xref: /openbmc/linux/fs/namespace.c (revision e1e38ea1)
1 /*
2  *  linux/fs/namespace.c
3  *
4  * (C) Copyright Al Viro 2000, 2001
5  *	Released under GPL v2.
6  *
7  * Based on code from fs/super.c, copyright Linus Torvalds and others.
8  * Heavily rewritten.
9  */
10 
11 #include <linux/syscalls.h>
12 #include <linux/export.h>
13 #include <linux/capability.h>
14 #include <linux/mnt_namespace.h>
15 #include <linux/user_namespace.h>
16 #include <linux/namei.h>
17 #include <linux/security.h>
18 #include <linux/cred.h>
19 #include <linux/idr.h>
20 #include <linux/init.h>		/* init_rootfs */
21 #include <linux/fs_struct.h>	/* get_fs_root et.al. */
22 #include <linux/fsnotify.h>	/* fsnotify_vfsmount_delete */
23 #include <linux/uaccess.h>
24 #include <linux/proc_ns.h>
25 #include <linux/magic.h>
26 #include <linux/bootmem.h>
27 #include <linux/task_work.h>
28 #include <linux/sched/task.h>
29 
30 #include "pnode.h"
31 #include "internal.h"
32 
33 /* Maximum number of mounts in a mount namespace */
34 unsigned int sysctl_mount_max __read_mostly = 100000;
35 
36 static unsigned int m_hash_mask __read_mostly;
37 static unsigned int m_hash_shift __read_mostly;
38 static unsigned int mp_hash_mask __read_mostly;
39 static unsigned int mp_hash_shift __read_mostly;
40 
41 static __initdata unsigned long mhash_entries;
42 static int __init set_mhash_entries(char *str)
43 {
44 	if (!str)
45 		return 0;
46 	mhash_entries = simple_strtoul(str, &str, 0);
47 	return 1;
48 }
49 __setup("mhash_entries=", set_mhash_entries);
50 
51 static __initdata unsigned long mphash_entries;
52 static int __init set_mphash_entries(char *str)
53 {
54 	if (!str)
55 		return 0;
56 	mphash_entries = simple_strtoul(str, &str, 0);
57 	return 1;
58 }
59 __setup("mphash_entries=", set_mphash_entries);
60 
61 static u64 event;
62 static DEFINE_IDA(mnt_id_ida);
63 static DEFINE_IDA(mnt_group_ida);
64 
65 static struct hlist_head *mount_hashtable __read_mostly;
66 static struct hlist_head *mountpoint_hashtable __read_mostly;
67 static struct kmem_cache *mnt_cache __read_mostly;
68 static DECLARE_RWSEM(namespace_sem);
69 
70 /* /sys/fs */
71 struct kobject *fs_kobj;
72 EXPORT_SYMBOL_GPL(fs_kobj);
73 
74 /*
75  * vfsmount lock may be taken for read to prevent changes to the
76  * vfsmount hash, ie. during mountpoint lookups or walking back
77  * up the tree.
78  *
79  * It should be taken for write in all cases where the vfsmount
80  * tree or hash is modified or when a vfsmount structure is modified.
81  */
82 __cacheline_aligned_in_smp DEFINE_SEQLOCK(mount_lock);
83 
84 static inline struct hlist_head *m_hash(struct vfsmount *mnt, struct dentry *dentry)
85 {
86 	unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
87 	tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
88 	tmp = tmp + (tmp >> m_hash_shift);
89 	return &mount_hashtable[tmp & m_hash_mask];
90 }
91 
92 static inline struct hlist_head *mp_hash(struct dentry *dentry)
93 {
94 	unsigned long tmp = ((unsigned long)dentry / L1_CACHE_BYTES);
95 	tmp = tmp + (tmp >> mp_hash_shift);
96 	return &mountpoint_hashtable[tmp & mp_hash_mask];
97 }
98 
99 static int mnt_alloc_id(struct mount *mnt)
100 {
101 	int res = ida_alloc(&mnt_id_ida, GFP_KERNEL);
102 
103 	if (res < 0)
104 		return res;
105 	mnt->mnt_id = res;
106 	return 0;
107 }
108 
109 static void mnt_free_id(struct mount *mnt)
110 {
111 	ida_free(&mnt_id_ida, mnt->mnt_id);
112 }
113 
114 /*
115  * Allocate a new peer group ID
116  */
117 static int mnt_alloc_group_id(struct mount *mnt)
118 {
119 	int res = ida_alloc_min(&mnt_group_ida, 1, GFP_KERNEL);
120 
121 	if (res < 0)
122 		return res;
123 	mnt->mnt_group_id = res;
124 	return 0;
125 }
126 
127 /*
128  * Release a peer group ID
129  */
130 void mnt_release_group_id(struct mount *mnt)
131 {
132 	ida_free(&mnt_group_ida, mnt->mnt_group_id);
133 	mnt->mnt_group_id = 0;
134 }
135 
136 /*
137  * vfsmount lock must be held for read
138  */
139 static inline void mnt_add_count(struct mount *mnt, int n)
140 {
141 #ifdef CONFIG_SMP
142 	this_cpu_add(mnt->mnt_pcp->mnt_count, n);
143 #else
144 	preempt_disable();
145 	mnt->mnt_count += n;
146 	preempt_enable();
147 #endif
148 }
149 
150 /*
151  * vfsmount lock must be held for write
152  */
153 unsigned int mnt_get_count(struct mount *mnt)
154 {
155 #ifdef CONFIG_SMP
156 	unsigned int count = 0;
157 	int cpu;
158 
159 	for_each_possible_cpu(cpu) {
160 		count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
161 	}
162 
163 	return count;
164 #else
165 	return mnt->mnt_count;
166 #endif
167 }
168 
169 static void drop_mountpoint(struct fs_pin *p)
170 {
171 	struct mount *m = container_of(p, struct mount, mnt_umount);
172 	dput(m->mnt_ex_mountpoint);
173 	pin_remove(p);
174 	mntput(&m->mnt);
175 }
176 
177 static struct mount *alloc_vfsmnt(const char *name)
178 {
179 	struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
180 	if (mnt) {
181 		int err;
182 
183 		err = mnt_alloc_id(mnt);
184 		if (err)
185 			goto out_free_cache;
186 
187 		if (name) {
188 			mnt->mnt_devname = kstrdup_const(name, GFP_KERNEL);
189 			if (!mnt->mnt_devname)
190 				goto out_free_id;
191 		}
192 
193 #ifdef CONFIG_SMP
194 		mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
195 		if (!mnt->mnt_pcp)
196 			goto out_free_devname;
197 
198 		this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
199 #else
200 		mnt->mnt_count = 1;
201 		mnt->mnt_writers = 0;
202 #endif
203 
204 		INIT_HLIST_NODE(&mnt->mnt_hash);
205 		INIT_LIST_HEAD(&mnt->mnt_child);
206 		INIT_LIST_HEAD(&mnt->mnt_mounts);
207 		INIT_LIST_HEAD(&mnt->mnt_list);
208 		INIT_LIST_HEAD(&mnt->mnt_expire);
209 		INIT_LIST_HEAD(&mnt->mnt_share);
210 		INIT_LIST_HEAD(&mnt->mnt_slave_list);
211 		INIT_LIST_HEAD(&mnt->mnt_slave);
212 		INIT_HLIST_NODE(&mnt->mnt_mp_list);
213 		INIT_LIST_HEAD(&mnt->mnt_umounting);
214 		init_fs_pin(&mnt->mnt_umount, drop_mountpoint);
215 	}
216 	return mnt;
217 
218 #ifdef CONFIG_SMP
219 out_free_devname:
220 	kfree_const(mnt->mnt_devname);
221 #endif
222 out_free_id:
223 	mnt_free_id(mnt);
224 out_free_cache:
225 	kmem_cache_free(mnt_cache, mnt);
226 	return NULL;
227 }
228 
229 /*
230  * Most r/o checks on a fs are for operations that take
231  * discrete amounts of time, like a write() or unlink().
232  * We must keep track of when those operations start
233  * (for permission checks) and when they end, so that
234  * we can determine when writes are able to occur to
235  * a filesystem.
236  */
237 /*
238  * __mnt_is_readonly: check whether a mount is read-only
239  * @mnt: the mount to check for its write status
240  *
241  * This shouldn't be used directly ouside of the VFS.
242  * It does not guarantee that the filesystem will stay
243  * r/w, just that it is right *now*.  This can not and
244  * should not be used in place of IS_RDONLY(inode).
245  * mnt_want/drop_write() will _keep_ the filesystem
246  * r/w.
247  */
248 int __mnt_is_readonly(struct vfsmount *mnt)
249 {
250 	if (mnt->mnt_flags & MNT_READONLY)
251 		return 1;
252 	if (sb_rdonly(mnt->mnt_sb))
253 		return 1;
254 	return 0;
255 }
256 EXPORT_SYMBOL_GPL(__mnt_is_readonly);
257 
258 static inline void mnt_inc_writers(struct mount *mnt)
259 {
260 #ifdef CONFIG_SMP
261 	this_cpu_inc(mnt->mnt_pcp->mnt_writers);
262 #else
263 	mnt->mnt_writers++;
264 #endif
265 }
266 
267 static inline void mnt_dec_writers(struct mount *mnt)
268 {
269 #ifdef CONFIG_SMP
270 	this_cpu_dec(mnt->mnt_pcp->mnt_writers);
271 #else
272 	mnt->mnt_writers--;
273 #endif
274 }
275 
276 static unsigned int mnt_get_writers(struct mount *mnt)
277 {
278 #ifdef CONFIG_SMP
279 	unsigned int count = 0;
280 	int cpu;
281 
282 	for_each_possible_cpu(cpu) {
283 		count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
284 	}
285 
286 	return count;
287 #else
288 	return mnt->mnt_writers;
289 #endif
290 }
291 
292 static int mnt_is_readonly(struct vfsmount *mnt)
293 {
294 	if (mnt->mnt_sb->s_readonly_remount)
295 		return 1;
296 	/* Order wrt setting s_flags/s_readonly_remount in do_remount() */
297 	smp_rmb();
298 	return __mnt_is_readonly(mnt);
299 }
300 
301 /*
302  * Most r/o & frozen checks on a fs are for operations that take discrete
303  * amounts of time, like a write() or unlink().  We must keep track of when
304  * those operations start (for permission checks) and when they end, so that we
305  * can determine when writes are able to occur to a filesystem.
306  */
307 /**
308  * __mnt_want_write - get write access to a mount without freeze protection
309  * @m: the mount on which to take a write
310  *
311  * This tells the low-level filesystem that a write is about to be performed to
312  * it, and makes sure that writes are allowed (mnt it read-write) before
313  * returning success. This operation does not protect against filesystem being
314  * frozen. When the write operation is finished, __mnt_drop_write() must be
315  * called. This is effectively a refcount.
316  */
317 int __mnt_want_write(struct vfsmount *m)
318 {
319 	struct mount *mnt = real_mount(m);
320 	int ret = 0;
321 
322 	preempt_disable();
323 	mnt_inc_writers(mnt);
324 	/*
325 	 * The store to mnt_inc_writers must be visible before we pass
326 	 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
327 	 * incremented count after it has set MNT_WRITE_HOLD.
328 	 */
329 	smp_mb();
330 	while (READ_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD)
331 		cpu_relax();
332 	/*
333 	 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
334 	 * be set to match its requirements. So we must not load that until
335 	 * MNT_WRITE_HOLD is cleared.
336 	 */
337 	smp_rmb();
338 	if (mnt_is_readonly(m)) {
339 		mnt_dec_writers(mnt);
340 		ret = -EROFS;
341 	}
342 	preempt_enable();
343 
344 	return ret;
345 }
346 
347 /**
348  * mnt_want_write - get write access to a mount
349  * @m: the mount on which to take a write
350  *
351  * This tells the low-level filesystem that a write is about to be performed to
352  * it, and makes sure that writes are allowed (mount is read-write, filesystem
353  * is not frozen) before returning success.  When the write operation is
354  * finished, mnt_drop_write() must be called.  This is effectively a refcount.
355  */
356 int mnt_want_write(struct vfsmount *m)
357 {
358 	int ret;
359 
360 	sb_start_write(m->mnt_sb);
361 	ret = __mnt_want_write(m);
362 	if (ret)
363 		sb_end_write(m->mnt_sb);
364 	return ret;
365 }
366 EXPORT_SYMBOL_GPL(mnt_want_write);
367 
368 /**
369  * mnt_clone_write - get write access to a mount
370  * @mnt: the mount on which to take a write
371  *
372  * This is effectively like mnt_want_write, except
373  * it must only be used to take an extra write reference
374  * on a mountpoint that we already know has a write reference
375  * on it. This allows some optimisation.
376  *
377  * After finished, mnt_drop_write must be called as usual to
378  * drop the reference.
379  */
380 int mnt_clone_write(struct vfsmount *mnt)
381 {
382 	/* superblock may be r/o */
383 	if (__mnt_is_readonly(mnt))
384 		return -EROFS;
385 	preempt_disable();
386 	mnt_inc_writers(real_mount(mnt));
387 	preempt_enable();
388 	return 0;
389 }
390 EXPORT_SYMBOL_GPL(mnt_clone_write);
391 
392 /**
393  * __mnt_want_write_file - get write access to a file's mount
394  * @file: the file who's mount on which to take a write
395  *
396  * This is like __mnt_want_write, but it takes a file and can
397  * do some optimisations if the file is open for write already
398  */
399 int __mnt_want_write_file(struct file *file)
400 {
401 	if (!(file->f_mode & FMODE_WRITER))
402 		return __mnt_want_write(file->f_path.mnt);
403 	else
404 		return mnt_clone_write(file->f_path.mnt);
405 }
406 
407 /**
408  * mnt_want_write_file - get write access to a file's mount
409  * @file: the file who's mount on which to take a write
410  *
411  * This is like mnt_want_write, but it takes a file and can
412  * do some optimisations if the file is open for write already
413  */
414 int mnt_want_write_file(struct file *file)
415 {
416 	int ret;
417 
418 	sb_start_write(file_inode(file)->i_sb);
419 	ret = __mnt_want_write_file(file);
420 	if (ret)
421 		sb_end_write(file_inode(file)->i_sb);
422 	return ret;
423 }
424 EXPORT_SYMBOL_GPL(mnt_want_write_file);
425 
426 /**
427  * __mnt_drop_write - give up write access to a mount
428  * @mnt: the mount on which to give up write access
429  *
430  * Tells the low-level filesystem that we are done
431  * performing writes to it.  Must be matched with
432  * __mnt_want_write() call above.
433  */
434 void __mnt_drop_write(struct vfsmount *mnt)
435 {
436 	preempt_disable();
437 	mnt_dec_writers(real_mount(mnt));
438 	preempt_enable();
439 }
440 
441 /**
442  * mnt_drop_write - give up write access to a mount
443  * @mnt: the mount on which to give up write access
444  *
445  * Tells the low-level filesystem that we are done performing writes to it and
446  * also allows filesystem to be frozen again.  Must be matched with
447  * mnt_want_write() call above.
