1 /* 2 * linux/fs/namespace.c 3 * 4 * (C) Copyright Al Viro 2000, 2001 5 * Released under GPL v2. 6 * 7 * Based on code from fs/super.c, copyright Linus Torvalds and others. 8 * Heavily rewritten. 9 */ 10 11 #include <linux/syscalls.h> 12 #include <linux/export.h> 13 #include <linux/capability.h> 14 #include <linux/mnt_namespace.h> 15 #include <linux/user_namespace.h> 16 #include <linux/namei.h> 17 #include <linux/security.h> 18 #include <linux/idr.h> 19 #include <linux/acct.h> /* acct_auto_close_mnt */ 20 #include <linux/init.h> /* init_rootfs */ 21 #include <linux/fs_struct.h> /* get_fs_root et.al. */ 22 #include <linux/fsnotify.h> /* fsnotify_vfsmount_delete */ 23 #include <linux/uaccess.h> 24 #include <linux/proc_ns.h> 25 #include <linux/magic.h> 26 #include "pnode.h" 27 #include "internal.h" 28 29 #define HASH_SHIFT ilog2(PAGE_SIZE / sizeof(struct list_head)) 30 #define HASH_SIZE (1UL << HASH_SHIFT) 31 32 static int event; 33 static DEFINE_IDA(mnt_id_ida); 34 static DEFINE_IDA(mnt_group_ida); 35 static DEFINE_SPINLOCK(mnt_id_lock); 36 static int mnt_id_start = 0; 37 static int mnt_group_start = 1; 38 39 static struct list_head *mount_hashtable __read_mostly; 40 static struct list_head *mountpoint_hashtable __read_mostly; 41 static struct kmem_cache *mnt_cache __read_mostly; 42 static struct rw_semaphore namespace_sem; 43 44 /* /sys/fs */ 45 struct kobject *fs_kobj; 46 EXPORT_SYMBOL_GPL(fs_kobj); 47 48 /* 49 * vfsmount lock may be taken for read to prevent changes to the 50 * vfsmount hash, ie. during mountpoint lookups or walking back 51 * up the tree. 52 * 53 * It should be taken for write in all cases where the vfsmount 54 * tree or hash is modified or when a vfsmount structure is modified. 55 */ 56 DEFINE_BRLOCK(vfsmount_lock); 57 58 static inline unsigned long hash(struct vfsmount *mnt, struct dentry *dentry) 59 { 60 unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES); 61 tmp += ((unsigned long)dentry / L1_CACHE_BYTES); 62 tmp = tmp + (tmp >> HASH_SHIFT); 63 return tmp & (HASH_SIZE - 1); 64 } 65 66 #define MNT_WRITER_UNDERFLOW_LIMIT -(1<<16) 67 68 /* 69 * allocation is serialized by namespace_sem, but we need the spinlock to 70 * serialize with freeing. 71 */ 72 static int mnt_alloc_id(struct mount *mnt) 73 { 74 int res; 75 76 retry: 77 ida_pre_get(&mnt_id_ida, GFP_KERNEL); 78 spin_lock(&mnt_id_lock); 79 res = ida_get_new_above(&mnt_id_ida, mnt_id_start, &mnt->mnt_id); 80 if (!res) 81 mnt_id_start = mnt->mnt_id + 1; 82 spin_unlock(&mnt_id_lock); 83 if (res == -EAGAIN) 84 goto retry; 85 86 return res; 87 } 88 89 static void mnt_free_id(struct mount *mnt) 90 { 91 int id = mnt->mnt_id; 92 spin_lock(&mnt_id_lock); 93 ida_remove(&mnt_id_ida, id); 94 if (mnt_id_start > id) 95 mnt_id_start = id; 96 spin_unlock(&mnt_id_lock); 97 } 98 99 /* 100 * Allocate a new peer group ID 101 * 102 * mnt_group_ida is protected by namespace_sem 103 */ 104 static int mnt_alloc_group_id(struct mount *mnt) 105 { 106 int res; 107 108 if (!ida_pre_get(&mnt_group_ida, GFP_KERNEL)) 109 return -ENOMEM; 110 111 res = ida_get_new_above(&mnt_group_ida, 112 mnt_group_start, 113 &mnt->mnt_group_id); 114 if (!res) 115 mnt_group_start = mnt->mnt_group_id + 1; 116 117 return res; 118 } 119 120 /* 121 * Release a peer group ID 122 */ 123 void mnt_release_group_id(struct mount *mnt) 124 { 125 int id = mnt->mnt_group_id; 126 ida_remove(&mnt_group_ida, id); 127 if (mnt_group_start > id) 128 mnt_group_start = id; 129 mnt->mnt_group_id = 0; 130 } 131 132 /* 133 * vfsmount lock must be held for read 134 */ 135 static inline void mnt_add_count(struct mount *mnt, int n) 136 { 137 #ifdef CONFIG_SMP 138 this_cpu_add(mnt->mnt_pcp->mnt_count, n); 139 #else 140 preempt_disable(); 141 mnt->mnt_count += n; 142 preempt_enable(); 143 #endif 144 } 145 146 /* 147 * vfsmount lock must be held for write 148 */ 149 unsigned int mnt_get_count(struct mount *mnt) 150 { 151 #ifdef CONFIG_SMP 152 unsigned int count = 0; 153 int cpu; 154 155 for_each_possible_cpu(cpu) { 156 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count; 157 } 158 159 return count; 160 #else 161 return mnt->mnt_count; 162 #endif 163 } 164 165 static struct mount *alloc_vfsmnt(const char *name) 166 { 167 struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL); 168 if (mnt) { 169 int err; 170 171 err = mnt_alloc_id(mnt); 172 if (err) 173 goto out_free_cache; 174 175 if (name) { 176 mnt->mnt_devname = kstrdup(name, GFP_KERNEL); 177 if (!mnt->mnt_devname) 178 goto out_free_id; 179 } 180 181 #ifdef CONFIG_SMP 182 mnt->mnt_pcp = alloc_percpu(struct mnt_pcp); 183 if (!mnt->mnt_pcp) 184 goto out_free_devname; 185 186 this_cpu_add(mnt->mnt_pcp->mnt_count, 1); 187 #else 188 mnt->mnt_count = 1; 189 mnt->mnt_writers = 0; 190 #endif 191 192 INIT_LIST_HEAD(&mnt->mnt_hash); 193 INIT_LIST_HEAD(&mnt->mnt_child); 194 INIT_LIST_HEAD(&mnt->mnt_mounts); 195 INIT_LIST_HEAD(&mnt->mnt_list); 196 INIT_LIST_HEAD(&mnt->mnt_expire); 197 INIT_LIST_HEAD(&mnt->mnt_share); 198 INIT_LIST_HEAD(&mnt->mnt_slave_list); 199 INIT_LIST_HEAD(&mnt->mnt_slave); 200 #ifdef CONFIG_FSNOTIFY 201 INIT_HLIST_HEAD(&mnt->mnt_fsnotify_marks); 202 #endif 203 } 204 return mnt; 205 206 #ifdef CONFIG_SMP 207 out_free_devname: 208 kfree(mnt->mnt_devname); 209 #endif 210 out_free_id: 211 mnt_free_id(mnt); 212 out_free_cache: 213 kmem_cache_free(mnt_cache, mnt); 214 return NULL; 215 } 216 217 /* 218 * Most r/o checks on a fs are for operations that take 219 * discrete amounts of time, like a write() or unlink(). 220 * We must keep track of when those operations start 221 * (for permission checks) and when they end, so that 222 * we can determine when writes are able to occur to 223 * a filesystem. 224 */ 225 /* 226 * __mnt_is_readonly: check whether a mount is read-only 227 * @mnt: the mount to check for its write status 228 * 229 * This shouldn't be used directly ouside of the VFS. 230 * It does not guarantee that the filesystem will stay 231 * r/w, just that it is right *now*. This can not and 232 * should not be used in place of IS_RDONLY(inode). 233 * mnt_want/drop_write() will _keep_ the filesystem 234 * r/w. 235 */ 236 int __mnt_is_readonly(struct vfsmount *mnt) 237 { 238 if (mnt->mnt_flags & MNT_READONLY) 239 return 1; 240 if (mnt->mnt_sb->s_flags & MS_RDONLY) 241 return 1; 242 return 0; 243 } 244 EXPORT_SYMBOL_GPL(__mnt_is_readonly); 245 246 static inline void mnt_inc_writers(struct mount *mnt) 247 { 248 #ifdef CONFIG_SMP 249 this_cpu_inc(mnt->mnt_pcp->mnt_writers); 250 #else 251 mnt->mnt_writers++; 252 #endif 253 } 254 255 static inline void mnt_dec_writers(struct mount *mnt) 256 { 257 #ifdef CONFIG_SMP 258 this_cpu_dec(mnt->mnt_pcp->mnt_writers); 259 #else 260 mnt->mnt_writers--; 261 #endif 262 } 263 264 static unsigned int mnt_get_writers(struct mount *mnt) 265 { 266 #ifdef CONFIG_SMP 267 unsigned int count = 0; 268 int cpu; 269 270 for_each_possible_cpu(cpu) { 271 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers; 272 } 273 274 return count; 275 #else 276 return mnt->mnt_writers; 277 #endif 278 } 279 280 static int mnt_is_readonly(struct vfsmount *mnt) 281 { 282 if (mnt->mnt_sb->s_readonly_remount) 283 return 1; 284 /* Order wrt setting s_flags/s_readonly_remount in do_remount() */ 285 smp_rmb(); 286 return __mnt_is_readonly(mnt); 287 } 288 289 /* 290 * Most r/o & frozen checks on a fs are for operations that take discrete 291 * amounts of time, like a write() or unlink(). We must keep track of when 292 * those operations start (for permission checks) and when they end, so that we 293 * can determine when writes are able to occur to a filesystem. 294 */ 295 /** 296 * __mnt_want_write - get write access to a mount without freeze protection 297 * @m: the mount on which to take a write 298 * 299 * This tells the low-level filesystem that a write is about to be performed to 300 * it, and makes sure that writes are allowed (mnt it read-write) before 301 * returning success. This operation does not protect against filesystem being 302 * frozen. When the write operation is finished, __mnt_drop_write() must be 303 * called. This is effectively a refcount. 304 */ 305 int __mnt_want_write(struct vfsmount *m) 306 { 307 struct mount *mnt = real_mount(m); 308 int ret = 0; 309 310 preempt_disable(); 311 mnt_inc_writers(mnt); 312 /* 313 * The store to mnt_inc_writers must be visible before we pass 314 * MNT_WRITE_HOLD loop below, so that the slowpath can see our 315 * incremented count after it has set MNT_WRITE_HOLD. 316 */ 317 smp_mb(); 318 while (ACCESS_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD) 319 cpu_relax(); 320 /* 321 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will 322 * be set to match its requirements. So we must not load that until 323 * MNT_WRITE_HOLD is cleared. 324 */ 325 smp_rmb(); 326 if (mnt_is_readonly(m)) { 327 mnt_dec_writers(mnt); 328 ret = -EROFS; 329 } 330 preempt_enable(); 331 332 return ret; 333 } 334 335 /** 336 * mnt_want_write - get write access to a mount 337 * @m: the mount on which to take a write 338 * 339 * This tells the low-level filesystem that a write is about to be performed to 340 * it, and makes sure that writes are allowed (mount is read-write, filesystem 341 * is not frozen) before returning success. When the write operation is 342 * finished, mnt_drop_write() must be called. This is effectively a refcount. 343 */ 344 int mnt_want_write(struct vfsmount *m) 345 { 346 int ret; 347 348 sb_start_write(m->mnt_sb); 349 ret = __mnt_want_write(m); 350 if (ret) 351 sb_end_write(m->mnt_sb); 352 return ret; 353 } 354 EXPORT_SYMBOL_GPL(mnt_want_write); 355 356 /** 357 * mnt_clone_write - get write access to a mount 358 * @mnt: the mount on which to take a write 359 * 360 * This is effectively like mnt_want_write, except 361 * it must only be used to take an extra write reference 362 * on a mountpoint that we already know has a write reference 363 * on it. This allows some optimisation. 364 * 365 * After finished, mnt_drop_write must be called as usual to 366 * drop the reference. 