1 /* 2 * linux/fs/namespace.c 3 * 4 * (C) Copyright Al Viro 2000, 2001 5 * Released under GPL v2. 6 * 7 * Based on code from fs/super.c, copyright Linus Torvalds and others. 8 * Heavily rewritten. 9 */ 10 11 #include <linux/syscalls.h> 12 #include <linux/slab.h> 13 #include <linux/sched.h> 14 #include <linux/spinlock.h> 15 #include <linux/percpu.h> 16 #include <linux/init.h> 17 #include <linux/kernel.h> 18 #include <linux/acct.h> 19 #include <linux/capability.h> 20 #include <linux/cpumask.h> 21 #include <linux/module.h> 22 #include <linux/sysfs.h> 23 #include <linux/seq_file.h> 24 #include <linux/mnt_namespace.h> 25 #include <linux/namei.h> 26 #include <linux/nsproxy.h> 27 #include <linux/security.h> 28 #include <linux/mount.h> 29 #include <linux/ramfs.h> 30 #include <linux/log2.h> 31 #include <linux/idr.h> 32 #include <linux/fs_struct.h> 33 #include <linux/fsnotify.h> 34 #include <asm/uaccess.h> 35 #include <asm/unistd.h> 36 #include "pnode.h" 37 #include "internal.h" 38 39 #define HASH_SHIFT ilog2(PAGE_SIZE / sizeof(struct list_head)) 40 #define HASH_SIZE (1UL << HASH_SHIFT) 41 42 static int event; 43 static DEFINE_IDA(mnt_id_ida); 44 static DEFINE_IDA(mnt_group_ida); 45 static DEFINE_SPINLOCK(mnt_id_lock); 46 static int mnt_id_start = 0; 47 static int mnt_group_start = 1; 48 49 static struct list_head *mount_hashtable __read_mostly; 50 static struct kmem_cache *mnt_cache __read_mostly; 51 static struct rw_semaphore namespace_sem; 52 53 /* /sys/fs */ 54 struct kobject *fs_kobj; 55 EXPORT_SYMBOL_GPL(fs_kobj); 56 57 /* 58 * vfsmount lock may be taken for read to prevent changes to the 59 * vfsmount hash, ie. during mountpoint lookups or walking back 60 * up the tree. 61 * 62 * It should be taken for write in all cases where the vfsmount 63 * tree or hash is modified or when a vfsmount structure is modified. 64 */ 65 DEFINE_BRLOCK(vfsmount_lock); 66 67 static inline unsigned long hash(struct vfsmount *mnt, struct dentry *dentry) 68 { 69 unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES); 70 tmp += ((unsigned long)dentry / L1_CACHE_BYTES); 71 tmp = tmp + (tmp >> HASH_SHIFT); 72 return tmp & (HASH_SIZE - 1); 73 } 74 75 #define MNT_WRITER_UNDERFLOW_LIMIT -(1<<16) 76 77 /* 78 * allocation is serialized by namespace_sem, but we need the spinlock to 79 * serialize with freeing. 80 */ 81 static int mnt_alloc_id(struct vfsmount *mnt) 82 { 83 int res; 84 85 retry: 86 ida_pre_get(&mnt_id_ida, GFP_KERNEL); 87 spin_lock(&mnt_id_lock); 88 res = ida_get_new_above(&mnt_id_ida, mnt_id_start, &mnt->mnt_id); 89 if (!res) 90 mnt_id_start = mnt->mnt_id + 1; 91 spin_unlock(&mnt_id_lock); 92 if (res == -EAGAIN) 93 goto retry; 94 95 return res; 96 } 97 98 static void mnt_free_id(struct vfsmount *mnt) 99 { 100 int id = mnt->mnt_id; 101 spin_lock(&mnt_id_lock); 102 ida_remove(&mnt_id_ida, id); 103 if (mnt_id_start > id) 104 mnt_id_start = id; 105 spin_unlock(&mnt_id_lock); 106 } 107 108 /* 109 * Allocate a new peer group ID 110 * 111 * mnt_group_ida is protected by namespace_sem 112 */ 113 static int mnt_alloc_group_id(struct vfsmount *mnt) 114 { 115 int res; 116 117 if (!ida_pre_get(&mnt_group_ida, GFP_KERNEL)) 118 return -ENOMEM; 119 120 res = ida_get_new_above(&mnt_group_ida, 121 mnt_group_start, 122 &mnt->mnt_group_id); 123 if (!res) 124 mnt_group_start = mnt->mnt_group_id + 1; 125 126 return res; 127 } 128 129 /* 130 * Release a peer group ID 131 */ 132 void mnt_release_group_id(struct vfsmount *mnt) 133 { 134 int id = mnt->mnt_group_id; 135 ida_remove(&mnt_group_ida, id); 136 if (mnt_group_start > id) 137 mnt_group_start = id; 138 mnt->mnt_group_id = 0; 139 } 140 141 /* 142 * vfsmount lock must be held for read 143 */ 144 static inline void mnt_add_count(struct vfsmount *mnt, int n) 145 { 146 #ifdef CONFIG_SMP 147 this_cpu_add(mnt->mnt_pcp->mnt_count, n); 148 #else 149 preempt_disable(); 150 mnt->mnt_count += n; 151 preempt_enable(); 152 #endif 153 } 154 155 static inline void mnt_set_count(struct vfsmount *mnt, int n) 156 { 157 #ifdef CONFIG_SMP 158 this_cpu_write(mnt->mnt_pcp->mnt_count, n); 159 #else 160 mnt->mnt_count = n; 161 #endif 162 } 163 164 /* 165 * vfsmount lock must be held for read 166 */ 167 static inline void mnt_inc_count(struct vfsmount *mnt) 168 { 169 mnt_add_count(mnt, 1); 170 } 171 172 /* 173 * vfsmount lock must be held for read 174 */ 175 static inline void mnt_dec_count(struct vfsmount *mnt) 176 { 177 mnt_add_count(mnt, -1); 178 } 179 180 /* 181 * vfsmount lock must be held for write 182 */ 183 unsigned int mnt_get_count(struct vfsmount *mnt) 184 { 185 #ifdef CONFIG_SMP 186 unsigned int count = 0; 187 int cpu; 188 189 for_each_possible_cpu(cpu) { 190 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count; 191 } 192 193 return count; 194 #else 195 return mnt->mnt_count; 196 #endif 197 } 198 199 static struct vfsmount *alloc_vfsmnt(const char *name) 200 { 201 struct vfsmount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL); 202 if (mnt) { 203 int err; 204 205 err = mnt_alloc_id(mnt); 206 if (err) 207 goto out_free_cache; 208 209 if (name) { 210 mnt->mnt_devname = kstrdup(name, GFP_KERNEL); 211 if (!mnt->mnt_devname) 212 goto out_free_id; 213 } 214 215 #ifdef CONFIG_SMP 216 mnt->mnt_pcp = alloc_percpu(struct mnt_pcp); 217 if (!mnt->mnt_pcp) 218 goto out_free_devname; 219 220 this_cpu_add(mnt->mnt_pcp->mnt_count, 1); 221 #else 222 mnt->mnt_count = 1; 223 mnt->mnt_writers = 0; 224 #endif 225 226 INIT_LIST_HEAD(&mnt->mnt_hash); 227 INIT_LIST_HEAD(&mnt->mnt_child); 228 INIT_LIST_HEAD(&mnt->mnt_mounts); 229 INIT_LIST_HEAD(&mnt->mnt_list); 230 INIT_LIST_HEAD(&mnt->mnt_expire); 231 INIT_LIST_HEAD(&mnt->mnt_share); 232 INIT_LIST_HEAD(&mnt->mnt_slave_list); 233 INIT_LIST_HEAD(&mnt->mnt_slave); 234 #ifdef CONFIG_FSNOTIFY 235 INIT_HLIST_HEAD(&mnt->mnt_fsnotify_marks); 236 #endif 237 } 238 return mnt; 239 240 #ifdef CONFIG_SMP 241 out_free_devname: 242 kfree(mnt->mnt_devname); 243 #endif 244 out_free_id: 245 mnt_free_id(mnt); 246 out_free_cache: 247 kmem_cache_free(mnt_cache, mnt); 248 return NULL; 249 } 250 251 /* 252 * Most r/o checks on a fs are for operations that take 253 * discrete amounts of time, like a write() or unlink(). 254 * We must keep track of when those operations start 255 * (for permission checks) and when they end, so that 256 * we can determine when writes are able to occur to 257 * a filesystem. 258 */ 259 /* 260 * __mnt_is_readonly: check whether a mount is read-only 261 * @mnt: the mount to check for its write status 262 * 263 * This shouldn't be used directly ouside of the VFS. 264 * It does not guarantee that the filesystem will stay 265 * r/w, just that it is right *now*. This can not and 266 * should not be used in place of IS_RDONLY(inode). 267 * mnt_want/drop_write() will _keep_ the filesystem 268 * r/w. 269 */ 270 int __mnt_is_readonly(struct vfsmount *mnt) 271 { 272 if (mnt->mnt_flags & MNT_READONLY) 273 return 1; 274 if (mnt->mnt_sb->s_flags & MS_RDONLY) 275 return 1; 276 return 0; 277 } 278 EXPORT_SYMBOL_GPL(__mnt_is_readonly); 279 280 static inline void mnt_inc_writers(struct vfsmount *mnt) 281 { 282 #ifdef CONFIG_SMP 283 this_cpu_inc(mnt->mnt_pcp->mnt_writers); 284 #else 285 mnt->mnt_writers++; 286 #endif 287 } 288 289 static inline void mnt_dec_writers(struct vfsmount *mnt) 290 { 291 #ifdef CONFIG_SMP 292 this_cpu_dec(mnt->mnt_pcp->mnt_writers); 293 #else 294 mnt->mnt_writers--; 295 #endif 296 } 297 298 static unsigned int mnt_get_writers(struct vfsmount *mnt) 299 { 300 #ifdef CONFIG_SMP 301 unsigned int count = 0; 302 int cpu; 303 304 for_each_possible_cpu(cpu) { 305 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers; 306 } 307 308 return count; 309 #else 310 return mnt->mnt_writers; 311 #endif 312 } 313 314 /* 315 * Most r/o checks on a fs are for operations that take 316 * discrete amounts of time, like a write() or unlink(). 317 * We must keep track of when those operations start 318 * (for permission checks) and when they end, so that 319 * we can determine when writes are able to occur to 320 * a filesystem. 321 */ 322 /** 323 * mnt_want_write - get write access to a mount 324 * @mnt: the mount on which to take a write 325 * 326 * This tells the low-level filesystem that a write is 327 * about to be performed to it, and makes sure that 328 * writes are allowed before returning success. When 329 * the write operation is finished, mnt_drop_write() 330 * must be called. This is effectively a refcount. 331 */ 332 int mnt_want_write(struct vfsmount *mnt) 333 { 334 int ret = 0; 335 336 preempt_disable(); 337 mnt_inc_writers(mnt); 338 /* 339 * The store to mnt_inc_writers must be visible before we pass 340 * MNT_WRITE_HOLD loop below, so that the slowpath can see our 341 * incremented count after it has set MNT_WRITE_HOLD. 342 */ 343 smp_mb(); 344 while (mnt->mnt_flags & MNT_WRITE_HOLD) 345 cpu_relax(); 346 /* 347 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will 348 * be set to match its requirements. So we must not load that until 349 * MNT_WRITE_HOLD is cleared. 350 */ 351 smp_rmb(); 352 if (__mnt_is_readonly(mnt)) { 353 mnt_dec_writers(mnt); 354 ret = -EROFS; 355 goto out; 356 } 357 out: 358 preempt_enable(); 359 return ret; 360 } 361 EXPORT_SYMBOL_GPL(mnt_want_write); 362 363 /** 364 * mnt_clone_write - get write access to a mount 365 * @mnt: the mount on which to take a write 366 * 367 * This is effectively like mnt_want_write, except 368 * it must only be used to take an extra write reference 369 * on a mountpoint that we already know has a write reference 370 * on it. This allows some optimisation. 