1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/fs/namespace.c 4 * 5 * (C) Copyright Al Viro 2000, 2001 6 * 7 * Based on code from fs/super.c, copyright Linus Torvalds and others. 8 * Heavily rewritten. 9 */ 10 11 #include <linux/syscalls.h> 12 #include <linux/export.h> 13 #include <linux/capability.h> 14 #include <linux/mnt_namespace.h> 15 #include <linux/user_namespace.h> 16 #include <linux/namei.h> 17 #include <linux/security.h> 18 #include <linux/cred.h> 19 #include <linux/idr.h> 20 #include <linux/init.h> /* init_rootfs */ 21 #include <linux/fs_struct.h> /* get_fs_root et.al. */ 22 #include <linux/fsnotify.h> /* fsnotify_vfsmount_delete */ 23 #include <linux/file.h> 24 #include <linux/uaccess.h> 25 #include <linux/proc_ns.h> 26 #include <linux/magic.h> 27 #include <linux/memblock.h> 28 #include <linux/proc_fs.h> 29 #include <linux/task_work.h> 30 #include <linux/sched/task.h> 31 #include <uapi/linux/mount.h> 32 #include <linux/fs_context.h> 33 #include <linux/shmem_fs.h> 34 #include <linux/mnt_idmapping.h> 35 36 #include "pnode.h" 37 #include "internal.h" 38 39 /* Maximum number of mounts in a mount namespace */ 40 static unsigned int sysctl_mount_max __read_mostly = 100000; 41 42 static unsigned int m_hash_mask __read_mostly; 43 static unsigned int m_hash_shift __read_mostly; 44 static unsigned int mp_hash_mask __read_mostly; 45 static unsigned int mp_hash_shift __read_mostly; 46 47 static __initdata unsigned long mhash_entries; 48 static int __init set_mhash_entries(char *str) 49 { 50 if (!str) 51 return 0; 52 mhash_entries = simple_strtoul(str, &str, 0); 53 return 1; 54 } 55 __setup("mhash_entries=", set_mhash_entries); 56 57 static __initdata unsigned long mphash_entries; 58 static int __init set_mphash_entries(char *str) 59 { 60 if (!str) 61 return 0; 62 mphash_entries = simple_strtoul(str, &str, 0); 63 return 1; 64 } 65 __setup("mphash_entries=", set_mphash_entries); 66 67 static u64 event; 68 static DEFINE_IDA(mnt_id_ida); 69 static DEFINE_IDA(mnt_group_ida); 70 71 static struct hlist_head *mount_hashtable __read_mostly; 72 static struct hlist_head *mountpoint_hashtable __read_mostly; 73 static struct kmem_cache *mnt_cache __read_mostly; 74 static DECLARE_RWSEM(namespace_sem); 75 static HLIST_HEAD(unmounted); /* protected by namespace_sem */ 76 static LIST_HEAD(ex_mountpoints); /* protected by namespace_sem */ 77 78 struct mount_kattr { 79 unsigned int attr_set; 80 unsigned int attr_clr; 81 unsigned int propagation; 82 unsigned int lookup_flags; 83 bool recurse; 84 struct user_namespace *mnt_userns; 85 struct mnt_idmap *mnt_idmap; 86 }; 87 88 /* /sys/fs */ 89 struct kobject *fs_kobj; 90 EXPORT_SYMBOL_GPL(fs_kobj); 91 92 /* 93 * vfsmount lock may be taken for read to prevent changes to the 94 * vfsmount hash, ie. during mountpoint lookups or walking back 95 * up the tree. 96 * 97 * It should be taken for write in all cases where the vfsmount 98 * tree or hash is modified or when a vfsmount structure is modified. 99 */ 100 __cacheline_aligned_in_smp DEFINE_SEQLOCK(mount_lock); 101 102 static inline void lock_mount_hash(void) 103 { 104 write_seqlock(&mount_lock); 105 } 106 107 static inline void unlock_mount_hash(void) 108 { 109 write_sequnlock(&mount_lock); 110 } 111 112 static inline struct hlist_head *m_hash(struct vfsmount *mnt, struct dentry *dentry) 113 { 114 unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES); 115 tmp += ((unsigned long)dentry / L1_CACHE_BYTES); 116 tmp = tmp + (tmp >> m_hash_shift); 117 return &mount_hashtable[tmp & m_hash_mask]; 118 } 119 120 static inline struct hlist_head *mp_hash(struct dentry *dentry) 121 { 122 unsigned long tmp = ((unsigned long)dentry / L1_CACHE_BYTES); 123 tmp = tmp + (tmp >> mp_hash_shift); 124 return &mountpoint_hashtable[tmp & mp_hash_mask]; 125 } 126 127 static int mnt_alloc_id(struct mount *mnt) 128 { 129 int res = ida_alloc(&mnt_id_ida, GFP_KERNEL); 130 131 if (res < 0) 132 return res; 133 mnt->mnt_id = res; 134 return 0; 135 } 136 137 static void mnt_free_id(struct mount *mnt) 138 { 139 ida_free(&mnt_id_ida, mnt->mnt_id); 140 } 141 142 /* 143 * Allocate a new peer group ID 144 */ 145 static int mnt_alloc_group_id(struct mount *mnt) 146 { 147 int res = ida_alloc_min(&mnt_group_ida, 1, GFP_KERNEL); 148 149 if (res < 0) 150 return res; 151 mnt->mnt_group_id = res; 152 return 0; 153 } 154 155 /* 156 * Release a peer group ID 157 */ 158 void mnt_release_group_id(struct mount *mnt) 159 { 160 ida_free(&mnt_group_ida, mnt->mnt_group_id); 161 mnt->mnt_group_id = 0; 162 } 163 164 /* 165 * vfsmount lock must be held for read 166 */ 167 static inline void mnt_add_count(struct mount *mnt, int n) 168 { 169 #ifdef CONFIG_SMP 170 this_cpu_add(mnt->mnt_pcp->mnt_count, n); 171 #else 172 preempt_disable(); 173 mnt->mnt_count += n; 174 preempt_enable(); 175 #endif 176 } 177 178 /* 179 * vfsmount lock must be held for write 180 */ 181 int mnt_get_count(struct mount *mnt) 182 { 183 #ifdef CONFIG_SMP 184 int count = 0; 185 int cpu; 186 187 for_each_possible_cpu(cpu) { 188 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count; 189 } 190 191 return count; 192 #else 193 return mnt->mnt_count; 194 #endif 195 } 196 197 static struct mount *alloc_vfsmnt(const char *name) 198 { 199 struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL); 200 if (mnt) { 201 int err; 202 203 err = mnt_alloc_id(mnt); 204 if (err) 205 goto out_free_cache; 206 207 if (name) { 208 mnt->mnt_devname = kstrdup_const(name, 209 GFP_KERNEL_ACCOUNT); 210 if (!mnt->mnt_devname) 211 goto out_free_id; 212 } 213 214 #ifdef CONFIG_SMP 215 mnt->mnt_pcp = alloc_percpu(struct mnt_pcp); 216 if (!mnt->mnt_pcp) 217 goto out_free_devname; 218 219 this_cpu_add(mnt->mnt_pcp->mnt_count, 1); 220 #else 221 mnt->mnt_count = 1; 222 mnt->mnt_writers = 0; 223 #endif 224 225 INIT_HLIST_NODE(&mnt->mnt_hash); 226 INIT_LIST_HEAD(&mnt->mnt_child); 227 INIT_LIST_HEAD(&mnt->mnt_mounts); 228 INIT_LIST_HEAD(&mnt->mnt_list); 229 INIT_LIST_HEAD(&mnt->mnt_expire); 230 INIT_LIST_HEAD(&mnt->mnt_share); 231 INIT_LIST_HEAD(&mnt->mnt_slave_list); 232 INIT_LIST_HEAD(&mnt->mnt_slave); 233 INIT_HLIST_NODE(&mnt->mnt_mp_list); 234 INIT_LIST_HEAD(&mnt->mnt_umounting); 235 INIT_HLIST_HEAD(&mnt->mnt_stuck_children); 236 mnt->mnt.mnt_idmap = &nop_mnt_idmap; 237 } 238 return mnt; 239 240 #ifdef CONFIG_SMP 241 out_free_devname: 242 kfree_const(mnt->mnt_devname); 243 #endif 244 out_free_id: 245 mnt_free_id(mnt); 246 out_free_cache: 247 kmem_cache_free(mnt_cache, mnt); 248 return NULL; 249 } 250 251 /* 252 * Most r/o checks on a fs are for operations that take 253 * discrete amounts of time, like a write() or unlink(). 254 * We must keep track of when those operations start 255 * (for permission checks) and when they end, so that 256 * we can determine when writes are able to occur to 257 * a filesystem. 258 */ 259 /* 260 * __mnt_is_readonly: check whether a mount is read-only 261 * @mnt: the mount to check for its write status 262 * 263 * This shouldn't be used directly ouside of the VFS. 264 * It does not guarantee that the filesystem will stay 265 * r/w, just that it is right *now*. This can not and 266 * should not be used in place of IS_RDONLY(inode). 267 * mnt_want/drop_write() will _keep_ the filesystem 268 * r/w. 269 */ 270 bool __mnt_is_readonly(struct vfsmount *mnt) 271 { 272 return (mnt->mnt_flags & MNT_READONLY) || sb_rdonly(mnt->mnt_sb); 273 } 274 EXPORT_SYMBOL_GPL(__mnt_is_readonly); 275 276 static inline void mnt_inc_writers(struct mount *mnt) 277 { 278 #ifdef CONFIG_SMP 279 this_cpu_inc(mnt->mnt_pcp->mnt_writers); 280 #else 281 mnt->mnt_writers++; 282 #endif 283 } 284 285 static inline void mnt_dec_writers(struct mount *mnt) 286 { 287 #ifdef CONFIG_SMP 288 this_cpu_dec(mnt->mnt_pcp->mnt_writers); 289 #else 290 mnt->mnt_writers--; 291 #endif 292 } 293 294 static unsigned int mnt_get_writers(struct mount *mnt) 295 { 296 #ifdef CONFIG_SMP 297 unsigned int count = 0; 298 int cpu; 299 300 for_each_possible_cpu(cpu) { 301 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers; 302 } 303 304 return count; 305 #else 306 return mnt->mnt_writers; 307 #endif 308 } 309 310 static int mnt_is_readonly(struct vfsmount *mnt) 311 { 312 if (READ_ONCE(mnt->mnt_sb->s_readonly_remount)) 313 return 1; 314 /* 315 * The barrier pairs with the barrier in sb_start_ro_state_change() 316 * making sure if we don't see s_readonly_remount set yet, we also will 317 * not see any superblock / mount flag changes done by remount. 318 * It also pairs with the barrier in sb_end_ro_state_change() 319 * assuring that if we see s_readonly_remount already cleared, we will 320 * see the values of superblock / mount flags updated by remount. 321 */ 322 smp_rmb(); 323 return __mnt_is_readonly(mnt); 324 } 325 326 /* 327 * Most r/o & frozen checks on a fs are for operations that take discrete 328 * amounts of time, like a write() or unlink(). We must keep track of when 329 * those operations start (for permission checks) and when they end, so that we 330 * can determine when writes are able to occur to a filesystem. 331 */ 332 /** 333 * __mnt_want_write - get write access to a mount without freeze protection 334 * @m: the mount on which to take a write 335 * 336 * This tells the low-level filesystem that a write is about to be performed to 337 * it, and makes sure that writes are allowed (mnt it read-write) before 338 * returning success. This operation does not protect against filesystem being 339 * frozen. When the write operation is finished, __mnt_drop_write() must be 340 * called. This is effectively a refcount. 341 */ 342 int __mnt_want_write(struct vfsmount *m) 343 { 344 struct mount *mnt = real_mount(m); 345 int ret = 0; 346 347 preempt_disable(); 348 mnt_inc_writers(mnt); 349 /* 350 * The store to mnt_inc_writers must be visible before we pass 351 * MNT_WRITE_HOLD loop below, so that the slowpath can see our 352 * incremented count after it has set MNT_WRITE_HOLD. 353 */ 354 smp_mb(); 355 might_lock(&mount_lock.lock); 356 while (READ_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD) { 357 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) { 358 cpu_relax(); 359 } else { 360 /* 361 * This prevents priority inversion, if the task 362 * setting MNT_WRITE_HOLD got preempted on a remote 363 * CPU, and it prevents life lock if the task setting 364 * MNT_WRITE_HOLD has a lower priority and is bound to 365 * the same CPU as the task that is spinning here. 366 */ 367 preempt_enable(); 368 lock_mount_hash(); 369 unlock_mount_hash(); 370 preempt_disable(); 371 } 372 } 373 /* 374 * The barrier pairs with the barrier sb_start_ro_state_change() making 375 * sure that if we see MNT_WRITE_HOLD cleared, we will also see 376 * s_readonly_remount set (or even SB_RDONLY / MNT_READONLY flags) in 377 * mnt_is_readonly() and bail in case we are racing with remount 378 * read-only. 379 */ 380 smp_rmb(); 381 if (mnt_is_readonly(m)) { 382 mnt_dec_writers(mnt); 383 ret = -EROFS; 384 } 385 preempt_enable(); 386 387 return ret; 388 } 389 390 /** 391 * mnt_want_write - get write access to a mount 392 * @m: the mount on which to take a write 393 * 394 * This tells the low-level filesystem that a write is about to be performed to 395 * it, and makes sure that writes are allowed (mount is read-write, filesystem 396 * is not frozen) before returning success. When the write operation is 397 * finished, mnt_drop_write() must be called. This is effectively a refcount. 398 */ 399 int mnt_want_write(struct vfsmount *m) 400 { 401 int ret; 402 403 sb_start_write(m->mnt_sb); 404 ret = __mnt_want_write(m); 405 if (ret) 406 sb_end_write(m->mnt_sb); 407 return ret; 408 } 409 EXPORT_SYMBOL_GPL(mnt_want_write); 410 411 /** 412 * __mnt_want_write_file - get write access to a file's mount 413 * @file: the file who's mount on which to take a write 414 * 415 * This is like __mnt_want_write, but if the file is already open for writing it 416 * skips incrementing mnt_writers (since the open file already has a reference) 417 * and instead only does the check for emergency r/o remounts. This must be 418 * paired with __mnt_drop_write_file. 419 */ 420 int __mnt_want_write_file(struct file *file) 421 { 422 if (file->f_mode & FMODE_WRITER) { 423 /* 424 * Superblock may have become readonly while there are still 425 * writable fd's, e.g. due to a fs error with errors=remount-ro 426 */ 427 if (__mnt_is_readonly(file->f_path.mnt)) 428 return -EROFS; 429 return 0; 430 } 431 return __mnt_want_write(file->f_path.mnt); 432 } 433 434 /** 435 * mnt_want_write_file - get write access to a file's mount 436 * @file: the file who's mount on which to take a write 437 * 438 * This is like mnt_want_write, but if the file is already open for writing it 439 * skips incrementing mnt_writers (since the open file already has a reference) 440 * and instead only does the freeze protection and the check for emergency r/o 441 * remounts. This must be paired with mnt_drop_write_file. 442 */ 443 int mnt_want_write_file(struct file *file) 444 { 445 int ret; 446 447 sb_start_write(file_inode(file)->i_sb); 448 ret = __mnt_want_write_file(file); 449 if (ret) 450 sb_end_write(file_inode(file)->i_sb); 451 return ret; 452 } 453 EXPORT_SYMBOL_GPL(mnt_want_write_file); 454 455 /** 456 * __mnt_drop_write - give up write access to a mount 457 * @mnt: the mount on which to give up write access 458 * 459 * Tells the low-level filesystem that we are done 460 * performing writes to it. Must be matched with 461 * __mnt_want_write() call above. 462 */ 463 void __mnt_drop_write(struct vfsmount *mnt) 464 { 465 preempt_disable(); 466 mnt_dec_writers(real_mount(mnt)); 467 preempt_enable(); 468 } 469 470 /** 471 * mnt_drop_write - give up write access to a mount 472 * @mnt: the mount on which to give up write access 473 * 474 * Tells the low-level filesystem that we are done performing writes to it and 475 * also allows filesystem to be frozen again. Must be matched with 476 * mnt_want_write() call above. 477 */ 478 void mnt_drop_write(struct vfsmount *mnt) 479 { 480 __mnt_drop_write(mnt); 481 sb_end_write(mnt->mnt_sb); 482 } 483 EXPORT_SYMBOL_GPL(mnt_drop_write); 484 485 void __mnt_drop_write_file(struct file *file) 486 { 487 if (!(file->f_mode & FMODE_WRITER)) 488 __mnt_drop_write(file->f_path.mnt); 489 } 490 491 void mnt_drop_write_file(struct file *file) 492 { 493 __mnt_drop_write_file(file); 494 sb_end_write(file_inode(file)->i_sb); 495 } 496 EXPORT_SYMBOL(mnt_drop_write_file); 497 498 /** 499 * mnt_hold_writers - prevent write access to the given mount 500 * @mnt: mnt to prevent write access to 501 * 502 * Prevents write access to @mnt if there are no active writers for @mnt. 503 * This function needs to be called and return successfully before changing 504 * properties of @mnt that need to remain stable for callers with write access 505 * to @mnt. 506 * 507 * After this functions has been called successfully callers must pair it with 508 * a call to mnt_unhold_writers() in order to stop preventing write access to 509 * @mnt. 510 * 511 * Context: This function expects lock_mount_hash() to be held serializing 512 * setting MNT_WRITE_HOLD. 513 * Return: On success 0 is returned. 514 * On error, -EBUSY is returned. 515 */ 516 static inline int mnt_hold_writers(struct mount *mnt) 517 { 518 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD; 519 /* 520 * After storing MNT_WRITE_HOLD, we'll read the counters. This store 521 * should be visible before we do. 522 */ 523 smp_mb(); 524 525 /* 526 * With writers on hold, if this value is zero, then there are 527 * definitely no active writers (although held writers may subsequently 528 * increment the count, they'll have to wait, and decrement it after 529 * seeing MNT_READONLY). 530 * 531 * It is OK to have counter incremented on one CPU and decremented on 532 * another: the sum will add up correctly. The danger would be when we 533 * sum up each counter, if we read a counter before it is incremented, 534 * but then read another CPU's count which it has been subsequently 535 * decremented from -- we would see more decrements than we should. 536 * MNT_WRITE_HOLD protects against this scenario, because 537 * mnt_want_write first increments count, then smp_mb, then spins on 538 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while 539 * we're counting up here. 540 */ 541 if (mnt_get_writers(mnt) > 0) 542 return -EBUSY; 543 544 return 0; 545 } 546 547 /** 548 * mnt_unhold_writers - stop preventing write access to the given mount 549 * @mnt: mnt to stop preventing write access to 550 * 551 * Stop preventing write access to @mnt allowing callers to gain write access 552 * to @mnt again. 553 * 554 * This function can only be called after a successful call to 555 * mnt_hold_writers(). 556 * 557 * Context: This function expects lock_mount_hash() to be held. 558 */ 559 static inline void mnt_unhold_writers(struct mount *mnt) 560 { 561 /* 562 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers 563 * that become unheld will see MNT_READONLY. 564 */ 565 smp_wmb(); 566 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD; 567 } 568 569 static int mnt_make_readonly(struct mount *mnt) 570 { 571 int ret; 572 573 ret = mnt_hold_writers(mnt); 574 if (!ret) 575 mnt->mnt.mnt_flags |= MNT_READONLY; 576 mnt_unhold_writers(mnt); 577 return ret; 578 } 579 580 int sb_prepare_remount_readonly(struct super_block *sb) 581 { 582 struct mount *mnt; 583 int err = 0; 584 585 /* Racy optimization. Recheck the counter under MNT_WRITE_HOLD */ 586 if (atomic_long_read(&sb->s_remove_count)) 587 return -EBUSY; 588 589 lock_mount_hash(); 590 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) { 591 if (!