1 /* 2 * linux/fs/namespace.c 3 * 4 * (C) Copyright Al Viro 2000, 2001 5 * Released under GPL v2. 6 * 7 * Based on code from fs/super.c, copyright Linus Torvalds and others. 8 * Heavily rewritten. 9 */ 10 11 #include <linux/syscalls.h> 12 #include <linux/export.h> 13 #include <linux/capability.h> 14 #include <linux/mnt_namespace.h> 15 #include <linux/user_namespace.h> 16 #include <linux/namei.h> 17 #include <linux/security.h> 18 #include <linux/cred.h> 19 #include <linux/idr.h> 20 #include <linux/init.h> /* init_rootfs */ 21 #include <linux/fs_struct.h> /* get_fs_root et.al. */ 22 #include <linux/fsnotify.h> /* fsnotify_vfsmount_delete */ 23 #include <linux/uaccess.h> 24 #include <linux/proc_ns.h> 25 #include <linux/magic.h> 26 #include <linux/memblock.h> 27 #include <linux/task_work.h> 28 #include <linux/sched/task.h> 29 30 #include "pnode.h" 31 #include "internal.h" 32 33 /* Maximum number of mounts in a mount namespace */ 34 unsigned int sysctl_mount_max __read_mostly = 100000; 35 36 static unsigned int m_hash_mask __read_mostly; 37 static unsigned int m_hash_shift __read_mostly; 38 static unsigned int mp_hash_mask __read_mostly; 39 static unsigned int mp_hash_shift __read_mostly; 40 41 static __initdata unsigned long mhash_entries; 42 static int __init set_mhash_entries(char *str) 43 { 44 if (!str) 45 return 0; 46 mhash_entries = simple_strtoul(str, &str, 0); 47 return 1; 48 } 49 __setup("mhash_entries=", set_mhash_entries); 50 51 static __initdata unsigned long mphash_entries; 52 static int __init set_mphash_entries(char *str) 53 { 54 if (!str) 55 return 0; 56 mphash_entries = simple_strtoul(str, &str, 0); 57 return 1; 58 } 59 __setup("mphash_entries=", set_mphash_entries); 60 61 static u64 event; 62 static DEFINE_IDA(mnt_id_ida); 63 static DEFINE_IDA(mnt_group_ida); 64 65 static struct hlist_head *mount_hashtable __read_mostly; 66 static struct hlist_head *mountpoint_hashtable __read_mostly; 67 static struct kmem_cache *mnt_cache __read_mostly; 68 static DECLARE_RWSEM(namespace_sem); 69 70 /* /sys/fs */ 71 struct kobject *fs_kobj; 72 EXPORT_SYMBOL_GPL(fs_kobj); 73 74 /* 75 * vfsmount lock may be taken for read to prevent changes to the 76 * vfsmount hash, ie. during mountpoint lookups or walking back 77 * up the tree. 78 * 79 * It should be taken for write in all cases where the vfsmount 80 * tree or hash is modified or when a vfsmount structure is modified. 81 */ 82 __cacheline_aligned_in_smp DEFINE_SEQLOCK(mount_lock); 83 84 static inline struct hlist_head *m_hash(struct vfsmount *mnt, struct dentry *dentry) 85 { 86 unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES); 87 tmp += ((unsigned long)dentry / L1_CACHE_BYTES); 88 tmp = tmp + (tmp >> m_hash_shift); 89 return &mount_hashtable[tmp & m_hash_mask]; 90 } 91 92 static inline struct hlist_head *mp_hash(struct dentry *dentry) 93 { 94 unsigned long tmp = ((unsigned long)dentry / L1_CACHE_BYTES); 95 tmp = tmp + (tmp >> mp_hash_shift); 96 return &mountpoint_hashtable[tmp & mp_hash_mask]; 97 } 98 99 static int mnt_alloc_id(struct mount *mnt) 100 { 101 int res = ida_alloc(&mnt_id_ida, GFP_KERNEL); 102 103 if (res < 0) 104 return res; 105 mnt->mnt_id = res; 106 return 0; 107 } 108 109 static void mnt_free_id(struct mount *mnt) 110 { 111 ida_free(&mnt_id_ida, mnt->mnt_id); 112 } 113 114 /* 115 * Allocate a new peer group ID 116 */ 117 static int mnt_alloc_group_id(struct mount *mnt) 118 { 119 int res = ida_alloc_min(&mnt_group_ida, 1, GFP_KERNEL); 120 121 if (res < 0) 122 return res; 123 mnt->mnt_group_id = res; 124 return 0; 125 } 126 127 /* 128 * Release a peer group ID 129 */ 130 void mnt_release_group_id(struct mount *mnt) 131 { 132 ida_free(&mnt_group_ida, mnt->mnt_group_id); 133 mnt->mnt_group_id = 0; 134 } 135 136 /* 137 * vfsmount lock must be held for read 138 */ 139 static inline void mnt_add_count(struct mount *mnt, int n) 140 { 141 #ifdef CONFIG_SMP 142 this_cpu_add(mnt->mnt_pcp->mnt_count, n); 143 #else 144 preempt_disable(); 145 mnt->mnt_count += n; 146 preempt_enable(); 147 #endif 148 } 149 150 /* 151 * vfsmount lock must be held for write 152 */ 153 unsigned int mnt_get_count(struct mount *mnt) 154 { 155 #ifdef CONFIG_SMP 156 unsigned int count = 0; 157 int cpu; 158 159 for_each_possible_cpu(cpu) { 160 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count; 161 } 162 163 return count; 164 #else 165 return mnt->mnt_count; 166 #endif 167 } 168 169 static void drop_mountpoint(struct fs_pin *p) 170 { 171 struct mount *m = container_of(p, struct mount, mnt_umount); 172 dput(m->mnt_ex_mountpoint); 173 pin_remove(p); 174 mntput(&m->mnt); 175 } 176 177 static struct mount *alloc_vfsmnt(const char *name) 178 { 179 struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL); 180 if (mnt) { 181 int err; 182 183 err = mnt_alloc_id(mnt); 184 if (err) 185 goto out_free_cache; 186 187 if (name) { 188 mnt->mnt_devname = kstrdup_const(name, GFP_KERNEL); 189 if (!mnt->mnt_devname) 190 goto out_free_id; 191 } 192 193 #ifdef CONFIG_SMP 194 mnt->mnt_pcp = alloc_percpu(struct mnt_pcp); 195 if (!mnt->mnt_pcp) 196 goto out_free_devname; 197 198 this_cpu_add(mnt->mnt_pcp->mnt_count, 1); 199 #else 200 mnt->mnt_count = 1; 201 mnt->mnt_writers = 0; 202 #endif 203 204 INIT_HLIST_NODE(&mnt->mnt_hash); 205 INIT_LIST_HEAD(&mnt->mnt_child); 206 INIT_LIST_HEAD(&mnt->mnt_mounts); 207 INIT_LIST_HEAD(&mnt->mnt_list); 208 INIT_LIST_HEAD(&mnt->mnt_expire); 209 INIT_LIST_HEAD(&mnt->mnt_share); 210 INIT_LIST_HEAD(&mnt->mnt_slave_list); 211 INIT_LIST_HEAD(&mnt->mnt_slave); 212 INIT_HLIST_NODE(&mnt->mnt_mp_list); 213 INIT_LIST_HEAD(&mnt->mnt_umounting); 214 init_fs_pin(&mnt->mnt_umount, drop_mountpoint); 215 } 216 return mnt; 217 218 #ifdef CONFIG_SMP 219 out_free_devname: 220 kfree_const(mnt->mnt_devname); 221 #endif 222 out_free_id: 223 mnt_free_id(mnt); 224 out_free_cache: 225 kmem_cache_free(mnt_cache, mnt); 226 return NULL; 227 } 228 229 /* 230 * Most r/o checks on a fs are for operations that take 231 * discrete amounts of time, like a write() or unlink(). 232 * We must keep track of when those operations start 233 * (for permission checks) and when they end, so that 234 * we can determine when writes are able to occur to 235 * a filesystem. 236 */ 237 /* 238 * __mnt_is_readonly: check whether a mount is read-only 239 * @mnt: the mount to check for its write status 240 * 241 * This shouldn't be used directly ouside of the VFS. 242 * It does not guarantee that the filesystem will stay 243 * r/w, just that it is right *now*. This can not and 244 * should not be used in place of IS_RDONLY(inode). 245 * mnt_want/drop_write() will _keep_ the filesystem 246 * r/w. 247 */ 248 int __mnt_is_readonly(struct vfsmount *mnt) 249 { 250 if (mnt->mnt_flags & MNT_READONLY) 251 return 1; 252 if (sb_rdonly(mnt->mnt_sb)) 253 return 1; 254 return 0; 255 } 256 EXPORT_SYMBOL_GPL(__mnt_is_readonly); 257 258 static inline void mnt_inc_writers(struct mount *mnt) 259 { 260 #ifdef CONFIG_SMP 261 this_cpu_inc(mnt->mnt_pcp->mnt_writers); 262 #else 263 mnt->mnt_writers++; 264 #endif 265 } 266 267 static inline void mnt_dec_writers(struct mount *mnt) 268 { 269 #ifdef CONFIG_SMP 270 this_cpu_dec(mnt->mnt_pcp->mnt_writers); 271 #else 272 mnt->mnt_writers--; 273 #endif 274 } 275 276 static unsigned int mnt_get_writers(struct mount *mnt) 277 { 278 #ifdef CONFIG_SMP 279 unsigned int count = 0; 280 int cpu; 281 282 for_each_possible_cpu(cpu) { 283 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers; 284 } 285 286 return count; 287 #else 288 return mnt->mnt_writers; 289 #endif 290 } 291 292 static int mnt_is_readonly(struct vfsmount *mnt) 293 { 294 if (mnt->mnt_sb->s_readonly_remount) 295 return 1; 296 /* Order wrt setting s_flags/s_readonly_remount in do_remount() */ 297 smp_rmb(); 298 return __mnt_is_readonly(mnt); 299 } 300 301 /* 302 * Most r/o & frozen checks on a fs are for operations that take discrete 303 * amounts of time, like a write() or unlink(). We must keep track of when 304 * those operations start (for permission checks) and when they end, so that we 305 * can determine when writes are able to occur to a filesystem. 306 */ 307 /** 308 * __mnt_want_write - get write access to a mount without freeze protection 309 * @m: the mount on which to take a write 310 * 311 * This tells the low-level filesystem that a write is about to be performed to 312 * it, and makes sure that writes are allowed (mnt it read-write) before 313 * returning success. This operation does not protect against filesystem being 314 * frozen. When the write operation is finished, __mnt_drop_write() must be 315 * called. This is effectively a refcount. 316 */ 317 int __mnt_want_write(struct vfsmount *m) 318 { 319 struct mount *mnt = real_mount(m); 320 int ret = 0; 321 322 preempt_disable(); 323 mnt_inc_writers(mnt); 324 /* 325 * The store to mnt_inc_writers must be visible before we pass 326 * MNT_WRITE_HOLD loop below, so that the slowpath can see our 327 * incremented count after it has set MNT_WRITE_HOLD. 328 */ 329 smp_mb(); 330 while (READ_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD) 331 cpu_relax(); 332 /* 333 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will 334 * be set to match its requirements. So we must not load that until 335 * MNT_WRITE_HOLD is cleared. 336 */ 337 smp_rmb(); 338 if (mnt_is_readonly(m)) { 339 mnt_dec_writers(mnt); 340 ret = -EROFS; 341 } 342 preempt_enable(); 343 344 return ret; 345 } 346 347 /** 348 * mnt_want_write - get write access to a mount 349 * @m: the mount on which to take a write 350 * 351 * This tells the low-level filesystem that a write is about to be performed to 352 * it, and makes sure that writes are allowed (mount is read-write, filesystem 353 * is not frozen) before returning success. When the write operation is 354 * finished, mnt_drop_write() must be called. This is effectively a refcount. 355 */ 356 int mnt_want_write(struct vfsmount *m) 357 { 358 int ret; 359 360 sb_start_write(m->mnt_sb); 361 ret = __mnt_want_write(m); 362 if (ret) 363 sb_end_write(m->mnt_sb); 364 return ret; 365 } 366 EXPORT_SYMBOL_GPL(mnt_want_write); 367 368 /** 369 * mnt_clone_write - get write access to a mount 370 * @mnt: the mount on which to take a write 371 * 372 * This is effectively like mnt_want_write, except 373 * it must only be used to take an extra write reference 374 * on a mountpoint that we already know has a write reference 375 * on it. This allows some optimisation. 376 * 377 * After finished, mnt_drop_write must be called as usual to 378 * drop the reference. 379 */ 380 int mnt_clone_write(struct vfsmount *mnt) 381 { 382 /* superblock may be r/o */ 383 if (__mnt_is_readonly(mnt)) 384 return -EROFS; 385 preempt_disable(); 386 mnt_inc_writers(real_mount(mnt)); 387 preempt_enable(); 388 return 0; 389 } 390 EXPORT_SYMBOL_GPL(mnt_clone_write); 391 392 /** 393 * __mnt_want_write_file - get write access to a file's mount 394 * @file: the file who's mount on which to take a write 395 * 396 * This is like __mnt_want_write, but it takes a file and can 397 * do some optimisations if the file is open for write already 398 */ 399 int __mnt_want_write_file(struct file *file) 400 { 401 if (!(file->f_mode & FMODE_WRITER)) 402 return __mnt_want_write(file->f_path.mnt); 403 else 404 return mnt_clone_write(file->f_path.mnt); 405 } 406 407 /** 408 * mnt_want_write_file - get write access to a file's mount 409 * @file: the file who's mount on which to take a write 410 * 411 * This is like mnt_want_write, but it takes a file and can 412 * do some optimisations if the file is open for write already 413 */ 414 int mnt_want_write_file(struct file *file) 415 { 416 int ret; 417 418 sb_start_write(file_inode(file)->i_sb); 419 ret = __mnt_want_write_file(file); 420 if (ret) 421 sb_end_write(file_inode(file)->i_sb); 422 return ret; 423 } 424 EXPORT_SYMBOL_GPL(mnt_want_write_file); 425 426 /** 427 * __mnt_drop_write - give up write access to a mount 428 * @mnt: the mount on which to give up write access 429 * 430 * Tells the low-level filesystem that we are done 431 * performing writes to it. Must be matched with 432 * __mnt_want_write() call above. 