448  */
449 void mnt_drop_write(struct vfsmount *mnt)
450 {
451 	__mnt_drop_write(mnt);
452 	sb_end_write(mnt->mnt_sb);
453 }
454 EXPORT_SYMBOL_GPL(mnt_drop_write);
455 
456 void __mnt_drop_write_file(struct file *file)
457 {
458 	__mnt_drop_write(file->f_path.mnt);
459 }
460 
461 void mnt_drop_write_file(struct file *file)
462 {
463 	__mnt_drop_write_file(file);
464 	sb_end_write(file_inode(file)->i_sb);
465 }
466 EXPORT_SYMBOL(mnt_drop_write_file);
467 
468 static int mnt_make_readonly(struct mount *mnt)
469 {
470 	int ret = 0;
471 
472 	lock_mount_hash();
473 	mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
474 	/*
475 	 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
476 	 * should be visible before we do.
477 	 */
478 	smp_mb();
479 
480 	/*
481 	 * With writers on hold, if this value is zero, then there are
482 	 * definitely no active writers (although held writers may subsequently
483 	 * increment the count, they'll have to wait, and decrement it after
484 	 * seeing MNT_READONLY).
485 	 *
486 	 * It is OK to have counter incremented on one CPU and decremented on
487 	 * another: the sum will add up correctly. The danger would be when we
488 	 * sum up each counter, if we read a counter before it is incremented,
489 	 * but then read another CPU's count which it has been subsequently
490 	 * decremented from -- we would see more decrements than we should.
491 	 * MNT_WRITE_HOLD protects against this scenario, because
492 	 * mnt_want_write first increments count, then smp_mb, then spins on
493 	 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
494 	 * we're counting up here.
495 	 */
496 	if (mnt_get_writers(mnt) > 0)
497 		ret = -EBUSY;
498 	else
499 		mnt->mnt.mnt_flags |= MNT_READONLY;
500 	/*
501 	 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
502 	 * that become unheld will see MNT_READONLY.
503 	 */
504 	smp_wmb();
505 	mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
506 	unlock_mount_hash();
507 	return ret;
508 }
509 
510 static void __mnt_unmake_readonly(struct mount *mnt)
511 {
512 	lock_mount_hash();
513 	mnt->mnt.mnt_flags &= ~MNT_READONLY;
514 	unlock_mount_hash();
515 }
516 
517 int sb_prepare_remount_readonly(struct super_block *sb)
518 {
519 	struct mount *mnt;
520 	int err = 0;
521 
522 	/* Racy optimization.  Recheck the counter under MNT_WRITE_HOLD */
523 	if (atomic_long_read(&sb->s_remove_count))
524 		return -EBUSY;
525 
526 	lock_mount_hash();
527 	list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
528 		if (!(mnt->mnt.mnt_flags & MNT_READONLY)) {
529 			mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
530 			smp_mb();
531 			if (mnt_get_writers(mnt) > 0) {
532 				err = -EBUSY;
533 				break;
534 			}
535 		}
536 	}
537 	if (!err && atomic_long_read(&sb->s_remove_count))
538 		err = -EBUSY;
539 
540 	if (!err) {
541 		sb->s_readonly_remount = 1;
542 		smp_wmb();
543 	}
544 	list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
545 		if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
546 			mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
547 	}
548 	unlock_mount_hash();
549 
550 	return err;
551 }
552 
553 static void free_vfsmnt(struct mount *mnt)
554 {
555 	kfree_const(mnt->mnt_devname);
556 #ifdef CONFIG_SMP
557 	free_percpu(mnt->mnt_pcp);
558 #endif
559 	kmem_cache_free(mnt_cache, mnt);
560 }
561 
562 static void delayed_free_vfsmnt(struct rcu_head *head)
563 {
564 	free_vfsmnt(container_of(head, struct mount, mnt_rcu));
565 }
566 
567 /* call under rcu_read_lock */
568 int __legitimize_mnt(struct vfsmount *bastard, unsigned seq)
569 {
570 	struct mount *mnt;
571 	if (read_seqretry(&mount_lock, seq))
572 		return 1;
573 	if (bastard == NULL)
574 		return 0;
575 	mnt = real_mount(bastard);
576 	mnt_add_count(mnt, 1);
577 	smp_mb();			// see mntput_no_expire()
578 	if (likely(!read_seqretry(&mount_lock, seq)))
579 		return 0;
580 	if (bastard->mnt_flags & MNT_SYNC_UMOUNT) {
581 		mnt_add_count(mnt, -1);
582 		return 1;
583 	}
584 	lock_mount_hash();
585 	if (unlikely(bastard->mnt_flags & MNT_DOOMED)) {
586 		mnt_add_count(mnt, -1);
587 		unlock_mount_hash();
588 		return 1;
589 	}
590 	unlock_mount_hash();
591 	/* caller will mntput() */
592 	return -1;
593 }
594 
595 /* call under rcu_read_lock */
596 bool legitimize_mnt(struct vfsmount *bastard, unsigned seq)
597 {
598 	int res = __legitimize_mnt(bastard, seq);
599 	if (likely(!res))
600 		return true;
601 	if (unlikely(res < 0)) {
602 		rcu_read_unlock();
603 		mntput(bastard);
604 		rcu_read_lock();
605 	}
606 	return false;
607 }
608 
609 /*
610  * find the first mount at @dentry on vfsmount @mnt.
611  * call under rcu_read_lock()
612  */
613 struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry)
614 {
615 	struct hlist_head *head = m_hash(mnt, dentry);
616 	struct mount *p;
617 
618 	hlist_for_each_entry_rcu(p, head, mnt_hash)
619 		if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry)
620 			return p;
621 	return NULL;
622 }
623 
624 /*
625  * lookup_mnt - Return the first child mount mounted at path
626  *
627  * "First" means first mounted chronologically.  If you create the
628  * following mounts:
629  *
630  * mount /dev/sda1 /mnt
631  * mount /dev/sda2 /mnt
632  * mount /dev/sda3 /mnt
633  *
634  * Then lookup_mnt() on the base /mnt dentry in the root mount will
635  * return successively the root dentry and vfsmount of /dev/sda1, then
636  * /dev/sda2, then /dev/sda3, then NULL.
637  *
638  * lookup_mnt takes a reference to the found vfsmount.
639  */
640 struct vfsmount *lookup_mnt(const struct path *path)
641 {
642 	struct mount *child_mnt;
643 	struct vfsmount *m;
644 	unsigned seq;
645 
646 	rcu_read_lock();
647 	do {
648 		seq = read_seqbegin(&mount_lock);
649 		child_mnt = __lookup_mnt(path->mnt, path->dentry);
650 		m = child_mnt ? &child_mnt->mnt : NULL;
651 	} while (!legitimize_mnt(m, seq));
652 	rcu_read_unlock();
653 	return m;
654 }
655 
656 /*
657  * __is_local_mountpoint - Test to see if dentry is a mountpoint in the
658  *                         current mount namespace.
659  *
660  * The common case is dentries are not mountpoints at all and that
661  * test is handled inline.  For the slow case when we are actually
662  * dealing with a mountpoint of some kind, walk through all of the
663  * mounts in the current mount namespace and test to see if the dentry
664  * is a mountpoint.
665  *
666  * The mount_hashtable is not usable in the context because we
667  * need to identify all mounts that may be in the current mount
668  * namespace not just a mount that happens to have some specified
669  * parent mount.
670  */
671 bool __is_local_mountpoint(struct dentry *dentry)
672 {
673 	struct mnt_namespace *ns = current->nsproxy->mnt_ns;
674 	struct mount *mnt;
675 	bool is_covered = false;
676 
677 	if (!d_mountpoint(dentry))
678 		goto out;
679 
680 	down_read(&namespace_sem);
681 	list_for_each_entry(mnt, &ns->list, mnt_list) {
682 		is_covered = (mnt->mnt_mountpoint == dentry);
683 		if (is_covered)
684 			break;
685 	}
686 	up_read(&namespace_sem);
687 out:
688 	return is_covered;
689 }
690 
691 static struct mountpoint *lookup_mountpoint(struct dentry *dentry)
692 {
693 	struct hlist_head *chain = mp_hash(dentry);
694 	struct mountpoint *mp;
695 
696 	hlist_for_each_entry(mp, chain, m_hash) {
697 		if (mp->m_dentry == dentry) {
698 			/* might be worth a WARN_ON() */
699 			if (d_unlinked(dentry))
700 				return ERR_PTR(-ENOENT);
701 			mp->m_count++;
702 			return mp;
703 		}
704 	}
705 	return NULL;
706 }
707 
708 static struct mountpoint *get_mountpoint(struct dentry *dentry)
709 {
710 	struct mountpoint *mp, *new = NULL;
711 	int ret;
712 
713 	if (d_mountpoint(dentry)) {
714 mountpoint:
715 		read_seqlock_excl(&mount_lock);
716 		mp = lookup_mountpoint(dentry);
717 		read_sequnlock_excl(&mount_lock);
718 		if (mp)
719 			goto done;
720 	}
721 
722 	if (!new)
723 		new = kmalloc(sizeof(struct mountpoint), GFP_KERNEL);
724 	if (!new)
725 		return ERR_PTR(-ENOMEM);
726 
727 
728 	/* Exactly one processes may set d_mounted */
729 	ret = d_set_mounted(dentry);
730 
731 	/* Someone else set d_mounted? */
732 	if (ret == -EBUSY)
733 		goto mountpoint;
734 
735 	/* The dentry is not available as a mountpoint? */
736 	mp = ERR_PTR(ret);
737 	if (ret)
738 		goto done;
739 
740 	/* Add the new mountpoint to the hash table */
741 	read_seqlock_excl(&mount_lock);
742 	new->m_dentry = dentry;
743 	new->m_count = 1;
744 	hlist_add_head(&new->m_hash, mp_hash(dentry));
745 	INIT_HLIST_HEAD(&new->m_list);
746 	read_sequnlock_excl(&mount_lock);
747 
748 	mp = new;
749 	new = NULL;
750 done:
751 	kfree(new);
752 	return mp;
753 }
754 
755 static void put_mountpoint(struct mountpoint *mp)
756 {
757 	if (!--mp->m_count) {
758 		struct dentry *dentry = mp->m_dentry;
759 		BUG_ON(!hlist_empty(&mp->m_list));
760 		spin_lock(&dentry->d_lock);
761 		dentry->d_flags &= ~DCACHE_MOUNTED;
762 		spin_unlock(&dentry->d_lock);
763 		hlist_del(&mp->m_hash);
764 		kfree(mp);
765 	}
766 }
767 
768 static inline int check_mnt(struct mount *mnt)
769 {
770 	return mnt->mnt_ns == current->nsproxy->mnt_ns;
771 }
772 
773 /*
774  * vfsmount lock must be held for write
775  */
776 static void touch_mnt_namespace(struct mnt_namespace *ns)
777 {
778 	if (ns) {
779 		ns->event = ++event;
780 		wake_up_interruptible(&ns->poll);
781 	}
782 }
783 
784 /*
785  * vfsmount lock must be held for write
786  */
787 static void __touch_mnt_namespace(struct mnt_namespace *ns)
788 {
789 	if (ns && ns->event != event) {
790 		ns->event = event;
791 		wake_up_interruptible(&ns->poll);
792 	}
793 }
794 
795 /*
796  * vfsmount lock must be held for write
797  */
798 static void unhash_mnt(struct mount *mnt)
799 {
800 	mnt->mnt_parent = mnt;
801 	mnt->mnt_mountpoint = mnt->mnt.mnt_root;
802 	list_del_init(&mnt->mnt_child);
803 	hlist_del_init_rcu(&mnt->mnt_hash);
804 	hlist_del_init(&mnt->mnt_mp_list);
805 	put_mountpoint(mnt->mnt_mp);
806 	mnt->mnt_mp = NULL;
807 }
808 
809 /*
810  * vfsmount lock must be held for write
811  */
812 static void detach_mnt(struct mount *mnt, struct path *old_path)
813 {
814 	old_path->dentry = mnt->mnt_mountpoint;
815 	old_path->mnt = &mnt->mnt_parent->mnt;
816 	unhash_mnt(mnt);
817 }
818 
819 /*
820  * vfsmount lock must be held for write
821  */
822 static void umount_mnt(struct mount *mnt)
823 {
824 	/* old mountpoint will be dropped when we can do that */
825 	mnt->mnt_ex_mountpoint = mnt->mnt_mountpoint;
826 	unhash_mnt(mnt);
827 }
828 
829 /*
830  * vfsmount lock must be held for write
831  */
832 void mnt_set_mountpoint(struct mount *mnt,
833 			struct mountpoint *mp,
834 			struct mount *child_mnt)
835 {
836 	mp->m_count++;
837 	mnt_add_count(mnt, 1);	/* essentially, that's mntget */
838 	child_mnt->mnt_mountpoint = dget(mp->m_dentry);
839 	child_mnt->mnt_parent = mnt;
840 	child_mnt->mnt_mp = mp;
841 	hlist_add_head(&child_mnt->mnt_mp_list, &mp->m_list);
842 }
843 
844 static void __attach_mnt(struct mount *mnt, struct mount *parent)
845 {
846 	hlist_add_head_rcu(&mnt->mnt_hash,
847 			   m_hash(&parent->mnt, mnt->mnt_mountpoint));
848 	list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
849 }
850 
851 /*
852  * vfsmount lock must be held for write
853  */
854 static void attach_mnt(struct mount *mnt,
855 			struct mount *parent,
856 			struct mountpoint *mp)
857 {
858 	mnt_set_mountpoint(parent, mp, mnt);
859 	__attach_mnt(mnt, parent);
860 }
861 
862 void mnt_change_mountpoint(struct mount *parent, struct mountpoint *mp, struct mount *mnt)
863 {
864 	struct mountpoint *old_mp = mnt->mnt_mp;
865 	struct dentry *old_mountpoint = mnt->mnt_mountpoint;
866 	struct mount *old_parent = mnt->mnt_parent;
867 
868 	list_del_init(&mnt->mnt_child);
869 	hlist_del_init(&mnt->mnt_mp_list);
870 	hlist_del_init_rcu(&mnt->mnt_hash);
871 
872 	attach_mnt(mnt, parent, mp);
873 
874 	put_mountpoint(old_mp);
875 
876 	/*
877 	 * Safely avoid even the suggestion this code might sleep or
878 	 * lock the mount hash by taking advantage of the knowledge that
879 	 * mnt_change_mountpoint will not release the final reference
880 	 * to a mountpoint.
881 	 *
882 	 * During mounting, the mount passed in as the parent mount will
883 	 * continue to use the old mountpoint and during unmounting, the
884 	 * old mountpoint will continue to exist until namespace_unlock,
885 	 * which happens well after mnt_change_mountpoint.
