void *v)
1272 {
1273 	up_read(&namespace_sem);
1274 }
1275 
1276 static int m_show(struct seq_file *m, void *v)
1277 {
1278 	struct proc_mounts *p = m->private;
1279 	struct mount *r = list_entry(v, struct mount, mnt_list);
1280 	return p->show(m, &r->mnt);
1281 }
1282 
1283 const struct seq_operations mounts_op = {
1284 	.start	= m_start,
1285 	.next	= m_next,
1286 	.stop	= m_stop,
1287 	.show	= m_show,
1288 };
1289 #endif  /* CONFIG_PROC_FS */
1290 
1291 /**
1292  * may_umount_tree - check if a mount tree is busy
1293  * @mnt: root of mount tree
1294  *
1295  * This is called to check if a tree of mounts has any
1296  * open files, pwds, chroots or sub mounts that are
1297  * busy.
1298  */
1299 int may_umount_tree(struct vfsmount *m)
1300 {
1301 	struct mount *mnt = real_mount(m);
1302 	int actual_refs = 0;
1303 	int minimum_refs = 0;
1304 	struct mount *p;
1305 	BUG_ON(!m);
1306 
1307 	/* write lock needed for mnt_get_count */
1308 	lock_mount_hash();
1309 	for (p = mnt; p; p = next_mnt(p, mnt)) {
1310 		actual_refs += mnt_get_count(p);
1311 		minimum_refs += 2;
1312 	}
1313 	unlock_mount_hash();
1314 
1315 	if (actual_refs > minimum_refs)
1316 		return 0;
1317 
1318 	return 1;
1319 }
1320 
1321 EXPORT_SYMBOL(may_umount_tree);
1322 
1323 /**
1324  * may_umount - check if a mount point is busy
1325  * @mnt: root of mount
1326  *
1327  * This is called to check if a mount point has any
1328  * open files, pwds, chroots or sub mounts. If the
1329  * mount has sub mounts this will return busy
1330  * regardless of whether the sub mounts are busy.
1331  *
1332  * Doesn't take quota and stuff into account. IOW, in some cases it will
1333  * give false negatives. The main reason why it's here is that we need
1334  * a non-destructive way to look for easily umountable filesystems.
1335  */
1336 int may_umount(struct vfsmount *mnt)
1337 {
1338 	int ret = 1;
1339 	down_read(&namespace_sem);
1340 	lock_mount_hash();
1341 	if (propagate_mount_busy(real_mount(mnt), 2))
1342 		ret = 0;
1343 	unlock_mount_hash();
1344 	up_read(&namespace_sem);
1345 	return ret;
1346 }
1347 
1348 EXPORT_SYMBOL(may_umount);
1349 
1350 static HLIST_HEAD(unmounted);	/* protected by namespace_sem */
1351 
1352 static void namespace_unlock(void)
1353 {
1354 	struct hlist_head head;
1355 
1356 	hlist_move_list(&unmounted, &head);
1357 
1358 	up_write(&namespace_sem);
1359 
1360 	if (likely(hlist_empty(&head)))
1361 		return;
1362 
1363 	synchronize_rcu();
1364 
1365 	group_pin_kill(&head);
1366 }
1367 
1368 static inline void namespace_lock(void)
1369 {
1370 	down_write(&namespace_sem);
1371 }
1372 
1373 enum umount_tree_flags {
1374 	UMOUNT_SYNC = 1,
1375 	UMOUNT_PROPAGATE = 2,
1376 	UMOUNT_CONNECTED = 4,
1377 };
1378 
1379 static bool disconnect_mount(struct mount *mnt, enum umount_tree_flags how)
1380 {
1381 	/* Leaving mounts connected is only valid for lazy umounts */
1382 	if (how & UMOUNT_SYNC)
1383 		return true;
1384 
1385 	/* A mount without a parent has nothing to be connected to */
1386 	if (!mnt_has_parent(mnt))
1387 		return true;
1388 
1389 	/* Because the reference counting rules change when mounts are
1390 	 * unmounted and connected, umounted mounts may not be
1391 	 * connected to mounted mounts.
1392 	 */
1393 	if (!(mnt->mnt_parent->mnt.mnt_flags & MNT_UMOUNT))
1394 		return true;
1395 
1396 	/* Has it been requested that the mount remain connected? */
1397 	if (how & UMOUNT_CONNECTED)
1398 		return false;
1399 
1400 	/* Is the mount locked such that it needs to remain connected? */
1401 	if (IS_MNT_LOCKED(mnt))
1402 		return false;
1403 
1404 	/* By default disconnect the mount */
1405 	return true;
1406 }
1407 
1408 /*
1409  * mount_lock must be held
1410  * namespace_sem must be held for write
1411  */
1412 static void umount_tree(struct mount *mnt, enum umount_tree_flags how)
1413 {
1414 	LIST_HEAD(tmp_list);
1415 	struct mount *p;
1416 
1417 	if (how & UMOUNT_PROPAGATE)
1418 		propagate_mount_unlock(mnt);
1419 
1420 	/* Gather the mounts to umount */
1421 	for (p = mnt; p; p = next_mnt(p, mnt)) {
1422 		p->mnt.mnt_flags |= MNT_UMOUNT;
1423 		list_move(&p->mnt_list, &tmp_list);
1424 	}
1425 
1426 	/* Hide the mounts from mnt_mounts */
1427 	list_for_each_entry(p, &tmp_list, mnt_list) {
1428 		list_del_init(&p->mnt_child);
1429 	}
1430 
1431 	/* Add propogated mounts to the tmp_list */
1432 	if (how & UMOUNT_PROPAGATE)
1433 		propagate_umount(&tmp_list);
1434 
1435 	while (!list_empty(&tmp_list)) {
1436 		struct mnt_namespace *ns;
1437 		bool disconnect;
1438 		p = list_first_entry(&tmp_list, struct mount, mnt_list);
1439 		list_del_init(&p->mnt_expire);
1440 		list_del_init(&p->mnt_list);
1441 		ns = p->mnt_ns;
1442 		if (ns) {
1443 			ns->mounts--;
1444 			__touch_mnt_namespace(ns);
1445 		}
1446 		p->mnt_ns = NULL;
1447 		if (how & UMOUNT_SYNC)
1448 			p->mnt.mnt_flags |= MNT_SYNC_UMOUNT;
1449 
1450 		disconnect = disconnect_mount(p, how);
1451 
1452 		pin_insert_group(&p->mnt_umount, &p->mnt_parent->mnt,
1453 				 disconnect ? &unmounted : NULL);
1454 		if (mnt_has_parent(p)) {
1455 			mnt_add_count(p->mnt_parent, -1);
1456 			if (!disconnect) {
1457 				/* Don't forget about p */
1458 				list_add_tail(&p->mnt_child, &p->mnt_parent->mnt_mounts);
1459 			} else {
1460 				umount_mnt(p);
1461 			}
1462 		}
1463 		change_mnt_propagation(p, MS_PRIVATE);
1464 	}
1465 }
1466 
1467 static void shrink_submounts(struct mount *mnt);
1468 
1469 static int do_umount(struct mount *mnt, int flags)
1470 {
1471 	struct super_block *sb = mnt->mnt.mnt_sb;
1472 	int retval;
1473 
1474 	retval = security_sb_umount(&mnt->mnt, flags);
1475 	if (retval)
1476 		return retval;
1477 
1478 	/*
1479 	 * Allow userspace to request a mountpoint be expired rather than
1480 	 * unmounting unconditionally. Unmount only happens if:
1481 	 *  (1) the mark is already set (the mark is cleared by mntput())
1482 	 *  (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1483 	 */
1484 	if (flags & MNT_EXPIRE) {
1485 		if (&mnt->mnt == current->fs->root.mnt ||
1486 		    flags & (MNT_FORCE | MNT_DETACH))
1487 			return -EINVAL;
1488 
1489 		/*
1490 		 * probably don't strictly need the lock here if we examined
1491 		 * all race cases, but it's a slowpath.
1492 		 */
1493 		lock_mount_hash();
1494 		if (mnt_get_count(mnt) != 2) {
1495 			unlock_mount_hash();
1496 			return -EBUSY;
1497 		}
1498 		unlock_mount_hash();
1499 
1500 		if (!xchg(&mnt->mnt_expiry_mark, 1))
1501 			return -EAGAIN;
1502 	}
1503 
1504 	/*
1505 	 * If we may have to abort operations to get out of this
1506 	 * mount, and they will themselves hold resources we must
1507 	 * allow the fs to do things. In the Unix tradition of
1508 	 * 'Gee thats tricky lets do it in userspace' the umount_begin
1509 	 * might fail to complete on the first run through as other tasks
1510 	 * must return, and the like. Thats for the mount program to worry
1511 	 * about for the moment.
1512 	 */
1513 
1514 	if (flags & MNT_FORCE && sb->s_op->umount_begin) {
1515 		sb->s_op->umount_begin(sb);
1516 	}
1517 
1518 	/*
1519 	 * No sense to grab the lock for this test, but test itself looks
1520 	 * somewhat bogus. Suggestions for better replacement?
1521 	 * Ho-hum... In principle, we might treat that as umount + switch
1522 	 * to rootfs. GC would eventually take care of the old vfsmount.
1523 	 * Actually it makes sense, especially if rootfs would contain a
1524 	 * /reboot - static binary that would close all descriptors and
1525 	 * call reboot(9). Then init(8) could umount root and exec /reboot.
1526 	 */
1527 	if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1528 		/*
1529 		 * Special case for "unmounting" root ...
1530 		 * we just try to remount it readonly.