433 */ 434 void __mnt_drop_write(struct vfsmount *mnt) 435 { 436 preempt_disable(); 437 mnt_dec_writers(real_mount(mnt)); 438 preempt_enable(); 439 } 440 441 /** 442 * mnt_drop_write - give up write access to a mount 443 * @mnt: the mount on which to give up write access 444 * 445 * Tells the low-level filesystem that we are done performing writes to it and 446 * also allows filesystem to be frozen again. Must be matched with 447 * mnt_want_write() call above. 448 */ 449 void mnt_drop_write(struct vfsmount *mnt) 450 { 451 __mnt_drop_write(mnt); 452 sb_end_write(mnt->mnt_sb); 453 } 454 EXPORT_SYMBOL_GPL(mnt_drop_write); 455 456 void __mnt_drop_write_file(struct file *file) 457 { 458 __mnt_drop_write(file->f_path.mnt); 459 } 460 461 void mnt_drop_write_file(struct file *file) 462 { 463 __mnt_drop_write_file(file); 464 sb_end_write(file_inode(file)->i_sb); 465 } 466 EXPORT_SYMBOL(mnt_drop_write_file); 467 468 static int mnt_make_readonly(struct mount *mnt) 469 { 470 int ret = 0; 471 472 lock_mount_hash(); 473 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD; 474 /* 475 * After storing MNT_WRITE_HOLD, we'll read the counters. This store 476 * should be visible before we do. 477 */ 478 smp_mb(); 479 480 /* 481 * With writers on hold, if this value is zero, then there are 482 * definitely no active writers (although held writers may subsequently 483 * increment the count, they'll have to wait, and decrement it after 484 * seeing MNT_READONLY). 485 * 486 * It is OK to have counter incremented on one CPU and decremented on 487 * another: the sum will add up correctly. The danger would be when we 488 * sum up each counter, if we read a counter before it is incremented, 489 * but then read another CPU's count which it has been subsequently 490 * decremented from -- we would see more decrements than we should. 491 * MNT_WRITE_HOLD protects against this scenario, because 492 * mnt_want_write first increments count, then smp_mb, then spins on 493 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while 494 * we're counting up here. 495 */ 496 if (mnt_get_writers(mnt) > 0) 497 ret = -EBUSY; 498 else 499 mnt->mnt.mnt_flags |= MNT_READONLY; 500 /* 501 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers 502 * that become unheld will see MNT_READONLY. 503 */ 504 smp_wmb(); 505 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD; 506 unlock_mount_hash(); 507 return ret; 508 } 509 510 static void __mnt_unmake_readonly(struct mount *mnt) 511 { 512 lock_mount_hash(); 513 mnt->mnt.mnt_flags &= ~MNT_READONLY; 514 unlock_mount_hash(); 515 } 516 517 int sb_prepare_remount_readonly(struct super_block *sb) 518 { 519 struct mount *mnt; 520 int err = 0; 521 522 /* Racy optimization. Recheck the counter under MNT_WRITE_HOLD */ 523 if (atomic_long_read(&sb->s_remove_count)) 524 return -EBUSY; 525 526 lock_mount_hash(); 527 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) { 528 if (!(mnt->mnt.mnt_flags & MNT_READONLY)) { 529 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD; 530 smp_mb(); 531 if (mnt_get_writers(mnt) > 0) { 532 err = -EBUSY; 533 break; 534 } 535 } 536 } 537 if (!err && atomic_long_read(&sb->s_remove_count)) 538 err = -EBUSY; 539 540 if (!err) { 541 sb->s_readonly_remount = 1; 542 smp_wmb(); 543 } 544 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) { 545 if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD) 546 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD; 547 } 548 unlock_mount_hash(); 549 550 return err; 551 } 552 553 static void free_vfsmnt(struct mount *mnt) 554 { 555 kfree_const(mnt->mnt_devname); 556 #ifdef CONFIG_SMP 557 free_percpu(mnt->mnt_pcp); 558 #endif 559 kmem_cache_free(mnt_cache, mnt); 560 } 561 562 static void delayed_free_vfsmnt(struct rcu_head *head) 563 { 564 free_vfsmnt(container_of(head, struct mount, mnt_rcu)); 565 } 566 567 /* call under rcu_read_lock */ 568 int __legitimize_mnt(struct vfsmount *bastard, unsigned seq) 569 { 570 struct mount *mnt; 571 if (read_seqretry(&mount_lock, seq)) 572 return 1; 573 if (bastard == NULL) 574 return 0; 575 mnt = real_mount(bastard); 576 mnt_add_count(mnt, 1); 577 smp_mb(); // see mntput_no_expire() 578 if (likely(!read_seqretry(&mount_lock, seq))) 579 return 0; 580 if (bastard->mnt_flags & MNT_SYNC_UMOUNT) { 581 mnt_add_count(mnt, -1); 582 return 1; 583 } 584 lock_mount_hash(); 585 if (unlikely(bastard->mnt_flags & MNT_DOOMED)) { 586 mnt_add_count(mnt, -1); 587 unlock_mount_hash(); 588 return 1; 589 } 590 unlock_mount_hash(); 591 /* caller will mntput() */ 592 return -1; 593 } 594 595 /* call under rcu_read_lock */ 596 bool legitimize_mnt(struct vfsmount *bastard, unsigned seq) 597 { 598 int res = __legitimize_mnt(bastard, seq); 599 if (likely(!res)) 600 return true; 601 if (unlikely(res < 0)) { 602 rcu_read_unlock(); 603 mntput(bastard); 604 rcu_read_lock(); 605 } 606 return false; 607 } 608 609 /* 610 * find the first mount at @dentry on vfsmount @mnt. 611 * call under rcu_read_lock() 612 */ 613 struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry) 614 { 615 struct hlist_head *head = m_hash(mnt, dentry); 616 struct mount *p; 617 618 hlist_for_each_entry_rcu(p, head, mnt_hash) 619 if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry) 620 return p; 621 return NULL; 622 } 623 624 /* 625 * lookup_mnt - Return the first child mount mounted at path 626 * 627 * "First" means first mounted chronologically. If you create the 628 * following mounts: 629 * 630 * mount /dev/sda1 /mnt 631 * mount /dev/sda2 /mnt 632 * mount /dev/sda3 /mnt 633 * 634 * Then lookup_mnt() on the base /mnt dentry in the root mount will 635 * return successively the root dentry and vfsmount of /dev/sda1, then 636 * /dev/sda2, then /dev/sda3, then NULL. 637 * 638 * lookup_mnt takes a reference to the found vfsmount. 639 */ 640 struct vfsmount *lookup_mnt(const struct path *path) 641 { 642 struct mount *child_mnt; 643 struct vfsmount *m; 644 unsigned seq; 645 646 rcu_read_lock(); 647 do { 648 seq = read_seqbegin(&mount_lock); 649 child_mnt = __lookup_mnt(path->mnt, path->dentry); 650 m = child_mnt ? &child_mnt->mnt : NULL; 651 } while (!legitimize_mnt(m, seq)); 652 rcu_read_unlock(); 653 return m; 654 } 655 656 /* 657 * __is_local_mountpoint - Test to see if dentry is a mountpoint in the 658 * current mount namespace. 659 * 660 * The common case is dentries are not mountpoints at all and that 661 * test is handled inline. For the slow case when we are actually 662 * dealing with a mountpoint of some kind, walk through all of the 663 * mounts in the current mount namespace and test to see if the dentry 664 * is a mountpoint. 665 * 666 * The mount_hashtable is not usable in the context because we 667 * need to identify all mounts that may be in the current mount 668 * namespace not just a mount that happens to have some specified 669 * parent mount. 670 */ 671 bool __is_local_mountpoint(struct dentry *dentry) 672 { 673 struct mnt_namespace *ns = current->nsproxy->mnt_ns; 674 struct mount *mnt; 675 bool is_covered = false; 676 677 if (!d_mountpoint(dentry)) 678 goto out; 679 680 down_read(&namespace_sem); 681 list_for_each_entry(mnt, &ns->list, mnt_list) { 682 is_covered = (mnt->mnt_mountpoint == dentry); 683 if (is_covered) 684 break; 685 } 686 up_read(&namespace_sem); 687 out: 688 return is_covered; 689 } 690 691 static struct mountpoint *lookup_mountpoint(struct dentry *dentry) 692 { 693 struct hlist_head *chain = mp_hash(dentry); 694 struct mountpoint *mp; 695 696 hlist_for_each_entry(mp, chain, m_hash) { 697 if (mp->m_dentry == dentry) { 698 /* might be worth a WARN_ON() */ 699 if (d_unlinked(dentry)) 700 return ERR_PTR(-ENOENT); 701 mp->m_count++; 702 return mp; 703 } 704 } 705 return NULL; 706 } 707 708 static struct mountpoint *get_mountpoint(struct dentry *dentry) 709 { 710 struct mountpoint *mp, *new = NULL; 711 int ret; 712 713 if (d_mountpoint(dentry)) { 714 mountpoint: 715 read_seqlock_excl(&mount_lock); 716 mp = lookup_mountpoint(dentry); 717 read_sequnlock_excl(&mount_lock); 718 if (mp) 719 goto done; 720 } 721 722 if (!new) 723 new = kmalloc(sizeof(struct mountpoint), GFP_KERNEL); 724 if (!new) 725 return ERR_PTR(-ENOMEM); 726 727 728 /* Exactly one processes may set d_mounted */ 729 ret = d_set_mounted(dentry); 730 731 /* Someone else set d_mounted? */ 732 if (ret == -EBUSY) 733 goto mountpoint; 734 735 /* The dentry is not available as a mountpoint? */ 736 mp = ERR_PTR(ret); 737 if (ret) 738 goto done; 739 740 /* Add the new mountpoint to the hash table */ 741 read_seqlock_excl(&mount_lock); 742 new->m_dentry = dentry; 743 new->m_count = 1; 744 hlist_add_head(&new->m_hash, mp_hash(dentry)); 745 INIT_HLIST_HEAD(&new->m_list); 746 read_sequnlock_excl(&mount_lock); 747 748 mp = new; 749 new = NULL; 750 done: 751 kfree(new); 752 return mp; 753 } 754 755 static void put_mountpoint(struct mountpoint *mp) 756 { 757 if (!--mp->m_count) { 758 struct dentry *dentry = mp->m_dentry; 759 BUG_ON(!hlist_empty(&mp->m_list)); 760 spin_lock(&dentry->d_lock); 761 dentry->d_flags &= ~DCACHE_MOUNTED; 762 spin_unlock(&dentry->d_lock); 763 hlist_del(&mp->m_hash); 764 kfree(mp); 765 } 766 } 767 768 static inline int check_mnt(struct mount *mnt) 769 { 770 return mnt->mnt_ns == current->nsproxy->mnt_ns; 771 } 772 773 /* 774 * vfsmount lock must be held for write 775 */ 776 static void touch_mnt_namespace(struct mnt_namespace *ns) 777 { 778 if (ns) { 779 ns->event = ++event; 780 wake_up_interruptible(&ns->poll); 781 } 782 } 783 784 /* 785 * vfsmount lock must be held for write 786 */ 787 static void __touch_mnt_namespace(struct mnt_namespace *ns) 788 { 789 if (ns && ns->event != event) { 790 ns->event = event; 791 wake_up_interruptible(&ns->poll); 792 } 793 } 794 795 /* 796 * vfsmount lock must be held for write 797 */ 798 static void unhash_mnt(struct mount *mnt) 799 { 800 mnt->mnt_parent = mnt; 801 mnt->mnt_mountpoint = mnt->mnt.mnt_root; 802 list_del_init(&mnt->mnt_child); 803 hlist_del_init_rcu(&mnt->mnt_hash); 804 hlist_del_init(&mnt->mnt_mp_list); 805 put_mountpoint(mnt->mnt_mp); 806 mnt->mnt_mp = NULL; 807 } 808 809 /* 810 * vfsmount lock must be held for write 811 */ 812 static void detach_mnt(struct mount *mnt, struct path *old_path) 813 { 814 old_path->dentry = mnt->mnt_mountpoint; 815 old_path->mnt = &mnt->mnt_parent->mnt; 816 unhash_mnt(mnt); 817 } 818 819 /* 820 * vfsmount lock must be held for write 821 */ 822 static void umount_mnt(struct mount *mnt) 823 { 824 /* old mountpoint will be dropped when we can do that */ 825 mnt->mnt_ex_mountpoint = mnt->mnt_mountpoint; 826 unhash_mnt(mnt); 827 } 828 829 /* 830 * vfsmount lock must be held for write 831 */ 832 void mnt_set_mountpoint(struct mount *mnt, 833 struct mountpoint *mp, 834 struct mount *child_mnt) 835 { 836 mp->m_count++; 837 mnt_add_count(mnt, 1); /* essentially, that's mntget */ 838 child_mnt->mnt_mountpoint = dget(mp->m_dentry); 839 child_mnt->mnt_parent = mnt; 840 child_mnt->mnt_mp = mp; 841 hlist_add_head(&child_mnt->mnt_mp_list, &mp->m_list); 842 } 843 844 static void __attach_mnt(struct mount *mnt, struct mount *parent) 845 { 846 hlist_add_head_rcu(&mnt->mnt_hash, 847 m_hash(&parent->mnt, mnt->mnt_mountpoint)); 848 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts); 849 } 850 851 /* 852 * vfsmount lock must be held for write 853 */ 854 static void attach_mnt(struct mount *mnt, 855 struct mount *parent, 856 struct mountpoint *mp) 857 { 858 mnt_set_mountpoint(parent, mp, mnt); 859 __attach_mnt(mnt, parent); 860 } 861 862 void mnt_change_mountpoint(struct mount *parent, struct mountpoint *mp, struct mount *mnt) 863 { 864 struct mountpoint *old_mp = mnt->mnt_mp; 865 struct dentry *old_mountpoint = mnt->mnt_mountpoint; 866 struct mount *old_parent = mnt->mnt_parent; 867 868 list_del_init(&mnt->mnt_child); 869 hlist_del_init(&mnt->mnt_mp_list); 870 hlist_del_init_rcu(&mnt->mnt_hash); 871 872 attach_mnt(mnt, parent, mp); 873 874 put_mountpoint(old_mp); 875 876 /* 877 * Safely avoid even the suggestion this code might sleep or 878 * lock the mount hash by taking advantage of the knowledge that 879 * mnt_change_mountpoint will not release the final reference 880 * to a mountpoint. 881 * 882 * During mounting, the mount passed in as the parent mount will 883 * continue to use the old mountpoint and during unmounting, the 884 * old mountpoint will continue to exist until namespace_unlock, 885 * which happens well after mnt_change_mountpoint. 