(mnt->mnt.mnt_flags & MNT_READONLY)) { 592 err = mnt_hold_writers(mnt); 593 if (err) 594 break; 595 } 596 } 597 if (!err && atomic_long_read(&sb->s_remove_count)) 598 err = -EBUSY; 599 600 if (!err) 601 sb_start_ro_state_change(sb); 602 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) { 603 if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD) 604 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD; 605 } 606 unlock_mount_hash(); 607 608 return err; 609 } 610 611 static void free_vfsmnt(struct mount *mnt) 612 { 613 mnt_idmap_put(mnt_idmap(&mnt->mnt)); 614 kfree_const(mnt->mnt_devname); 615 #ifdef CONFIG_SMP 616 free_percpu(mnt->mnt_pcp); 617 #endif 618 kmem_cache_free(mnt_cache, mnt); 619 } 620 621 static void delayed_free_vfsmnt(struct rcu_head *head) 622 { 623 free_vfsmnt(container_of(head, struct mount, mnt_rcu)); 624 } 625 626 /* call under rcu_read_lock */ 627 int __legitimize_mnt(struct vfsmount *bastard, unsigned seq) 628 { 629 struct mount *mnt; 630 if (read_seqretry(&mount_lock, seq)) 631 return 1; 632 if (bastard == NULL) 633 return 0; 634 mnt = real_mount(bastard); 635 mnt_add_count(mnt, 1); 636 smp_mb(); // see mntput_no_expire() 637 if (likely(!read_seqretry(&mount_lock, seq))) 638 return 0; 639 if (bastard->mnt_flags & MNT_SYNC_UMOUNT) { 640 mnt_add_count(mnt, -1); 641 return 1; 642 } 643 lock_mount_hash(); 644 if (unlikely(bastard->mnt_flags & MNT_DOOMED)) { 645 mnt_add_count(mnt, -1); 646 unlock_mount_hash(); 647 return 1; 648 } 649 unlock_mount_hash(); 650 /* caller will mntput() */ 651 return -1; 652 } 653 654 /* call under rcu_read_lock */ 655 static bool legitimize_mnt(struct vfsmount *bastard, unsigned seq) 656 { 657 int res = __legitimize_mnt(bastard, seq); 658 if (likely(!res)) 659 return true; 660 if (unlikely(res < 0)) { 661 rcu_read_unlock(); 662 mntput(bastard); 663 rcu_read_lock(); 664 } 665 return false; 666 } 667 668 /** 669 * __lookup_mnt - find first child mount 670 * @mnt: parent mount 671 * @dentry: mountpoint 672 * 673 * If @mnt has a child mount @c mounted @dentry find and return it. 674 * 675 * Note that the child mount @c need not be unique. There are cases 676 * where shadow mounts are created. For example, during mount 677 * propagation when a source mount @mnt whose root got overmounted by a 678 * mount @o after path lookup but before @namespace_sem could be 679 * acquired gets copied and propagated. So @mnt gets copied including 680 * @o. When @mnt is propagated to a destination mount @d that already 681 * has another mount @n mounted at the same mountpoint then the source 682 * mount @mnt will be tucked beneath @n, i.e., @n will be mounted on 683 * @mnt and @mnt mounted on @d. Now both @n and @o are mounted at @mnt 684 * on @dentry. 685 * 686 * Return: The first child of @mnt mounted @dentry or NULL. 687 */ 688 struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry) 689 { 690 struct hlist_head *head = m_hash(mnt, dentry); 691 struct mount *p; 692 693 hlist_for_each_entry_rcu(p, head, mnt_hash) 694 if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry) 695 return p; 696 return NULL; 697 } 698 699 /* 700 * lookup_mnt - Return the first child mount mounted at path 701 * 702 * "First" means first mounted chronologically. If you create the 703 * following mounts: 704 * 705 * mount /dev/sda1 /mnt 706 * mount /dev/sda2 /mnt 707 * mount /dev/sda3 /mnt 708 * 709 * Then lookup_mnt() on the base /mnt dentry in the root mount will 710 * return successively the root dentry and vfsmount of /dev/sda1, then 711 * /dev/sda2, then /dev/sda3, then NULL. 712 * 713 * lookup_mnt takes a reference to the found vfsmount. 714 */ 715 struct vfsmount *lookup_mnt(const struct path *path) 716 { 717 struct mount *child_mnt; 718 struct vfsmount *m; 719 unsigned seq; 720 721 rcu_read_lock(); 722 do { 723 seq = read_seqbegin(&mount_lock); 724 child_mnt = __lookup_mnt(path->mnt, path->dentry); 725 m = child_mnt ? &child_mnt->mnt : NULL; 726 } while (!legitimize_mnt(m, seq)); 727 rcu_read_unlock(); 728 return m; 729 } 730 731 static inline void lock_ns_list(struct mnt_namespace *ns) 732 { 733 spin_lock(&ns->ns_lock); 734 } 735 736 static inline void unlock_ns_list(struct mnt_namespace *ns) 737 { 738 spin_unlock(&ns->ns_lock); 739 } 740 741 static inline bool mnt_is_cursor(struct mount *mnt) 742 { 743 return mnt->mnt.mnt_flags & MNT_CURSOR; 744 } 745 746 /* 747 * __is_local_mountpoint - Test to see if dentry is a mountpoint in the 748 * current mount namespace. 749 * 750 * The common case is dentries are not mountpoints at all and that 751 * test is handled inline. For the slow case when we are actually 752 * dealing with a mountpoint of some kind, walk through all of the 753 * mounts in the current mount namespace and test to see if the dentry 754 * is a mountpoint. 755 * 756 * The mount_hashtable is not usable in the context because we 757 * need to identify all mounts that may be in the current mount 758 * namespace not just a mount that happens to have some specified 759 * parent mount. 760 */ 761 bool __is_local_mountpoint(struct dentry *dentry) 762 { 763 struct mnt_namespace *ns = current->nsproxy->mnt_ns; 764 struct mount *mnt; 765 bool is_covered = false; 766 767 down_read(&namespace_sem); 768 lock_ns_list(ns); 769 list_for_each_entry(mnt, &ns->list, mnt_list) { 770 if (mnt_is_cursor(mnt)) 771 continue; 772 is_covered = (mnt->mnt_mountpoint == dentry); 773 if (is_covered) 774 break; 775 } 776 unlock_ns_list(ns); 777 up_read(&namespace_sem); 778 779 return is_covered; 780 } 781 782 static struct mountpoint *lookup_mountpoint(struct dentry *dentry) 783 { 784 struct hlist_head *chain = mp_hash(dentry); 785 struct mountpoint *mp; 786 787 hlist_for_each_entry(mp, chain, m_hash) { 788 if (mp->m_dentry == dentry) { 789 mp->m_count++; 790 return mp; 791 } 792 } 793 return NULL; 794 } 795 796 static struct mountpoint *get_mountpoint(struct dentry *dentry) 797 { 798 struct mountpoint *mp, *new = NULL; 799 int ret; 800 801 if (d_mountpoint(dentry)) { 802 /* might be worth a WARN_ON() */ 803 if (d_unlinked(dentry)) 804 return ERR_PTR(-ENOENT); 805 mountpoint: 806 read_seqlock_excl(&mount_lock); 807 mp = lookup_mountpoint(dentry); 808 read_sequnlock_excl(&mount_lock); 809 if (mp) 810 goto done; 811 } 812 813 if (!new) 814 new = kmalloc(sizeof(struct mountpoint), GFP_KERNEL); 815 if (!new) 816 return ERR_PTR(-ENOMEM); 817 818 819 /* Exactly one processes may set d_mounted */ 820 ret = d_set_mounted(dentry); 821 822 /* Someone else set d_mounted? */ 823 if (ret == -EBUSY) 824 goto mountpoint; 825 826 /* The dentry is not available as a mountpoint? */ 827 mp = ERR_PTR(ret); 828 if (ret) 829 goto done; 830 831 /* Add the new mountpoint to the hash table */ 832 read_seqlock_excl(&mount_lock); 833 new->m_dentry = dget(dentry); 834 new->m_count = 1; 835 hlist_add_head(&new->m_hash, mp_hash(dentry)); 836 INIT_HLIST_HEAD(&new->m_list); 837 read_sequnlock_excl(&mount_lock); 838 839 mp = new; 840 new = NULL; 841 done: 842 kfree(new); 843 return mp; 844 } 845 846 /* 847 * vfsmount lock must be held. Additionally, the caller is responsible 848 * for serializing calls for given disposal list. 849 */ 850 static void __put_mountpoint(struct mountpoint *mp, struct list_head *list) 851 { 852 if (!--mp->m_count) { 853 struct dentry *dentry = mp->m_dentry; 854 BUG_ON(!hlist_empty(&mp->m_list)); 855 spin_lock(&dentry->d_lock); 856 dentry->d_flags &= ~DCACHE_MOUNTED; 857 spin_unlock(&dentry->d_lock); 858 dput_to_list(dentry, list); 859 hlist_del(&mp->m_hash); 860 kfree(mp); 861 } 862 } 863 864 /* called with namespace_lock and vfsmount lock */ 865 static void put_mountpoint(struct mountpoint *mp) 866 { 867 __put_mountpoint(mp, &ex_mountpoints); 868 } 869 870 static inline int check_mnt(struct mount *mnt) 871 { 872 return mnt->mnt_ns == current->nsproxy->mnt_ns; 873 } 874 875 /* 876 * vfsmount lock must be held for write 877 */ 878 static void touch_mnt_namespace(struct mnt_namespace *ns) 879 { 880 if (ns) { 881 ns->event = ++event; 882 wake_up_interruptible(&ns->poll); 883 } 884 } 885 886 /* 887 * vfsmount lock must be held for write 888 */ 889 static void __touch_mnt_namespace(struct mnt_namespace *ns) 890 { 891 if (ns && ns->event != event) { 892 ns->event = event; 893 wake_up_interruptible(&ns->poll); 894 } 895 } 896 897 /* 898 * vfsmount lock must be held for write 899 */ 900 static struct mountpoint *unhash_mnt(struct mount *mnt) 901 { 902 struct mountpoint *mp; 903 mnt->mnt_parent = mnt; 904 mnt->mnt_mountpoint = mnt->mnt.mnt_root; 905 list_del_init(&mnt->mnt_child); 906 hlist_del_init_rcu(&mnt->mnt_hash); 907 hlist_del_init(&mnt->mnt_mp_list); 908 mp = mnt->mnt_mp; 909 mnt->mnt_mp = NULL; 910 return mp; 911 } 912 913 /* 914 * vfsmount lock must be held for write 915 */ 916 static void umount_mnt(struct mount *mnt) 917 { 918 put_mountpoint(unhash_mnt(mnt)); 919 } 920 921 /* 922 * vfsmount lock must be held for write 923 */ 924 void mnt_set_mountpoint(struct mount *mnt, 925 struct mountpoint *mp, 926 struct mount *child_mnt) 927 { 928 mp->m_count++; 929 mnt_add_count(mnt, 1); /* essentially, that's mntget */ 930 child_mnt->mnt_mountpoint = mp->m_dentry; 931 child_mnt->mnt_parent = mnt; 932 child_mnt->mnt_mp = mp; 933 hlist_add_head(&child_mnt->mnt_mp_list, &mp->m_list); 934 } 935 936 /** 937 * mnt_set_mountpoint_beneath - mount a mount beneath another one 938 * 939 * @new_parent: the source mount 940 * @top_mnt: the mount beneath which @new_parent is mounted 941 * @new_mp: the new mountpoint of @top_mnt on @new_parent 942 * 943 * Remove @top_mnt from its current mountpoint @top_mnt->mnt_mp and 944 * parent @top_mnt->mnt_parent and mount it on top of @new_parent at 945 * @new_mp. And mount @new_parent on the old parent and old 946 * mountpoint of @top_mnt. 947 * 948 * Context: This function expects namespace_lock() and lock_mount_hash() 949 * to have been acquired in that order. 950 */ 951 static void mnt_set_mountpoint_beneath(struct mount *new_parent, 952 struct mount *top_mnt, 953 struct mountpoint *new_mp) 954 { 955 struct mount *old_top_parent = top_mnt->mnt_parent; 956 struct mountpoint *old_top_mp = top_mnt->mnt_mp; 957 958 mnt_set_mountpoint(old_top_parent, old_top_mp, new_parent); 959 mnt_change_mountpoint(new_parent, new_mp, top_mnt); 960 } 961 962 963 static void __attach_mnt(struct mount *mnt, struct mount *parent) 964 { 965 hlist_add_head_rcu(&mnt->mnt_hash, 966 m_hash(&parent->mnt, mnt->mnt_mountpoint)); 967 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts); 968 } 969 970 /** 971 * attach_mnt - mount a mount, attach to @mount_hashtable and parent's 972 * list of child mounts 973 * @parent: the parent 974 * @mnt: the new mount 975 * @mp: the new mountpoint 976 * @beneath: whether to mount @mnt beneath or on top of @parent 977 * 978 * If @beneath is false, mount @mnt at @mp on @parent. Then attach @mnt 979 * to @parent's child mount list and to @mount_hashtable. 980 * 981 * If @beneath is true, remove @mnt from its current parent and 982 * mountpoint and mount it on @mp on @parent, and mount @parent on the 983 * old parent and old mountpoint of @mnt. Finally, attach @parent to 984 * @mnt_hashtable and @parent->mnt_parent->mnt_mounts. 985 * 986 * Note, when __attach_mnt() is called @mnt->mnt_parent already points 987 * to the correct parent. 988 * 989 * Context: This function expects namespace_lock() and lock_mount_hash() 990 * to have been acquired in that order. 991 */ 992 static void attach_mnt(struct mount *mnt, struct mount *parent, 993 struct mountpoint *mp, bool beneath) 994 { 995 if (beneath) 996 mnt_set_mountpoint_beneath(mnt, parent, mp); 997 else 998 mnt_set_mountpoint(parent, mp, mnt); 999 /* 1000 * Note, @mnt->mnt_parent has to be used. If @mnt was mounted 1001 * beneath @parent then @mnt will need to be attached to 1002 * @parent's old parent, not @parent. IOW, @mnt->mnt_parent 1003 * isn't the same mount as @parent. 1004 */ 1005 __attach_mnt(mnt, mnt->mnt_parent); 1006 } 1007 1008 void mnt_change_mountpoint(struct mount *parent, struct mountpoint *mp, struct mount *mnt) 1009 { 1010 struct mountpoint *old_mp = mnt->mnt_mp; 1011 struct mount *old_parent = mnt->mnt_parent; 1012 1013 list_del_init(&mnt->mnt_child); 1014 hlist_del_init(&mnt->mnt_mp_list); 1015 hlist_del_init_rcu(&mnt->mnt_hash); 1016 1017 attach_mnt(mnt, parent, mp, false); 1018 1019 put_mountpoint(old_mp); 1020 mnt_add_count(old_parent, -1); 1021 } 1022 1023 /* 1024 * vfsmount lock must be held for write 1025 */ 1026 static void commit_tree(struct mount *mnt) 1027 { 1028 struct mount *parent = mnt->mnt_parent; 1029 struct mount *m; 1030 LIST_HEAD(head); 1031 struct mnt_namespace *n = parent->mnt_ns; 1032 1033 BUG_ON(parent == mnt); 1034 1035 list_add_tail(&head, &mnt->mnt_list); 1036 list_for_each_entry(m, &head, mnt_list) 1037 m->mnt_ns = n; 1038 1039 list_splice(&head, n->list.prev); 1040 1041 n->mounts += n->pending_mounts; 1042 n->pending_mounts = 0; 1043 1044 __attach_mnt(mnt, parent); 1045 touch_mnt_namespace(n); 1046 } 1047 1048 static struct mount *next_mnt(struct mount *p, struct mount *root) 1049 { 1050 struct list_head *next = p->mnt_mounts.next; 1051 if (next == &p->mnt_mounts) { 1052 while (1) { 1053 if (p == root) 1054 return NULL; 1055 next = p->mnt_child.next; 1056 if (next != &p->mnt_parent->mnt_mounts) 1057 break; 1058 p = p->mnt_parent; 1059 } 1060 } 1061 return list_entry(next, struct mount, mnt_child); 1062 } 1063 1064 static struct mount *skip_mnt_tree(struct mount *p) 1065 { 1066 struct list_head *prev = p->mnt_mounts.prev; 1067 while (prev != &p->mnt_mounts) { 1068 p = list_entry(prev, struct mount, mnt_child); 1069 prev = p->mnt_mounts.prev; 1070 } 1071 return p; 1072 } 1073 1074 /** 1075 * vfs_create_mount - Create a mount for a configured superblock 1076 * @fc: The configuration context with the superblock attached 1077 * 1078 * Create a mount to an already configured superblock. If necessary, the 1079 * caller should invoke vfs_get_tree() before calling this. 1080 * 1081 * Note that this does not attach the mount to anything. 1082 */ 1083 struct vfsmount *vfs_create_mount(struct fs_context *fc) 1084 { 1085 struct mount *mnt; 1086 1087 if (!fc->root) 1088 return ERR_PTR(-EINVAL); 1089 1090 mnt = alloc_vfsmnt(fc->source ?: "none"); 1091 if (!mnt) 1092 return ERR_PTR(-ENOMEM); 1093 1094 if (fc->sb_flags & SB_KERNMOUNT) 1095 mnt->mnt.mnt_flags = MNT_INTERNAL; 1096 1097 atomic_inc(&fc->root->d_sb->s_active); 1098 mnt->mnt.mnt_sb = fc->root->d_sb; 1099 mnt->mnt.mnt_root = dget(fc->root); 1100 mnt->mnt_mountpoint = mnt->mnt.mnt_root; 1101 mnt->mnt_parent = mnt; 1102 1103 lock_mount_hash(); 1104 list_add_tail(&mnt->mnt_instance, &mnt->mnt.mnt_sb->s_mounts); 1105 unlock_mount_hash(); 1106 return &mnt->mnt; 1107 } 1108 EXPORT_SYMBOL(vfs_create_mount); 1109 1110 struct vfsmount *fc_mount(struct fs_context *fc) 1111 { 1112 int err = vfs_get_tree(fc); 1113 if (!err) { 1114 up_write(&fc->root->d_sb->s_umount); 1115 return vfs_create_mount(fc); 1116 } 1117 return ERR_PTR(err); 1118 } 1119 EXPORT_SYMBOL(fc_mount); 1120 1121 struct vfsmount *vfs_kern_mount(struct file_system_type *type, 1122 int flags, const char *name, 1123 void *data) 1124 { 1125 struct fs_context *fc; 1126 struct vfsmount *mnt; 1127 int ret = 0; 1128 1129 if (!type) 1130 return ERR_PTR(-EINVAL); 1131 1132 fc = fs_context_for_mount(type, flags); 1133 if (IS_ERR(fc)) 1134 return ERR_CAST(fc); 1135 1136 if (name) 1137 ret = vfs_parse_fs_string(fc, "source", 1138 name, strlen(name)); 1139 if (!ret) 1140 ret = parse_monolithic_mount_data(fc, data); 1141 if (!ret) 1142 mnt = fc_mount(fc); 1143 else 1144 mnt = ERR_PTR(ret); 1145 1146 put_fs_context(fc); 1147 return mnt; 1148 } 1149 EXPORT_SYMBOL_GPL(vfs_kern_mount); 1150 1151 struct vfsmount * 1152 vfs_submount(const struct dentry *mountpoint, struct file_system_type *type, 1153 const char *name, void *data) 1154 { 1155 /* Until it is worked out how to pass the user namespace 1156 * through from the parent mount to the submount don't support 1157 * unprivileged mounts with submounts. 1158 */ 1159 if (mountpoint->d_sb->s_user_ns != &init_user_ns) 1160 return ERR_PTR(-EPERM); 1161 1162 return vfs_kern_mount(type, SB_SUBMOUNT, name, data); 1163 } 1164 EXPORT_SYMBOL_GPL(vfs_submount); 1165 1166 static struct mount *clone_mnt(struct mount *old, struct dentry *root, 1167 int flag) 1168 { 1169 struct super_block *sb = old->mnt.mnt_sb; 1170 struct mount *mnt; 1171 int err; 1172 1173 mnt = alloc_vfsmnt(old->mnt_devname); 1174 if (!mnt) 1175 return ERR_PTR(-ENOMEM); 1176 1177 if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE)) 1178 mnt->mnt_group_id = 0; /* not a peer of original */ 1179 else 1180 mnt->mnt_group_id = old->mnt_group_id; 1181 1182 if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) { 1183 err = mnt_alloc_group_id(mnt); 1184 if (err) 1185 goto out_free; 1186 } 1187 1188 mnt->mnt.mnt_flags = old->mnt.mnt_flags; 1189 mnt->mnt.mnt_flags &= ~(MNT_WRITE_HOLD|MNT_MARKED|MNT_INTERNAL); 1190 1191 atomic_inc(&sb->s_active); 1192 mnt->mnt.mnt_idmap = mnt_idmap_get(mnt_idmap(&old->mnt)); 1193 1194 mnt->mnt.mnt_sb = sb; 1195 mnt->mnt.mnt_root = dget(root); 1196 mnt->mnt_mountpoint = mnt->mnt.mnt_root; 1197 mnt->mnt_parent = mnt; 1198 lock_mount_hash(); 1199 list_add_tail(&mnt->mnt_instance, &sb->s_mounts); 1200 unlock_mount_hash(); 1201 1202 if ((flag & CL_SLAVE) || 1203 ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) { 1204 list_add(&mnt->mnt_slave, &old->mnt_slave_list); 1205 mnt->mnt_master = old; 1206 CLEAR_MNT_SHARED(mnt); 1207 } else if (!(flag & CL_PRIVATE)) { 1208 if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old)) 1209 list_add(&mnt->mnt_share, &old->mnt_share); 1210 if (IS_MNT_SLAVE(old)) 1211 list_add(&mnt->mnt_slave, &old->mnt_slave); 1212 mnt->mnt_master = old->mnt_master; 1213 } else { 1214 CLEAR_MNT_SHARED(mnt); 1215 } 1216 if (flag & CL_MAKE_SHARED) 1217 set_mnt_shared(mnt); 1218 1219 /* stick the duplicate mount on the same expiry list 1220 * as the original if that was on one */ 1221 if (flag & CL_EXPIRE) { 1222 if (!list_empty(&old->mnt_expire)) 1223 list_add(&mnt->mnt_expire, &old->mnt_expire); 1224 } 1225 1226 return mnt; 1227 1228 out_free: 1229 mnt_free_id(mnt); 1230 free_vfsmnt(mnt); 1231 return ERR_PTR(err); 1232 } 1233 1234 static void cleanup_mnt(struct mount *mnt) 1235 { 1236 struct hlist_node *p; 1237 struct mount *m; 1238 /* 1239 * The warning here probably indicates that somebody messed 1240 * up a mnt_want/drop_write() pair. If this happens, the 1241 * filesystem was probably unable to make r/w->r/o transitions. 