367 */ 368 int mnt_clone_write(struct vfsmount *mnt) 369 { 370 /* superblock may be r/o */ 371 if (__mnt_is_readonly(mnt)) 372 return -EROFS; 373 preempt_disable(); 374 mnt_inc_writers(real_mount(mnt)); 375 preempt_enable(); 376 return 0; 377 } 378 EXPORT_SYMBOL_GPL(mnt_clone_write); 379 380 /** 381 * __mnt_want_write_file - get write access to a file's mount 382 * @file: the file who's mount on which to take a write 383 * 384 * This is like __mnt_want_write, but it takes a file and can 385 * do some optimisations if the file is open for write already 386 */ 387 int __mnt_want_write_file(struct file *file) 388 { 389 struct inode *inode = file_inode(file); 390 391 if (!(file->f_mode & FMODE_WRITE) || special_file(inode->i_mode)) 392 return __mnt_want_write(file->f_path.mnt); 393 else 394 return mnt_clone_write(file->f_path.mnt); 395 } 396 397 /** 398 * mnt_want_write_file - get write access to a file's mount 399 * @file: the file who's mount on which to take a write 400 * 401 * This is like mnt_want_write, but it takes a file and can 402 * do some optimisations if the file is open for write already 403 */ 404 int mnt_want_write_file(struct file *file) 405 { 406 int ret; 407 408 sb_start_write(file->f_path.mnt->mnt_sb); 409 ret = __mnt_want_write_file(file); 410 if (ret) 411 sb_end_write(file->f_path.mnt->mnt_sb); 412 return ret; 413 } 414 EXPORT_SYMBOL_GPL(mnt_want_write_file); 415 416 /** 417 * __mnt_drop_write - give up write access to a mount 418 * @mnt: the mount on which to give up write access 419 * 420 * Tells the low-level filesystem that we are done 421 * performing writes to it. Must be matched with 422 * __mnt_want_write() call above. 423 */ 424 void __mnt_drop_write(struct vfsmount *mnt) 425 { 426 preempt_disable(); 427 mnt_dec_writers(real_mount(mnt)); 428 preempt_enable(); 429 } 430 431 /** 432 * mnt_drop_write - give up write access to a mount 433 * @mnt: the mount on which to give up write access 434 * 435 * Tells the low-level filesystem that we are done performing writes to it and 436 * also allows filesystem to be frozen again. Must be matched with 437 * mnt_want_write() call above. 438 */ 439 void mnt_drop_write(struct vfsmount *mnt) 440 { 441 __mnt_drop_write(mnt); 442 sb_end_write(mnt->mnt_sb); 443 } 444 EXPORT_SYMBOL_GPL(mnt_drop_write); 445 446 void __mnt_drop_write_file(struct file *file) 447 { 448 __mnt_drop_write(file->f_path.mnt); 449 } 450 451 void mnt_drop_write_file(struct file *file) 452 { 453 mnt_drop_write(file->f_path.mnt); 454 } 455 EXPORT_SYMBOL(mnt_drop_write_file); 456 457 static int mnt_make_readonly(struct mount *mnt) 458 { 459 int ret = 0; 460 461 br_write_lock(&vfsmount_lock); 462 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD; 463 /* 464 * After storing MNT_WRITE_HOLD, we'll read the counters. This store 465 * should be visible before we do. 466 */ 467 smp_mb(); 468 469 /* 470 * With writers on hold, if this value is zero, then there are 471 * definitely no active writers (although held writers may subsequently 472 * increment the count, they'll have to wait, and decrement it after 473 * seeing MNT_READONLY). 474 * 475 * It is OK to have counter incremented on one CPU and decremented on 476 * another: the sum will add up correctly. The danger would be when we 477 * sum up each counter, if we read a counter before it is incremented, 478 * but then read another CPU's count which it has been subsequently 479 * decremented from -- we would see more decrements than we should. 480 * MNT_WRITE_HOLD protects against this scenario, because 481 * mnt_want_write first increments count, then smp_mb, then spins on 482 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while 483 * we're counting up here. 484 */ 485 if (mnt_get_writers(mnt) > 0) 486 ret = -EBUSY; 487 else 488 mnt->mnt.mnt_flags |= MNT_READONLY; 489 /* 490 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers 491 * that become unheld will see MNT_READONLY. 492 */ 493 smp_wmb(); 494 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD; 495 br_write_unlock(&vfsmount_lock); 496 return ret; 497 } 498 499 static void __mnt_unmake_readonly(struct mount *mnt) 500 { 501 br_write_lock(&vfsmount_lock); 502 mnt->mnt.mnt_flags &= ~MNT_READONLY; 503 br_write_unlock(&vfsmount_lock); 504 } 505 506 int sb_prepare_remount_readonly(struct super_block *sb) 507 { 508 struct mount *mnt; 509 int err = 0; 510 511 /* Racy optimization. Recheck the counter under MNT_WRITE_HOLD */ 512 if (atomic_long_read(&sb->s_remove_count)) 513 return -EBUSY; 514 515 br_write_lock(&vfsmount_lock); 516 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) { 517 if (!(mnt->mnt.mnt_flags & MNT_READONLY)) { 518 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD; 519 smp_mb(); 520 if (mnt_get_writers(mnt) > 0) { 521 err = -EBUSY; 522 break; 523 } 524 } 525 } 526 if (!err && atomic_long_read(&sb->s_remove_count)) 527 err = -EBUSY; 528 529 if (!err) { 530 sb->s_readonly_remount = 1; 531 smp_wmb(); 532 } 533 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) { 534 if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD) 535 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD; 536 } 537 br_write_unlock(&vfsmount_lock); 538 539 return err; 540 } 541 542 static void free_vfsmnt(struct mount *mnt) 543 { 544 kfree(mnt->mnt_devname); 545 mnt_free_id(mnt); 546 #ifdef CONFIG_SMP 547 free_percpu(mnt->mnt_pcp); 548 #endif 549 kmem_cache_free(mnt_cache, mnt); 550 } 551 552 /* 553 * find the first or last mount at @dentry on vfsmount @mnt depending on 554 * @dir. If @dir is set return the first mount else return the last mount. 555 * vfsmount_lock must be held for read or write. 556 */ 557 struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry, 558 int dir) 559 { 560 struct list_head *head = mount_hashtable + hash(mnt, dentry); 561 struct list_head *tmp = head; 562 struct mount *p, *found = NULL; 563 564 for (;;) { 565 tmp = dir ? tmp->next : tmp->prev; 566 p = NULL; 567 if (tmp == head) 568 break; 569 p = list_entry(tmp, struct mount, mnt_hash); 570 if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry) { 571 found = p; 572 break; 573 } 574 } 575 return found; 576 } 577 578 /* 579 * lookup_mnt - Return the first child mount mounted at path 580 * 581 * "First" means first mounted chronologically. If you create the 582 * following mounts: 583 * 584 * mount /dev/sda1 /mnt 585 * mount /dev/sda2 /mnt 586 * mount /dev/sda3 /mnt 587 * 588 * Then lookup_mnt() on the base /mnt dentry in the root mount will 589 * return successively the root dentry and vfsmount of /dev/sda1, then 590 * /dev/sda2, then /dev/sda3, then NULL. 591 * 592 * lookup_mnt takes a reference to the found vfsmount. 593 */ 594 struct vfsmount *lookup_mnt(struct path *path) 595 { 596 struct mount *child_mnt; 597 598 br_read_lock(&vfsmount_lock); 599 child_mnt = __lookup_mnt(path->mnt, path->dentry, 1); 600 if (child_mnt) { 601 mnt_add_count(child_mnt, 1); 602 br_read_unlock(&vfsmount_lock); 603 return &child_mnt->mnt; 604 } else { 605 br_read_unlock(&vfsmount_lock); 606 return NULL; 607 } 608 } 609 610 static struct mountpoint *new_mountpoint(struct dentry *dentry) 611 { 612 struct list_head *chain = mountpoint_hashtable + hash(NULL, dentry); 613 struct mountpoint *mp; 614 int ret; 615 616 list_for_each_entry(mp, chain, m_hash) { 617 if (mp->m_dentry == dentry) { 618 /* might be worth a WARN_ON() */ 619 if (d_unlinked(dentry)) 620 return ERR_PTR(-ENOENT); 621 mp->m_count++; 622 return mp; 623 } 624 } 625 626 mp = kmalloc(sizeof(struct mountpoint), GFP_KERNEL); 627 if (!mp) 628 return ERR_PTR(-ENOMEM); 629 630 ret = d_set_mounted(dentry); 631 if (ret) { 632 kfree(mp); 633 return ERR_PTR(ret); 634 } 635 636 mp->m_dentry = dentry; 637 mp->m_count = 1; 638 list_add(&mp->m_hash, chain); 639 return mp; 640 } 641 642 static void put_mountpoint(struct mountpoint *mp) 643 { 644 if (!--mp->m_count) { 645 struct dentry *dentry = mp->m_dentry; 646 spin_lock(&dentry->d_lock); 647 dentry->d_flags &= ~DCACHE_MOUNTED; 648 spin_unlock(&dentry->d_lock); 649 list_del(&mp->m_hash); 650 kfree(mp); 651 } 652 } 653 654 static inline int check_mnt(struct mount *mnt) 655 { 656 return mnt->mnt_ns == current->nsproxy->mnt_ns; 657 } 658 659 /* 660 * vfsmount lock must be held for write 661 */ 662 static void touch_mnt_namespace(struct mnt_namespace *ns) 663 { 664 if (ns) { 665 ns->event = ++event; 666 wake_up_interruptible(&ns->poll); 667 } 668 } 669 670 /* 671 * vfsmount lock must be held for write 672 */ 673 static void __touch_mnt_namespace(struct mnt_namespace *ns) 674 { 675 if (ns && ns->event != event) { 676 ns->event = event; 677 wake_up_interruptible(&ns->poll); 678 } 679 } 680 681 /* 682 * vfsmount lock must be held for write 683 */ 684 static void detach_mnt(struct mount *mnt, struct path *old_path) 685 { 686 old_path->dentry = mnt->mnt_mountpoint; 687 old_path->mnt = &mnt->mnt_parent->mnt; 688 mnt->mnt_parent = mnt; 689 mnt->mnt_mountpoint = mnt->mnt.mnt_root; 690 list_del_init(&mnt->mnt_child); 691 list_del_init(&mnt->mnt_hash); 692 put_mountpoint(mnt->mnt_mp); 693 mnt->mnt_mp = NULL; 694 } 695 696 /* 697 * vfsmount lock must be held for write 698 */ 699 void mnt_set_mountpoint(struct mount *mnt, 700 struct mountpoint *mp, 701 struct mount *child_mnt) 702 { 703 mp->m_count++; 704 mnt_add_count(mnt, 1); /* essentially, that's mntget */ 705 child_mnt->mnt_mountpoint = dget(mp->m_dentry); 706 child_mnt->mnt_parent = mnt; 707 child_mnt->mnt_mp = mp; 708 } 709 710 /* 711 * vfsmount lock must be held for write 712 */ 713 static void attach_mnt(struct mount *mnt, 714 struct mount *parent, 715 struct mountpoint *mp) 716 { 717 mnt_set_mountpoint(parent, mp, mnt); 718 list_add_tail(&mnt->mnt_hash, mount_hashtable + 719 hash(&parent->mnt, mp->m_dentry)); 720 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts); 721 } 722 723 /* 724 * vfsmount lock must be held for write 725 */ 726 static void commit_tree(struct mount *mnt) 727 { 728 struct mount *parent = mnt->mnt_parent; 729 struct mount *m; 730 LIST_HEAD(head); 731 struct mnt_namespace *n = parent->mnt_ns; 732 733 BUG_ON(parent == mnt); 734 735 list_add_tail(&head, &mnt->mnt_list); 736 list_for_each_entry(m, &head, mnt_list) 737 m->mnt_ns = n; 738 739 list_splice(&head, n->list.prev); 740 741 list_add_tail(&mnt->mnt_hash, mount_hashtable + 742 hash(&parent->mnt, mnt->mnt_mountpoint)); 743 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts); 744 touch_mnt_namespace(n); 745 } 746 747 static struct mount *next_mnt(struct mount *p, struct mount *root) 748 { 749 struct list_head *next = p->mnt_mounts.next; 750 if (next == &p->mnt_mounts) { 751 while (1) { 752 if (p == root) 753 return NULL; 754 next = p->mnt_child.next; 755 if (next != &p->mnt_parent->mnt_mounts) 756 break; 757 p = p->mnt_parent; 758 } 759 } 760 return list_entry(next, struct mount, mnt_child); 761 } 762 763 static struct mount *skip_mnt_tree(struct mount *p) 764 { 765 struct list_head *prev = p->mnt_mounts.prev; 766 while (prev != &p->mnt_mounts) { 767 p = list_entry(prev, struct mount, mnt_child); 768 prev = p->mnt_mounts.prev; 769 } 770 return p; 771 } 772 773 struct vfsmount * 774 vfs_kern_mount(struct file_system_type *type, int flags, const char *name, void *data) 775 { 776 struct mount *mnt; 777 struct dentry *root; 778 779 if (!type) 780 return ERR_PTR(-ENODEV); 781 782 mnt = alloc_vfsmnt(name); 783 if (!mnt) 784 return ERR_PTR(-ENOMEM); 785 786 if (flags & MS_KERNMOUNT) 787 mnt->mnt.mnt_flags = MNT_INTERNAL; 788 789 root = mount_fs(type, flags, name, data); 790 if (IS_ERR(root)) { 791 free_vfsmnt(mnt); 792 return ERR_CAST(root); 793 } 794 795 mnt->mnt.mnt_root = root; 796 mnt->mnt.mnt_sb = root->d_sb; 797 mnt->mnt_mountpoint = mnt->mnt.mnt_root; 798 mnt->mnt_parent = mnt; 799 br_write_lock(&vfsmount_lock); 800 list_add_tail(&mnt->mnt_instance, &root->d_sb->s_mounts); 801 br_write_unlock(&vfsmount_lock); 802 return &mnt->mnt; 803 } 804 EXPORT_SYMBOL_GPL(vfs_kern_mount); 805 806 static struct mount *clone_mnt(struct mount *old, struct dentry *root, 807 int flag) 808 { 809 struct super_block *sb = old->mnt.mnt_sb; 810 struct mount *mnt; 811 int err; 812 813 mnt = alloc_vfsmnt(old->mnt_devname); 814 if (!mnt) 815 return ERR_PTR(-ENOMEM); 816 817 if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE)) 818 mnt->mnt_group_id = 0; /* not a peer of original */ 819 else 820 mnt->mnt_group_id = old->mnt_group_id; 821 822 if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) { 823 err = mnt_alloc_group_id(mnt); 824 if (err) 825 goto out_free; 826 } 827 828 mnt->mnt.mnt_flags = old->mnt.mnt_flags & ~MNT_WRITE_HOLD; 829 /* Don't allow unprivileged users to change mount flags */ 830 if ((flag & CL_UNPRIVILEGED) && (mnt->mnt.mnt_flags & MNT_READONLY)) 831 mnt->mnt.mnt_flags |= MNT_LOCK_READONLY; 832 833 /* Don't allow unprivileged users to reveal what is under a mount */ 834 if ((flag & CL_UNPRIVILEGED) && list_empty(&old->mnt_expire)) 835 mnt->mnt.mnt_flags |= MNT_LOCKED; 836 837 atomic_inc(&sb->s_active); 838 mnt->mnt.mnt_sb = sb; 839 mnt->mnt.mnt_root = dget(root); 840 mnt->mnt_mountpoint = mnt->mnt.mnt_root; 841 mnt->mnt_parent = mnt; 842 br_write_lock(&vfsmount_lock); 843 list_add_tail(&mnt->mnt_instance, &sb->s_mounts); 844 br_write_unlock(&vfsmount_lock); 845 846 if ((flag & CL_SLAVE) || 847 ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) { 848 list_add(&mnt->mnt_slave, &old->mnt_slave_list); 849 mnt->mnt_master = old; 850 CLEAR_MNT_SHARED(mnt); 851 } else if (!(flag & CL_PRIVATE)) { 852 if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old)) 853 list_add(&mnt->mnt_share, &old->mnt_share); 854 if (IS_MNT_SLAVE(old)) 855 list_add(&mnt->mnt_slave, &old->mnt_slave); 856 mnt->mnt_master = old->mnt_master; 857 } 858 if (flag & CL_MAKE_SHARED) 859 set_mnt_shared(mnt); 860 861 /* stick the duplicate mount on the same expiry list 862 * as the original if that was on one */ 863 if (flag & CL_EXPIRE) { 864 if (!list_empty(&old->mnt_expire)) 865 list_add(&mnt->mnt_expire, &old->mnt_expire); 866 } 867 868 return mnt; 869 870 out_free: 871 free_vfsmnt(mnt); 872 return ERR_PTR(err); 873 } 874 875 static inline void mntfree(struct mount *mnt) 876 { 877 struct vfsmount *m = &mnt->mnt; 878 struct super_block *sb = m->mnt_sb; 879 880 /* 881 * This probably indicates that somebody messed 882 * up a mnt_want/drop_write() pair. If this 883 * happens, the filesystem was probably unable 884 * to make r/w->r/o transitions. 885 */ 886 /* 887 * The locking used to deal with mnt_count decrement provides barriers, 888 * so mnt_get_writers() below is safe. 889 */ 890 WARN_ON(mnt_get_writers(mnt)); 891 fsnotify_vfsmount_delete(m); 892 dput(m->mnt_root); 893 free_vfsmnt(mnt); 894 deactivate_super(sb); 895 } 896 897 static void mntput_no_expire(struct mount *mnt) 898 { 899 put_again: 900 #ifdef CONFIG_SMP 901 br_read_lock(&vfsmount_lock); 902 if (likely(mnt->mnt_ns)) { 903 /* shouldn't be the last one */ 904 mnt_add_count(mnt, -1); 905 br_read_unlock(&vfsmount_lock); 906 return; 907 } 908 br_read_unlock(&vfsmount_lock); 909 910 br_write_lock(&vfsmount_lock); 911 mnt_add_count(mnt, -1); 912 if (mnt_get_count(mnt)) { 913 br_write_unlock(&vfsmount_lock); 914 return; 915 } 916 #else 917 mnt_add_count(mnt, -1); 918 if (likely(mnt_get_count(mnt))) 919 return; 920 br_write_lock(&vfsmount_lock); 921 #endif 922 if (unlikely(mnt->mnt_pinned)) { 923 mnt_add_count(mnt, mnt->mnt_pinned + 1); 924 mnt->mnt_pinned = 0; 925 br_write_unlock(&vfsmount_lock); 926 acct_auto_close_mnt(&mnt->mnt); 927 goto put_again; 928 } 929 930 list_del(&mnt->mnt_instance); 931 br_write_unlock(&vfsmount_lock); 932 mntfree(mnt); 933 } 934 935 void mntput(struct vfsmount *mnt) 936 { 937 if (mnt) { 938 struct mount *m = real_mount(mnt); 939 /* avoid cacheline pingpong, hope gcc doesn't get "smart" */ 940 if (unlikely(m->mnt_expiry_mark)) 941 m->mnt_expiry_mark = 0; 942 mntput_no_expire(m); 943 } 944 } 945 EXPORT_SYMBOL(mntput); 946 947 struct vfsmount *mntget(struct vfsmount *mnt) 948 { 949 if (mnt) 950 mnt_add_count(real_mount(mnt), 1); 951 return mnt; 952 } 953 EXPORT_SYMBOL(mntget); 954 955 void mnt_pin(struct vfsmount *mnt) 956 { 957 br_write_lock(&vfsmount_lock); 958 real_mount(mnt)->mnt_pinned++; 959 br_write_unlock(&vfsmount_lock); 960 } 961 EXPORT_SYMBOL(mnt_pin); 962 963 void mnt_unpin(struct vfsmount *m) 964 { 965 struct mount *mnt = real_mount(m); 966 br_write_lock(&vfsmount_lock); 967 if (mnt->mnt_pinned) { 968 mnt_add_count(mnt, 1); 969 mnt->mnt_pinned--; 970 } 971 br_write_unlock(&vfsmount_lock); 972 } 973 EXPORT_SYMBOL(mnt_unpin); 974 975 static inline void mangle(struct seq_file *m, const char *s) 976 { 977 seq_escape(m, s, " \t\n\\"); 978 } 979 980 /* 981 * Simple .show_options callback for filesystems which don't want to 982 * implement more complex mount option showing. 983 * 984 * See also save_mount_options(). 985 */ 986 int generic_show_options(struct seq_file *m, struct dentry *root) 987 { 988 const char *options; 989 990 rcu_read_lock(); 991 options = rcu_dereference(root->d_sb->s_options); 992 993 if (options != NULL && options[0]) { 994 seq_putc(m, ','); 995 mangle(m, options); 996 } 997 rcu_read_unlock(); 998 999 return 0; 1000 } 1001 EXPORT_SYMBOL(generic_show_options); 1002 1003 /* 1004 * If filesystem uses generic_show_options(), this function should be 1005 * called from the fill_super() callback. 1006 * 1007 * The .remount_fs callback usually needs to be handled in a special 1008 * way, to make sure, that previous options are not overwritten if the 1009 * remount fails. 1010 * 1011 * Also note, that if the filesystem's .remount_fs function doesn't 1012 * reset all options to their default value, but changes only newly 1013 * given options, then the displayed options will not reflect reality 1014 * any more. 1015 */ 1016 void save_mount_options(struct super_block *sb, char *options) 1017 { 1018 BUG_ON(sb->s_options); 1019 rcu_assign_pointer(sb->s_options, kstrdup(options, GFP_KERNEL)); 1020 } 1021 EXPORT_SYMBOL(save_mount_options); 1022 1023 void replace_mount_options(struct super_block *sb, char *options) 1024 { 1025 char *old = sb->s_options; 1026 rcu_assign_pointer(sb->s_options, options); 1027 if (old) { 1028 synchronize_rcu(); 1029 kfree(old); 1030 } 1031 } 1032 EXPORT_SYMBOL(replace_mount_options); 1033 1034 #ifdef CONFIG_PROC_FS 1035 /* iterator; we want it to have access to namespace_sem, thus here... */ 1036 static void *m_start(struct seq_file *m, loff_t *pos) 1037 { 1038 struct proc_mounts *p = proc_mounts(m); 1039 1040 down_read(&namespace_sem); 1041 return seq_list_start(&p->ns->list, *pos); 1042 } 1043 1044 static void *m_next(struct seq_file *m, void *v, loff_t *pos) 1045 { 1046 struct proc_mounts *p = proc_mounts(m); 1047 1048 return seq_list_next(v, &p->ns->list, pos); 1049 } 1050 1051 static void m_stop(struct seq_file *m, void *v) 1052 { 1053 up_read(&namespace_sem); 1054 } 1055 1056 static int m_show(struct seq_file *m, void *v) 1057 { 1058 struct proc_mounts *p = proc_mounts(m); 1059 struct mount *r = list_entry(v, struct mount, mnt_list); 1060 return p->show(m, &r->mnt); 1061 } 1062 1063 const struct seq_operations mounts_op = { 1064 .start = m_start, 1065 .next = m_next, 1066 .stop = m_stop, 1067 .show = m_show, 1068 }; 1069 #endif /* CONFIG_PROC_FS */ 1070 1071 /** 1072 * may_umount_tree - check if a mount tree is busy 1073 * @mnt: root of mount tree 1074 * 1075 * This is called to check if a tree of mounts has any 1076 * open files, pwds, chroots or sub mounts that are 1077 * busy. 1078 */ 1079 int may_umount_tree(struct vfsmount *m) 1080 { 1081 struct mount *mnt = real_mount(m); 1082 int actual_refs = 0; 1083 int minimum_refs = 0; 1084 struct mount *p; 1085 BUG_ON(!m); 1086 1087 /* write lock needed for mnt_get_count */ 1088 br_write_lock(&vfsmount_lock); 1089 for (p = mnt; p; p = next_mnt(p, mnt)) { 1090 actual_refs += mnt_get_count(p); 1091 minimum_refs += 2; 1092 } 1093 br_write_unlock(&vfsmount_lock); 1094 1095 if (actual_refs > minimum_refs) 1096 return 0; 1097 1098 return 1; 1099 } 1100 1101 EXPORT_SYMBOL(may_umount_tree); 1102 1103 /** 1104 * may_umount - check if a mount point is busy 1105 * @mnt: root of mount 1106 * 1107 * This is called to check if a mount point has any 1108 * open files, pwds, chroots or sub mounts. If the 1109 * mount has sub mounts this will return busy 1110 * regardless of whether the sub mounts are busy. 1111 * 1112 * Doesn't take quota and stuff into account. IOW, in some cases it will 1113 * give false negatives. The main reason why it's here is that we need 1114 * a non-destructive way to look for easily umountable filesystems. 