1531 		 */
1532 		if (!ns_capable(sb->s_user_ns, CAP_SYS_ADMIN))
1533 			return -EPERM;
1534 		down_write(&sb->s_umount);
1535 		if (!sb_rdonly(sb))
1536 			retval = do_remount_sb(sb, SB_RDONLY, NULL, 0);
1537 		up_write(&sb->s_umount);
1538 		return retval;
1539 	}
1540 
1541 	namespace_lock();
1542 	lock_mount_hash();
1543 
1544 	/* Recheck MNT_LOCKED with the locks held */
1545 	retval = -EINVAL;
1546 	if (mnt->mnt.mnt_flags & MNT_LOCKED)
1547 		goto out;
1548 
1549 	event++;
1550 	if (flags & MNT_DETACH) {
1551 		if (!list_empty(&mnt->mnt_list))
1552 			umount_tree(mnt, UMOUNT_PROPAGATE);
1553 		retval = 0;
1554 	} else {
1555 		shrink_submounts(mnt);
1556 		retval = -EBUSY;
1557 		if (!propagate_mount_busy(mnt, 2)) {
1558 			if (!list_empty(&mnt->mnt_list))
1559 				umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
1560 			retval = 0;
1561 		}
1562 	}
1563 out:
1564 	unlock_mount_hash();
1565 	namespace_unlock();
1566 	return retval;
1567 }
1568 
1569 /*
1570  * __detach_mounts - lazily unmount all mounts on the specified dentry
1571  *
1572  * During unlink, rmdir, and d_drop it is possible to loose the path
1573  * to an existing mountpoint, and wind up leaking the mount.
1574  * detach_mounts allows lazily unmounting those mounts instead of
1575  * leaking them.
1576  *
1577  * The caller may hold dentry->d_inode->i_mutex.
1578  */
1579 void __detach_mounts(struct dentry *dentry)
1580 {
1581 	struct mountpoint *mp;
1582 	struct mount *mnt;
1583 
1584 	namespace_lock();
1585 	lock_mount_hash();
1586 	mp = lookup_mountpoint(dentry);
1587 	if (IS_ERR_OR_NULL(mp))
1588 		goto out_unlock;
1589 
1590 	event++;
1591 	while (!hlist_empty(&mp->m_list)) {
1592 		mnt = hlist_entry(mp->m_list.first, struct mount, mnt_mp_list);
1593 		if (mnt->mnt.mnt_flags & MNT_UMOUNT) {
1594 			hlist_add_head(&mnt->mnt_umount.s_list, &unmounted);
1595 			umount_mnt(mnt);
1596 		}
1597 		else umount_tree(mnt, UMOUNT_CONNECTED);
1598 	}
1599 	put_mountpoint(mp);
1600 out_unlock:
1601 	unlock_mount_hash();
1602 	namespace_unlock();
1603 }
1604 
1605 /*
1606  * Is the caller allowed to modify his namespace?
1607  */
1608 static inline bool may_mount(void)
1609 {
1610 	return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN);
1611 }
1612 
1613 static inline bool may_mandlock(void)
1614 {
1615 #ifndef	CONFIG_MANDATORY_FILE_LOCKING
1616 	return false;
1617 #endif
1618 	return capable(CAP_SYS_ADMIN);
1619 }
1620 
1621 /*
1622  * Now umount can handle mount points as well as block devices.
1623  * This is important for filesystems which use unnamed block devices.
1624  *
1625  * We now support a flag for forced unmount like the other 'big iron'
1626  * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
1627  */
1628 
1629 int ksys_umount(char __user *name, int flags)
1630 {
1631 	struct path path;
1632 	struct mount *mnt;
1633 	int retval;
1634 	int lookup_flags = 0;
1635 
1636 	if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
1637 		return -EINVAL;
1638 
1639 	if (!may_mount())
1640 		return -EPERM;
1641 
1642 	if (!(flags & UMOUNT_NOFOLLOW))
1643 		lookup_flags |= LOOKUP_FOLLOW;
1644 
1645 	retval = user_path_mountpoint_at(AT_FDCWD, name, lookup_flags, &path);
1646 	if (retval)
1647 		goto out;
1648 	mnt = real_mount(path.mnt);
1649 	retval = -EINVAL;
1650 	if (path.dentry != path.mnt->mnt_root)
1651 		goto dput_and_out;
1652 	if (!check_mnt(mnt))
1653 		goto dput_and_out;
1654 	if (mnt->mnt.mnt_flags & MNT_LOCKED) /* Check optimistically */
1655 		goto dput_and_out;
1656 	retval = -EPERM;
1657 	if (flags & MNT_FORCE && !capable(CAP_SYS_ADMIN))
1658 		goto dput_and_out;
1659 
1660 	retval = do_umount(mnt, flags);
1661 dput_and_out:
1662 	/* we mustn't call path_put() as that would clear mnt_expiry_mark */
1663 	dput(path.dentry);
1664 	mntput_no_expire(mnt);
1665 out:
1666 	return retval;
1667 }
1668 
1669 SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
1670 {
1671 	return ksys_umount(name, flags);
1672 }
1673 
1674 #ifdef __ARCH_WANT_SYS_OLDUMOUNT
1675 
1676 /*
1677  *	The 2.0 compatible umount. No flags.
1678  */
1679 SYSCALL_DEFINE1(oldumount, char __user *, name)
1680 {
1681 	return ksys_umount(name, 0);
1682 }
1683 
1684 #endif
1685 
1686 static bool is_mnt_ns_file(struct dentry *dentry)
1687 {
1688 	/* Is this a proxy for a mount namespace? */
1689 	return dentry->d_op == &ns_dentry_operations &&
1690 	       dentry->d_fsdata == &mntns_operations;
1691 }
1692 
1693 struct mnt_namespace *to_mnt_ns(struct ns_common *ns)
1694 {
1695 	return container_of(ns, struct mnt_namespace, ns);
1696 }
1697 
1698 static bool mnt_ns_loop(struct dentry *dentry)
1699 {
1700 	/* Could bind mounting the mount namespace inode cause a
1701 	 * mount namespace loop?
1702 	 */
1703 	struct mnt_namespace *mnt_ns;
1704 	if (!is_mnt_ns_file(dentry))
1705 		return false;
1706 
1707 	mnt_ns = to_mnt_ns(get_proc_ns(dentry->d_inode));
1708 	return current->nsproxy->mnt_ns->seq >= mnt_ns->seq;
1709 }
1710 
1711 struct mount *copy_tree(struct mount *mnt, struct dentry *dentry,
1712 					int flag)
1713 {
1714 	struct mount *res, *p, *q, *r, *parent;
1715 
1716 	if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(mnt))
1717 		return ERR_PTR(-EINVAL);
1718 
1719 	if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry))
1720 		return ERR_PTR(-EINVAL);
1721 
1722 	res = q = clone_mnt(mnt, dentry, flag);
1723 	if (IS_ERR(q))
1724 		return q;
1725 
1726 	q->mnt_mountpoint = mnt->mnt_mountpoint;
1727 
1728 	p = mnt;
1729 	list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
1730 		struct mount *s;
1731 		if (!is_subdir(r->mnt_mountpoint, dentry))
1732 			continue;
1733 
1734 		for (s = r; s; s = next_mnt(s, r)) {
1735 			if (!(flag & CL_COPY_UNBINDABLE) &&
1736 			    IS_MNT_UNBINDABLE(s)) {
1737 				if (s->mnt.mnt_flags & MNT_LOCKED) {
1738 					/* Both unbindable and locked. */
1739 					q = ERR_PTR(-EPERM);
1740 					goto out;
1741 				} else {
1742 					s = skip_mnt_tree(s);
1743 					continue;
1744 				}
1745 			}
1746 			if (!(flag & CL_COPY_MNT_NS_FILE) &&
1747 			    is_mnt_ns_file(s->mnt.mnt_root)) {
1748 				s = skip_mnt_tree(s);
1749 				continue;
1750 			}
1751 			while (p != s->mnt_parent) {
1752 				p = p->mnt_parent;
1753 				q = q->mnt_parent;
1754 			}
1755 			p = s;
1756 			parent = q;
1757 			q = clone_mnt(p, p->mnt.mnt_root, flag);
1758 			if (IS_ERR(q))
1759 				goto out;
1760 			lock_mount_hash();
1761 			list_add_tail(&q->mnt_list, &res->mnt_list);
1762 			attach_mnt(q, parent, p->mnt_mp);
1763 			unlock_mount_hash();
1764 		}
1765 	}
1766 	return res;
1767 out:
1768 	if (res) {
1769 		lock_mount_hash();
1770 		umount_tree(res, UMOUNT_SYNC);
1771 		unlock_mount_hash();
1772 	}
1773 	return q;
1774 }
1775 
1776 /* Caller should check returned pointer for errors */
1777 
1778 struct vfsmount *collect_mounts(const struct path *path)
1779 {
1780 	struct mount *tree;
1781 	namespace_lock();
1782 	if (!check_mnt(real_mount(path->mnt)))
1783 		tree = ERR_PTR(-EINVAL);
1784 	else
1785 		tree = copy_tree(real_mount(path->mnt), path->dentry,
1786 				 CL_COPY_ALL | CL_PRIVATE);
1787 	namespace_unlock();
1788 	if (IS_ERR(tree))
1789 		return ERR_CAST(tree);
1790 	return &tree->mnt;
1791 }
1792 
1793 void drop_collected_mounts(struct vfsmount *mnt)
1794 {
1795 	namespace_lock();
1796 	lock_mount_hash();
1797 	umount_tree(real_mount(mnt), 0);
1798 	unlock_mount_hash();
1799 	namespace_unlock();
1800 }
1801 
1802 /**
1803  * clone_private_mount - create a private clone of a path
1804  *
1805  * This creates a new vfsmount, which will be the clone of @path.  The new will
1806  * not be attached anywhere in the namespace and will be private (i.e. changes
1807  * to the originating mount won't be propagated into this).
1808  *
1809  * Release with mntput().