1242 * The locking used to deal with mnt_count decrement provides barriers, 1243 * so mnt_get_writers() below is safe. 1244 */ 1245 WARN_ON(mnt_get_writers(mnt)); 1246 if (unlikely(mnt->mnt_pins.first)) 1247 mnt_pin_kill(mnt); 1248 hlist_for_each_entry_safe(m, p, &mnt->mnt_stuck_children, mnt_umount) { 1249 hlist_del(&m->mnt_umount); 1250 mntput(&m->mnt); 1251 } 1252 fsnotify_vfsmount_delete(&mnt->mnt); 1253 dput(mnt->mnt.mnt_root); 1254 deactivate_super(mnt->mnt.mnt_sb); 1255 mnt_free_id(mnt); 1256 call_rcu(&mnt->mnt_rcu, delayed_free_vfsmnt); 1257 } 1258 1259 static void __cleanup_mnt(struct rcu_head *head) 1260 { 1261 cleanup_mnt(container_of(head, struct mount, mnt_rcu)); 1262 } 1263 1264 static LLIST_HEAD(delayed_mntput_list); 1265 static void delayed_mntput(struct work_struct *unused) 1266 { 1267 struct llist_node *node = llist_del_all(&delayed_mntput_list); 1268 struct mount *m, *t; 1269 1270 llist_for_each_entry_safe(m, t, node, mnt_llist) 1271 cleanup_mnt(m); 1272 } 1273 static DECLARE_DELAYED_WORK(delayed_mntput_work, delayed_mntput); 1274 1275 static void mntput_no_expire(struct mount *mnt) 1276 { 1277 LIST_HEAD(list); 1278 int count; 1279 1280 rcu_read_lock(); 1281 if (likely(READ_ONCE(mnt->mnt_ns))) { 1282 /* 1283 * Since we don't do lock_mount_hash() here, 1284 * ->mnt_ns can change under us. However, if it's 1285 * non-NULL, then there's a reference that won't 1286 * be dropped until after an RCU delay done after 1287 * turning ->mnt_ns NULL. So if we observe it 1288 * non-NULL under rcu_read_lock(), the reference 1289 * we are dropping is not the final one. 1290 */ 1291 mnt_add_count(mnt, -1); 1292 rcu_read_unlock(); 1293 return; 1294 } 1295 lock_mount_hash(); 1296 /* 1297 * make sure that if __legitimize_mnt() has not seen us grab 1298 * mount_lock, we'll see their refcount increment here. 1299 */ 1300 smp_mb(); 1301 mnt_add_count(mnt, -1); 1302 count = mnt_get_count(mnt); 1303 if (count != 0) { 1304 WARN_ON(count < 0); 1305 rcu_read_unlock(); 1306 unlock_mount_hash(); 1307 return; 1308 } 1309 if (unlikely(mnt->mnt.mnt_flags & MNT_DOOMED)) { 1310 rcu_read_unlock(); 1311 unlock_mount_hash(); 1312 return; 1313 } 1314 mnt->mnt.mnt_flags |= MNT_DOOMED; 1315 rcu_read_unlock(); 1316 1317 list_del(&mnt->mnt_instance); 1318 1319 if (unlikely(!list_empty(&mnt->mnt_mounts))) { 1320 struct mount *p, *tmp; 1321 list_for_each_entry_safe(p, tmp, &mnt->mnt_mounts, mnt_child) { 1322 __put_mountpoint(unhash_mnt(p), &list); 1323 hlist_add_head(&p->mnt_umount, &mnt->mnt_stuck_children); 1324 } 1325 } 1326 unlock_mount_hash(); 1327 shrink_dentry_list(&list); 1328 1329 if (likely(!(mnt->mnt.mnt_flags & MNT_INTERNAL))) { 1330 struct task_struct *task = current; 1331 if (likely(!(task->flags & PF_KTHREAD))) { 1332 init_task_work(&mnt->mnt_rcu, __cleanup_mnt); 1333 if (!task_work_add(task, &mnt->mnt_rcu, TWA_RESUME)) 1334 return; 1335 } 1336 if (llist_add(&mnt->mnt_llist, &delayed_mntput_list)) 1337 schedule_delayed_work(&delayed_mntput_work, 1); 1338 return; 1339 } 1340 cleanup_mnt(mnt); 1341 } 1342 1343 void mntput(struct vfsmount *mnt) 1344 { 1345 if (mnt) { 1346 struct mount *m = real_mount(mnt); 1347 /* avoid cacheline pingpong, hope gcc doesn't get "smart" */ 1348 if (unlikely(m->mnt_expiry_mark)) 1349 m->mnt_expiry_mark = 0; 1350 mntput_no_expire(m); 1351 } 1352 } 1353 EXPORT_SYMBOL(mntput); 1354 1355 struct vfsmount *mntget(struct vfsmount *mnt) 1356 { 1357 if (mnt) 1358 mnt_add_count(real_mount(mnt), 1); 1359 return mnt; 1360 } 1361 EXPORT_SYMBOL(mntget); 1362 1363 /* 1364 * Make a mount point inaccessible to new lookups. 1365 * Because there may still be current users, the caller MUST WAIT 1366 * for an RCU grace period before destroying the mount point. 1367 */ 1368 void mnt_make_shortterm(struct vfsmount *mnt) 1369 { 1370 if (mnt) 1371 real_mount(mnt)->mnt_ns = NULL; 1372 } 1373 1374 /** 1375 * path_is_mountpoint() - Check if path is a mount in the current namespace. 1376 * @path: path to check 1377 * 1378 * d_mountpoint() can only be used reliably to establish if a dentry is 1379 * not mounted in any namespace and that common case is handled inline. 1380 * d_mountpoint() isn't aware of the possibility there may be multiple 1381 * mounts using a given dentry in a different namespace. This function 1382 * checks if the passed in path is a mountpoint rather than the dentry 1383 * alone. 1384 */ 1385 bool path_is_mountpoint(const struct path *path) 1386 { 1387 unsigned seq; 1388 bool res; 1389 1390 if (!d_mountpoint(path->dentry)) 1391 return false; 1392 1393 rcu_read_lock(); 1394 do { 1395 seq = read_seqbegin(&mount_lock); 1396 res = __path_is_mountpoint(path); 1397 } while (read_seqretry(&mount_lock, seq)); 1398 rcu_read_unlock(); 1399 1400 return res; 1401 } 1402 EXPORT_SYMBOL(path_is_mountpoint); 1403 1404 struct vfsmount *mnt_clone_internal(const struct path *path) 1405 { 1406 struct mount *p; 1407 p = clone_mnt(real_mount(path->mnt), path->dentry, CL_PRIVATE); 1408 if (IS_ERR(p)) 1409 return ERR_CAST(p); 1410 p->mnt.mnt_flags |= MNT_INTERNAL; 1411 return &p->mnt; 1412 } 1413 1414 #ifdef CONFIG_PROC_FS 1415 static struct mount *mnt_list_next(struct mnt_namespace *ns, 1416 struct list_head *p) 1417 { 1418 struct mount *mnt, *ret = NULL; 1419 1420 lock_ns_list(ns); 1421 list_for_each_continue(p, &ns->list) { 1422 mnt = list_entry(p, typeof(*mnt), mnt_list); 1423 if (!mnt_is_cursor(mnt)) { 1424 ret = mnt; 1425 break; 1426 } 1427 } 1428 unlock_ns_list(ns); 1429 1430 return ret; 1431 } 1432 1433 /* iterator; we want it to have access to namespace_sem, thus here... */ 1434 static void *m_start(struct seq_file *m, loff_t *pos) 1435 { 1436 struct proc_mounts *p = m->private; 1437 struct list_head *prev; 1438 1439 down_read(&namespace_sem); 1440 if (!*pos) { 1441 prev = &p->ns->list; 1442 } else { 1443 prev = &p->cursor.mnt_list; 1444 1445 /* Read after we'd reached the end? */ 1446 if (list_empty(prev)) 1447 return NULL; 1448 } 1449 1450 return mnt_list_next(p->ns, prev); 1451 } 1452 1453 static void *m_next(struct seq_file *m, void *v, loff_t *pos) 1454 { 1455 struct proc_mounts *p = m->private; 1456 struct mount *mnt = v; 1457 1458 ++*pos; 1459 return mnt_list_next(p->ns, &mnt->mnt_list); 1460 } 1461 1462 static void m_stop(struct seq_file *m, void *v) 1463 { 1464 struct proc_mounts *p = m->private; 1465 struct mount *mnt = v; 1466 1467 lock_ns_list(p->ns); 1468 if (mnt) 1469 list_move_tail(&p->cursor.mnt_list, &mnt->mnt_list); 1470 else 1471 list_del_init(&p->cursor.mnt_list); 1472 unlock_ns_list(p->ns); 1473 up_read(&namespace_sem); 1474 } 1475 1476 static int m_show(struct seq_file *m, void *v) 1477 { 1478 struct proc_mounts *p = m->private; 1479 struct mount *r = v; 1480 return p->show(m, &r->mnt); 1481 } 1482 1483 const struct seq_operations mounts_op = { 1484 .start = m_start, 1485 .next = m_next, 1486 .stop = m_stop, 1487 .show = m_show, 1488 }; 1489 1490 void mnt_cursor_del(struct mnt_namespace *ns, struct mount *cursor) 1491 { 1492 down_read(&namespace_sem); 1493 lock_ns_list(ns); 1494 list_del(&cursor->mnt_list); 1495 unlock_ns_list(ns); 1496 up_read(&namespace_sem); 1497 } 1498 #endif /* CONFIG_PROC_FS */ 1499 1500 /** 1501 * may_umount_tree - check if a mount tree is busy 1502 * @m: root of mount tree 1503 * 1504 * This is called to check if a tree of mounts has any 1505 * open files, pwds, chroots or sub mounts that are 1506 * busy. 1507 */ 1508 int may_umount_tree(struct vfsmount *m) 1509 { 1510 struct mount *mnt = real_mount(m); 1511 int actual_refs = 0; 1512 int minimum_refs = 0; 1513 struct mount *p; 1514 BUG_ON(!m); 1515 1516 /* write lock needed for mnt_get_count */ 1517 lock_mount_hash(); 1518 for (p = mnt; p; p = next_mnt(p, mnt)) { 1519 actual_refs += mnt_get_count(p); 1520 minimum_refs += 2; 1521 } 1522 unlock_mount_hash(); 1523 1524 if (actual_refs > minimum_refs) 1525 return 0; 1526 1527 return 1; 1528 } 1529 1530 EXPORT_SYMBOL(may_umount_tree); 1531 1532 /** 1533 * may_umount - check if a mount point is busy 1534 * @mnt: root of mount 1535 * 1536 * This is called to check if a mount point has any 1537 * open files, pwds, chroots or sub mounts. If the 1538 * mount has sub mounts this will return busy 1539 * regardless of whether the sub mounts are busy. 1540 * 1541 * Doesn't take quota and stuff into account. IOW, in some cases it will 1542 * give false negatives. The main reason why it's here is that we need 1543 * a non-destructive way to look for easily umountable filesystems. 1544 */ 1545 int may_umount(struct vfsmount *mnt) 1546 { 1547 int ret = 1; 1548 down_read(&namespace_sem); 1549 lock_mount_hash(); 1550 if (propagate_mount_busy(real_mount(mnt), 2)) 1551 ret = 0; 1552 unlock_mount_hash(); 1553 up_read(&namespace_sem); 1554 return ret; 1555 } 1556 1557 EXPORT_SYMBOL(may_umount); 1558 1559 static void namespace_unlock(void) 1560 { 1561 struct hlist_head head; 1562 struct hlist_node *p; 1563 struct mount *m; 1564 LIST_HEAD(list); 1565 1566 hlist_move_list(&unmounted, &head); 1567 list_splice_init(&ex_mountpoints, &list); 1568 1569 up_write(&namespace_sem); 1570 1571 shrink_dentry_list(&list); 1572 1573 if (likely(hlist_empty(&head))) 1574 return; 1575 1576 synchronize_rcu_expedited(); 1577 1578 hlist_for_each_entry_safe(m, p, &head, mnt_umount) { 1579 hlist_del(&m->mnt_umount); 1580 mntput(&m->mnt); 1581 } 1582 } 1583 1584 static inline void namespace_lock(void) 1585 { 1586 down_write(&namespace_sem); 1587 } 1588 1589 enum umount_tree_flags { 1590 UMOUNT_SYNC = 1, 1591 UMOUNT_PROPAGATE = 2, 1592 UMOUNT_CONNECTED = 4, 1593 }; 1594 1595 static bool disconnect_mount(struct mount *mnt, enum umount_tree_flags how) 1596 { 1597 /* Leaving mounts connected is only valid for lazy umounts */ 1598 if (how & UMOUNT_SYNC) 1599 return true; 1600 1601 /* A mount without a parent has nothing to be connected to */ 1602 if (!mnt_has_parent(mnt)) 1603 return true; 1604 1605 /* Because the reference counting rules change when mounts are 1606 * unmounted and connected, umounted mounts may not be 1607 * connected to mounted mounts. 1608 */ 1609 if (!(mnt->mnt_parent->mnt.mnt_flags & MNT_UMOUNT)) 1610 return true; 1611 1612 /* Has it been requested that the mount remain connected? */ 1613 if (how & UMOUNT_CONNECTED) 1614 return false; 1615 1616 /* Is the mount locked such that it needs to remain connected? */ 1617 if (IS_MNT_LOCKED(mnt)) 1618 return false; 1619 1620 /* By default disconnect the mount */ 1621 return true; 1622 } 1623 1624 /* 1625 * mount_lock must be held 1626 * namespace_sem must be held for write 1627 */ 1628 static void umount_tree(struct mount *mnt, enum umount_tree_flags how) 1629 { 1630 LIST_HEAD(tmp_list); 1631 struct mount *p; 1632 1633 if (how & UMOUNT_PROPAGATE) 1634 propagate_mount_unlock(mnt); 1635 1636 /* Gather the mounts to umount */ 1637 for (p = mnt; p; p = next_mnt(p, mnt)) { 1638 p->mnt.mnt_flags |= MNT_UMOUNT; 1639 list_move(&p->mnt_list, &tmp_list); 1640 } 1641 1642 /* Hide the mounts from mnt_mounts */ 1643 list_for_each_entry(p, &tmp_list, mnt_list) { 1644 list_del_init(&p->mnt_child); 1645 } 1646 1647 /* Add propogated mounts to the tmp_list */ 1648 if (how & UMOUNT_PROPAGATE) 1649 propagate_umount(&tmp_list); 1650 1651 while (!list_empty(&tmp_list)) { 1652 struct mnt_namespace *ns; 1653 bool disconnect; 1654 p = list_first_entry(&tmp_list, struct mount, mnt_list); 1655 list_del_init(&p->mnt_expire); 1656 list_del_init(&p->mnt_list); 1657 ns = p->mnt_ns; 1658 if (ns) { 1659 ns->mounts--; 1660 __touch_mnt_namespace(ns); 1661 } 1662 p->mnt_ns = NULL; 1663 if (how & UMOUNT_SYNC) 1664 p->mnt.mnt_flags |= MNT_SYNC_UMOUNT; 1665 1666 disconnect = disconnect_mount(p, how); 1667 if (mnt_has_parent(p)) { 1668 mnt_add_count(p->mnt_parent, -1); 1669 if (!disconnect) { 1670 /* Don't forget about p */ 1671 list_add_tail(&p->mnt_child, &p->mnt_parent->mnt_mounts); 1672 } else { 1673 umount_mnt(p); 1674 } 1675 } 1676 change_mnt_propagation(p, MS_PRIVATE); 1677 if (disconnect) 1678 hlist_add_head(&p->mnt_umount, &unmounted); 1679 } 1680 } 1681 1682 static void shrink_submounts(struct mount *mnt); 1683 1684 static int do_umount_root(struct super_block *sb) 1685 { 1686 int ret = 0; 1687 1688 down_write(&sb->s_umount); 1689 if (!sb_rdonly(sb)) { 1690 struct fs_context *fc; 1691 1692 fc = fs_context_for_reconfigure(sb->s_root, SB_RDONLY, 1693 SB_RDONLY); 1694 if (IS_ERR(fc)) { 1695 ret = PTR_ERR(fc); 1696 } else { 1697 ret = parse_monolithic_mount_data(fc, NULL); 1698 if (!ret) 1699 ret = reconfigure_super(fc); 1700 put_fs_context(fc); 1701 } 1702 } 1703 up_write(&sb->s_umount); 1704 return ret; 1705 } 1706 1707 static int do_umount(struct mount *mnt, int flags) 1708 { 1709 struct super_block *sb = mnt->mnt.mnt_sb; 1710 int retval; 1711 1712 retval = security_sb_umount(&mnt->mnt, flags); 1713 if (retval) 1714 return retval; 1715 1716 /* 1717 * Allow userspace to request a mountpoint be expired rather than 1718 * unmounting unconditionally. Unmount only happens if: 1719 * (1) the mark is already set (the mark is cleared by mntput()) 1720 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount] 1721 */ 1722 if (flags & MNT_EXPIRE) { 1723 if (&mnt->mnt == current->fs->root.mnt || 1724 flags & (MNT_FORCE | MNT_DETACH)) 1725 return -EINVAL; 1726 1727 /* 1728 * probably don't strictly need the lock here if we examined 1729 * all race cases, but it's a slowpath. 1730 */ 1731 lock_mount_hash(); 1732 if (mnt_get_count(mnt) != 2) { 1733 unlock_mount_hash(); 1734 return -EBUSY; 1735 } 1736 unlock_mount_hash(); 1737 1738 if (!xchg(&mnt->mnt_expiry_mark, 1)) 1739 return -EAGAIN; 1740 } 1741 1742 /* 1743 * If we may have to abort operations to get out of this 1744 * mount, and they will themselves hold resources we must 1745 * allow the fs to do things. In the Unix tradition of 1746 * 'Gee thats tricky lets do it in userspace' the umount_begin 1747 * might fail to complete on the first run through as other tasks 1748 * must return, and the like. Thats for the mount program to worry 1749 * about for the moment. 1750 */ 1751 1752 if (flags & MNT_FORCE && sb->s_op->umount_begin) { 1753 sb->s_op->umount_begin(sb); 1754 } 1755 1756 /* 1757 * No sense to grab the lock for this test, but test itself looks 1758 * somewhat bogus. Suggestions for better replacement? 1759 * Ho-hum... In principle, we might treat that as umount + switch 1760 * to rootfs. GC would eventually take care of the old vfsmount. 1761 * Actually it makes sense, especially if rootfs would contain a 1762 * /reboot - static binary that would close all descriptors and 1763 * call reboot(9). Then init(8) could umount root and exec /reboot. 1764 */ 1765 if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) { 1766 /* 1767 * Special case for "unmounting" root ... 1768 * we just try to remount it readonly. 1769 */ 1770 if (!ns_capable(sb->s_user_ns, CAP_SYS_ADMIN)) 1771 return -EPERM; 1772 return do_umount_root(sb); 1773 } 1774 1775 namespace_lock(); 1776 lock_mount_hash(); 1777 1778 /* Recheck MNT_LOCKED with the locks held */ 1779 retval = -EINVAL; 1780 if (mnt->mnt.mnt_flags & MNT_LOCKED) 1781 goto out; 1782 1783 event++; 1784 if (flags & MNT_DETACH) { 1785 if (!list_empty(&mnt->mnt_list)) 1786 umount_tree(mnt, UMOUNT_PROPAGATE); 1787 retval = 0; 1788 } else { 1789 shrink_submounts(mnt); 1790 retval = -EBUSY; 1791 if (!propagate_mount_busy(mnt, 2)) { 1792 if (!list_empty(&mnt->mnt_list)) 1793 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC); 1794 retval = 0; 1795 } 1796 } 1797 out: 1798 unlock_mount_hash(); 1799 namespace_unlock(); 1800 return retval; 1801 } 1802 1803 /* 1804 * __detach_mounts - lazily unmount all mounts on the specified dentry 1805 * 1806 * During unlink, rmdir, and d_drop it is possible to loose the path 1807 * to an existing mountpoint, and wind up leaking the mount. 1808 * detach_mounts allows lazily unmounting those mounts instead of 1809 * leaking them. 1810 * 1811 * The caller may hold dentry->d_inode->i_mutex. 1812 */ 1813 void __detach_mounts(struct dentry *dentry) 1814 { 1815 struct mountpoint *mp; 1816 struct mount *mnt; 1817 1818 namespace_lock(); 1819 lock_mount_hash(); 1820 mp = lookup_mountpoint(dentry); 1821 if (!mp) 1822 goto out_unlock; 1823 1824 event++; 1825 while (!hlist_empty(&mp->m_list)) { 1826 mnt = hlist_entry(mp->m_list.first, struct mount, mnt_mp_list); 1827 if (mnt->mnt.mnt_flags & MNT_UMOUNT) { 1828 umount_mnt(mnt); 1829 hlist_add_head(&mnt->mnt_umount, &unmounted); 1830 } 1831 else umount_tree(mnt, UMOUNT_CONNECTED); 1832 } 1833 put_mountpoint(mp); 1834 out_unlock: 1835 unlock_mount_hash(); 1836 namespace_unlock(); 1837 } 1838 1839 /* 1840 * Is the caller allowed to modify his namespace? 1841 */ 1842 bool may_mount(void) 1843 { 1844 return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN); 1845 } 1846 1847 /** 1848 * path_mounted - check whether path is mounted 1849 * @path: path to check 1850 * 1851 * Determine whether @path refers to the root of a mount. 1852 * 1853 * Return: true if @path is the root of a mount, false if not. 1854 */ 1855 static inline bool path_mounted(const struct path *path) 1856 { 1857 return path->mnt->mnt_root == path->dentry; 1858 } 1859 1860 static void warn_mandlock(void) 1861 { 1862 pr_warn_once("=======================================================\n" 1863 "WARNING: The mand mount option has been deprecated and\n" 1864 " and is ignored by this kernel. Remove the mand\n" 1865 " option from the mount to silence this warning.