1115 */ 1116 int may_umount(struct vfsmount *mnt) 1117 { 1118 int ret = 1; 1119 down_read(&namespace_sem); 1120 br_write_lock(&vfsmount_lock); 1121 if (propagate_mount_busy(real_mount(mnt), 2)) 1122 ret = 0; 1123 br_write_unlock(&vfsmount_lock); 1124 up_read(&namespace_sem); 1125 return ret; 1126 } 1127 1128 EXPORT_SYMBOL(may_umount); 1129 1130 static LIST_HEAD(unmounted); /* protected by namespace_sem */ 1131 1132 static void namespace_unlock(void) 1133 { 1134 struct mount *mnt; 1135 LIST_HEAD(head); 1136 1137 if (likely(list_empty(&unmounted))) { 1138 up_write(&namespace_sem); 1139 return; 1140 } 1141 1142 list_splice_init(&unmounted, &head); 1143 up_write(&namespace_sem); 1144 1145 while (!list_empty(&head)) { 1146 mnt = list_first_entry(&head, struct mount, mnt_hash); 1147 list_del_init(&mnt->mnt_hash); 1148 if (mnt_has_parent(mnt)) { 1149 struct dentry *dentry; 1150 struct mount *m; 1151 1152 br_write_lock(&vfsmount_lock); 1153 dentry = mnt->mnt_mountpoint; 1154 m = mnt->mnt_parent; 1155 mnt->mnt_mountpoint = mnt->mnt.mnt_root; 1156 mnt->mnt_parent = mnt; 1157 m->mnt_ghosts--; 1158 br_write_unlock(&vfsmount_lock); 1159 dput(dentry); 1160 mntput(&m->mnt); 1161 } 1162 mntput(&mnt->mnt); 1163 } 1164 } 1165 1166 static inline void namespace_lock(void) 1167 { 1168 down_write(&namespace_sem); 1169 } 1170 1171 /* 1172 * vfsmount lock must be held for write 1173 * namespace_sem must be held for write 1174 */ 1175 void umount_tree(struct mount *mnt, int propagate) 1176 { 1177 LIST_HEAD(tmp_list); 1178 struct mount *p; 1179 1180 for (p = mnt; p; p = next_mnt(p, mnt)) 1181 list_move(&p->mnt_hash, &tmp_list); 1182 1183 if (propagate) 1184 propagate_umount(&tmp_list); 1185 1186 list_for_each_entry(p, &tmp_list, mnt_hash) { 1187 list_del_init(&p->mnt_expire); 1188 list_del_init(&p->mnt_list); 1189 __touch_mnt_namespace(p->mnt_ns); 1190 p->mnt_ns = NULL; 1191 list_del_init(&p->mnt_child); 1192 if (mnt_has_parent(p)) { 1193 p->mnt_parent->mnt_ghosts++; 1194 put_mountpoint(p->mnt_mp); 1195 p->mnt_mp = NULL; 1196 } 1197 change_mnt_propagation(p, MS_PRIVATE); 1198 } 1199 list_splice(&tmp_list, &unmounted); 1200 } 1201 1202 static void shrink_submounts(struct mount *mnt); 1203 1204 static int do_umount(struct mount *mnt, int flags) 1205 { 1206 struct super_block *sb = mnt->mnt.mnt_sb; 1207 int retval; 1208 1209 retval = security_sb_umount(&mnt->mnt, flags); 1210 if (retval) 1211 return retval; 1212 1213 /* 1214 * Allow userspace to request a mountpoint be expired rather than 1215 * unmounting unconditionally. Unmount only happens if: 1216 * (1) the mark is already set (the mark is cleared by mntput()) 1217 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount] 1218 */ 1219 if (flags & MNT_EXPIRE) { 1220 if (&mnt->mnt == current->fs->root.mnt || 1221 flags & (MNT_FORCE | MNT_DETACH)) 1222 return -EINVAL; 1223 1224 /* 1225 * probably don't strictly need the lock here if we examined 1226 * all race cases, but it's a slowpath. 1227 */ 1228 br_write_lock(&vfsmount_lock); 1229 if (mnt_get_count(mnt) != 2) { 1230 br_write_unlock(&vfsmount_lock); 1231 return -EBUSY; 1232 } 1233 br_write_unlock(&vfsmount_lock); 1234 1235 if (!xchg(&mnt->mnt_expiry_mark, 1)) 1236 return -EAGAIN; 1237 } 1238 1239 /* 1240 * If we may have to abort operations to get out of this 1241 * mount, and they will themselves hold resources we must 1242 * allow the fs to do things. In the Unix tradition of 1243 * 'Gee thats tricky lets do it in userspace' the umount_begin 1244 * might fail to complete on the first run through as other tasks 1245 * must return, and the like. Thats for the mount program to worry 1246 * about for the moment. 1247 */ 1248 1249 if (flags & MNT_FORCE && sb->s_op->umount_begin) { 1250 sb->s_op->umount_begin(sb); 1251 } 1252 1253 /* 1254 * No sense to grab the lock for this test, but test itself looks 1255 * somewhat bogus. Suggestions for better replacement? 1256 * Ho-hum... In principle, we might treat that as umount + switch 1257 * to rootfs. GC would eventually take care of the old vfsmount. 1258 * Actually it makes sense, especially if rootfs would contain a 1259 * /reboot - static binary that would close all descriptors and 1260 * call reboot(9). Then init(8) could umount root and exec /reboot. 1261 */ 1262 if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) { 1263 /* 1264 * Special case for "unmounting" root ... 1265 * we just try to remount it readonly. 1266 */ 1267 down_write(&sb->s_umount); 1268 if (!(sb->s_flags & MS_RDONLY)) 1269 retval = do_remount_sb(sb, MS_RDONLY, NULL, 0); 1270 up_write(&sb->s_umount); 1271 return retval; 1272 } 1273 1274 namespace_lock(); 1275 br_write_lock(&vfsmount_lock); 1276 event++; 1277 1278 if (!(flags & MNT_DETACH)) 1279 shrink_submounts(mnt); 1280 1281 retval = -EBUSY; 1282 if (flags & MNT_DETACH || !propagate_mount_busy(mnt, 2)) { 1283 if (!list_empty(&mnt->mnt_list)) 1284 umount_tree(mnt, 1); 1285 retval = 0; 1286 } 1287 br_write_unlock(&vfsmount_lock); 1288 namespace_unlock(); 1289 return retval; 1290 } 1291 1292 /* 1293 * Is the caller allowed to modify his namespace? 1294 */ 1295 static inline bool may_mount(void) 1296 { 1297 return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN); 1298 } 1299 1300 /* 1301 * Now umount can handle mount points as well as block devices. 1302 * This is important for filesystems which use unnamed block devices. 1303 * 1304 * We now support a flag for forced unmount like the other 'big iron' 1305 * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD 1306 */ 1307 1308 SYSCALL_DEFINE2(umount, char __user *, name, int, flags) 1309 { 1310 struct path path; 1311 struct mount *mnt; 1312 int retval; 1313 int lookup_flags = 0; 1314 1315 if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW)) 1316 return -EINVAL; 1317 1318 if (!may_mount()) 1319 return -EPERM; 1320 1321 if (!(flags & UMOUNT_NOFOLLOW)) 1322 lookup_flags |= LOOKUP_FOLLOW; 1323 1324 retval = user_path_mountpoint_at(AT_FDCWD, name, lookup_flags, &path); 1325 if (retval) 1326 goto out; 1327 mnt = real_mount(path.mnt); 1328 retval = -EINVAL; 1329 if (path.dentry != path.mnt->mnt_root) 1330 goto dput_and_out; 1331 if (!check_mnt(mnt)) 1332 goto dput_and_out; 1333 if (mnt->mnt.mnt_flags & MNT_LOCKED) 1334 goto dput_and_out; 1335 1336 retval = do_umount(mnt, flags); 1337 dput_and_out: 1338 /* we mustn't call path_put() as that would clear mnt_expiry_mark */ 1339 dput(path.dentry); 1340 mntput_no_expire(mnt); 1341 out: 1342 return retval; 1343 } 1344 1345 #ifdef __ARCH_WANT_SYS_OLDUMOUNT 1346 1347 /* 1348 * The 2.0 compatible umount. No flags. 1349 */ 1350 SYSCALL_DEFINE1(oldumount, char __user *, name) 1351 { 1352 return sys_umount(name, 0); 1353 } 1354 1355 #endif 1356 1357 static bool is_mnt_ns_file(struct dentry *dentry) 1358 { 1359 /* Is this a proxy for a mount namespace? */ 1360 struct inode *inode = dentry->d_inode; 1361 struct proc_ns *ei; 1362 1363 if (!proc_ns_inode(inode)) 1364 return false; 1365 1366 ei = get_proc_ns(inode); 1367 if (ei->ns_ops != &mntns_operations) 1368 return false; 1369 1370 return true; 1371 } 1372 1373 static bool mnt_ns_loop(struct dentry *dentry) 1374 { 1375 /* Could bind mounting the mount namespace inode cause a 1376 * mount namespace loop? 1377 */ 1378 struct mnt_namespace *mnt_ns; 1379 if (!is_mnt_ns_file(dentry)) 1380 return false; 1381 1382 mnt_ns = get_proc_ns(dentry->d_inode)->ns; 1383 return current->nsproxy->mnt_ns->seq >= mnt_ns->seq; 1384 } 1385 1386 struct mount *copy_tree(struct mount *mnt, struct dentry *dentry, 1387 int flag) 1388 { 1389 struct mount *res, *p, *q, *r, *parent; 1390 1391 if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(mnt)) 1392 return ERR_PTR(-EINVAL); 1393 1394 if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry)) 1395 return ERR_PTR(-EINVAL); 1396 1397 res = q = clone_mnt(mnt, dentry, flag); 1398 if (IS_ERR(q)) 1399 return q; 1400 1401 q->mnt.mnt_flags &= ~MNT_LOCKED; 1402 q->mnt_mountpoint = mnt->mnt_mountpoint; 1403 1404 p = mnt; 1405 list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) { 1406 struct mount *s; 1407 if (!is_subdir(r->mnt_mountpoint, dentry)) 1408 continue; 1409 1410 for (s = r; s; s = next_mnt(s, r)) { 1411 if (!(flag & CL_COPY_UNBINDABLE) && 1412 IS_MNT_UNBINDABLE(s)) { 1413 s = skip_mnt_tree(s); 1414 continue; 1415 } 1416 if (!(flag & CL_COPY_MNT_NS_FILE) && 1417 is_mnt_ns_file(s->mnt.mnt_root)) { 1418 s = skip_mnt_tree(s); 1419 continue; 1420 } 1421 while (p != s->mnt_parent) { 1422 p = p->mnt_parent; 1423 q = q->mnt_parent; 1424 } 1425 p = s; 1426 parent = q; 1427 q = clone_mnt(p, p->mnt.mnt_root, flag); 1428 if (IS_ERR(q)) 1429 goto out; 1430 br_write_lock(&vfsmount_lock); 1431 list_add_tail(&q->mnt_list, &res->mnt_list); 1432 attach_mnt(q, parent, p->mnt_mp); 1433 br_write_unlock(&vfsmount_lock); 1434 } 1435 } 1436 return res; 1437 out: 1438 if (res) { 1439 br_write_lock(&vfsmount_lock); 1440 umount_tree(res, 0); 1441 br_write_unlock(&vfsmount_lock); 1442 } 1443 return q; 1444 } 1445 1446 /* Caller should check returned pointer for errors */ 1447 1448 struct vfsmount *collect_mounts(struct path *path) 1449 { 1450 struct mount *tree; 1451 namespace_lock(); 1452 tree = copy_tree(real_mount(path->mnt), path->dentry, 1453 CL_COPY_ALL | CL_PRIVATE); 1454 namespace_unlock(); 1455 if (IS_ERR(tree)) 1456 return ERR_CAST(tree); 1457 return &tree->mnt; 1458 } 1459 1460 void drop_collected_mounts(struct vfsmount *mnt) 1461 { 1462 namespace_lock(); 1463 br_write_lock(&vfsmount_lock); 1464 umount_tree(real_mount(mnt), 0); 1465 br_write_unlock(&vfsmount_lock); 1466 namespace_unlock(); 1467 } 1468 1469 int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg, 1470 struct vfsmount *root) 1471 { 1472 struct mount *mnt; 1473 int res = f(root, arg); 1474 if (res) 1475 return res; 1476 list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) { 1477 res = f(&mnt->mnt, arg); 1478 if (res) 1479 return res; 1480 } 1481 return 0; 1482 } 1483 1484 static void cleanup_group_ids(struct mount *mnt, struct mount *end) 1485 { 1486 struct mount *p; 1487 1488 for (p = mnt; p != end; p = next_mnt(p, mnt)) { 1489 if (p->mnt_group_id && !IS_MNT_SHARED(p)) 1490 mnt_release_group_id(p); 1491 } 1492 } 1493 1494 static int invent_group_ids(struct mount *mnt, bool recurse) 1495 { 1496 struct mount *p; 1497 1498 for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) { 1499 if (!p->mnt_group_id && !IS_MNT_SHARED(p)) { 1500 int err = mnt_alloc_group_id(p); 1501 if (err) { 1502 cleanup_group_ids(mnt, p); 1503 return err; 1504 } 1505 } 1506 } 1507 1508 return 0; 1509 } 1510 1511 /* 1512 * @source_mnt : mount tree to be attached 1513 * @nd : place the mount tree @source_mnt is attached 1514 * @parent_nd : if non-null, detach the source_mnt from its parent and 1515 * store the parent mount and mountpoint dentry. 