371 * 372 * After finished, mnt_drop_write must be called as usual to 373 * drop the reference. 374 */ 375 int mnt_clone_write(struct vfsmount *mnt) 376 { 377 /* superblock may be r/o */ 378 if (__mnt_is_readonly(mnt)) 379 return -EROFS; 380 preempt_disable(); 381 mnt_inc_writers(mnt); 382 preempt_enable(); 383 return 0; 384 } 385 EXPORT_SYMBOL_GPL(mnt_clone_write); 386 387 /** 388 * mnt_want_write_file - get write access to a file's mount 389 * @file: the file who's mount on which to take a write 390 * 391 * This is like mnt_want_write, but it takes a file and can 392 * do some optimisations if the file is open for write already 393 */ 394 int mnt_want_write_file(struct file *file) 395 { 396 struct inode *inode = file->f_dentry->d_inode; 397 if (!(file->f_mode & FMODE_WRITE) || special_file(inode->i_mode)) 398 return mnt_want_write(file->f_path.mnt); 399 else 400 return mnt_clone_write(file->f_path.mnt); 401 } 402 EXPORT_SYMBOL_GPL(mnt_want_write_file); 403 404 /** 405 * mnt_drop_write - give up write access to a mount 406 * @mnt: the mount on which to give up write access 407 * 408 * Tells the low-level filesystem that we are done 409 * performing writes to it. Must be matched with 410 * mnt_want_write() call above. 411 */ 412 void mnt_drop_write(struct vfsmount *mnt) 413 { 414 preempt_disable(); 415 mnt_dec_writers(mnt); 416 preempt_enable(); 417 } 418 EXPORT_SYMBOL_GPL(mnt_drop_write); 419 420 static int mnt_make_readonly(struct vfsmount *mnt) 421 { 422 int ret = 0; 423 424 br_write_lock(vfsmount_lock); 425 mnt->mnt_flags |= MNT_WRITE_HOLD; 426 /* 427 * After storing MNT_WRITE_HOLD, we'll read the counters. This store 428 * should be visible before we do. 429 */ 430 smp_mb(); 431 432 /* 433 * With writers on hold, if this value is zero, then there are 434 * definitely no active writers (although held writers may subsequently 435 * increment the count, they'll have to wait, and decrement it after 436 * seeing MNT_READONLY). 437 * 438 * It is OK to have counter incremented on one CPU and decremented on 439 * another: the sum will add up correctly. The danger would be when we 440 * sum up each counter, if we read a counter before it is incremented, 441 * but then read another CPU's count which it has been subsequently 442 * decremented from -- we would see more decrements than we should. 443 * MNT_WRITE_HOLD protects against this scenario, because 444 * mnt_want_write first increments count, then smp_mb, then spins on 445 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while 446 * we're counting up here. 447 */ 448 if (mnt_get_writers(mnt) > 0) 449 ret = -EBUSY; 450 else 451 mnt->mnt_flags |= MNT_READONLY; 452 /* 453 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers 454 * that become unheld will see MNT_READONLY. 455 */ 456 smp_wmb(); 457 mnt->mnt_flags &= ~MNT_WRITE_HOLD; 458 br_write_unlock(vfsmount_lock); 459 return ret; 460 } 461 462 static void __mnt_unmake_readonly(struct vfsmount *mnt) 463 { 464 br_write_lock(vfsmount_lock); 465 mnt->mnt_flags &= ~MNT_READONLY; 466 br_write_unlock(vfsmount_lock); 467 } 468 469 static void free_vfsmnt(struct vfsmount *mnt) 470 { 471 kfree(mnt->mnt_devname); 472 mnt_free_id(mnt); 473 #ifdef CONFIG_SMP 474 free_percpu(mnt->mnt_pcp); 475 #endif 476 kmem_cache_free(mnt_cache, mnt); 477 } 478 479 /* 480 * find the first or last mount at @dentry on vfsmount @mnt depending on 481 * @dir. If @dir is set return the first mount else return the last mount. 482 * vfsmount_lock must be held for read or write. 483 */ 484 struct vfsmount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry, 485 int dir) 486 { 487 struct list_head *head = mount_hashtable + hash(mnt, dentry); 488 struct list_head *tmp = head; 489 struct vfsmount *p, *found = NULL; 490 491 for (;;) { 492 tmp = dir ? tmp->next : tmp->prev; 493 p = NULL; 494 if (tmp == head) 495 break; 496 p = list_entry(tmp, struct vfsmount, mnt_hash); 497 if (p->mnt_parent == mnt && p->mnt_mountpoint == dentry) { 498 found = p; 499 break; 500 } 501 } 502 return found; 503 } 504 505 /* 506 * lookup_mnt increments the ref count before returning 507 * the vfsmount struct. 508 */ 509 struct vfsmount *lookup_mnt(struct path *path) 510 { 511 struct vfsmount *child_mnt; 512 513 br_read_lock(vfsmount_lock); 514 if ((child_mnt = __lookup_mnt(path->mnt, path->dentry, 1))) 515 mntget(child_mnt); 516 br_read_unlock(vfsmount_lock); 517 return child_mnt; 518 } 519 520 static inline int check_mnt(struct vfsmount *mnt) 521 { 522 return mnt->mnt_ns == current->nsproxy->mnt_ns; 523 } 524 525 /* 526 * vfsmount lock must be held for write 527 */ 528 static void touch_mnt_namespace(struct mnt_namespace *ns) 529 { 530 if (ns) { 531 ns->event = ++event; 532 wake_up_interruptible(&ns->poll); 533 } 534 } 535 536 /* 537 * vfsmount lock must be held for write 538 */ 539 static void __touch_mnt_namespace(struct mnt_namespace *ns) 540 { 541 if (ns && ns->event != event) { 542 ns->event = event; 543 wake_up_interruptible(&ns->poll); 544 } 545 } 546 547 /* 548 * Clear dentry's mounted state if it has no remaining mounts. 549 * vfsmount_lock must be held for write. 550 */ 551 static void dentry_reset_mounted(struct vfsmount *mnt, struct dentry *dentry) 552 { 553 unsigned u; 554 555 for (u = 0; u < HASH_SIZE; u++) { 556 struct vfsmount *p; 557 558 list_for_each_entry(p, &mount_hashtable[u], mnt_hash) { 559 if (p->mnt_mountpoint == dentry) 560 return; 561 } 562 } 563 spin_lock(&dentry->d_lock); 564 dentry->d_flags &= ~DCACHE_MOUNTED; 565 spin_unlock(&dentry->d_lock); 566 } 567 568 /* 569 * vfsmount lock must be held for write 570 */ 571 static void detach_mnt(struct vfsmount *mnt, struct path *old_path) 572 { 573 old_path->dentry = mnt->mnt_mountpoint; 574 old_path->mnt = mnt->mnt_parent; 575 mnt->mnt_parent = mnt; 576 mnt->mnt_mountpoint = mnt->mnt_root; 577 list_del_init(&mnt->mnt_child); 578 list_del_init(&mnt->mnt_hash); 579 dentry_reset_mounted(old_path->mnt, old_path->dentry); 580 } 581 582 /* 583 * vfsmount lock must be held for write 584 */ 585 void mnt_set_mountpoint(struct vfsmount *mnt, struct dentry *dentry, 586 struct vfsmount *child_mnt) 587 { 588 child_mnt->mnt_parent = mntget(mnt); 589 child_mnt->mnt_mountpoint = dget(dentry); 590 spin_lock(&dentry->d_lock); 591 dentry->d_flags |= DCACHE_MOUNTED; 592 spin_unlock(&dentry->d_lock); 593 } 594 595 /* 596 * vfsmount lock must be held for write 597 */ 598 static void attach_mnt(struct vfsmount *mnt, struct path *path) 599 { 600 mnt_set_mountpoint(path->mnt, path->dentry, mnt); 601 list_add_tail(&mnt->mnt_hash, mount_hashtable + 602 hash(path->mnt, path->dentry)); 603 list_add_tail(&mnt->mnt_child, &path->mnt->mnt_mounts); 604 } 605 606 static inline void __mnt_make_longterm(struct vfsmount *mnt) 607 { 608 #ifdef CONFIG_SMP 609 atomic_inc(&mnt->mnt_longterm); 610 #endif 611 } 612 613 /* needs vfsmount lock for write */ 614 static inline void __mnt_make_shortterm(struct vfsmount *mnt) 615 { 616 #ifdef CONFIG_SMP 617 atomic_dec(&mnt->mnt_longterm); 618 #endif 619 } 620 621 /* 622 * vfsmount lock must be held for write 623 */ 624 static void commit_tree(struct vfsmount *mnt) 625 { 626 struct vfsmount *parent = mnt->mnt_parent; 627 struct vfsmount *m; 628 LIST_HEAD(head); 629 struct mnt_namespace *n = parent->mnt_ns; 630 631 BUG_ON(parent == mnt); 632 633 list_add_tail(&head, &mnt->mnt_list); 634 list_for_each_entry(m, &head, mnt_list) { 635 m->mnt_ns = n; 636 __mnt_make_longterm(m); 637 } 638 639 list_splice(&head, n->list.prev); 640 641 list_add_tail(&mnt->mnt_hash, mount_hashtable + 642 hash(parent, mnt->mnt_mountpoint)); 643 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts); 644 touch_mnt_namespace(n); 645 } 646 647 static struct vfsmount *next_mnt(struct vfsmount *p, struct vfsmount *root) 648 { 649 struct list_head *next = p->mnt_mounts.next; 650 if (next == &p->mnt_mounts) { 651 while (1) { 652 if (p == root) 653 return NULL; 654 next = p->mnt_child.next; 655 if (next != &p->mnt_parent->mnt_mounts) 656 break; 657 p = p->mnt_parent; 658 } 659 } 660 return list_entry(next, struct vfsmount, mnt_child); 661 } 662 663 static struct vfsmount *skip_mnt_tree(struct vfsmount *p) 664 { 665 struct list_head *prev = p->mnt_mounts.prev; 666 while (prev != &p->mnt_mounts) { 667 p = list_entry(prev, struct vfsmount, mnt_child); 668 prev = p->mnt_mounts.prev; 669 } 670 return p; 671 } 672 673 struct vfsmount * 674 vfs_kern_mount(struct file_system_type *type, int flags, const char *name, void *data) 675 { 676 struct vfsmount *mnt; 677 struct dentry *root; 678 679 if (!type) 680 return ERR_PTR(-ENODEV); 681 682 mnt = alloc_vfsmnt(name); 683 if (!mnt) 684 return ERR_PTR(-ENOMEM); 685 686 if (flags & MS_KERNMOUNT) 687 mnt->mnt_flags = MNT_INTERNAL; 688 689 root = mount_fs(type, flags, name, data); 690 if (IS_ERR(root)) { 691 free_vfsmnt(mnt); 692 return ERR_CAST(root); 693 } 694 695 mnt->mnt_root = root; 696 mnt->mnt_sb = root->d_sb; 697 mnt->mnt_mountpoint = mnt->mnt_root; 698 mnt->mnt_parent = mnt; 699 return mnt; 700 } 701 EXPORT_SYMBOL_GPL(vfs_kern_mount); 702 703 static struct vfsmount *clone_mnt(struct vfsmount *old, struct dentry *root, 704 int flag) 705 { 706 struct super_block *sb = old->mnt_sb; 707 struct vfsmount *mnt = alloc_vfsmnt(old->mnt_devname); 708 709 if (mnt) { 710 if (flag & (CL_SLAVE | CL_PRIVATE)) 711 mnt->mnt_group_id = 0; /* not a peer of original */ 712 else 713 mnt->mnt_group_id = old->mnt_group_id; 714 715 if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) { 716 int err = mnt_alloc_group_id(mnt); 717 if (err) 718 goto out_free; 719 } 720 721 mnt->mnt_flags = old->mnt_flags & ~MNT_WRITE_HOLD; 722 atomic_inc(&sb->s_active); 723 mnt->mnt_sb = sb; 724 mnt->mnt_root = dget(root); 725 mnt->mnt_mountpoint = mnt->mnt_root; 726 mnt->mnt_parent = mnt; 727 728 if (flag & CL_SLAVE) { 729 list_add(&mnt->mnt_slave, &old->mnt_slave_list); 730 mnt->mnt_master = old; 731 CLEAR_MNT_SHARED(mnt); 732 } else if (!