886 	 */
887 	spin_lock(&old_mountpoint->d_lock);
888 	old_mountpoint->d_lockref.count--;
889 	spin_unlock(&old_mountpoint->d_lock);
890 
891 	mnt_add_count(old_parent, -1);
892 }
893 
894 /*
895  * vfsmount lock must be held for write
896  */
897 static void commit_tree(struct mount *mnt)
898 {
899 	struct mount *parent = mnt->mnt_parent;
900 	struct mount *m;
901 	LIST_HEAD(head);
902 	struct mnt_namespace *n = parent->mnt_ns;
903 
904 	BUG_ON(parent == mnt);
905 
906 	list_add_tail(&head, &mnt->mnt_list);
907 	list_for_each_entry(m, &head, mnt_list)
908 		m->mnt_ns = n;
909 
910 	list_splice(&head, n->list.prev);
911 
912 	n->mounts += n->pending_mounts;
913 	n->pending_mounts = 0;
914 
915 	__attach_mnt(mnt, parent);
916 	touch_mnt_namespace(n);
917 }
918 
919 static struct mount *next_mnt(struct mount *p, struct mount *root)
920 {
921 	struct list_head *next = p->mnt_mounts.next;
922 	if (next == &p->mnt_mounts) {
923 		while (1) {
924 			if (p == root)
925 				return NULL;
926 			next = p->mnt_child.next;
927 			if (next != &p->mnt_parent->mnt_mounts)
928 				break;
929 			p = p->mnt_parent;
930 		}
931 	}
932 	return list_entry(next, struct mount, mnt_child);
933 }
934 
935 static struct mount *skip_mnt_tree(struct mount *p)
936 {
937 	struct list_head *prev = p->mnt_mounts.prev;
938 	while (prev != &p->mnt_mounts) {
939 		p = list_entry(prev, struct mount, mnt_child);
940 		prev = p->mnt_mounts.prev;
941 	}
942 	return p;
943 }
944 
945 struct vfsmount *
946 vfs_kern_mount(struct file_system_type *type, int flags, const char *name, void *data)
947 {
948 	struct mount *mnt;
949 	struct dentry *root;
950 
951 	if (!type)
952 		return ERR_PTR(-ENODEV);
953 
954 	mnt = alloc_vfsmnt(name);
955 	if (!mnt)
956 		return ERR_PTR(-ENOMEM);
957 
958 	if (flags & SB_KERNMOUNT)
959 		mnt->mnt.mnt_flags = MNT_INTERNAL;
960 
961 	root = mount_fs(type, flags, name, data);
962 	if (IS_ERR(root)) {
963 		mnt_free_id(mnt);
964 		free_vfsmnt(mnt);
965 		return ERR_CAST(root);
966 	}
967 
968 	mnt->mnt.mnt_root = root;
969 	mnt->mnt.mnt_sb = root->d_sb;
970 	mnt->mnt_mountpoint = mnt->mnt.mnt_root;
971 	mnt->mnt_parent = mnt;
972 	lock_mount_hash();
973 	list_add_tail(&mnt->mnt_instance, &root->d_sb->s_mounts);
974 	unlock_mount_hash();
975 	return &mnt->mnt;
976 }
977 EXPORT_SYMBOL_GPL(vfs_kern_mount);
978 
979 struct vfsmount *
980 vfs_submount(const struct dentry *mountpoint, struct file_system_type *type,
981 	     const char *name, void *data)
982 {
983 	/* Until it is worked out how to pass the user namespace
984 	 * through from the parent mount to the submount don't support
985 	 * unprivileged mounts with submounts.
986 	 */
987 	if (mountpoint->d_sb->s_user_ns != &init_user_ns)
988 		return ERR_PTR(-EPERM);
989 
990 	return vfs_kern_mount(type, SB_SUBMOUNT, name, data);
991 }
992 EXPORT_SYMBOL_GPL(vfs_submount);
993 
994 static struct mount *clone_mnt(struct mount *old, struct dentry *root,
995 					int flag)
996 {
997 	struct super_block *sb = old->mnt.mnt_sb;
998 	struct mount *mnt;
999 	int err;
1000 
1001 	mnt = alloc_vfsmnt(old->mnt_devname);
1002 	if (!mnt)
1003 		return ERR_PTR(-ENOMEM);
1004 
1005 	if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE))
1006 		mnt->mnt_group_id = 0; /* not a peer of original */
1007 	else
1008 		mnt->mnt_group_id = old->mnt_group_id;
1009 
1010 	if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
1011 		err = mnt_alloc_group_id(mnt);
1012 		if (err)
1013 			goto out_free;
1014 	}
1015 
1016 	mnt->mnt.mnt_flags = old->mnt.mnt_flags;
1017 	mnt->mnt.mnt_flags &= ~(MNT_WRITE_HOLD|MNT_MARKED|MNT_INTERNAL);
1018 	/* Don't allow unprivileged users to change mount flags */
1019 	if (flag & CL_UNPRIVILEGED) {
1020 		mnt->mnt.mnt_flags |= MNT_LOCK_ATIME;
1021 
1022 		if (mnt->mnt.mnt_flags & MNT_READONLY)
1023 			mnt->mnt.mnt_flags |= MNT_LOCK_READONLY;
1024 
1025 		if (mnt->mnt.mnt_flags & MNT_NODEV)
1026 			mnt->mnt.mnt_flags |= MNT_LOCK_NODEV;
1027 
1028 		if (mnt->mnt.mnt_flags & MNT_NOSUID)
1029 			mnt->mnt.mnt_flags |= MNT_LOCK_NOSUID;
1030 
1031 		if (mnt->mnt.mnt_flags & MNT_NOEXEC)
1032 			mnt->mnt.mnt_flags |= MNT_LOCK_NOEXEC;
1033 	}
1034 
1035 	/* Don't allow unprivileged users to reveal what is under a mount */
1036 	if ((flag & CL_UNPRIVILEGED) &&
1037 	    (!(flag & CL_EXPIRE) || list_empty(&old->mnt_expire)))
1038 		mnt->mnt.mnt_flags |= MNT_LOCKED;
1039 
1040 	atomic_inc(&sb->s_active);
1041 	mnt->mnt.mnt_sb = sb;
1042 	mnt->mnt.mnt_root = dget(root);
1043 	mnt->mnt_mountpoint = mnt->mnt.mnt_root;
1044 	mnt->mnt_parent = mnt;
1045 	lock_mount_hash();
1046 	list_add_tail(&mnt->mnt_instance, &sb->s_mounts);
1047 	unlock_mount_hash();
1048 
1049 	if ((flag & CL_SLAVE) ||
1050 	    ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) {
1051 		list_add(&mnt->mnt_slave, &old->mnt_slave_list);
1052 		mnt->mnt_master = old;
1053 		CLEAR_MNT_SHARED(mnt);
1054 	} else if (!(flag & CL_PRIVATE)) {
1055 		if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
1056 			list_add(&mnt->mnt_share, &old->mnt_share);
1057 		if (IS_MNT_SLAVE(old))
1058 			list_add(&mnt->mnt_slave, &old->mnt_slave);
1059 		mnt->mnt_master = old->mnt_master;
1060 	} else {
1061 		CLEAR_MNT_SHARED(mnt);
1062 	}
1063 	if (flag & CL_MAKE_SHARED)
1064 		set_mnt_shared(mnt);
1065 
1066 	/* stick the duplicate mount on the same expiry list
1067 	 * as the original if that was on one */
1068 	if (flag & CL_EXPIRE) {
1069 		if (!list_empty(&old->mnt_expire))
1070 			list_add(&mnt->mnt_expire, &old->mnt_expire);
1071 	}
1072 
1073 	return mnt;
1074 
1075  out_free:
1076 	mnt_free_id(mnt);
1077 	free_vfsmnt(mnt);
1078 	return ERR_PTR(err);
1079 }
1080 
1081 static void cleanup_mnt(struct mount *mnt)
1082 {
1083 	/*
1084 	 * This probably indicates that somebody messed
1085 	 * up a mnt_want/drop_write() pair.  If this
1086 	 * happens, the filesystem was probably unable
1087 	 * to make r/w->r/o transitions.
1088 	 */
1089 	/*
1090 	 * The locking used to deal with mnt_count decrement provides barriers,
1091 	 * so mnt_get_writers() below is safe.
1092 	 */
1093 	WARN_ON(mnt_get_writers(mnt));
1094 	if (unlikely(mnt->mnt_pins.first))
1095 		mnt_pin_kill(mnt);
1096 	fsnotify_vfsmount_delete(&mnt->mnt);
1097 	dput(mnt->mnt.mnt_root);
1098 	deactivate_super(mnt->mnt.mnt_sb);
1099 	mnt_free_id(mnt);
1100 	call_rcu(&mnt->mnt_rcu, delayed_free_vfsmnt);
1101 }
1102 
1103 static void __cleanup_mnt(struct rcu_head *head)
1104 {
1105 	cleanup_mnt(container_of(head, struct mount, mnt_rcu));
1106 }
1107 
1108 static LLIST_HEAD(delayed_mntput_list);
1109 static void delayed_mntput(struct work_struct *unused)
1110 {
1111 	struct llist_node *node = llist_del_all(&delayed_mntput_list);
1112 	struct mount *m, *t;
1113 
1114 	llist_for_each_entry_safe(m, t, node, mnt_llist)
1115 		cleanup_mnt(m);
1116 }
1117 static DECLARE_DELAYED_WORK(delayed_mntput_work, delayed_mntput);
1118 
1119 static void mntput_no_expire(struct mount *mnt)
1120 {
1121 	rcu_read_lock();
1122 	if (likely(READ_ONCE(mnt->mnt_ns))) {
1123 		/*
1124 		 * Since we don't do lock_mount_hash() here,
1125 		 * ->mnt_ns can change under us.  However, if it's
1126 		 * non-NULL, then there's a reference that won't
1127 		 * be dropped until after an RCU delay done after
1128 		 * turning ->mnt_ns NULL.  So if we observe it
1129 		 * non-NULL under rcu_read_lock(), the reference
1130 		 * we are dropping is not the final one.
1131 		 */
1132 		mnt_add_count(mnt, -1);
1133 		rcu_read_unlock();
1134 		return;
1135 	}
1136 	lock_mount_hash();
1137 	/*
1138 	 * make sure that if __legitimize_mnt() has not seen us grab
1139 	 * mount_lock, we'll see their refcount increment here.
1140 	 */
1141 	smp_mb();
1142 	mnt_add_count(mnt, -1);
1143 	if (mnt_get_count(mnt)) {
1144 		rcu_read_unlock();
1145 		unlock_mount_hash();
1146 		return;
1147 	}
1148 	if (unlikely(mnt->mnt.mnt_flags & MNT_DOOMED)) {
1149 		rcu_read_unlock();
1150 		unlock_mount_hash();
1151 		return;
1152 	}
1153 	mnt->mnt.mnt_flags |= MNT_DOOMED;
1154 	rcu_read_unlock();
1155 
1156 	list_del(&mnt->mnt_instance);
1157 
1158 	if (unlikely(!list_empty(&mnt->mnt_mounts))) {
1159 		struct mount *p, *tmp;
1160 		list_for_each_entry_safe(p, tmp, &mnt->mnt_mounts,  mnt_child) {
1161 			umount_mnt(p);
1162 		}
1163 	}
1164 	unlock_mount_hash();
1165 
1166 	if (likely(!(mnt->mnt.mnt_flags & MNT_INTERNAL))) {
1167 		struct task_struct *task = current;
1168 		if (likely(!(task->flags & PF_KTHREAD))) {
1169 			init_task_work(&mnt->mnt_rcu, __cleanup_mnt);
1170 			if (!task_work_add(task, &mnt->mnt_rcu, true))
1171 				return;
1172 		}
1173 		if (llist_add(&mnt->mnt_llist, &delayed_mntput_list))
1174 			schedule_delayed_work(&delayed_mntput_work, 1);
1175 		return;
1176 	}
1177 	cleanup_mnt(mnt);
1178 }
1179 
1180 void mntput(struct vfsmount *mnt)
1181 {
1182 	if (mnt) {
1183 		struct mount *m = real_mount(mnt);
1184 		/* avoid cacheline pingpong, hope gcc doesn't get "smart" */
1185 		if (unlikely(m->mnt_expiry_mark))
1186 			m->mnt_expiry_mark = 0;
1187 		mntput_no_expire(m);
1188 	}
1189 }
1190 EXPORT_SYMBOL(mntput);
1191 
1192 struct vfsmount *mntget(struct vfsmount *mnt)
1193 {
1194 	if (mnt)
1195 		mnt_add_count(real_mount(mnt), 1);
1196 	return mnt;
1197 }
1198 EXPORT_SYMBOL(mntget);
1199 
1200 /* path_is_mountpoint() - Check if path is a mount in the current
1201  *                          namespace.
1202  *
1203  *  d_mountpoint() can only be used reliably to establish if a dentry is
1204  *  not mounted in any namespace and that common case is handled inline.
1205  *  d_mountpoint() isn't aware of the possibility there may be multiple
1206  *  mounts using a given dentry in a different namespace. This function
1207  *  checks if the passed in path is a mountpoint rather than the dentry
1208  *  alone.
1209  */
1210 bool path_is_mountpoint(const struct path *path)
1211 {
1212 	unsigned seq;
1213 	bool res;
1214 
1215 	if (!d_mountpoint(path->dentry))
1216 		return false;
1217 
1218 	rcu_read_lock();
1219 	do {
1220 		seq = read_seqbegin(&mount_lock);
1221 		res = __path_is_mountpoint(path);
1222 	} while (read_seqretry(&mount_lock, seq));
1223 	rcu_read_unlock();
1224 
1225 	return res;
1226 }
1227 EXPORT_SYMBOL(path_is_mountpoint);
1228 
1229 struct vfsmount *mnt_clone_internal(const struct path *path)
1230 {
1231 	struct mount *p;
1232 	p = clone_mnt(real_mount(path->mnt), path->dentry, CL_PRIVATE);
1233 	if (IS_ERR(p))
1234 		return ERR_CAST(p);
1235 	p->mnt.mnt_flags |= MNT_INTERNAL;
1236 	return &p->mnt;
1237 }
1238 
1239 #ifdef CONFIG_PROC_FS
1240 /* iterator; we want it to have access to namespace_sem, thus here... */
1241 static void *m_start(struct seq_file *m, loff_t *pos)
1242 {
1243 	struct proc_mounts *p = m->private;
1244 
1245 	down_read(&namespace_sem);
1246 	if (p->cached_event == p->ns->event) {
1247 		void *v = p->cached_mount;
1248 		if (*pos == p->cached_index)
1249 			return v;
1250 		if (*pos == p->cached_index + 1) {
1251 			v = seq_list_next(v, &p->ns->list, &p->cached_index);
1252 			return p->cached_mount = v;
1253 		}
1254 	}
1255 
1256 	p->cached_event = p->ns->event;
1257 	p->cached_mount = seq_list_start(&p->ns->list, *pos);
1258 	p->cached_index = *pos;
1259 	return p->cached_mount;
1260 }
1261 
1262 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
1263 {
1264 	struct proc_mounts *p = m->private;
1265 
1266 	p->cached_mount = seq_list_next(v, &p->ns->list, pos);
1267 	p->cached_index = *pos;
1268 	return p->cached_mount;
1269 }
1270 
1271 static void m_stop(struct seq_file *m, void *v)
1272 {
1273 	up_read(&namespace_sem);
1274 }
1275 
1276 static int m_show(struct seq_file *m, void *v)
1277 {
1278 	struct proc_mounts *p = m->private;
1279 	struct mount *r = list_entry(v, struct mount, mnt_list);
1280 	return p->show(m, &r->mnt);
1281 }
1282 
1283 const struct seq_operations mounts_op = {
1284 	.start	= m_start,
1285 	.next	= m_next,
1286 	.stop	= m_stop,
1287 	.show	= m_show,
1288 };
1289 #endif  /* CONFIG_PROC_FS */
1290 
1291 /**
1292  * may_umount_tree - check if a mount tree is busy
1293  * @mnt: root of mount tree
1294  *
1295  * This is called to check if a tree of mounts has any
1296  * open files, pwds, chroots or sub mounts that are
1297  * busy.