\n" 1866 "=======================================================\n"); 1867 } 1868 1869 static int can_umount(const struct path *path, int flags) 1870 { 1871 struct mount *mnt = real_mount(path->mnt); 1872 1873 if (!may_mount()) 1874 return -EPERM; 1875 if (!path_mounted(path)) 1876 return -EINVAL; 1877 if (!check_mnt(mnt)) 1878 return -EINVAL; 1879 if (mnt->mnt.mnt_flags & MNT_LOCKED) /* Check optimistically */ 1880 return -EINVAL; 1881 if (flags & MNT_FORCE && !capable(CAP_SYS_ADMIN)) 1882 return -EPERM; 1883 return 0; 1884 } 1885 1886 // caller is responsible for flags being sane 1887 int path_umount(struct path *path, int flags) 1888 { 1889 struct mount *mnt = real_mount(path->mnt); 1890 int ret; 1891 1892 ret = can_umount(path, flags); 1893 if (!ret) 1894 ret = do_umount(mnt, flags); 1895 1896 /* we mustn't call path_put() as that would clear mnt_expiry_mark */ 1897 dput(path->dentry); 1898 mntput_no_expire(mnt); 1899 return ret; 1900 } 1901 1902 static int ksys_umount(char __user *name, int flags) 1903 { 1904 int lookup_flags = LOOKUP_MOUNTPOINT; 1905 struct path path; 1906 int ret; 1907 1908 // basic validity checks done first 1909 if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW)) 1910 return -EINVAL; 1911 1912 if (!(flags & UMOUNT_NOFOLLOW)) 1913 lookup_flags |= LOOKUP_FOLLOW; 1914 ret = user_path_at(AT_FDCWD, name, lookup_flags, &path); 1915 if (ret) 1916 return ret; 1917 return path_umount(&path, flags); 1918 } 1919 1920 SYSCALL_DEFINE2(umount, char __user *, name, int, flags) 1921 { 1922 return ksys_umount(name, flags); 1923 } 1924 1925 #ifdef __ARCH_WANT_SYS_OLDUMOUNT 1926 1927 /* 1928 * The 2.0 compatible umount. No flags. 1929 */ 1930 SYSCALL_DEFINE1(oldumount, char __user *, name) 1931 { 1932 return ksys_umount(name, 0); 1933 } 1934 1935 #endif 1936 1937 static bool is_mnt_ns_file(struct dentry *dentry) 1938 { 1939 /* Is this a proxy for a mount namespace? */ 1940 return dentry->d_op == &ns_dentry_operations && 1941 dentry->d_fsdata == &mntns_operations; 1942 } 1943 1944 static struct mnt_namespace *to_mnt_ns(struct ns_common *ns) 1945 { 1946 return container_of(ns, struct mnt_namespace, ns); 1947 } 1948 1949 struct ns_common *from_mnt_ns(struct mnt_namespace *mnt) 1950 { 1951 return &mnt->ns; 1952 } 1953 1954 static bool mnt_ns_loop(struct dentry *dentry) 1955 { 1956 /* Could bind mounting the mount namespace inode cause a 1957 * mount namespace loop? 1958 */ 1959 struct mnt_namespace *mnt_ns; 1960 if (!is_mnt_ns_file(dentry)) 1961 return false; 1962 1963 mnt_ns = to_mnt_ns(get_proc_ns(dentry->d_inode)); 1964 return current->nsproxy->mnt_ns->seq >= mnt_ns->seq; 1965 } 1966 1967 struct mount *copy_tree(struct mount *mnt, struct dentry *dentry, 1968 int flag) 1969 { 1970 struct mount *res, *p, *q, *r, *parent; 1971 1972 if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(mnt)) 1973 return ERR_PTR(-EINVAL); 1974 1975 if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry)) 1976 return ERR_PTR(-EINVAL); 1977 1978 res = q = clone_mnt(mnt, dentry, flag); 1979 if (IS_ERR(q)) 1980 return q; 1981 1982 q->mnt_mountpoint = mnt->mnt_mountpoint; 1983 1984 p = mnt; 1985 list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) { 1986 struct mount *s; 1987 if (!is_subdir(r->mnt_mountpoint, dentry)) 1988 continue; 1989 1990 for (s = r; s; s = next_mnt(s, r)) { 1991 if (!(flag & CL_COPY_UNBINDABLE) && 1992 IS_MNT_UNBINDABLE(s)) { 1993 if (s->mnt.mnt_flags & MNT_LOCKED) { 1994 /* Both unbindable and locked. */ 1995 q = ERR_PTR(-EPERM); 1996 goto out; 1997 } else { 1998 s = skip_mnt_tree(s); 1999 continue; 2000 } 2001 } 2002 if (!(flag & CL_COPY_MNT_NS_FILE) && 2003 is_mnt_ns_file(s->mnt.mnt_root)) { 2004 s = skip_mnt_tree(s); 2005 continue; 2006 } 2007 while (p != s->mnt_parent) { 2008 p = p->mnt_parent; 2009 q = q->mnt_parent; 2010 } 2011 p = s; 2012 parent = q; 2013 q = clone_mnt(p, p->mnt.mnt_root, flag); 2014 if (IS_ERR(q)) 2015 goto out; 2016 lock_mount_hash(); 2017 list_add_tail(&q->mnt_list, &res->mnt_list); 2018 attach_mnt(q, parent, p->mnt_mp, false); 2019 unlock_mount_hash(); 2020 } 2021 } 2022 return res; 2023 out: 2024 if (res) { 2025 lock_mount_hash(); 2026 umount_tree(res, UMOUNT_SYNC); 2027 unlock_mount_hash(); 2028 } 2029 return q; 2030 } 2031 2032 /* Caller should check returned pointer for errors */ 2033 2034 struct vfsmount *collect_mounts(const struct path *path) 2035 { 2036 struct mount *tree; 2037 namespace_lock(); 2038 if (!check_mnt(real_mount(path->mnt))) 2039 tree = ERR_PTR(-EINVAL); 2040 else 2041 tree = copy_tree(real_mount(path->mnt), path->dentry, 2042 CL_COPY_ALL | CL_PRIVATE); 2043 namespace_unlock(); 2044 if (IS_ERR(tree)) 2045 return ERR_CAST(tree); 2046 return &tree->mnt; 2047 } 2048 2049 static void free_mnt_ns(struct mnt_namespace *); 2050 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *, bool); 2051 2052 void dissolve_on_fput(struct vfsmount *mnt) 2053 { 2054 struct mnt_namespace *ns; 2055 namespace_lock(); 2056 lock_mount_hash(); 2057 ns = real_mount(mnt)->mnt_ns; 2058 if (ns) { 2059 if (is_anon_ns(ns)) 2060 umount_tree(real_mount(mnt), UMOUNT_CONNECTED); 2061 else 2062 ns = NULL; 2063 } 2064 unlock_mount_hash(); 2065 namespace_unlock(); 2066 if (ns) 2067 free_mnt_ns(ns); 2068 } 2069 2070 void drop_collected_mounts(struct vfsmount *mnt) 2071 { 2072 namespace_lock(); 2073 lock_mount_hash(); 2074 umount_tree(real_mount(mnt), 0); 2075 unlock_mount_hash(); 2076 namespace_unlock(); 2077 } 2078 2079 static bool has_locked_children(struct mount *mnt, struct dentry *dentry) 2080 { 2081 struct mount *child; 2082 2083 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) { 2084 if (!is_subdir(child->mnt_mountpoint, dentry)) 2085 continue; 2086 2087 if (child->mnt.mnt_flags & MNT_LOCKED) 2088 return true; 2089 } 2090 return false; 2091 } 2092 2093 /** 2094 * clone_private_mount - create a private clone of a path 2095 * @path: path to clone 2096 * 2097 * This creates a new vfsmount, which will be the clone of @path. The new mount 2098 * will not be attached anywhere in the namespace and will be private (i.e. 2099 * changes to the originating mount won't be propagated into this). 2100 * 2101 * Release with mntput(). 2102 */ 2103 struct vfsmount *clone_private_mount(const struct path *path) 2104 { 2105 struct mount *old_mnt = real_mount(path->mnt); 2106 struct mount *new_mnt; 2107 2108 down_read(&namespace_sem); 2109 if (IS_MNT_UNBINDABLE(old_mnt)) 2110 goto invalid; 2111 2112 if (!check_mnt(old_mnt)) 2113 goto invalid; 2114 2115 if (has_locked_children(old_mnt, path->dentry)) 2116 goto invalid; 2117 2118 new_mnt = clone_mnt(old_mnt, path->dentry, CL_PRIVATE); 2119 up_read(&namespace_sem); 2120 2121 if (IS_ERR(new_mnt)) 2122 return ERR_CAST(new_mnt); 2123 2124 /* Longterm mount to be removed by kern_unmount*() */ 2125 new_mnt->mnt_ns = MNT_NS_INTERNAL; 2126 2127 return &new_mnt->mnt; 2128 2129 invalid: 2130 up_read(&namespace_sem); 2131 return ERR_PTR(-EINVAL); 2132 } 2133 EXPORT_SYMBOL_GPL(clone_private_mount); 2134 2135 int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg, 2136 struct vfsmount *root) 2137 { 2138 struct mount *mnt; 2139 int res = f(root, arg); 2140 if (res) 2141 return res; 2142 list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) { 2143 res = f(&mnt->mnt, arg); 2144 if (res) 2145 return res; 2146 } 2147 return 0; 2148 } 2149 2150 static void lock_mnt_tree(struct mount *mnt) 2151 { 2152 struct mount *p; 2153 2154 for (p = mnt; p; p = next_mnt(p, mnt)) { 2155 int flags = p->mnt.mnt_flags; 2156 /* Don't allow unprivileged users to change mount flags */ 2157 flags |= MNT_LOCK_ATIME; 2158 2159 if (flags & MNT_READONLY) 2160 flags |= MNT_LOCK_READONLY; 2161 2162 if (flags & MNT_NODEV) 2163 flags |= MNT_LOCK_NODEV; 2164 2165 if (flags & MNT_NOSUID) 2166 flags |= MNT_LOCK_NOSUID; 2167 2168 if (flags & MNT_NOEXEC) 2169 flags |= MNT_LOCK_NOEXEC; 2170 /* Don't allow unprivileged users to reveal what is under a mount */ 2171 if (list_empty(&p->mnt_expire)) 2172 flags |= MNT_LOCKED; 2173 p->mnt.mnt_flags = flags; 2174 } 2175 } 2176 2177 static void cleanup_group_ids(struct mount *mnt, struct mount *end) 2178 { 2179 struct mount *p; 2180 2181 for (p = mnt; p != end; p = next_mnt(p, mnt)) { 2182 if (p->mnt_group_id && !IS_MNT_SHARED(p)) 2183 mnt_release_group_id(p); 2184 } 2185 } 2186 2187 static int invent_group_ids(struct mount *mnt, bool recurse) 2188 { 2189 struct mount *p; 2190 2191 for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) { 2192 if (!p->mnt_group_id && !IS_MNT_SHARED(p)) { 2193 int err = mnt_alloc_group_id(p); 2194 if (err) { 2195 cleanup_group_ids(mnt, p); 2196 return err; 2197 } 2198 } 2199 } 2200 2201 return 0; 2202 } 2203 2204 int count_mounts(struct mnt_namespace *ns, struct mount *mnt) 2205 { 2206 unsigned int max = READ_ONCE(sysctl_mount_max); 2207 unsigned int mounts = 0; 2208 struct mount *p; 2209 2210 if (ns->mounts >= max) 2211 return -ENOSPC; 2212 max -= ns->mounts; 2213 if (ns->pending_mounts >= max) 2214 return -ENOSPC; 2215 max -= ns->pending_mounts; 2216 2217 for (p = mnt; p; p = next_mnt(p, mnt)) 2218 mounts++; 2219 2220 if (mounts > max) 2221 return -ENOSPC; 2222 2223 ns->pending_mounts += mounts; 2224 return 0; 2225 } 2226 2227 enum mnt_tree_flags_t { 2228 MNT_TREE_MOVE = BIT(0), 2229 MNT_TREE_BENEATH = BIT(1), 2230 }; 2231 2232 /** 2233 * attach_recursive_mnt - attach a source mount tree 2234 * @source_mnt: mount tree to be attached 2235 * @top_mnt: mount that @source_mnt will be mounted on or mounted beneath 2236 * @dest_mp: the mountpoint @source_mnt will be mounted at 2237 * @flags: modify how @source_mnt is supposed to be attached 2238 * 2239 * NOTE: in the table below explains the semantics when a source mount 2240 * of a given type is attached to a destination mount of a given type. 2241 * --------------------------------------------------------------------------- 2242 * | BIND MOUNT OPERATION | 2243 * |************************************************************************** 2244 * | source-->| shared | private | slave | unbindable | 2245 * | dest | | | | | 2246 * | | | | | | | 2247 * | v | | | | | 2248 * |************************************************************************** 2249 * | shared | shared (++) | shared (+) | shared(+++)| invalid | 2250 * | | | | | | 2251 * |non-shared| shared (+) | private | slave (*) | invalid | 2252 * *************************************************************************** 2253 * A bind operation clones the source mount and mounts the clone on the 2254 * destination mount. 2255 * 2256 * (++) the cloned mount is propagated to all the mounts in the propagation 2257 * tree of the destination mount and the cloned mount is added to 2258 * the peer group of the source mount. 2259 * (+) the cloned mount is created under the destination mount and is marked 2260 * as shared. The cloned mount is added to the peer group of the source 2261 * mount. 2262 * (+++) the mount is propagated to all the mounts in the propagation tree 2263 * of the destination mount and the cloned mount is made slave 2264 * of the same master as that of the source mount. The cloned mount 2265 * is marked as 'shared and slave'. 2266 * (*) the cloned mount is made a slave of the same master as that of the 2267 * source mount. 2268 * 2269 * --------------------------------------------------------------------------- 2270 * | MOVE MOUNT OPERATION | 2271 * |************************************************************************** 2272 * | source-->| shared | private | slave | unbindable | 2273 * | dest | | | | | 2274 * | | | | | | | 2275 * | v | | | | | 2276 * |************************************************************************** 2277 * | shared | shared (+) | shared (+) | shared(+++) | invalid | 2278 * | | | | | | 2279 * |non-shared| shared (+*) | private | slave (*) | unbindable | 2280 * *************************************************************************** 2281 * 2282 * (+) the mount is moved to the destination. And is then propagated to 2283 * all the mounts in the propagation tree of the destination mount. 2284 * (+*) the mount is moved to the destination. 2285 * (+++) the mount is moved to the destination and is then propagated to 2286 * all the mounts belonging to the destination mount's propagation tree. 2287 * the mount is marked as 'shared and slave'. 2288 * (*) the mount continues to be a slave at the new location. 2289 * 2290 * if the source mount is a tree, the operations explained above is 2291 * applied to each mount in the tree. 2292 * Must be called without spinlocks held, since this function can sleep 2293 * in allocations. 2294 * 2295 * Context: The function expects namespace_lock() to be held. 2296 * Return: If @source_mnt was successfully attached 0 is returned. 2297 * Otherwise a negative error code is returned. 2298 */ 2299 static int attach_recursive_mnt(struct mount *source_mnt, 2300 struct mount *top_mnt, 2301 struct mountpoint *dest_mp, 2302 enum mnt_tree_flags_t flags) 2303 { 2304 struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns; 2305 HLIST_HEAD(tree_list); 2306 struct mnt_namespace *ns = top_mnt->mnt_ns; 2307 struct mountpoint *smp; 2308 struct mount *child, *dest_mnt, *p; 2309 struct hlist_node *n; 2310 int err = 0; 2311 bool moving = flags & MNT_TREE_MOVE, beneath = flags & MNT_TREE_BENEATH; 2312 2313 /* 2314 * Preallocate a mountpoint in case the new mounts need to be 2315 * mounted beneath mounts on the same mountpoint. 2316 */ 2317 smp = get_mountpoint(source_mnt->mnt.mnt_root); 2318 if (IS_ERR(smp)) 2319 return PTR_ERR(smp); 2320 2321 /* Is there space to add these mounts to the mount namespace? */ 2322 if (!moving) { 2323 err = count_mounts(ns, source_mnt); 2324 if (err) 2325 goto out; 2326 } 2327 2328 if (beneath) 2329 dest_mnt = top_mnt->mnt_parent; 2330 else 2331 dest_mnt = top_mnt; 2332 2333 if (IS_MNT_SHARED(dest_mnt)) { 2334 err = invent_group_ids(source_mnt, true); 2335 if (err) 2336 goto out; 2337 err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list); 2338 } 2339 lock_mount_hash(); 2340 if (err) 2341 goto out_cleanup_ids; 2342 2343 if (IS_MNT_SHARED(dest_mnt)) { 2344 for (p = source_mnt; p; p = next_mnt(p, source_mnt)) 2345 set_mnt_shared(p); 2346 } 2347 2348 if (moving) { 2349 if (beneath) 2350 dest_mp = smp; 2351 unhash_mnt(source_mnt); 2352 attach_mnt(source_mnt, top_mnt, dest_mp, beneath); 2353 touch_mnt_namespace(source_mnt->mnt_ns); 2354 } else { 2355 if (source_mnt->mnt_ns) { 2356 /* move from anon - the caller will destroy */ 2357 list_del_init(&source_mnt->mnt_ns->list); 2358 } 2359 if (beneath) 2360 mnt_set_mountpoint_beneath(source_mnt, top_mnt, smp); 2361 else 2362 mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt); 2363 commit_tree(source_mnt); 2364 } 2365 2366 hlist_for_each_entry_safe(child, n, &tree_list, mnt_hash) { 2367 struct mount *q; 2368 hlist_del_init(&child->mnt_hash); 2369 q = __lookup_mnt(&child->mnt_parent->mnt, 2370 child->mnt_mountpoint); 2371 if (q) 2372 mnt_change_mountpoint(child, smp, q); 2373 /* Notice when we are propagating across user namespaces */ 2374 if (child->mnt_parent->mnt_ns->user_ns != user_ns) 2375 lock_mnt_tree(child); 2376 child->mnt.mnt_flags &= ~MNT_LOCKED; 2377 commit_tree(child); 2378 } 2379 put_mountpoint(smp); 2380 unlock_mount_hash(); 2381 2382 return 0; 2383 2384 out_cleanup_ids: 2385 while (!hlist_empty(&tree_list)) { 2386 child = hlist_entry(tree_list.first, struct mount, mnt_hash); 2387 child->mnt_parent->mnt_ns->pending_mounts = 0; 2388 umount_tree(child, UMOUNT_SYNC); 2389 } 2390 unlock_mount_hash(); 2391 cleanup_group_ids(source_mnt, NULL); 2392 out: 2393 ns->pending_mounts = 0; 2394 2395 read_seqlock_excl(&mount_lock); 2396 put_mountpoint(smp); 2397 read_sequnlock_excl(&mount_lock); 2398 2399 return err; 2400 } 2401 2402 /** 2403 * do_lock_mount - lock mount and mountpoint 2404 * @path: target path 2405 * @beneath: whether the intention is to mount beneath @path 2406 * 2407 * Follow the mount stack on @path until the top mount @mnt is found. If 2408 * the initial @path->{mnt,dentry} is a mountpoint lookup the first 2409 * mount stacked on top of it. Then simply follow @{mnt,mnt->mnt_root} 2410 * until nothing is stacked on top of it anymore. 2411 * 2412 * Acquire the inode_lock() on the top mount's ->mnt_root to protect 2413 * against concurrent removal of the new mountpoint from another mount 2414 * namespace. 2415 * 2416 * If @beneath is requested, acquire inode_lock() on @mnt's mountpoint 2417 * @mp on @mnt->mnt_parent must be acquired. This protects against a 2418 * concurrent unlink of @mp->mnt_dentry from another mount namespace 2419 * where @mnt doesn't have a child mount mounted @mp. A concurrent 2420 * removal of @mnt->mnt_root doesn't matter as nothing will be mounted 2421 * on top of it for @beneath. 2422 * 2423 * In addition, @beneath needs to make sure that @mnt hasn't been 2424 * unmounted or moved from its current mountpoint in between dropping 2425 * @mount_lock and acquiring @namespace_sem. For the !@beneath case @mnt 2426 * being unmounted would be detected later by e.g., calling 2427 * check_mnt(mnt) in the function it's called from. For the @beneath 2428 * case however, it's useful to detect it directly in do_lock_mount(). 2429 * If @mnt hasn't been unmounted then @mnt->mnt_mountpoint still points 2430 * to @mnt->mnt_mp->m_dentry. But if @mnt has been unmounted it will 2431 * point to @mnt->mnt_root and @mnt->mnt_mp will be NULL. 2432 * 2433 * Return: Either the target mountpoint on the top mount or the top 2434 * mount's mountpoint. 