886 */ 887 spin_lock(&old_mountpoint->d_lock); 888 old_mountpoint->d_lockref.count--; 889 spin_unlock(&old_mountpoint->d_lock); 890 891 mnt_add_count(old_parent, -1); 892 } 893 894 /* 895 * vfsmount lock must be held for write 896 */ 897 static void commit_tree(struct mount *mnt) 898 { 899 struct mount *parent = mnt->mnt_parent; 900 struct mount *m; 901 LIST_HEAD(head); 902 struct mnt_namespace *n = parent->mnt_ns; 903 904 BUG_ON(parent == mnt); 905 906 list_add_tail(&head, &mnt->mnt_list); 907 list_for_each_entry(m, &head, mnt_list) 908 m->mnt_ns = n; 909 910 list_splice(&head, n->list.prev); 911 912 n->mounts += n->pending_mounts; 913 n->pending_mounts = 0; 914 915 __attach_mnt(mnt, parent); 916 touch_mnt_namespace(n); 917 } 918 919 static struct mount *next_mnt(struct mount *p, struct mount *root) 920 { 921 struct list_head *next = p->mnt_mounts.next; 922 if (next == &p->mnt_mounts) { 923 while (1) { 924 if (p == root) 925 return NULL; 926 next = p->mnt_child.next; 927 if (next != &p->mnt_parent->mnt_mounts) 928 break; 929 p = p->mnt_parent; 930 } 931 } 932 return list_entry(next, struct mount, mnt_child); 933 } 934 935 static struct mount *skip_mnt_tree(struct mount *p) 936 { 937 struct list_head *prev = p->mnt_mounts.prev; 938 while (prev != &p->mnt_mounts) { 939 p = list_entry(prev, struct mount, mnt_child); 940 prev = p->mnt_mounts.prev; 941 } 942 return p; 943 } 944 945 struct vfsmount * 946 vfs_kern_mount(struct file_system_type *type, int flags, const char *name, void *data) 947 { 948 struct mount *mnt; 949 struct dentry *root; 950 951 if (!type) 952 return ERR_PTR(-ENODEV); 953 954 mnt = alloc_vfsmnt(name); 955 if (!mnt) 956 return ERR_PTR(-ENOMEM); 957 958 if (flags & SB_KERNMOUNT) 959 mnt->mnt.mnt_flags = MNT_INTERNAL; 960 961 root = mount_fs(type, flags, name, data); 962 if (IS_ERR(root)) { 963 mnt_free_id(mnt); 964 free_vfsmnt(mnt); 965 return ERR_CAST(root); 966 } 967 968 mnt->mnt.mnt_root = root; 969 mnt->mnt.mnt_sb = root->d_sb; 970 mnt->mnt_mountpoint = mnt->mnt.mnt_root; 971 mnt->mnt_parent = mnt; 972 lock_mount_hash(); 973 list_add_tail(&mnt->mnt_instance, &root->d_sb->s_mounts); 974 unlock_mount_hash(); 975 return &mnt->mnt; 976 } 977 EXPORT_SYMBOL_GPL(vfs_kern_mount); 978 979 struct vfsmount * 980 vfs_submount(const struct dentry *mountpoint, struct file_system_type *type, 981 const char *name, void *data) 982 { 983 /* Until it is worked out how to pass the user namespace 984 * through from the parent mount to the submount don't support 985 * unprivileged mounts with submounts. 986 */ 987 if (mountpoint->d_sb->s_user_ns != &init_user_ns) 988 return ERR_PTR(-EPERM); 989 990 return vfs_kern_mount(type, SB_SUBMOUNT, name, data); 991 } 992 EXPORT_SYMBOL_GPL(vfs_submount); 993 994 static struct mount *clone_mnt(struct mount *old, struct dentry *root, 995 int flag) 996 { 997 struct super_block *sb = old->mnt.mnt_sb; 998 struct mount *mnt; 999 int err; 1000 1001 mnt = alloc_vfsmnt(old->mnt_devname); 1002 if (!mnt) 1003 return ERR_PTR(-ENOMEM); 1004 1005 if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE)) 1006 mnt->mnt_group_id = 0; /* not a peer of original */ 1007 else 1008 mnt->mnt_group_id = old->mnt_group_id; 1009 1010 if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) { 1011 err = mnt_alloc_group_id(mnt); 1012 if (err) 1013 goto out_free; 1014 } 1015 1016 mnt->mnt.mnt_flags = old->mnt.mnt_flags; 1017 mnt->mnt.mnt_flags &= ~(MNT_WRITE_HOLD|MNT_MARKED|MNT_INTERNAL); 1018 /* Don't allow unprivileged users to change mount flags */ 1019 if (flag & CL_UNPRIVILEGED) { 1020 mnt->mnt.mnt_flags |= MNT_LOCK_ATIME; 1021 1022 if (mnt->mnt.mnt_flags & MNT_READONLY) 1023 mnt->mnt.mnt_flags |= MNT_LOCK_READONLY; 1024 1025 if (mnt->mnt.mnt_flags & MNT_NODEV) 1026 mnt->mnt.mnt_flags |= MNT_LOCK_NODEV; 1027 1028 if (mnt->mnt.mnt_flags & MNT_NOSUID) 1029 mnt->mnt.mnt_flags |= MNT_LOCK_NOSUID; 1030 1031 if (mnt->mnt.mnt_flags & MNT_NOEXEC) 1032 mnt->mnt.mnt_flags |= MNT_LOCK_NOEXEC; 1033 } 1034 1035 /* Don't allow unprivileged users to reveal what is under a mount */ 1036 if ((flag & CL_UNPRIVILEGED) && 1037 (!(flag & CL_EXPIRE) || list_empty(&old->mnt_expire))) 1038 mnt->mnt.mnt_flags |= MNT_LOCKED; 1039 1040 atomic_inc(&sb->s_active); 1041 mnt->mnt.mnt_sb = sb; 1042 mnt->mnt.mnt_root = dget(root); 1043 mnt->mnt_mountpoint = mnt->mnt.mnt_root; 1044 mnt->mnt_parent = mnt; 1045 lock_mount_hash(); 1046 list_add_tail(&mnt->mnt_instance, &sb->s_mounts); 1047 unlock_mount_hash(); 1048 1049 if ((flag & CL_SLAVE) || 1050 ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) { 1051 list_add(&mnt->mnt_slave, &old->mnt_slave_list); 1052 mnt->mnt_master = old; 1053 CLEAR_MNT_SHARED(mnt); 1054 } else if (!(flag & CL_PRIVATE)) { 1055 if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old)) 1056 list_add(&mnt->mnt_share, &old->mnt_share); 1057 if (IS_MNT_SLAVE(old)) 1058 list_add(&mnt->mnt_slave, &old->mnt_slave); 1059 mnt->mnt_master = old->mnt_master; 1060 } else { 1061 CLEAR_MNT_SHARED(mnt); 1062 } 1063 if (flag & CL_MAKE_SHARED) 1064 set_mnt_shared(mnt); 1065 1066 /* stick the duplicate mount on the same expiry list 1067 * as the original if that was on one */ 1068 if (flag & CL_EXPIRE) { 1069 if (!list_empty(&old->mnt_expire)) 1070 list_add(&mnt->mnt_expire, &old->mnt_expire); 1071 } 1072 1073 return mnt; 1074 1075 out_free: 1076 mnt_free_id(mnt); 1077 free_vfsmnt(mnt); 1078 return ERR_PTR(err); 1079 } 1080 1081 static void cleanup_mnt(struct mount *mnt) 1082 { 1083 /* 1084 * This probably indicates that somebody messed 1085 * up a mnt_want/drop_write() pair. If this 1086 * happens, the filesystem was probably unable 1087 * to make r/w->r/o transitions. 1088 */ 1089 /* 1090 * The locking used to deal with mnt_count decrement provides barriers, 1091 * so mnt_get_writers() below is safe. 1092 */ 1093 WARN_ON(mnt_get_writers(mnt)); 1094 if (unlikely(mnt->mnt_pins.first)) 1095 mnt_pin_kill(mnt); 1096 fsnotify_vfsmount_delete(&mnt->mnt); 1097 dput(mnt->mnt.mnt_root); 1098 deactivate_super(mnt->mnt.mnt_sb); 1099 mnt_free_id(mnt); 1100 call_rcu(&mnt->mnt_rcu, delayed_free_vfsmnt); 1101 } 1102 1103 static void __cleanup_mnt(struct rcu_head *head) 1104 { 1105 cleanup_mnt(container_of(head, struct mount, mnt_rcu)); 1106 } 1107 1108 static LLIST_HEAD(delayed_mntput_list); 1109 static void delayed_mntput(struct work_struct *unused) 1110 { 1111 struct llist_node *node = llist_del_all(&delayed_mntput_list); 1112 struct mount *m, *t; 1113 1114 llist_for_each_entry_safe(m, t, node, mnt_llist) 1115 cleanup_mnt(m); 1116 } 1117 static DECLARE_DELAYED_WORK(delayed_mntput_work, delayed_mntput); 1118 1119 static void mntput_no_expire(struct mount *mnt) 1120 { 1121 rcu_read_lock(); 1122 if (likely(READ_ONCE(mnt->mnt_ns))) { 1123 /* 1124 * Since we don't do lock_mount_hash() here, 1125 * ->mnt_ns can change under us. However, if it's 1126 * non-NULL, then there's a reference that won't 1127 * be dropped until after an RCU delay done after 1128 * turning ->mnt_ns NULL. So if we observe it 1129 * non-NULL under rcu_read_lock(), the reference 1130 * we are dropping is not the final one. 1131 */ 1132 mnt_add_count(mnt, -1); 1133 rcu_read_unlock(); 1134 return; 1135 } 1136 lock_mount_hash(); 1137 /* 1138 * make sure that if __legitimize_mnt() has not seen us grab 1139 * mount_lock, we'll see their refcount increment here. 1140 */ 1141 smp_mb(); 1142 mnt_add_count(mnt, -1); 1143 if (mnt_get_count(mnt)) { 1144 rcu_read_unlock(); 1145 unlock_mount_hash(); 1146 return; 1147 } 1148 if (unlikely(mnt->mnt.mnt_flags & MNT_DOOMED)) { 1149 rcu_read_unlock(); 1150 unlock_mount_hash(); 1151 return; 1152 } 1153 mnt->mnt.mnt_flags |= MNT_DOOMED; 1154 rcu_read_unlock(); 1155 1156 list_del(&mnt->mnt_instance); 1157 1158 if (unlikely(!list_empty(&mnt->mnt_mounts))) { 1159 struct mount *p, *tmp; 1160 list_for_each_entry_safe(p, tmp, &mnt->mnt_mounts, mnt_child) { 1161 umount_mnt(p); 1162 } 1163 } 1164 unlock_mount_hash(); 1165 1166 if (likely(!(mnt->mnt.mnt_flags & MNT_INTERNAL))) { 1167 struct task_struct *task = current; 1168 if (likely(!(task->flags & PF_KTHREAD))) { 1169 init_task_work(&mnt->mnt_rcu, __cleanup_mnt); 1170 if (!task_work_add(task, &mnt->mnt_rcu, true)) 1171 return; 1172 } 1173 if (llist_add(&mnt->mnt_llist, &delayed_mntput_list)) 1174 schedule_delayed_work(&delayed_mntput_work, 1); 1175 return; 1176 } 1177 cleanup_mnt(mnt); 1178 } 1179 1180 void mntput(struct vfsmount *mnt) 1181 { 1182 if (mnt) { 1183 struct mount *m = real_mount(mnt); 1184 /* avoid cacheline pingpong, hope gcc doesn't get "smart" */ 1185 if (unlikely(m->mnt_expiry_mark)) 1186 m->mnt_expiry_mark = 0; 1187 mntput_no_expire(m); 1188 } 1189 } 1190 EXPORT_SYMBOL(mntput); 1191 1192 struct vfsmount *mntget(struct vfsmount *mnt) 1193 { 1194 if (mnt) 1195 mnt_add_count(real_mount(mnt), 1); 1196 return mnt; 1197 } 1198 EXPORT_SYMBOL(mntget); 1199 1200 /* path_is_mountpoint() - Check if path is a mount in the current 1201 * namespace. 1202 * 1203 * d_mountpoint() can only be used reliably to establish if a dentry is 1204 * not mounted in any namespace and that common case is handled inline. 1205 * d_mountpoint() isn't aware of the possibility there may be multiple 1206 * mounts using a given dentry in a different namespace. This function 1207 * checks if the passed in path is a mountpoint rather than the dentry 1208 * alone. 1209 */ 1210 bool path_is_mountpoint(const struct path *path) 1211 { 1212 unsigned seq; 1213 bool res; 1214 1215 if (!d_mountpoint(path->dentry)) 1216 return false; 1217 1218 rcu_read_lock(); 1219 do { 1220 seq = read_seqbegin(&mount_lock); 1221 res = __path_is_mountpoint(path); 1222 } while (read_seqretry(&mount_lock, seq)); 1223 rcu_read_unlock(); 1224 1225 return res; 1226 } 1227 EXPORT_SYMBOL(path_is_mountpoint); 1228 1229 struct vfsmount *mnt_clone_internal(const struct path *path) 1230 { 1231 struct mount *p; 1232 p = clone_mnt(real_mount(path->mnt), path->dentry, CL_PRIVATE); 1233 if (IS_ERR(p)) 1234 return ERR_CAST(p); 1235 p->mnt.mnt_flags |= MNT_INTERNAL; 1236 return &p->mnt; 1237 } 1238 1239 #ifdef CONFIG_PROC_FS 1240 /* iterator; we want it to have access to namespace_sem, thus here... */ 1241 static void *m_start(struct seq_file *m, loff_t *pos) 1242 { 1243 struct proc_mounts *p = m->private; 1244 1245 down_read(&namespace_sem); 1246 if (p->cached_event == p->ns->event) { 1247 void *v = p->cached_mount; 1248 if (*pos == p->cached_index) 1249 return v; 1250 if (*pos == p->cached_index + 1) { 1251 v = seq_list_next(v, &p->ns->list, &p->cached_index); 1252 return p->cached_mount = v; 1253 } 1254 } 1255 1256 p->cached_event = p->ns->event; 1257 p->cached_mount = seq_list_start(&p->ns->list, *pos); 1258 p->cached_index = *pos; 1259 return p->cached_mount; 1260 } 1261 1262 static void *m_next(struct seq_file *m, void *v, loff_t *pos) 1263 { 1264 struct proc_mounts *p = m->private; 1265 1266 p->cached_mount = seq_list_next(v, &p->ns->list, pos); 1267 p->cached_index = *pos; 1268 return p->cached_mount; 1269 } 1270 1271 static void m_stop(struct seq_file *m, void *v) 1272 { 1273 up_read(&namespace_sem); 1274 } 1275 1276 static int m_show(struct seq_file *m, void *v) 1277 { 1278 struct proc_mounts *p = m->private; 1279 struct mount *r = list_entry(v, struct mount, mnt_list); 1280 return p->show(m, &r->mnt); 1281 } 1282 1283 const struct seq_operations mounts_op = { 1284 .start = m_start, 1285 .next = m_next, 1286 .stop = m_stop, 1287 .show = m_show, 1288 }; 1289 #endif /* CONFIG_PROC_FS */ 1290 1291 /** 1292 * may_umount_tree - check if a mount tree is busy 1293 * @mnt: root of mount tree 1294 * 1295 * This is called to check if a tree of mounts has any 1296 * open files, pwds, chroots or sub mounts that are 1297 * busy. 1298 */ 1299 int may_umount_tree(struct vfsmount *m) 1300 { 1301 struct mount *mnt = real_mount(m); 1302 int actual_refs = 0; 1303 int minimum_refs = 0; 1304 struct mount *p; 1305 BUG_ON(!m); 1306 1307 /* write lock needed for mnt_get_count */ 1308 lock_mount_hash(); 1309 for (p = mnt; p; p = next_mnt(p, mnt)) { 1310 actual_refs += mnt_get_count(p); 1311 minimum_refs += 2; 1312 } 1313 unlock_mount_hash(); 1314 1315 if (actual_refs > minimum_refs) 1316 return 0; 1317 1318 return 1; 1319 } 1320 1321 EXPORT_SYMBOL(may_umount_tree); 1322 1323 /** 1324 * may_umount - check if a mount point is busy 1325 * @mnt: root of mount 1326 * 1327 * This is called to check if a mount point has any 1328 * open files, pwds, chroots or sub mounts. If the 1329 * mount has sub mounts this will return busy 1330 * regardless of whether the sub mounts are busy. 1331 * 1332 * Doesn't take quota and stuff into account. IOW, in some cases it will 1333 * give false negatives. The main reason why it's here is that we need 1334 * a non-destructive way to look for easily umountable filesystems. 