1298  */
1299 int may_umount_tree(struct vfsmount *m)
1300 {
1301 	struct mount *mnt = real_mount(m);
1302 	int actual_refs = 0;
1303 	int minimum_refs = 0;
1304 	struct mount *p;
1305 	BUG_ON(!m);
1306 
1307 	/* write lock needed for mnt_get_count */
1308 	lock_mount_hash();
1309 	for (p = mnt; p; p = next_mnt(p, mnt)) {
1310 		actual_refs += mnt_get_count(p);
1311 		minimum_refs += 2;
1312 	}
1313 	unlock_mount_hash();
1314 
1315 	if (actual_refs > minimum_refs)
1316 		return 0;
1317 
1318 	return 1;
1319 }
1320 
1321 EXPORT_SYMBOL(may_umount_tree);
1322 
1323 /**
1324  * may_umount - check if a mount point is busy
1325  * @mnt: root of mount
1326  *
1327  * This is called to check if a mount point has any
1328  * open files, pwds, chroots or sub mounts. If the
1329  * mount has sub mounts this will return busy
1330  * regardless of whether the sub mounts are busy.
1331  *
1332  * Doesn't take quota and stuff into account. IOW, in some cases it will
1333  * give false negatives. The main reason why it's here is that we need
1334  * a non-destructive way to look for easily umountable filesystems.
1335  */
1336 int may_umount(struct vfsmount *mnt)
1337 {
1338 	int ret = 1;
1339 	down_read(&namespace_sem);
1340 	lock_mount_hash();
1341 	if (propagate_mount_busy(real_mount(mnt), 2))
1342 		ret = 0;
1343 	unlock_mount_hash();
1344 	up_read(&namespace_sem);
1345 	return ret;
1346 }
1347 
1348 EXPORT_SYMBOL(may_umount);
1349 
1350 static HLIST_HEAD(unmounted);	/* protected by namespace_sem */
1351 
1352 static void namespace_unlock(void)
1353 {
1354 	struct hlist_head head;
1355 
1356 	hlist_move_list(&unmounted, &head);
1357 
1358 	up_write(&namespace_sem);
1359 
1360 	if (likely(hlist_empty(&head)))
1361 		return;
1362 
1363 	synchronize_rcu();
1364 
1365 	group_pin_kill(&head);
1366 }
1367 
1368 static inline void namespace_lock(void)
1369 {
1370 	down_write(&namespace_sem);
1371 }
1372 
1373 enum umount_tree_flags {
1374 	UMOUNT_SYNC = 1,
1375 	UMOUNT_PROPAGATE = 2,
1376 	UMOUNT_CONNECTED = 4,
1377 };
1378 
1379 static bool disconnect_mount(struct mount *mnt, enum umount_tree_flags how)
1380 {
1381 	/* Leaving mounts connected is only valid for lazy umounts */
1382 	if (how & UMOUNT_SYNC)
1383 		return true;
1384 
1385 	/* A mount without a parent has nothing to be connected to */
1386 	if (!mnt_has_parent(mnt))
1387 		return true;
1388 
1389 	/* Because the reference counting rules change when mounts are
1390 	 * unmounted and connected, umounted mounts may not be
1391 	 * connected to mounted mounts.
1392 	 */
1393 	if (!(mnt->mnt_parent->mnt.mnt_flags & MNT_UMOUNT))
1394 		return true;
1395 
1396 	/* Has it been requested that the mount remain connected? */
1397 	if (how & UMOUNT_CONNECTED)
1398 		return false;
1399 
1400 	/* Is the mount locked such that it needs to remain connected? */
1401 	if (IS_MNT_LOCKED(mnt))
1402 		return false;
1403 
1404 	/* By default disconnect the mount */
1405 	return true;
1406 }
1407 
1408 /*
1409  * mount_lock must be held
1410  * namespace_sem must be held for write
1411  */
1412 static void umount_tree(struct mount *mnt, enum umount_tree_flags how)
1413 {
1414 	LIST_HEAD(tmp_list);
1415 	struct mount *p;
1416 
1417 	if (how & UMOUNT_PROPAGATE)
1418 		propagate_mount_unlock(mnt);
1419 
1420 	/* Gather the mounts to umount */
1421 	for (p = mnt; p; p = next_mnt(p, mnt)) {
1422 		p->mnt.mnt_flags |= MNT_UMOUNT;
1423 		list_move(&p->mnt_list, &tmp_list);
1424 	}
1425 
1426 	/* Hide the mounts from mnt_mounts */
1427 	list_for_each_entry(p, &tmp_list, mnt_list) {
1428 		list_del_init(&p->mnt_child);
1429 	}
1430 
1431 	/* Add propogated mounts to the tmp_list */
1432 	if (how & UMOUNT_PROPAGATE)
1433 		propagate_umount(&tmp_list);
1434 
1435 	while (!list_empty(&tmp_list)) {
1436 		struct mnt_namespace *ns;
1437 		bool disconnect;
1438 		p = list_first_entry(&tmp_list, struct mount, mnt_list);
1439 		list_del_init(&p->mnt_expire);
1440 		list_del_init(&p->mnt_list);
1441 		ns = p->mnt_ns;
1442 		if (ns) {
1443 			ns->mounts--;
1444 			__touch_mnt_namespace(ns);
1445 		}
1446 		p->mnt_ns = NULL;
1447 		if (how & UMOUNT_SYNC)
1448 			p->mnt.mnt_flags |= MNT_SYNC_UMOUNT;
1449 
1450 		disconnect = disconnect_mount(p, how);
1451 
1452 		pin_insert_group(&p->mnt_umount, &p->mnt_parent->mnt,
1453 				 disconnect ? &unmounted : NULL);
1454 		if (mnt_has_parent(p)) {
1455 			mnt_add_count(p->mnt_parent, -1);
1456 			if (!disconnect) {
1457 				/* Don't forget about p */
1458 				list_add_tail(&p->mnt_child, &p->mnt_parent->mnt_mounts);
1459 			} else {
1460 				umount_mnt(p);
1461 			}
1462 		}
1463 		change_mnt_propagation(p, MS_PRIVATE);
1464 	}
1465 }
1466 
1467 static void shrink_submounts(struct mount *mnt);
1468 
1469 static int do_umount(struct mount *mnt, int flags)
1470 {
1471 	struct super_block *sb = mnt->mnt.mnt_sb;
1472 	int retval;
1473 
1474 	retval = security_sb_umount(&mnt->mnt, flags);
1475 	if (retval)
1476 		return retval;
1477 
1478 	/*
1479 	 * Allow userspace to request a mountpoint be expired rather than
1480 	 * unmounting unconditionally. Unmount only happens if:
1481 	 *  (1) the mark is already set (the mark is cleared by mntput())
1482 	 *  (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1483 	 */
1484 	if (flags & MNT_EXPIRE) {
1485 		if (&mnt->mnt == current->fs->root.mnt ||
1486 		    flags & (MNT_FORCE | MNT_DETACH))
1487 			return -EINVAL;
1488 
1489 		/*
1490 		 * probably don't strictly need the lock here if we examined
1491 		 * all race cases, but it's a slowpath.
1492 		 */
1493 		lock_mount_hash();
1494 		if (mnt_get_count(mnt) != 2) {
1495 			unlock_mount_hash();
1496 			return -EBUSY;
1497 		}
1498 		unlock_mount_hash();
1499 
1500 		if (!xchg(&mnt->mnt_expiry_mark, 1))
1501 			return -EAGAIN;
1502 	}
1503 
1504 	/*
1505 	 * If we may have to abort operations to get out of this
1506 	 * mount, and they will themselves hold resources we must
1507 	 * allow the fs to do things. In the Unix tradition of
1508 	 * 'Gee thats tricky lets do it in userspace' the umount_begin
1509 	 * might fail to complete on the first run through as other tasks
1510 	 * must return, and the like. Thats for the mount program to worry
1511 	 * about for the moment.
1512 	 */
1513 
1514 	if (flags & MNT_FORCE && sb->s_op->umount_begin) {
1515 		sb->s_op->umount_begin(sb);
1516 	}
1517 
1518 	/*
1519 	 * No sense to grab the lock for this test, but test itself looks
1520 	 * somewhat bogus. Suggestions for better replacement?
1521 	 * Ho-hum... In principle, we might treat that as umount + switch
1522 	 * to rootfs. GC would eventually take care of the old vfsmount.
1523 	 * Actually it makes sense, especially if rootfs would contain a
1524 	 * /reboot - static binary that would close all descriptors and
1525 	 * call reboot(9). Then init(8) could umount root and exec /reboot.
1526 	 */
1527 	if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1528 		/*
1529 		 * Special case for "unmounting" root ...
1530 		 * we just try to remount it readonly.
1531 		 */
1532 		if (!ns_capable(sb->s_user_ns, CAP_SYS_ADMIN))
1533 			return -EPERM;
1534 		down_write(&sb->s_umount);
1535 		if (!sb_rdonly(sb))
1536 			retval = do_remount_sb(sb, SB_RDONLY, NULL, 0);
1537 		up_write(&sb->s_umount);
1538 		return retval;
1539 	}
1540 
1541 	namespace_lock();
1542 	lock_mount_hash();
1543 	event++;
1544 
1545 	if (flags & MNT_DETACH) {
1546 		if (!list_empty(&mnt->mnt_list))
1547 			umount_tree(mnt, UMOUNT_PROPAGATE);
1548 		retval = 0;
1549 	} else {
1550 		shrink_submounts(mnt);
1551 		retval = -EBUSY;
1552 		if (!propagate_mount_busy(mnt, 2)) {
1553 			if (!list_empty(&mnt->mnt_list))
1554 				umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
1555 			retval = 0;
1556 		}
1557 	}
1558 	unlock_mount_hash();
1559 	namespace_unlock();
1560 	return retval;
1561 }
1562 
1563 /*
1564  * __detach_mounts - lazily unmount all mounts on the specified dentry
1565  *
1566  * During unlink, rmdir, and d_drop it is possible to loose the path
1567  * to an existing mountpoint, and wind up leaking the mount.
1568  * detach_mounts allows lazily unmounting those mounts instead of
1569  * leaking them.
1570  *
1571  * The caller may hold dentry->d_inode->i_mutex.
1572  */
1573 void __detach_mounts(struct dentry *dentry)
1574 {
1575 	struct mountpoint *mp;
1576 	struct mount *mnt;
1577 
1578 	namespace_lock();
1579 	lock_mount_hash();
1580 	mp = lookup_mountpoint(dentry);
1581 	if (IS_ERR_OR_NULL(mp))
1582 		goto out_unlock;
1583 
1584 	event++;
1585 	while (!hlist_empty(&mp->m_list)) {
1586 		mnt = hlist_entry(mp->m_list.first, struct mount, mnt_mp_list);
1587 		if (mnt->mnt.mnt_flags & MNT_UMOUNT) {
1588 			hlist_add_head(&mnt->mnt_umount.s_list, &unmounted);
1589 			umount_mnt(mnt);
1590 		}
1591 		else umount_tree(mnt, UMOUNT_CONNECTED);
1592 	}
1593 	put_mountpoint(mp);
1594 out_unlock:
1595 	unlock_mount_hash();
1596 	namespace_unlock();
1597 }
1598 
1599 /*
1600  * Is the caller allowed to modify his namespace?
1601  */
1602 static inline bool may_mount(void)
1603 {
1604 	return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN);
1605 }
1606 
1607 static inline bool may_mandlock(void)
1608 {
1609 #ifndef	CONFIG_MANDATORY_FILE_LOCKING
1610 	return false;
1611 #endif
1612 	return capable(CAP_SYS_ADMIN);
1613 }
1614 
1615 /*
1616  * Now umount can handle mount points as well as block devices.
1617  * This is important for filesystems which use unnamed block devices.
1618  *
1619  * We now support a flag for forced unmount like the other 'big iron'
1620  * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
1621  */
1622 
1623 int ksys_umount(char __user *name, int flags)
1624 {
1625 	struct path path;
1626 	struct mount *mnt;
1627 	int retval;
1628 	int lookup_flags = 0;
1629 
1630 	if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
1631 		return -EINVAL;
1632 
1633 	if (!may_mount())
1634 		return -EPERM;
1635 
1636 	if (!(flags & UMOUNT_NOFOLLOW))
1637 		lookup_flags |= LOOKUP_FOLLOW;
1638 
1639 	retval = user_path_mountpoint_at(AT_FDCWD, name, lookup_flags, &path);
1640 	if (retval)
1641 		goto out;
1642 	mnt = real_mount(path.mnt);
1643 	retval = -EINVAL;
1644 	if (path.dentry != path.mnt->mnt_root)
1645 		goto dput_and_out;
1646 	if (!check_mnt(mnt))
1647 		goto dput_and_out;
1648 	if (mnt->mnt.mnt_flags & MNT_LOCKED)
1649 		goto dput_and_out;
1650 	retval = -EPERM;
1651 	if (flags & MNT_FORCE && !capable(CAP_SYS_ADMIN))
1652 		goto dput_and_out;
1653 
1654 	retval = do_umount(mnt, flags);
1655 dput_and_out:
1656 	/* we mustn't call path_put() as that would clear mnt_expiry_mark */
1657 	dput(path.dentry);
1658 	mntput_no_expire(mnt);
1659 out:
1660 	return retval;
1661 }
1662 
1663 SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
1664 {
1665 	return ksys_umount(name, flags);
1666 }
1667 
1668 #ifdef __ARCH_WANT_SYS_OLDUMOUNT
1669 
1670 /*
1671  *	The 2.0 compatible umount. No flags.
1672  */
1673 SYSCALL_DEFINE1(oldumount, char __user *, name)
1674 {
1675 	return ksys_umount(name, 0);
1676 }
1677 
1678 #endif
1679 
1680 static bool is_mnt_ns_file(struct dentry *dentry)
1681 {
1682 	/* Is this a proxy for a mount namespace? */
1683 	return dentry->d_op == &ns_dentry_operations &&
1684 	       dentry->d_fsdata == &mntns_operations;
1685 }
1686 
1687 struct mnt_namespace *to_mnt_ns(struct ns_common *ns)
1688 {
1689 	return container_of(ns, struct mnt_namespace, ns);
1690 }
1691 
1692 static bool mnt_ns_loop(struct dentry *dentry)
1693 {
1694 	/* Could bind mounting the mount namespace inode cause a
1695 	 * mount namespace loop?