(flag & CL_PRIVATE)) { 733 if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old)) 734 list_add(&mnt->mnt_share, &old->mnt_share); 735 if (IS_MNT_SLAVE(old)) 736 list_add(&mnt->mnt_slave, &old->mnt_slave); 737 mnt->mnt_master = old->mnt_master; 738 } 739 if (flag & CL_MAKE_SHARED) 740 set_mnt_shared(mnt); 741 742 /* stick the duplicate mount on the same expiry list 743 * as the original if that was on one */ 744 if (flag & CL_EXPIRE) { 745 if (!list_empty(&old->mnt_expire)) 746 list_add(&mnt->mnt_expire, &old->mnt_expire); 747 } 748 } 749 return mnt; 750 751 out_free: 752 free_vfsmnt(mnt); 753 return NULL; 754 } 755 756 static inline void mntfree(struct vfsmount *mnt) 757 { 758 struct super_block *sb = mnt->mnt_sb; 759 760 /* 761 * This probably indicates that somebody messed 762 * up a mnt_want/drop_write() pair. If this 763 * happens, the filesystem was probably unable 764 * to make r/w->r/o transitions. 765 */ 766 /* 767 * The locking used to deal with mnt_count decrement provides barriers, 768 * so mnt_get_writers() below is safe. 769 */ 770 WARN_ON(mnt_get_writers(mnt)); 771 fsnotify_vfsmount_delete(mnt); 772 dput(mnt->mnt_root); 773 free_vfsmnt(mnt); 774 deactivate_super(sb); 775 } 776 777 static void mntput_no_expire(struct vfsmount *mnt) 778 { 779 put_again: 780 #ifdef CONFIG_SMP 781 br_read_lock(vfsmount_lock); 782 if (likely(atomic_read(&mnt->mnt_longterm))) { 783 mnt_dec_count(mnt); 784 br_read_unlock(vfsmount_lock); 785 return; 786 } 787 br_read_unlock(vfsmount_lock); 788 789 br_write_lock(vfsmount_lock); 790 mnt_dec_count(mnt); 791 if (mnt_get_count(mnt)) { 792 br_write_unlock(vfsmount_lock); 793 return; 794 } 795 #else 796 mnt_dec_count(mnt); 797 if (likely(mnt_get_count(mnt))) 798 return; 799 br_write_lock(vfsmount_lock); 800 #endif 801 if (unlikely(mnt->mnt_pinned)) { 802 mnt_add_count(mnt, mnt->mnt_pinned + 1); 803 mnt->mnt_pinned = 0; 804 br_write_unlock(vfsmount_lock); 805 acct_auto_close_mnt(mnt); 806 goto put_again; 807 } 808 br_write_unlock(vfsmount_lock); 809 mntfree(mnt); 810 } 811 812 void mntput(struct vfsmount *mnt) 813 { 814 if (mnt) { 815 /* avoid cacheline pingpong, hope gcc doesn't get "smart" */ 816 if (unlikely(mnt->mnt_expiry_mark)) 817 mnt->mnt_expiry_mark = 0; 818 mntput_no_expire(mnt); 819 } 820 } 821 EXPORT_SYMBOL(mntput); 822 823 struct vfsmount *mntget(struct vfsmount *mnt) 824 { 825 if (mnt) 826 mnt_inc_count(mnt); 827 return mnt; 828 } 829 EXPORT_SYMBOL(mntget); 830 831 void mnt_pin(struct vfsmount *mnt) 832 { 833 br_write_lock(vfsmount_lock); 834 mnt->mnt_pinned++; 835 br_write_unlock(vfsmount_lock); 836 } 837 EXPORT_SYMBOL(mnt_pin); 838 839 void mnt_unpin(struct vfsmount *mnt) 840 { 841 br_write_lock(vfsmount_lock); 842 if (mnt->mnt_pinned) { 843 mnt_inc_count(mnt); 844 mnt->mnt_pinned--; 845 } 846 br_write_unlock(vfsmount_lock); 847 } 848 EXPORT_SYMBOL(mnt_unpin); 849 850 static inline void mangle(struct seq_file *m, const char *s) 851 { 852 seq_escape(m, s, " \t\n\\"); 853 } 854 855 /* 856 * Simple .show_options callback for filesystems which don't want to 857 * implement more complex mount option showing. 858 * 859 * See also save_mount_options(). 860 */ 861 int generic_show_options(struct seq_file *m, struct vfsmount *mnt) 862 { 863 const char *options; 864 865 rcu_read_lock(); 866 options = rcu_dereference(mnt->mnt_sb->s_options); 867 868 if (options != NULL && options[0]) { 869 seq_putc(m, ','); 870 mangle(m, options); 871 } 872 rcu_read_unlock(); 873 874 return 0; 875 } 876 EXPORT_SYMBOL(generic_show_options); 877 878 /* 879 * If filesystem uses generic_show_options(), this function should be 880 * called from the fill_super() callback. 881 * 882 * The .remount_fs callback usually needs to be handled in a special 883 * way, to make sure, that previous options are not overwritten if the 884 * remount fails. 885 * 886 * Also note, that if the filesystem's .remount_fs function doesn't 887 * reset all options to their default value, but changes only newly 888 * given options, then the displayed options will not reflect reality 889 * any more. 890 */ 891 void save_mount_options(struct super_block *sb, char *options) 892 { 893 BUG_ON(sb->s_options); 894 rcu_assign_pointer(sb->s_options, kstrdup(options, GFP_KERNEL)); 895 } 896 EXPORT_SYMBOL(save_mount_options); 897 898 void replace_mount_options(struct super_block *sb, char *options) 899 { 900 char *old = sb->s_options; 901 rcu_assign_pointer(sb->s_options, options); 902 if (old) { 903 synchronize_rcu(); 904 kfree(old); 905 } 906 } 907 EXPORT_SYMBOL(replace_mount_options); 908 909 #ifdef CONFIG_PROC_FS 910 /* iterator */ 911 static void *m_start(struct seq_file *m, loff_t *pos) 912 { 913 struct proc_mounts *p = m->private; 914 915 down_read(&namespace_sem); 916 return seq_list_start(&p->ns->list, *pos); 917 } 918 919 static void *m_next(struct seq_file *m, void *v, loff_t *pos) 920 { 921 struct proc_mounts *p = m->private; 922 923 return seq_list_next(v, &p->ns->list, pos); 924 } 925 926 static void m_stop(struct seq_file *m, void *v) 927 { 928 up_read(&namespace_sem); 929 } 930 931 int mnt_had_events(struct proc_mounts *p) 932 { 933 struct mnt_namespace *ns = p->ns; 934 int res = 0; 935 936 br_read_lock(vfsmount_lock); 937 if (p->m.poll_event != ns->event) { 938 p->m.poll_event = ns->event; 939 res = 1; 940 } 941 br_read_unlock(vfsmount_lock); 942 943 return res; 944 } 945 946 struct proc_fs_info { 947 int flag; 948 const char *str; 949 }; 950 951 static int show_sb_opts(struct seq_file *m, struct super_block *sb) 952 { 953 static const struct proc_fs_info fs_info[] = { 954 { MS_SYNCHRONOUS, ",sync" }, 955 { MS_DIRSYNC, ",dirsync" }, 956 { MS_MANDLOCK, ",mand" }, 957 { 0, NULL } 958 }; 959 const struct proc_fs_info *fs_infop; 960 961 for (fs_infop = fs_info; fs_infop->flag; fs_infop++) { 962 if (sb->s_flags & fs_infop->flag) 963 seq_puts(m, fs_infop->str); 964 } 965 966 return security_sb_show_options(m, sb); 967 } 968 969 static void show_mnt_opts(struct seq_file *m, struct vfsmount *mnt) 970 { 971 static const struct proc_fs_info mnt_info[] = { 972 { MNT_NOSUID, ",nosuid" }, 973 { MNT_NODEV, ",nodev" }, 974 { MNT_NOEXEC, ",noexec" }, 975 { MNT_NOATIME, ",noatime" }, 976 { MNT_NODIRATIME, ",nodiratime" }, 977 { MNT_RELATIME, ",relatime" }, 978 { 0, NULL } 979 }; 980 const struct proc_fs_info *fs_infop; 981 982 for (fs_infop = mnt_info; fs_infop->flag; fs_infop++) { 983 if (mnt->mnt_flags & fs_infop->flag) 984 seq_puts(m, fs_infop->str); 985 } 986 } 987 988 static void show_type(struct seq_file *m, struct super_block *sb) 989 { 990 mangle(m, sb->s_type->name); 991 if (sb->s_subtype && sb->s_subtype[0]) { 992 seq_putc(m, '.'); 993 mangle(m, sb->s_subtype); 994 } 995 } 996 997 static int show_vfsmnt(struct seq_file *m, void *v) 998 { 999 struct vfsmount *mnt = list_entry(v, struct vfsmount, mnt_list); 1000 int err = 0; 1001 struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt }; 1002 1003 if (mnt->mnt_sb->s_op->show_devname) { 1004 err = mnt->mnt_sb->s_op->show_devname(m, mnt); 1005 if (err) 1006 goto out; 1007 } else { 1008 mangle(m, mnt->mnt_devname ? mnt->mnt_devname : "none"); 1009 } 1010 seq_putc(m, ' '); 1011 seq_path(m, &mnt_path, " \t\n\\"); 1012 seq_putc(m, ' '); 1013 show_type(m, mnt->mnt_sb); 1014 seq_puts(m, __mnt_is_readonly(mnt) ? " ro" : " rw"); 1015 err = show_sb_opts(m, mnt->mnt_sb); 1016 if (err) 1017 goto out; 1018 show_mnt_opts(m, mnt); 1019 if (mnt->mnt_sb->s_op->show_options) 1020 err = mnt->mnt_sb->s_op->show_options(m, mnt); 1021 seq_puts(m, " 0 0\n"); 1022 out: 1023 return err; 1024 } 1025 1026 const struct seq_operations mounts_op = { 1027 .start = m_start, 1028 .next = m_next, 1029 .stop = m_stop, 1030 .show = show_vfsmnt 1031 }; 1032 1033 static int show_mountinfo(struct seq_file *m, void *v) 1034 { 1035 struct proc_mounts *p = m->private; 1036 struct vfsmount *mnt = list_entry(v, struct vfsmount, mnt_list); 1037 struct super_block *sb = mnt->mnt_sb; 1038 struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt }; 1039 struct path root = p->root; 1040 int err = 0; 1041 1042 seq_printf(m, "%i %i %u:%u ", mnt->mnt_id, mnt->mnt_parent->mnt_id, 1043 MAJOR(sb->s_dev), MINOR(sb->s_dev)); 1044 if (sb->s_op->show_path) 1045 err = sb->s_op->show_path(m, mnt); 1046 else 1047 seq_dentry(m, mnt->mnt_root, " \t\n\\"); 1048 if (err) 1049 goto out; 1050 seq_putc(m, ' '); 1051 seq_path_root(m, &mnt_path, &root, " \t\n\\"); 1052 if (root.mnt != p->root.mnt || root.dentry != p->root.dentry) { 1053 /* 1054 * Mountpoint is outside root, discard that one. Ugly, 1055 * but less so than trying to do that in iterator in a 1056 * race-free way (due to renames). 