1810  */
1811 struct vfsmount *clone_private_mount(const struct path *path)
1812 {
1813 	struct mount *old_mnt = real_mount(path->mnt);
1814 	struct mount *new_mnt;
1815 
1816 	if (IS_MNT_UNBINDABLE(old_mnt))
1817 		return ERR_PTR(-EINVAL);
1818 
1819 	new_mnt = clone_mnt(old_mnt, path->dentry, CL_PRIVATE);
1820 	if (IS_ERR(new_mnt))
1821 		return ERR_CAST(new_mnt);
1822 
1823 	return &new_mnt->mnt;
1824 }
1825 EXPORT_SYMBOL_GPL(clone_private_mount);
1826 
1827 int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
1828 		   struct vfsmount *root)
1829 {
1830 	struct mount *mnt;
1831 	int res = f(root, arg);
1832 	if (res)
1833 		return res;
1834 	list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) {
1835 		res = f(&mnt->mnt, arg);
1836 		if (res)
1837 			return res;
1838 	}
1839 	return 0;
1840 }
1841 
1842 static void cleanup_group_ids(struct mount *mnt, struct mount *end)
1843 {
1844 	struct mount *p;
1845 
1846 	for (p = mnt; p != end; p = next_mnt(p, mnt)) {
1847 		if (p->mnt_group_id && !IS_MNT_SHARED(p))
1848 			mnt_release_group_id(p);
1849 	}
1850 }
1851 
1852 static int invent_group_ids(struct mount *mnt, bool recurse)
1853 {
1854 	struct mount *p;
1855 
1856 	for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
1857 		if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
1858 			int err = mnt_alloc_group_id(p);
1859 			if (err) {
1860 				cleanup_group_ids(mnt, p);
1861 				return err;
1862 			}
1863 		}
1864 	}
1865 
1866 	return 0;
1867 }
1868 
1869 int count_mounts(struct mnt_namespace *ns, struct mount *mnt)
1870 {
1871 	unsigned int max = READ_ONCE(sysctl_mount_max);
1872 	unsigned int mounts = 0, old, pending, sum;
1873 	struct mount *p;
1874 
1875 	for (p = mnt; p; p = next_mnt(p, mnt))
1876 		mounts++;
1877 
1878 	old = ns->mounts;
1879 	pending = ns->pending_mounts;
1880 	sum = old + pending;
1881 	if ((old > sum) ||
1882 	    (pending > sum) ||
1883 	    (max < sum) ||
1884 	    (mounts > (max - sum)))
1885 		return -ENOSPC;
1886 
1887 	ns->pending_mounts = pending + mounts;
1888 	return 0;
1889 }
1890 
1891 /*
1892  *  @source_mnt : mount tree to be attached
1893  *  @nd         : place the mount tree @source_mnt is attached
1894  *  @parent_nd  : if non-null, detach the source_mnt from its parent and
1895  *  		   store the parent mount and mountpoint dentry.
1896  *  		   (done when source_mnt is moved)
1897  *
1898  *  NOTE: in the table below explains the semantics when a source mount
1899  *  of a given type is attached to a destination mount of a given type.
1900  * ---------------------------------------------------------------------------
1901  * |         BIND MOUNT OPERATION                                            |
1902  * |**************************************************************************
1903  * | source-->| shared        |       private  |       slave    | unbindable |
1904  * | dest     |               |                |                |            |
1905  * |   |      |               |                |                |            |
1906  * |   v      |               |                |                |            |
1907  * |**************************************************************************
1908  * |  shared  | shared (++)   |     shared (+) |     shared(+++)|  invalid   |
1909  * |          |               |                |                |            |
1910  * |non-shared| shared (+)    |      private   |      slave (*) |  invalid   |
1911  * ***************************************************************************
1912  * A bind operation clones the source mount and mounts the clone on the
1913  * destination mount.
1914  *
1915  * (++)  the cloned mount is propagated to all the mounts in the propagation
1916  * 	 tree of the destination mount and the cloned mount is added to
1917  * 	 the peer group of the source mount.
1918  * (+)   the cloned mount is created under the destination mount and is marked
1919  *       as shared. The cloned mount is added to the peer group of the source
1920  *       mount.
1921  * (+++) the mount is propagated to all the mounts in the propagation tree
1922  *       of the destination mount and the cloned mount is made slave
1923  *       of the same master as that of the source mount. The cloned mount
1924  *       is marked as 'shared and slave'.
1925  * (*)   the cloned mount is made a slave of the same master as that of the
1926  * 	 source mount.
1927  *
1928  * ---------------------------------------------------------------------------
1929  * |         		MOVE MOUNT OPERATION                                 |
1930  * |**************************************************************************
1931  * | source-->| shared        |       private  |       slave    | unbindable |
1932  * | dest     |               |                |                |            |
1933  * |   |      |               |                |                |            |
1934  * |   v      |               |                |                |            |
1935  * |**************************************************************************
1936  * |  shared  | shared (+)    |     shared (+) |    shared(+++) |  invalid   |
1937  * |          |               |                |                |            |
1938  * |non-shared| shared (+*)   |      private   |    slave (*)   | unbindable |
1939  * ***************************************************************************
1940  *
1941  * (+)  the mount is moved to the destination. And is then propagated to
1942  * 	all the mounts in the propagation tree of the destination mount.
1943  * (+*)  the mount is moved to the destination.
1944  * (+++)  the mount is moved to the destination and is then propagated to
1945  * 	all the mounts belonging to the destination mount's propagation tree.
1946  * 	the mount is marked as 'shared and slave'.
1947  * (*)	the mount continues to be a slave at the new location.
1948  *
1949  * if the source mount is a tree, the operations explained above is
1950  * applied to each mount in the tree.
1951  * Must be called without spinlocks held, since this function can sleep
1952  * in allocations.
1953  */
1954 static int attach_recursive_mnt(struct mount *source_mnt,
1955 			struct mount *dest_mnt,
1956 			struct mountpoint *dest_mp,
1957 			struct path *parent_path)
1958 {
1959 	HLIST_HEAD(tree_list);
1960 	struct mnt_namespace *ns = dest_mnt->mnt_ns;
1961 	struct mountpoint *smp;
1962 	struct mount *child, *p;
1963 	struct hlist_node *n;
1964 	int err;
1965 
1966 	/* Preallocate a mountpoint in case the new mounts need
1967 	 * to be tucked under other mounts.
1968 	 */
1969 	smp = get_mountpoint(source_mnt->mnt.mnt_root);
1970 	if (IS_ERR(smp))
1971 		return PTR_ERR(smp);
1972 
1973 	/* Is there space to add these mounts to the mount namespace? */
1974 	if (!parent_path) {
1975 		err = count_mounts(ns, source_mnt);
1976 		if (err)
1977 			goto out;
1978 	}
1979 
1980 	if (IS_MNT_SHARED(dest_mnt)) {
1981 		err = invent_group_ids(source_mnt, true);
1982 		if (err)
1983 			goto out;
1984 		err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list);
1985 		lock_mount_hash();
1986 		if (err)
1987 			goto out_cleanup_ids;
1988 		for (p = source_mnt; p; p = next_mnt(p, source_mnt))
1989 			set_mnt_shared(p);
1990 	} else {
1991 		lock_mount_hash();
1992 	}
1993 	if (parent_path) {
1994 		detach_mnt(source_mnt, parent_path);
1995 		attach_mnt(source_mnt, dest_mnt, dest_mp);
1996 		touch_mnt_namespace(source_mnt->mnt_ns);
1997 	} else {
1998 		mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt);
1999 		commit_tree(source_mnt);
2000 	}
2001 
2002 	hlist_for_each_entry_safe(child, n, &tree_list, mnt_hash) {
2003 		struct mount *q;
2004 		hlist_del_init(&child->mnt_hash);
2005 		q = __lookup_mnt(&child->mnt_parent->mnt,
2006 				 child->mnt_mountpoint);
2007 		if (q)
2008 			mnt_change_mountpoint(child, smp, q);
2009 		commit_tree(child);
2010 	}
2011 	put_mountpoint(smp);
2012 	unlock_mount_hash();
2013 
2014 	return 0;
2015 
2016  out_cleanup_ids:
2017 	while (!hlist_empty(&tree_list)) {
2018 		child = hlist_entry(tree_list.first, struct mount, mnt_hash);
2019 		child->mnt_parent->mnt_ns->pending_mounts = 0;
2020 		umount_tree(child, UMOUNT_SYNC);
2021 	}
2022 	unlock_mount_hash();
2023 	cleanup_group_ids(source_mnt, NULL);
2024  out:
2025 	ns->pending_mounts = 0;
2026 
2027 	read_seqlock_excl(&mount_lock);
2028 	put_mountpoint(smp);
2029 	read_sequnlock_excl(&mount_lock);
2030 
2031 	return err;
2032 }
2033 
2034 static struct mountpoint *lock_mount(struct path *path)
2035 {
2036 	struct vfsmount *mnt;
2037 	struct dentry *dentry = path->dentry;
2038 retry:
2039 	inode_lock(dentry->d_inode);
2040 	if (unlikely(cant_mount(dentry))) {
2041 		inode_unlock(dentry->d_inode);
2042 		return ERR_PTR(-ENOENT);
2043 	}
2044 	namespace_lock();
2045 	mnt = lookup_mnt(path);
2046 	if (likely(!mnt)) {
2047 		struct mountpoint *mp = get_mountpoint(dentry);
2048 		if (IS_ERR(mp)) {
2049 			namespace_unlock();
2050 			inode_unlock(dentry->d_inode);
2051 			return mp;
2052 		}
2053 		return mp;
2054 	}
2055 	namespace_unlock();
2056 	inode_unlock(path->dentry->d_inode);
2057 	path_put(path);
2058 	path->mnt = mnt;
2059 	dentry = path->dentry = dget(mnt->mnt_root);
2060 	goto retry;
2061 }
2062 
2063 static void unlock_mount(struct mountpoint *where)
2064 {
2065 	struct dentry *dentry = where->m_dentry;
2066 
2067 	read_seqlock_excl(&mount_lock);
2068 	put_mountpoint(where);
2069 	read_sequnlock_excl(&mount_lock);
2070 
2071 	namespace_unlock();
2072 	inode_unlock(dentry->d_inode);
2073 }
2074 
2075 static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp)
2076 {
2077 	if (mnt->mnt.mnt_sb->s_flags & SB_NOUSER)
2078 		return -EINVAL;
2079 
2080 	if (d_is_dir(mp->m_dentry) !=
2081 	      d_is_dir(mnt->mnt.mnt_root))
2082 		return -ENOTDIR;
2083 
2084 	return attach_recursive_mnt(mnt, p, mp, NULL);
2085 }
2086 
2087 /*
2088  * Sanity check the flags to change_mnt_propagation.