1696 	 */
1697 	struct mnt_namespace *mnt_ns;
1698 	if (!is_mnt_ns_file(dentry))
1699 		return false;
1700 
1701 	mnt_ns = to_mnt_ns(get_proc_ns(dentry->d_inode));
1702 	return current->nsproxy->mnt_ns->seq >= mnt_ns->seq;
1703 }
1704 
1705 struct mount *copy_tree(struct mount *mnt, struct dentry *dentry,
1706 					int flag)
1707 {
1708 	struct mount *res, *p, *q, *r, *parent;
1709 
1710 	if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(mnt))
1711 		return ERR_PTR(-EINVAL);
1712 
1713 	if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry))
1714 		return ERR_PTR(-EINVAL);
1715 
1716 	res = q = clone_mnt(mnt, dentry, flag);
1717 	if (IS_ERR(q))
1718 		return q;
1719 
1720 	q->mnt_mountpoint = mnt->mnt_mountpoint;
1721 
1722 	p = mnt;
1723 	list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
1724 		struct mount *s;
1725 		if (!is_subdir(r->mnt_mountpoint, dentry))
1726 			continue;
1727 
1728 		for (s = r; s; s = next_mnt(s, r)) {
1729 			if (!(flag & CL_COPY_UNBINDABLE) &&
1730 			    IS_MNT_UNBINDABLE(s)) {
1731 				s = skip_mnt_tree(s);
1732 				continue;
1733 			}
1734 			if (!(flag & CL_COPY_MNT_NS_FILE) &&
1735 			    is_mnt_ns_file(s->mnt.mnt_root)) {
1736 				s = skip_mnt_tree(s);
1737 				continue;
1738 			}
1739 			while (p != s->mnt_parent) {
1740 				p = p->mnt_parent;
1741 				q = q->mnt_parent;
1742 			}
1743 			p = s;
1744 			parent = q;
1745 			q = clone_mnt(p, p->mnt.mnt_root, flag);
1746 			if (IS_ERR(q))
1747 				goto out;
1748 			lock_mount_hash();
1749 			list_add_tail(&q->mnt_list, &res->mnt_list);
1750 			attach_mnt(q, parent, p->mnt_mp);
1751 			unlock_mount_hash();
1752 		}
1753 	}
1754 	return res;
1755 out:
1756 	if (res) {
1757 		lock_mount_hash();
1758 		umount_tree(res, UMOUNT_SYNC);
1759 		unlock_mount_hash();
1760 	}
1761 	return q;
1762 }
1763 
1764 /* Caller should check returned pointer for errors */
1765 
1766 struct vfsmount *collect_mounts(const struct path *path)
1767 {
1768 	struct mount *tree;
1769 	namespace_lock();
1770 	if (!check_mnt(real_mount(path->mnt)))
1771 		tree = ERR_PTR(-EINVAL);
1772 	else
1773 		tree = copy_tree(real_mount(path->mnt), path->dentry,
1774 				 CL_COPY_ALL | CL_PRIVATE);
1775 	namespace_unlock();
1776 	if (IS_ERR(tree))
1777 		return ERR_CAST(tree);
1778 	return &tree->mnt;
1779 }
1780 
1781 void drop_collected_mounts(struct vfsmount *mnt)
1782 {
1783 	namespace_lock();
1784 	lock_mount_hash();
1785 	umount_tree(real_mount(mnt), UMOUNT_SYNC);
1786 	unlock_mount_hash();
1787 	namespace_unlock();
1788 }
1789 
1790 /**
1791  * clone_private_mount - create a private clone of a path
1792  *
1793  * This creates a new vfsmount, which will be the clone of @path.  The new will
1794  * not be attached anywhere in the namespace and will be private (i.e. changes
1795  * to the originating mount won't be propagated into this).
1796  *
1797  * Release with mntput().
1798  */
1799 struct vfsmount *clone_private_mount(const struct path *path)
1800 {
1801 	struct mount *old_mnt = real_mount(path->mnt);
1802 	struct mount *new_mnt;
1803 
1804 	if (IS_MNT_UNBINDABLE(old_mnt))
1805 		return ERR_PTR(-EINVAL);
1806 
1807 	new_mnt = clone_mnt(old_mnt, path->dentry, CL_PRIVATE);
1808 	if (IS_ERR(new_mnt))
1809 		return ERR_CAST(new_mnt);
1810 
1811 	return &new_mnt->mnt;
1812 }
1813 EXPORT_SYMBOL_GPL(clone_private_mount);
1814 
1815 int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
1816 		   struct vfsmount *root)
1817 {
1818 	struct mount *mnt;
1819 	int res = f(root, arg);
1820 	if (res)
1821 		return res;
1822 	list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) {
1823 		res = f(&mnt->mnt, arg);
1824 		if (res)
1825 			return res;
1826 	}
1827 	return 0;
1828 }
1829 
1830 static void cleanup_group_ids(struct mount *mnt, struct mount *end)
1831 {
1832 	struct mount *p;
1833 
1834 	for (p = mnt; p != end; p = next_mnt(p, mnt)) {
1835 		if (p->mnt_group_id && !IS_MNT_SHARED(p))
1836 			mnt_release_group_id(p);
1837 	}
1838 }
1839 
1840 static int invent_group_ids(struct mount *mnt, bool recurse)
1841 {
1842 	struct mount *p;
1843 
1844 	for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
1845 		if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
1846 			int err = mnt_alloc_group_id(p);
1847 			if (err) {
1848 				cleanup_group_ids(mnt, p);
1849 				return err;
1850 			}
1851 		}
1852 	}
1853 
1854 	return 0;
1855 }
1856 
1857 int count_mounts(struct mnt_namespace *ns, struct mount *mnt)
1858 {
1859 	unsigned int max = READ_ONCE(sysctl_mount_max);
1860 	unsigned int mounts = 0, old, pending, sum;
1861 	struct mount *p;
1862 
1863 	for (p = mnt; p; p = next_mnt(p, mnt))
1864 		mounts++;
1865 
1866 	old = ns->mounts;
1867 	pending = ns->pending_mounts;
1868 	sum = old + pending;
1869 	if ((old > sum) ||
1870 	    (pending > sum) ||
1871 	    (max < sum) ||
1872 	    (mounts > (max - sum)))
1873 		return -ENOSPC;
1874 
1875 	ns->pending_mounts = pending + mounts;
1876 	return 0;
1877 }
1878 
1879 /*
1880  *  @source_mnt : mount tree to be attached
1881  *  @nd         : place the mount tree @source_mnt is attached
1882  *  @parent_nd  : if non-null, detach the source_mnt from its parent and
1883  *  		   store the parent mount and mountpoint dentry.
1884  *  		   (done when source_mnt is moved)
1885  *
1886  *  NOTE: in the table below explains the semantics when a source mount
1887  *  of a given type is attached to a destination mount of a given type.
1888  * ---------------------------------------------------------------------------
1889  * |         BIND MOUNT OPERATION                                            |
1890  * |**************************************************************************
1891  * | source-->| shared        |       private  |       slave    | unbindable |
1892  * | dest     |               |                |                |            |
1893  * |   |      |               |                |                |            |
1894  * |   v      |               |                |                |            |
1895  * |**************************************************************************
1896  * |  shared  | shared (++)   |     shared (+) |     shared(+++)|  invalid   |
1897  * |          |               |                |                |            |
1898  * |non-shared| shared (+)    |      private   |      slave (*) |  invalid   |
1899  * ***************************************************************************
1900  * A bind operation clones the source mount and mounts the clone on the
1901  * destination mount.
1902  *
1903  * (++)  the cloned mount is propagated to all the mounts in the propagation
1904  * 	 tree of the destination mount and the cloned mount is added to
1905  * 	 the peer group of the source mount.
1906  * (+)   the cloned mount is created under the destination mount and is marked
1907  *       as shared. The cloned mount is added to the peer group of the source
1908  *       mount.
1909  * (+++) the mount is propagated to all the mounts in the propagation tree
1910  *       of the destination mount and the cloned mount is made slave
1911  *       of the same master as that of the source mount. The cloned mount
1912  *       is marked as 'shared and slave'.
1913  * (*)   the cloned mount is made a slave of the same master as that of the
1914  * 	 source mount.
1915  *
1916  * ---------------------------------------------------------------------------
1917  * |         		MOVE MOUNT OPERATION                                 |
1918  * |**************************************************************************
1919  * | source-->| shared        |       private  |       slave    | unbindable |
1920  * | dest     |               |                |                |            |
1921  * |   |      |               |                |                |            |
1922  * |   v      |               |                |                |            |
1923  * |**************************************************************************
1924  * |  shared  | shared (+)    |     shared (+) |    shared(+++) |  invalid   |
1925  * |          |               |                |                |            |
1926  * |non-shared| shared (+*)   |      private   |    slave (*)   | unbindable |
1927  * ***************************************************************************
1928  *
1929  * (+)  the mount is moved to the destination. And is then propagated to
1930  * 	all the mounts in the propagation tree of the destination mount.
1931  * (+*)  the mount is moved to the destination.
1932  * (+++)  the mount is moved to the destination and is then propagated to
1933  * 	all the mounts belonging to the destination mount's propagation tree.
1934  * 	the mount is marked as 'shared and slave'.
1935  * (*)	the mount continues to be a slave at the new location.
1936  *
1937  * if the source mount is a tree, the operations explained above is
1938  * applied to each mount in the tree.
1939  * Must be called without spinlocks held, since this function can sleep
1940  * in allocations.
1941  */
1942 static int attach_recursive_mnt(struct mount *source_mnt,
1943 			struct mount *dest_mnt,
1944 			struct mountpoint *dest_mp,
1945 			struct path *parent_path)
1946 {
1947 	HLIST_HEAD(tree_list);
1948 	struct mnt_namespace *ns = dest_mnt->mnt_ns;
1949 	struct mountpoint *smp;
1950 	struct mount *child, *p;
1951 	struct hlist_node *n;
1952 	int err;
1953 
1954 	/* Preallocate a mountpoint in case the new mounts need
1955 	 * to be tucked under other mounts.
1956 	 */
1957 	smp = get_mountpoint(source_mnt->mnt.mnt_root);
1958 	if (IS_ERR(smp))
1959 		return PTR_ERR(smp);
1960 
1961 	/* Is there space to add these mounts to the mount namespace? */
1962 	if (!parent_path) {
1963 		err = count_mounts(ns, source_mnt);
1964 		if (err)
1965 			goto out;
1966 	}
1967 
1968 	if (IS_MNT_SHARED(dest_mnt)) {
1969 		err = invent_group_ids(source_mnt, true);
1970 		if (err)
1971 			goto out;
1972 		err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list);
1973 		lock_mount_hash();
1974 		if (err)
1975 			goto out_cleanup_ids;
1976 		for (p = source_mnt; p; p = next_mnt(p, source_mnt))
1977 			set_mnt_shared(p);
1978 	} else {
1979 		lock_mount_hash();
1980 	}
1981 	if (parent_path) {
1982 		detach_mnt(source_mnt, parent_path);
1983 		attach_mnt(source_mnt, dest_mnt, dest_mp);
1984 		touch_mnt_namespace(source_mnt->mnt_ns);
1985 	} else {
1986 		mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt);
1987 		commit_tree(source_mnt);
1988 	}
1989 
1990 	hlist_for_each_entry_safe(child, n, &tree_list, mnt_hash) {
1991 		struct mount *q;
1992 		hlist_del_init(&child->mnt_hash);
1993 		q = __lookup_mnt(&child->mnt_parent->mnt,
1994 				 child->mnt_mountpoint);
1995 		if (q)
1996 			mnt_change_mountpoint(child, smp, q);
1997 		commit_tree(child);
1998 	}
1999 	put_mountpoint(smp);
2000 	unlock_mount_hash();
2001 
2002 	return 0;
2003 
2004  out_cleanup_ids:
2005 	while (!hlist_empty(&tree_list)) {
2006 		child = hlist_entry(tree_list.first, struct mount, mnt_hash);
2007 		child->mnt_parent->mnt_ns->pending_mounts = 0;
2008 		umount_tree(child, UMOUNT_SYNC);
2009 	}
2010 	unlock_mount_hash();
2011 	cleanup_group_ids(source_mnt, NULL);
2012  out:
2013 	ns->pending_mounts = 0;
2014 
2015 	read_seqlock_excl(&mount_lock);
2016 	put_mountpoint(smp);
2017 	read_sequnlock_excl(&mount_lock);
2018 
2019 	return err;
2020 }
2021 
2022 static struct mountpoint *lock_mount(struct path *path)
2023 {
2024 	struct vfsmount *mnt;
2025 	struct dentry *dentry = path->dentry;
2026 retry:
2027 	inode_lock(dentry->d_inode);
2028 	if (unlikely(cant_mount(dentry))) {
2029 		inode_unlock(dentry->d_inode);
2030 		return ERR_PTR(-ENOENT);
2031 	}
2032 	namespace_lock();
2033 	mnt = lookup_mnt(path);
2034 	if (likely(!mnt)) {
2035 		struct mountpoint *mp = get_mountpoint(dentry);
2036 		if (IS_ERR(mp)) {
2037 			namespace_unlock();
2038 			inode_unlock(dentry->d_inode);
2039 			return mp;
2040 		}
2041 		return mp;
2042 	}
2043 	namespace_unlock();
2044 	inode_unlock(path->dentry->d_inode);
2045 	path_put(path);
2046 	path->mnt = mnt;
2047 	dentry = path->dentry = dget(mnt->mnt_root);
2048 	goto retry;
2049 }
2050 
2051 static void unlock_mount(struct mountpoint *where)
2052 {
2053 	struct dentry *dentry = where->m_dentry;
2054 
2055 	read_seqlock_excl(&mount_lock);
2056 	put_mountpoint(where);
2057 	read_sequnlock_excl(&mount_lock);
2058 
2059 	namespace_unlock();
2060 	inode_unlock(dentry->d_inode);
2061 }
2062 
2063 static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp)
2064 {
2065 	if (mnt->mnt.mnt_sb->s_flags & SB_NOUSER)
2066 		return -EINVAL;
2067 
2068 	if (d_is_dir(mp->m_dentry) !=
2069 	      d_is_dir(mnt->mnt.mnt_root))
2070 		return -ENOTDIR;
2071 
2072 	return attach_recursive_mnt(mnt, p, mp, NULL);
2073 }
2074 
2075 /*
2076  * Sanity check the flags to change_mnt_propagation.
2077  */
2078 
2079 static int flags_to_propagation_type(int ms_flags)
2080 {
2081 	int type = ms_flags & ~(MS_REC | MS_SILENT);
2082 
2083 	/* Fail if any non-propagation flags are set */
2084 	if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2085 		return 0;
2086 	/* Only one propagation flag should be set */
2087 	if (!is_power_of_2(type))
2088 		return 0;
2089 	return type;
2090 }
2091 
2092 /*
2093  * recursively change the type of the mountpoint.
2094  */
2095 static int do_change_type(struct path *path, int ms_flags)
2096 {
2097 	struct mount *m;
2098 	struct mount *mnt = real_mount(path->mnt);
2099 	int recurse = ms_flags & MS_REC;
2100 	int type;
2101 	int err = 0;
2102 
2103 	if (path->dentry != path->mnt->mnt_root)
2104 		return -EINVAL;
2105 
2106 	type = flags_to_propagation_type(ms_flags);
2107 	if (!type)
2108 		return -EINVAL;
2109 
2110 	namespace_lock();
2111 	if (type == MS_SHARED) {
2112 		err = invent_group_ids(mnt, recurse);
2113 		if (err)
2114 			goto out_unlock;
2115 	}
2116 
2117 	lock_mount_hash();
2118 	for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
2119 		change_mnt_propagation(m, type);
2120 	unlock_mount_hash();
2121 
2122  out_unlock:
2123 	namespace_unlock();
2124 	return err;
2125 }
2126 
2127 static bool has_locked_children(struct mount *mnt, struct dentry *dentry)
2128 {
2129 	struct mount *child;
2130 	list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
2131 		if (!is_subdir(child->mnt_mountpoint, dentry))
2132 			continue;
2133 
2134 		if (child->mnt.mnt_flags & MNT_LOCKED)
2135 			return true;
2136 	}
2137 	return false;
2138 }
2139 
2140 /*
2141  * do loopback mount.