1057 */ 1058 return SEQ_SKIP; 1059 } 1060 seq_puts(m, mnt->mnt_flags & MNT_READONLY ? " ro" : " rw"); 1061 show_mnt_opts(m, mnt); 1062 1063 /* Tagged fields ("foo:X" or "bar") */ 1064 if (IS_MNT_SHARED(mnt)) 1065 seq_printf(m, " shared:%i", mnt->mnt_group_id); 1066 if (IS_MNT_SLAVE(mnt)) { 1067 int master = mnt->mnt_master->mnt_group_id; 1068 int dom = get_dominating_id(mnt, &p->root); 1069 seq_printf(m, " master:%i", master); 1070 if (dom && dom != master) 1071 seq_printf(m, " propagate_from:%i", dom); 1072 } 1073 if (IS_MNT_UNBINDABLE(mnt)) 1074 seq_puts(m, " unbindable"); 1075 1076 /* Filesystem specific data */ 1077 seq_puts(m, " - "); 1078 show_type(m, sb); 1079 seq_putc(m, ' '); 1080 if (sb->s_op->show_devname) 1081 err = sb->s_op->show_devname(m, mnt); 1082 else 1083 mangle(m, mnt->mnt_devname ? mnt->mnt_devname : "none"); 1084 if (err) 1085 goto out; 1086 seq_puts(m, sb->s_flags & MS_RDONLY ? " ro" : " rw"); 1087 err = show_sb_opts(m, sb); 1088 if (err) 1089 goto out; 1090 if (sb->s_op->show_options) 1091 err = sb->s_op->show_options(m, mnt); 1092 seq_putc(m, '\n'); 1093 out: 1094 return err; 1095 } 1096 1097 const struct seq_operations mountinfo_op = { 1098 .start = m_start, 1099 .next = m_next, 1100 .stop = m_stop, 1101 .show = show_mountinfo, 1102 }; 1103 1104 static int show_vfsstat(struct seq_file *m, void *v) 1105 { 1106 struct vfsmount *mnt = list_entry(v, struct vfsmount, mnt_list); 1107 struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt }; 1108 int err = 0; 1109 1110 /* device */ 1111 if (mnt->mnt_sb->s_op->show_devname) { 1112 err = mnt->mnt_sb->s_op->show_devname(m, mnt); 1113 } else { 1114 if (mnt->mnt_devname) { 1115 seq_puts(m, "device "); 1116 mangle(m, mnt->mnt_devname); 1117 } else 1118 seq_puts(m, "no device"); 1119 } 1120 1121 /* mount point */ 1122 seq_puts(m, " mounted on "); 1123 seq_path(m, &mnt_path, " \t\n\\"); 1124 seq_putc(m, ' '); 1125 1126 /* file system type */ 1127 seq_puts(m, "with fstype "); 1128 show_type(m, mnt->mnt_sb); 1129 1130 /* optional statistics */ 1131 if (mnt->mnt_sb->s_op->show_stats) { 1132 seq_putc(m, ' '); 1133 if (!err) 1134 err = mnt->mnt_sb->s_op->show_stats(m, mnt); 1135 } 1136 1137 seq_putc(m, '\n'); 1138 return err; 1139 } 1140 1141 const struct seq_operations mountstats_op = { 1142 .start = m_start, 1143 .next = m_next, 1144 .stop = m_stop, 1145 .show = show_vfsstat, 1146 }; 1147 #endif /* CONFIG_PROC_FS */ 1148 1149 /** 1150 * may_umount_tree - check if a mount tree is busy 1151 * @mnt: root of mount tree 1152 * 1153 * This is called to check if a tree of mounts has any 1154 * open files, pwds, chroots or sub mounts that are 1155 * busy. 1156 */ 1157 int may_umount_tree(struct vfsmount *mnt) 1158 { 1159 int actual_refs = 0; 1160 int minimum_refs = 0; 1161 struct vfsmount *p; 1162 1163 /* write lock needed for mnt_get_count */ 1164 br_write_lock(vfsmount_lock); 1165 for (p = mnt; p; p = next_mnt(p, mnt)) { 1166 actual_refs += mnt_get_count(p); 1167 minimum_refs += 2; 1168 } 1169 br_write_unlock(vfsmount_lock); 1170 1171 if (actual_refs > minimum_refs) 1172 return 0; 1173 1174 return 1; 1175 } 1176 1177 EXPORT_SYMBOL(may_umount_tree); 1178 1179 /** 1180 * may_umount - check if a mount point is busy 1181 * @mnt: root of mount 1182 * 1183 * This is called to check if a mount point has any 1184 * open files, pwds, chroots or sub mounts. If the 1185 * mount has sub mounts this will return busy 1186 * regardless of whether the sub mounts are busy. 1187 * 1188 * Doesn't take quota and stuff into account. IOW, in some cases it will 1189 * give false negatives. The main reason why it's here is that we need 1190 * a non-destructive way to look for easily umountable filesystems. 1191 */ 1192 int may_umount(struct vfsmount *mnt) 1193 { 1194 int ret = 1; 1195 down_read(&namespace_sem); 1196 br_write_lock(vfsmount_lock); 1197 if (propagate_mount_busy(mnt, 2)) 1198 ret = 0; 1199 br_write_unlock(vfsmount_lock); 1200 up_read(&namespace_sem); 1201 return ret; 1202 } 1203 1204 EXPORT_SYMBOL(may_umount); 1205 1206 void release_mounts(struct list_head *head) 1207 { 1208 struct vfsmount *mnt; 1209 while (!list_empty(head)) { 1210 mnt = list_first_entry(head, struct vfsmount, mnt_hash); 1211 list_del_init(&mnt->mnt_hash); 1212 if (mnt->mnt_parent != mnt) { 1213 struct dentry *dentry; 1214 struct vfsmount *m; 1215 1216 br_write_lock(vfsmount_lock); 1217 dentry = mnt->mnt_mountpoint; 1218 m = mnt->mnt_parent; 1219 mnt->mnt_mountpoint = mnt->mnt_root; 1220 mnt->mnt_parent = mnt; 1221 m->mnt_ghosts--; 1222 br_write_unlock(vfsmount_lock); 1223 dput(dentry); 1224 mntput(m); 1225 } 1226 mntput(mnt); 1227 } 1228 } 1229 1230 /* 1231 * vfsmount lock must be held for write 1232 * namespace_sem must be held for write 1233 */ 1234 void umount_tree(struct vfsmount *mnt, int propagate, struct list_head *kill) 1235 { 1236 LIST_HEAD(tmp_list); 1237 struct vfsmount *p; 1238 1239 for (p = mnt; p; p = next_mnt(p, mnt)) 1240 list_move(&p->mnt_hash, &tmp_list); 1241 1242 if (propagate) 1243 propagate_umount(&tmp_list); 1244 1245 list_for_each_entry(p, &tmp_list, mnt_hash) { 1246 list_del_init(&p->mnt_expire); 1247 list_del_init(&p->mnt_list); 1248 __touch_mnt_namespace(p->mnt_ns); 1249 p->mnt_ns = NULL; 1250 __mnt_make_shortterm(p); 1251 list_del_init(&p->mnt_child); 1252 if (p->mnt_parent != p) { 1253 p->mnt_parent->mnt_ghosts++; 1254 dentry_reset_mounted(p->mnt_parent, p->mnt_mountpoint); 1255 } 1256 change_mnt_propagation(p, MS_PRIVATE); 1257 } 1258 list_splice(&tmp_list, kill); 1259 } 1260 1261 static void shrink_submounts(struct vfsmount *mnt, struct list_head *umounts); 1262 1263 static int do_umount(struct vfsmount *mnt, int flags) 1264 { 1265 struct super_block *sb = mnt->mnt_sb; 1266 int retval; 1267 LIST_HEAD(umount_list); 1268 1269 retval = security_sb_umount(mnt, flags); 1270 if (retval) 1271 return retval; 1272 1273 /* 1274 * Allow userspace to request a mountpoint be expired rather than 1275 * unmounting unconditionally. Unmount only happens if: 1276 * (1) the mark is already set (the mark is cleared by mntput()) 1277 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount] 1278 */ 1279 if (flags & MNT_EXPIRE) { 1280 if (mnt == current->fs->root.mnt || 1281 flags & (MNT_FORCE | MNT_DETACH)) 1282 return -EINVAL; 1283 1284 /* 1285 * probably don't strictly need the lock here if we examined 1286 * all race cases, but it's a slowpath. 1287 */ 1288 br_write_lock(vfsmount_lock); 1289 if (mnt_get_count(mnt) != 2) { 1290 br_write_unlock(vfsmount_lock); 1291 return -EBUSY; 1292 } 1293 br_write_unlock(vfsmount_lock); 1294 1295 if (!xchg(&mnt->mnt_expiry_mark, 1)) 1296 return -EAGAIN; 1297 } 1298 1299 /* 1300 * If we may have to abort operations to get out of this 1301 * mount, and they will themselves hold resources we must 1302 * allow the fs to do things. In the Unix tradition of 1303 * 'Gee thats tricky lets do it in userspace' the umount_begin 1304 * might fail to complete on the first run through as other tasks 1305 * must return, and the like. Thats for the mount program to worry 1306 * about for the moment. 1307 */ 1308 1309 if (flags & MNT_FORCE && sb->s_op->umount_begin) { 1310 sb->s_op->umount_begin(sb); 1311 } 1312 1313 /* 1314 * No sense to grab the lock for this test, but test itself looks 1315 * somewhat bogus. Suggestions for better replacement? 1316 * Ho-hum... In principle, we might treat that as umount + switch 1317 * to rootfs. GC would eventually take care of the old vfsmount. 1318 * Actually it makes sense, especially if rootfs would contain a 1319 * /reboot - static binary that would close all descriptors and 1320 * call reboot(9). Then init(8) could umount root and exec /reboot. 1321 */ 1322 if (mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) { 1323 /* 1324 * Special case for "unmounting" root ... 1325 * we just try to remount it readonly. 1326 */ 1327 down_write(&sb->s_umount); 1328 if (!(sb->s_flags & MS_RDONLY)) 1329 retval = do_remount_sb(sb, MS_RDONLY, NULL, 0); 1330 up_write(&sb->s_umount); 1331 return retval; 1332 } 1333 1334 down_write(&namespace_sem); 1335 br_write_lock(vfsmount_lock); 1336 event++; 1337 1338 if (!(flags & MNT_DETACH)) 1339 shrink_submounts(mnt, &umount_list); 1340 1341 retval = -EBUSY; 1342 if (flags & MNT_DETACH || !propagate_mount_busy(mnt, 2)) { 1343 if (!list_empty(&mnt->mnt_list)) 1344 umount_tree(mnt, 1, &umount_list); 1345 retval = 0; 1346 } 1347 br_write_unlock(vfsmount_lock); 1348 up_write(&namespace_sem); 1349 release_mounts(&umount_list); 1350 return retval; 1351 } 1352 1353 /* 1354 * Now umount can handle mount points as well as block devices. 1355 * This is important for filesystems which use unnamed block devices. 1356 * 1357 * We now support a flag for forced unmount like the other 'big iron' 1358 * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD 1359 */ 1360 1361 SYSCALL_DEFINE2(umount, char __user *, name, int, flags) 1362 { 1363 struct path path; 1364 int retval; 1365 int lookup_flags = 0; 1366 1367 if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW)) 1368 return -EINVAL; 1369 1370 if (!(flags & UMOUNT_NOFOLLOW)) 1371 lookup_flags |= LOOKUP_FOLLOW; 1372 1373 retval = user_path_at(AT_FDCWD, name, lookup_flags, &path); 1374 if (retval) 1375 goto out; 1376 retval = -EINVAL; 1377 if (path.dentry != path.mnt->mnt_root) 1378 goto dput_and_out; 1379 if (!check_mnt(path.mnt)) 1380 goto dput_and_out; 1381 1382 retval = -EPERM; 1383 if (!capable(CAP_SYS_ADMIN)) 1384 goto dput_and_out; 1385 1386 retval = do_umount(path.mnt, flags); 1387 dput_and_out: 1388 /* we mustn't call path_put() as that would clear mnt_expiry_mark */ 1389 dput(path.dentry); 1390 mntput_no_expire(path.mnt); 1391 out: 1392 return retval; 1393 } 1394 1395 #ifdef __ARCH_WANT_SYS_OLDUMOUNT 1396 1397 /* 1398 * The 2.0 compatible umount. No flags. 