1516 * (done when source_mnt is moved) 1517 * 1518 * NOTE: in the table below explains the semantics when a source mount 1519 * of a given type is attached to a destination mount of a given type. 1520 * --------------------------------------------------------------------------- 1521 * | BIND MOUNT OPERATION | 1522 * |************************************************************************** 1523 * | source-->| shared | private | slave | unbindable | 1524 * | dest | | | | | 1525 * | | | | | | | 1526 * | v | | | | | 1527 * |************************************************************************** 1528 * | shared | shared (++) | shared (+) | shared(+++)| invalid | 1529 * | | | | | | 1530 * |non-shared| shared (+) | private | slave (*) | invalid | 1531 * *************************************************************************** 1532 * A bind operation clones the source mount and mounts the clone on the 1533 * destination mount. 1534 * 1535 * (++) the cloned mount is propagated to all the mounts in the propagation 1536 * tree of the destination mount and the cloned mount is added to 1537 * the peer group of the source mount. 1538 * (+) the cloned mount is created under the destination mount and is marked 1539 * as shared. The cloned mount is added to the peer group of the source 1540 * mount. 1541 * (+++) the mount is propagated to all the mounts in the propagation tree 1542 * of the destination mount and the cloned mount is made slave 1543 * of the same master as that of the source mount. The cloned mount 1544 * is marked as 'shared and slave'. 1545 * (*) the cloned mount is made a slave of the same master as that of the 1546 * source mount. 1547 * 1548 * --------------------------------------------------------------------------- 1549 * | MOVE MOUNT OPERATION | 1550 * |************************************************************************** 1551 * | source-->| shared | private | slave | unbindable | 1552 * | dest | | | | | 1553 * | | | | | | | 1554 * | v | | | | | 1555 * |************************************************************************** 1556 * | shared | shared (+) | shared (+) | shared(+++) | invalid | 1557 * | | | | | | 1558 * |non-shared| shared (+*) | private | slave (*) | unbindable | 1559 * *************************************************************************** 1560 * 1561 * (+) the mount is moved to the destination. And is then propagated to 1562 * all the mounts in the propagation tree of the destination mount. 1563 * (+*) the mount is moved to the destination. 1564 * (+++) the mount is moved to the destination and is then propagated to 1565 * all the mounts belonging to the destination mount's propagation tree. 1566 * the mount is marked as 'shared and slave'. 1567 * (*) the mount continues to be a slave at the new location. 1568 * 1569 * if the source mount is a tree, the operations explained above is 1570 * applied to each mount in the tree. 1571 * Must be called without spinlocks held, since this function can sleep 1572 * in allocations. 1573 */ 1574 static int attach_recursive_mnt(struct mount *source_mnt, 1575 struct mount *dest_mnt, 1576 struct mountpoint *dest_mp, 1577 struct path *parent_path) 1578 { 1579 LIST_HEAD(tree_list); 1580 struct mount *child, *p; 1581 int err; 1582 1583 if (IS_MNT_SHARED(dest_mnt)) { 1584 err = invent_group_ids(source_mnt, true); 1585 if (err) 1586 goto out; 1587 } 1588 err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list); 1589 if (err) 1590 goto out_cleanup_ids; 1591 1592 br_write_lock(&vfsmount_lock); 1593 1594 if (IS_MNT_SHARED(dest_mnt)) { 1595 for (p = source_mnt; p; p = next_mnt(p, source_mnt)) 1596 set_mnt_shared(p); 1597 } 1598 if (parent_path) { 1599 detach_mnt(source_mnt, parent_path); 1600 attach_mnt(source_mnt, dest_mnt, dest_mp); 1601 touch_mnt_namespace(source_mnt->mnt_ns); 1602 } else { 1603 mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt); 1604 commit_tree(source_mnt); 1605 } 1606 1607 list_for_each_entry_safe(child, p, &tree_list, mnt_hash) { 1608 list_del_init(&child->mnt_hash); 1609 commit_tree(child); 1610 } 1611 br_write_unlock(&vfsmount_lock); 1612 1613 return 0; 1614 1615 out_cleanup_ids: 1616 if (IS_MNT_SHARED(dest_mnt)) 1617 cleanup_group_ids(source_mnt, NULL); 1618 out: 1619 return err; 1620 } 1621 1622 static struct mountpoint *lock_mount(struct path *path) 1623 { 1624 struct vfsmount *mnt; 1625 struct dentry *dentry = path->dentry; 1626 retry: 1627 mutex_lock(&dentry->d_inode->i_mutex); 1628 if (unlikely(cant_mount(dentry))) { 1629 mutex_unlock(&dentry->d_inode->i_mutex); 1630 return ERR_PTR(-ENOENT); 1631 } 1632 namespace_lock(); 1633 mnt = lookup_mnt(path); 1634 if (likely(!mnt)) { 1635 struct mountpoint *mp = new_mountpoint(dentry); 1636 if (IS_ERR(mp)) { 1637 namespace_unlock(); 1638 mutex_unlock(&dentry->d_inode->i_mutex); 1639 return mp; 1640 } 1641 return mp; 1642 } 1643 namespace_unlock(); 1644 mutex_unlock(&path->dentry->d_inode->i_mutex); 1645 path_put(path); 1646 path->mnt = mnt; 1647 dentry = path->dentry = dget(mnt->mnt_root); 1648 goto retry; 1649 } 1650 1651 static void unlock_mount(struct mountpoint *where) 1652 { 1653 struct dentry *dentry = where->m_dentry; 1654 put_mountpoint(where); 1655 namespace_unlock(); 1656 mutex_unlock(&dentry->d_inode->i_mutex); 1657 } 1658 1659 static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp) 1660 { 1661 if (mnt->mnt.mnt_sb->s_flags & MS_NOUSER) 1662 return -EINVAL; 1663 1664 if (S_ISDIR(mp->m_dentry->d_inode->i_mode) != 1665 S_ISDIR(mnt->mnt.mnt_root->d_inode->i_mode)) 1666 return -ENOTDIR; 1667 1668 return attach_recursive_mnt(mnt, p, mp, NULL); 1669 } 1670 1671 /* 1672 * Sanity check the flags to change_mnt_propagation. 1673 */ 1674 1675 static int flags_to_propagation_type(int flags) 1676 { 1677 int type = flags & ~(MS_REC | MS_SILENT); 1678 1679 /* Fail if any non-propagation flags are set */ 1680 if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE)) 1681 return 0; 1682 /* Only one propagation flag should be set */ 1683 if (!is_power_of_2(type)) 1684 return 0; 1685 return type; 1686 } 1687 1688 /* 1689 * recursively change the type of the mountpoint. 1690 */ 1691 static int do_change_type(struct path *path, int flag) 1692 { 1693 struct mount *m; 1694 struct mount *mnt = real_mount(path->mnt); 1695 int recurse = flag & MS_REC; 1696 int type; 1697 int err = 0; 1698 1699 if (path->dentry != path->mnt->mnt_root) 1700 return -EINVAL; 1701 1702 type = flags_to_propagation_type(flag); 1703 if (!type) 1704 return -EINVAL; 1705 1706 namespace_lock(); 1707 if (type == MS_SHARED) { 1708 err = invent_group_ids(mnt, recurse); 1709 if (err) 1710 goto out_unlock; 1711 } 1712 1713 br_write_lock(&vfsmount_lock); 1714 for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL)) 1715 change_mnt_propagation(m, type); 1716 br_write_unlock(&vfsmount_lock); 1717 1718 out_unlock: 1719 namespace_unlock(); 1720 return err; 1721 } 1722 1723 static bool has_locked_children(struct mount *mnt, struct dentry *dentry) 1724 { 1725 struct mount *child; 1726 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) { 1727 if (!is_subdir(child->mnt_mountpoint, dentry)) 1728 continue; 1729 1730 if (child->mnt.mnt_flags & MNT_LOCKED) 1731 return true; 1732 } 1733 return false; 1734 } 1735 1736 /* 1737 * do loopback mount. 1738 */ 1739 static int do_loopback(struct path *path, const char *old_name, 1740 int recurse) 1741 { 1742 struct path old_path; 1743 struct mount *mnt = NULL, *old, *parent; 1744 struct mountpoint *mp; 1745 int err; 1746 if (!old_name || !*old_name) 1747 return -EINVAL; 1748 err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path); 1749 if (err) 1750 return err; 1751 1752 err = -EINVAL; 1753 if (mnt_ns_loop(old_path.dentry)) 1754 goto out; 1755 1756 mp = lock_mount(path); 1757 err = PTR_ERR(mp); 1758 if (IS_ERR(mp)) 1759 goto out; 1760 1761 old = real_mount(old_path.mnt); 1762 parent = real_mount(path->mnt); 1763 1764 err = -EINVAL; 1765 if (IS_MNT_UNBINDABLE(old)) 1766 goto out2; 1767 1768 if (!check_mnt(parent) || !check_mnt(old)) 1769 goto out2; 1770 1771 if (!recurse && has_locked_children(old, old_path.dentry)) 1772 goto out2; 1773 1774 if (recurse) 1775 mnt = copy_tree(old, old_path.dentry, CL_COPY_MNT_NS_FILE); 1776 else 1777 mnt = clone_mnt(old, old_path.dentry, 0); 1778 1779 if (IS_ERR(mnt)) { 1780 err = PTR_ERR(mnt); 1781 goto out2; 1782 } 1783 1784 mnt->mnt.mnt_flags &= ~MNT_LOCKED; 1785 1786 err = graft_tree(mnt, parent, mp); 1787 if (err) { 1788 br_write_lock(&vfsmount_lock); 1789 umount_tree(mnt, 0); 1790 br_write_unlock(&vfsmount_lock); 1791 } 1792 out2: 1793 unlock_mount(mp); 1794 out: 1795 path_put(&old_path); 1796 return err; 1797 } 1798 1799 static int change_mount_flags(struct vfsmount *mnt, int ms_flags) 1800 { 1801 int error = 0; 1802 int readonly_request = 0; 1803 1804 if (ms_flags & MS_RDONLY) 1805 readonly_request = 1; 1806 if (readonly_request == __mnt_is_readonly(mnt)) 1807 return 0; 1808 1809 if (mnt->mnt_flags & MNT_LOCK_READONLY) 1810 return -EPERM; 1811 1812 if (readonly_request) 1813 error = mnt_make_readonly(real_mount(mnt)); 1814 else 1815 __mnt_unmake_readonly(real_mount(mnt)); 1816 return error; 1817 } 1818 1819 /* 1820 * change filesystem flags. dir should be a physical root of filesystem. 1821 * If you've mounted a non-root directory somewhere and want to do remount 1822 * on it - tough luck. 1823 */ 1824 static int do_remount(struct path *path, int flags, int mnt_flags, 1825 void *data) 1826 { 1827 int err; 1828 struct super_block *sb = path->mnt->mnt_sb; 1829 struct mount *mnt = real_mount(path->mnt); 1830 1831 if (!check_mnt(mnt)) 1832 return -EINVAL; 1833 1834 if (path->dentry != path->mnt->mnt_root) 1835 return -EINVAL; 1836 1837 err = security_sb_remount(sb, data); 1838 if (err) 1839 return err; 1840 1841 down_write(&sb->s_umount); 1842 if (flags & MS_BIND) 1843 err = change_mount_flags(path->mnt, flags); 1844 else if (!capable(CAP_SYS_ADMIN)) 1845 err = -EPERM; 1846 else 1847 err = do_remount_sb(sb, flags, data, 0); 1848 if (!err) { 1849 br_write_lock(&vfsmount_lock); 1850 mnt_flags |= mnt->mnt.mnt_flags & MNT_PROPAGATION_MASK; 1851 mnt->mnt.mnt_flags = mnt_flags; 1852 br_write_unlock(&vfsmount_lock); 1853 } 1854 up_write(&sb->s_umount); 1855 if (!err) { 1856 br_write_lock(&vfsmount_lock); 1857 touch_mnt_namespace(mnt->mnt_ns); 1858 br_write_unlock(&vfsmount_lock); 1859 } 1860 return err; 1861 } 1862 1863 static inline int tree_contains_unbindable(struct mount *mnt) 1864 { 1865 struct mount *p; 1866 for (p = mnt; p; p = next_mnt(p, mnt)) { 1867 if (IS_MNT_UNBINDABLE(p)) 1868 return 1; 1869 } 1870 return 0; 1871 } 1872 1873 static int do_move_mount(struct path *path, const char *old_name) 1874 { 1875 struct path old_path, parent_path; 1876 struct mount *p; 1877 struct mount *old; 1878 struct mountpoint *mp; 1879 int err; 1880 if (!old_name || !