2142  */
2143 static int do_loopback(struct path *path, const char *old_name,
2144 				int recurse)
2145 {
2146 	struct path old_path;
2147 	struct mount *mnt = NULL, *old, *parent;
2148 	struct mountpoint *mp;
2149 	int err;
2150 	if (!old_name || !*old_name)
2151 		return -EINVAL;
2152 	err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
2153 	if (err)
2154 		return err;
2155 
2156 	err = -EINVAL;
2157 	if (mnt_ns_loop(old_path.dentry))
2158 		goto out;
2159 
2160 	mp = lock_mount(path);
2161 	err = PTR_ERR(mp);
2162 	if (IS_ERR(mp))
2163 		goto out;
2164 
2165 	old = real_mount(old_path.mnt);
2166 	parent = real_mount(path->mnt);
2167 
2168 	err = -EINVAL;
2169 	if (IS_MNT_UNBINDABLE(old))
2170 		goto out2;
2171 
2172 	if (!check_mnt(parent))
2173 		goto out2;
2174 
2175 	if (!check_mnt(old) && old_path.dentry->d_op != &ns_dentry_operations)
2176 		goto out2;
2177 
2178 	if (!recurse && has_locked_children(old, old_path.dentry))
2179 		goto out2;
2180 
2181 	if (recurse)
2182 		mnt = copy_tree(old, old_path.dentry, CL_COPY_MNT_NS_FILE);
2183 	else
2184 		mnt = clone_mnt(old, old_path.dentry, 0);
2185 
2186 	if (IS_ERR(mnt)) {
2187 		err = PTR_ERR(mnt);
2188 		goto out2;
2189 	}
2190 
2191 	mnt->mnt.mnt_flags &= ~MNT_LOCKED;
2192 
2193 	err = graft_tree(mnt, parent, mp);
2194 	if (err) {
2195 		lock_mount_hash();
2196 		umount_tree(mnt, UMOUNT_SYNC);
2197 		unlock_mount_hash();
2198 	}
2199 out2:
2200 	unlock_mount(mp);
2201 out:
2202 	path_put(&old_path);
2203 	return err;
2204 }
2205 
2206 static int change_mount_flags(struct vfsmount *mnt, int ms_flags)
2207 {
2208 	int error = 0;
2209 	int readonly_request = 0;
2210 
2211 	if (ms_flags & MS_RDONLY)
2212 		readonly_request = 1;
2213 	if (readonly_request == __mnt_is_readonly(mnt))
2214 		return 0;
2215 
2216 	if (readonly_request)
2217 		error = mnt_make_readonly(real_mount(mnt));
2218 	else
2219 		__mnt_unmake_readonly(real_mount(mnt));
2220 	return error;
2221 }
2222 
2223 /*
2224  * change filesystem flags. dir should be a physical root of filesystem.
2225  * If you've mounted a non-root directory somewhere and want to do remount
2226  * on it - tough luck.
2227  */
2228 static int do_remount(struct path *path, int ms_flags, int sb_flags,
2229 		      int mnt_flags, void *data)
2230 {
2231 	int err;
2232 	struct super_block *sb = path->mnt->mnt_sb;
2233 	struct mount *mnt = real_mount(path->mnt);
2234 
2235 	if (!check_mnt(mnt))
2236 		return -EINVAL;
2237 
2238 	if (path->dentry != path->mnt->mnt_root)
2239 		return -EINVAL;
2240 
2241 	/* Don't allow changing of locked mnt flags.
2242 	 *
2243 	 * No locks need to be held here while testing the various
2244 	 * MNT_LOCK flags because those flags can never be cleared
2245 	 * once they are set.
2246 	 */
2247 	if ((mnt->mnt.mnt_flags & MNT_LOCK_READONLY) &&
2248 	    !(mnt_flags & MNT_READONLY)) {
2249 		return -EPERM;
2250 	}
2251 	if ((mnt->mnt.mnt_flags & MNT_LOCK_NODEV) &&
2252 	    !(mnt_flags & MNT_NODEV)) {
2253 		return -EPERM;
2254 	}
2255 	if ((mnt->mnt.mnt_flags & MNT_LOCK_NOSUID) &&
2256 	    !(mnt_flags & MNT_NOSUID)) {
2257 		return -EPERM;
2258 	}
2259 	if ((mnt->mnt.mnt_flags & MNT_LOCK_NOEXEC) &&
2260 	    !(mnt_flags & MNT_NOEXEC)) {
2261 		return -EPERM;
2262 	}
2263 	if ((mnt->mnt.mnt_flags & MNT_LOCK_ATIME) &&
2264 	    ((mnt->mnt.mnt_flags & MNT_ATIME_MASK) != (mnt_flags & MNT_ATIME_MASK))) {
2265 		return -EPERM;
2266 	}
2267 
2268 	err = security_sb_remount(sb, data);
2269 	if (err)
2270 		return err;
2271 
2272 	down_write(&sb->s_umount);
2273 	if (ms_flags & MS_BIND)
2274 		err = change_mount_flags(path->mnt, ms_flags);
2275 	else if (!ns_capable(sb->s_user_ns, CAP_SYS_ADMIN))
2276 		err = -EPERM;
2277 	else
2278 		err = do_remount_sb(sb, sb_flags, data, 0);
2279 	if (!err) {
2280 		lock_mount_hash();
2281 		mnt_flags |= mnt->mnt.mnt_flags & ~MNT_USER_SETTABLE_MASK;
2282 		mnt->mnt.mnt_flags = mnt_flags;
2283 		touch_mnt_namespace(mnt->mnt_ns);
2284 		unlock_mount_hash();
2285 	}
2286 	up_write(&sb->s_umount);
2287 	return err;
2288 }
2289 
2290 static inline int tree_contains_unbindable(struct mount *mnt)
2291 {
2292 	struct mount *p;
2293 	for (p = mnt; p; p = next_mnt(p, mnt)) {
2294 		if (IS_MNT_UNBINDABLE(p))
2295 			return 1;
2296 	}
2297 	return 0;
2298 }
2299 
2300 static int do_move_mount(struct path *path, const char *old_name)
2301 {
2302 	struct path old_path, parent_path;
2303 	struct mount *p;
2304 	struct mount *old;
2305 	struct mountpoint *mp;
2306 	int err;
2307 	if (!old_name || !*old_name)
2308 		return -EINVAL;
2309 	err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
2310 	if (err)
2311 		return err;
2312 
2313 	mp = lock_mount(path);
2314 	err = PTR_ERR(mp);
2315 	if (IS_ERR(mp))
2316 		goto out;
2317 
2318 	old = real_mount(old_path.mnt);
2319 	p = real_mount(path->mnt);
2320 
2321 	err = -EINVAL;
2322 	if (!check_mnt(p) || !check_mnt(old))
2323 		goto out1;
2324 
2325 	if (old->mnt.mnt_flags & MNT_LOCKED)
2326 		goto out1;
2327 
2328 	err = -EINVAL;
2329 	if (old_path.dentry != old_path.mnt->mnt_root)
2330 		goto out1;
2331 
2332 	if (!mnt_has_parent(old))
2333 		goto out1;
2334 
2335 	if (d_is_dir(path->dentry) !=
2336 	      d_is_dir(old_path.dentry))
2337 		goto out1;
2338 	/*
2339 	 * Don't move a mount residing in a shared parent.
2340 	 */
2341 	if (IS_MNT_SHARED(old->mnt_parent))
2342 		goto out1;
2343 	/*
2344 	 * Don't move a mount tree containing unbindable mounts to a destination
2345 	 * mount which is shared.
2346 	 */
2347 	if (IS_MNT_SHARED(p) && tree_contains_unbindable(old))
2348 		goto out1;
2349 	err = -ELOOP;
2350 	for (; mnt_has_parent(p); p = p->mnt_parent)
2351 		if (p == old)
2352 			goto out1;
2353 
2354 	err = attach_recursive_mnt(old, real_mount(path->mnt), mp, &parent_path);
2355 	if (err)
2356 		goto out1;
2357 
2358 	/* if the mount is moved, it should no longer be expire
2359 	 * automatically */
2360 	list_del_init(&old->mnt_expire);
2361 out1:
2362 	unlock_mount(mp);
2363 out:
2364 	if (!err)
2365 		path_put(&parent_path);
2366 	path_put(&old_path);
2367 	return err;
2368 }
2369 
2370 static struct vfsmount *fs_set_subtype(struct vfsmount *mnt, const char *fstype)
2371 {
2372 	int err;
2373 	const char *subtype = strchr(fstype, '.');
2374 	if (subtype) {
2375 		subtype++;
2376 		err = -EINVAL;
2377 		if (!subtype[0])
2378 			goto err;
2379 	} else
2380 		subtype = "";
2381 
2382 	mnt->mnt_sb->s_subtype = kstrdup(subtype, GFP_KERNEL);
2383 	err = -ENOMEM;
2384 	if (!mnt->mnt_sb->s_subtype)
2385 		goto err;
2386 	return mnt;
2387 
2388  err:
2389 	mntput(mnt);
2390 	return ERR_PTR(err);
2391 }
2392 
2393 /*
2394  * add a mount into a namespace's mount tree
2395  */
2396 static int do_add_mount(struct mount *newmnt, struct path *path, int mnt_flags)
2397 {
2398 	struct mountpoint *mp;
2399 	struct mount *parent;
2400 	int err;
2401 
2402 	mnt_flags &= ~MNT_INTERNAL_FLAGS;
2403 
2404 	mp = lock_mount(path);
2405 	if (IS_ERR(mp))
2406 		return PTR_ERR(mp);
2407 
2408 	parent = real_mount(path->mnt);
2409 	err = -EINVAL;
2410 	if (unlikely(!check_mnt(parent))) {
2411 		/* that's acceptable only for automounts done in private ns */
2412 		if (!(mnt_flags & MNT_SHRINKABLE))
2413 			goto unlock;
2414 		/* ... and for those we'd better have mountpoint still alive */
2415 		if (!parent->mnt_ns)
2416 			goto unlock;
2417 	}
2418 
2419 	/* Refuse the same filesystem on the same mount point */
2420 	err = -EBUSY;
2421 	if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb &&
2422 	    path->mnt->mnt_root == path->dentry)
2423 		goto unlock;
2424 
2425 	err = -EINVAL;
2426 	if (d_is_symlink(newmnt->mnt.mnt_root))
2427 		goto unlock;
2428 
2429 	newmnt->mnt.mnt_flags = mnt_flags;
2430 	err = graft_tree(newmnt, parent, mp);
2431 
2432 unlock:
2433 	unlock_mount(mp);
2434 	return err;
2435 }
2436 
2437 static bool mount_too_revealing(struct vfsmount *mnt, int *new_mnt_flags);
2438 
2439 /*
2440  * create a new mount for userspace and request it to be added into the
2441  * namespace's tree
2442  */
2443 static int do_new_mount(struct path *path, const char *fstype, int sb_flags,
2444 			int mnt_flags, const char *name, void *data)
2445 {
2446 	struct file_system_type *type;
2447 	struct vfsmount *mnt;
2448 	int err;
2449 
2450 	if (!fstype)
2451 		return -EINVAL;
2452 
2453 	type = get_fs_type(fstype);
2454 	if (!type)
2455 		return -ENODEV;
2456 
2457 	mnt = vfs_kern_mount(type, sb_flags, name, data);
2458 	if (!IS_ERR(mnt) && (type->fs_flags & FS_HAS_SUBTYPE) &&
2459 	    !mnt->mnt_sb->s_subtype)
2460 		mnt = fs_set_subtype(mnt, fstype);
2461 
2462 	put_filesystem(type);
2463 	if (IS_ERR(mnt))
2464 		return PTR_ERR(mnt);
2465 
2466 	if (mount_too_revealing(mnt, &mnt_flags)) {
2467 		mntput(mnt);
2468 		return -EPERM;
2469 	}
2470 
2471 	err = do_add_mount(real_mount(mnt), path, mnt_flags);
2472 	if (err)
2473 		mntput(mnt);
2474 	return err;
2475 }
2476 
2477 int finish_automount(struct vfsmount *m, struct path *path)
2478 {
2479 	struct mount *mnt = real_mount(m);
2480 	int err;
2481 	/* The new mount record should have at least 2 refs to prevent it being
2482 	 * expired before we get a chance to add it
2483 	 */
2484 	BUG_ON(mnt_get_count(mnt) < 2);
2485 
2486 	if (m->mnt_sb == path->mnt->mnt_sb &&
2487 	    m->mnt_root == path->dentry) {
2488 		err = -ELOOP;
2489 		goto fail;
2490 	}
2491 
2492 	err = do_add_mount(mnt, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
2493 	if (!err)
2494 		return 0;
2495 fail:
2496 	/* remove m from any expiration list it may be on */
2497 	if (!list_empty(&mnt->mnt_expire)) {
2498 		namespace_lock();
2499 		list_del_init(&mnt->mnt_expire);
2500 		namespace_unlock();
2501 	}
2502 	mntput(m);
2503 	mntput(m);
2504 	return err;
2505 }
2506 
2507 /**
2508  * mnt_set_expiry - Put a mount on an expiration list
2509  * @mnt: The mount to list.
2510  * @expiry_list: The list to add the mount to.
2511  */
2512 void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
2513 {
2514 	namespace_lock();
2515 
2516 	list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
2517 
2518 	namespace_unlock();
2519 }
2520 EXPORT_SYMBOL(mnt_set_expiry);
2521 
2522 /*
2523  * process a list of expirable mountpoints with the intent of discarding any
2524  * mountpoints that aren't in use and haven't been touched since last we came
2525  * here
2526  */
2527 void mark_mounts_for_expiry(struct list_head *mounts)
2528 {
2529 	struct mount *mnt, *next;
2530 	LIST_HEAD(graveyard);
2531 
2532 	if (list_empty(mounts))
2533 		return;
2534 
2535 	namespace_lock();
2536 	lock_mount_hash();
2537 
2538 	/* extract from the expiration list every vfsmount that matches the
2539 	 * following criteria:
2540 	 * - only referenced by its parent vfsmount
2541 	 * - still marked for expiry (marked on the last call here; marks are
2542 	 *   cleared by mntput())
2543 	 */
2544 	list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
2545 		if (!xchg(&mnt->mnt_expiry_mark, 1) ||
2546 			propagate_mount_busy(mnt, 1))
2547 			continue;
2548 		list_move(&mnt->mnt_expire, &graveyard);
2549 	}
2550 	while (!list_empty(&graveyard)) {
2551 		mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
2552 		touch_mnt_namespace(mnt->mnt_ns);
2553 		umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
2554 	}
2555 	unlock_mount_hash();
2556 	namespace_unlock();
2557 }
2558 
2559 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
2560 
2561 /*
2562  * Ripoff of 'select_parent()'
2563  *
2564  * search the list of submounts for a given mountpoint, and move any
2565  * shrinkable submounts to the 'graveyard' list.
2566  */
2567 static int select_submounts(struct mount *parent, struct list_head *graveyard)
2568 {
2569 	struct mount *this_parent = parent;
2570 	struct list_head *next;
2571 	int found = 0;
2572 
2573 repeat:
2574 	next = this_parent->mnt_mounts.next;
2575 resume:
2576 	while (next != &this_parent->mnt_mounts) {
2577 		struct list_head *tmp = next;
2578 		struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
2579 
2580 		next = tmp->next;
2581 		if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
2582 			continue;
2583 		/*
2584 		 * Descend a level if the d_mounts list is non-empty.