1335 */ 1336 int may_umount(struct vfsmount *mnt) 1337 { 1338 int ret = 1; 1339 down_read(&namespace_sem); 1340 lock_mount_hash(); 1341 if (propagate_mount_busy(real_mount(mnt), 2)) 1342 ret = 0; 1343 unlock_mount_hash(); 1344 up_read(&namespace_sem); 1345 return ret; 1346 } 1347 1348 EXPORT_SYMBOL(may_umount); 1349 1350 static HLIST_HEAD(unmounted); /* protected by namespace_sem */ 1351 1352 static void namespace_unlock(void) 1353 { 1354 struct hlist_head head; 1355 1356 hlist_move_list(&unmounted, &head); 1357 1358 up_write(&namespace_sem); 1359 1360 if (likely(hlist_empty(&head))) 1361 return; 1362 1363 synchronize_rcu(); 1364 1365 group_pin_kill(&head); 1366 } 1367 1368 static inline void namespace_lock(void) 1369 { 1370 down_write(&namespace_sem); 1371 } 1372 1373 enum umount_tree_flags { 1374 UMOUNT_SYNC = 1, 1375 UMOUNT_PROPAGATE = 2, 1376 UMOUNT_CONNECTED = 4, 1377 }; 1378 1379 static bool disconnect_mount(struct mount *mnt, enum umount_tree_flags how) 1380 { 1381 /* Leaving mounts connected is only valid for lazy umounts */ 1382 if (how & UMOUNT_SYNC) 1383 return true; 1384 1385 /* A mount without a parent has nothing to be connected to */ 1386 if (!mnt_has_parent(mnt)) 1387 return true; 1388 1389 /* Because the reference counting rules change when mounts are 1390 * unmounted and connected, umounted mounts may not be 1391 * connected to mounted mounts. 1392 */ 1393 if (!(mnt->mnt_parent->mnt.mnt_flags & MNT_UMOUNT)) 1394 return true; 1395 1396 /* Has it been requested that the mount remain connected? */ 1397 if (how & UMOUNT_CONNECTED) 1398 return false; 1399 1400 /* Is the mount locked such that it needs to remain connected? */ 1401 if (IS_MNT_LOCKED(mnt)) 1402 return false; 1403 1404 /* By default disconnect the mount */ 1405 return true; 1406 } 1407 1408 /* 1409 * mount_lock must be held 1410 * namespace_sem must be held for write 1411 */ 1412 static void umount_tree(struct mount *mnt, enum umount_tree_flags how) 1413 { 1414 LIST_HEAD(tmp_list); 1415 struct mount *p; 1416 1417 if (how & UMOUNT_PROPAGATE) 1418 propagate_mount_unlock(mnt); 1419 1420 /* Gather the mounts to umount */ 1421 for (p = mnt; p; p = next_mnt(p, mnt)) { 1422 p->mnt.mnt_flags |= MNT_UMOUNT; 1423 list_move(&p->mnt_list, &tmp_list); 1424 } 1425 1426 /* Hide the mounts from mnt_mounts */ 1427 list_for_each_entry(p, &tmp_list, mnt_list) { 1428 list_del_init(&p->mnt_child); 1429 } 1430 1431 /* Add propogated mounts to the tmp_list */ 1432 if (how & UMOUNT_PROPAGATE) 1433 propagate_umount(&tmp_list); 1434 1435 while (!list_empty(&tmp_list)) { 1436 struct mnt_namespace *ns; 1437 bool disconnect; 1438 p = list_first_entry(&tmp_list, struct mount, mnt_list); 1439 list_del_init(&p->mnt_expire); 1440 list_del_init(&p->mnt_list); 1441 ns = p->mnt_ns; 1442 if (ns) { 1443 ns->mounts--; 1444 __touch_mnt_namespace(ns); 1445 } 1446 p->mnt_ns = NULL; 1447 if (how & UMOUNT_SYNC) 1448 p->mnt.mnt_flags |= MNT_SYNC_UMOUNT; 1449 1450 disconnect = disconnect_mount(p, how); 1451 1452 pin_insert_group(&p->mnt_umount, &p->mnt_parent->mnt, 1453 disconnect ? &unmounted : NULL); 1454 if (mnt_has_parent(p)) { 1455 mnt_add_count(p->mnt_parent, -1); 1456 if (!disconnect) { 1457 /* Don't forget about p */ 1458 list_add_tail(&p->mnt_child, &p->mnt_parent->mnt_mounts); 1459 } else { 1460 umount_mnt(p); 1461 } 1462 } 1463 change_mnt_propagation(p, MS_PRIVATE); 1464 } 1465 } 1466 1467 static void shrink_submounts(struct mount *mnt); 1468 1469 static int do_umount(struct mount *mnt, int flags) 1470 { 1471 struct super_block *sb = mnt->mnt.mnt_sb; 1472 int retval; 1473 1474 retval = security_sb_umount(&mnt->mnt, flags); 1475 if (retval) 1476 return retval; 1477 1478 /* 1479 * Allow userspace to request a mountpoint be expired rather than 1480 * unmounting unconditionally. Unmount only happens if: 1481 * (1) the mark is already set (the mark is cleared by mntput()) 1482 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount] 1483 */ 1484 if (flags & MNT_EXPIRE) { 1485 if (&mnt->mnt == current->fs->root.mnt || 1486 flags & (MNT_FORCE | MNT_DETACH)) 1487 return -EINVAL; 1488 1489 /* 1490 * probably don't strictly need the lock here if we examined 1491 * all race cases, but it's a slowpath. 1492 */ 1493 lock_mount_hash(); 1494 if (mnt_get_count(mnt) != 2) { 1495 unlock_mount_hash(); 1496 return -EBUSY; 1497 } 1498 unlock_mount_hash(); 1499 1500 if (!xchg(&mnt->mnt_expiry_mark, 1)) 1501 return -EAGAIN; 1502 } 1503 1504 /* 1505 * If we may have to abort operations to get out of this 1506 * mount, and they will themselves hold resources we must 1507 * allow the fs to do things. In the Unix tradition of 1508 * 'Gee thats tricky lets do it in userspace' the umount_begin 1509 * might fail to complete on the first run through as other tasks 1510 * must return, and the like. Thats for the mount program to worry 1511 * about for the moment. 1512 */ 1513 1514 if (flags & MNT_FORCE && sb->s_op->umount_begin) { 1515 sb->s_op->umount_begin(sb); 1516 } 1517 1518 /* 1519 * No sense to grab the lock for this test, but test itself looks 1520 * somewhat bogus. Suggestions for better replacement? 1521 * Ho-hum... In principle, we might treat that as umount + switch 1522 * to rootfs. GC would eventually take care of the old vfsmount. 1523 * Actually it makes sense, especially if rootfs would contain a 1524 * /reboot - static binary that would close all descriptors and 1525 * call reboot(9). Then init(8) could umount root and exec /reboot. 1526 */ 1527 if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) { 1528 /* 1529 * Special case for "unmounting" root ... 1530 * we just try to remount it readonly. 1531 */ 1532 if (!ns_capable(sb->s_user_ns, CAP_SYS_ADMIN)) 1533 return -EPERM; 1534 down_write(&sb->s_umount); 1535 if (!sb_rdonly(sb)) 1536 retval = do_remount_sb(sb, SB_RDONLY, NULL, 0); 1537 up_write(&sb->s_umount); 1538 return retval; 1539 } 1540 1541 namespace_lock(); 1542 lock_mount_hash(); 1543 event++; 1544 1545 if (flags & MNT_DETACH) { 1546 if (!list_empty(&mnt->mnt_list)) 1547 umount_tree(mnt, UMOUNT_PROPAGATE); 1548 retval = 0; 1549 } else { 1550 shrink_submounts(mnt); 1551 retval = -EBUSY; 1552 if (!propagate_mount_busy(mnt, 2)) { 1553 if (!list_empty(&mnt->mnt_list)) 1554 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC); 1555 retval = 0; 1556 } 1557 } 1558 unlock_mount_hash(); 1559 namespace_unlock(); 1560 return retval; 1561 } 1562 1563 /* 1564 * __detach_mounts - lazily unmount all mounts on the specified dentry 1565 * 1566 * During unlink, rmdir, and d_drop it is possible to loose the path 1567 * to an existing mountpoint, and wind up leaking the mount. 1568 * detach_mounts allows lazily unmounting those mounts instead of 1569 * leaking them. 1570 * 1571 * The caller may hold dentry->d_inode->i_mutex. 1572 */ 1573 void __detach_mounts(struct dentry *dentry) 1574 { 1575 struct mountpoint *mp; 1576 struct mount *mnt; 1577 1578 namespace_lock(); 1579 lock_mount_hash(); 1580 mp = lookup_mountpoint(dentry); 1581 if (IS_ERR_OR_NULL(mp)) 1582 goto out_unlock; 1583 1584 event++; 1585 while (!hlist_empty(&mp->m_list)) { 1586 mnt = hlist_entry(mp->m_list.first, struct mount, mnt_mp_list); 1587 if (mnt->mnt.mnt_flags & MNT_UMOUNT) { 1588 hlist_add_head(&mnt->mnt_umount.s_list, &unmounted); 1589 umount_mnt(mnt); 1590 } 1591 else umount_tree(mnt, UMOUNT_CONNECTED); 1592 } 1593 put_mountpoint(mp); 1594 out_unlock: 1595 unlock_mount_hash(); 1596 namespace_unlock(); 1597 } 1598 1599 /* 1600 * Is the caller allowed to modify his namespace? 1601 */ 1602 static inline bool may_mount(void) 1603 { 1604 return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN); 1605 } 1606 1607 static inline bool may_mandlock(void) 1608 { 1609 #ifndef CONFIG_MANDATORY_FILE_LOCKING 1610 return false; 1611 #endif 1612 return capable(CAP_SYS_ADMIN); 1613 } 1614 1615 /* 1616 * Now umount can handle mount points as well as block devices. 1617 * This is important for filesystems which use unnamed block devices. 1618 * 1619 * We now support a flag for forced unmount like the other 'big iron' 1620 * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD 1621 */ 1622 1623 int ksys_umount(char __user *name, int flags) 1624 { 1625 struct path path; 1626 struct mount *mnt; 1627 int retval; 1628 int lookup_flags = 0; 1629 1630 if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW)) 1631 return -EINVAL; 1632 1633 if (!may_mount()) 1634 return -EPERM; 1635 1636 if (!(flags & UMOUNT_NOFOLLOW)) 1637 lookup_flags |= LOOKUP_FOLLOW; 1638 1639 retval = user_path_mountpoint_at(AT_FDCWD, name, lookup_flags, &path); 1640 if (retval) 1641 goto out; 1642 mnt = real_mount(path.mnt); 1643 retval = -EINVAL; 1644 if (path.dentry != path.mnt->mnt_root) 1645 goto dput_and_out; 1646 if (!check_mnt(mnt)) 1647 goto dput_and_out; 1648 if (mnt->mnt.mnt_flags & MNT_LOCKED) 1649 goto dput_and_out; 1650 retval = -EPERM; 1651 if (flags & MNT_FORCE && !capable(CAP_SYS_ADMIN)) 1652 goto dput_and_out; 1653 1654 retval = do_umount(mnt, flags); 1655 dput_and_out: 1656 /* we mustn't call path_put() as that would clear mnt_expiry_mark */ 1657 dput(path.dentry); 1658 mntput_no_expire(mnt); 1659 out: 1660 return retval; 1661 } 1662 1663 SYSCALL_DEFINE2(umount, char __user *, name, int, flags) 1664 { 1665 return ksys_umount(name, flags); 1666 } 1667 1668 #ifdef __ARCH_WANT_SYS_OLDUMOUNT 1669 1670 /* 1671 * The 2.0 compatible umount. No flags. 1672 */ 1673 SYSCALL_DEFINE1(oldumount, char __user *, name) 1674 { 1675 return ksys_umount(name, 0); 1676 } 1677 1678 #endif 1679 1680 static bool is_mnt_ns_file(struct dentry *dentry) 1681 { 1682 /* Is this a proxy for a mount namespace? */ 1683 return dentry->d_op == &ns_dentry_operations && 1684 dentry->d_fsdata == &mntns_operations; 1685 } 1686 1687 struct mnt_namespace *to_mnt_ns(struct ns_common *ns) 1688 { 1689 return container_of(ns, struct mnt_namespace, ns); 1690 } 1691 1692 static bool mnt_ns_loop(struct dentry *dentry) 1693 { 1694 /* Could bind mounting the mount namespace inode cause a 1695 * mount namespace loop? 1696 */ 1697 struct mnt_namespace *mnt_ns; 1698 if (!is_mnt_ns_file(dentry)) 1699 return false; 1700 1701 mnt_ns = to_mnt_ns(get_proc_ns(dentry->d_inode)); 1702 return current->nsproxy->mnt_ns->seq >= mnt_ns->seq; 1703 } 1704 1705 struct mount *copy_tree(struct mount *mnt, struct dentry *dentry, 1706 int flag) 1707 { 1708 struct mount *res, *p, *q, *r, *parent; 1709 1710 if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(mnt)) 1711 return ERR_PTR(-EINVAL); 1712 1713 if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry)) 1714 return ERR_PTR(-EINVAL); 1715 1716 res = q = clone_mnt(mnt, dentry, flag); 1717 if (IS_ERR(q)) 1718 return q; 1719 1720 q->mnt_mountpoint = mnt->mnt_mountpoint; 1721 1722 p = mnt; 1723 list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) { 1724 struct mount *s; 1725 if (!is_subdir(r->mnt_mountpoint, dentry)) 1726 continue; 1727 1728 for (s = r; s; s = next_mnt(s, r)) { 1729 if (!(flag & CL_COPY_UNBINDABLE) && 1730 IS_MNT_UNBINDABLE(s)) { 1731 s = skip_mnt_tree(s); 1732 continue; 1733 } 1734 if (!