*old_name) 1881 return -EINVAL; 1882 err = kern_path(old_name, LOOKUP_FOLLOW, &old_path); 1883 if (err) 1884 return err; 1885 1886 mp = lock_mount(path); 1887 err = PTR_ERR(mp); 1888 if (IS_ERR(mp)) 1889 goto out; 1890 1891 old = real_mount(old_path.mnt); 1892 p = real_mount(path->mnt); 1893 1894 err = -EINVAL; 1895 if (!check_mnt(p) || !check_mnt(old)) 1896 goto out1; 1897 1898 if (old->mnt.mnt_flags & MNT_LOCKED) 1899 goto out1; 1900 1901 err = -EINVAL; 1902 if (old_path.dentry != old_path.mnt->mnt_root) 1903 goto out1; 1904 1905 if (!mnt_has_parent(old)) 1906 goto out1; 1907 1908 if (S_ISDIR(path->dentry->d_inode->i_mode) != 1909 S_ISDIR(old_path.dentry->d_inode->i_mode)) 1910 goto out1; 1911 /* 1912 * Don't move a mount residing in a shared parent. 1913 */ 1914 if (IS_MNT_SHARED(old->mnt_parent)) 1915 goto out1; 1916 /* 1917 * Don't move a mount tree containing unbindable mounts to a destination 1918 * mount which is shared. 1919 */ 1920 if (IS_MNT_SHARED(p) && tree_contains_unbindable(old)) 1921 goto out1; 1922 err = -ELOOP; 1923 for (; mnt_has_parent(p); p = p->mnt_parent) 1924 if (p == old) 1925 goto out1; 1926 1927 err = attach_recursive_mnt(old, real_mount(path->mnt), mp, &parent_path); 1928 if (err) 1929 goto out1; 1930 1931 /* if the mount is moved, it should no longer be expire 1932 * automatically */ 1933 list_del_init(&old->mnt_expire); 1934 out1: 1935 unlock_mount(mp); 1936 out: 1937 if (!err) 1938 path_put(&parent_path); 1939 path_put(&old_path); 1940 return err; 1941 } 1942 1943 static struct vfsmount *fs_set_subtype(struct vfsmount *mnt, const char *fstype) 1944 { 1945 int err; 1946 const char *subtype = strchr(fstype, '.'); 1947 if (subtype) { 1948 subtype++; 1949 err = -EINVAL; 1950 if (!subtype[0]) 1951 goto err; 1952 } else 1953 subtype = ""; 1954 1955 mnt->mnt_sb->s_subtype = kstrdup(subtype, GFP_KERNEL); 1956 err = -ENOMEM; 1957 if (!mnt->mnt_sb->s_subtype) 1958 goto err; 1959 return mnt; 1960 1961 err: 1962 mntput(mnt); 1963 return ERR_PTR(err); 1964 } 1965 1966 /* 1967 * add a mount into a namespace's mount tree 1968 */ 1969 static int do_add_mount(struct mount *newmnt, struct path *path, int mnt_flags) 1970 { 1971 struct mountpoint *mp; 1972 struct mount *parent; 1973 int err; 1974 1975 mnt_flags &= ~(MNT_SHARED | MNT_WRITE_HOLD | MNT_INTERNAL); 1976 1977 mp = lock_mount(path); 1978 if (IS_ERR(mp)) 1979 return PTR_ERR(mp); 1980 1981 parent = real_mount(path->mnt); 1982 err = -EINVAL; 1983 if (unlikely(!check_mnt(parent))) { 1984 /* that's acceptable only for automounts done in private ns */ 1985 if (!(mnt_flags & MNT_SHRINKABLE)) 1986 goto unlock; 1987 /* ... and for those we'd better have mountpoint still alive */ 1988 if (!parent->mnt_ns) 1989 goto unlock; 1990 } 1991 1992 /* Refuse the same filesystem on the same mount point */ 1993 err = -EBUSY; 1994 if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb && 1995 path->mnt->mnt_root == path->dentry) 1996 goto unlock; 1997 1998 err = -EINVAL; 1999 if (S_ISLNK(newmnt->mnt.mnt_root->d_inode->i_mode)) 2000 goto unlock; 2001 2002 newmnt->mnt.mnt_flags = mnt_flags; 2003 err = graft_tree(newmnt, parent, mp); 2004 2005 unlock: 2006 unlock_mount(mp); 2007 return err; 2008 } 2009 2010 /* 2011 * create a new mount for userspace and request it to be added into the 2012 * namespace's tree 2013 */ 2014 static int do_new_mount(struct path *path, const char *fstype, int flags, 2015 int mnt_flags, const char *name, void *data) 2016 { 2017 struct file_system_type *type; 2018 struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns; 2019 struct vfsmount *mnt; 2020 int err; 2021 2022 if (!fstype) 2023 return -EINVAL; 2024 2025 type = get_fs_type(fstype); 2026 if (!type) 2027 return -ENODEV; 2028 2029 if (user_ns != &init_user_ns) { 2030 if (!(type->fs_flags & FS_USERNS_MOUNT)) { 2031 put_filesystem(type); 2032 return -EPERM; 2033 } 2034 /* Only in special cases allow devices from mounts 2035 * created outside the initial user namespace. 2036 */ 2037 if (!(type->fs_flags & FS_USERNS_DEV_MOUNT)) { 2038 flags |= MS_NODEV; 2039 mnt_flags |= MNT_NODEV; 2040 } 2041 } 2042 2043 mnt = vfs_kern_mount(type, flags, name, data); 2044 if (!IS_ERR(mnt) && (type->fs_flags & FS_HAS_SUBTYPE) && 2045 !mnt->mnt_sb->s_subtype) 2046 mnt = fs_set_subtype(mnt, fstype); 2047 2048 put_filesystem(type); 2049 if (IS_ERR(mnt)) 2050 return PTR_ERR(mnt); 2051 2052 err = do_add_mount(real_mount(mnt), path, mnt_flags); 2053 if (err) 2054 mntput(mnt); 2055 return err; 2056 } 2057 2058 int finish_automount(struct vfsmount *m, struct path *path) 2059 { 2060 struct mount *mnt = real_mount(m); 2061 int err; 2062 /* The new mount record should have at least 2 refs to prevent it being 2063 * expired before we get a chance to add it 2064 */ 2065 BUG_ON(mnt_get_count(mnt) < 2); 2066 2067 if (m->mnt_sb == path->mnt->mnt_sb && 2068 m->mnt_root == path->dentry) { 2069 err = -ELOOP; 2070 goto fail; 2071 } 2072 2073 err = do_add_mount(mnt, path, path->mnt->mnt_flags | MNT_SHRINKABLE); 2074 if (!err) 2075 return 0; 2076 fail: 2077 /* remove m from any expiration list it may be on */ 2078 if (!list_empty(&mnt->mnt_expire)) { 2079 namespace_lock(); 2080 br_write_lock(&vfsmount_lock); 2081 list_del_init(&mnt->mnt_expire); 2082 br_write_unlock(&vfsmount_lock); 2083 namespace_unlock(); 2084 } 2085 mntput(m); 2086 mntput(m); 2087 return err; 2088 } 2089 2090 /** 2091 * mnt_set_expiry - Put a mount on an expiration list 2092 * @mnt: The mount to list. 2093 * @expiry_list: The list to add the mount to. 2094 */ 2095 void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list) 2096 { 2097 namespace_lock(); 2098 br_write_lock(&vfsmount_lock); 2099 2100 list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list); 2101 2102 br_write_unlock(&vfsmount_lock); 2103 namespace_unlock(); 2104 } 2105 EXPORT_SYMBOL(mnt_set_expiry); 2106 2107 /* 2108 * process a list of expirable mountpoints with the intent of discarding any 2109 * mountpoints that aren't in use and haven't been touched since last we came 2110 * here 2111 */ 2112 void mark_mounts_for_expiry(struct list_head *mounts) 2113 { 2114 struct mount *mnt, *next; 2115 LIST_HEAD(graveyard); 2116 2117 if (list_empty(mounts)) 2118 return; 2119 2120 namespace_lock(); 2121 br_write_lock(&vfsmount_lock); 2122 2123 /* extract from the expiration list every vfsmount that matches the 2124 * following criteria: 2125 * - only referenced by its parent vfsmount 2126 * - still marked for expiry (marked on the last call here; marks are 2127 * cleared by mntput()) 2128 */ 2129 list_for_each_entry_safe(mnt, next, mounts, mnt_expire) { 2130 if (!xchg(&mnt->mnt_expiry_mark, 1) || 2131 propagate_mount_busy(mnt, 1)) 2132 continue; 2133 list_move(&mnt->mnt_expire, &graveyard); 2134 } 2135 while (!list_empty(&graveyard)) { 2136 mnt = list_first_entry(&graveyard, struct mount, mnt_expire); 2137 touch_mnt_namespace(mnt->mnt_ns); 2138 umount_tree(mnt, 1); 2139 } 2140 br_write_unlock(&vfsmount_lock); 2141 namespace_unlock(); 2142 } 2143 2144 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry); 2145 2146 /* 2147 * Ripoff of 'select_parent()' 2148 * 2149 * search the list of submounts for a given mountpoint, and move any 2150 * shrinkable submounts to the 'graveyard' list. 2151 */ 2152 static int select_submounts(struct mount *parent, struct list_head *graveyard) 2153 { 2154 struct mount *this_parent = parent; 2155 struct list_head *next; 2156 int found = 0; 2157 2158 repeat: 2159 next = this_parent->mnt_mounts.next; 2160 resume: 2161 while (next != &this_parent->mnt_mounts) { 2162 struct list_head *tmp = next; 2163 struct mount *mnt = list_entry(tmp, struct mount, mnt_child); 2164 2165 next = tmp->next; 2166 if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE)) 2167 continue; 2168 /* 2169 * Descend a level if the d_mounts list is non-empty. 2170 */ 2171 if (!list_empty(&mnt->mnt_mounts)) { 2172 this_parent = mnt; 2173 goto repeat; 2174 } 2175 2176 if (!propagate_mount_busy(mnt, 1)) { 2177 list_move_tail(&mnt->mnt_expire, graveyard); 2178 found++; 2179 } 2180 } 2181 /* 2182 * All done at this level ... ascend and resume the search 2183 */ 2184 if (this_parent != parent) { 2185 next = this_parent->mnt_child.next; 2186 this_parent = this_parent->mnt_parent; 2187 goto resume; 2188 } 2189 return found; 2190 } 2191 2192 /* 2193 * process a list of expirable mountpoints with the intent of discarding any 2194 * submounts of a specific parent mountpoint 2195 * 2196 * vfsmount_lock must be held for write 2197 */ 2198 static void shrink_submounts(struct mount *mnt) 2199 { 2200 LIST_HEAD(graveyard); 2201 struct mount *m; 2202 2203 /* extract submounts of 'mountpoint' from the expiration list */ 2204 while (select_submounts(mnt, &graveyard)) { 2205 while (!list_empty(&graveyard)) { 2206 m = list_first_entry(&graveyard, struct mount, 2207 mnt_expire); 2208 touch_mnt_namespace(m->mnt_ns); 2209 umount_tree(m, 1); 2210 } 2211 } 2212 } 2213 2214 /* 2215 * Some copy_from_user() implementations do not return the exact number of 2216 * bytes remaining to copy on a fault. But copy_mount_options() requires that. 2217 * Note that this function differs from copy_from_user() in that it will oops 2218 * on bad values of `to', rather than returning a short copy. 2219 */ 2220 static long exact_copy_from_user(void *to, const void __user * from, 2221 unsigned long n) 2222 { 2223 char *t = to; 2224 const char __user *f = from; 2225 char c; 2226 2227 if (!access_ok(VERIFY_READ, from, n)) 2228 return n; 2229 2230 while (n) { 2231 if (__get_user(c, f)) { 2232 memset(t, 0, n); 2233 break; 2234 } 2235 *t++ = c; 2236 f++; 2237 n--; 2238 } 2239 return n; 2240 } 2241 2242 int copy_mount_options(const void __user * data, unsigned long *where) 2243 { 2244 int i; 2245 unsigned long page; 2246 unsigned long size; 2247 2248 *where = 0; 2249 if (!data) 2250 return 0; 2251 2252 if (!