2435 */ 2436 static struct mountpoint *do_lock_mount(struct path *path, bool beneath) 2437 { 2438 struct vfsmount *mnt = path->mnt; 2439 struct dentry *dentry; 2440 struct mountpoint *mp = ERR_PTR(-ENOENT); 2441 2442 for (;;) { 2443 struct mount *m; 2444 2445 if (beneath) { 2446 m = real_mount(mnt); 2447 read_seqlock_excl(&mount_lock); 2448 dentry = dget(m->mnt_mountpoint); 2449 read_sequnlock_excl(&mount_lock); 2450 } else { 2451 dentry = path->dentry; 2452 } 2453 2454 inode_lock(dentry->d_inode); 2455 if (unlikely(cant_mount(dentry))) { 2456 inode_unlock(dentry->d_inode); 2457 goto out; 2458 } 2459 2460 namespace_lock(); 2461 2462 if (beneath && (!is_mounted(mnt) || m->mnt_mountpoint != dentry)) { 2463 namespace_unlock(); 2464 inode_unlock(dentry->d_inode); 2465 goto out; 2466 } 2467 2468 mnt = lookup_mnt(path); 2469 if (likely(!mnt)) 2470 break; 2471 2472 namespace_unlock(); 2473 inode_unlock(dentry->d_inode); 2474 if (beneath) 2475 dput(dentry); 2476 path_put(path); 2477 path->mnt = mnt; 2478 path->dentry = dget(mnt->mnt_root); 2479 } 2480 2481 mp = get_mountpoint(dentry); 2482 if (IS_ERR(mp)) { 2483 namespace_unlock(); 2484 inode_unlock(dentry->d_inode); 2485 } 2486 2487 out: 2488 if (beneath) 2489 dput(dentry); 2490 2491 return mp; 2492 } 2493 2494 static inline struct mountpoint *lock_mount(struct path *path) 2495 { 2496 return do_lock_mount(path, false); 2497 } 2498 2499 static void unlock_mount(struct mountpoint *where) 2500 { 2501 struct dentry *dentry = where->m_dentry; 2502 2503 read_seqlock_excl(&mount_lock); 2504 put_mountpoint(where); 2505 read_sequnlock_excl(&mount_lock); 2506 2507 namespace_unlock(); 2508 inode_unlock(dentry->d_inode); 2509 } 2510 2511 static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp) 2512 { 2513 if (mnt->mnt.mnt_sb->s_flags & SB_NOUSER) 2514 return -EINVAL; 2515 2516 if (d_is_dir(mp->m_dentry) != 2517 d_is_dir(mnt->mnt.mnt_root)) 2518 return -ENOTDIR; 2519 2520 return attach_recursive_mnt(mnt, p, mp, 0); 2521 } 2522 2523 /* 2524 * Sanity check the flags to change_mnt_propagation. 2525 */ 2526 2527 static int flags_to_propagation_type(int ms_flags) 2528 { 2529 int type = ms_flags & ~(MS_REC | MS_SILENT); 2530 2531 /* Fail if any non-propagation flags are set */ 2532 if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE)) 2533 return 0; 2534 /* Only one propagation flag should be set */ 2535 if (!is_power_of_2(type)) 2536 return 0; 2537 return type; 2538 } 2539 2540 /* 2541 * recursively change the type of the mountpoint. 2542 */ 2543 static int do_change_type(struct path *path, int ms_flags) 2544 { 2545 struct mount *m; 2546 struct mount *mnt = real_mount(path->mnt); 2547 int recurse = ms_flags & MS_REC; 2548 int type; 2549 int err = 0; 2550 2551 if (!path_mounted(path)) 2552 return -EINVAL; 2553 2554 type = flags_to_propagation_type(ms_flags); 2555 if (!type) 2556 return -EINVAL; 2557 2558 namespace_lock(); 2559 if (type == MS_SHARED) { 2560 err = invent_group_ids(mnt, recurse); 2561 if (err) 2562 goto out_unlock; 2563 } 2564 2565 lock_mount_hash(); 2566 for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL)) 2567 change_mnt_propagation(m, type); 2568 unlock_mount_hash(); 2569 2570 out_unlock: 2571 namespace_unlock(); 2572 return err; 2573 } 2574 2575 static struct mount *__do_loopback(struct path *old_path, int recurse) 2576 { 2577 struct mount *mnt = ERR_PTR(-EINVAL), *old = real_mount(old_path->mnt); 2578 2579 if (IS_MNT_UNBINDABLE(old)) 2580 return mnt; 2581 2582 if (!check_mnt(old) && old_path->dentry->d_op != &ns_dentry_operations) 2583 return mnt; 2584 2585 if (!recurse && has_locked_children(old, old_path->dentry)) 2586 return mnt; 2587 2588 if (recurse) 2589 mnt = copy_tree(old, old_path->dentry, CL_COPY_MNT_NS_FILE); 2590 else 2591 mnt = clone_mnt(old, old_path->dentry, 0); 2592 2593 if (!IS_ERR(mnt)) 2594 mnt->mnt.mnt_flags &= ~MNT_LOCKED; 2595 2596 return mnt; 2597 } 2598 2599 /* 2600 * do loopback mount. 2601 */ 2602 static int do_loopback(struct path *path, const char *old_name, 2603 int recurse) 2604 { 2605 struct path old_path; 2606 struct mount *mnt = NULL, *parent; 2607 struct mountpoint *mp; 2608 int err; 2609 if (!old_name || !*old_name) 2610 return -EINVAL; 2611 err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path); 2612 if (err) 2613 return err; 2614 2615 err = -EINVAL; 2616 if (mnt_ns_loop(old_path.dentry)) 2617 goto out; 2618 2619 mp = lock_mount(path); 2620 if (IS_ERR(mp)) { 2621 err = PTR_ERR(mp); 2622 goto out; 2623 } 2624 2625 parent = real_mount(path->mnt); 2626 if (!check_mnt(parent)) 2627 goto out2; 2628 2629 mnt = __do_loopback(&old_path, recurse); 2630 if (IS_ERR(mnt)) { 2631 err = PTR_ERR(mnt); 2632 goto out2; 2633 } 2634 2635 err = graft_tree(mnt, parent, mp); 2636 if (err) { 2637 lock_mount_hash(); 2638 umount_tree(mnt, UMOUNT_SYNC); 2639 unlock_mount_hash(); 2640 } 2641 out2: 2642 unlock_mount(mp); 2643 out: 2644 path_put(&old_path); 2645 return err; 2646 } 2647 2648 static struct file *open_detached_copy(struct path *path, bool recursive) 2649 { 2650 struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns; 2651 struct mnt_namespace *ns = alloc_mnt_ns(user_ns, true); 2652 struct mount *mnt, *p; 2653 struct file *file; 2654 2655 if (IS_ERR(ns)) 2656 return ERR_CAST(ns); 2657 2658 namespace_lock(); 2659 mnt = __do_loopback(path, recursive); 2660 if (IS_ERR(mnt)) { 2661 namespace_unlock(); 2662 free_mnt_ns(ns); 2663 return ERR_CAST(mnt); 2664 } 2665 2666 lock_mount_hash(); 2667 for (p = mnt; p; p = next_mnt(p, mnt)) { 2668 p->mnt_ns = ns; 2669 ns->mounts++; 2670 } 2671 ns->root = mnt; 2672 list_add_tail(&ns->list, &mnt->mnt_list); 2673 mntget(&mnt->mnt); 2674 unlock_mount_hash(); 2675 namespace_unlock(); 2676 2677 mntput(path->mnt); 2678 path->mnt = &mnt->mnt; 2679 file = dentry_open(path, O_PATH, current_cred()); 2680 if (IS_ERR(file)) 2681 dissolve_on_fput(path->mnt); 2682 else 2683 file->f_mode |= FMODE_NEED_UNMOUNT; 2684 return file; 2685 } 2686 2687 SYSCALL_DEFINE3(open_tree, int, dfd, const char __user *, filename, unsigned, flags) 2688 { 2689 struct file *file; 2690 struct path path; 2691 int lookup_flags = LOOKUP_AUTOMOUNT | LOOKUP_FOLLOW; 2692 bool detached = flags & OPEN_TREE_CLONE; 2693 int error; 2694 int fd; 2695 2696 BUILD_BUG_ON(OPEN_TREE_CLOEXEC != O_CLOEXEC); 2697 2698 if (flags & ~(AT_EMPTY_PATH | AT_NO_AUTOMOUNT | AT_RECURSIVE | 2699 AT_SYMLINK_NOFOLLOW | OPEN_TREE_CLONE | 2700 OPEN_TREE_CLOEXEC)) 2701 return -EINVAL; 2702 2703 if ((flags & (AT_RECURSIVE | OPEN_TREE_CLONE)) == AT_RECURSIVE) 2704 return -EINVAL; 2705 2706 if (flags & AT_NO_AUTOMOUNT) 2707 lookup_flags &= ~LOOKUP_AUTOMOUNT; 2708 if (flags & AT_SYMLINK_NOFOLLOW) 2709 lookup_flags &= ~LOOKUP_FOLLOW; 2710 if (flags & AT_EMPTY_PATH) 2711 lookup_flags |= LOOKUP_EMPTY; 2712 2713 if (detached && !may_mount()) 2714 return -EPERM; 2715 2716 fd = get_unused_fd_flags(flags & O_CLOEXEC); 2717 if (fd < 0) 2718 return fd; 2719 2720 error = user_path_at(dfd, filename, lookup_flags, &path); 2721 if (unlikely(error)) { 2722 file = ERR_PTR(error); 2723 } else { 2724 if (detached) 2725 file = open_detached_copy(&path, flags & AT_RECURSIVE); 2726 else 2727 file = dentry_open(&path, O_PATH, current_cred()); 2728 path_put(&path); 2729 } 2730 if (IS_ERR(file)) { 2731 put_unused_fd(fd); 2732 return PTR_ERR(file); 2733 } 2734 fd_install(fd, file); 2735 return fd; 2736 } 2737 2738 /* 2739 * Don't allow locked mount flags to be cleared. 2740 * 2741 * No locks need to be held here while testing the various MNT_LOCK 2742 * flags because those flags can never be cleared once they are set. 2743 */ 2744 static bool can_change_locked_flags(struct mount *mnt, unsigned int mnt_flags) 2745 { 2746 unsigned int fl = mnt->mnt.mnt_flags; 2747 2748 if ((fl & MNT_LOCK_READONLY) && 2749 !(mnt_flags & MNT_READONLY)) 2750 return false; 2751 2752 if ((fl & MNT_LOCK_NODEV) && 2753 !(mnt_flags & MNT_NODEV)) 2754 return false; 2755 2756 if ((fl & MNT_LOCK_NOSUID) && 2757 !(mnt_flags & MNT_NOSUID)) 2758 return false; 2759 2760 if ((fl & MNT_LOCK_NOEXEC) && 2761 !(mnt_flags & MNT_NOEXEC)) 2762 return false; 2763 2764 if ((fl & MNT_LOCK_ATIME) && 2765 ((fl & MNT_ATIME_MASK) != (mnt_flags & MNT_ATIME_MASK))) 2766 return false; 2767 2768 return true; 2769 } 2770 2771 static int change_mount_ro_state(struct mount *mnt, unsigned int mnt_flags) 2772 { 2773 bool readonly_request = (mnt_flags & MNT_READONLY); 2774 2775 if (readonly_request == __mnt_is_readonly(&mnt->mnt)) 2776 return 0; 2777 2778 if (readonly_request) 2779 return mnt_make_readonly(mnt); 2780 2781 mnt->mnt.mnt_flags &= ~MNT_READONLY; 2782 return 0; 2783 } 2784 2785 static void set_mount_attributes(struct mount *mnt, unsigned int mnt_flags) 2786 { 2787 mnt_flags |= mnt->mnt.mnt_flags & ~MNT_USER_SETTABLE_MASK; 2788 mnt->mnt.mnt_flags = mnt_flags; 2789 touch_mnt_namespace(mnt->mnt_ns); 2790 } 2791 2792 static void mnt_warn_timestamp_expiry(struct path *mountpoint, struct vfsmount *mnt) 2793 { 2794 struct super_block *sb = mnt->mnt_sb; 2795 2796 if (!__mnt_is_readonly(mnt) && 2797 (!(sb->s_iflags & SB_I_TS_EXPIRY_WARNED)) && 2798 (ktime_get_real_seconds() + TIME_UPTIME_SEC_MAX > sb->s_time_max)) { 2799 char *buf, *mntpath; 2800 2801 buf = (char *)__get_free_page(GFP_KERNEL); 2802 if (buf) 2803 mntpath = d_path(mountpoint, buf, PAGE_SIZE); 2804 else 2805 mntpath = ERR_PTR(-ENOMEM); 2806 if (IS_ERR(mntpath)) 2807 mntpath = "(unknown)"; 2808 2809 pr_warn("%s filesystem being %s at %s supports timestamps until %ptTd (0x%llx)\n", 2810 sb->s_type->name, 2811 is_mounted(mnt) ? "remounted" : "mounted", 2812 mntpath, &sb->s_time_max, 2813 (unsigned long long)sb->s_time_max); 2814 2815 sb->s_iflags |= SB_I_TS_EXPIRY_WARNED; 2816 if (buf) 2817 free_page((unsigned long)buf); 2818 } 2819 } 2820 2821 /* 2822 * Handle reconfiguration of the mountpoint only without alteration of the 2823 * superblock it refers to. This is triggered by specifying MS_REMOUNT|MS_BIND 2824 * to mount(2). 2825 */ 2826 static int do_reconfigure_mnt(struct path *path, unsigned int mnt_flags) 2827 { 2828 struct super_block *sb = path->mnt->mnt_sb; 2829 struct mount *mnt = real_mount(path->mnt); 2830 int ret; 2831 2832 if (!check_mnt(mnt)) 2833 return -EINVAL; 2834 2835 if (!path_mounted(path)) 2836 return -EINVAL; 2837 2838 if (!can_change_locked_flags(mnt, mnt_flags)) 2839 return -EPERM; 2840 2841 /* 2842 * We're only checking whether the superblock is read-only not 2843 * changing it, so only take down_read(&sb->s_umount). 2844 */ 2845 down_read(&sb->s_umount); 2846 lock_mount_hash(); 2847 ret = change_mount_ro_state(mnt, mnt_flags); 2848 if (ret == 0) 2849 set_mount_attributes(mnt, mnt_flags); 2850 unlock_mount_hash(); 2851 up_read(&sb->s_umount); 2852 2853 mnt_warn_timestamp_expiry(path, &mnt->mnt); 2854 2855 return ret; 2856 } 2857 2858 /* 2859 * change filesystem flags. dir should be a physical root of filesystem. 2860 * If you've mounted a non-root directory somewhere and want to do remount 2861 * on it - tough luck. 2862 */ 2863 static int do_remount(struct path *path, int ms_flags, int sb_flags, 2864 int mnt_flags, void *data) 2865 { 2866 int err; 2867 struct super_block *sb = path->mnt->mnt_sb; 2868 struct mount *mnt = real_mount(path->mnt); 2869 struct fs_context *fc; 2870 2871 if (!check_mnt(mnt)) 2872 return -EINVAL; 2873 2874 if (!path_mounted(path)) 2875 return -EINVAL; 2876 2877 if (!can_change_locked_flags(mnt, mnt_flags)) 2878 return -EPERM; 2879 2880 fc = fs_context_for_reconfigure(path->dentry, sb_flags, MS_RMT_MASK); 2881 if (IS_ERR(fc)) 2882 return PTR_ERR(fc); 2883 2884 /* 2885 * Indicate to the filesystem that the remount request is coming 2886 * from the legacy mount system call. 2887 */ 2888 fc->oldapi = true; 2889 2890 err = parse_monolithic_mount_data(fc, data); 2891 if (!err) { 2892 down_write(&sb->s_umount); 2893 err = -EPERM; 2894 if (ns_capable(sb->s_user_ns, CAP_SYS_ADMIN)) { 2895 err = reconfigure_super(fc); 2896 if (!err) { 2897 lock_mount_hash(); 2898 set_mount_attributes(mnt, mnt_flags); 2899 unlock_mount_hash(); 2900 } 2901 } 2902 up_write(&sb->s_umount); 2903 } 2904 2905 mnt_warn_timestamp_expiry(path, &mnt->mnt); 2906 2907 put_fs_context(fc); 2908 return err; 2909 } 2910 2911 static inline int tree_contains_unbindable(struct mount *mnt) 2912 { 2913 struct mount *p; 2914 for (p = mnt; p; p = next_mnt(p, mnt)) { 2915 if (IS_MNT_UNBINDABLE(p)) 2916 return 1; 2917 } 2918 return 0; 2919 } 2920 2921 /* 2922 * Check that there aren't references to earlier/same mount namespaces in the 2923 * specified subtree. Such references can act as pins for mount namespaces 2924 * that aren't checked by the mount-cycle checking code, thereby allowing 2925 * cycles to be made. 2926 */ 2927 static bool check_for_nsfs_mounts(struct mount *subtree) 2928 { 2929 struct mount *p; 2930 bool ret = false; 2931 2932 lock_mount_hash(); 2933 for (p = subtree; p; p = next_mnt(p, subtree)) 2934 if (mnt_ns_loop(p->mnt.mnt_root)) 2935 goto out; 2936 2937 ret = true; 2938 out: 2939 unlock_mount_hash(); 2940 return ret; 2941 } 2942 2943 static int do_set_group(struct path *from_path, struct path *to_path) 2944 { 2945 struct mount *from, *to; 2946 int err; 2947 2948 from = real_mount(from_path->mnt); 2949 to = real_mount(to_path->mnt); 2950 2951 namespace_lock(); 2952 2953 err = -EINVAL; 2954 /* To and From must be mounted */ 2955 if (!is_mounted(&from->mnt)) 2956 goto out; 2957 if (!is_mounted(&to->mnt)) 2958 goto out; 2959 2960 err = -EPERM; 2961 /* We should be allowed to modify mount namespaces of both mounts */ 2962 if (!ns_capable(from->mnt_ns->user_ns, CAP_SYS_ADMIN)) 2963 goto out; 2964 if (!ns_capable(to->mnt_ns->user_ns, CAP_SYS_ADMIN)) 2965 goto out; 2966 2967 err = -EINVAL; 2968 /* To and From paths should be mount roots */ 2969 if (!path_mounted(from_path)) 2970 goto out; 2971 if (!path_mounted(to_path)) 2972 goto out; 2973 2974 /* Setting sharing groups is only allowed across same superblock */ 2975 if (from->mnt.mnt_sb != to->mnt.mnt_sb) 2976 goto out; 2977 2978 /* From mount root should be wider than To mount root */ 2979 if (!is_subdir(to->mnt.mnt_root, from->mnt.mnt_root)) 2980 goto out; 2981 2982 /* From mount should not have locked children in place of To's root */ 2983 if (has_locked_children(from, to->mnt.mnt_root)) 2984 goto out; 2985 2986 /* Setting sharing groups is only allowed on private mounts */ 2987 if (IS_MNT_SHARED(to) || IS_MNT_SLAVE(to)) 2988 goto out; 2989 2990 /* From should not be private */ 2991 if (!IS_MNT_SHARED(from) && !IS_MNT_SLAVE(from)) 2992 goto out; 2993 2994 if (IS_MNT_SLAVE(from)) { 2995 struct mount *m = from->mnt_master; 2996 2997 list_add(&to->mnt_slave, &m->mnt_slave_list); 2998 to->mnt_master = m; 2999 } 3000 3001 if (IS_MNT_SHARED(from)) { 3002 to->mnt_group_id = from->mnt_group_id; 3003 list_add(&to->mnt_share, &from->mnt_share); 3004 lock_mount_hash(); 3005 set_mnt_shared(to); 3006 unlock_mount_hash(); 3007 } 3008 3009 err = 0; 3010 out: 3011 namespace_unlock(); 3012 return err; 3013 } 3014 3015 /** 3016 * path_overmounted - check if path is overmounted 3017 * @path: path to check 3018 * 3019 * Check if path is overmounted, i.e., if there's a mount on top of 3020 * @path->mnt with @path->dentry as mountpoint. 3021 * 3022 * Context: This function expects namespace_lock() to be held. 3023 * Return: If path is overmounted true is returned, false if not. 3024 */ 3025 static inline bool path_overmounted(const struct path *path) 3026 { 3027 rcu_read_lock(); 3028 if (unlikely(__lookup_mnt(path->mnt, path->dentry))) { 3029 rcu_read_unlock(); 3030 return true; 3031 } 3032 rcu_read_unlock(); 3033 return false; 3034 } 3035 3036 /** 3037 * can_move_mount_beneath - check that we can mount beneath the top mount 3038 * @from: mount to mount beneath 3039 * @to: mount under which to mount 3040 * 3041 * - Make sure that @to->dentry is actually the root of a mount under 3042 * which we can mount another mount. 3043 * - Make sure that nothing can be mounted beneath the caller's current 3044 * root or the rootfs of the namespace. 3045 * - Make sure that the caller can unmount the topmost mount ensuring 3046 * that the caller could reveal the underlying mountpoint. 3047 * - Ensure that nothing has been mounted on top of @from before we 3048 * grabbed @namespace_sem to avoid creating pointless shadow mounts. 3049 * - Prevent mounting beneath a mount if the propagation relationship 3050 * between the source mount, parent mount, and top mount would lead to 3051 * nonsensical mount trees. 3052 * 3053 * Context: This function expects namespace_lock() to be held. 3054 * Return: On success 0, and on error a negative error code is returned. 3055 */ 3056 static int can_move_mount_beneath(const struct path *from, 3057 const struct path *to, 3058 const struct mountpoint *mp) 3059 { 3060 struct mount *mnt_from = real_mount(from->mnt), 3061 *mnt_to = real_mount(to->mnt), 3062 *parent_mnt_to = mnt_to->mnt_parent; 3063 3064 if (!mnt_has_parent(mnt_to)) 3065 return -EINVAL; 3066 3067 if (!path_mounted(to)) 3068 return -EINVAL; 3069 3070 if (IS_MNT_LOCKED(mnt_to)) 3071 return -EINVAL; 3072 3073 /* Avoid creating shadow mounts during mount propagation. */ 3074 if (path_overmounted(from)) 3075 return -EINVAL; 3076 3077 /* 3078 * Mounting beneath the rootfs only makes sense when the 3079 * semantics of pivot_root(".", ".") are used. 3080 */ 3081 if (&mnt_to->mnt == current->fs->root.mnt) 3082 return -EINVAL; 3083 if (parent_mnt_to == current->nsproxy->mnt_ns->root) 3084 return -EINVAL; 3085 3086 for (struct mount *p = mnt_from; mnt_has_parent(p); p = p->mnt_parent) 3087 if (p == mnt_to) 3088 return -EINVAL; 3089 3090 /* 3091 * If the parent mount propagates to the child mount this would 3092 * mean mounting @mnt_from on @mnt_to->mnt_parent and then 3093 * propagating a copy @c of @mnt_from on top of @mnt_to. This 3094 * defeats the whole purpose of mounting beneath another mount. 3095 */ 3096 if (propagation_would_overmount(parent_mnt_to, mnt_to, mp)) 3097 return -EINVAL; 3098 3099 /* 3100 * If @mnt_to->mnt_parent propagates to @mnt_from this would 3101 * mean propagating a copy @c of @mnt_from on top of @mnt_from. 3102 * Afterwards @mnt_from would be mounted on top of 3103 * @mnt_to->mnt_parent and @mnt_to would be unmounted from 3104 * @mnt->mnt_parent and remounted on @mnt_from. But since @c is 3105 * already mounted on @mnt_from, @mnt_to would ultimately be 3106 * remounted on top of @c. Afterwards, @mnt_from would be 3107 * covered by a copy @c of @mnt_from and @c would be covered by 3108 * @mnt_from itself. This defeats the whole purpose of mounting 3109 * @mnt_from beneath @mnt_to. 3110 */ 3111 if (propagation_would_overmount(parent_mnt_to, mnt_from, mp)) 3112 return -EINVAL; 3113 3114 return 0; 3115 } 3116 3117 static int do_move_mount(struct path *old_path, struct path *new_path, 3118 bool beneath) 3119 { 3120 struct mnt_namespace *ns; 3121 struct mount *p; 3122 struct mount *old; 3123 struct mount *parent; 3124 struct mountpoint *mp, *old_mp; 3125 int err; 3126 bool attached; 3127 enum mnt_tree_flags_t flags = 0; 3128 3129 mp = do_lock_mount(new_path, beneath); 3130 if (IS_ERR(mp)) 3131 return PTR_ERR(mp); 3132 3133 old = real_mount(old_path->mnt); 3134 p = real_mount(new_path->mnt); 3135 parent = old->mnt_parent; 3136 attached = mnt_has_parent(old); 3137 if (attached) 3138 flags |= MNT_TREE_MOVE; 3139 old_mp = old->mnt_mp; 3140 ns = old->mnt_ns; 3141 3142 err = -EINVAL; 3143 /* The mountpoint must be in our namespace. */ 3144 if (!check_mnt(p)) 3145 goto out; 3146 3147 /* The thing moved must be mounted... */ 3148 if (!is_mounted(&old->mnt)) 3149 goto out; 3150 3151 /* ... and either ours or the root of anon namespace */ 3152 if (!