(flag & CL_COPY_MNT_NS_FILE) && 1735 is_mnt_ns_file(s->mnt.mnt_root)) { 1736 s = skip_mnt_tree(s); 1737 continue; 1738 } 1739 while (p != s->mnt_parent) { 1740 p = p->mnt_parent; 1741 q = q->mnt_parent; 1742 } 1743 p = s; 1744 parent = q; 1745 q = clone_mnt(p, p->mnt.mnt_root, flag); 1746 if (IS_ERR(q)) 1747 goto out; 1748 lock_mount_hash(); 1749 list_add_tail(&q->mnt_list, &res->mnt_list); 1750 attach_mnt(q, parent, p->mnt_mp); 1751 unlock_mount_hash(); 1752 } 1753 } 1754 return res; 1755 out: 1756 if (res) { 1757 lock_mount_hash(); 1758 umount_tree(res, UMOUNT_SYNC); 1759 unlock_mount_hash(); 1760 } 1761 return q; 1762 } 1763 1764 /* Caller should check returned pointer for errors */ 1765 1766 struct vfsmount *collect_mounts(const struct path *path) 1767 { 1768 struct mount *tree; 1769 namespace_lock(); 1770 if (!check_mnt(real_mount(path->mnt))) 1771 tree = ERR_PTR(-EINVAL); 1772 else 1773 tree = copy_tree(real_mount(path->mnt), path->dentry, 1774 CL_COPY_ALL | CL_PRIVATE); 1775 namespace_unlock(); 1776 if (IS_ERR(tree)) 1777 return ERR_CAST(tree); 1778 return &tree->mnt; 1779 } 1780 1781 void drop_collected_mounts(struct vfsmount *mnt) 1782 { 1783 namespace_lock(); 1784 lock_mount_hash(); 1785 umount_tree(real_mount(mnt), UMOUNT_SYNC); 1786 unlock_mount_hash(); 1787 namespace_unlock(); 1788 } 1789 1790 /** 1791 * clone_private_mount - create a private clone of a path 1792 * 1793 * This creates a new vfsmount, which will be the clone of @path. The new will 1794 * not be attached anywhere in the namespace and will be private (i.e. changes 1795 * to the originating mount won't be propagated into this). 1796 * 1797 * Release with mntput(). 1798 */ 1799 struct vfsmount *clone_private_mount(const struct path *path) 1800 { 1801 struct mount *old_mnt = real_mount(path->mnt); 1802 struct mount *new_mnt; 1803 1804 if (IS_MNT_UNBINDABLE(old_mnt)) 1805 return ERR_PTR(-EINVAL); 1806 1807 new_mnt = clone_mnt(old_mnt, path->dentry, CL_PRIVATE); 1808 if (IS_ERR(new_mnt)) 1809 return ERR_CAST(new_mnt); 1810 1811 return &new_mnt->mnt; 1812 } 1813 EXPORT_SYMBOL_GPL(clone_private_mount); 1814 1815 int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg, 1816 struct vfsmount *root) 1817 { 1818 struct mount *mnt; 1819 int res = f(root, arg); 1820 if (res) 1821 return res; 1822 list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) { 1823 res = f(&mnt->mnt, arg); 1824 if (res) 1825 return res; 1826 } 1827 return 0; 1828 } 1829 1830 static void cleanup_group_ids(struct mount *mnt, struct mount *end) 1831 { 1832 struct mount *p; 1833 1834 for (p = mnt; p != end; p = next_mnt(p, mnt)) { 1835 if (p->mnt_group_id && !IS_MNT_SHARED(p)) 1836 mnt_release_group_id(p); 1837 } 1838 } 1839 1840 static int invent_group_ids(struct mount *mnt, bool recurse) 1841 { 1842 struct mount *p; 1843 1844 for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) { 1845 if (!p->mnt_group_id && !IS_MNT_SHARED(p)) { 1846 int err = mnt_alloc_group_id(p); 1847 if (err) { 1848 cleanup_group_ids(mnt, p); 1849 return err; 1850 } 1851 } 1852 } 1853 1854 return 0; 1855 } 1856 1857 int count_mounts(struct mnt_namespace *ns, struct mount *mnt) 1858 { 1859 unsigned int max = READ_ONCE(sysctl_mount_max); 1860 unsigned int mounts = 0, old, pending, sum; 1861 struct mount *p; 1862 1863 for (p = mnt; p; p = next_mnt(p, mnt)) 1864 mounts++; 1865 1866 old = ns->mounts; 1867 pending = ns->pending_mounts; 1868 sum = old + pending; 1869 if ((old > sum) || 1870 (pending > sum) || 1871 (max < sum) || 1872 (mounts > (max - sum))) 1873 return -ENOSPC; 1874 1875 ns->pending_mounts = pending + mounts; 1876 return 0; 1877 } 1878 1879 /* 1880 * @source_mnt : mount tree to be attached 1881 * @nd : place the mount tree @source_mnt is attached 1882 * @parent_nd : if non-null, detach the source_mnt from its parent and 1883 * store the parent mount and mountpoint dentry. 1884 * (done when source_mnt is moved) 1885 * 1886 * NOTE: in the table below explains the semantics when a source mount 1887 * of a given type is attached to a destination mount of a given type. 1888 * --------------------------------------------------------------------------- 1889 * | BIND MOUNT OPERATION | 1890 * |************************************************************************** 1891 * | source-->| shared | private | slave | unbindable | 1892 * | dest | | | | | 1893 * | | | | | | | 1894 * | v | | | | | 1895 * |************************************************************************** 1896 * | shared | shared (++) | shared (+) | shared(+++)| invalid | 1897 * | | | | | | 1898 * |non-shared| shared (+) | private | slave (*) | invalid | 1899 * *************************************************************************** 1900 * A bind operation clones the source mount and mounts the clone on the 1901 * destination mount. 1902 * 1903 * (++) the cloned mount is propagated to all the mounts in the propagation 1904 * tree of the destination mount and the cloned mount is added to 1905 * the peer group of the source mount. 1906 * (+) the cloned mount is created under the destination mount and is marked 1907 * as shared. The cloned mount is added to the peer group of the source 1908 * mount. 1909 * (+++) the mount is propagated to all the mounts in the propagation tree 1910 * of the destination mount and the cloned mount is made slave 1911 * of the same master as that of the source mount. The cloned mount 1912 * is marked as 'shared and slave'. 1913 * (*) the cloned mount is made a slave of the same master as that of the 1914 * source mount. 1915 * 1916 * --------------------------------------------------------------------------- 1917 * | MOVE MOUNT OPERATION | 1918 * |************************************************************************** 1919 * | source-->| shared | private | slave | unbindable | 1920 * | dest | | | | | 1921 * | | | | | | | 1922 * | v | | | | | 1923 * |************************************************************************** 1924 * | shared | shared (+) | shared (+) | shared(+++) | invalid | 1925 * | | | | | | 1926 * |non-shared| shared (+*) | private | slave (*) | unbindable | 1927 * *************************************************************************** 1928 * 1929 * (+) the mount is moved to the destination. And is then propagated to 1930 * all the mounts in the propagation tree of the destination mount. 1931 * (+*) the mount is moved to the destination. 1932 * (+++) the mount is moved to the destination and is then propagated to 1933 * all the mounts belonging to the destination mount's propagation tree. 1934 * the mount is marked as 'shared and slave'. 1935 * (*) the mount continues to be a slave at the new location. 1936 * 1937 * if the source mount is a tree, the operations explained above is 1938 * applied to each mount in the tree. 1939 * Must be called without spinlocks held, since this function can sleep 1940 * in allocations. 1941 */ 1942 static int attach_recursive_mnt(struct mount *source_mnt, 1943 struct mount *dest_mnt, 1944 struct mountpoint *dest_mp, 1945 struct path *parent_path) 1946 { 1947 HLIST_HEAD(tree_list); 1948 struct mnt_namespace *ns = dest_mnt->mnt_ns; 1949 struct mountpoint *smp; 1950 struct mount *child, *p; 1951 struct hlist_node *n; 1952 int err; 1953 1954 /* Preallocate a mountpoint in case the new mounts need 1955 * to be tucked under other mounts. 1956 */ 1957 smp = get_mountpoint(source_mnt->mnt.mnt_root); 1958 if (IS_ERR(smp)) 1959 return PTR_ERR(smp); 1960 1961 /* Is there space to add these mounts to the mount namespace? */ 1962 if (!parent_path) { 1963 err = count_mounts(ns, source_mnt); 1964 if (err) 1965 goto out; 1966 } 1967 1968 if (IS_MNT_SHARED(dest_mnt)) { 1969 err = invent_group_ids(source_mnt, true); 1970 if (err) 1971 goto out; 1972 err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list); 1973 lock_mount_hash(); 1974 if (err) 1975 goto out_cleanup_ids; 1976 for (p = source_mnt; p; p = next_mnt(p, source_mnt)) 1977 set_mnt_shared(p); 1978 } else { 1979 lock_mount_hash(); 1980 } 1981 if (parent_path) { 1982 detach_mnt(source_mnt, parent_path); 1983 attach_mnt(source_mnt, dest_mnt, dest_mp); 1984 touch_mnt_namespace(source_mnt->mnt_ns); 1985 } else { 1986 mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt); 1987 commit_tree(source_mnt); 1988 } 1989 1990 hlist_for_each_entry_safe(child, n, &tree_list, mnt_hash) { 1991 struct mount *q; 1992 hlist_del_init(&child->mnt_hash); 1993 q = __lookup_mnt(&child->mnt_parent->mnt, 1994 child->mnt_mountpoint); 1995 if (q) 1996 mnt_change_mountpoint(child, smp, q); 1997 commit_tree(child); 1998 } 1999 put_mountpoint(smp); 2000 unlock_mount_hash(); 2001 2002 return 0; 2003 2004 out_cleanup_ids: 2005 while (!hlist_empty(&tree_list)) { 2006 child = hlist_entry(tree_list.first, struct mount, mnt_hash); 2007 child->mnt_parent->mnt_ns->pending_mounts = 0; 2008 umount_tree(child, UMOUNT_SYNC); 2009 } 2010 unlock_mount_hash(); 2011 cleanup_group_ids(source_mnt, NULL); 2012 out: 2013 ns->pending_mounts = 0; 2014 2015 read_seqlock_excl(&mount_lock); 2016 put_mountpoint(smp); 2017 read_sequnlock_excl(&mount_lock); 2018 2019 return err; 2020 } 2021 2022 static struct mountpoint *lock_mount(struct path *path) 2023 { 2024 struct vfsmount *mnt; 2025 struct dentry *dentry = path->dentry; 2026 retry: 2027 inode_lock(dentry->d_inode); 2028 if (unlikely(cant_mount(dentry))) { 2029 inode_unlock(dentry->d_inode); 2030 return ERR_PTR(-ENOENT); 2031 } 2032 namespace_lock(); 2033 mnt = lookup_mnt(path); 2034 if (likely(!mnt)) { 2035 struct mountpoint *mp = get_mountpoint(dentry); 2036 if (IS_ERR(mp)) { 2037 namespace_unlock(); 2038 inode_unlock(dentry->d_inode); 2039 return mp; 2040 } 2041 return mp; 2042 } 2043 namespace_unlock(); 2044 inode_unlock(path->dentry->d_inode); 2045 path_put(path); 2046 path->mnt = mnt; 2047 dentry = path->dentry = dget(mnt->mnt_root); 2048 goto retry; 2049 } 2050 2051 static void unlock_mount(struct mountpoint *where) 2052 { 2053 struct dentry *dentry = where->m_dentry; 2054 2055 read_seqlock_excl(&mount_lock); 2056 put_mountpoint(where); 2057 read_sequnlock_excl(&mount_lock); 2058 2059 namespace_unlock(); 2060 inode_unlock(dentry->d_inode); 2061 } 2062 2063 static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp) 2064 { 2065 if (mnt->mnt.mnt_sb->s_flags & SB_NOUSER) 2066 return -EINVAL; 2067 2068 if (d_is_dir(mp->m_dentry) != 2069 d_is_dir(mnt->mnt.mnt_root)) 2070 return -ENOTDIR; 2071 2072 return attach_recursive_mnt(mnt, p, mp, NULL); 2073 } 2074 2075 /* 2076 * Sanity check the flags to change_mnt_propagation. 2077 */ 2078 2079 static int flags_to_propagation_type(int ms_flags) 2080 { 2081 int type = ms_flags & ~(MS_REC | MS_SILENT); 2082 2083 /* Fail if any non-propagation flags are set */ 2084 if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE)) 2085 return 0; 2086 /* Only one propagation flag should be set */ 2087 if (!is_power_of_2(type)) 2088 return 0; 2089 return type; 2090 } 2091 2092 /* 2093 * recursively change the type of the mountpoint. 2094 */ 2095 static int do_change_type(struct path *path, int ms_flags) 2096 { 2097 struct mount *m; 2098 struct mount *mnt = real_mount(path->mnt); 2099 int recurse = ms_flags & MS_REC; 2100 int type; 2101 int err = 0; 2102 2103 if (path->dentry != path->mnt->mnt_root) 2104 return -EINVAL; 2105 2106 type = flags_to_propagation_type(ms_flags); 2107 if (!type) 2108 return -EINVAL; 2109 2110 namespace_lock(); 2111 if (type == MS_SHARED) { 2112 err = invent_group_ids(mnt, recurse); 2113 if (err) 2114 goto out_unlock; 2115 } 2116 2117 lock_mount_hash(); 2118 for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL)) 2119 change_mnt_propagation(m, type); 2120 unlock_mount_hash(); 2121 2122 out_unlock: 2123 namespace_unlock(); 2124 return err; 2125 } 2126 2127 static bool has_locked_children(struct mount *mnt, struct dentry *dentry) 2128 { 2129 struct mount *child; 2130 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) { 2131 if (!is_subdir(child->mnt_mountpoint, dentry)) 2132 continue; 2133 2134 if (child->mnt.mnt_flags & MNT_LOCKED) 2135 return true; 2136 } 2137 return false; 2138 } 2139 2140 /* 2141 * do loopback mount. 2142 */ 2143 static int do_loopback(struct path *path, const char *old_name, 2144 int recurse) 2145 { 2146 struct path old_path; 2147 struct mount *mnt = NULL, *old, *parent; 2148 struct mountpoint *mp; 2149 int err; 2150 if (!old_name || !