1399 */ 1400 SYSCALL_DEFINE1(oldumount, char __user *, name) 1401 { 1402 return sys_umount(name, 0); 1403 } 1404 1405 #endif 1406 1407 static int mount_is_safe(struct path *path) 1408 { 1409 if (capable(CAP_SYS_ADMIN)) 1410 return 0; 1411 return -EPERM; 1412 #ifdef notyet 1413 if (S_ISLNK(path->dentry->d_inode->i_mode)) 1414 return -EPERM; 1415 if (path->dentry->d_inode->i_mode & S_ISVTX) { 1416 if (current_uid() != path->dentry->d_inode->i_uid) 1417 return -EPERM; 1418 } 1419 if (inode_permission(path->dentry->d_inode, MAY_WRITE)) 1420 return -EPERM; 1421 return 0; 1422 #endif 1423 } 1424 1425 struct vfsmount *copy_tree(struct vfsmount *mnt, struct dentry *dentry, 1426 int flag) 1427 { 1428 struct vfsmount *res, *p, *q, *r, *s; 1429 struct path path; 1430 1431 if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(mnt)) 1432 return NULL; 1433 1434 res = q = clone_mnt(mnt, dentry, flag); 1435 if (!q) 1436 goto Enomem; 1437 q->mnt_mountpoint = mnt->mnt_mountpoint; 1438 1439 p = mnt; 1440 list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) { 1441 if (!is_subdir(r->mnt_mountpoint, dentry)) 1442 continue; 1443 1444 for (s = r; s; s = next_mnt(s, r)) { 1445 if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(s)) { 1446 s = skip_mnt_tree(s); 1447 continue; 1448 } 1449 while (p != s->mnt_parent) { 1450 p = p->mnt_parent; 1451 q = q->mnt_parent; 1452 } 1453 p = s; 1454 path.mnt = q; 1455 path.dentry = p->mnt_mountpoint; 1456 q = clone_mnt(p, p->mnt_root, flag); 1457 if (!q) 1458 goto Enomem; 1459 br_write_lock(vfsmount_lock); 1460 list_add_tail(&q->mnt_list, &res->mnt_list); 1461 attach_mnt(q, &path); 1462 br_write_unlock(vfsmount_lock); 1463 } 1464 } 1465 return res; 1466 Enomem: 1467 if (res) { 1468 LIST_HEAD(umount_list); 1469 br_write_lock(vfsmount_lock); 1470 umount_tree(res, 0, &umount_list); 1471 br_write_unlock(vfsmount_lock); 1472 release_mounts(&umount_list); 1473 } 1474 return NULL; 1475 } 1476 1477 struct vfsmount *collect_mounts(struct path *path) 1478 { 1479 struct vfsmount *tree; 1480 down_write(&namespace_sem); 1481 tree = copy_tree(path->mnt, path->dentry, CL_COPY_ALL | CL_PRIVATE); 1482 up_write(&namespace_sem); 1483 return tree; 1484 } 1485 1486 void drop_collected_mounts(struct vfsmount *mnt) 1487 { 1488 LIST_HEAD(umount_list); 1489 down_write(&namespace_sem); 1490 br_write_lock(vfsmount_lock); 1491 umount_tree(mnt, 0, &umount_list); 1492 br_write_unlock(vfsmount_lock); 1493 up_write(&namespace_sem); 1494 release_mounts(&umount_list); 1495 } 1496 1497 int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg, 1498 struct vfsmount *root) 1499 { 1500 struct vfsmount *mnt; 1501 int res = f(root, arg); 1502 if (res) 1503 return res; 1504 list_for_each_entry(mnt, &root->mnt_list, mnt_list) { 1505 res = f(mnt, arg); 1506 if (res) 1507 return res; 1508 } 1509 return 0; 1510 } 1511 1512 static void cleanup_group_ids(struct vfsmount *mnt, struct vfsmount *end) 1513 { 1514 struct vfsmount *p; 1515 1516 for (p = mnt; p != end; p = next_mnt(p, mnt)) { 1517 if (p->mnt_group_id && !IS_MNT_SHARED(p)) 1518 mnt_release_group_id(p); 1519 } 1520 } 1521 1522 static int invent_group_ids(struct vfsmount *mnt, bool recurse) 1523 { 1524 struct vfsmount *p; 1525 1526 for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) { 1527 if (!p->mnt_group_id && !IS_MNT_SHARED(p)) { 1528 int err = mnt_alloc_group_id(p); 1529 if (err) { 1530 cleanup_group_ids(mnt, p); 1531 return err; 1532 } 1533 } 1534 } 1535 1536 return 0; 1537 } 1538 1539 /* 1540 * @source_mnt : mount tree to be attached 1541 * @nd : place the mount tree @source_mnt is attached 1542 * @parent_nd : if non-null, detach the source_mnt from its parent and 1543 * store the parent mount and mountpoint dentry. 1544 * (done when source_mnt is moved) 1545 * 1546 * NOTE: in the table below explains the semantics when a source mount 1547 * of a given type is attached to a destination mount of a given type. 1548 * --------------------------------------------------------------------------- 1549 * | BIND MOUNT OPERATION | 1550 * |************************************************************************** 1551 * | source-->| shared | private | slave | unbindable | 1552 * | dest | | | | | 1553 * | | | | | | | 1554 * | v | | | | | 1555 * |************************************************************************** 1556 * | shared | shared (++) | shared (+) | shared(+++)| invalid | 1557 * | | | | | | 1558 * |non-shared| shared (+) | private | slave (*) | invalid | 1559 * *************************************************************************** 1560 * A bind operation clones the source mount and mounts the clone on the 1561 * destination mount. 1562 * 1563 * (++) the cloned mount is propagated to all the mounts in the propagation 1564 * tree of the destination mount and the cloned mount is added to 1565 * the peer group of the source mount. 1566 * (+) the cloned mount is created under the destination mount and is marked 1567 * as shared. The cloned mount is added to the peer group of the source 1568 * mount. 1569 * (+++) the mount is propagated to all the mounts in the propagation tree 1570 * of the destination mount and the cloned mount is made slave 1571 * of the same master as that of the source mount. The cloned mount 1572 * is marked as 'shared and slave'. 1573 * (*) the cloned mount is made a slave of the same master as that of the 1574 * source mount. 1575 * 1576 * --------------------------------------------------------------------------- 1577 * | MOVE MOUNT OPERATION | 1578 * |************************************************************************** 1579 * | source-->| shared | private | slave | unbindable | 1580 * | dest | | | | | 1581 * | | | | | | | 1582 * | v | | | | | 1583 * |************************************************************************** 1584 * | shared | shared (+) | shared (+) | shared(+++) | invalid | 1585 * | | | | | | 1586 * |non-shared| shared (+*) | private | slave (*) | unbindable | 1587 * *************************************************************************** 1588 * 1589 * (+) the mount is moved to the destination. And is then propagated to 1590 * all the mounts in the propagation tree of the destination mount. 1591 * (+*) the mount is moved to the destination. 1592 * (+++) the mount is moved to the destination and is then propagated to 1593 * all the mounts belonging to the destination mount's propagation tree. 1594 * the mount is marked as 'shared and slave'. 1595 * (*) the mount continues to be a slave at the new location. 1596 * 1597 * if the source mount is a tree, the operations explained above is 1598 * applied to each mount in the tree. 1599 * Must be called without spinlocks held, since this function can sleep 1600 * in allocations. 1601 */ 1602 static int attach_recursive_mnt(struct vfsmount *source_mnt, 1603 struct path *path, struct path *parent_path) 1604 { 1605 LIST_HEAD(tree_list); 1606 struct vfsmount *dest_mnt = path->mnt; 1607 struct dentry *dest_dentry = path->dentry; 1608 struct vfsmount *child, *p; 1609 int err; 1610 1611 if (IS_MNT_SHARED(dest_mnt)) { 1612 err = invent_group_ids(source_mnt, true); 1613 if (err) 1614 goto out; 1615 } 1616 err = propagate_mnt(dest_mnt, dest_dentry, source_mnt, &tree_list); 1617 if (err) 1618 goto out_cleanup_ids; 1619 1620 br_write_lock(vfsmount_lock); 1621 1622 if (IS_MNT_SHARED(dest_mnt)) { 1623 for (p = source_mnt; p; p = next_mnt(p, source_mnt)) 1624 set_mnt_shared(p); 1625 } 1626 if (parent_path) { 1627 detach_mnt(source_mnt, parent_path); 1628 attach_mnt(source_mnt, path); 1629 touch_mnt_namespace(parent_path->mnt->mnt_ns); 1630 } else { 1631 mnt_set_mountpoint(dest_mnt, dest_dentry, source_mnt); 1632 commit_tree(source_mnt); 1633 } 1634 1635 list_for_each_entry_safe(child, p, &tree_list, mnt_hash) { 1636 list_del_init(&child->mnt_hash); 1637 commit_tree(child); 1638 } 1639 br_write_unlock(vfsmount_lock); 1640 1641 return 0; 1642 1643 out_cleanup_ids: 1644 if (IS_MNT_SHARED(dest_mnt)) 1645 cleanup_group_ids(source_mnt, NULL); 1646 out: 1647 return err; 1648 } 1649 1650 static int lock_mount(struct path *path) 1651 { 1652 struct vfsmount *mnt; 1653 retry: 1654 mutex_lock(&path->dentry->d_inode->i_mutex); 1655 if (unlikely(cant_mount(path->dentry))) { 1656 mutex_unlock(&path->dentry->d_inode->i_mutex); 1657 return -ENOENT; 1658 } 1659 down_write(&namespace_sem); 1660 mnt = lookup_mnt(path); 1661 if (likely(!mnt)) 1662 return 0; 1663 up_write(&namespace_sem); 1664 mutex_unlock(&path->dentry->d_inode->i_mutex); 1665 path_put(path); 1666 path->mnt = mnt; 1667 path->dentry = dget(mnt->mnt_root); 1668 goto retry; 1669 } 1670 1671 static void unlock_mount(struct path *path) 1672 { 1673 up_write(&namespace_sem); 1674 mutex_unlock(&path->dentry->d_inode->i_mutex); 1675 } 1676 1677 static int graft_tree(struct vfsmount *mnt, struct path *path) 1678 { 1679 if (mnt->mnt_sb->s_flags & MS_NOUSER) 1680 return -EINVAL; 1681 1682 if (S_ISDIR(path->dentry->d_inode->i_mode) != 1683 S_ISDIR(mnt->mnt_root->d_inode->i_mode)) 1684 return -ENOTDIR; 1685 1686 if (d_unlinked(path->dentry)) 1687 return -ENOENT; 1688 1689 return attach_recursive_mnt(mnt, path, NULL); 1690 } 1691 1692 /* 1693 * Sanity check the flags to change_mnt_propagation. 