2089  */
2090 
2091 static int flags_to_propagation_type(int ms_flags)
2092 {
2093 	int type = ms_flags & ~(MS_REC | MS_SILENT);
2094 
2095 	/* Fail if any non-propagation flags are set */
2096 	if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2097 		return 0;
2098 	/* Only one propagation flag should be set */
2099 	if (!is_power_of_2(type))
2100 		return 0;
2101 	return type;
2102 }
2103 
2104 /*
2105  * recursively change the type of the mountpoint.
2106  */
2107 static int do_change_type(struct path *path, int ms_flags)
2108 {
2109 	struct mount *m;
2110 	struct mount *mnt = real_mount(path->mnt);
2111 	int recurse = ms_flags & MS_REC;
2112 	int type;
2113 	int err = 0;
2114 
2115 	if (path->dentry != path->mnt->mnt_root)
2116 		return -EINVAL;
2117 
2118 	type = flags_to_propagation_type(ms_flags);
2119 	if (!type)
2120 		return -EINVAL;
2121 
2122 	namespace_lock();
2123 	if (type == MS_SHARED) {
2124 		err = invent_group_ids(mnt, recurse);
2125 		if (err)
2126 			goto out_unlock;
2127 	}
2128 
2129 	lock_mount_hash();
2130 	for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
2131 		change_mnt_propagation(m, type);
2132 	unlock_mount_hash();
2133 
2134  out_unlock:
2135 	namespace_unlock();
2136 	return err;
2137 }
2138 
2139 static bool has_locked_children(struct mount *mnt, struct dentry *dentry)
2140 {
2141 	struct mount *child;
2142 	list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
2143 		if (!is_subdir(child->mnt_mountpoint, dentry))
2144 			continue;
2145 
2146 		if (child->mnt.mnt_flags & MNT_LOCKED)
2147 			return true;
2148 	}
2149 	return false;
2150 }
2151 
2152 /*
2153  * do loopback mount.
2154  */
2155 static int do_loopback(struct path *path, const char *old_name,
2156 				int recurse)
2157 {
2158 	struct path old_path;
2159 	struct mount *mnt = NULL, *old, *parent;
2160 	struct mountpoint *mp;
2161 	int err;
2162 	if (!old_name || !*old_name)
2163 		return -EINVAL;
2164 	err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
2165 	if (err)
2166 		return err;
2167 
2168 	err = -EINVAL;
2169 	if (mnt_ns_loop(old_path.dentry))
2170 		goto out;
2171 
2172 	mp = lock_mount(path);
2173 	err = PTR_ERR(mp);
2174 	if (IS_ERR(mp))
2175 		goto out;
2176 
2177 	old = real_mount(old_path.mnt);
2178 	parent = real_mount(path->mnt);
2179 
2180 	err = -EINVAL;
2181 	if (IS_MNT_UNBINDABLE(old))
2182 		goto out2;
2183 
2184 	if (!check_mnt(parent))
2185 		goto out2;
2186 
2187 	if (!check_mnt(old) && old_path.dentry->d_op != &ns_dentry_operations)
2188 		goto out2;
2189 
2190 	if (!recurse && has_locked_children(old, old_path.dentry))
2191 		goto out2;
2192 
2193 	if (recurse)
2194 		mnt = copy_tree(old, old_path.dentry, CL_COPY_MNT_NS_FILE);
2195 	else
2196 		mnt = clone_mnt(old, old_path.dentry, 0);
2197 
2198 	if (IS_ERR(mnt)) {
2199 		err = PTR_ERR(mnt);
2200 		goto out2;
2201 	}
2202 
2203 	mnt->mnt.mnt_flags &= ~MNT_LOCKED;
2204 
2205 	err = graft_tree(mnt, parent, mp);
2206 	if (err) {
2207 		lock_mount_hash();
2208 		umount_tree(mnt, UMOUNT_SYNC);
2209 		unlock_mount_hash();
2210 	}
2211 out2:
2212 	unlock_mount(mp);
2213 out:
2214 	path_put(&old_path);
2215 	return err;
2216 }
2217 
2218 static int change_mount_flags(struct vfsmount *mnt, int ms_flags)
2219 {
2220 	int error = 0;
2221 	int readonly_request = 0;
2222 
2223 	if (ms_flags & MS_RDONLY)
2224 		readonly_request = 1;
2225 	if (readonly_request == __mnt_is_readonly(mnt))
2226 		return 0;
2227 
2228 	if (readonly_request)
2229 		error = mnt_make_readonly(real_mount(mnt));
2230 	else
2231 		__mnt_unmake_readonly(real_mount(mnt));
2232 	return error;
2233 }
2234 
2235 /*
2236  * change filesystem flags. dir should be a physical root of filesystem.
2237  * If you've mounted a non-root directory somewhere and want to do remount
2238  * on it - tough luck.
2239  */
2240 static int do_remount(struct path *path, int ms_flags, int sb_flags,
2241 		      int mnt_flags, void *data)
2242 {
2243 	int err;
2244 	struct super_block *sb = path->mnt->mnt_sb;
2245 	struct mount *mnt = real_mount(path->mnt);
2246 
2247 	if (!check_mnt(mnt))
2248 		return -EINVAL;
2249 
2250 	if (path->dentry != path->mnt->mnt_root)
2251 		return -EINVAL;
2252 
2253 	/* Don't allow changing of locked mnt flags.
2254 	 *
2255 	 * No locks need to be held here while testing the various
2256 	 * MNT_LOCK flags because those flags can never be cleared
2257 	 * once they are set.
2258 	 */
2259 	if ((mnt->mnt.mnt_flags & MNT_LOCK_READONLY) &&
2260 	    !(mnt_flags & MNT_READONLY)) {
2261 		return -EPERM;
2262 	}
2263 	if ((mnt->mnt.mnt_flags & MNT_LOCK_NODEV) &&
2264 	    !(mnt_flags & MNT_NODEV)) {
2265 		return -EPERM;
2266 	}
2267 	if ((mnt->mnt.mnt_flags & MNT_LOCK_NOSUID) &&
2268 	    !(mnt_flags & MNT_NOSUID)) {
2269 		return -EPERM;
2270 	}
2271 	if ((mnt->mnt.mnt_flags & MNT_LOCK_NOEXEC) &&
2272 	    !(mnt_flags & MNT_NOEXEC)) {
2273 		return -EPERM;
2274 	}
2275 	if ((mnt->mnt.mnt_flags & MNT_LOCK_ATIME) &&
2276 	    ((mnt->mnt.mnt_flags & MNT_ATIME_MASK) != (mnt_flags & MNT_ATIME_MASK))) {
2277 		return -EPERM;
2278 	}
2279 
2280 	err = security_sb_remount(sb, data);
2281 	if (err)
2282 		return err;
2283 
2284 	down_write(&sb->s_umount);
2285 	if (ms_flags & MS_BIND)
2286 		err = change_mount_flags(path->mnt, ms_flags);
2287 	else if (!ns_capable(sb->s_user_ns, CAP_SYS_ADMIN))
2288 		err = -EPERM;
2289 	else
2290 		err = do_remount_sb(sb, sb_flags, data, 0);
2291 	if (!err) {
2292 		lock_mount_hash();
2293 		mnt_flags |= mnt->mnt.mnt_flags & ~MNT_USER_SETTABLE_MASK;
2294 		mnt->mnt.mnt_flags = mnt_flags;
2295 		touch_mnt_namespace(mnt->mnt_ns);
2296 		unlock_mount_hash();
2297 	}
2298 	up_write(&sb->s_umount);
2299 	return err;
2300 }
2301 
2302 static inline int tree_contains_unbindable(struct mount *mnt)
2303 {
2304 	struct mount *p;
2305 	for (p = mnt; p; p = next_mnt(p, mnt)) {
2306 		if (IS_MNT_UNBINDABLE(p))
2307 			return 1;
2308 	}
2309 	return 0;
2310 }
2311 
2312 static int do_move_mount(struct path *path, const char *old_name)
2313 {
2314 	struct path old_path, parent_path;
2315 	struct mount *p;
2316 	struct mount *old;
2317 	struct mountpoint *mp;
2318 	int err;
2319 	if (!old_name || !*old_name)
2320 		return -EINVAL;
2321 	err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
2322 	if (err)
2323 		return err;
2324 
2325 	mp = lock_mount(path);
2326 	err = PTR_ERR(mp);
2327 	if (IS_ERR(mp))
2328 		goto out;
2329 
2330 	old = real_mount(old_path.mnt);
2331 	p = real_mount(path->mnt);
2332 
2333 	err = -EINVAL;
2334 	if (!check_mnt(p) || !check_mnt(old))
2335 		goto out1;
2336 
2337 	if (old->mnt.mnt_flags & MNT_LOCKED)
2338 		goto out1;
2339 
2340 	err = -EINVAL;
2341 	if (old_path.dentry != old_path.mnt->mnt_root)
2342 		goto out1;
2343 
2344 	if (!mnt_has_parent(old))
2345 		goto out1;
2346 
2347 	if (d_is_dir(path->dentry) !=
2348 	      d_is_dir(old_path.dentry))
2349 		goto out1;
2350 	/*
2351 	 * Don't move a mount residing in a shared parent.
2352 	 */
2353 	if (IS_MNT_SHARED(old->mnt_parent))
2354 		goto out1;
2355 	/*
2356 	 * Don't move a mount tree containing unbindable mounts to a destination
2357 	 * mount which is shared.