2585 		 */
2586 		if (!list_empty(&mnt->mnt_mounts)) {
2587 			this_parent = mnt;
2588 			goto repeat;
2589 		}
2590 
2591 		if (!propagate_mount_busy(mnt, 1)) {
2592 			list_move_tail(&mnt->mnt_expire, graveyard);
2593 			found++;
2594 		}
2595 	}
2596 	/*
2597 	 * All done at this level ... ascend and resume the search
2598 	 */
2599 	if (this_parent != parent) {
2600 		next = this_parent->mnt_child.next;
2601 		this_parent = this_parent->mnt_parent;
2602 		goto resume;
2603 	}
2604 	return found;
2605 }
2606 
2607 /*
2608  * process a list of expirable mountpoints with the intent of discarding any
2609  * submounts of a specific parent mountpoint
2610  *
2611  * mount_lock must be held for write
2612  */
2613 static void shrink_submounts(struct mount *mnt)
2614 {
2615 	LIST_HEAD(graveyard);
2616 	struct mount *m;
2617 
2618 	/* extract submounts of 'mountpoint' from the expiration list */
2619 	while (select_submounts(mnt, &graveyard)) {
2620 		while (!list_empty(&graveyard)) {
2621 			m = list_first_entry(&graveyard, struct mount,
2622 						mnt_expire);
2623 			touch_mnt_namespace(m->mnt_ns);
2624 			umount_tree(m, UMOUNT_PROPAGATE|UMOUNT_SYNC);
2625 		}
2626 	}
2627 }
2628 
2629 /*
2630  * Some copy_from_user() implementations do not return the exact number of
2631  * bytes remaining to copy on a fault.  But copy_mount_options() requires that.
2632  * Note that this function differs from copy_from_user() in that it will oops
2633  * on bad values of `to', rather than returning a short copy.
2634  */
2635 static long exact_copy_from_user(void *to, const void __user * from,
2636 				 unsigned long n)
2637 {
2638 	char *t = to;
2639 	const char __user *f = from;
2640 	char c;
2641 
2642 	if (!access_ok(VERIFY_READ, from, n))
2643 		return n;
2644 
2645 	while (n) {
2646 		if (__get_user(c, f)) {
2647 			memset(t, 0, n);
2648 			break;
2649 		}
2650 		*t++ = c;
2651 		f++;
2652 		n--;
2653 	}
2654 	return n;
2655 }
2656 
2657 void *copy_mount_options(const void __user * data)
2658 {
2659 	int i;
2660 	unsigned long size;
2661 	char *copy;
2662 
2663 	if (!data)
2664 		return NULL;
2665 
2666 	copy = kmalloc(PAGE_SIZE, GFP_KERNEL);
2667 	if (!copy)
2668 		return ERR_PTR(-ENOMEM);
2669 
2670 	/* We only care that *some* data at the address the user
2671 	 * gave us is valid.  Just in case, we'll zero
2672 	 * the remainder of the page.
2673 	 */
2674 	/* copy_from_user cannot cross TASK_SIZE ! */
2675 	size = TASK_SIZE - (unsigned long)data;
2676 	if (size > PAGE_SIZE)
2677 		size = PAGE_SIZE;
2678 
2679 	i = size - exact_copy_from_user(copy, data, size);
2680 	if (!i) {
2681 		kfree(copy);
2682 		return ERR_PTR(-EFAULT);
2683 	}
2684 	if (i != PAGE_SIZE)
2685 		memset(copy + i, 0, PAGE_SIZE - i);
2686 	return copy;
2687 }
2688 
2689 char *copy_mount_string(const void __user *data)
2690 {
2691 	return data ? strndup_user(data, PAGE_SIZE) : NULL;
2692 }
2693 
2694 /*
2695  * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
2696  * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
2697  *
2698  * data is a (void *) that can point to any structure up to
2699  * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
2700  * information (or be NULL).
2701  *
2702  * Pre-0.97 versions of mount() didn't have a flags word.
2703  * When the flags word was introduced its top half was required
2704  * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
2705  * Therefore, if this magic number is present, it carries no information
2706  * and must be discarded.
2707  */
2708 long do_mount(const char *dev_name, const char __user *dir_name,
2709 		const char *type_page, unsigned long flags, void *data_page)
2710 {
2711 	struct path path;
2712 	unsigned int mnt_flags = 0, sb_flags;
2713 	int retval = 0;
2714 
2715 	/* Discard magic */
2716 	if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
2717 		flags &= ~MS_MGC_MSK;
2718 
2719 	/* Basic sanity checks */
2720 	if (data_page)
2721 		((char *)data_page)[PAGE_SIZE - 1] = 0;
2722 
2723 	if (flags & MS_NOUSER)
2724 		return -EINVAL;
2725 
2726 	/* ... and get the mountpoint */
2727 	retval = user_path(dir_name, &path);
2728 	if (retval)
2729 		return retval;
2730 
2731 	retval = security_sb_mount(dev_name, &path,
2732 				   type_page, flags, data_page);
2733 	if (!retval && !may_mount())
2734 		retval = -EPERM;
2735 	if (!retval && (flags & SB_MANDLOCK) && !may_mandlock())
2736 		retval = -EPERM;
2737 	if (retval)
2738 		goto dput_out;
2739 
2740 	/* Default to relatime unless overriden */
2741 	if (!(flags & MS_NOATIME))
2742 		mnt_flags |= MNT_RELATIME;
2743 
2744 	/* Separate the per-mountpoint flags */
2745 	if (flags & MS_NOSUID)
2746 		mnt_flags |= MNT_NOSUID;
2747 	if (flags & MS_NODEV)
2748 		mnt_flags |= MNT_NODEV;
2749 	if (flags & MS_NOEXEC)
2750 		mnt_flags |= MNT_NOEXEC;
2751 	if (flags & MS_NOATIME)
2752 		mnt_flags |= MNT_NOATIME;
2753 	if (flags & MS_NODIRATIME)
2754 		mnt_flags |= MNT_NODIRATIME;
2755 	if (flags & MS_STRICTATIME)
2756 		mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
2757 	if (flags & MS_RDONLY)
2758 		mnt_flags |= MNT_READONLY;
2759 
2760 	/* The default atime for remount is preservation */
2761 	if ((flags & MS_REMOUNT) &&
2762 	    ((flags & (MS_NOATIME | MS_NODIRATIME | MS_RELATIME |
2763 		       MS_STRICTATIME)) == 0)) {
2764 		mnt_flags &= ~MNT_ATIME_MASK;
2765 		mnt_flags |= path.mnt->mnt_flags & MNT_ATIME_MASK;
2766 	}
2767 
2768 	sb_flags = flags & (SB_RDONLY |
2769 			    SB_SYNCHRONOUS |
2770 			    SB_MANDLOCK |
2771 			    SB_DIRSYNC |
2772 			    SB_SILENT |
2773 			    SB_POSIXACL |
2774 			    SB_LAZYTIME |
2775 			    SB_I_VERSION);
2776 
2777 	if (flags & MS_REMOUNT)
2778 		retval = do_remount(&path, flags, sb_flags, mnt_flags,
2779 				    data_page);
2780 	else if (flags & MS_BIND)
2781 		retval = do_loopback(&path, dev_name, flags & MS_REC);
2782 	else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2783 		retval = do_change_type(&path, flags);
2784 	else if (flags & MS_MOVE)
2785 		retval = do_move_mount(&path, dev_name);
2786 	else
2787 		retval = do_new_mount(&path, type_page, sb_flags, mnt_flags,
2788 				      dev_name, data_page);
2789 dput_out:
2790 	path_put(&path);
2791 	return retval;
2792 }
2793 
2794 static struct ucounts *inc_mnt_namespaces(struct user_namespace *ns)
2795 {
2796 	return inc_ucount(ns, current_euid(), UCOUNT_MNT_NAMESPACES);
2797 }
2798 
2799 static void dec_mnt_namespaces(struct ucounts *ucounts)
2800 {
2801 	dec_ucount(ucounts, UCOUNT_MNT_NAMESPACES);
2802 }
2803 
2804 static void free_mnt_ns(struct mnt_namespace *ns)
2805 {
2806 	ns_free_inum(&ns->ns);
2807 	dec_mnt_namespaces(ns->ucounts);
2808 	put_user_ns(ns->user_ns);
2809 	kfree(ns);
2810 }
2811 
2812 /*
2813  * Assign a sequence number so we can detect when we attempt to bind
2814  * mount a reference to an older mount namespace into the current
2815  * mount namespace, preventing reference counting loops.  A 64bit
2816  * number incrementing at 10Ghz will take 12,427 years to wrap which
2817  * is effectively never, so we can ignore the possibility.
2818  */
2819 static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1);
2820 
2821 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns)
2822 {
2823 	struct mnt_namespace *new_ns;
2824 	struct ucounts *ucounts;
2825 	int ret;
2826 
2827 	ucounts = inc_mnt_namespaces(user_ns);
2828 	if (!ucounts)
2829 		return ERR_PTR(-ENOSPC);
2830 
2831 	new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
2832 	if (!new_ns) {
2833 		dec_mnt_namespaces(ucounts);
2834 		return ERR_PTR(-ENOMEM);
2835 	}
2836 	ret = ns_alloc_inum(&new_ns->ns);
2837 	if (ret) {
2838 		kfree(new_ns);
2839 		dec_mnt_namespaces(ucounts);
2840 		return ERR_PTR(ret);
2841 	}
2842 	new_ns->ns.ops = &mntns_operations;
2843 	new_ns->seq = atomic64_add_return(1, &mnt_ns_seq);
2844 	atomic_set(&new_ns->count, 1);
2845 	new_ns->root = NULL;
2846 	INIT_LIST_HEAD(&new_ns->list);
2847 	init_waitqueue_head(&new_ns->poll);
2848 	new_ns->event = 0;
2849 	new_ns->user_ns = get_user_ns(user_ns);
2850 	new_ns->ucounts = ucounts;
2851 	new_ns->mounts = 0;
2852 	new_ns->pending_mounts = 0;
2853 	return new_ns;
2854 }
2855 
2856 __latent_entropy
2857 struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
2858 		struct user_namespace *user_ns, struct fs_struct *new_fs)
2859 {
2860 	struct mnt_namespace *new_ns;
2861 	struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
2862 	struct mount *p, *q;
2863 	struct mount *old;
2864 	struct mount *new;
2865 	int copy_flags;
2866 
2867 	BUG_ON(!ns);
2868 
2869 	if (likely(!(flags & CLONE_NEWNS))) {
2870 		get_mnt_ns(ns);
2871 		return ns;
2872 	}
2873 
2874 	old = ns->root;
2875 
2876 	new_ns = alloc_mnt_ns(user_ns);
2877 	if (IS_ERR(new_ns))
2878 		return new_ns;
2879 
2880 	namespace_lock();
2881 	/* First pass: copy the tree topology */
2882 	copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE;
2883 	if (user_ns != ns->user_ns)
2884 		copy_flags |= CL_SHARED_TO_SLAVE | CL_UNPRIVILEGED;
2885 	new = copy_tree(old, old->mnt.mnt_root, copy_flags);
2886 	if (IS_ERR(new)) {
2887 		namespace_unlock();
2888 		free_mnt_ns(new_ns);
2889 		return ERR_CAST(new);
2890 	}
2891 	new_ns->root = new;
2892 	list_add_tail(&new_ns->list, &new->mnt_list);
2893 
2894 	/*
2895 	 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
2896 	 * as belonging to new namespace.  We have already acquired a private
2897 	 * fs_struct, so tsk->fs->lock is not needed.
2898 	 */
2899 	p = old;
2900 	q = new;
2901 	while (p) {
2902 		q->mnt_ns = new_ns;
2903 		new_ns->mounts++;
2904 		if (new_fs) {
2905 			if (&p->mnt == new_fs->root.mnt) {
2906 				new_fs->root.mnt = mntget(&q->mnt);
2907 				rootmnt = &p->mnt;
2908 			}
2909 			if (&p->mnt == new_fs->pwd.mnt) {
2910 				new_fs->pwd.mnt = mntget(&q->mnt);
2911 				pwdmnt = &p->mnt;
2912 			}
2913 		}
2914 		p = next_mnt(p, old);
2915 		q = next_mnt(q, new);
2916 		if (!q)
2917 			break;
2918 		while (p->mnt.mnt_root != q->mnt.mnt_root)
2919 			p = next_mnt(p, old);
2920 	}
2921 	namespace_unlock();
2922 
2923 	if (rootmnt)
2924 		mntput(rootmnt);
2925 	if (pwdmnt)
2926 		mntput(pwdmnt);
2927 
2928 	return new_ns;
2929 }
2930 
2931 /**
2932  * create_mnt_ns - creates a private namespace and adds a root filesystem
2933  * @mnt: pointer to the new root filesystem mountpoint
2934  */
2935 static struct mnt_namespace *create_mnt_ns(struct vfsmount *m)
2936 {
2937 	struct mnt_namespace *new_ns = alloc_mnt_ns(&init_user_ns);
2938 	if (!IS_ERR(new_ns)) {
2939 		struct mount *mnt = real_mount(m);
2940 		mnt->mnt_ns = new_ns;
2941 		new_ns->root = mnt;
2942 		new_ns->mounts++;
2943 		list_add(&mnt->mnt_list, &new_ns->list);
2944 	} else {
2945 		mntput(m);
2946 	}
2947 	return new_ns;
2948 }
2949 
2950 struct dentry *mount_subtree(struct vfsmount *mnt, const char *name)
2951 {
2952 	struct mnt_namespace *ns;
2953 	struct super_block *s;
2954 	struct path path;
2955 	int err;
2956 
2957 	ns = create_mnt_ns(mnt);
2958 	if (IS_ERR(ns))
2959 		return ERR_CAST(ns);
2960 
2961 	err = vfs_path_lookup(mnt->mnt_root, mnt,
2962 			name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
2963 
2964 	put_mnt_ns(ns);
2965 
2966 	if (err)
2967 		return ERR_PTR(err);
2968 
2969 	/* trade a vfsmount reference for active sb one */
2970 	s = path.mnt->mnt_sb;
2971 	atomic_inc(&s->s_active);
2972 	mntput(path.mnt);
2973 	/* lock the sucker */
2974 	down_write(&s->s_umount);
2975 	/* ... and return the root of (sub)tree on it */
2976 	return path.dentry;
2977 }
2978 EXPORT_SYMBOL(mount_subtree);
2979 
2980 int ksys_mount(char __user *dev_name, char __user *dir_name, char __user *type,
2981 	       unsigned long flags, void __user *data)
2982 {
2983 	int ret;
2984 	char *kernel_type;
2985 	char *kernel_dev;
2986 	void *options;
2987 
2988 	kernel_type = copy_mount_string(type);
2989 	ret = PTR_ERR(kernel_type);
2990 	if (IS_ERR(kernel_type))
2991 		goto out_type;
2992 
2993 	kernel_dev = copy_mount_string(dev_name);
2994 	ret = PTR_ERR(kernel_dev);
2995 	if (IS_ERR(kernel_dev))
2996 		goto out_dev;
2997 
2998 	options = copy_mount_options(data);
2999 	ret = PTR_ERR(options);
3000 	if (IS_ERR(options))
3001 		goto out_data;
3002 
3003 	ret = do_mount(kernel_dev, dir_name, kernel_type, flags, options);
3004 
3005 	kfree(options);
3006 out_data:
3007 	kfree(kernel_dev);
3008 out_dev:
3009 	kfree(kernel_type);
3010 out_type:
3011 	return ret;
3012 }
3013 
3014 SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
3015 		char __user *, type, unsigned long, flags, void __user *, data)
3016 {
3017 	return ksys_mount(dev_name, dir_name, type, flags, data);
3018 }
3019 
3020 /*
3021  * Return true if path is reachable from root
3022  *
3023  * namespace_sem or mount_lock is held
3024  */
3025 bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
3026 			 const struct path *root)
3027 {
3028 	while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
3029 		dentry = mnt->mnt_mountpoint;
3030 		mnt = mnt->mnt_parent;
3031 	}
3032 	return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
3033 }
3034 
3035 bool path_is_under(const struct path *path1, const struct path *path2)
3036 {
3037 	bool res;
3038 	read_seqlock_excl(&mount_lock);
3039 	res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
3040 	read_sequnlock_excl(&mount_lock);
3041 	return res;
3042 }
3043 EXPORT_SYMBOL(path_is_under);
3044 
3045 /*
3046  * pivot_root Semantics:
3047  * Moves the root file system of the current process to the directory put_old,
3048  * makes new_root as the new root file system of the current process, and sets
3049  * root/cwd of all processes which had them on the current root to new_root.