(page = __get_free_page(GFP_KERNEL))) 2253 return -ENOMEM; 2254 2255 /* We only care that *some* data at the address the user 2256 * gave us is valid. Just in case, we'll zero 2257 * the remainder of the page. 2258 */ 2259 /* copy_from_user cannot cross TASK_SIZE ! */ 2260 size = TASK_SIZE - (unsigned long)data; 2261 if (size > PAGE_SIZE) 2262 size = PAGE_SIZE; 2263 2264 i = size - exact_copy_from_user((void *)page, data, size); 2265 if (!i) { 2266 free_page(page); 2267 return -EFAULT; 2268 } 2269 if (i != PAGE_SIZE) 2270 memset((char *)page + i, 0, PAGE_SIZE - i); 2271 *where = page; 2272 return 0; 2273 } 2274 2275 int copy_mount_string(const void __user *data, char **where) 2276 { 2277 char *tmp; 2278 2279 if (!data) { 2280 *where = NULL; 2281 return 0; 2282 } 2283 2284 tmp = strndup_user(data, PAGE_SIZE); 2285 if (IS_ERR(tmp)) 2286 return PTR_ERR(tmp); 2287 2288 *where = tmp; 2289 return 0; 2290 } 2291 2292 /* 2293 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to 2294 * be given to the mount() call (ie: read-only, no-dev, no-suid etc). 2295 * 2296 * data is a (void *) that can point to any structure up to 2297 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent 2298 * information (or be NULL). 2299 * 2300 * Pre-0.97 versions of mount() didn't have a flags word. 2301 * When the flags word was introduced its top half was required 2302 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9. 2303 * Therefore, if this magic number is present, it carries no information 2304 * and must be discarded. 2305 */ 2306 long do_mount(const char *dev_name, const char *dir_name, 2307 const char *type_page, unsigned long flags, void *data_page) 2308 { 2309 struct path path; 2310 int retval = 0; 2311 int mnt_flags = 0; 2312 2313 /* Discard magic */ 2314 if ((flags & MS_MGC_MSK) == MS_MGC_VAL) 2315 flags &= ~MS_MGC_MSK; 2316 2317 /* Basic sanity checks */ 2318 2319 if (!dir_name || !*dir_name || !memchr(dir_name, 0, PAGE_SIZE)) 2320 return -EINVAL; 2321 2322 if (data_page) 2323 ((char *)data_page)[PAGE_SIZE - 1] = 0; 2324 2325 /* ... and get the mountpoint */ 2326 retval = kern_path(dir_name, LOOKUP_FOLLOW, &path); 2327 if (retval) 2328 return retval; 2329 2330 retval = security_sb_mount(dev_name, &path, 2331 type_page, flags, data_page); 2332 if (!retval && !may_mount()) 2333 retval = -EPERM; 2334 if (retval) 2335 goto dput_out; 2336 2337 /* Default to relatime unless overriden */ 2338 if (!(flags & MS_NOATIME)) 2339 mnt_flags |= MNT_RELATIME; 2340 2341 /* Separate the per-mountpoint flags */ 2342 if (flags & MS_NOSUID) 2343 mnt_flags |= MNT_NOSUID; 2344 if (flags & MS_NODEV) 2345 mnt_flags |= MNT_NODEV; 2346 if (flags & MS_NOEXEC) 2347 mnt_flags |= MNT_NOEXEC; 2348 if (flags & MS_NOATIME) 2349 mnt_flags |= MNT_NOATIME; 2350 if (flags & MS_NODIRATIME) 2351 mnt_flags |= MNT_NODIRATIME; 2352 if (flags & MS_STRICTATIME) 2353 mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME); 2354 if (flags & MS_RDONLY) 2355 mnt_flags |= MNT_READONLY; 2356 2357 flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE | MS_BORN | 2358 MS_NOATIME | MS_NODIRATIME | MS_RELATIME| MS_KERNMOUNT | 2359 MS_STRICTATIME); 2360 2361 if (flags & MS_REMOUNT) 2362 retval = do_remount(&path, flags & ~MS_REMOUNT, mnt_flags, 2363 data_page); 2364 else if (flags & MS_BIND) 2365 retval = do_loopback(&path, dev_name, flags & MS_REC); 2366 else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE)) 2367 retval = do_change_type(&path, flags); 2368 else if (flags & MS_MOVE) 2369 retval = do_move_mount(&path, dev_name); 2370 else 2371 retval = do_new_mount(&path, type_page, flags, mnt_flags, 2372 dev_name, data_page); 2373 dput_out: 2374 path_put(&path); 2375 return retval; 2376 } 2377 2378 static void free_mnt_ns(struct mnt_namespace *ns) 2379 { 2380 proc_free_inum(ns->proc_inum); 2381 put_user_ns(ns->user_ns); 2382 kfree(ns); 2383 } 2384 2385 /* 2386 * Assign a sequence number so we can detect when we attempt to bind 2387 * mount a reference to an older mount namespace into the current 2388 * mount namespace, preventing reference counting loops. A 64bit 2389 * number incrementing at 10Ghz will take 12,427 years to wrap which 2390 * is effectively never, so we can ignore the possibility. 2391 */ 2392 static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1); 2393 2394 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns) 2395 { 2396 struct mnt_namespace *new_ns; 2397 int ret; 2398 2399 new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL); 2400 if (!new_ns) 2401 return ERR_PTR(-ENOMEM); 2402 ret = proc_alloc_inum(&new_ns->proc_inum); 2403 if (ret) { 2404 kfree(new_ns); 2405 return ERR_PTR(ret); 2406 } 2407 new_ns->seq = atomic64_add_return(1, &mnt_ns_seq); 2408 atomic_set(&new_ns->count, 1); 2409 new_ns->root = NULL; 2410 INIT_LIST_HEAD(&new_ns->list); 2411 init_waitqueue_head(&new_ns->poll); 2412 new_ns->event = 0; 2413 new_ns->user_ns = get_user_ns(user_ns); 2414 return new_ns; 2415 } 2416 2417 /* 2418 * Allocate a new namespace structure and populate it with contents 2419 * copied from the namespace of the passed in task structure. 2420 */ 2421 static struct mnt_namespace *dup_mnt_ns(struct mnt_namespace *mnt_ns, 2422 struct user_namespace *user_ns, struct fs_struct *fs) 2423 { 2424 struct mnt_namespace *new_ns; 2425 struct vfsmount *rootmnt = NULL, *pwdmnt = NULL; 2426 struct mount *p, *q; 2427 struct mount *old = mnt_ns->root; 2428 struct mount *new; 2429 int copy_flags; 2430 2431 new_ns = alloc_mnt_ns(user_ns); 2432 if (IS_ERR(new_ns)) 2433 return new_ns; 2434 2435 namespace_lock(); 2436 /* First pass: copy the tree topology */ 2437 copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE; 2438 if (user_ns != mnt_ns->user_ns) 2439 copy_flags |= CL_SHARED_TO_SLAVE | CL_UNPRIVILEGED; 2440 new = copy_tree(old, old->mnt.mnt_root, copy_flags); 2441 if (IS_ERR(new)) { 2442 namespace_unlock(); 2443 free_mnt_ns(new_ns); 2444 return ERR_CAST(new); 2445 } 2446 new_ns->root = new; 2447 br_write_lock(&vfsmount_lock); 2448 list_add_tail(&new_ns->list, &new->mnt_list); 2449 br_write_unlock(&vfsmount_lock); 2450 2451 /* 2452 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts 2453 * as belonging to new namespace. We have already acquired a private 2454 * fs_struct, so tsk->fs->lock is not needed. 2455 */ 2456 p = old; 2457 q = new; 2458 while (p) { 2459 q->mnt_ns = new_ns; 2460 if (fs) { 2461 if (&p->mnt == fs->root.mnt) { 2462 fs->root.mnt = mntget(&q->mnt); 2463 rootmnt = &p->mnt; 2464 } 2465 if (&p->mnt == fs->pwd.mnt) { 2466 fs->pwd.mnt = mntget(&q->mnt); 2467 pwdmnt = &p->mnt; 2468 } 2469 } 2470 p = next_mnt(p, old); 2471 q = next_mnt(q, new); 2472 if (!q) 2473 break; 2474 while (p->mnt.mnt_root != q->mnt.mnt_root) 2475 p = next_mnt(p, old); 2476 } 2477 namespace_unlock(); 2478 2479 if (rootmnt) 2480 mntput(rootmnt); 2481 if (pwdmnt) 2482 mntput(pwdmnt); 2483 2484 return new_ns; 2485 } 2486 2487 struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns, 2488 struct user_namespace *user_ns, struct fs_struct *new_fs) 2489 { 2490 struct mnt_namespace *new_ns; 2491 2492 BUG_ON(!ns); 2493 get_mnt_ns(ns); 2494 2495 if (!(flags & CLONE_NEWNS)) 2496 return ns; 2497 2498 new_ns = dup_mnt_ns(ns, user_ns, new_fs); 2499 2500 put_mnt_ns(ns); 2501 return new_ns; 2502 } 2503 2504 /** 2505 * create_mnt_ns - creates a private namespace and adds a root filesystem 2506 * @mnt: pointer to the new root filesystem mountpoint 2507 */ 2508 static struct mnt_namespace *create_mnt_ns(struct vfsmount *m) 2509 { 2510 struct mnt_namespace *new_ns = alloc_mnt_ns(&init_user_ns); 2511 if (!IS_ERR(new_ns)) { 2512 struct mount *mnt = real_mount(m); 2513 mnt->mnt_ns = new_ns; 2514 new_ns->root = mnt; 2515 list_add(&mnt->mnt_list, &new_ns->list); 2516 } else { 2517 mntput(m); 2518 } 2519 return new_ns; 2520 } 2521 2522 struct dentry *mount_subtree(struct vfsmount *mnt, const char *name) 2523 { 2524 struct mnt_namespace *ns; 2525 struct super_block *s; 2526 struct path path; 2527 int err; 2528 2529 ns = create_mnt_ns(mnt); 2530 if (IS_ERR(ns)) 2531 return ERR_CAST(ns); 2532 2533 err = vfs_path_lookup(mnt->mnt_root, mnt, 2534 name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path); 2535 2536 put_mnt_ns(ns); 2537 2538 if (err) 2539 return ERR_PTR(err); 2540 2541 /* trade a vfsmount reference for active sb one */ 2542 s = path.mnt->mnt_sb; 2543 atomic_inc(&s->s_active); 2544 mntput(path.mnt); 2545 /* lock the sucker */ 2546 down_write(&s->s_umount); 2547 /* ... and return the root of (sub)tree on it */ 2548 return path.dentry; 2549 } 2550 EXPORT_SYMBOL(mount_subtree); 2551 2552 SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name, 2553 char __user *, type, unsigned long, flags, void __user *, data) 2554 { 2555 int ret; 2556 char *kernel_type; 2557 struct filename *kernel_dir; 2558 char *kernel_dev; 2559 unsigned long data_page; 2560 2561 ret = copy_mount_string(type, &kernel_type); 2562 if (ret < 0) 2563 goto out_type; 2564 2565 kernel_dir = getname(dir_name); 2566 if (IS_ERR(kernel_dir)) { 2567 ret = PTR_ERR(kernel_dir); 2568 goto out_dir; 2569 } 2570 2571 ret = copy_mount_string(dev_name, &kernel_dev); 2572 if (ret < 0) 2573 goto out_dev; 2574 2575 ret = copy_mount_options(data, &data_page); 2576 if (ret < 0) 2577 goto out_data; 2578 2579 ret = do_mount(kernel_dev, kernel_dir->name, kernel_type, flags, 2580 (void *) data_page); 2581 2582 free_page(data_page); 2583 out_data: 2584 kfree(kernel_dev); 2585 out_dev: 2586 putname(kernel_dir); 2587 out_dir: 2588 kfree(kernel_type); 2589 out_type: 2590 return ret; 2591 } 2592 2593 /* 2594 * Return true if path is reachable from root 2595 * 2596 * namespace_sem or vfsmount_lock is held 2597 */ 2598 bool is_path_reachable(struct mount *mnt, struct dentry *dentry, 2599 const struct path *root) 2600 { 2601 while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) { 2602 dentry = mnt->mnt_mountpoint; 2603 mnt = mnt->mnt_parent; 2604 } 2605 return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry); 2606 } 2607 2608 int path_is_under(struct path *path1, struct path *path2) 2609 { 2610 int res; 2611 br_read_lock(&vfsmount_lock); 2612 res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2); 2613 br_read_unlock(&vfsmount_lock); 2614 return res; 2615 } 2616 EXPORT_SYMBOL(path_is_under); 2617 2618 /* 2619 * pivot_root Semantics: 2620 * Moves the root file system of the current process to the directory put_old, 2621 * makes new_root as the new root file system of the current process, and sets 2622 * root/cwd of all processes which had them on the current root to new_root. 2623 * 2624 * Restrictions: 2625 * The new_root and put_old must be directories, and must not be on the 2626 * same file system as the current process root. The put_old must be 2627 * underneath new_root, i.e. adding a non-zero number of /.. to the string 2628 * pointed to by put_old must yield the same directory as new_root. No other 2629 * file system may be mounted on put_old. After all, new_root is a mountpoint. 