2358 	 */
2359 	if (IS_MNT_SHARED(p) && tree_contains_unbindable(old))
2360 		goto out1;
2361 	err = -ELOOP;
2362 	for (; mnt_has_parent(p); p = p->mnt_parent)
2363 		if (p == old)
2364 			goto out1;
2365 
2366 	err = attach_recursive_mnt(old, real_mount(path->mnt), mp, &parent_path);
2367 	if (err)
2368 		goto out1;
2369 
2370 	/* if the mount is moved, it should no longer be expire
2371 	 * automatically */
2372 	list_del_init(&old->mnt_expire);
2373 out1:
2374 	unlock_mount(mp);
2375 out:
2376 	if (!err)
2377 		path_put(&parent_path);
2378 	path_put(&old_path);
2379 	return err;
2380 }
2381 
2382 static struct vfsmount *fs_set_subtype(struct vfsmount *mnt, const char *fstype)
2383 {
2384 	int err;
2385 	const char *subtype = strchr(fstype, '.');
2386 	if (subtype) {
2387 		subtype++;
2388 		err = -EINVAL;
2389 		if (!subtype[0])
2390 			goto err;
2391 	} else
2392 		subtype = "";
2393 
2394 	mnt->mnt_sb->s_subtype = kstrdup(subtype, GFP_KERNEL);
2395 	err = -ENOMEM;
2396 	if (!mnt->mnt_sb->s_subtype)
2397 		goto err;
2398 	return mnt;
2399 
2400  err:
2401 	mntput(mnt);
2402 	return ERR_PTR(err);
2403 }
2404 
2405 /*
2406  * add a mount into a namespace's mount tree
2407  */
2408 static int do_add_mount(struct mount *newmnt, struct path *path, int mnt_flags)
2409 {
2410 	struct mountpoint *mp;
2411 	struct mount *parent;
2412 	int err;
2413 
2414 	mnt_flags &= ~MNT_INTERNAL_FLAGS;
2415 
2416 	mp = lock_mount(path);
2417 	if (IS_ERR(mp))
2418 		return PTR_ERR(mp);
2419 
2420 	parent = real_mount(path->mnt);
2421 	err = -EINVAL;
2422 	if (unlikely(!check_mnt(parent))) {
2423 		/* that's acceptable only for automounts done in private ns */
2424 		if (!(mnt_flags & MNT_SHRINKABLE))
2425 			goto unlock;
2426 		/* ... and for those we'd better have mountpoint still alive */
2427 		if (!parent->mnt_ns)
2428 			goto unlock;
2429 	}
2430 
2431 	/* Refuse the same filesystem on the same mount point */
2432 	err = -EBUSY;
2433 	if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb &&
2434 	    path->mnt->mnt_root == path->dentry)
2435 		goto unlock;
2436 
2437 	err = -EINVAL;
2438 	if (d_is_symlink(newmnt->mnt.mnt_root))
2439 		goto unlock;
2440 
2441 	newmnt->mnt.mnt_flags = mnt_flags;
2442 	err = graft_tree(newmnt, parent, mp);
2443 
2444 unlock:
2445 	unlock_mount(mp);
2446 	return err;
2447 }
2448 
2449 static bool mount_too_revealing(struct vfsmount *mnt, int *new_mnt_flags);
2450 
2451 /*
2452  * create a new mount for userspace and request it to be added into the
2453  * namespace's tree
2454  */
2455 static int do_new_mount(struct path *path, const char *fstype, int sb_flags,
2456 			int mnt_flags, const char *name, void *data)
2457 {
2458 	struct file_system_type *type;
2459 	struct vfsmount *mnt;
2460 	int err;
2461 
2462 	if (!fstype)
2463 		return -EINVAL;
2464 
2465 	type = get_fs_type(fstype);
2466 	if (!type)
2467 		return -ENODEV;
2468 
2469 	mnt = vfs_kern_mount(type, sb_flags, name, data);
2470 	if (!IS_ERR(mnt) && (type->fs_flags & FS_HAS_SUBTYPE) &&
2471 	    !mnt->mnt_sb->s_subtype)
2472 		mnt = fs_set_subtype(mnt, fstype);
2473 
2474 	put_filesystem(type);
2475 	if (IS_ERR(mnt))
2476 		return PTR_ERR(mnt);
2477 
2478 	if (mount_too_revealing(mnt, &mnt_flags)) {
2479 		mntput(mnt);
2480 		return -EPERM;
2481 	}
2482 
2483 	err = do_add_mount(real_mount(mnt), path, mnt_flags);
2484 	if (err)
2485 		mntput(mnt);
2486 	return err;
2487 }
2488 
2489 int finish_automount(struct vfsmount *m, struct path *path)
2490 {
2491 	struct mount *mnt = real_mount(m);
2492 	int err;
2493 	/* The new mount record should have at least 2 refs to prevent it being
2494 	 * expired before we get a chance to add it
2495 	 */
2496 	BUG_ON(mnt_get_count(mnt) < 2);
2497 
2498 	if (m->mnt_sb == path->mnt->mnt_sb &&
2499 	    m->mnt_root == path->dentry) {
2500 		err = -ELOOP;
2501 		goto fail;
2502 	}
2503 
2504 	err = do_add_mount(mnt, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
2505 	if (!err)
2506 		return 0;
2507 fail:
2508 	/* remove m from any expiration list it may be on */
2509 	if (!list_empty(&mnt->mnt_expire)) {
2510 		namespace_lock();
2511 		list_del_init(&mnt->mnt_expire);
2512 		namespace_unlock();
2513 	}
2514 	mntput(m);
2515 	mntput(m);
2516 	return err;
2517 }
2518 
2519 /**
2520  * mnt_set_expiry - Put a mount on an expiration list
2521  * @mnt: The mount to list.
2522  * @expiry_list: The list to add the mount to.
2523  */
2524 void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
2525 {
2526 	namespace_lock();
2527 
2528 	list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
2529 
2530 	namespace_unlock();
2531 }
2532 EXPORT_SYMBOL(mnt_set_expiry);
2533 
2534 /*
2535  * process a list of expirable mountpoints with the intent of discarding any
2536  * mountpoints that aren't in use and haven't been touched since last we came
2537  * here
2538  */
2539 void mark_mounts_for_expiry(struct list_head *mounts)
2540 {
2541 	struct mount *mnt, *next;
2542 	LIST_HEAD(graveyard);
2543 
2544 	if (list_empty(mounts))
2545 		return;
2546 
2547 	namespace_lock();
2548 	lock_mount_hash();
2549 
2550 	/* extract from the expiration list every vfsmount that matches the
2551 	 * following criteria:
2552 	 * - only referenced by its parent vfsmount
2553 	 * - still marked for expiry (marked on the last call here; marks are
2554 	 *   cleared by mntput())
2555 	 */
2556 	list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
2557 		if (!xchg(&mnt->mnt_expiry_mark, 1) ||
2558 			propagate_mount_busy(mnt, 1))
2559 			continue;
2560 		list_move(&mnt->mnt_expire, &graveyard);
2561 	}
2562 	while (!list_empty(&graveyard)) {
2563 		mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
2564 		touch_mnt_namespace(mnt->mnt_ns);
2565 		umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
2566 	}
2567 	unlock_mount_hash();
2568 	namespace_unlock();
2569 }
2570 
2571 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
2572 
2573 /*
2574  * Ripoff of 'select_parent()'
2575  *
2576  * search the list of submounts for a given mountpoint, and move any
2577  * shrinkable submounts to the 'graveyard' list.
2578  */
2579 static int select_submounts(struct mount *parent, struct list_head *graveyard)
2580 {
2581 	struct mount *this_parent = parent;
2582 	struct list_head *next;
2583 	int found = 0;
2584 
2585 repeat:
2586 	next = this_parent->mnt_mounts.next;
2587 resume:
2588 	while (next != &this_parent->mnt_mounts) {
2589 		struct list_head *tmp = next;
2590 		struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
2591 
2592 		next = tmp->next;
2593 		if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
2594 			continue;
2595 		/*
2596 		 * Descend a level if the d_mounts list is non-empty.
2597 		 */
2598 		if (!list_empty(&mnt->mnt_mounts)) {
2599 			this_parent = mnt;
2600 			goto repeat;
2601 		}
2602 
2603 		if (!propagate_mount_busy(mnt, 1)) {
2604 			list_move_tail(&mnt->mnt_expire, graveyard);
2605 			found++;
2606 		}
2607 	}
2608 	/*
2609 	 * All done at this level ... ascend and resume the search
2610 	 */
2611 	if (this_parent != parent) {
2612 		next = this_parent->mnt_child.next;
2613 		this_parent = this_parent->mnt_parent;
2614 		goto resume;
2615 	}
2616 	return found;
2617 }
2618 
2619 /*
2620  * process a list of expirable mountpoints with the intent of discarding any
2621  * submounts of a specific parent mountpoint
2622  *
2623  * mount_lock must be held for write
2624  */
2625 static void shrink_submounts(struct mount *mnt)
2626 {
2627 	LIST_HEAD(graveyard);
2628 	struct mount *m;
2629 
2630 	/* extract submounts of 'mountpoint' from the expiration list */
2631 	while (select_submounts(mnt, &graveyard)) {
2632 		while (!list_empty(&graveyard)) {
2633 			m = list_first_entry(&graveyard, struct mount,
2634 						mnt_expire);
2635 			touch_mnt_namespace(m->mnt_ns);
2636 			umount_tree(m, UMOUNT_PROPAGATE|UMOUNT_SYNC);
2637 		}
2638 	}
2639 }
2640 
2641 /*
2642  * Some copy_from_user() implementations do not return the exact number of
2643  * bytes remaining to copy on a fault.  But copy_mount_options() requires that.
2644  * Note that this function differs from copy_from_user() in that it will oops
2645  * on bad values of `to', rather than returning a short copy.
2646  */
2647 static long exact_copy_from_user(void *to, const void __user * from,
2648 				 unsigned long n)
2649 {
2650 	char *t = to;
2651 	const char __user *f = from;
2652 	char c;
2653 
2654 	if (!access_ok(VERIFY_READ, from, n))
2655 		return n;
2656 
2657 	current->kernel_uaccess_faults_ok++;
2658 	while (n) {
2659 		if (__get_user(c, f)) {
2660 			memset(t, 0, n);
2661 			break;
2662 		}
2663 		*t++ = c;
2664 		f++;
2665 		n--;
2666 	}
2667 	current->kernel_uaccess_faults_ok--;
2668 	return n;
2669 }
2670 
2671 void *copy_mount_options(const void __user * data)
2672 {
2673 	int i;
2674 	unsigned long size;
2675 	char *copy;
2676 
2677 	if (!data)
2678 		return NULL;
2679 
2680 	copy = kmalloc(PAGE_SIZE, GFP_KERNEL);
2681 	if (!copy)
2682 		return ERR_PTR(-ENOMEM);
2683 
2684 	/* We only care that *some* data at the address the user
2685 	 * gave us is valid.  Just in case, we'll zero
2686 	 * the remainder of the page.