*old_name) 2151 return -EINVAL; 2152 err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path); 2153 if (err) 2154 return err; 2155 2156 err = -EINVAL; 2157 if (mnt_ns_loop(old_path.dentry)) 2158 goto out; 2159 2160 mp = lock_mount(path); 2161 err = PTR_ERR(mp); 2162 if (IS_ERR(mp)) 2163 goto out; 2164 2165 old = real_mount(old_path.mnt); 2166 parent = real_mount(path->mnt); 2167 2168 err = -EINVAL; 2169 if (IS_MNT_UNBINDABLE(old)) 2170 goto out2; 2171 2172 if (!check_mnt(parent)) 2173 goto out2; 2174 2175 if (!check_mnt(old) && old_path.dentry->d_op != &ns_dentry_operations) 2176 goto out2; 2177 2178 if (!recurse && has_locked_children(old, old_path.dentry)) 2179 goto out2; 2180 2181 if (recurse) 2182 mnt = copy_tree(old, old_path.dentry, CL_COPY_MNT_NS_FILE); 2183 else 2184 mnt = clone_mnt(old, old_path.dentry, 0); 2185 2186 if (IS_ERR(mnt)) { 2187 err = PTR_ERR(mnt); 2188 goto out2; 2189 } 2190 2191 mnt->mnt.mnt_flags &= ~MNT_LOCKED; 2192 2193 err = graft_tree(mnt, parent, mp); 2194 if (err) { 2195 lock_mount_hash(); 2196 umount_tree(mnt, UMOUNT_SYNC); 2197 unlock_mount_hash(); 2198 } 2199 out2: 2200 unlock_mount(mp); 2201 out: 2202 path_put(&old_path); 2203 return err; 2204 } 2205 2206 static int change_mount_flags(struct vfsmount *mnt, int ms_flags) 2207 { 2208 int error = 0; 2209 int readonly_request = 0; 2210 2211 if (ms_flags & MS_RDONLY) 2212 readonly_request = 1; 2213 if (readonly_request == __mnt_is_readonly(mnt)) 2214 return 0; 2215 2216 if (readonly_request) 2217 error = mnt_make_readonly(real_mount(mnt)); 2218 else 2219 __mnt_unmake_readonly(real_mount(mnt)); 2220 return error; 2221 } 2222 2223 /* 2224 * change filesystem flags. dir should be a physical root of filesystem. 2225 * If you've mounted a non-root directory somewhere and want to do remount 2226 * on it - tough luck. 2227 */ 2228 static int do_remount(struct path *path, int ms_flags, int sb_flags, 2229 int mnt_flags, void *data) 2230 { 2231 int err; 2232 struct super_block *sb = path->mnt->mnt_sb; 2233 struct mount *mnt = real_mount(path->mnt); 2234 2235 if (!check_mnt(mnt)) 2236 return -EINVAL; 2237 2238 if (path->dentry != path->mnt->mnt_root) 2239 return -EINVAL; 2240 2241 /* Don't allow changing of locked mnt flags. 2242 * 2243 * No locks need to be held here while testing the various 2244 * MNT_LOCK flags because those flags can never be cleared 2245 * once they are set. 2246 */ 2247 if ((mnt->mnt.mnt_flags & MNT_LOCK_READONLY) && 2248 !(mnt_flags & MNT_READONLY)) { 2249 return -EPERM; 2250 } 2251 if ((mnt->mnt.mnt_flags & MNT_LOCK_NODEV) && 2252 !(mnt_flags & MNT_NODEV)) { 2253 return -EPERM; 2254 } 2255 if ((mnt->mnt.mnt_flags & MNT_LOCK_NOSUID) && 2256 !(mnt_flags & MNT_NOSUID)) { 2257 return -EPERM; 2258 } 2259 if ((mnt->mnt.mnt_flags & MNT_LOCK_NOEXEC) && 2260 !(mnt_flags & MNT_NOEXEC)) { 2261 return -EPERM; 2262 } 2263 if ((mnt->mnt.mnt_flags & MNT_LOCK_ATIME) && 2264 ((mnt->mnt.mnt_flags & MNT_ATIME_MASK) != (mnt_flags & MNT_ATIME_MASK))) { 2265 return -EPERM; 2266 } 2267 2268 err = security_sb_remount(sb, data); 2269 if (err) 2270 return err; 2271 2272 down_write(&sb->s_umount); 2273 if (ms_flags & MS_BIND) 2274 err = change_mount_flags(path->mnt, ms_flags); 2275 else if (!ns_capable(sb->s_user_ns, CAP_SYS_ADMIN)) 2276 err = -EPERM; 2277 else 2278 err = do_remount_sb(sb, sb_flags, data, 0); 2279 if (!err) { 2280 lock_mount_hash(); 2281 mnt_flags |= mnt->mnt.mnt_flags & ~MNT_USER_SETTABLE_MASK; 2282 mnt->mnt.mnt_flags = mnt_flags; 2283 touch_mnt_namespace(mnt->mnt_ns); 2284 unlock_mount_hash(); 2285 } 2286 up_write(&sb->s_umount); 2287 return err; 2288 } 2289 2290 static inline int tree_contains_unbindable(struct mount *mnt) 2291 { 2292 struct mount *p; 2293 for (p = mnt; p; p = next_mnt(p, mnt)) { 2294 if (IS_MNT_UNBINDABLE(p)) 2295 return 1; 2296 } 2297 return 0; 2298 } 2299 2300 static int do_move_mount(struct path *path, const char *old_name) 2301 { 2302 struct path old_path, parent_path; 2303 struct mount *p; 2304 struct mount *old; 2305 struct mountpoint *mp; 2306 int err; 2307 if (!old_name || !*old_name) 2308 return -EINVAL; 2309 err = kern_path(old_name, LOOKUP_FOLLOW, &old_path); 2310 if (err) 2311 return err; 2312 2313 mp = lock_mount(path); 2314 err = PTR_ERR(mp); 2315 if (IS_ERR(mp)) 2316 goto out; 2317 2318 old = real_mount(old_path.mnt); 2319 p = real_mount(path->mnt); 2320 2321 err = -EINVAL; 2322 if (!check_mnt(p) || !check_mnt(old)) 2323 goto out1; 2324 2325 if (old->mnt.mnt_flags & MNT_LOCKED) 2326 goto out1; 2327 2328 err = -EINVAL; 2329 if (old_path.dentry != old_path.mnt->mnt_root) 2330 goto out1; 2331 2332 if (!mnt_has_parent(old)) 2333 goto out1; 2334 2335 if (d_is_dir(path->dentry) != 2336 d_is_dir(old_path.dentry)) 2337 goto out1; 2338 /* 2339 * Don't move a mount residing in a shared parent. 2340 */ 2341 if (IS_MNT_SHARED(old->mnt_parent)) 2342 goto out1; 2343 /* 2344 * Don't move a mount tree containing unbindable mounts to a destination 2345 * mount which is shared. 2346 */ 2347 if (IS_MNT_SHARED(p) && tree_contains_unbindable(old)) 2348 goto out1; 2349 err = -ELOOP; 2350 for (; mnt_has_parent(p); p = p->mnt_parent) 2351 if (p == old) 2352 goto out1; 2353 2354 err = attach_recursive_mnt(old, real_mount(path->mnt), mp, &parent_path); 2355 if (err) 2356 goto out1; 2357 2358 /* if the mount is moved, it should no longer be expire 2359 * automatically */ 2360 list_del_init(&old->mnt_expire); 2361 out1: 2362 unlock_mount(mp); 2363 out: 2364 if (!err) 2365 path_put(&parent_path); 2366 path_put(&old_path); 2367 return err; 2368 } 2369 2370 static struct vfsmount *fs_set_subtype(struct vfsmount *mnt, const char *fstype) 2371 { 2372 int err; 2373 const char *subtype = strchr(fstype, '.'); 2374 if (subtype) { 2375 subtype++; 2376 err = -EINVAL; 2377 if (!subtype[0]) 2378 goto err; 2379 } else 2380 subtype = ""; 2381 2382 mnt->mnt_sb->s_subtype = kstrdup(subtype, GFP_KERNEL); 2383 err = -ENOMEM; 2384 if (!mnt->mnt_sb->s_subtype) 2385 goto err; 2386 return mnt; 2387 2388 err: 2389 mntput(mnt); 2390 return ERR_PTR(err); 2391 } 2392 2393 /* 2394 * add a mount into a namespace's mount tree 2395 */ 2396 static int do_add_mount(struct mount *newmnt, struct path *path, int mnt_flags) 2397 { 2398 struct mountpoint *mp; 2399 struct mount *parent; 2400 int err; 2401 2402 mnt_flags &= ~MNT_INTERNAL_FLAGS; 2403 2404 mp = lock_mount(path); 2405 if (IS_ERR(mp)) 2406 return PTR_ERR(mp); 2407 2408 parent = real_mount(path->mnt); 2409 err = -EINVAL; 2410 if (unlikely(!check_mnt(parent))) { 2411 /* that's acceptable only for automounts done in private ns */ 2412 if (!(mnt_flags & MNT_SHRINKABLE)) 2413 goto unlock; 2414 /* ... and for those we'd better have mountpoint still alive */ 2415 if (!parent->mnt_ns) 2416 goto unlock; 2417 } 2418 2419 /* Refuse the same filesystem on the same mount point */ 2420 err = -EBUSY; 2421 if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb && 2422 path->mnt->mnt_root == path->dentry) 2423 goto unlock; 2424 2425 err = -EINVAL; 2426 if (d_is_symlink(newmnt->mnt.mnt_root)) 2427 goto unlock; 2428 2429 newmnt->mnt.mnt_flags = mnt_flags; 2430 err = graft_tree(newmnt, parent, mp); 2431 2432 unlock: 2433 unlock_mount(mp); 2434 return err; 2435 } 2436 2437 static bool mount_too_revealing(struct vfsmount *mnt, int *new_mnt_flags); 2438 2439 /* 2440 * create a new mount for userspace and request it to be added into the 2441 * namespace's tree 2442 */ 2443 static int do_new_mount(struct path *path, const char *fstype, int sb_flags, 2444 int mnt_flags, const char *name, void *data) 2445 { 2446 struct file_system_type *type; 2447 struct vfsmount *mnt; 2448 int err; 2449 2450 if (!fstype) 2451 return -EINVAL; 2452 2453 type = get_fs_type(fstype); 2454 if (!type) 2455 return -ENODEV; 2456 2457 mnt = vfs_kern_mount(type, sb_flags, name, data); 2458 if (!IS_ERR(mnt) && (type->fs_flags & FS_HAS_SUBTYPE) && 2459 !mnt->mnt_sb->s_subtype) 2460 mnt = fs_set_subtype(mnt, fstype); 2461 2462 put_filesystem(type); 2463 if (IS_ERR(mnt)) 2464 return PTR_ERR(mnt); 2465 2466 if (mount_too_revealing(mnt, &mnt_flags)) { 2467 mntput(mnt); 2468 return -EPERM; 2469 } 2470 2471 err = do_add_mount(real_mount(mnt), path, mnt_flags); 2472 if (err) 2473 mntput(mnt); 2474 return err; 2475 } 2476 2477 int finish_automount(struct vfsmount *m, struct path *path) 2478 { 2479 struct mount *mnt = real_mount(m); 2480 int err; 2481 /* The new mount record should have at least 2 refs to prevent it being 2482 * expired before we get a chance to add it 2483 */ 2484 BUG_ON(mnt_get_count(mnt) < 2); 2485 2486 if (m->mnt_sb == path->mnt->mnt_sb && 2487 m->mnt_root == path->dentry) { 2488 err = -ELOOP; 2489 goto fail; 2490 } 2491 2492 err = do_add_mount(mnt, path, path->mnt->mnt_flags | MNT_SHRINKABLE); 2493 if (!err) 2494 return 0; 2495 fail: 2496 /* remove m from any expiration list it may be on */ 2497 if (!list_empty(&mnt->mnt_expire)) { 2498 namespace_lock(); 2499 list_del_init(&mnt->mnt_expire); 2500 namespace_unlock(); 2501 } 2502 mntput(m); 2503 mntput(m); 2504 return err; 2505 } 2506 2507 /** 2508 * mnt_set_expiry - Put a mount on an expiration list 2509 * @mnt: The mount to list. 2510 * @expiry_list: The list to add the mount to. 2511 */ 2512 void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list) 2513 { 2514 namespace_lock(); 2515 2516 list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list); 2517 2518 namespace_unlock(); 2519 } 2520 EXPORT_SYMBOL(mnt_set_expiry); 2521 2522 /* 2523 * process a list of expirable mountpoints with the intent of discarding any 2524 * mountpoints that aren't in use and haven't been touched since last we came 2525 * here 2526 */ 2527 void mark_mounts_for_expiry(struct list_head *mounts) 2528 { 2529 struct mount *mnt, *next; 2530 LIST_HEAD(graveyard); 2531 2532 if (list_empty(mounts)) 2533 return; 2534 2535 namespace_lock(); 2536 lock_mount_hash(); 2537 2538 /* extract from the expiration list every vfsmount that matches the 2539 * following criteria: 2540 * - only referenced by its parent vfsmount 2541 * - still marked for expiry (marked on the last call here; marks are 2542 * cleared by mntput()) 2543 */ 2544 list_for_each_entry_safe(mnt, next, mounts, mnt_expire) { 2545 if (!xchg(&mnt->mnt_expiry_mark, 1) || 2546 propagate_mount_busy(mnt, 1)) 2547 continue; 2548 list_move(&mnt->mnt_expire, &graveyard); 2549 } 2550 while (!list_empty(&graveyard)) { 2551 mnt = list_first_entry(&graveyard, struct mount, mnt_expire); 2552 touch_mnt_namespace(mnt->mnt_ns); 2553 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC); 2554 } 2555 unlock_mount_hash(); 2556 namespace_unlock(); 2557 } 2558 2559 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry); 2560 2561 /* 2562 * Ripoff of 'select_parent()' 2563 * 2564 * search the list of submounts for a given mountpoint, and move any 2565 * shrinkable submounts to the 'graveyard' list. 2566 */ 2567 static int select_submounts(struct mount *parent, struct list_head *graveyard) 2568 { 2569 struct mount *this_parent = parent; 2570 struct list_head *next; 2571 int found = 0; 2572 2573 repeat: 2574 next = this_parent->mnt_mounts.next; 2575 resume: 2576 while (next != &this_parent->mnt_mounts) { 2577 struct list_head *tmp = next; 2578 struct mount *mnt = list_entry(tmp, struct mount, mnt_child); 2579 2580 next = tmp->next; 2581 if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE)) 2582 continue; 2583 /* 2584 * Descend a level if the d_mounts list is non-empty. 