1694 */ 1695 1696 static int flags_to_propagation_type(int flags) 1697 { 1698 int type = flags & ~(MS_REC | MS_SILENT); 1699 1700 /* Fail if any non-propagation flags are set */ 1701 if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE)) 1702 return 0; 1703 /* Only one propagation flag should be set */ 1704 if (!is_power_of_2(type)) 1705 return 0; 1706 return type; 1707 } 1708 1709 /* 1710 * recursively change the type of the mountpoint. 1711 */ 1712 static int do_change_type(struct path *path, int flag) 1713 { 1714 struct vfsmount *m, *mnt = path->mnt; 1715 int recurse = flag & MS_REC; 1716 int type; 1717 int err = 0; 1718 1719 if (!capable(CAP_SYS_ADMIN)) 1720 return -EPERM; 1721 1722 if (path->dentry != path->mnt->mnt_root) 1723 return -EINVAL; 1724 1725 type = flags_to_propagation_type(flag); 1726 if (!type) 1727 return -EINVAL; 1728 1729 down_write(&namespace_sem); 1730 if (type == MS_SHARED) { 1731 err = invent_group_ids(mnt, recurse); 1732 if (err) 1733 goto out_unlock; 1734 } 1735 1736 br_write_lock(vfsmount_lock); 1737 for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL)) 1738 change_mnt_propagation(m, type); 1739 br_write_unlock(vfsmount_lock); 1740 1741 out_unlock: 1742 up_write(&namespace_sem); 1743 return err; 1744 } 1745 1746 /* 1747 * do loopback mount. 1748 */ 1749 static int do_loopback(struct path *path, char *old_name, 1750 int recurse) 1751 { 1752 LIST_HEAD(umount_list); 1753 struct path old_path; 1754 struct vfsmount *mnt = NULL; 1755 int err = mount_is_safe(path); 1756 if (err) 1757 return err; 1758 if (!old_name || !*old_name) 1759 return -EINVAL; 1760 err = kern_path(old_name, LOOKUP_FOLLOW, &old_path); 1761 if (err) 1762 return err; 1763 1764 err = lock_mount(path); 1765 if (err) 1766 goto out; 1767 1768 err = -EINVAL; 1769 if (IS_MNT_UNBINDABLE(old_path.mnt)) 1770 goto out2; 1771 1772 if (!check_mnt(path->mnt) || !check_mnt(old_path.mnt)) 1773 goto out2; 1774 1775 err = -ENOMEM; 1776 if (recurse) 1777 mnt = copy_tree(old_path.mnt, old_path.dentry, 0); 1778 else 1779 mnt = clone_mnt(old_path.mnt, old_path.dentry, 0); 1780 1781 if (!mnt) 1782 goto out2; 1783 1784 err = graft_tree(mnt, path); 1785 if (err) { 1786 br_write_lock(vfsmount_lock); 1787 umount_tree(mnt, 0, &umount_list); 1788 br_write_unlock(vfsmount_lock); 1789 } 1790 out2: 1791 unlock_mount(path); 1792 release_mounts(&umount_list); 1793 out: 1794 path_put(&old_path); 1795 return err; 1796 } 1797 1798 static int change_mount_flags(struct vfsmount *mnt, int ms_flags) 1799 { 1800 int error = 0; 1801 int readonly_request = 0; 1802 1803 if (ms_flags & MS_RDONLY) 1804 readonly_request = 1; 1805 if (readonly_request == __mnt_is_readonly(mnt)) 1806 return 0; 1807 1808 if (readonly_request) 1809 error = mnt_make_readonly(mnt); 1810 else 1811 __mnt_unmake_readonly(mnt); 1812 return error; 1813 } 1814 1815 /* 1816 * change filesystem flags. dir should be a physical root of filesystem. 1817 * If you've mounted a non-root directory somewhere and want to do remount 1818 * on it - tough luck. 1819 */ 1820 static int do_remount(struct path *path, int flags, int mnt_flags, 1821 void *data) 1822 { 1823 int err; 1824 struct super_block *sb = path->mnt->mnt_sb; 1825 1826 if (!capable(CAP_SYS_ADMIN)) 1827 return -EPERM; 1828 1829 if (!check_mnt(path->mnt)) 1830 return -EINVAL; 1831 1832 if (path->dentry != path->mnt->mnt_root) 1833 return -EINVAL; 1834 1835 err = security_sb_remount(sb, data); 1836 if (err) 1837 return err; 1838 1839 down_write(&sb->s_umount); 1840 if (flags & MS_BIND) 1841 err = change_mount_flags(path->mnt, flags); 1842 else 1843 err = do_remount_sb(sb, flags, data, 0); 1844 if (!err) { 1845 br_write_lock(vfsmount_lock); 1846 mnt_flags |= path->mnt->mnt_flags & MNT_PROPAGATION_MASK; 1847 path->mnt->mnt_flags = mnt_flags; 1848 br_write_unlock(vfsmount_lock); 1849 } 1850 up_write(&sb->s_umount); 1851 if (!err) { 1852 br_write_lock(vfsmount_lock); 1853 touch_mnt_namespace(path->mnt->mnt_ns); 1854 br_write_unlock(vfsmount_lock); 1855 } 1856 return err; 1857 } 1858 1859 static inline int tree_contains_unbindable(struct vfsmount *mnt) 1860 { 1861 struct vfsmount *p; 1862 for (p = mnt; p; p = next_mnt(p, mnt)) { 1863 if (IS_MNT_UNBINDABLE(p)) 1864 return 1; 1865 } 1866 return 0; 1867 } 1868 1869 static int do_move_mount(struct path *path, char *old_name) 1870 { 1871 struct path old_path, parent_path; 1872 struct vfsmount *p; 1873 int err = 0; 1874 if (!capable(CAP_SYS_ADMIN)) 1875 return -EPERM; 1876 if (!old_name || !*old_name) 1877 return -EINVAL; 1878 err = kern_path(old_name, LOOKUP_FOLLOW, &old_path); 1879 if (err) 1880 return err; 1881 1882 err = lock_mount(path); 1883 if (err < 0) 1884 goto out; 1885 1886 err = -EINVAL; 1887 if (!check_mnt(path->mnt) || !check_mnt(old_path.mnt)) 1888 goto out1; 1889 1890 if (d_unlinked(path->dentry)) 1891 goto out1; 1892 1893 err = -EINVAL; 1894 if (old_path.dentry != old_path.mnt->mnt_root) 1895 goto out1; 1896 1897 if (old_path.mnt == old_path.mnt->mnt_parent) 1898 goto out1; 1899 1900 if (S_ISDIR(path->dentry->d_inode->i_mode) != 1901 S_ISDIR(old_path.dentry->d_inode->i_mode)) 1902 goto out1; 1903 /* 1904 * Don't move a mount residing in a shared parent. 1905 */ 1906 if (old_path.mnt->mnt_parent && 1907 IS_MNT_SHARED(old_path.mnt->mnt_parent)) 1908 goto out1; 1909 /* 1910 * Don't move a mount tree containing unbindable mounts to a destination 1911 * mount which is shared. 1912 */ 1913 if (IS_MNT_SHARED(path->mnt) && 1914 tree_contains_unbindable(old_path.mnt)) 1915 goto out1; 1916 err = -ELOOP; 1917 for (p = path->mnt; p->mnt_parent != p; p = p->mnt_parent) 1918 if (p == old_path.mnt) 1919 goto out1; 1920 1921 err = attach_recursive_mnt(old_path.mnt, path, &parent_path); 1922 if (err) 1923 goto out1; 1924 1925 /* if the mount is moved, it should no longer be expire 1926 * automatically */ 1927 list_del_init(&old_path.mnt->mnt_expire); 1928 out1: 1929 unlock_mount(path); 1930 out: 1931 if (!err) 1932 path_put(&parent_path); 1933 path_put(&old_path); 1934 return err; 1935 } 1936 1937 static struct vfsmount *fs_set_subtype(struct vfsmount *mnt, const char *fstype) 1938 { 1939 int err; 1940 const char *subtype = strchr(fstype, '.'); 1941 if (subtype) { 1942 subtype++; 1943 err = -EINVAL; 1944 if (!subtype[0]) 1945 goto err; 1946 } else 1947 subtype = ""; 1948 1949 mnt->mnt_sb->s_subtype = kstrdup(subtype, GFP_KERNEL); 1950 err = -ENOMEM; 1951 if (!mnt->mnt_sb->s_subtype) 1952 goto err; 1953 return mnt; 1954 1955 err: 1956 mntput(mnt); 1957 return ERR_PTR(err); 1958 } 1959 1960 struct vfsmount * 1961 do_kern_mount(const char *fstype, int flags, const char *name, void *data) 1962 { 1963 struct file_system_type *type = get_fs_type(fstype); 1964 struct vfsmount *mnt; 1965 if (!type) 1966 return ERR_PTR(-ENODEV); 1967 mnt = vfs_kern_mount(type, flags, name, data); 1968 if (!IS_ERR(mnt) && (type->fs_flags & FS_HAS_SUBTYPE) && 1969 !mnt->mnt_sb->s_subtype) 1970 mnt = fs_set_subtype(mnt, fstype); 1971 put_filesystem(type); 1972 return mnt; 1973 } 1974 EXPORT_SYMBOL_GPL(do_kern_mount); 1975 1976 /* 1977 * add a mount into a namespace's mount tree 1978 */ 1979 static int do_add_mount(struct vfsmount *newmnt, struct path *path, int mnt_flags) 1980 { 1981 int err; 1982 1983 mnt_flags &= ~(MNT_SHARED | MNT_WRITE_HOLD | MNT_INTERNAL); 1984 1985 err = lock_mount(path); 1986 if (err) 1987 return err; 1988 1989 err = -EINVAL; 1990 if (!(mnt_flags & MNT_SHRINKABLE) && !check_mnt(path->mnt)) 1991 goto unlock; 1992 1993 /* Refuse the same filesystem on the same mount point */ 1994 err = -EBUSY; 1995 if (path->mnt->mnt_sb == newmnt->mnt_sb && 1996 path->mnt->mnt_root == path->dentry) 1997 goto unlock; 1998 1999 err = -EINVAL; 2000 if (S_ISLNK(newmnt->mnt_root->d_inode->i_mode)) 2001 goto unlock; 2002 2003 newmnt->mnt_flags = mnt_flags; 2004 err = graft_tree(newmnt, path); 2005 2006 unlock: 2007 unlock_mount(path); 2008 return err; 2009 } 2010 2011 /* 2012 * create a new mount for userspace and request it to be added into the 2013 * namespace's tree 2014 */ 2015 static int do_new_mount(struct path *path, char *type, int flags, 2016 int mnt_flags, char *name, void *data) 2017 { 2018 struct vfsmount *mnt; 2019 int err; 2020 2021 if (!type) 2022 return -EINVAL; 2023 2024 /* we need capabilities... */ 2025 if (!capable(CAP_SYS_ADMIN)) 2026 return -EPERM; 2027 2028 mnt = do_kern_mount(type, flags, name, data); 2029 if (IS_ERR(mnt)) 2030 return PTR_ERR(mnt); 2031 2032 err = do_add_mount(mnt, path, mnt_flags); 2033 if (err) 2034 mntput(mnt); 2035 return err; 2036 } 2037 2038 int finish_automount(struct vfsmount *m, struct path *path) 2039 { 2040 int err; 2041 /* The new mount record should have at least 2 refs to prevent it being 2042 * expired before we get a chance to add it 2043 */ 2044 BUG_ON(mnt_get_count(m) < 2); 2045 2046 if (m->mnt_sb == path->mnt->mnt_sb && 2047 m->mnt_root == path->dentry) { 2048 err = -ELOOP; 2049 goto fail; 2050 } 2051 2052 err = do_add_mount(m, path, path->mnt->mnt_flags | MNT_SHRINKABLE); 2053 if (!err) 2054 return 0; 2055 fail: 2056 /* remove m from any expiration list it may be on */ 2057 if (!list_empty(&m->mnt_expire)) { 2058 down_write(&namespace_sem); 2059 br_write_lock(vfsmount_lock); 2060 list_del_init(&m->mnt_expire); 2061 br_write_unlock(vfsmount_lock); 2062 up_write(&namespace_sem); 2063 } 2064 mntput(m); 2065 mntput(m); 2066 return err; 2067 } 2068 2069 /** 2070 * mnt_set_expiry - Put a mount on an expiration list 2071 * @mnt: The mount to list. 2072 * @expiry_list: The list to add the mount