2687 	 */
2688 	/* copy_from_user cannot cross TASK_SIZE ! */
2689 	size = TASK_SIZE - (unsigned long)data;
2690 	if (size > PAGE_SIZE)
2691 		size = PAGE_SIZE;
2692 
2693 	i = size - exact_copy_from_user(copy, data, size);
2694 	if (!i) {
2695 		kfree(copy);
2696 		return ERR_PTR(-EFAULT);
2697 	}
2698 	if (i != PAGE_SIZE)
2699 		memset(copy + i, 0, PAGE_SIZE - i);
2700 	return copy;
2701 }
2702 
2703 char *copy_mount_string(const void __user *data)
2704 {
2705 	return data ? strndup_user(data, PAGE_SIZE) : NULL;
2706 }
2707 
2708 /*
2709  * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
2710  * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
2711  *
2712  * data is a (void *) that can point to any structure up to
2713  * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
2714  * information (or be NULL).
2715  *
2716  * Pre-0.97 versions of mount() didn't have a flags word.
2717  * When the flags word was introduced its top half was required
2718  * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
2719  * Therefore, if this magic number is present, it carries no information
2720  * and must be discarded.
2721  */
2722 long do_mount(const char *dev_name, const char __user *dir_name,
2723 		const char *type_page, unsigned long flags, void *data_page)
2724 {
2725 	struct path path;
2726 	unsigned int mnt_flags = 0, sb_flags;
2727 	int retval = 0;
2728 
2729 	/* Discard magic */
2730 	if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
2731 		flags &= ~MS_MGC_MSK;
2732 
2733 	/* Basic sanity checks */
2734 	if (data_page)
2735 		((char *)data_page)[PAGE_SIZE - 1] = 0;
2736 
2737 	if (flags & MS_NOUSER)
2738 		return -EINVAL;
2739 
2740 	/* ... and get the mountpoint */
2741 	retval = user_path(dir_name, &path);
2742 	if (retval)
2743 		return retval;
2744 
2745 	retval = security_sb_mount(dev_name, &path,
2746 				   type_page, flags, data_page);
2747 	if (!retval && !may_mount())
2748 		retval = -EPERM;
2749 	if (!retval && (flags & SB_MANDLOCK) && !may_mandlock())
2750 		retval = -EPERM;
2751 	if (retval)
2752 		goto dput_out;
2753 
2754 	/* Default to relatime unless overriden */
2755 	if (!(flags & MS_NOATIME))
2756 		mnt_flags |= MNT_RELATIME;
2757 
2758 	/* Separate the per-mountpoint flags */
2759 	if (flags & MS_NOSUID)
2760 		mnt_flags |= MNT_NOSUID;
2761 	if (flags & MS_NODEV)
2762 		mnt_flags |= MNT_NODEV;
2763 	if (flags & MS_NOEXEC)
2764 		mnt_flags |= MNT_NOEXEC;
2765 	if (flags & MS_NOATIME)
2766 		mnt_flags |= MNT_NOATIME;
2767 	if (flags & MS_NODIRATIME)
2768 		mnt_flags |= MNT_NODIRATIME;
2769 	if (flags & MS_STRICTATIME)
2770 		mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
2771 	if (flags & MS_RDONLY)
2772 		mnt_flags |= MNT_READONLY;
2773 
2774 	/* The default atime for remount is preservation */
2775 	if ((flags & MS_REMOUNT) &&
2776 	    ((flags & (MS_NOATIME | MS_NODIRATIME | MS_RELATIME |
2777 		       MS_STRICTATIME)) == 0)) {
2778 		mnt_flags &= ~MNT_ATIME_MASK;
2779 		mnt_flags |= path.mnt->mnt_flags & MNT_ATIME_MASK;
2780 	}
2781 
2782 	sb_flags = flags & (SB_RDONLY |
2783 			    SB_SYNCHRONOUS |
2784 			    SB_MANDLOCK |
2785 			    SB_DIRSYNC |
2786 			    SB_SILENT |
2787 			    SB_POSIXACL |
2788 			    SB_LAZYTIME |
2789 			    SB_I_VERSION);
2790 
2791 	if (flags & MS_REMOUNT)
2792 		retval = do_remount(&path, flags, sb_flags, mnt_flags,
2793 				    data_page);
2794 	else if (flags & MS_BIND)
2795 		retval = do_loopback(&path, dev_name, flags & MS_REC);
2796 	else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2797 		retval = do_change_type(&path, flags);
2798 	else if (flags & MS_MOVE)
2799 		retval = do_move_mount(&path, dev_name);
2800 	else
2801 		retval = do_new_mount(&path, type_page, sb_flags, mnt_flags,
2802 				      dev_name, data_page);
2803 dput_out:
2804 	path_put(&path);
2805 	return retval;
2806 }
2807 
2808 static struct ucounts *inc_mnt_namespaces(struct user_namespace *ns)
2809 {
2810 	return inc_ucount(ns, current_euid(), UCOUNT_MNT_NAMESPACES);
2811 }
2812 
2813 static void dec_mnt_namespaces(struct ucounts *ucounts)
2814 {
2815 	dec_ucount(ucounts, UCOUNT_MNT_NAMESPACES);
2816 }
2817 
2818 static void free_mnt_ns(struct mnt_namespace *ns)
2819 {
2820 	ns_free_inum(&ns->ns);
2821 	dec_mnt_namespaces(ns->ucounts);
2822 	put_user_ns(ns->user_ns);
2823 	kfree(ns);
2824 }
2825 
2826 /*
2827  * Assign a sequence number so we can detect when we attempt to bind
2828  * mount a reference to an older mount namespace into the current
2829  * mount namespace, preventing reference counting loops.  A 64bit
2830  * number incrementing at 10Ghz will take 12,427 years to wrap which
2831  * is effectively never, so we can ignore the possibility.
2832  */
2833 static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1);
2834 
2835 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns)
2836 {
2837 	struct mnt_namespace *new_ns;
2838 	struct ucounts *ucounts;
2839 	int ret;
2840 
2841 	ucounts = inc_mnt_namespaces(user_ns);
2842 	if (!ucounts)
2843 		return ERR_PTR(-ENOSPC);
2844 
2845 	new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
2846 	if (!new_ns) {
2847 		dec_mnt_namespaces(ucounts);
2848 		return ERR_PTR(-ENOMEM);
2849 	}
2850 	ret = ns_alloc_inum(&new_ns->ns);
2851 	if (ret) {
2852 		kfree(new_ns);
2853 		dec_mnt_namespaces(ucounts);
2854 		return ERR_PTR(ret);
2855 	}
2856 	new_ns->ns.ops = &mntns_operations;
2857 	new_ns->seq = atomic64_add_return(1, &mnt_ns_seq);
2858 	atomic_set(&new_ns->count, 1);
2859 	new_ns->root = NULL;
2860 	INIT_LIST_HEAD(&new_ns->list);
2861 	init_waitqueue_head(&new_ns->poll);
2862 	new_ns->event = 0;
2863 	new_ns->user_ns = get_user_ns(user_ns);
2864 	new_ns->ucounts = ucounts;
2865 	new_ns->mounts = 0;
2866 	new_ns->pending_mounts = 0;
2867 	return new_ns;
2868 }
2869 
2870 __latent_entropy
2871 struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
2872 		struct user_namespace *user_ns, struct fs_struct *new_fs)
2873 {
2874 	struct mnt_namespace *new_ns;
2875 	struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
2876 	struct mount *p, *q;
2877 	struct mount *old;
2878 	struct mount *new;
2879 	int copy_flags;
2880 
2881 	BUG_ON(!ns);
2882 
2883 	if (likely(!(flags & CLONE_NEWNS))) {
2884 		get_mnt_ns(ns);
2885 		return ns;
2886 	}
2887 
2888 	old = ns->root;
2889 
2890 	new_ns = alloc_mnt_ns(user_ns);
2891 	if (IS_ERR(new_ns))
2892 		return new_ns;
2893 
2894 	namespace_lock();
2895 	/* First pass: copy the tree topology */
2896 	copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE;
2897 	if (user_ns != ns->user_ns)
2898 		copy_flags |= CL_SHARED_TO_SLAVE | CL_UNPRIVILEGED;
2899 	new = copy_tree(old, old->mnt.mnt_root, copy_flags);
2900 	if (IS_ERR(new)) {
2901 		namespace_unlock();
2902 		free_mnt_ns(new_ns);
2903 		return ERR_CAST(new);
2904 	}
2905 	new_ns->root = new;
2906 	list_add_tail(&new_ns->list, &new->mnt_list);
2907 
2908 	/*
2909 	 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
2910 	 * as belonging to new namespace.  We have already acquired a private
2911 	 * fs_struct, so tsk->fs->lock is not needed.