2585 */ 2586 if (!list_empty(&mnt->mnt_mounts)) { 2587 this_parent = mnt; 2588 goto repeat; 2589 } 2590 2591 if (!propagate_mount_busy(mnt, 1)) { 2592 list_move_tail(&mnt->mnt_expire, graveyard); 2593 found++; 2594 } 2595 } 2596 /* 2597 * All done at this level ... ascend and resume the search 2598 */ 2599 if (this_parent != parent) { 2600 next = this_parent->mnt_child.next; 2601 this_parent = this_parent->mnt_parent; 2602 goto resume; 2603 } 2604 return found; 2605 } 2606 2607 /* 2608 * process a list of expirable mountpoints with the intent of discarding any 2609 * submounts of a specific parent mountpoint 2610 * 2611 * mount_lock must be held for write 2612 */ 2613 static void shrink_submounts(struct mount *mnt) 2614 { 2615 LIST_HEAD(graveyard); 2616 struct mount *m; 2617 2618 /* extract submounts of 'mountpoint' from the expiration list */ 2619 while (select_submounts(mnt, &graveyard)) { 2620 while (!list_empty(&graveyard)) { 2621 m = list_first_entry(&graveyard, struct mount, 2622 mnt_expire); 2623 touch_mnt_namespace(m->mnt_ns); 2624 umount_tree(m, UMOUNT_PROPAGATE|UMOUNT_SYNC); 2625 } 2626 } 2627 } 2628 2629 /* 2630 * Some copy_from_user() implementations do not return the exact number of 2631 * bytes remaining to copy on a fault. But copy_mount_options() requires that. 2632 * Note that this function differs from copy_from_user() in that it will oops 2633 * on bad values of `to', rather than returning a short copy. 2634 */ 2635 static long exact_copy_from_user(void *to, const void __user * from, 2636 unsigned long n) 2637 { 2638 char *t = to; 2639 const char __user *f = from; 2640 char c; 2641 2642 if (!access_ok(VERIFY_READ, from, n)) 2643 return n; 2644 2645 current->kernel_uaccess_faults_ok++; 2646 while (n) { 2647 if (__get_user(c, f)) { 2648 memset(t, 0, n); 2649 break; 2650 } 2651 *t++ = c; 2652 f++; 2653 n--; 2654 } 2655 current->kernel_uaccess_faults_ok--; 2656 return n; 2657 } 2658 2659 void *copy_mount_options(const void __user * data) 2660 { 2661 int i; 2662 unsigned long size; 2663 char *copy; 2664 2665 if (!data) 2666 return NULL; 2667 2668 copy = kmalloc(PAGE_SIZE, GFP_KERNEL); 2669 if (!copy) 2670 return ERR_PTR(-ENOMEM); 2671 2672 /* We only care that *some* data at the address the user 2673 * gave us is valid. Just in case, we'll zero 2674 * the remainder of the page. 2675 */ 2676 /* copy_from_user cannot cross TASK_SIZE ! */ 2677 size = TASK_SIZE - (unsigned long)data; 2678 if (size > PAGE_SIZE) 2679 size = PAGE_SIZE; 2680 2681 i = size - exact_copy_from_user(copy, data, size); 2682 if (!i) { 2683 kfree(copy); 2684 return ERR_PTR(-EFAULT); 2685 } 2686 if (i != PAGE_SIZE) 2687 memset(copy + i, 0, PAGE_SIZE - i); 2688 return copy; 2689 } 2690 2691 char *copy_mount_string(const void __user *data) 2692 { 2693 return data ? strndup_user(data, PAGE_SIZE) : NULL; 2694 } 2695 2696 /* 2697 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to 2698 * be given to the mount() call (ie: read-only, no-dev, no-suid etc). 2699 * 2700 * data is a (void *) that can point to any structure up to 2701 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent 2702 * information (or be NULL). 2703 * 2704 * Pre-0.97 versions of mount() didn't have a flags word. 2705 * When the flags word was introduced its top half was required 2706 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9. 2707 * Therefore, if this magic number is present, it carries no information 2708 * and must be discarded. 2709 */ 2710 long do_mount(const char *dev_name, const char __user *dir_name, 2711 const char *type_page, unsigned long flags, void *data_page) 2712 { 2713 struct path path; 2714 unsigned int mnt_flags = 0, sb_flags; 2715 int retval = 0; 2716 2717 /* Discard magic */ 2718 if ((flags & MS_MGC_MSK) == MS_MGC_VAL) 2719 flags &= ~MS_MGC_MSK; 2720 2721 /* Basic sanity checks */ 2722 if (data_page) 2723 ((char *)data_page)[PAGE_SIZE - 1] = 0; 2724 2725 if (flags & MS_NOUSER) 2726 return -EINVAL; 2727 2728 /* ... and get the mountpoint */ 2729 retval = user_path(dir_name, &path); 2730 if (retval) 2731 return retval; 2732 2733 retval = security_sb_mount(dev_name, &path, 2734 type_page, flags, data_page); 2735 if (!retval && !may_mount()) 2736 retval = -EPERM; 2737 if (!retval && (flags & SB_MANDLOCK) && !may_mandlock()) 2738 retval = -EPERM; 2739 if (retval) 2740 goto dput_out; 2741 2742 /* Default to relatime unless overriden */ 2743 if (!(flags & MS_NOATIME)) 2744 mnt_flags |= MNT_RELATIME; 2745 2746 /* Separate the per-mountpoint flags */ 2747 if (flags & MS_NOSUID) 2748 mnt_flags |= MNT_NOSUID; 2749 if (flags & MS_NODEV) 2750 mnt_flags |= MNT_NODEV; 2751 if (flags & MS_NOEXEC) 2752 mnt_flags |= MNT_NOEXEC; 2753 if (flags & MS_NOATIME) 2754 mnt_flags |= MNT_NOATIME; 2755 if (flags & MS_NODIRATIME) 2756 mnt_flags |= MNT_NODIRATIME; 2757 if (flags & MS_STRICTATIME) 2758 mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME); 2759 if (flags & MS_RDONLY) 2760 mnt_flags |= MNT_READONLY; 2761 2762 /* The default atime for remount is preservation */ 2763 if ((flags & MS_REMOUNT) && 2764 ((flags & (MS_NOATIME | MS_NODIRATIME | MS_RELATIME | 2765 MS_STRICTATIME)) == 0)) { 2766 mnt_flags &= ~MNT_ATIME_MASK; 2767 mnt_flags |= path.mnt->mnt_flags & MNT_ATIME_MASK; 2768 } 2769 2770 sb_flags = flags & (SB_RDONLY | 2771 SB_SYNCHRONOUS | 2772 SB_MANDLOCK | 2773 SB_DIRSYNC | 2774 SB_SILENT | 2775 SB_POSIXACL | 2776 SB_LAZYTIME | 2777 SB_I_VERSION); 2778 2779 if (flags & MS_REMOUNT) 2780 retval = do_remount(&path, flags, sb_flags, mnt_flags, 2781 data_page); 2782 else if (flags & MS_BIND) 2783 retval = do_loopback(&path, dev_name, flags & MS_REC); 2784 else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE)) 2785 retval = do_change_type(&path, flags); 2786 else if (flags & MS_MOVE) 2787 retval = do_move_mount(&path, dev_name); 2788 else 2789 retval = do_new_mount(&path, type_page, sb_flags, mnt_flags, 2790 dev_name, data_page); 2791 dput_out: 2792 path_put(&path); 2793 return retval; 2794 } 2795 2796 static struct ucounts *inc_mnt_namespaces(struct user_namespace *ns) 2797 { 2798 return inc_ucount(ns, current_euid(), UCOUNT_MNT_NAMESPACES); 2799 } 2800 2801 static void dec_mnt_namespaces(struct ucounts *ucounts) 2802 { 2803 dec_ucount(ucounts, UCOUNT_MNT_NAMESPACES); 2804 } 2805 2806 static void free_mnt_ns(struct mnt_namespace *ns) 2807 { 2808 ns_free_inum(&ns->ns); 2809 dec_mnt_namespaces(ns->ucounts); 2810 put_user_ns(ns->user_ns); 2811 kfree(ns); 2812 } 2813 2814 /* 2815 * Assign a sequence number so we can detect when we attempt to bind 2816 * mount a reference to an older mount namespace into the current 2817 * mount namespace, preventing reference counting loops. A 64bit 2818 * number incrementing at 10Ghz will take 12,427 years to wrap which 2819 * is effectively never, so we can ignore the possibility. 2820 */ 2821 static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1); 2822 2823 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns) 2824 { 2825 struct mnt_namespace *new_ns; 2826 struct ucounts *ucounts; 2827 int ret; 2828 2829 ucounts = inc_mnt_namespaces(user_ns); 2830 if (!ucounts) 2831 return ERR_PTR(-ENOSPC); 2832 2833 new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL); 2834 if (!new_ns) { 2835 dec_mnt_namespaces(ucounts); 2836 return ERR_PTR(-ENOMEM); 2837 } 2838 ret = ns_alloc_inum(&new_ns->ns); 2839 if (ret) { 2840 kfree(new_ns); 2841 dec_mnt_namespaces(ucounts); 2842 return ERR_PTR(ret); 2843 } 2844 new_ns->ns.ops = &mntns_operations; 2845 new_ns->seq = atomic64_add_return(1, &mnt_ns_seq); 2846 atomic_set(&new_ns->count, 1); 2847 new_ns->root = NULL; 2848 INIT_LIST_HEAD(&new_ns->list); 2849 init_waitqueue_head(&new_ns->poll); 2850 new_ns->event = 0; 2851 new_ns->user_ns = get_user_ns(user_ns); 2852 new_ns->ucounts = ucounts; 2853 new_ns->mounts = 0; 2854 new_ns->pending_mounts = 0; 2855 return new_ns; 2856 } 2857 2858 __latent_entropy 2859 struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns, 2860 struct user_namespace *user_ns, struct fs_struct *new_fs) 2861 { 2862 struct mnt_namespace *new_ns; 2863 struct vfsmount *rootmnt = NULL, *pwdmnt = NULL; 2864 struct mount *p, *q; 2865 struct mount *old; 2866 struct mount *new; 2867 int copy_flags; 2868 2869 BUG_ON(!ns); 2870 2871 if (likely(!(flags & CLONE_NEWNS))) { 2872 get_mnt_ns(ns); 2873 return ns; 2874 } 2875 2876 old = ns->root; 2877 2878 new_ns = alloc_mnt_ns(user_ns); 2879 if (IS_ERR(new_ns)) 2880 return new_ns; 2881 2882 namespace_lock(); 2883 /* First pass: copy the tree topology */ 2884 copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE; 2885 if (user_ns != ns->user_ns) 2886 copy_flags |= CL_SHARED_TO_SLAVE | CL_UNPRIVILEGED; 2887 new = copy_tree(old, old->mnt.mnt_root, copy_flags); 2888 if (IS_ERR(new)) { 2889 namespace_unlock(); 2890 free_mnt_ns(new_ns); 2891 return ERR_CAST(new); 2892 } 2893 new_ns->root = new; 2894 list_add_tail(&new_ns->list, &new->mnt_list); 2895 2896 /* 2897 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts 2898 * as belonging to new namespace. We have already acquired a private 2899 * fs_struct, so tsk->fs->lock is not needed. 2900 */ 2901 p = old; 2902 q = new; 2903 while (p) { 2904 q->mnt_ns = new_ns; 2905 new_ns->mounts++; 2906 if (new_fs) { 2907 if (&p->mnt == new_fs->root.mnt) { 2908 new_fs->root.mnt = mntget(&q->mnt); 2909 rootmnt = &p->mnt; 2910 } 2911 if (&p->mnt == new_fs->pwd.mnt) { 2912 new_fs->pwd.mnt = mntget(&q->mnt); 2913 pwdmnt = &p->mnt; 2914 } 2915 } 2916 p = next_mnt(p, old); 2917 q = next_mnt(q, new); 2918 if (!q) 2919 break; 2920 while (p->mnt.mnt_root != q->mnt.mnt_root) 2921 p = next_mnt(p, old); 2922 } 2923 namespace_unlock(); 2924 2925 if (rootmnt) 2926 mntput(rootmnt); 2927 if (pwdmnt) 2928 mntput(pwdmnt); 2929 2930 return new_ns; 2931 } 2932 2933 /** 2934 * create_mnt_ns - creates a private namespace and adds a root filesystem 2935 * @mnt: pointer to the new root filesystem mountpoint 2936 */ 2937 static struct mnt_namespace *create_mnt_ns(struct vfsmount *m) 2938 { 2939 struct mnt_namespace *new_ns = alloc_mnt_ns(&init_user_ns); 2940 if (!IS_ERR(new_ns)) { 2941 struct mount *mnt = real_mount(m); 2942 mnt->mnt_ns = new_ns; 2943 new_ns->root = mnt; 2944 new_ns->mounts++; 2945 list_add(&mnt->mnt_list, &new_ns->list); 2946 } else { 2947 mntput(m); 2948 } 2949 return new_ns; 2950 } 2951 2952 struct dentry *mount_subtree(struct vfsmount *mnt, const char *name) 2953 { 2954 struct mnt_namespace *ns; 2955 struct super_block *s; 2956 struct path path; 2957 int err; 2958 2959 ns = create_mnt_ns(mnt); 2960 if (IS_ERR(ns)) 2961 return ERR_CAST(ns); 2962 2963 err = vfs_path_lookup(mnt->mnt_root, mnt, 2964 name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path); 2965 2966 put_mnt_ns(ns); 2967 2968 if (err) 2969 return ERR_PTR(err); 2970 2971 /* trade a vfsmount reference for active sb one */ 2972 s = path.mnt->mnt_sb; 2973 atomic_inc(&s->s_active); 2974 mntput(path.mnt); 2975 /* lock the sucker */ 2976 down_write(&s->s_umount); 2977 /* ... and return the root of (sub)tree on it */ 2978 return path.dentry; 2979 } 2980 EXPORT_SYMBOL(mount_subtree); 2981 2982 int ksys_mount(char __user *dev_name, char __user *dir_name, char __user *type, 2983 unsigned long flags, void __user *data) 2984 { 2985 int ret; 2986 char *kernel_type; 2987 char *kernel_dev; 2988 void *options; 2989 2990 kernel_type = copy_mount_string(type); 2991 ret = PTR_ERR(kernel_type); 2992 if (IS_ERR(kernel_type)) 2993 goto out_type; 2994 2995 kernel_dev = copy_mount_string(dev_name); 2996 ret = PTR_ERR(kernel_dev); 2997 if (IS_ERR(kernel_dev)) 2998 goto out_dev; 2999 3000 options = copy_mount_options(data); 3001 ret = PTR_ERR(options); 3002 if (IS_ERR(options)) 3003 goto out_data; 3004 3005 ret = do_mount(kernel_dev, dir_name, kernel_type, flags, options); 3006 3007 kfree(options); 3008 out_data: 3009 kfree(kernel_dev); 3010 out_dev: 3011 kfree(kernel_type); 3012 out_type: 3013 return ret; 3014 } 3015 3016 SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name, 3017 char __user *, type, unsigned long, flags, void __user *, data) 3018 { 3019 return ksys_mount(dev_name, dir_name, type, flags, data); 3020 } 3021 3022 /* 3023 * Return true if path is reachable from root 3024 * 3025 * namespace_sem or mount_lock is held 3026 */ 3027 bool is_path_reachable(struct mount *mnt, struct dentry *dentry, 3028 const struct path *root) 3029 { 3030 while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) { 3031 dentry = mnt->mnt_mountpoint; 3032 mnt = mnt->mnt_parent; 3033 } 3034 return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry); 3035 } 3036 3037 bool path_is_under(const struct path *path1, const struct path *path2) 3038 { 3039 bool res; 3040 read_seqlock_excl(&mount_lock); 3041 res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2); 3042 read_sequnlock_excl(&mount_lock); 3043 return res; 3044 } 3045 EXPORT_SYMBOL(path_is_under); 3046 3047 /* 3048 * pivot_root Semantics: 3049 * Moves the root file system of the current process to the directory put_old, 3050 * makes new_root as the new root file system of the current process, and sets 3051 * root/cwd of all processes which had them on the current root to new_root. 3052 * 3053 * Restrictions: 3054 * The new_root and put_old must be directories, and must not be on the 3055 * same file system as the current process root. The put_old must be 3056 * underneath new_root, i.e. adding a non-zero number of /.. to the string 3057 * pointed to by put_old must yield the same directory as new_root. No other 3058 * file system may be mounted on put_old. After all, new_root is a mountpoint. 