to. 2073 */ 2074 void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list) 2075 { 2076 down_write(&namespace_sem); 2077 br_write_lock(vfsmount_lock); 2078 2079 list_add_tail(&mnt->mnt_expire, expiry_list); 2080 2081 br_write_unlock(vfsmount_lock); 2082 up_write(&namespace_sem); 2083 } 2084 EXPORT_SYMBOL(mnt_set_expiry); 2085 2086 /* 2087 * process a list of expirable mountpoints with the intent of discarding any 2088 * mountpoints that aren't in use and haven't been touched since last we came 2089 * here 2090 */ 2091 void mark_mounts_for_expiry(struct list_head *mounts) 2092 { 2093 struct vfsmount *mnt, *next; 2094 LIST_HEAD(graveyard); 2095 LIST_HEAD(umounts); 2096 2097 if (list_empty(mounts)) 2098 return; 2099 2100 down_write(&namespace_sem); 2101 br_write_lock(vfsmount_lock); 2102 2103 /* extract from the expiration list every vfsmount that matches the 2104 * following criteria: 2105 * - only referenced by its parent vfsmount 2106 * - still marked for expiry (marked on the last call here; marks are 2107 * cleared by mntput()) 2108 */ 2109 list_for_each_entry_safe(mnt, next, mounts, mnt_expire) { 2110 if (!xchg(&mnt->mnt_expiry_mark, 1) || 2111 propagate_mount_busy(mnt, 1)) 2112 continue; 2113 list_move(&mnt->mnt_expire, &graveyard); 2114 } 2115 while (!list_empty(&graveyard)) { 2116 mnt = list_first_entry(&graveyard, struct vfsmount, mnt_expire); 2117 touch_mnt_namespace(mnt->mnt_ns); 2118 umount_tree(mnt, 1, &umounts); 2119 } 2120 br_write_unlock(vfsmount_lock); 2121 up_write(&namespace_sem); 2122 2123 release_mounts(&umounts); 2124 } 2125 2126 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry); 2127 2128 /* 2129 * Ripoff of 'select_parent()' 2130 * 2131 * search the list of submounts for a given mountpoint, and move any 2132 * shrinkable submounts to the 'graveyard' list. 2133 */ 2134 static int select_submounts(struct vfsmount *parent, struct list_head *graveyard) 2135 { 2136 struct vfsmount *this_parent = parent; 2137 struct list_head *next; 2138 int found = 0; 2139 2140 repeat: 2141 next = this_parent->mnt_mounts.next; 2142 resume: 2143 while (next != &this_parent->mnt_mounts) { 2144 struct list_head *tmp = next; 2145 struct vfsmount *mnt = list_entry(tmp, struct vfsmount, mnt_child); 2146 2147 next = tmp->next; 2148 if (!(mnt->mnt_flags & MNT_SHRINKABLE)) 2149 continue; 2150 /* 2151 * Descend a level if the d_mounts list is non-empty. 2152 */ 2153 if (!list_empty(&mnt->mnt_mounts)) { 2154 this_parent = mnt; 2155 goto repeat; 2156 } 2157 2158 if (!propagate_mount_busy(mnt, 1)) { 2159 list_move_tail(&mnt->mnt_expire, graveyard); 2160 found++; 2161 } 2162 } 2163 /* 2164 * All done at this level ... ascend and resume the search 2165 */ 2166 if (this_parent != parent) { 2167 next = this_parent->mnt_child.next; 2168 this_parent = this_parent->mnt_parent; 2169 goto resume; 2170 } 2171 return found; 2172 } 2173 2174 /* 2175 * process a list of expirable mountpoints with the intent of discarding any 2176 * submounts of a specific parent mountpoint 2177 * 2178 * vfsmount_lock must be held for write 2179 */ 2180 static void shrink_submounts(struct vfsmount *mnt, struct list_head *umounts) 2181 { 2182 LIST_HEAD(graveyard); 2183 struct vfsmount *m; 2184 2185 /* extract submounts of 'mountpoint' from the expiration list */ 2186 while (select_submounts(mnt, &graveyard)) { 2187 while (!list_empty(&graveyard)) { 2188 m = list_first_entry(&graveyard, struct vfsmount, 2189 mnt_expire); 2190 touch_mnt_namespace(m->mnt_ns); 2191 umount_tree(m, 1, umounts); 2192 } 2193 } 2194 } 2195 2196 /* 2197 * Some copy_from_user() implementations do not return the exact number of 2198 * bytes remaining to copy on a fault. But copy_mount_options() requires that. 2199 * Note that this function differs from copy_from_user() in that it will oops 2200 * on bad values of `to', rather than returning a short copy. 2201 */ 2202 static long exact_copy_from_user(void *to, const void __user * from, 2203 unsigned long n) 2204 { 2205 char *t = to; 2206 const char __user *f = from; 2207 char c; 2208 2209 if (!access_ok(VERIFY_READ, from, n)) 2210 return n; 2211 2212 while (n) { 2213 if (__get_user(c, f)) { 2214 memset(t, 0, n); 2215 break; 2216 } 2217 *t++ = c; 2218 f++; 2219 n--; 2220 } 2221 return n; 2222 } 2223 2224 int copy_mount_options(const void __user * data, unsigned long *where) 2225 { 2226 int i; 2227 unsigned long page; 2228 unsigned long size; 2229 2230 *where = 0; 2231 if (!data) 2232 return 0; 2233 2234 if (!(page = __get_free_page(GFP_KERNEL))) 2235 return -ENOMEM; 2236 2237 /* We only care that *some* data at the address the user 2238 * gave us is valid. Just in case, we'll zero 2239 * the remainder of the page. 2240 */ 2241 /* copy_from_user cannot cross TASK_SIZE ! */ 2242 size = TASK_SIZE - (unsigned long)data; 2243 if (size > PAGE_SIZE) 2244 size = PAGE_SIZE; 2245 2246 i = size - exact_copy_from_user((void *)page, data, size); 2247 if (!i) { 2248 free_page(page); 2249 return -EFAULT; 2250 } 2251 if (i != PAGE_SIZE) 2252 memset((char *)page + i, 0, PAGE_SIZE - i); 2253 *where = page; 2254 return 0; 2255 } 2256 2257 int copy_mount_string(const void __user *data, char **where) 2258 { 2259 char *tmp; 2260 2261 if (!data) { 2262 *where = NULL; 2263 return 0; 2264 } 2265 2266 tmp = strndup_user(data, PAGE_SIZE); 2267 if (IS_ERR(tmp)) 2268 return PTR_ERR(tmp); 2269 2270 *where = tmp; 2271 return 0; 2272 } 2273 2274 /* 2275 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to 2276 * be given to the mount() call (ie: read-only, no-dev, no-suid etc). 2277 * 2278 * data is a (void *) that can point to any structure up to 2279 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent 2280 * information (or be NULL). 2281 * 2282 * Pre-0.97 versions of mount() didn't have a flags word. 2283 * When the flags word was introduced its top half was required 2284 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9. 2285 * Therefore, if this magic number is present, it carries no information 2286 * and must be discarded. 2287 */ 2288 long do_mount(char *dev_name, char *dir_name, char *type_page, 2289 unsigned long flags, void *data_page) 2290 { 2291 struct path path; 2292 int retval = 0; 2293 int mnt_flags = 0; 2294 2295 /* Discard magic */ 2296 if ((flags & MS_MGC_MSK) == MS_MGC_VAL) 2297 flags &= ~MS_MGC_MSK; 2298 2299 /* Basic sanity checks */ 2300 2301 if (!dir_name || !*dir_name || !memchr(dir_name, 0, PAGE_SIZE)) 2302 return -EINVAL; 2303 2304 if (data_page) 2305 ((char *)data_page)[PAGE_SIZE - 1] = 0; 2306 2307 /* ... and get the mountpoint */ 2308 retval = kern_path(dir_name, LOOKUP_FOLLOW, &path); 2309 if (retval) 2310 return retval; 2311 2312 retval = security_sb_mount(dev_name, &path, 2313 type_page, flags, data_page); 2314 if (retval) 2315 goto dput_out; 2316 2317 /* Default to relatime unless overriden */ 2318 if (!(flags & MS_NOATIME)) 2319 mnt_flags |= MNT_RELATIME; 2320 2321 /* Separate the per-mountpoint flags */ 2322 if (flags & MS_NOSUID) 2323 mnt_flags |= MNT_NOSUID; 2324 if (flags & MS_NODEV) 2325 mnt_flags |= MNT_NODEV; 2326 if (flags & MS_NOEXEC) 2327 mnt_flags |= MNT_NOEXEC; 2328 if (flags & MS_NOATIME) 2329 mnt_flags |= MNT_NOATIME; 2330 if (flags & MS_NODIRATIME) 2331 mnt_flags |= MNT_NODIRATIME; 2332 if (flags & MS_STRICTATIME) 2333 mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME); 2334 if (flags & MS_RDONLY) 2335 mnt_flags |= MNT_READONLY; 2336 2337 flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE | MS_BORN | 2338 MS_NOATIME | MS_NODIRATIME | MS_RELATIME| MS_KERNMOUNT | 2339 MS_STRICTATIME); 2340 2341 if (flags & MS_REMOUNT) 2342 retval = do_remount(&path, flags & ~MS_REMOUNT, mnt_flags, 2343 data_page); 2344 else if (flags & MS_BIND) 2345 retval = do_loopback(&path, dev_name, flags & MS_REC); 2346 else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE)) 2347 retval = do_change_type(&path, flags); 2348 else if (flags & MS_MOVE) 2349 retval = do_move_mount(&path, dev_name); 2350 else 2351 retval = do_new_mount(&path, type_page, flags, mnt_flags, 2352 dev_name, data_page); 2353 dput_out: 2354 path_put(&path); 2355 return retval; 2356 } 2357 2358 static struct mnt_namespace *alloc_mnt_ns(void) 2359 { 2360 struct mnt_namespace *new_ns; 2361 2362 new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL); 2363 if (!new_ns) 2364 return ERR_PTR(-ENOMEM); 2365 atomic_set(&new_ns->count, 1); 2366 new_ns->root = NULL; 2367 INIT_LIST_HEAD(&new_ns->list); 2368 init_waitqueue_head(&new_ns->poll); 2369 new_ns->event = 0; 2370 return new_ns; 2371 } 2372 2373 void mnt_make_longterm(struct vfsmount *mnt) 2374 { 2375 __mnt_make_longterm(mnt); 2376 } 2377 2378 void mnt_make_shortterm(struct vfsmount *mnt) 2379 { 2380 #ifdef CONFIG_SMP 2381 if (atomic_add_unless(&mnt->mnt_longterm, -1, 1)) 2382 return; 2383 br_write_lock(vfsmount_lock); 2384 atomic_dec(&mnt->mnt_longterm); 2385 br_write_unlock(vfsmount_lock); 2386 #endif 2387 } 2388 2389 /* 2390 * Allocate a new namespace structure and populate it with contents 2391 * copied from the namespace of the passed in task structure. 