2912 	 */
2913 	p = old;
2914 	q = new;
2915 	while (p) {
2916 		q->mnt_ns = new_ns;
2917 		new_ns->mounts++;
2918 		if (new_fs) {
2919 			if (&p->mnt == new_fs->root.mnt) {
2920 				new_fs->root.mnt = mntget(&q->mnt);
2921 				rootmnt = &p->mnt;
2922 			}
2923 			if (&p->mnt == new_fs->pwd.mnt) {
2924 				new_fs->pwd.mnt = mntget(&q->mnt);
2925 				pwdmnt = &p->mnt;
2926 			}
2927 		}
2928 		p = next_mnt(p, old);
2929 		q = next_mnt(q, new);
2930 		if (!q)
2931 			break;
2932 		while (p->mnt.mnt_root != q->mnt.mnt_root)
2933 			p = next_mnt(p, old);
2934 	}
2935 	namespace_unlock();
2936 
2937 	if (rootmnt)
2938 		mntput(rootmnt);
2939 	if (pwdmnt)
2940 		mntput(pwdmnt);
2941 
2942 	return new_ns;
2943 }
2944 
2945 /**
2946  * create_mnt_ns - creates a private namespace and adds a root filesystem
2947  * @mnt: pointer to the new root filesystem mountpoint
2948  */
2949 static struct mnt_namespace *create_mnt_ns(struct vfsmount *m)
2950 {
2951 	struct mnt_namespace *new_ns = alloc_mnt_ns(&init_user_ns);
2952 	if (!IS_ERR(new_ns)) {
2953 		struct mount *mnt = real_mount(m);
2954 		mnt->mnt_ns = new_ns;
2955 		new_ns->root = mnt;
2956 		new_ns->mounts++;
2957 		list_add(&mnt->mnt_list, &new_ns->list);
2958 	} else {
2959 		mntput(m);
2960 	}
2961 	return new_ns;
2962 }
2963 
2964 struct dentry *mount_subtree(struct vfsmount *mnt, const char *name)
2965 {
2966 	struct mnt_namespace *ns;
2967 	struct super_block *s;
2968 	struct path path;
2969 	int err;
2970 
2971 	ns = create_mnt_ns(mnt);
2972 	if (IS_ERR(ns))
2973 		return ERR_CAST(ns);
2974 
2975 	err = vfs_path_lookup(mnt->mnt_root, mnt,
2976 			name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
2977 
2978 	put_mnt_ns(ns);
2979 
2980 	if (err)
2981 		return ERR_PTR(err);
2982 
2983 	/* trade a vfsmount reference for active sb one */
2984 	s = path.mnt->mnt_sb;
2985 	atomic_inc(&s->s_active);
2986 	mntput(path.mnt);
2987 	/* lock the sucker */
2988 	down_write(&s->s_umount);
2989 	/* ... and return the root of (sub)tree on it */
2990 	return path.dentry;
2991 }
2992 EXPORT_SYMBOL(mount_subtree);
2993 
2994 int ksys_mount(char __user *dev_name, char __user *dir_name, char __user *type,
2995 	       unsigned long flags, void __user *data)
2996 {
2997 	int ret;
2998 	char *kernel_type;
2999 	char *kernel_dev;
3000 	void *options;
3001 
3002 	kernel_type = copy_mount_string(type);
3003 	ret = PTR_ERR(kernel_type);
3004 	if (IS_ERR(kernel_type))
3005 		goto out_type;
3006 
3007 	kernel_dev = copy_mount_string(dev_name);
3008 	ret = PTR_ERR(kernel_dev);
3009 	if (IS_ERR(kernel_dev))
3010 		goto out_dev;
3011 
3012 	options = copy_mount_options(data);
3013 	ret = PTR_ERR(options);
3014 	if (IS_ERR(options))
3015 		goto out_data;
3016 
3017 	ret = do_mount(kernel_dev, dir_name, kernel_type, flags, options);
3018 
3019 	kfree(options);
3020 out_data:
3021 	kfree(kernel_dev);
3022 out_dev:
3023 	kfree(kernel_type);
3024 out_type:
3025 	return ret;
3026 }
3027 
3028 SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
3029 		char __user *, type, unsigned long, flags, void __user *, data)
3030 {
3031 	return ksys_mount(dev_name, dir_name, type, flags, data);
3032 }
3033 
3034 /*
3035  * Return true if path is reachable from root
3036  *
3037  * namespace_sem or mount_lock is held
3038  */
3039 bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
3040 			 const struct path *root)
3041 {
3042 	while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
3043 		dentry = mnt->mnt_mountpoint;
3044 		mnt = mnt->mnt_parent;
3045 	}
3046 	return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
3047 }
3048 
3049 bool path_is_under(const struct path *path1, const struct path *path2)
3050 {
3051 	bool res;
3052 	read_seqlock_excl(&mount_lock);
3053 	res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
3054 	read_sequnlock_excl(&mount_lock);
3055 	return res;
3056 }
3057 EXPORT_SYMBOL(path_is_under);
3058 
3059 /*
3060  * pivot_root Semantics:
3061  * Moves the root file system of the current process to the directory put_old,
3062  * makes new_root as the new root file system of the current process, and sets
3063  * root/cwd of all processes which had them on the current root to new_root.
3064  *
3065  * Restrictions:
3066  * The new_root and put_old must be directories, and  must not be on the
3067  * same file  system as the current process root. The put_old  must  be
3068  * underneath new_root,  i.e. adding a non-zero number of /.. to the string
3069  * pointed to by put_old must yield the same directory as new_root. No other
3070  * file system may be mounted on put_old. After all, new_root is a mountpoint.
3071  *
3072  * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
3073  * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
3074  * in this situation.
3075  *
3076  * Notes:
3077  *  - we don't move root/cwd if they are not at the root (reason: if something
3078  *    cared enough to change them, it's probably wrong to force them elsewhere)
3079  *  - it's okay to pick a root that isn't the root of a file system, e.g.
3080  *    /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
3081  *    though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
3082  *    first.
3083  */
3084 SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
3085 		const char __user *, put_old)
3086 {
3087 	struct path new, old, parent_path, root_parent, root;
3088 	struct mount *new_mnt, *root_mnt, *old_mnt;
3089 	struct mountpoint *old_mp, *root_mp;
3090 	int error;
3091 
3092 	if (!may_mount())
3093 		return -EPERM;
3094 
3095 	error = user_path_dir(new_root, &new);
3096 	if (error)
3097 		goto out0;
3098 
3099 	error = user_path_dir(put_old, &old);
3100 	if (error)
3101 		goto out1;
3102 
3103 	error = security_sb_pivotroot(&old, &new);
3104 	if (error)
3105 		goto out2;
3106 
3107 	get_fs_root(current->fs, &root);
3108 	old_mp = lock_mount(&old);
3109 	error = PTR_ERR(old_mp);
3110 	if (IS_ERR(old_mp))
3111 		goto out3;
3112 
3113 	error = -EINVAL;
3114 	new_mnt = real_mount(new.mnt);
3115 	root_mnt = real_mount(root.mnt);
3116 	old_mnt = real_mount(old.mnt);
3117 	if (IS_MNT_SHARED(old_mnt) ||
3118 		IS_MNT_SHARED(new_mnt->mnt_parent) ||
3119 		IS_MNT_SHARED(root_mnt->mnt_parent))
3120 		goto out4;
3121 	if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
3122 		goto out4;
3123 	if (new_mnt->mnt.mnt_flags & MNT_LOCKED)
3124 		goto out4;
3125 	error = -ENOENT;
3126 	if (d_unlinked(new.dentry))
3127 		goto out4;
3128 	error = -EBUSY;
3129 	if (new_mnt == root_mnt || old_mnt == root_mnt)
3130 		goto out4; /* loop, on the same file system  */
3131 	error = -EINVAL;
3132 	if (root.mnt->mnt_root != root.dentry)
3133 		goto out4; /* not a mountpoint */
3134 	if (!mnt_has_parent(root_mnt))
3135 		goto out4; /* not attached */
3136 	root_mp = root_mnt->mnt_mp;
3137 	if (new.mnt->mnt_root != new.dentry)
3138 		goto out4; /* not a mountpoint */
3139 	if (!mnt_has_parent(new_mnt))
3140 		goto out4; /* not attached */
3141 	/* make sure we can reach put_old from new_root */
3142 	if (!is_path_reachable(old_mnt, old.dentry, &new))
3143 		goto out4;
3144 	/* make certain new is below the root */
3145 	if (!is_path_reachable(new_mnt, new.dentry, &root))
3146 		goto out4;
3147 	root_mp->m_count++; /* pin it so it won't go away */
3148 	lock_mount_hash();
3149 	detach_mnt(new_mnt, &parent_path);
3150 	detach_mnt(root_mnt, &root_parent);
3151 	if (root_mnt->mnt.mnt_flags & MNT_LOCKED) {
3152 		new_mnt->mnt.mnt_flags |= MNT_LOCKED;
3153 		root_mnt->mnt.mnt_flags &= ~MNT_LOCKED;
3154 	}
3155 	/* mount old root on put_old */
3156 	attach_mnt(root_mnt, old_mnt, old_mp);
3157 	/* mount new_root on / */
3158 	attach_mnt(new_mnt, real_mount(root_parent.mnt), root_mp);
3159 	touch_mnt_namespace(current->nsproxy->mnt_ns);
3160 	/* A moved mount should not expire automatically */
3161 	list_del_init(&new_mnt->mnt_expire);
3162 	put_mountpoint(root_mp);
3163 	unlock_mount_hash();
3164 	chroot_fs_refs(&root, &new);
3165 	error = 0;
3166 out4:
3167 	unlock_mount(old_mp);
3168 	if (!error) {
3169 		path_put(&root_parent);
3170 		path_put(&parent_path);
3171 	}
3172 out3:
3173 	path_put(&root);
3174 out2:
3175 	path_put(&old);
3176 out1:
3177 	path_put(&new);
3178 out0:
3179 	return error;
3180 }
3181 
3182 static void __init init_mount_tree(void)
3183 {
3184 	struct vfsmount *mnt;
3185 	struct mnt_namespace *ns;
3186 	struct path root;
3187 	struct file_system_type *type;
3188 
3189 	type = get_fs_type("rootfs");
3190 	if (!type)