3059 * 3060 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem. 3061 * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives 3062 * in this situation. 3063 * 3064 * Notes: 3065 * - we don't move root/cwd if they are not at the root (reason: if something 3066 * cared enough to change them, it's probably wrong to force them elsewhere) 3067 * - it's okay to pick a root that isn't the root of a file system, e.g. 3068 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint, 3069 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root 3070 * first. 3071 */ 3072 SYSCALL_DEFINE2(pivot_root, const char __user *, new_root, 3073 const char __user *, put_old) 3074 { 3075 struct path new, old, parent_path, root_parent, root; 3076 struct mount *new_mnt, *root_mnt, *old_mnt; 3077 struct mountpoint *old_mp, *root_mp; 3078 int error; 3079 3080 if (!may_mount()) 3081 return -EPERM; 3082 3083 error = user_path_dir(new_root, &new); 3084 if (error) 3085 goto out0; 3086 3087 error = user_path_dir(put_old, &old); 3088 if (error) 3089 goto out1; 3090 3091 error = security_sb_pivotroot(&old, &new); 3092 if (error) 3093 goto out2; 3094 3095 get_fs_root(current->fs, &root); 3096 old_mp = lock_mount(&old); 3097 error = PTR_ERR(old_mp); 3098 if (IS_ERR(old_mp)) 3099 goto out3; 3100 3101 error = -EINVAL; 3102 new_mnt = real_mount(new.mnt); 3103 root_mnt = real_mount(root.mnt); 3104 old_mnt = real_mount(old.mnt); 3105 if (IS_MNT_SHARED(old_mnt) || 3106 IS_MNT_SHARED(new_mnt->mnt_parent) || 3107 IS_MNT_SHARED(root_mnt->mnt_parent)) 3108 goto out4; 3109 if (!check_mnt(root_mnt) || !check_mnt(new_mnt)) 3110 goto out4; 3111 if (new_mnt->mnt.mnt_flags & MNT_LOCKED) 3112 goto out4; 3113 error = -ENOENT; 3114 if (d_unlinked(new.dentry)) 3115 goto out4; 3116 error = -EBUSY; 3117 if (new_mnt == root_mnt || old_mnt == root_mnt) 3118 goto out4; /* loop, on the same file system */ 3119 error = -EINVAL; 3120 if (root.mnt->mnt_root != root.dentry) 3121 goto out4; /* not a mountpoint */ 3122 if (!mnt_has_parent(root_mnt)) 3123 goto out4; /* not attached */ 3124 root_mp = root_mnt->mnt_mp; 3125 if (new.mnt->mnt_root != new.dentry) 3126 goto out4; /* not a mountpoint */ 3127 if (!mnt_has_parent(new_mnt)) 3128 goto out4; /* not attached */ 3129 /* make sure we can reach put_old from new_root */ 3130 if (!is_path_reachable(old_mnt, old.dentry, &new)) 3131 goto out4; 3132 /* make certain new is below the root */ 3133 if (!is_path_reachable(new_mnt, new.dentry, &root)) 3134 goto out4; 3135 root_mp->m_count++; /* pin it so it won't go away */ 3136 lock_mount_hash(); 3137 detach_mnt(new_mnt, &parent_path); 3138 detach_mnt(root_mnt, &root_parent); 3139 if (root_mnt->mnt.mnt_flags & MNT_LOCKED) { 3140 new_mnt->mnt.mnt_flags |= MNT_LOCKED; 3141 root_mnt->mnt.mnt_flags &= ~MNT_LOCKED; 3142 } 3143 /* mount old root on put_old */ 3144 attach_mnt(root_mnt, old_mnt, old_mp); 3145 /* mount new_root on / */ 3146 attach_mnt(new_mnt, real_mount(root_parent.mnt), root_mp); 3147 touch_mnt_namespace(current->nsproxy->mnt_ns); 3148 /* A moved mount should not expire automatically */ 3149 list_del_init(&new_mnt->mnt_expire); 3150 put_mountpoint(root_mp); 3151 unlock_mount_hash(); 3152 chroot_fs_refs(&root, &new); 3153 error = 0; 3154 out4: 3155 unlock_mount(old_mp); 3156 if (!error) { 3157 path_put(&root_parent); 3158 path_put(&parent_path); 3159 } 3160 out3: 3161 path_put(&root); 3162 out2: 3163 path_put(&old); 3164 out1: 3165 path_put(&new); 3166 out0: 3167 return error; 3168 } 3169 3170 static void __init init_mount_tree(void) 3171 { 3172 struct vfsmount *mnt; 3173 struct mnt_namespace *ns; 3174 struct path root; 3175 struct file_system_type *type; 3176 3177 type = get_fs_type("rootfs"); 3178 if (!type) 3179 panic("Can't find rootfs type"); 3180 mnt = vfs_kern_mount(type, 0, "rootfs", NULL); 3181 put_filesystem(type); 3182 if (IS_ERR(mnt)) 3183 panic("Can't create rootfs"); 3184 3185 ns = create_mnt_ns(mnt); 3186 if (IS_ERR(ns)) 3187 panic("Can't allocate initial namespace"); 3188 3189 init_task.nsproxy->mnt_ns = ns; 3190 get_mnt_ns(ns); 3191 3192 root.mnt = mnt; 3193 root.dentry = mnt->mnt_root; 3194 mnt->mnt_flags |= MNT_LOCKED; 3195 3196 set_fs_pwd(current->fs, &root); 3197 set_fs_root(current->fs, &root); 3198 } 3199 3200 void __init mnt_init(void) 3201 { 3202 int err; 3203 3204 mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount), 3205 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL); 3206 3207 mount_hashtable = alloc_large_system_hash("Mount-cache", 3208 sizeof(struct hlist_head), 3209 mhash_entries, 19, 3210 HASH_ZERO, 3211 &m_hash_shift, &m_hash_mask, 0, 0); 3212 mountpoint_hashtable = alloc_large_system_hash("Mountpoint-cache", 3213 sizeof(struct hlist_head), 3214 mphash_entries, 19, 3215 HASH_ZERO, 3216 &mp_hash_shift, &mp_hash_mask, 0, 0); 3217 3218 if (!mount_hashtable || !mountpoint_hashtable) 3219 panic("Failed to allocate mount hash table\n"); 3220 3221 kernfs_init(); 3222 3223 err = sysfs_init(); 3224 if (err) 3225 printk(KERN_WARNING "%s: sysfs_init error: %d\n", 3226 __func__, err); 3227 fs_kobj = kobject_create_and_add("fs", NULL); 3228 if (!fs_kobj) 3229 printk(KERN_WARNING "%s: kobj create error\n", __func__); 3230 init_rootfs(); 3231 init_mount_tree(); 3232 } 3233 3234 void put_mnt_ns(struct mnt_namespace *ns) 3235 { 3236 if (!atomic_dec_and_test(&ns->count)) 3237 return; 3238 drop_collected_mounts(&ns->root->mnt); 3239 free_mnt_ns(ns); 3240 } 3241 3242 struct vfsmount *kern_mount_data(struct file_system_type *type, void *data) 3243 { 3244 struct vfsmount *mnt; 3245 mnt = vfs_kern_mount(type, SB_KERNMOUNT, type->name, data); 3246 if (!IS_ERR(mnt)) { 3247 /* 3248 * it is a longterm mount, don't release mnt until 3249 * we unmount before file sys is unregistered 3250 */ 3251 real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL; 3252 } 3253 return mnt; 3254 } 3255 EXPORT_SYMBOL_GPL(kern_mount_data); 3256 3257 void kern_unmount(struct vfsmount *mnt) 3258 { 3259 /* release long term mount so mount point can be released */ 3260 if (!IS_ERR_OR_NULL(mnt)) { 3261 real_mount(mnt)->mnt_ns = NULL; 3262 synchronize_rcu(); /* yecchhh... */ 3263 mntput(mnt); 3264 } 3265 } 3266 EXPORT_SYMBOL(kern_unmount); 3267 3268 bool our_mnt(struct vfsmount *mnt) 3269 { 3270 return check_mnt(real_mount(mnt)); 3271 } 3272 3273 bool current_chrooted(void) 3274 { 3275 /* Does the current process have a non-standard root */ 3276 struct path ns_root; 3277 struct path fs_root; 3278 bool chrooted; 3279 3280 /* Find the namespace root */ 3281 ns_root.mnt = ¤t->nsproxy->mnt_ns->root->mnt; 3282 ns_root.dentry = ns_root.mnt->mnt_root; 3283 path_get(&ns_root); 3284 while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root)) 3285 ; 3286 3287 get_fs_root(current->fs, &fs_root); 3288 3289 chrooted = !path_equal(&fs_root, &ns_root); 3290 3291 path_put(&fs_root); 3292 path_put(&ns_root); 3293 3294 return chrooted; 3295 } 3296 3297 static bool mnt_already_visible(struct mnt_namespace *ns, struct vfsmount *new, 3298 int *new_mnt_flags) 3299 { 3300 int new_flags = *new_mnt_flags; 3301 struct mount *mnt; 3302 bool visible = false; 3303 3304 down_read(&namespace_sem); 3305 list_for_each_entry(mnt, &ns->list, mnt_list) { 3306 struct mount *child; 3307 int mnt_flags; 3308 3309 if (mnt->mnt.mnt_sb->s_type != new->mnt_sb->s_type) 3310 continue; 3311 3312 /* This mount is not fully visible if it's root directory 3313 * is not the root directory of the filesystem. 3314 */ 3315 if (mnt->mnt.mnt_root != mnt->mnt.mnt_sb->s_root) 3316 continue; 3317 3318 /* A local view of the mount flags */ 3319 mnt_flags = mnt->mnt.mnt_flags; 3320 3321 /* Don't miss readonly hidden in the superblock flags */ 3322 if (sb_rdonly(mnt->mnt.mnt_sb)) 3323 mnt_flags |= MNT_LOCK_READONLY; 3324 3325 /* Verify the mount flags are equal to or more permissive 3326 * than the proposed new mount. 3327 */ 3328 if ((mnt_flags & MNT_LOCK_READONLY) && 3329 !(new_flags & MNT_READONLY)) 3330 continue; 3331 if ((mnt_flags & MNT_LOCK_ATIME) && 3332 ((mnt_flags & MNT_ATIME_MASK) != (new_flags & MNT_ATIME_MASK))) 3333 continue; 3334 3335 /* This mount is not fully visible if there are any 3336 * locked child mounts that cover anything except for 3337 * empty directories. 3338 */ 3339 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) { 3340 struct inode *inode = child->mnt_mountpoint->d_inode; 3341 /* Only worry about locked mounts */ 3342 if (!(child->mnt.mnt_flags & MNT_LOCKED)) 3343 continue; 3344 /* Is the directory permanetly empty? */ 3345 if (!is_empty_dir_inode(inode)) 3346 goto next; 3347 } 3348 /* Preserve the locked attributes */ 3349 *new_mnt_flags |= mnt_flags & (MNT_LOCK_READONLY | \ 3350 MNT_LOCK_ATIME); 3351 visible = true; 3352 goto found; 3353 next: ; 3354 } 3355 found: 3356 up_read(&namespace_sem); 3357 return visible; 3358 } 3359 3360 static bool mount_too_revealing(struct vfsmount *mnt, int *new_mnt_flags) 3361 { 3362 const unsigned long required_iflags = SB_I_NOEXEC | SB_I_NODEV; 3363 struct mnt_namespace *ns = current->nsproxy->mnt_ns; 3364 unsigned long s_iflags; 3365 3366 if (ns->user_ns == &init_user_ns) 3367 return false; 3368 3369 /* Can this filesystem be too revealing? */ 3370 s_iflags = mnt->mnt_sb->s_iflags; 3371 if (!(s_iflags & SB_I_USERNS_VISIBLE)) 3372 return false; 3373 3374 if ((s_iflags & required_iflags) != required_iflags) { 3375 WARN_ONCE(1, "Expected s_iflags to contain 0x%lx\n", 3376 required_iflags); 3377 return true; 3378 } 3379 3380 return !mnt_already_visible(ns, mnt, new_mnt_flags); 3381 } 3382 3383 bool mnt_may_suid(struct vfsmount *mnt) 3384 { 3385 /* 3386 * Foreign mounts (accessed via fchdir or through /proc 3387 * symlinks) are always treated as if they are nosuid. This 3388 * prevents namespaces from trusting potentially unsafe 3389 * suid/sgid bits, file caps, or security labels that originate 3390 * in other namespaces. 3391 */ 3392 return !(mnt->mnt_flags & MNT_NOSUID) && check_mnt(real_mount(mnt)) && 3393 current_in_userns(mnt->mnt_sb->s_user_ns); 3394 } 3395 3396 static struct ns_common *mntns_get(struct task_struct *task) 3397 { 3398 struct ns_common *ns = NULL; 3399 struct nsproxy *nsproxy; 3400 3401 task_lock(task); 3402 nsproxy = task->nsproxy; 3403 if (nsproxy) { 3404 ns = &nsproxy->mnt_ns->ns; 3405 get_mnt_ns(to_mnt_ns(ns)); 3406 } 3407 task_unlock(task); 3408 3409 return ns; 3410 } 3411 3412 static void mntns_put(struct ns_common *ns) 3413 { 3414 put_mnt_ns(to_mnt_ns(ns)); 3415 } 3416 3417 static int mntns_install(struct nsproxy *nsproxy, struct ns_common *ns) 3418 { 3419 struct fs_struct *fs = current->fs; 3420 struct mnt_namespace *mnt_ns = to_mnt_ns(ns), *old_mnt_ns; 3421 struct path root; 3422 int err; 3423 3424 if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) || 3425 !ns_capable(current_user_ns(), CAP_SYS_CHROOT) || 3426 !ns_capable(current_user_ns(), CAP_SYS_ADMIN)) 3427 return -EPERM; 3428 3429 if (fs->users != 1) 3430 return -EINVAL; 3431 3432 get_mnt_ns(mnt_ns); 3433 old_mnt_ns = nsproxy->mnt_ns; 3434 nsproxy->mnt_ns = mnt_ns; 3435 3436 /* Find the root */ 3437 err = vfs_path_lookup(mnt_ns->root->mnt.mnt_root, &mnt_ns->root->mnt, 3438 "/", LOOKUP_DOWN, &root); 3439 if (err) { 3440 /* revert to old namespace */ 3441 nsproxy->mnt_ns = old_mnt_ns; 3442 put_mnt_ns(mnt_ns); 3443 return err; 3444 } 3445 3446 put_mnt_ns(old_mnt_ns); 3447 3448 /* Update the pwd and root */ 3449 set_fs_pwd(fs, &root); 3450 set_fs_root(fs, &root); 3451 3452 path_put(&root); 3453 return 0; 3454 } 3455 3456 static struct user_namespace *mntns_owner(struct ns_common *ns) 3457 { 3458 return to_mnt_ns(ns)->user_ns; 3459 } 3460 3461 const struct proc_ns_operations mntns_operations = { 3462 .name = "mnt", 3463 .type = CLONE_NEWNS, 3464 .get = mntns_get, 3465 .put = mntns_put, 3466 .install = mntns_install, 3467 .owner = mntns_owner, 3468 }; 3469