(attached ? check_mnt(old) : is_anon_ns(ns))) 3153 goto out; 3154 3155 if (old->mnt.mnt_flags & MNT_LOCKED) 3156 goto out; 3157 3158 if (!path_mounted(old_path)) 3159 goto out; 3160 3161 if (d_is_dir(new_path->dentry) != 3162 d_is_dir(old_path->dentry)) 3163 goto out; 3164 /* 3165 * Don't move a mount residing in a shared parent. 3166 */ 3167 if (attached && IS_MNT_SHARED(parent)) 3168 goto out; 3169 3170 if (beneath) { 3171 err = can_move_mount_beneath(old_path, new_path, mp); 3172 if (err) 3173 goto out; 3174 3175 err = -EINVAL; 3176 p = p->mnt_parent; 3177 flags |= MNT_TREE_BENEATH; 3178 } 3179 3180 /* 3181 * Don't move a mount tree containing unbindable mounts to a destination 3182 * mount which is shared. 3183 */ 3184 if (IS_MNT_SHARED(p) && tree_contains_unbindable(old)) 3185 goto out; 3186 err = -ELOOP; 3187 if (!check_for_nsfs_mounts(old)) 3188 goto out; 3189 for (; mnt_has_parent(p); p = p->mnt_parent) 3190 if (p == old) 3191 goto out; 3192 3193 err = attach_recursive_mnt(old, real_mount(new_path->mnt), mp, flags); 3194 if (err) 3195 goto out; 3196 3197 /* if the mount is moved, it should no longer be expire 3198 * automatically */ 3199 list_del_init(&old->mnt_expire); 3200 if (attached) 3201 put_mountpoint(old_mp); 3202 out: 3203 unlock_mount(mp); 3204 if (!err) { 3205 if (attached) 3206 mntput_no_expire(parent); 3207 else 3208 free_mnt_ns(ns); 3209 } 3210 return err; 3211 } 3212 3213 static int do_move_mount_old(struct path *path, const char *old_name) 3214 { 3215 struct path old_path; 3216 int err; 3217 3218 if (!old_name || !*old_name) 3219 return -EINVAL; 3220 3221 err = kern_path(old_name, LOOKUP_FOLLOW, &old_path); 3222 if (err) 3223 return err; 3224 3225 err = do_move_mount(&old_path, path, false); 3226 path_put(&old_path); 3227 return err; 3228 } 3229 3230 /* 3231 * add a mount into a namespace's mount tree 3232 */ 3233 static int do_add_mount(struct mount *newmnt, struct mountpoint *mp, 3234 const struct path *path, int mnt_flags) 3235 { 3236 struct mount *parent = real_mount(path->mnt); 3237 3238 mnt_flags &= ~MNT_INTERNAL_FLAGS; 3239 3240 if (unlikely(!check_mnt(parent))) { 3241 /* that's acceptable only for automounts done in private ns */ 3242 if (!(mnt_flags & MNT_SHRINKABLE)) 3243 return -EINVAL; 3244 /* ... and for those we'd better have mountpoint still alive */ 3245 if (!parent->mnt_ns) 3246 return -EINVAL; 3247 } 3248 3249 /* Refuse the same filesystem on the same mount point */ 3250 if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb && path_mounted(path)) 3251 return -EBUSY; 3252 3253 if (d_is_symlink(newmnt->mnt.mnt_root)) 3254 return -EINVAL; 3255 3256 newmnt->mnt.mnt_flags = mnt_flags; 3257 return graft_tree(newmnt, parent, mp); 3258 } 3259 3260 static bool mount_too_revealing(const struct super_block *sb, int *new_mnt_flags); 3261 3262 /* 3263 * Create a new mount using a superblock configuration and request it 3264 * be added to the namespace tree. 3265 */ 3266 static int do_new_mount_fc(struct fs_context *fc, struct path *mountpoint, 3267 unsigned int mnt_flags) 3268 { 3269 struct vfsmount *mnt; 3270 struct mountpoint *mp; 3271 struct super_block *sb = fc->root->d_sb; 3272 int error; 3273 3274 error = security_sb_kern_mount(sb); 3275 if (!error && mount_too_revealing(sb, &mnt_flags)) 3276 error = -EPERM; 3277 3278 if (unlikely(error)) { 3279 fc_drop_locked(fc); 3280 return error; 3281 } 3282 3283 up_write(&sb->s_umount); 3284 3285 mnt = vfs_create_mount(fc); 3286 if (IS_ERR(mnt)) 3287 return PTR_ERR(mnt); 3288 3289 mnt_warn_timestamp_expiry(mountpoint, mnt); 3290 3291 mp = lock_mount(mountpoint); 3292 if (IS_ERR(mp)) { 3293 mntput(mnt); 3294 return PTR_ERR(mp); 3295 } 3296 error = do_add_mount(real_mount(mnt), mp, mountpoint, mnt_flags); 3297 unlock_mount(mp); 3298 if (error < 0) 3299 mntput(mnt); 3300 return error; 3301 } 3302 3303 /* 3304 * create a new mount for userspace and request it to be added into the 3305 * namespace's tree 3306 */ 3307 static int do_new_mount(struct path *path, const char *fstype, int sb_flags, 3308 int mnt_flags, const char *name, void *data) 3309 { 3310 struct file_system_type *type; 3311 struct fs_context *fc; 3312 const char *subtype = NULL; 3313 int err = 0; 3314 3315 if (!fstype) 3316 return -EINVAL; 3317 3318 type = get_fs_type(fstype); 3319 if (!type) 3320 return -ENODEV; 3321 3322 if (type->fs_flags & FS_HAS_SUBTYPE) { 3323 subtype = strchr(fstype, '.'); 3324 if (subtype) { 3325 subtype++; 3326 if (!*subtype) { 3327 put_filesystem(type); 3328 return -EINVAL; 3329 } 3330 } 3331 } 3332 3333 fc = fs_context_for_mount(type, sb_flags); 3334 put_filesystem(type); 3335 if (IS_ERR(fc)) 3336 return PTR_ERR(fc); 3337 3338 /* 3339 * Indicate to the filesystem that the mount request is coming 3340 * from the legacy mount system call. 3341 */ 3342 fc->oldapi = true; 3343 3344 if (subtype) 3345 err = vfs_parse_fs_string(fc, "subtype", 3346 subtype, strlen(subtype)); 3347 if (!err && name) 3348 err = vfs_parse_fs_string(fc, "source", name, strlen(name)); 3349 if (!err) 3350 err = parse_monolithic_mount_data(fc, data); 3351 if (!err && !mount_capable(fc)) 3352 err = -EPERM; 3353 if (!err) 3354 err = vfs_get_tree(fc); 3355 if (!err) 3356 err = do_new_mount_fc(fc, path, mnt_flags); 3357 3358 put_fs_context(fc); 3359 return err; 3360 } 3361 3362 int finish_automount(struct vfsmount *m, const struct path *path) 3363 { 3364 struct dentry *dentry = path->dentry; 3365 struct mountpoint *mp; 3366 struct mount *mnt; 3367 int err; 3368 3369 if (!m) 3370 return 0; 3371 if (IS_ERR(m)) 3372 return PTR_ERR(m); 3373 3374 mnt = real_mount(m); 3375 /* The new mount record should have at least 2 refs to prevent it being 3376 * expired before we get a chance to add it 3377 */ 3378 BUG_ON(mnt_get_count(mnt) < 2); 3379 3380 if (m->mnt_sb == path->mnt->mnt_sb && 3381 m->mnt_root == dentry) { 3382 err = -ELOOP; 3383 goto discard; 3384 } 3385 3386 /* 3387 * we don't want to use lock_mount() - in this case finding something 3388 * that overmounts our mountpoint to be means "quitely drop what we've 3389 * got", not "try to mount it on top". 3390 */ 3391 inode_lock(dentry->d_inode); 3392 namespace_lock(); 3393 if (unlikely(cant_mount(dentry))) { 3394 err = -ENOENT; 3395 goto discard_locked; 3396 } 3397 if (path_overmounted(path)) { 3398 err = 0; 3399 goto discard_locked; 3400 } 3401 mp = get_mountpoint(dentry); 3402 if (IS_ERR(mp)) { 3403 err = PTR_ERR(mp); 3404 goto discard_locked; 3405 } 3406 3407 err = do_add_mount(mnt, mp, path, path->mnt->mnt_flags | MNT_SHRINKABLE); 3408 unlock_mount(mp); 3409 if (unlikely(err)) 3410 goto discard; 3411 mntput(m); 3412 return 0; 3413 3414 discard_locked: 3415 namespace_unlock(); 3416 inode_unlock(dentry->d_inode); 3417 discard: 3418 /* remove m from any expiration list it may be on */ 3419 if (!list_empty(&mnt->mnt_expire)) { 3420 namespace_lock(); 3421 list_del_init(&mnt->mnt_expire); 3422 namespace_unlock(); 3423 } 3424 mntput(m); 3425 mntput(m); 3426 return err; 3427 } 3428 3429 /** 3430 * mnt_set_expiry - Put a mount on an expiration list 3431 * @mnt: The mount to list. 3432 * @expiry_list: The list to add the mount to. 3433 */ 3434 void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list) 3435 { 3436 namespace_lock(); 3437 3438 list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list); 3439 3440 namespace_unlock(); 3441 } 3442 EXPORT_SYMBOL(mnt_set_expiry); 3443 3444 /* 3445 * process a list of expirable mountpoints with the intent of discarding any 3446 * mountpoints that aren't in use and haven't been touched since last we came 3447 * here 3448 */ 3449 void mark_mounts_for_expiry(struct list_head *mounts) 3450 { 3451 struct mount *mnt, *next; 3452 LIST_HEAD(graveyard); 3453 3454 if (list_empty(mounts)) 3455 return; 3456 3457 namespace_lock(); 3458 lock_mount_hash(); 3459 3460 /* extract from the expiration list every vfsmount that matches the 3461 * following criteria: 3462 * - only referenced by its parent vfsmount 3463 * - still marked for expiry (marked on the last call here; marks are 3464 * cleared by mntput()) 3465 */ 3466 list_for_each_entry_safe(mnt, next, mounts, mnt_expire) { 3467 if (!xchg(&mnt->mnt_expiry_mark, 1) || 3468 propagate_mount_busy(mnt, 1)) 3469 continue; 3470 list_move(&mnt->mnt_expire, &graveyard); 3471 } 3472 while (!list_empty(&graveyard)) { 3473 mnt = list_first_entry(&graveyard, struct mount, mnt_expire); 3474 touch_mnt_namespace(mnt->mnt_ns); 3475 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC); 3476 } 3477 unlock_mount_hash(); 3478 namespace_unlock(); 3479 } 3480 3481 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry); 3482 3483 /* 3484 * Ripoff of 'select_parent()' 3485 * 3486 * search the list of submounts for a given mountpoint, and move any 3487 * shrinkable submounts to the 'graveyard' list. 3488 */ 3489 static int select_submounts(struct mount *parent, struct list_head *graveyard) 3490 { 3491 struct mount *this_parent = parent; 3492 struct list_head *next; 3493 int found = 0; 3494 3495 repeat: 3496 next = this_parent->mnt_mounts.next; 3497 resume: 3498 while (next != &this_parent->mnt_mounts) { 3499 struct list_head *tmp = next; 3500 struct mount *mnt = list_entry(tmp, struct mount, mnt_child); 3501 3502 next = tmp->next; 3503 if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE)) 3504 continue; 3505 /* 3506 * Descend a level if the d_mounts list is non-empty. 3507 */ 3508 if (!list_empty(&mnt->mnt_mounts)) { 3509 this_parent = mnt; 3510 goto repeat; 3511 } 3512 3513 if (!propagate_mount_busy(mnt, 1)) { 3514 list_move_tail(&mnt->mnt_expire, graveyard); 3515 found++; 3516 } 3517 } 3518 /* 3519 * All done at this level ... ascend and resume the search 3520 */ 3521 if (this_parent != parent) { 3522 next = this_parent->mnt_child.next; 3523 this_parent = this_parent->mnt_parent; 3524 goto resume; 3525 } 3526 return found; 3527 } 3528 3529 /* 3530 * process a list of expirable mountpoints with the intent of discarding any 3531 * submounts of a specific parent mountpoint 3532 * 3533 * mount_lock must be held for write 3534 */ 3535 static void shrink_submounts(struct mount *mnt) 3536 { 3537 LIST_HEAD(graveyard); 3538 struct mount *m; 3539 3540 /* extract submounts of 'mountpoint' from the expiration list */ 3541 while (select_submounts(mnt, &graveyard)) { 3542 while (!list_empty(&graveyard)) { 3543 m = list_first_entry(&graveyard, struct mount, 3544 mnt_expire); 3545 touch_mnt_namespace(m->mnt_ns); 3546 umount_tree(m, UMOUNT_PROPAGATE|UMOUNT_SYNC); 3547 } 3548 } 3549 } 3550 3551 static void *copy_mount_options(const void __user * data) 3552 { 3553 char *copy; 3554 unsigned left, offset; 3555 3556 if (!data) 3557 return NULL; 3558 3559 copy = kmalloc(PAGE_SIZE, GFP_KERNEL); 3560 if (!copy) 3561 return ERR_PTR(-ENOMEM); 3562 3563 left = copy_from_user(copy, data, PAGE_SIZE); 3564 3565 /* 3566 * Not all architectures have an exact copy_from_user(). Resort to 3567 * byte at a time. 3568 */ 3569 offset = PAGE_SIZE - left; 3570 while (left) { 3571 char c; 3572 if (get_user(c, (const char __user *)data + offset)) 3573 break; 3574 copy[offset] = c; 3575 left--; 3576 offset++; 3577 } 3578 3579 if (left == PAGE_SIZE) { 3580 kfree(copy); 3581 return ERR_PTR(-EFAULT); 3582 } 3583 3584 return copy; 3585 } 3586 3587 static char *copy_mount_string(const void __user *data) 3588 { 3589 return data ? strndup_user(data, PATH_MAX) : NULL; 3590 } 3591 3592 /* 3593 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to 3594 * be given to the mount() call (ie: read-only, no-dev, no-suid etc). 3595 * 3596 * data is a (void *) that can point to any structure up to 3597 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent 3598 * information (or be NULL). 3599 * 3600 * Pre-0.97 versions of mount() didn't have a flags word. 3601 * When the flags word was introduced its top half was required 3602 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9. 3603 * Therefore, if this magic number is present, it carries no information 3604 * and must be discarded. 3605 */ 3606 int path_mount(const char *dev_name, struct path *path, 3607 const char *type_page, unsigned long flags, void *data_page) 3608 { 3609 unsigned int mnt_flags = 0, sb_flags; 3610 int ret; 3611 3612 /* Discard magic */ 3613 if ((flags & MS_MGC_MSK) == MS_MGC_VAL) 3614 flags &= ~MS_MGC_MSK; 3615 3616 /* Basic sanity checks */ 3617 if (data_page) 3618 ((char *)data_page)[PAGE_SIZE - 1] = 0; 3619 3620 if (flags & MS_NOUSER) 3621 return -EINVAL; 3622 3623 ret = security_sb_mount(dev_name, path, type_page, flags, data_page); 3624 if (ret) 3625 return ret; 3626 if (!may_mount()) 3627 return -EPERM; 3628 if (flags & SB_MANDLOCK) 3629 warn_mandlock(); 3630 3631 /* Default to relatime unless overriden */ 3632 if (!(flags & MS_NOATIME)) 3633 mnt_flags |= MNT_RELATIME; 3634 3635 /* Separate the per-mountpoint flags */ 3636 if (flags & MS_NOSUID) 3637 mnt_flags |= MNT_NOSUID; 3638 if (flags & MS_NODEV) 3639 mnt_flags |= MNT_NODEV; 3640 if (flags & MS_NOEXEC) 3641 mnt_flags |= MNT_NOEXEC; 3642 if (flags & MS_NOATIME) 3643 mnt_flags |= MNT_NOATIME; 3644 if (flags & MS_NODIRATIME) 3645 mnt_flags |= MNT_NODIRATIME; 3646 if (flags & MS_STRICTATIME) 3647 mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME); 3648 if (flags & MS_RDONLY) 3649 mnt_flags |= MNT_READONLY; 3650 if (flags & MS_NOSYMFOLLOW) 3651 mnt_flags |= MNT_NOSYMFOLLOW; 3652 3653 /* The default atime for remount is preservation */ 3654 if ((flags & MS_REMOUNT) && 3655 ((flags & (MS_NOATIME | MS_NODIRATIME | MS_RELATIME | 3656 MS_STRICTATIME)) == 0)) { 3657 mnt_flags &= ~MNT_ATIME_MASK; 3658 mnt_flags |= path->mnt->mnt_flags & MNT_ATIME_MASK; 3659 } 3660 3661 sb_flags = flags & (SB_RDONLY | 3662 SB_SYNCHRONOUS | 3663 SB_MANDLOCK | 3664 SB_DIRSYNC | 3665 SB_SILENT | 3666 SB_POSIXACL | 3667 SB_LAZYTIME | 3668 SB_I_VERSION); 3669 3670 if ((flags & (MS_REMOUNT | MS_BIND)) == (MS_REMOUNT | MS_BIND)) 3671 return do_reconfigure_mnt(path, mnt_flags); 3672 if (flags & MS_REMOUNT) 3673 return do_remount(path, flags, sb_flags, mnt_flags, data_page); 3674 if (flags & MS_BIND) 3675 return do_loopback(path, dev_name, flags & MS_REC); 3676 if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE)) 3677 return do_change_type(path, flags); 3678 if (flags & MS_MOVE) 3679 return do_move_mount_old(path, dev_name); 3680 3681 return do_new_mount(path, type_page, sb_flags, mnt_flags, dev_name, 3682 data_page); 3683 } 3684 3685 long do_mount(const char *dev_name, const char __user *dir_name, 3686 const char *type_page, unsigned long flags, void *data_page) 3687 { 3688 struct path path; 3689 int ret; 3690 3691 ret = user_path_at(AT_FDCWD, dir_name, LOOKUP_FOLLOW, &path); 3692 if (ret) 3693 return ret; 3694 ret = path_mount(dev_name, &path, type_page, flags, data_page); 3695 path_put(&path); 3696 return ret; 3697 } 3698 3699 static struct ucounts *inc_mnt_namespaces(struct user_namespace *ns) 3700 { 3701 return inc_ucount(ns, current_euid(), UCOUNT_MNT_NAMESPACES); 3702 } 3703 3704 static void dec_mnt_namespaces(struct ucounts *ucounts) 3705 { 3706 dec_ucount(ucounts, UCOUNT_MNT_NAMESPACES); 3707 } 3708 3709 static void free_mnt_ns(struct mnt_namespace *ns) 3710 { 3711 if (!is_anon_ns(ns)) 3712 ns_free_inum(&ns->ns); 3713 dec_mnt_namespaces(ns->ucounts); 3714 put_user_ns(ns->user_ns); 3715 kfree(ns); 3716 } 3717 3718 /* 3719 * Assign a sequence number so we can detect when we attempt to bind 3720 * mount a reference to an older mount namespace into the current 3721 * mount namespace, preventing reference counting loops. A 64bit 3722 * number incrementing at 10Ghz will take 12,427 years to wrap which 3723 * is effectively never, so we can ignore the possibility. 3724 */ 3725 static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1); 3726 3727 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns, bool anon) 3728 { 3729 struct mnt_namespace *new_ns; 3730 struct ucounts *ucounts; 3731 int ret; 3732 3733 ucounts = inc_mnt_namespaces(user_ns); 3734 if (!ucounts) 3735 return ERR_PTR(-ENOSPC); 3736 3737 new_ns = kzalloc(sizeof(struct mnt_namespace), GFP_KERNEL_ACCOUNT); 3738 if (!new_ns) { 3739 dec_mnt_namespaces(ucounts); 3740 return ERR_PTR(-ENOMEM); 3741 } 3742 if (!anon) { 3743 ret = ns_alloc_inum(&new_ns->ns); 3744 if (ret) { 3745 kfree(new_ns); 3746 dec_mnt_namespaces(ucounts); 3747 return ERR_PTR(ret); 3748 } 3749 } 3750 new_ns->ns.ops = &mntns_operations; 3751 if (!anon) 3752 new_ns->seq = atomic64_add_return(1, &mnt_ns_seq); 3753 refcount_set(&new_ns->ns.count, 1); 3754 INIT_LIST_HEAD(&new_ns->list); 3755 init_waitqueue_head(&new_ns->poll); 3756 spin_lock_init(&new_ns->ns_lock); 3757 new_ns->user_ns = get_user_ns(user_ns); 3758 new_ns->ucounts = ucounts; 3759 return new_ns; 3760 } 3761 3762 __latent_entropy 3763 struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns, 3764 struct user_namespace *user_ns, struct fs_struct *new_fs) 3765 { 3766 struct mnt_namespace *new_ns; 3767 struct vfsmount *rootmnt = NULL, *pwdmnt = NULL; 3768 struct mount *p, *q; 3769 struct mount *old; 3770 struct mount *new; 3771 int copy_flags; 3772 3773 BUG_ON(!ns); 3774 3775 if (likely(!