3191 		panic("Can't find rootfs type");
3192 	mnt = vfs_kern_mount(type, 0, "rootfs", NULL);
3193 	put_filesystem(type);
3194 	if (IS_ERR(mnt))
3195 		panic("Can't create rootfs");
3196 
3197 	ns = create_mnt_ns(mnt);
3198 	if (IS_ERR(ns))
3199 		panic("Can't allocate initial namespace");
3200 
3201 	init_task.nsproxy->mnt_ns = ns;
3202 	get_mnt_ns(ns);
3203 
3204 	root.mnt = mnt;
3205 	root.dentry = mnt->mnt_root;
3206 	mnt->mnt_flags |= MNT_LOCKED;
3207 
3208 	set_fs_pwd(current->fs, &root);
3209 	set_fs_root(current->fs, &root);
3210 }
3211 
3212 void __init mnt_init(void)
3213 {
3214 	int err;
3215 
3216 	mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
3217 			0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
3218 
3219 	mount_hashtable = alloc_large_system_hash("Mount-cache",
3220 				sizeof(struct hlist_head),
3221 				mhash_entries, 19,
3222 				HASH_ZERO,
3223 				&m_hash_shift, &m_hash_mask, 0, 0);
3224 	mountpoint_hashtable = alloc_large_system_hash("Mountpoint-cache",
3225 				sizeof(struct hlist_head),
3226 				mphash_entries, 19,
3227 				HASH_ZERO,
3228 				&mp_hash_shift, &mp_hash_mask, 0, 0);
3229 
3230 	if (!mount_hashtable || !mountpoint_hashtable)
3231 		panic("Failed to allocate mount hash table\n");
3232 
3233 	kernfs_init();
3234 
3235 	err = sysfs_init();
3236 	if (err)
3237 		printk(KERN_WARNING "%s: sysfs_init error: %d\n",
3238 			__func__, err);
3239 	fs_kobj = kobject_create_and_add("fs", NULL);
3240 	if (!fs_kobj)
3241 		printk(KERN_WARNING "%s: kobj create error\n", __func__);
3242 	init_rootfs();
3243 	init_mount_tree();
3244 }
3245 
3246 void put_mnt_ns(struct mnt_namespace *ns)
3247 {
3248 	if (!atomic_dec_and_test(&ns->count))
3249 		return;
3250 	drop_collected_mounts(&ns->root->mnt);
3251 	free_mnt_ns(ns);
3252 }
3253 
3254 struct vfsmount *kern_mount_data(struct file_system_type *type, void *data)
3255 {
3256 	struct vfsmount *mnt;
3257 	mnt = vfs_kern_mount(type, SB_KERNMOUNT, type->name, data);
3258 	if (!IS_ERR(mnt)) {
3259 		/*
3260 		 * it is a longterm mount, don't release mnt until
3261 		 * we unmount before file sys is unregistered
3262 		*/
3263 		real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
3264 	}
3265 	return mnt;
3266 }
3267 EXPORT_SYMBOL_GPL(kern_mount_data);
3268 
3269 void kern_unmount(struct vfsmount *mnt)
3270 {
3271 	/* release long term mount so mount point can be released */
3272 	if (!IS_ERR_OR_NULL(mnt)) {
3273 		real_mount(mnt)->mnt_ns = NULL;
3274 		synchronize_rcu();	/* yecchhh... */
3275 		mntput(mnt);
3276 	}
3277 }
3278 EXPORT_SYMBOL(kern_unmount);
3279 
3280 bool our_mnt(struct vfsmount *mnt)
3281 {
3282 	return check_mnt(real_mount(mnt));
3283 }
3284 
3285 bool current_chrooted(void)
3286 {
3287 	/* Does the current process have a non-standard root */
3288 	struct path ns_root;
3289 	struct path fs_root;
3290 	bool chrooted;
3291 
3292 	/* Find the namespace root */
3293 	ns_root.mnt = &current->nsproxy->mnt_ns->root->mnt;
3294 	ns_root.dentry = ns_root.mnt->mnt_root;
3295 	path_get(&ns_root);
3296 	while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root))
3297 		;
3298 
3299 	get_fs_root(current->fs, &fs_root);
3300 
3301 	chrooted = !path_equal(&fs_root, &ns_root);
3302 
3303 	path_put(&fs_root);
3304 	path_put(&ns_root);
3305 
3306 	return chrooted;
3307 }
3308 
3309 static bool mnt_already_visible(struct mnt_namespace *ns, struct vfsmount *new,
3310 				int *new_mnt_flags)
3311 {
3312 	int new_flags = *new_mnt_flags;
3313 	struct mount *mnt;
3314 	bool visible = false;
3315 
3316 	down_read(&namespace_sem);
3317 	list_for_each_entry(mnt, &ns->list, mnt_list) {
3318 		struct mount *child;
3319 		int mnt_flags;
3320 
3321 		if (mnt->mnt.mnt_sb->s_type != new->mnt_sb->s_type)
3322 			continue;
3323 
3324 		/* This mount is not fully visible if it's root directory
3325 		 * is not the root directory of the filesystem.
3326 		 */
3327 		if (mnt->mnt.mnt_root != mnt->mnt.mnt_sb->s_root)
3328 			continue;
3329 
3330 		/* A local view of the mount flags */
3331 		mnt_flags = mnt->mnt.mnt_flags;
3332 
3333 		/* Don't miss readonly hidden in the superblock flags */
3334 		if (sb_rdonly(mnt->mnt.mnt_sb))
3335 			mnt_flags |= MNT_LOCK_READONLY;
3336 
3337 		/* Verify the mount flags are equal to or more permissive
3338 		 * than the proposed new mount.
3339 		 */
3340 		if ((mnt_flags & MNT_LOCK_READONLY) &&
3341 		    !(new_flags & MNT_READONLY))
3342 			continue;
3343 		if ((mnt_flags & MNT_LOCK_ATIME) &&
3344 		    ((mnt_flags & MNT_ATIME_MASK) != (new_flags & MNT_ATIME_MASK)))
3345 			continue;
3346 
3347 		/* This mount is not fully visible if there are any
3348 		 * locked child mounts that cover anything except for
3349 		 * empty directories.
3350 		 */
3351 		list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
3352 			struct inode *inode = child->mnt_mountpoint->d_inode;
3353 			/* Only worry about locked mounts */
3354 			if (!(child->mnt.mnt_flags & MNT_LOCKED))
3355 				continue;
3356 			/* Is the directory permanetly empty? */
3357 			if (!is_empty_dir_inode(inode))
3358 				goto next;
3359 		}
3360 		/* Preserve the locked attributes */
3361 		*new_mnt_flags |= mnt_flags & (MNT_LOCK_READONLY | \
3362 					       MNT_LOCK_ATIME);
3363 		visible = true;
3364 		goto found;
3365 	next:	;
3366 	}
3367 found:
3368 	up_read(&namespace_sem);
3369 	return visible;
3370 }
3371 
3372 static bool mount_too_revealing(struct vfsmount *mnt, int *new_mnt_flags)
3373 {
3374 	const unsigned long required_iflags = SB_I_NOEXEC | SB_I_NODEV;
3375 	struct mnt_namespace *ns = current->nsproxy->mnt_ns;
3376 	unsigned long s_iflags;
3377 
3378 	if (ns->user_ns == &init_user_ns)
3379 		return false;
3380 
3381 	/* Can this filesystem be too revealing? */
3382 	s_iflags = mnt->mnt_sb->s_iflags;
3383 	if (!(s_iflags & SB_I_USERNS_VISIBLE))
3384 		return false;
3385 
3386 	if ((s_iflags & required_iflags) != required_iflags) {
3387 		WARN_ONCE(1, "Expected s_iflags to contain 0x%lx\n",
3388 			  required_iflags);
3389 		return true;
3390 	}
3391 
3392 	return !mnt_already_visible(ns, mnt, new_mnt_flags);
3393 }
3394 
3395 bool mnt_may_suid(struct vfsmount *mnt)
3396 {
3397 	/*
3398 	 * Foreign mounts (accessed via fchdir or through /proc
3399 	 * symlinks) are always treated as if they are nosuid.  This
3400 	 * prevents namespaces from trusting potentially unsafe
3401 	 * suid/sgid bits, file caps, or security labels that originate
3402 	 * in other namespaces.
3403 	 */
3404 	return !(mnt->mnt_flags & MNT_NOSUID) && check_mnt(real_mount(mnt)) &&
3405 	       current_in_userns(mnt->mnt_sb->s_user_ns);
3406 }
3407 
3408 static struct ns_common *mntns_get(struct task_struct *task)
3409 {
3410 	struct ns_common *ns = NULL;
3411 	struct nsproxy *nsproxy;
3412 
3413 	task_lock(task);
3414 	nsproxy = task->nsproxy;
3415 	if (nsproxy) {
3416 		ns = &nsproxy->mnt_ns->ns;
3417 		get_mnt_ns(to_mnt_ns(ns));
3418 	}
3419 	task_unlock(task);
3420 
3421 	return ns;
3422 }
3423 
3424 static void mntns_put(struct ns_common *ns)
3425 {
3426 	put_mnt_ns(to_mnt_ns(ns));
3427 }
3428 
3429 static int mntns_install(struct nsproxy *nsproxy, struct ns_common *ns)
3430 {
3431 	struct fs_struct *fs = current->fs;
3432 	struct mnt_namespace *mnt_ns = to_mnt_ns(ns), *old_mnt_ns;
3433 	struct path root;
3434 	int err;
3435 
3436 	if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) ||
3437 	    !ns_capable(current_user_ns(), CAP_SYS_CHROOT) ||
3438 	    !ns_capable(current_user_ns(), CAP_SYS_ADMIN))
3439 		return -EPERM;
3440 
3441 	if (fs->users != 1)
3442 		return -EINVAL;
3443 
3444 	get_mnt_ns(mnt_ns);
3445 	old_mnt_ns = nsproxy->mnt_ns;
3446 	nsproxy->mnt_ns = mnt_ns;
3447 
3448 	/* Find the root */
3449 	err = vfs_path_lookup(mnt_ns->root->mnt.mnt_root, &mnt_ns->root->mnt,
3450 				"/", LOOKUP_DOWN, &root);
3451 	if (err) {
3452 		/* revert to old namespace */
3453 		nsproxy->mnt_ns = old_mnt_ns;
3454 		put_mnt_ns(mnt_ns);
3455 		return err;
3456 	}
3457 
3458 	put_mnt_ns(old_mnt_ns);
3459 
3460 	/* Update the pwd and root */
3461 	set_fs_pwd(fs, &root);
3462 	set_fs_root(fs, &root);
3463 
3464 	path_put(&root);
3465 	return 0;
3466 }
3467 
3468 static struct user_namespace *mntns_owner(struct ns_common *ns)
3469 {
3470 	return to_mnt_ns(ns)->user_ns;
3471 }
3472 
3473 const struct proc_ns_operations mntns_operations = {
3474 	.name		= "mnt",
3475 	.type		= CLONE_NEWNS,
3476 	.get		= mntns_get,
3477 	.put		= mntns_put,
3478 	.install	= mntns_install,
3479 	.owner		= mntns_owner,
3480 };
3481