2392 */ 2393 static struct mnt_namespace *dup_mnt_ns(struct mnt_namespace *mnt_ns, 2394 struct fs_struct *fs) 2395 { 2396 struct mnt_namespace *new_ns; 2397 struct vfsmount *rootmnt = NULL, *pwdmnt = NULL; 2398 struct vfsmount *p, *q; 2399 2400 new_ns = alloc_mnt_ns(); 2401 if (IS_ERR(new_ns)) 2402 return new_ns; 2403 2404 down_write(&namespace_sem); 2405 /* First pass: copy the tree topology */ 2406 new_ns->root = copy_tree(mnt_ns->root, mnt_ns->root->mnt_root, 2407 CL_COPY_ALL | CL_EXPIRE); 2408 if (!new_ns->root) { 2409 up_write(&namespace_sem); 2410 kfree(new_ns); 2411 return ERR_PTR(-ENOMEM); 2412 } 2413 br_write_lock(vfsmount_lock); 2414 list_add_tail(&new_ns->list, &new_ns->root->mnt_list); 2415 br_write_unlock(vfsmount_lock); 2416 2417 /* 2418 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts 2419 * as belonging to new namespace. We have already acquired a private 2420 * fs_struct, so tsk->fs->lock is not needed. 2421 */ 2422 p = mnt_ns->root; 2423 q = new_ns->root; 2424 while (p) { 2425 q->mnt_ns = new_ns; 2426 __mnt_make_longterm(q); 2427 if (fs) { 2428 if (p == fs->root.mnt) { 2429 fs->root.mnt = mntget(q); 2430 __mnt_make_longterm(q); 2431 mnt_make_shortterm(p); 2432 rootmnt = p; 2433 } 2434 if (p == fs->pwd.mnt) { 2435 fs->pwd.mnt = mntget(q); 2436 __mnt_make_longterm(q); 2437 mnt_make_shortterm(p); 2438 pwdmnt = p; 2439 } 2440 } 2441 p = next_mnt(p, mnt_ns->root); 2442 q = next_mnt(q, new_ns->root); 2443 } 2444 up_write(&namespace_sem); 2445 2446 if (rootmnt) 2447 mntput(rootmnt); 2448 if (pwdmnt) 2449 mntput(pwdmnt); 2450 2451 return new_ns; 2452 } 2453 2454 struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns, 2455 struct fs_struct *new_fs) 2456 { 2457 struct mnt_namespace *new_ns; 2458 2459 BUG_ON(!ns); 2460 get_mnt_ns(ns); 2461 2462 if (!(flags & CLONE_NEWNS)) 2463 return ns; 2464 2465 new_ns = dup_mnt_ns(ns, new_fs); 2466 2467 put_mnt_ns(ns); 2468 return new_ns; 2469 } 2470 2471 /** 2472 * create_mnt_ns - creates a private namespace and adds a root filesystem 2473 * @mnt: pointer to the new root filesystem mountpoint 2474 */ 2475 struct mnt_namespace *create_mnt_ns(struct vfsmount *mnt) 2476 { 2477 struct mnt_namespace *new_ns; 2478 2479 new_ns = alloc_mnt_ns(); 2480 if (!IS_ERR(new_ns)) { 2481 mnt->mnt_ns = new_ns; 2482 __mnt_make_longterm(mnt); 2483 new_ns->root = mnt; 2484 list_add(&new_ns->list, &new_ns->root->mnt_list); 2485 } 2486 return new_ns; 2487 } 2488 EXPORT_SYMBOL(create_mnt_ns); 2489 2490 SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name, 2491 char __user *, type, unsigned long, flags, void __user *, data) 2492 { 2493 int ret; 2494 char *kernel_type; 2495 char *kernel_dir; 2496 char *kernel_dev; 2497 unsigned long data_page; 2498 2499 ret = copy_mount_string(type, &kernel_type); 2500 if (ret < 0) 2501 goto out_type; 2502 2503 kernel_dir = getname(dir_name); 2504 if (IS_ERR(kernel_dir)) { 2505 ret = PTR_ERR(kernel_dir); 2506 goto out_dir; 2507 } 2508 2509 ret = copy_mount_string(dev_name, &kernel_dev); 2510 if (ret < 0) 2511 goto out_dev; 2512 2513 ret = copy_mount_options(data, &data_page); 2514 if (ret < 0) 2515 goto out_data; 2516 2517 ret = do_mount(kernel_dev, kernel_dir, kernel_type, flags, 2518 (void *) data_page); 2519 2520 free_page(data_page); 2521 out_data: 2522 kfree(kernel_dev); 2523 out_dev: 2524 putname(kernel_dir); 2525 out_dir: 2526 kfree(kernel_type); 2527 out_type: 2528 return ret; 2529 } 2530 2531 /* 2532 * pivot_root Semantics: 2533 * Moves the root file system of the current process to the directory put_old, 2534 * makes new_root as the new root file system of the current process, and sets 2535 * root/cwd of all processes which had them on the current root to new_root. 2536 * 2537 * Restrictions: 2538 * The new_root and put_old must be directories, and must not be on the 2539 * same file system as the current process root. The put_old must be 2540 * underneath new_root, i.e. adding a non-zero number of /.. to the string 2541 * pointed to by put_old must yield the same directory as new_root. No other 2542 * file system may be mounted on put_old. After all, new_root is a mountpoint. 2543 * 2544 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem. 2545 * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives 2546 * in this situation. 2547 * 2548 * Notes: 2549 * - we don't move root/cwd if they are not at the root (reason: if something 2550 * cared enough to change them, it's probably wrong to force them elsewhere) 2551 * - it's okay to pick a root that isn't the root of a file system, e.g. 2552 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint, 2553 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root 2554 * first. 2555 */ 2556 SYSCALL_DEFINE2(pivot_root, const char __user *, new_root, 2557 const char __user *, put_old) 2558 { 2559 struct vfsmount *tmp; 2560 struct path new, old, parent_path, root_parent, root; 2561 int error; 2562 2563 if (!capable(CAP_SYS_ADMIN)) 2564 return -EPERM; 2565 2566 error = user_path_dir(new_root, &new); 2567 if (error) 2568 goto out0; 2569 2570 error = user_path_dir(put_old, &old); 2571 if (error) 2572 goto out1; 2573 2574 error = security_sb_pivotroot(&old, &new); 2575 if (error) 2576 goto out2; 2577 2578 get_fs_root(current->fs, &root); 2579 error = lock_mount(&old); 2580 if (error) 2581 goto out3; 2582 2583 error = -EINVAL; 2584 if (IS_MNT_SHARED(old.mnt) || 2585 IS_MNT_SHARED(new.mnt->mnt_parent) || 2586 IS_MNT_SHARED(root.mnt->mnt_parent)) 2587 goto out4; 2588 if (!check_mnt(root.mnt) || !check_mnt(new.mnt)) 2589 goto out4; 2590 error = -ENOENT; 2591 if (d_unlinked(new.dentry)) 2592 goto out4; 2593 if (d_unlinked(old.dentry)) 2594 goto out4; 2595 error = -EBUSY; 2596 if (new.mnt == root.mnt || 2597 old.mnt == root.mnt) 2598 goto out4; /* loop, on the same file system */ 2599 error = -EINVAL; 2600 if (root.mnt->mnt_root != root.dentry) 2601 goto out4; /* not a mountpoint */ 2602 if (root.mnt->mnt_parent == root.mnt) 2603 goto out4; /* not attached */ 2604 if (new.mnt->mnt_root != new.dentry) 2605 goto out4; /* not a mountpoint */ 2606 if (new.mnt->mnt_parent == new.mnt) 2607 goto out4; /* not attached */ 2608 /* make sure we can reach put_old from new_root */ 2609 tmp = old.mnt; 2610 if (tmp != new.mnt) { 2611 for (;;) { 2612 if (tmp->mnt_parent == tmp) 2613 goto out4; /* already mounted on put_old */ 2614 if (tmp->mnt_parent == new.mnt) 2615 break; 2616 tmp = tmp->mnt_parent; 2617 } 2618 if (!is_subdir(tmp->mnt_mountpoint, new.dentry)) 2619 goto out4; 2620 } else if (!is_subdir(old.dentry, new.dentry)) 2621 goto out4; 2622 br_write_lock(vfsmount_lock); 2623 detach_mnt(new.mnt, &parent_path); 2624 detach_mnt(root.mnt, &root_parent); 2625 /* mount old root on put_old */ 2626 attach_mnt(root.mnt, &old); 2627 /* mount new_root on / */ 2628 attach_mnt(new.mnt, &root_parent); 2629 touch_mnt_namespace(current->nsproxy->mnt_ns); 2630 br_write_unlock(vfsmount_lock); 2631 chroot_fs_refs(&root, &new); 2632 error = 0; 2633 out4: 2634 unlock_mount(&old); 2635 if (!error) { 2636 path_put(&root_parent); 2637 path_put(&parent_path); 2638 } 2639 out3: 2640 path_put(&root); 2641 out2: 2642 path_put(&old); 2643 out1: 2644 path_put(&new); 2645 out0: 2646 return error; 2647 } 2648 2649 static void __init init_mount_tree(void) 2650 { 2651 struct vfsmount *mnt; 2652 struct mnt_namespace *ns; 2653 struct path root; 2654 2655 mnt = do_kern_mount("rootfs", 0, "rootfs", NULL); 2656 if (IS_ERR(mnt)) 2657 panic("Can't create rootfs"); 2658 2659 ns = create_mnt_ns(mnt); 2660 if (IS_ERR(ns)) 2661 panic("Can't allocate initial namespace"); 2662 2663 init_task.nsproxy->mnt_ns = ns; 2664 get_mnt_ns(ns); 2665 2666 root.mnt = ns->root; 2667 root.dentry = ns->root->mnt_root; 2668 2669 set_fs_pwd(current->fs, &root); 2670 set_fs_root(current->fs, &root); 2671 } 2672 2673 void __init mnt_init(void) 2674 { 2675 unsigned u; 2676 int err; 2677 2678 init_rwsem(&namespace_sem); 2679 2680 mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct vfsmount), 2681 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL); 2682 2683 mount_hashtable = (struct list_head *)__get_free_page(GFP_ATOMIC); 2684 2685 if (!mount_hashtable) 2686 panic("Failed to allocate mount hash table\n"); 2687 2688 printk(KERN_INFO "Mount-cache hash table entries: %lu\n", HASH_SIZE); 2689 2690 for (u = 0; u < HASH_SIZE; u++) 2691 INIT_LIST_HEAD(&mount_hashtable[u]); 2692 2693 br_lock_init(vfsmount_lock); 2694 2695 err = sysfs_init(); 2696 if (err) 2697 printk(KERN_WARNING "%s: sysfs_init error: %d\n", 2698 __func__, err); 2699 fs_kobj = kobject_create_and_add("fs", NULL); 2700 if (!fs_kobj) 2701 printk(KERN_WARNING "%s: kobj create error\n", __func__); 2702 init_rootfs(); 2703 init_mount_tree(); 2704 } 2705 2706 void put_mnt_ns(struct mnt_namespace *ns) 2707 { 2708 LIST_HEAD(umount_list); 2709 2710 if (!atomic_dec_and_test(&ns->count)) 2711 return; 2712 down_write(&namespace_sem); 2713 br_write_lock(vfsmount_lock); 2714 umount_tree(ns->root, 0, &umount_list); 2715 br_write_unlock(vfsmount_lock); 2716 up_write(&namespace_sem); 2717 release_mounts(&umount_list); 2718 kfree(ns); 2719 } 2720 EXPORT_SYMBOL(put_mnt_ns); 2721 2722 struct vfsmount *kern_mount_data(struct file_system_type *type, void *data) 2723 { 2724 struct vfsmount *mnt; 2725 mnt = vfs_kern_mount(type, MS_KERNMOUNT, type->name, data); 2726 if (!IS_ERR(mnt)) { 2727 /* 2728 * it is a longterm mount, don't release mnt until 2729 * we unmount before file sys is unregistered 2730 */ 2731 mnt_make_longterm(mnt); 2732 } 2733 return mnt; 2734 } 2735 EXPORT_SYMBOL_GPL(kern_mount_data); 2736 2737 void kern_unmount(struct vfsmount *mnt) 2738 { 2739 /* release long term mount so mount point can be released */ 2740 if (!IS_ERR_OR_NULL(mnt)) { 2741 mnt_make_shortterm(mnt); 2742 mntput(mnt); 2743 } 2744 } 2745 EXPORT_SYMBOL(kern_unmount); 2746