(flags & CLONE_NEWNS))) { 3776 get_mnt_ns(ns); 3777 return ns; 3778 } 3779 3780 old = ns->root; 3781 3782 new_ns = alloc_mnt_ns(user_ns, false); 3783 if (IS_ERR(new_ns)) 3784 return new_ns; 3785 3786 namespace_lock(); 3787 /* First pass: copy the tree topology */ 3788 copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE; 3789 if (user_ns != ns->user_ns) 3790 copy_flags |= CL_SHARED_TO_SLAVE; 3791 new = copy_tree(old, old->mnt.mnt_root, copy_flags); 3792 if (IS_ERR(new)) { 3793 namespace_unlock(); 3794 free_mnt_ns(new_ns); 3795 return ERR_CAST(new); 3796 } 3797 if (user_ns != ns->user_ns) { 3798 lock_mount_hash(); 3799 lock_mnt_tree(new); 3800 unlock_mount_hash(); 3801 } 3802 new_ns->root = new; 3803 list_add_tail(&new_ns->list, &new->mnt_list); 3804 3805 /* 3806 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts 3807 * as belonging to new namespace. We have already acquired a private 3808 * fs_struct, so tsk->fs->lock is not needed. 3809 */ 3810 p = old; 3811 q = new; 3812 while (p) { 3813 q->mnt_ns = new_ns; 3814 new_ns->mounts++; 3815 if (new_fs) { 3816 if (&p->mnt == new_fs->root.mnt) { 3817 new_fs->root.mnt = mntget(&q->mnt); 3818 rootmnt = &p->mnt; 3819 } 3820 if (&p->mnt == new_fs->pwd.mnt) { 3821 new_fs->pwd.mnt = mntget(&q->mnt); 3822 pwdmnt = &p->mnt; 3823 } 3824 } 3825 p = next_mnt(p, old); 3826 q = next_mnt(q, new); 3827 if (!q) 3828 break; 3829 // an mntns binding we'd skipped? 3830 while (p->mnt.mnt_root != q->mnt.mnt_root) 3831 p = next_mnt(skip_mnt_tree(p), old); 3832 } 3833 namespace_unlock(); 3834 3835 if (rootmnt) 3836 mntput(rootmnt); 3837 if (pwdmnt) 3838 mntput(pwdmnt); 3839 3840 return new_ns; 3841 } 3842 3843 struct dentry *mount_subtree(struct vfsmount *m, const char *name) 3844 { 3845 struct mount *mnt = real_mount(m); 3846 struct mnt_namespace *ns; 3847 struct super_block *s; 3848 struct path path; 3849 int err; 3850 3851 ns = alloc_mnt_ns(&init_user_ns, true); 3852 if (IS_ERR(ns)) { 3853 mntput(m); 3854 return ERR_CAST(ns); 3855 } 3856 mnt->mnt_ns = ns; 3857 ns->root = mnt; 3858 ns->mounts++; 3859 list_add(&mnt->mnt_list, &ns->list); 3860 3861 err = vfs_path_lookup(m->mnt_root, m, 3862 name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path); 3863 3864 put_mnt_ns(ns); 3865 3866 if (err) 3867 return ERR_PTR(err); 3868 3869 /* trade a vfsmount reference for active sb one */ 3870 s = path.mnt->mnt_sb; 3871 atomic_inc(&s->s_active); 3872 mntput(path.mnt); 3873 /* lock the sucker */ 3874 down_write(&s->s_umount); 3875 /* ... and return the root of (sub)tree on it */ 3876 return path.dentry; 3877 } 3878 EXPORT_SYMBOL(mount_subtree); 3879 3880 SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name, 3881 char __user *, type, unsigned long, flags, void __user *, data) 3882 { 3883 int ret; 3884 char *kernel_type; 3885 char *kernel_dev; 3886 void *options; 3887 3888 kernel_type = copy_mount_string(type); 3889 ret = PTR_ERR(kernel_type); 3890 if (IS_ERR(kernel_type)) 3891 goto out_type; 3892 3893 kernel_dev = copy_mount_string(dev_name); 3894 ret = PTR_ERR(kernel_dev); 3895 if (IS_ERR(kernel_dev)) 3896 goto out_dev; 3897 3898 options = copy_mount_options(data); 3899 ret = PTR_ERR(options); 3900 if (IS_ERR(options)) 3901 goto out_data; 3902 3903 ret = do_mount(kernel_dev, dir_name, kernel_type, flags, options); 3904 3905 kfree(options); 3906 out_data: 3907 kfree(kernel_dev); 3908 out_dev: 3909 kfree(kernel_type); 3910 out_type: 3911 return ret; 3912 } 3913 3914 #define FSMOUNT_VALID_FLAGS \ 3915 (MOUNT_ATTR_RDONLY | MOUNT_ATTR_NOSUID | MOUNT_ATTR_NODEV | \ 3916 MOUNT_ATTR_NOEXEC | MOUNT_ATTR__ATIME | MOUNT_ATTR_NODIRATIME | \ 3917 MOUNT_ATTR_NOSYMFOLLOW) 3918 3919 #define MOUNT_SETATTR_VALID_FLAGS (FSMOUNT_VALID_FLAGS | MOUNT_ATTR_IDMAP) 3920 3921 #define MOUNT_SETATTR_PROPAGATION_FLAGS \ 3922 (MS_UNBINDABLE | MS_PRIVATE | MS_SLAVE | MS_SHARED) 3923 3924 static unsigned int attr_flags_to_mnt_flags(u64 attr_flags) 3925 { 3926 unsigned int mnt_flags = 0; 3927 3928 if (attr_flags & MOUNT_ATTR_RDONLY) 3929 mnt_flags |= MNT_READONLY; 3930 if (attr_flags & MOUNT_ATTR_NOSUID) 3931 mnt_flags |= MNT_NOSUID; 3932 if (attr_flags & MOUNT_ATTR_NODEV) 3933 mnt_flags |= MNT_NODEV; 3934 if (attr_flags & MOUNT_ATTR_NOEXEC) 3935 mnt_flags |= MNT_NOEXEC; 3936 if (attr_flags & MOUNT_ATTR_NODIRATIME) 3937 mnt_flags |= MNT_NODIRATIME; 3938 if (attr_flags & MOUNT_ATTR_NOSYMFOLLOW) 3939 mnt_flags |= MNT_NOSYMFOLLOW; 3940 3941 return mnt_flags; 3942 } 3943 3944 /* 3945 * Create a kernel mount representation for a new, prepared superblock 3946 * (specified by fs_fd) and attach to an open_tree-like file descriptor. 3947 */ 3948 SYSCALL_DEFINE3(fsmount, int, fs_fd, unsigned int, flags, 3949 unsigned int, attr_flags) 3950 { 3951 struct mnt_namespace *ns; 3952 struct fs_context *fc; 3953 struct file *file; 3954 struct path newmount; 3955 struct mount *mnt; 3956 struct fd f; 3957 unsigned int mnt_flags = 0; 3958 long ret; 3959 3960 if (!may_mount()) 3961 return -EPERM; 3962 3963 if ((flags & ~(FSMOUNT_CLOEXEC)) != 0) 3964 return -EINVAL; 3965 3966 if (attr_flags & ~FSMOUNT_VALID_FLAGS) 3967 return -EINVAL; 3968 3969 mnt_flags = attr_flags_to_mnt_flags(attr_flags); 3970 3971 switch (attr_flags & MOUNT_ATTR__ATIME) { 3972 case MOUNT_ATTR_STRICTATIME: 3973 break; 3974 case MOUNT_ATTR_NOATIME: 3975 mnt_flags |= MNT_NOATIME; 3976 break; 3977 case MOUNT_ATTR_RELATIME: 3978 mnt_flags |= MNT_RELATIME; 3979 break; 3980 default: 3981 return -EINVAL; 3982 } 3983 3984 f = fdget(fs_fd); 3985 if (!f.file) 3986 return -EBADF; 3987 3988 ret = -EINVAL; 3989 if (f.file->f_op != &fscontext_fops) 3990 goto err_fsfd; 3991 3992 fc = f.file->private_data; 3993 3994 ret = mutex_lock_interruptible(&fc->uapi_mutex); 3995 if (ret < 0) 3996 goto err_fsfd; 3997 3998 /* There must be a valid superblock or we can't mount it */ 3999 ret = -EINVAL; 4000 if (!fc->root) 4001 goto err_unlock; 4002 4003 ret = -EPERM; 4004 if (mount_too_revealing(fc->root->d_sb, &mnt_flags)) { 4005 pr_warn("VFS: Mount too revealing\n"); 4006 goto err_unlock; 4007 } 4008 4009 ret = -EBUSY; 4010 if (fc->phase != FS_CONTEXT_AWAITING_MOUNT) 4011 goto err_unlock; 4012 4013 if (fc->sb_flags & SB_MANDLOCK) 4014 warn_mandlock(); 4015 4016 newmount.mnt = vfs_create_mount(fc); 4017 if (IS_ERR(newmount.mnt)) { 4018 ret = PTR_ERR(newmount.mnt); 4019 goto err_unlock; 4020 } 4021 newmount.dentry = dget(fc->root); 4022 newmount.mnt->mnt_flags = mnt_flags; 4023 4024 /* We've done the mount bit - now move the file context into more or 4025 * less the same state as if we'd done an fspick(). We don't want to 4026 * do any memory allocation or anything like that at this point as we 4027 * don't want to have to handle any errors incurred. 4028 */ 4029 vfs_clean_context(fc); 4030 4031 ns = alloc_mnt_ns(current->nsproxy->mnt_ns->user_ns, true); 4032 if (IS_ERR(ns)) { 4033 ret = PTR_ERR(ns); 4034 goto err_path; 4035 } 4036 mnt = real_mount(newmount.mnt); 4037 mnt->mnt_ns = ns; 4038 ns->root = mnt; 4039 ns->mounts = 1; 4040 list_add(&mnt->mnt_list, &ns->list); 4041 mntget(newmount.mnt); 4042 4043 /* Attach to an apparent O_PATH fd with a note that we need to unmount 4044 * it, not just simply put it. 4045 */ 4046 file = dentry_open(&newmount, O_PATH, fc->cred); 4047 if (IS_ERR(file)) { 4048 dissolve_on_fput(newmount.mnt); 4049 ret = PTR_ERR(file); 4050 goto err_path; 4051 } 4052 file->f_mode |= FMODE_NEED_UNMOUNT; 4053 4054 ret = get_unused_fd_flags((flags & FSMOUNT_CLOEXEC) ? O_CLOEXEC : 0); 4055 if (ret >= 0) 4056 fd_install(ret, file); 4057 else 4058 fput(file); 4059 4060 err_path: 4061 path_put(&newmount); 4062 err_unlock: 4063 mutex_unlock(&fc->uapi_mutex); 4064 err_fsfd: 4065 fdput(f); 4066 return ret; 4067 } 4068 4069 /* 4070 * Move a mount from one place to another. In combination with 4071 * fsopen()/fsmount() this is used to install a new mount and in combination 4072 * with open_tree(OPEN_TREE_CLONE [| AT_RECURSIVE]) it can be used to copy 4073 * a mount subtree. 4074 * 4075 * Note the flags value is a combination of MOVE_MOUNT_* flags. 4076 */ 4077 SYSCALL_DEFINE5(move_mount, 4078 int, from_dfd, const char __user *, from_pathname, 4079 int, to_dfd, const char __user *, to_pathname, 4080 unsigned int, flags) 4081 { 4082 struct path from_path, to_path; 4083 unsigned int lflags; 4084 int ret = 0; 4085 4086 if (!may_mount()) 4087 return -EPERM; 4088 4089 if (flags & ~MOVE_MOUNT__MASK) 4090 return -EINVAL; 4091 4092 if ((flags & (MOVE_MOUNT_BENEATH | MOVE_MOUNT_SET_GROUP)) == 4093 (MOVE_MOUNT_BENEATH | MOVE_MOUNT_SET_GROUP)) 4094 return -EINVAL; 4095 4096 /* If someone gives a pathname, they aren't permitted to move 4097 * from an fd that requires unmount as we can't get at the flag 4098 * to clear it afterwards. 4099 */ 4100 lflags = 0; 4101 if (flags & MOVE_MOUNT_F_SYMLINKS) lflags |= LOOKUP_FOLLOW; 4102 if (flags & MOVE_MOUNT_F_AUTOMOUNTS) lflags |= LOOKUP_AUTOMOUNT; 4103 if (flags & MOVE_MOUNT_F_EMPTY_PATH) lflags |= LOOKUP_EMPTY; 4104 4105 ret = user_path_at(from_dfd, from_pathname, lflags, &from_path); 4106 if (ret < 0) 4107 return ret; 4108 4109 lflags = 0; 4110 if (flags & MOVE_MOUNT_T_SYMLINKS) lflags |= LOOKUP_FOLLOW; 4111 if (flags & MOVE_MOUNT_T_AUTOMOUNTS) lflags |= LOOKUP_AUTOMOUNT; 4112 if (flags & MOVE_MOUNT_T_EMPTY_PATH) lflags |= LOOKUP_EMPTY; 4113 4114 ret = user_path_at(to_dfd, to_pathname, lflags, &to_path); 4115 if (ret < 0) 4116 goto out_from; 4117 4118 ret = security_move_mount(&from_path, &to_path); 4119 if (ret < 0) 4120 goto out_to; 4121 4122 if (flags & MOVE_MOUNT_SET_GROUP) 4123 ret = do_set_group(&from_path, &to_path); 4124 else 4125 ret = do_move_mount(&from_path, &to_path, 4126 (flags & MOVE_MOUNT_BENEATH)); 4127 4128 out_to: 4129 path_put(&to_path); 4130 out_from: 4131 path_put(&from_path); 4132 return ret; 4133 } 4134 4135 /* 4136 * Return true if path is reachable from root 4137 * 4138 * namespace_sem or mount_lock is held 4139 */ 4140 bool is_path_reachable(struct mount *mnt, struct dentry *dentry, 4141 const struct path *root) 4142 { 4143 while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) { 4144 dentry = mnt->mnt_mountpoint; 4145 mnt = mnt->mnt_parent; 4146 } 4147 return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry); 4148 } 4149 4150 bool path_is_under(const struct path *path1, const struct path *path2) 4151 { 4152 bool res; 4153 read_seqlock_excl(&mount_lock); 4154 res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2); 4155 read_sequnlock_excl(&mount_lock); 4156 return res; 4157 } 4158 EXPORT_SYMBOL(path_is_under); 4159 4160 /* 4161 * pivot_root Semantics: 4162 * Moves the root file system of the current process to the directory put_old, 4163 * makes new_root as the new root file system of the current process, and sets 4164 * root/cwd of all processes which had them on the current root to new_root. 4165 * 4166 * Restrictions: 4167 * The new_root and put_old must be directories, and must not be on the 4168 * same file system as the current process root. The put_old must be 4169 * underneath new_root, i.e. adding a non-zero number of /.. to the string 4170 * pointed to by put_old must yield the same directory as new_root. No other 4171 * file system may be mounted on put_old. After all, new_root is a mountpoint. 4172 * 4173 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem. 4174 * See Documentation/filesystems/ramfs-rootfs-initramfs.rst for alternatives 4175 * in this situation. 4176 * 4177 * Notes: 4178 * - we don't move root/cwd if they are not at the root (reason: if something 4179 * cared enough to change them, it's probably wrong to force them elsewhere) 4180 * - it's okay to pick a root that isn't the root of a file system, e.g. 4181 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint, 4182 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root 4183 * first. 4184 */ 4185 SYSCALL_DEFINE2(pivot_root, const char __user *, new_root, 4186 const char __user *, put_old) 4187 { 4188 struct path new, old, root; 4189 struct mount *new_mnt, *root_mnt, *old_mnt, *root_parent, *ex_parent; 4190 struct mountpoint *old_mp, *root_mp; 4191 int error; 4192 4193 if (!may_mount()) 4194 return -EPERM; 4195 4196 error = user_path_at(AT_FDCWD, new_root, 4197 LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &new); 4198 if (error) 4199 goto out0; 4200 4201 error = user_path_at(AT_FDCWD, put_old, 4202 LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &old); 4203 if (error) 4204 goto out1; 4205 4206 error = security_sb_pivotroot(&old, &new); 4207 if (error) 4208 goto out2; 4209 4210 get_fs_root(current->fs, &root); 4211 old_mp = lock_mount(&old); 4212 error = PTR_ERR(old_mp); 4213 if (IS_ERR(old_mp)) 4214 goto out3; 4215 4216 error = -EINVAL; 4217 new_mnt = real_mount(new.mnt); 4218 root_mnt = real_mount(root.mnt); 4219 old_mnt = real_mount(old.mnt); 4220 ex_parent = new_mnt->mnt_parent; 4221 root_parent = root_mnt->mnt_parent; 4222 if (IS_MNT_SHARED(old_mnt) || 4223 IS_MNT_SHARED(ex_parent) || 4224 IS_MNT_SHARED(root_parent)) 4225 goto out4; 4226 if (!check_mnt(root_mnt) || !check_mnt(new_mnt)) 4227 goto out4; 4228 if (new_mnt->mnt.mnt_flags & MNT_LOCKED) 4229 goto out4; 4230 error = -ENOENT; 4231 if (d_unlinked(new.dentry)) 4232 goto out4; 4233 error = -EBUSY; 4234 if (new_mnt == root_mnt || old_mnt == root_mnt) 4235 goto out4; /* loop, on the same file system */ 4236 error = -EINVAL; 4237 if (!path_mounted(&root)) 4238 goto out4; /* not a mountpoint */ 4239 if (!mnt_has_parent(root_mnt)) 4240 goto out4; /* not attached */ 4241 if (!path_mounted(&new)) 4242 goto out4; /* not a mountpoint */ 4243 if (!mnt_has_parent(new_mnt)) 4244 goto out4; /* not attached */ 4245 /* make sure we can reach put_old from new_root */ 4246 if (!is_path_reachable(old_mnt, old.dentry, &new)) 4247 goto out4; 4248 /* make certain new is below the root */ 4249 if (!is_path_reachable(new_mnt, new.dentry, &root)) 4250 goto out4; 4251 lock_mount_hash(); 4252 umount_mnt(new_mnt); 4253 root_mp = unhash_mnt(root_mnt); /* we'll need its mountpoint */ 4254 if (root_mnt->mnt.mnt_flags & MNT_LOCKED) { 4255 new_mnt->mnt.mnt_flags |= MNT_LOCKED; 4256 root_mnt->mnt.mnt_flags &= ~MNT_LOCKED; 4257 } 4258 /* mount old root on put_old */ 4259 attach_mnt(root_mnt, old_mnt, old_mp, false); 4260 /* mount new_root on / */ 4261 attach_mnt(new_mnt, root_parent, root_mp, false); 4262 mnt_add_count(root_parent, -1); 4263 touch_mnt_namespace(current->nsproxy->mnt_ns); 4264 /* A moved mount should not expire automatically */ 4265 list_del_init(&new_mnt->mnt_expire); 4266 put_mountpoint(root_mp); 4267 unlock_mount_hash(); 4268 chroot_fs_refs(&root, &new); 4269 error = 0; 4270 out4: 4271 unlock_mount(old_mp); 4272 if (!error) 4273 mntput_no_expire(ex_parent); 4274 out3: 4275 path_put(&root); 4276 out2: 4277 path_put(&old); 4278 out1: 4279 path_put(&new); 4280 out0: 4281 return error; 4282 } 4283 4284 static unsigned int recalc_flags(struct mount_kattr *kattr, struct mount *mnt) 4285 { 4286 unsigned int flags = mnt->mnt.mnt_flags; 4287 4288 /* flags to clear */ 4289 flags &= ~kattr->attr_clr; 4290 /* flags to raise */ 4291 flags |= kattr->attr_set; 4292 4293 return flags; 4294 } 4295 4296 static int can_idmap_mount(const struct mount_kattr *kattr, struct mount *mnt) 4297 { 4298 struct vfsmount *m = &mnt->mnt; 4299 struct user_namespace *fs_userns = m->mnt_sb->s_user_ns; 4300 4301 if (!kattr->mnt_idmap) 4302 return 0; 4303 4304 /* 4305 * Creating an idmapped mount with the filesystem wide idmapping 4306 * doesn't make sense so block that. We don't allow mushy semantics. 4307 */ 4308 if (!check_fsmapping(kattr->mnt_idmap, m->mnt_sb)) 4309 return -EINVAL; 4310 4311 /* 4312 * Once a mount has been idmapped we don't allow it to change its 4313 * mapping. It makes things simpler and callers can just create 4314 * another bind-mount they can idmap if they want to. 4315 */ 4316 if (is_idmapped_mnt(m)) 4317 return -EPERM; 4318 4319 /* The underlying filesystem doesn't support idmapped mounts yet. */ 4320 if (!(m->mnt_sb->s_type->fs_flags & FS_ALLOW_IDMAP)) 4321 return -EINVAL; 4322 4323 /* We're not controlling the superblock. */ 4324 if (!ns_capable(fs_userns, CAP_SYS_ADMIN)) 4325 return -EPERM; 4326 4327 /* Mount has already been visible in the filesystem hierarchy. */ 4328 if (!is_anon_ns(mnt->mnt_ns)) 4329 return -EINVAL; 4330 4331 return 0; 4332 } 4333 4334 /** 4335 * mnt_allow_writers() - check whether the attribute change allows writers 4336 * @kattr: the new mount attributes 4337 * @mnt: the mount to which @kattr will be applied 4338 * 4339 * Check whether thew new mount attributes in @kattr allow concurrent writers. 4340 * 4341 * Return: true if writers need to be held, false if not 4342 */ 4343 static inline bool mnt_allow_writers(const struct mount_kattr *kattr, 4344 const struct mount *mnt) 4345 { 4346 return (!(kattr->attr_set & MNT_READONLY) || 4347 (mnt->mnt.mnt_flags & MNT_READONLY)) && 4348 !kattr->mnt_idmap; 4349 } 4350 4351 static int mount_setattr_prepare(struct mount_kattr *kattr, struct mount *mnt) 4352 { 4353 struct mount *m; 4354 int err; 4355 4356 for (m = mnt; m; m = next_mnt(m, mnt)) { 4357 if (!can_change_locked_flags(m, recalc_flags(kattr, m))) { 4358 err = -EPERM; 4359 break; 4360 } 4361 4362 err = can_idmap_mount(kattr, m); 4363 if (err) 4364 break; 4365 4366 if (!mnt_allow_writers(kattr, m)) { 4367 err = mnt_hold_writers(m); 4368 if (err) 4369 break; 4370 } 4371 4372 if (!kattr->recurse) 4373 return 0; 4374 } 4375 4376 if (err) { 4377 struct mount *p; 4378 4379 /* 4380 * If we had to call mnt_hold_writers() MNT_WRITE_HOLD will 4381 * be set in @mnt_flags. The loop unsets MNT_WRITE_HOLD for all 4382 * mounts and needs to take care to include the first mount. 4383 */ 4384 for (p = mnt; p; p = next_mnt(p, mnt)) { 4385 /* If we had to hold writers unblock them. */ 4386 if (p->mnt.mnt_flags & MNT_WRITE_HOLD) 4387 mnt_unhold_writers(p); 4388 4389 /* 4390 * We're done once the first mount we changed got 4391 * MNT_WRITE_HOLD unset. 4392 */ 4393 if (p == m) 4394 break; 4395 } 4396 } 4397 return err; 4398 } 4399 4400 static void do_idmap_mount(const struct mount_kattr *kattr, struct mount *mnt) 4401 { 4402 if (!kattr->mnt_idmap) 4403 return; 4404 4405 /* 4406 * Pairs with smp_load_acquire() in mnt_idmap(). 