2630 * 2631 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem. 2632 * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives 2633 * in this situation. 2634 * 2635 * Notes: 2636 * - we don't move root/cwd if they are not at the root (reason: if something 2637 * cared enough to change them, it's probably wrong to force them elsewhere) 2638 * - it's okay to pick a root that isn't the root of a file system, e.g. 2639 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint, 2640 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root 2641 * first. 2642 */ 2643 SYSCALL_DEFINE2(pivot_root, const char __user *, new_root, 2644 const char __user *, put_old) 2645 { 2646 struct path new, old, parent_path, root_parent, root; 2647 struct mount *new_mnt, *root_mnt, *old_mnt; 2648 struct mountpoint *old_mp, *root_mp; 2649 int error; 2650 2651 if (!may_mount()) 2652 return -EPERM; 2653 2654 error = user_path_dir(new_root, &new); 2655 if (error) 2656 goto out0; 2657 2658 error = user_path_dir(put_old, &old); 2659 if (error) 2660 goto out1; 2661 2662 error = security_sb_pivotroot(&old, &new); 2663 if (error) 2664 goto out2; 2665 2666 get_fs_root(current->fs, &root); 2667 old_mp = lock_mount(&old); 2668 error = PTR_ERR(old_mp); 2669 if (IS_ERR(old_mp)) 2670 goto out3; 2671 2672 error = -EINVAL; 2673 new_mnt = real_mount(new.mnt); 2674 root_mnt = real_mount(root.mnt); 2675 old_mnt = real_mount(old.mnt); 2676 if (IS_MNT_SHARED(old_mnt) || 2677 IS_MNT_SHARED(new_mnt->mnt_parent) || 2678 IS_MNT_SHARED(root_mnt->mnt_parent)) 2679 goto out4; 2680 if (!check_mnt(root_mnt) || !check_mnt(new_mnt)) 2681 goto out4; 2682 if (new_mnt->mnt.mnt_flags & MNT_LOCKED) 2683 goto out4; 2684 error = -ENOENT; 2685 if (d_unlinked(new.dentry)) 2686 goto out4; 2687 error = -EBUSY; 2688 if (new_mnt == root_mnt || old_mnt == root_mnt) 2689 goto out4; /* loop, on the same file system */ 2690 error = -EINVAL; 2691 if (root.mnt->mnt_root != root.dentry) 2692 goto out4; /* not a mountpoint */ 2693 if (!mnt_has_parent(root_mnt)) 2694 goto out4; /* not attached */ 2695 root_mp = root_mnt->mnt_mp; 2696 if (new.mnt->mnt_root != new.dentry) 2697 goto out4; /* not a mountpoint */ 2698 if (!mnt_has_parent(new_mnt)) 2699 goto out4; /* not attached */ 2700 /* make sure we can reach put_old from new_root */ 2701 if (!is_path_reachable(old_mnt, old.dentry, &new)) 2702 goto out4; 2703 root_mp->m_count++; /* pin it so it won't go away */ 2704 br_write_lock(&vfsmount_lock); 2705 detach_mnt(new_mnt, &parent_path); 2706 detach_mnt(root_mnt, &root_parent); 2707 if (root_mnt->mnt.mnt_flags & MNT_LOCKED) { 2708 new_mnt->mnt.mnt_flags |= MNT_LOCKED; 2709 root_mnt->mnt.mnt_flags &= ~MNT_LOCKED; 2710 } 2711 /* mount old root on put_old */ 2712 attach_mnt(root_mnt, old_mnt, old_mp); 2713 /* mount new_root on / */ 2714 attach_mnt(new_mnt, real_mount(root_parent.mnt), root_mp); 2715 touch_mnt_namespace(current->nsproxy->mnt_ns); 2716 br_write_unlock(&vfsmount_lock); 2717 chroot_fs_refs(&root, &new); 2718 put_mountpoint(root_mp); 2719 error = 0; 2720 out4: 2721 unlock_mount(old_mp); 2722 if (!error) { 2723 path_put(&root_parent); 2724 path_put(&parent_path); 2725 } 2726 out3: 2727 path_put(&root); 2728 out2: 2729 path_put(&old); 2730 out1: 2731 path_put(&new); 2732 out0: 2733 return error; 2734 } 2735 2736 static void __init init_mount_tree(void) 2737 { 2738 struct vfsmount *mnt; 2739 struct mnt_namespace *ns; 2740 struct path root; 2741 struct file_system_type *type; 2742 2743 type = get_fs_type("rootfs"); 2744 if (!type) 2745 panic("Can't find rootfs type"); 2746 mnt = vfs_kern_mount(type, 0, "rootfs", NULL); 2747 put_filesystem(type); 2748 if (IS_ERR(mnt)) 2749 panic("Can't create rootfs"); 2750 2751 ns = create_mnt_ns(mnt); 2752 if (IS_ERR(ns)) 2753 panic("Can't allocate initial namespace"); 2754 2755 init_task.nsproxy->mnt_ns = ns; 2756 get_mnt_ns(ns); 2757 2758 root.mnt = mnt; 2759 root.dentry = mnt->mnt_root; 2760 2761 set_fs_pwd(current->fs, &root); 2762 set_fs_root(current->fs, &root); 2763 } 2764 2765 void __init mnt_init(void) 2766 { 2767 unsigned u; 2768 int err; 2769 2770 init_rwsem(&namespace_sem); 2771 2772 mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount), 2773 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL); 2774 2775 mount_hashtable = (struct list_head *)__get_free_page(GFP_ATOMIC); 2776 mountpoint_hashtable = (struct list_head *)__get_free_page(GFP_ATOMIC); 2777 2778 if (!mount_hashtable || !mountpoint_hashtable) 2779 panic("Failed to allocate mount hash table\n"); 2780 2781 printk(KERN_INFO "Mount-cache hash table entries: %lu\n", HASH_SIZE); 2782 2783 for (u = 0; u < HASH_SIZE; u++) 2784 INIT_LIST_HEAD(&mount_hashtable[u]); 2785 for (u = 0; u < HASH_SIZE; u++) 2786 INIT_LIST_HEAD(&mountpoint_hashtable[u]); 2787 2788 br_lock_init(&vfsmount_lock); 2789 2790 err = sysfs_init(); 2791 if (err) 2792 printk(KERN_WARNING "%s: sysfs_init error: %d\n", 2793 __func__, err); 2794 fs_kobj = kobject_create_and_add("fs", NULL); 2795 if (!fs_kobj) 2796 printk(KERN_WARNING "%s: kobj create error\n", __func__); 2797 init_rootfs(); 2798 init_mount_tree(); 2799 } 2800 2801 void put_mnt_ns(struct mnt_namespace *ns) 2802 { 2803 if (!atomic_dec_and_test(&ns->count)) 2804 return; 2805 namespace_lock(); 2806 br_write_lock(&vfsmount_lock); 2807 umount_tree(ns->root, 0); 2808 br_write_unlock(&vfsmount_lock); 2809 namespace_unlock(); 2810 free_mnt_ns(ns); 2811 } 2812 2813 struct vfsmount *kern_mount_data(struct file_system_type *type, void *data) 2814 { 2815 struct vfsmount *mnt; 2816 mnt = vfs_kern_mount(type, MS_KERNMOUNT, type->name, data); 2817 if (!IS_ERR(mnt)) { 2818 /* 2819 * it is a longterm mount, don't release mnt until 2820 * we unmount before file sys is unregistered 2821 */ 2822 real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL; 2823 } 2824 return mnt; 2825 } 2826 EXPORT_SYMBOL_GPL(kern_mount_data); 2827 2828 void kern_unmount(struct vfsmount *mnt) 2829 { 2830 /* release long term mount so mount point can be released */ 2831 if (!IS_ERR_OR_NULL(mnt)) { 2832 br_write_lock(&vfsmount_lock); 2833 real_mount(mnt)->mnt_ns = NULL; 2834 br_write_unlock(&vfsmount_lock); 2835 mntput(mnt); 2836 } 2837 } 2838 EXPORT_SYMBOL(kern_unmount); 2839 2840 bool our_mnt(struct vfsmount *mnt) 2841 { 2842 return check_mnt(real_mount(mnt)); 2843 } 2844 2845 bool current_chrooted(void) 2846 { 2847 /* Does the current process have a non-standard root */ 2848 struct path ns_root; 2849 struct path fs_root; 2850 bool chrooted; 2851 2852 /* Find the namespace root */ 2853 ns_root.mnt = ¤t->nsproxy->mnt_ns->root->mnt; 2854 ns_root.dentry = ns_root.mnt->mnt_root; 2855 path_get(&ns_root); 2856 while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root)) 2857 ; 2858 2859 get_fs_root(current->fs, &fs_root); 2860 2861 chrooted = !path_equal(&fs_root, &ns_root); 2862 2863 path_put(&fs_root); 2864 path_put(&ns_root); 2865 2866 return chrooted; 2867 } 2868 2869 bool fs_fully_visible(struct file_system_type *type) 2870 { 2871 struct mnt_namespace *ns = current->nsproxy->mnt_ns; 2872 struct mount *mnt; 2873 bool visible = false; 2874 2875 if (unlikely(!ns)) 2876 return false; 2877 2878 namespace_lock(); 2879 list_for_each_entry(mnt, &ns->list, mnt_list) { 2880 struct mount *child; 2881 if (mnt->mnt.mnt_sb->s_type != type) 2882 continue; 2883 2884 /* This mount is not fully visible if there are any child mounts 2885 * that cover anything except for empty directories. 2886 */ 2887 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) { 2888 struct inode *inode = child->mnt_mountpoint->d_inode; 2889 if (!S_ISDIR(inode->i_mode)) 2890 goto next; 2891 if (inode->i_nlink != 2) 2892 goto next; 2893 } 2894 visible = true; 2895 goto found; 2896 next: ; 2897 } 2898 found: 2899 namespace_unlock(); 2900 return visible; 2901 } 2902 2903 static void *mntns_get(struct task_struct *task) 2904 { 2905 struct mnt_namespace *ns = NULL; 2906 struct nsproxy *nsproxy; 2907 2908 rcu_read_lock(); 2909 nsproxy = task_nsproxy(task); 2910 if (nsproxy) { 2911 ns = nsproxy->mnt_ns; 2912 get_mnt_ns(ns); 2913 } 2914 rcu_read_unlock(); 2915 2916 return ns; 2917 } 2918 2919 static void mntns_put(void *ns) 2920 { 2921 put_mnt_ns(ns); 2922 } 2923 2924 static int mntns_install(struct nsproxy *nsproxy, void *ns) 2925 { 2926 struct fs_struct *fs = current->fs; 2927 struct mnt_namespace *mnt_ns = ns; 2928 struct path root; 2929 2930 if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) || 2931 !ns_capable(current_user_ns(), CAP_SYS_CHROOT) || 2932 !ns_capable(current_user_ns(), CAP_SYS_ADMIN)) 2933 return -EPERM; 2934 2935 if (fs->users != 1) 2936 return -EINVAL; 2937 2938 get_mnt_ns(mnt_ns); 2939 put_mnt_ns(nsproxy->mnt_ns); 2940 nsproxy->mnt_ns = mnt_ns; 2941 2942 /* Find the root */ 2943 root.mnt = &mnt_ns->root->mnt; 2944 root.dentry = mnt_ns->root->mnt.mnt_root; 2945 path_get(&root); 2946 while(d_mountpoint(root.dentry) && follow_down_one(&root)) 2947 ; 2948 2949 /* Update the pwd and root */ 2950 set_fs_pwd(fs, &root); 2951 set_fs_root(fs, &root); 2952 2953 path_put(&root); 2954 return 0; 2955 } 2956 2957 static unsigned int mntns_inum(void *ns) 2958 { 2959 struct mnt_namespace *mnt_ns = ns; 2960 return mnt_ns->proc_inum; 2961 } 2962 2963 const struct proc_ns_operations mntns_operations = { 2964 .name = "mnt", 2965 .type = CLONE_NEWNS, 2966 .get = mntns_get, 2967 .put = mntns_put, 2968 .install = mntns_install, 2969 .inum = mntns_inum, 2970 }; 2971