4407 * 4408 * Since we only allow a mount to change the idmapping once and 4409 * verified this in can_idmap_mount() we know that the mount has 4410 * @nop_mnt_idmap attached to it. So there's no need to drop any 4411 * references. 4412 */ 4413 smp_store_release(&mnt->mnt.mnt_idmap, mnt_idmap_get(kattr->mnt_idmap)); 4414 } 4415 4416 static void mount_setattr_commit(struct mount_kattr *kattr, struct mount *mnt) 4417 { 4418 struct mount *m; 4419 4420 for (m = mnt; m; m = next_mnt(m, mnt)) { 4421 unsigned int flags; 4422 4423 do_idmap_mount(kattr, m); 4424 flags = recalc_flags(kattr, m); 4425 WRITE_ONCE(m->mnt.mnt_flags, flags); 4426 4427 /* If we had to hold writers unblock them. */ 4428 if (m->mnt.mnt_flags & MNT_WRITE_HOLD) 4429 mnt_unhold_writers(m); 4430 4431 if (kattr->propagation) 4432 change_mnt_propagation(m, kattr->propagation); 4433 if (!kattr->recurse) 4434 break; 4435 } 4436 touch_mnt_namespace(mnt->mnt_ns); 4437 } 4438 4439 static int do_mount_setattr(struct path *path, struct mount_kattr *kattr) 4440 { 4441 struct mount *mnt = real_mount(path->mnt); 4442 int err = 0; 4443 4444 if (!path_mounted(path)) 4445 return -EINVAL; 4446 4447 if (kattr->mnt_userns) { 4448 struct mnt_idmap *mnt_idmap; 4449 4450 mnt_idmap = alloc_mnt_idmap(kattr->mnt_userns); 4451 if (IS_ERR(mnt_idmap)) 4452 return PTR_ERR(mnt_idmap); 4453 kattr->mnt_idmap = mnt_idmap; 4454 } 4455 4456 if (kattr->propagation) { 4457 /* 4458 * Only take namespace_lock() if we're actually changing 4459 * propagation. 4460 */ 4461 namespace_lock(); 4462 if (kattr->propagation == MS_SHARED) { 4463 err = invent_group_ids(mnt, kattr->recurse); 4464 if (err) { 4465 namespace_unlock(); 4466 return err; 4467 } 4468 } 4469 } 4470 4471 err = -EINVAL; 4472 lock_mount_hash(); 4473 4474 /* Ensure that this isn't anything purely vfs internal. */ 4475 if (!is_mounted(&mnt->mnt)) 4476 goto out; 4477 4478 /* 4479 * If this is an attached mount make sure it's located in the callers 4480 * mount namespace. If it's not don't let the caller interact with it. 4481 * 4482 * If this mount doesn't have a parent it's most often simply a 4483 * detached mount with an anonymous mount namespace. IOW, something 4484 * that's simply not attached yet. But there are apparently also users 4485 * that do change mount properties on the rootfs itself. That obviously 4486 * neither has a parent nor is it a detached mount so we cannot 4487 * unconditionally check for detached mounts. 4488 */ 4489 if ((mnt_has_parent(mnt) || !is_anon_ns(mnt->mnt_ns)) && !check_mnt(mnt)) 4490 goto out; 4491 4492 /* 4493 * First, we get the mount tree in a shape where we can change mount 4494 * properties without failure. If we succeeded to do so we commit all 4495 * changes and if we failed we clean up. 4496 */ 4497 err = mount_setattr_prepare(kattr, mnt); 4498 if (!err) 4499 mount_setattr_commit(kattr, mnt); 4500 4501 out: 4502 unlock_mount_hash(); 4503 4504 if (kattr->propagation) { 4505 if (err) 4506 cleanup_group_ids(mnt, NULL); 4507 namespace_unlock(); 4508 } 4509 4510 return err; 4511 } 4512 4513 static int build_mount_idmapped(const struct mount_attr *attr, size_t usize, 4514 struct mount_kattr *kattr, unsigned int flags) 4515 { 4516 int err = 0; 4517 struct ns_common *ns; 4518 struct user_namespace *mnt_userns; 4519 struct fd f; 4520 4521 if (!((attr->attr_set | attr->attr_clr) & MOUNT_ATTR_IDMAP)) 4522 return 0; 4523 4524 /* 4525 * We currently do not support clearing an idmapped mount. If this ever 4526 * is a use-case we can revisit this but for now let's keep it simple 4527 * and not allow it. 4528 */ 4529 if (attr->attr_clr & MOUNT_ATTR_IDMAP) 4530 return -EINVAL; 4531 4532 if (attr->userns_fd > INT_MAX) 4533 return -EINVAL; 4534 4535 f = fdget(attr->userns_fd); 4536 if (!f.file) 4537 return -EBADF; 4538 4539 if (!proc_ns_file(f.file)) { 4540 err = -EINVAL; 4541 goto out_fput; 4542 } 4543 4544 ns = get_proc_ns(file_inode(f.file)); 4545 if (ns->ops->type != CLONE_NEWUSER) { 4546 err = -EINVAL; 4547 goto out_fput; 4548 } 4549 4550 /* 4551 * The initial idmapping cannot be used to create an idmapped 4552 * mount. We use the initial idmapping as an indicator of a mount 4553 * that is not idmapped. It can simply be passed into helpers that 4554 * are aware of idmapped mounts as a convenient shortcut. A user 4555 * can just create a dedicated identity mapping to achieve the same 4556 * result. 4557 */ 4558 mnt_userns = container_of(ns, struct user_namespace, ns); 4559 if (mnt_userns == &init_user_ns) { 4560 err = -EPERM; 4561 goto out_fput; 4562 } 4563 4564 /* We're not controlling the target namespace. */ 4565 if (!ns_capable(mnt_userns, CAP_SYS_ADMIN)) { 4566 err = -EPERM; 4567 goto out_fput; 4568 } 4569 4570 kattr->mnt_userns = get_user_ns(mnt_userns); 4571 4572 out_fput: 4573 fdput(f); 4574 return err; 4575 } 4576 4577 static int build_mount_kattr(const struct mount_attr *attr, size_t usize, 4578 struct mount_kattr *kattr, unsigned int flags) 4579 { 4580 unsigned int lookup_flags = LOOKUP_AUTOMOUNT | LOOKUP_FOLLOW; 4581 4582 if (flags & AT_NO_AUTOMOUNT) 4583 lookup_flags &= ~LOOKUP_AUTOMOUNT; 4584 if (flags & AT_SYMLINK_NOFOLLOW) 4585 lookup_flags &= ~LOOKUP_FOLLOW; 4586 if (flags & AT_EMPTY_PATH) 4587 lookup_flags |= LOOKUP_EMPTY; 4588 4589 *kattr = (struct mount_kattr) { 4590 .lookup_flags = lookup_flags, 4591 .recurse = !!(flags & AT_RECURSIVE), 4592 }; 4593 4594 if (attr->propagation & ~MOUNT_SETATTR_PROPAGATION_FLAGS) 4595 return -EINVAL; 4596 if (hweight32(attr->propagation & MOUNT_SETATTR_PROPAGATION_FLAGS) > 1) 4597 return -EINVAL; 4598 kattr->propagation = attr->propagation; 4599 4600 if ((attr->attr_set | attr->attr_clr) & ~MOUNT_SETATTR_VALID_FLAGS) 4601 return -EINVAL; 4602 4603 kattr->attr_set = attr_flags_to_mnt_flags(attr->attr_set); 4604 kattr->attr_clr = attr_flags_to_mnt_flags(attr->attr_clr); 4605 4606 /* 4607 * Since the MOUNT_ATTR_<atime> values are an enum, not a bitmap, 4608 * users wanting to transition to a different atime setting cannot 4609 * simply specify the atime setting in @attr_set, but must also 4610 * specify MOUNT_ATTR__ATIME in the @attr_clr field. 4611 * So ensure that MOUNT_ATTR__ATIME can't be partially set in 4612 * @attr_clr and that @attr_set can't have any atime bits set if 4613 * MOUNT_ATTR__ATIME isn't set in @attr_clr. 4614 */ 4615 if (attr->attr_clr & MOUNT_ATTR__ATIME) { 4616 if ((attr->attr_clr & MOUNT_ATTR__ATIME) != MOUNT_ATTR__ATIME) 4617 return -EINVAL; 4618 4619 /* 4620 * Clear all previous time settings as they are mutually 4621 * exclusive. 4622 */ 4623 kattr->attr_clr |= MNT_RELATIME | MNT_NOATIME; 4624 switch (attr->attr_set & MOUNT_ATTR__ATIME) { 4625 case MOUNT_ATTR_RELATIME: 4626 kattr->attr_set |= MNT_RELATIME; 4627 break; 4628 case MOUNT_ATTR_NOATIME: 4629 kattr->attr_set |= MNT_NOATIME; 4630 break; 4631 case MOUNT_ATTR_STRICTATIME: 4632 break; 4633 default: 4634 return -EINVAL; 4635 } 4636 } else { 4637 if (attr->attr_set & MOUNT_ATTR__ATIME) 4638 return -EINVAL; 4639 } 4640 4641 return build_mount_idmapped(attr, usize, kattr, flags); 4642 } 4643 4644 static void finish_mount_kattr(struct mount_kattr *kattr) 4645 { 4646 put_user_ns(kattr->mnt_userns); 4647 kattr->mnt_userns = NULL; 4648 4649 if (kattr->mnt_idmap) 4650 mnt_idmap_put(kattr->mnt_idmap); 4651 } 4652 4653 SYSCALL_DEFINE5(mount_setattr, int, dfd, const char __user *, path, 4654 unsigned int, flags, struct mount_attr __user *, uattr, 4655 size_t, usize) 4656 { 4657 int err; 4658 struct path target; 4659 struct mount_attr attr; 4660 struct mount_kattr kattr; 4661 4662 BUILD_BUG_ON(sizeof(struct mount_attr) != MOUNT_ATTR_SIZE_VER0); 4663 4664 if (flags & ~(AT_EMPTY_PATH | 4665 AT_RECURSIVE | 4666 AT_SYMLINK_NOFOLLOW | 4667 AT_NO_AUTOMOUNT)) 4668 return -EINVAL; 4669 4670 if (unlikely(usize > PAGE_SIZE)) 4671 return -E2BIG; 4672 if (unlikely(usize < MOUNT_ATTR_SIZE_VER0)) 4673 return -EINVAL; 4674 4675 if (!may_mount()) 4676 return -EPERM; 4677 4678 err = copy_struct_from_user(&attr, sizeof(attr), uattr, usize); 4679 if (err) 4680 return err; 4681 4682 /* Don't bother walking through the mounts if this is a nop. */ 4683 if (attr.attr_set == 0 && 4684 attr.attr_clr == 0 && 4685 attr.propagation == 0) 4686 return 0; 4687 4688 err = build_mount_kattr(&attr, usize, &kattr, flags); 4689 if (err) 4690 return err; 4691 4692 err = user_path_at(dfd, path, kattr.lookup_flags, &target); 4693 if (!err) { 4694 err = do_mount_setattr(&target, &kattr); 4695 path_put(&target); 4696 } 4697 finish_mount_kattr(&kattr); 4698 return err; 4699 } 4700 4701 static void __init init_mount_tree(void) 4702 { 4703 struct vfsmount *mnt; 4704 struct mount *m; 4705 struct mnt_namespace *ns; 4706 struct path root; 4707 4708 mnt = vfs_kern_mount(&rootfs_fs_type, 0, "rootfs", NULL); 4709 if (IS_ERR(mnt)) 4710 panic("Can't create rootfs"); 4711 4712 ns = alloc_mnt_ns(&init_user_ns, false); 4713 if (IS_ERR(ns)) 4714 panic("Can't allocate initial namespace"); 4715 m = real_mount(mnt); 4716 m->mnt_ns = ns; 4717 ns->root = m; 4718 ns->mounts = 1; 4719 list_add(&m->mnt_list, &ns->list); 4720 init_task.nsproxy->mnt_ns = ns; 4721 get_mnt_ns(ns); 4722 4723 root.mnt = mnt; 4724 root.dentry = mnt->mnt_root; 4725 mnt->mnt_flags |= MNT_LOCKED; 4726 4727 set_fs_pwd(current->fs, &root); 4728 set_fs_root(current->fs, &root); 4729 } 4730 4731 void __init mnt_init(void) 4732 { 4733 int err; 4734 4735 mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount), 4736 0, SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, NULL); 4737 4738 mount_hashtable = alloc_large_system_hash("Mount-cache", 4739 sizeof(struct hlist_head), 4740 mhash_entries, 19, 4741 HASH_ZERO, 4742 &m_hash_shift, &m_hash_mask, 0, 0); 4743 mountpoint_hashtable = alloc_large_system_hash("Mountpoint-cache", 4744 sizeof(struct hlist_head), 4745 mphash_entries, 19, 4746 HASH_ZERO, 4747 &mp_hash_shift, &mp_hash_mask, 0, 0); 4748 4749 if (!mount_hashtable || !mountpoint_hashtable) 4750 panic("Failed to allocate mount hash table\n"); 4751 4752 kernfs_init(); 4753 4754 err = sysfs_init(); 4755 if (err) 4756 printk(KERN_WARNING "%s: sysfs_init error: %d\n", 4757 __func__, err); 4758 fs_kobj = kobject_create_and_add("fs", NULL); 4759 if (!fs_kobj) 4760 printk(KERN_WARNING "%s: kobj create error\n", __func__); 4761 shmem_init(); 4762 init_rootfs(); 4763 init_mount_tree(); 4764 } 4765 4766 void put_mnt_ns(struct mnt_namespace *ns) 4767 { 4768 if (!refcount_dec_and_test(&ns->ns.count)) 4769 return; 4770 drop_collected_mounts(&ns->root->mnt); 4771 free_mnt_ns(ns); 4772 } 4773 4774 struct vfsmount *kern_mount(struct file_system_type *type) 4775 { 4776 struct vfsmount *mnt; 4777 mnt = vfs_kern_mount(type, SB_KERNMOUNT, type->name, NULL); 4778 if (!IS_ERR(mnt)) { 4779 /* 4780 * it is a longterm mount, don't release mnt until 4781 * we unmount before file sys is unregistered 4782 */ 4783 real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL; 4784 } 4785 return mnt; 4786 } 4787 EXPORT_SYMBOL_GPL(kern_mount); 4788 4789 void kern_unmount(struct vfsmount *mnt) 4790 { 4791 /* release long term mount so mount point can be released */ 4792 if (!IS_ERR(mnt)) { 4793 mnt_make_shortterm(mnt); 4794 synchronize_rcu(); /* yecchhh... */ 4795 mntput(mnt); 4796 } 4797 } 4798 EXPORT_SYMBOL(kern_unmount); 4799 4800 void kern_unmount_array(struct vfsmount *mnt[], unsigned int num) 4801 { 4802 unsigned int i; 4803 4804 for (i = 0; i < num; i++) 4805 mnt_make_shortterm(mnt[i]); 4806 synchronize_rcu_expedited(); 4807 for (i = 0; i < num; i++) 4808 mntput(mnt[i]); 4809 } 4810 EXPORT_SYMBOL(kern_unmount_array); 4811 4812 bool our_mnt(struct vfsmount *mnt) 4813 { 4814 return check_mnt(real_mount(mnt)); 4815 } 4816 4817 bool current_chrooted(void) 4818 { 4819 /* Does the current process have a non-standard root */ 4820 struct path ns_root; 4821 struct path fs_root; 4822 bool chrooted; 4823 4824 /* Find the namespace root */ 4825 ns_root.mnt = ¤t->nsproxy->mnt_ns->root->mnt; 4826 ns_root.dentry = ns_root.mnt->mnt_root; 4827 path_get(&ns_root); 4828 while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root)) 4829 ; 4830 4831 get_fs_root(current->fs, &fs_root); 4832 4833 chrooted = !path_equal(&fs_root, &ns_root); 4834 4835 path_put(&fs_root); 4836 path_put(&ns_root); 4837 4838 return chrooted; 4839 } 4840 4841 static bool mnt_already_visible(struct mnt_namespace *ns, 4842 const struct super_block *sb, 4843 int *new_mnt_flags) 4844 { 4845 int new_flags = *new_mnt_flags; 4846 struct mount *mnt; 4847 bool visible = false; 4848 4849 down_read(&namespace_sem); 4850 lock_ns_list(ns); 4851 list_for_each_entry(mnt, &ns->list, mnt_list) { 4852 struct mount *child; 4853 int mnt_flags; 4854 4855 if (mnt_is_cursor(mnt)) 4856 continue; 4857 4858 if (mnt->mnt.mnt_sb->s_type != sb->s_type) 4859 continue; 4860 4861 /* This mount is not fully visible if it's root directory 4862 * is not the root directory of the filesystem. 4863 */ 4864 if (mnt->mnt.mnt_root != mnt->mnt.mnt_sb->s_root) 4865 continue; 4866 4867 /* A local view of the mount flags */ 4868 mnt_flags = mnt->mnt.mnt_flags; 4869 4870 /* Don't miss readonly hidden in the superblock flags */ 4871 if (sb_rdonly(mnt->mnt.mnt_sb)) 4872 mnt_flags |= MNT_LOCK_READONLY; 4873 4874 /* Verify the mount flags are equal to or more permissive 4875 * than the proposed new mount. 4876 */ 4877 if ((mnt_flags & MNT_LOCK_READONLY) && 4878 !(new_flags & MNT_READONLY)) 4879 continue; 4880 if ((mnt_flags & MNT_LOCK_ATIME) && 4881 ((mnt_flags & MNT_ATIME_MASK) != (new_flags & MNT_ATIME_MASK))) 4882 continue; 4883 4884 /* This mount is not fully visible if there are any 4885 * locked child mounts that cover anything except for 4886 * empty directories. 4887 */ 4888 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) { 4889 struct inode *inode = child->mnt_mountpoint->d_inode; 4890 /* Only worry about locked mounts */ 4891 if (!(child->mnt.mnt_flags & MNT_LOCKED)) 4892 continue; 4893 /* Is the directory permanetly empty? */ 4894 if (!is_empty_dir_inode(inode)) 4895 goto next; 4896 } 4897 /* Preserve the locked attributes */ 4898 *new_mnt_flags |= mnt_flags & (MNT_LOCK_READONLY | \ 4899 MNT_LOCK_ATIME); 4900 visible = true; 4901 goto found; 4902 next: ; 4903 } 4904 found: 4905 unlock_ns_list(ns); 4906 up_read(&namespace_sem); 4907 return visible; 4908 } 4909 4910 static bool mount_too_revealing(const struct super_block *sb, int *new_mnt_flags) 4911 { 4912 const unsigned long required_iflags = SB_I_NOEXEC | SB_I_NODEV; 4913 struct mnt_namespace *ns = current->nsproxy->mnt_ns; 4914 unsigned long s_iflags; 4915 4916 if (ns->user_ns == &init_user_ns) 4917 return false; 4918 4919 /* Can this filesystem be too revealing? */ 4920 s_iflags = sb->s_iflags; 4921 if (!(s_iflags & SB_I_USERNS_VISIBLE)) 4922 return false; 4923 4924 if ((s_iflags & required_iflags) != required_iflags) { 4925 WARN_ONCE(1, "Expected s_iflags to contain 0x%lx\n", 4926 required_iflags); 4927 return true; 4928 } 4929 4930 return !mnt_already_visible(ns, sb, new_mnt_flags); 4931 } 4932 4933 bool mnt_may_suid(struct vfsmount *mnt) 4934 { 4935 /* 4936 * Foreign mounts (accessed via fchdir or through /proc 4937 * symlinks) are always treated as if they are nosuid. This 4938 * prevents namespaces from trusting potentially unsafe 4939 * suid/sgid bits, file caps, or security labels that originate 4940 * in other namespaces. 4941 */ 4942 return !(mnt->mnt_flags & MNT_NOSUID) && check_mnt(real_mount(mnt)) && 4943 current_in_userns(mnt->mnt_sb->s_user_ns); 4944 } 4945 4946 static struct ns_common *mntns_get(struct task_struct *task) 4947 { 4948 struct ns_common *ns = NULL; 4949 struct nsproxy *nsproxy; 4950 4951 task_lock(task); 4952 nsproxy = task->nsproxy; 4953 if (nsproxy) { 4954 ns = &nsproxy->mnt_ns->ns; 4955 get_mnt_ns(to_mnt_ns(ns)); 4956 } 4957 task_unlock(task); 4958 4959 return ns; 4960 } 4961 4962 static void mntns_put(struct ns_common *ns) 4963 { 4964 put_mnt_ns(to_mnt_ns(ns)); 4965 } 4966 4967 static int mntns_install(struct nsset *nsset, struct ns_common *ns) 4968 { 4969 struct nsproxy *nsproxy = nsset->nsproxy; 4970 struct fs_struct *fs = nsset->fs; 4971 struct mnt_namespace *mnt_ns = to_mnt_ns(ns), *old_mnt_ns; 4972 struct user_namespace *user_ns = nsset->cred->user_ns; 4973 struct path root; 4974 int err; 4975 4976 if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) || 4977 !ns_capable(user_ns, CAP_SYS_CHROOT) || 4978 !ns_capable(user_ns, CAP_SYS_ADMIN)) 4979 return -EPERM; 4980 4981 if (is_anon_ns(mnt_ns)) 4982 return -EINVAL; 4983 4984 if (fs->users != 1) 4985 return -EINVAL; 4986 4987 get_mnt_ns(mnt_ns); 4988 old_mnt_ns = nsproxy->mnt_ns; 4989 nsproxy->mnt_ns = mnt_ns; 4990 4991 /* Find the root */ 4992 err = vfs_path_lookup(mnt_ns->root->mnt.mnt_root, &mnt_ns->root->mnt, 4993 "/", LOOKUP_DOWN, &root); 4994 if (err) { 4995 /* revert to old namespace */ 4996 nsproxy->mnt_ns = old_mnt_ns; 4997 put_mnt_ns(mnt_ns); 4998 return err; 4999 } 5000 5001 put_mnt_ns(old_mnt_ns); 5002 5003 /* Update the pwd and root */ 5004 set_fs_pwd(fs, &root); 5005 set_fs_root(fs, &root); 5006 5007 path_put(&root); 5008 return 0; 5009 } 5010 5011 static struct user_namespace *mntns_owner(struct ns_common *ns) 5012 { 5013 return to_mnt_ns(ns)->user_ns; 5014 } 5015 5016 const struct proc_ns_operations mntns_operations = { 5017 .name = "mnt", 5018 .type = CLONE_NEWNS, 5019 .get = mntns_get, 5020 .put = mntns_put, 5021 .install = mntns_install, 5022 .owner = mntns_owner, 5023 }; 5024 5025 #ifdef CONFIG_SYSCTL 5026 static struct ctl_table fs_namespace_sysctls[] = { 5027 { 5028 .procname = "mount-max", 5029 .data = &sysctl_mount_max, 5030 .maxlen = sizeof(unsigned int), 5031 .mode = 0644, 5032 .proc_handler = proc_dointvec_minmax, 5033 .extra1 = SYSCTL_ONE, 5034 }, 5035 { } 5036 }; 5037 5038 static int __init init_fs_namespace_sysctls(void) 5039 { 5040 register_sysctl_init("fs", fs_namespace_sysctls); 5041 return 0; 5042 } 5043 fs_initcall(init_fs_namespace_sysctls); 5044 5045 #endif /* CONFIG_SYSCTL */ 5046