3050  *
3051  * Restrictions:
3052  * The new_root and put_old must be directories, and  must not be on the
3053  * same file  system as the current process root. The put_old  must  be
3054  * underneath new_root,  i.e. adding a non-zero number of /.. to the string
3055  * pointed to by put_old must yield the same directory as new_root. No other
3056  * file system may be mounted on put_old. After all, new_root is a mountpoint.
3057  *
3058  * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
3059  * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
3060  * in this situation.
3061  *
3062  * Notes:
3063  *  - we don't move root/cwd if they are not at the root (reason: if something
3064  *    cared enough to change them, it's probably wrong to force them elsewhere)
3065  *  - it's okay to pick a root that isn't the root of a file system, e.g.
3066  *    /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
3067  *    though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
3068  *    first.
3069  */
3070 SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
3071 		const char __user *, put_old)
3072 {
3073 	struct path new, old, parent_path, root_parent, root;
3074 	struct mount *new_mnt, *root_mnt, *old_mnt;
3075 	struct mountpoint *old_mp, *root_mp;
3076 	int error;
3077 
3078 	if (!may_mount())
3079 		return -EPERM;
3080 
3081 	error = user_path_dir(new_root, &new);
3082 	if (error)
3083 		goto out0;
3084 
3085 	error = user_path_dir(put_old, &old);
3086 	if (error)
3087 		goto out1;
3088 
3089 	error = security_sb_pivotroot(&old, &new);
3090 	if (error)
3091 		goto out2;
3092 
3093 	get_fs_root(current->fs, &root);
3094 	old_mp = lock_mount(&old);
3095 	error = PTR_ERR(old_mp);
3096 	if (IS_ERR(old_mp))
3097 		goto out3;
3098 
3099 	error = -EINVAL;
3100 	new_mnt = real_mount(new.mnt);
3101 	root_mnt = real_mount(root.mnt);
3102 	old_mnt = real_mount(old.mnt);
3103 	if (IS_MNT_SHARED(old_mnt) ||
3104 		IS_MNT_SHARED(new_mnt->mnt_parent) ||
3105 		IS_MNT_SHARED(root_mnt->mnt_parent))
3106 		goto out4;
3107 	if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
3108 		goto out4;
3109 	if (new_mnt->mnt.mnt_flags & MNT_LOCKED)
3110 		goto out4;
3111 	error = -ENOENT;
3112 	if (d_unlinked(new.dentry))
3113 		goto out4;
3114 	error = -EBUSY;
3115 	if (new_mnt == root_mnt || old_mnt == root_mnt)
3116 		goto out4; /* loop, on the same file system  */
3117 	error = -EINVAL;
3118 	if (root.mnt->mnt_root != root.dentry)
3119 		goto out4; /* not a mountpoint */
3120 	if (!mnt_has_parent(root_mnt))
3121 		goto out4; /* not attached */
3122 	root_mp = root_mnt->mnt_mp;
3123 	if (new.mnt->mnt_root != new.dentry)
3124 		goto out4; /* not a mountpoint */
3125 	if (!mnt_has_parent(new_mnt))
3126 		goto out4; /* not attached */
3127 	/* make sure we can reach put_old from new_root */
3128 	if (!is_path_reachable(old_mnt, old.dentry, &new))
3129 		goto out4;
3130 	/* make certain new is below the root */
3131 	if (!is_path_reachable(new_mnt, new.dentry, &root))
3132 		goto out4;
3133 	root_mp->m_count++; /* pin it so it won't go away */
3134 	lock_mount_hash();
3135 	detach_mnt(new_mnt, &parent_path);
3136 	detach_mnt(root_mnt, &root_parent);
3137 	if (root_mnt->mnt.mnt_flags & MNT_LOCKED) {
3138 		new_mnt->mnt.mnt_flags |= MNT_LOCKED;
3139 		root_mnt->mnt.mnt_flags &= ~MNT_LOCKED;
3140 	}
3141 	/* mount old root on put_old */
3142 	attach_mnt(root_mnt, old_mnt, old_mp);
3143 	/* mount new_root on / */
3144 	attach_mnt(new_mnt, real_mount(root_parent.mnt), root_mp);
3145 	touch_mnt_namespace(current->nsproxy->mnt_ns);
3146 	/* A moved mount should not expire automatically */
3147 	list_del_init(&new_mnt->mnt_expire);
3148 	put_mountpoint(root_mp);
3149 	unlock_mount_hash();
3150 	chroot_fs_refs(&root, &new);
3151 	error = 0;
3152 out4:
3153 	unlock_mount(old_mp);
3154 	if (!error) {
3155 		path_put(&root_parent);
3156 		path_put(&parent_path);
3157 	}
3158 out3:
3159 	path_put(&root);
3160 out2:
3161 	path_put(&old);
3162 out1:
3163 	path_put(&new);
3164 out0:
3165 	return error;
3166 }
3167 
3168 static void __init init_mount_tree(void)
3169 {
3170 	struct vfsmount *mnt;
3171 	struct mnt_namespace *ns;
3172 	struct path root;
3173 	struct file_system_type *type;
3174 
3175 	type = get_fs_type("rootfs");
3176 	if (!type)
3177 		panic("Can't find rootfs type");
3178 	mnt = vfs_kern_mount(type, 0, "rootfs", NULL);
3179 	put_filesystem(type);
3180 	if (IS_ERR(mnt))
3181 		panic("Can't create rootfs");
3182 
3183 	ns = create_mnt_ns(mnt);
3184 	if (IS_ERR(ns))
3185 		panic("Can't allocate initial namespace");
3186 
3187 	init_task.nsproxy->mnt_ns = ns;
3188 	get_mnt_ns(ns);
3189 
3190 	root.mnt = mnt;
3191 	root.dentry = mnt->mnt_root;
3192 	mnt->mnt_flags |= MNT_LOCKED;
3193 
3194 	set_fs_pwd(current->fs, &root);
3195 	set_fs_root(current->fs, &root);
3196 }
3197 
3198 void __init mnt_init(void)
3199 {
3200 	int err;
3201 
3202 	mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
3203 			0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
3204 
3205 	mount_hashtable = alloc_large_system_hash("Mount-cache",
3206 				sizeof(struct hlist_head),
3207 				mhash_entries, 19,
3208 				HASH_ZERO,
3209 				&m_hash_shift, &m_hash_mask, 0, 0);
3210 	mountpoint_hashtable = alloc_large_system_hash("Mountpoint-cache",
3211 				sizeof(struct hlist_head),
3212 				mphash_entries, 19,
3213 				HASH_ZERO,
3214 				&mp_hash_shift, &mp_hash_mask, 0, 0);
3215 
3216 	if (!mount_hashtable || !mountpoint_hashtable)
3217 		panic("Failed to allocate mount hash table\n");
3218 
3219 	kernfs_init();
3220 
3221 	err = sysfs_init();
3222 	if (err)
3223 		printk(KERN_WARNING "%s: sysfs_init error: %d\n",
3224 			__func__, err);
3225 	fs_kobj = kobject_create_and_add("fs", NULL);
3226 	if (!fs_kobj)
3227 		printk(KERN_WARNING "%s: kobj create error\n", __func__);
3228 	init_rootfs();
3229 	init_mount_tree();
3230 }
3231 
3232 void put_mnt_ns(struct mnt_namespace *ns)
3233 {
3234 	if (!atomic_dec_and_test(&ns->count))
3235 		return;
3236 	drop_collected_mounts(&ns->root->mnt);
3237 	free_mnt_ns(ns);
3238 }
3239 
3240 struct vfsmount *kern_mount_data(struct file_system_type *type, void *data)
3241 {
3242 	struct vfsmount *mnt;
3243 	mnt = vfs_kern_mount(type, SB_KERNMOUNT, type->name, data);
3244 	if (!IS_ERR(mnt)) {
3245 		/*
3246 		 * it is a longterm mount, don't release mnt until
3247 		 * we unmount before file sys is unregistered
3248 		*/
3249 		real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
3250 	}
3251 	return mnt;
3252 }
3253 EXPORT_SYMBOL_GPL(kern_mount_data);
3254 
3255 void kern_unmount(struct vfsmount *mnt)
3256 {
3257 	/* release long term mount so mount point can be released */
3258 	if (!IS_ERR_OR_NULL(mnt)) {
3259 		real_mount(mnt)->mnt_ns = NULL;
3260 		synchronize_rcu();	/* yecchhh... */
3261 		mntput(mnt);
3262 	}
3263 }
3264 EXPORT_SYMBOL(kern_unmount);
3265 
3266 bool our_mnt(struct vfsmount *mnt)
3267 {
3268 	return check_mnt(real_mount(mnt));
3269 }
3270 
3271 bool current_chrooted(void)
3272 {
3273 	/* Does the current process have a non-standard root */
3274 	struct path ns_root;
3275 	struct path fs_root;
3276 	bool chrooted;
3277 
3278 	/* Find the namespace root */
3279 	ns_root.mnt = &current->nsproxy->mnt_ns->root->mnt;
3280 	ns_root.dentry = ns_root.mnt->mnt_root;
3281 	path_get(&ns_root);
3282 	while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root))
3283 		;
3284 
3285 	get_fs_root(current->fs, &fs_root);
3286 
3287 	chrooted = !path_equal(&fs_root, &ns_root);
3288 
3289 	path_put(&fs_root);
3290 	path_put(&ns_root);
3291 
3292 	return chrooted;
3293 }
3294 
3295 static bool mnt_already_visible(struct mnt_namespace *ns, struct vfsmount *new,
3296 				int *new_mnt_flags)
3297 {
3298 	int new_flags = *new_mnt_flags;
3299 	struct mount *mnt;
3300 	bool visible = false;
3301 
3302 	down_read(&namespace_sem);
3303 	list_for_each_entry(mnt, &ns->list, mnt_list) {
3304 		struct mount *child;
3305 		int mnt_flags;
3306 
3307 		if (mnt->mnt.mnt_sb->s_type != new->mnt_sb->s_type)
3308 			continue;
3309 
3310 		/* This mount is not fully visible if it's root directory
3311 		 * is not the root directory of the filesystem.
3312 		 */
3313 		if (mnt->mnt.mnt_root != mnt->mnt.mnt_sb->s_root)
3314 			continue;
3315 
3316 		/* A local view of the mount flags */
3317 		mnt_flags = mnt->mnt.mnt_flags;
3318 
3319 		/* Don't miss readonly hidden in the superblock flags */
3320 		if (sb_rdonly(mnt->mnt.mnt_sb))
3321 			mnt_flags |= MNT_LOCK_READONLY;
3322 
3323 		/* Verify the mount flags are equal to or more permissive
3324 		 * than the proposed new mount.
3325 		 */
3326 		if ((mnt_flags & MNT_LOCK_READONLY) &&
3327 		    !(new_flags & MNT_READONLY))
3328 			continue;
3329 		if ((mnt_flags & MNT_LOCK_ATIME) &&
3330 		    ((mnt_flags & MNT_ATIME_MASK) != (new_flags & MNT_ATIME_MASK)))
3331 			continue;
3332 
3333 		/* This mount is not fully visible if there are any
3334 		 * locked child mounts that cover anything except for
3335 		 * empty directories.
3336 		 */
3337 		list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
3338 			struct inode *inode = child->mnt_mountpoint->d_inode;
3339 			/* Only worry about locked mounts */
3340 			if (!(child->mnt.mnt_flags & MNT_LOCKED))
3341 				continue;
3342 			/* Is the directory permanetly empty? */
3343 			if (!is_empty_dir_inode(inode))
3344 				goto next;
3345 		}
3346 		/* Preserve the locked attributes */
3347 		*new_mnt_flags |= mnt_flags & (MNT_LOCK_READONLY | \
3348 					       MNT_LOCK_ATIME);
3349 		visible = true;
3350 		goto found;
3351 	next:	;
3352 	}
3353 found:
3354 	up_read(&namespace_sem);
3355 	return visible;
3356 }
3357 
3358 static bool mount_too_revealing(struct vfsmount *mnt, int *new_mnt_flags)
3359 {
3360 	const unsigned long required_iflags = SB_I_NOEXEC | SB_I_NODEV;
3361 	struct mnt_namespace *ns = current->nsproxy->mnt_ns;
3362 	unsigned long s_iflags;
3363 
3364 	if (ns->user_ns == &init_user_ns)
3365 		return false;
3366 
3367 	/* Can this filesystem be too revealing? */
3368 	s_iflags = mnt->mnt_sb->s_iflags;
3369 	if (!(s_iflags & SB_I_USERNS_VISIBLE))
3370 		return false;
3371 
3372 	if ((s_iflags & required_iflags) != required_iflags) {
3373 		WARN_ONCE(1, "Expected s_iflags to contain 0x%lx\n",
3374 			  required_iflags);
3375 		return true;
3376 	}
3377 
3378 	return !mnt_already_visible(ns, mnt, new_mnt_flags);
3379 }
3380 
3381 bool mnt_may_suid(struct vfsmount *mnt)
3382 {
3383 	/*
3384 	 * Foreign mounts (accessed via fchdir or through /proc
3385 	 * symlinks) are always treated as if they are nosuid.  This
3386 	 * prevents namespaces from trusting potentially unsafe
3387 	 * suid/sgid bits, file caps, or security labels that originate
3388 	 * in other namespaces.
3389 	 */
3390 	return !(mnt->mnt_flags & MNT_NOSUID) && check_mnt(real_mount(mnt)) &&
3391 	       current_in_userns(mnt->mnt_sb->s_user_ns);
3392 }
3393 
3394 static struct ns_common *mntns_get(struct task_struct *task)
3395 {
3396 	struct ns_common *ns = NULL;
3397 	struct nsproxy *nsproxy;
3398 
3399 	task_lock(task);
3400 	nsproxy = task->nsproxy;
3401 	if (nsproxy) {
3402 		ns = &nsproxy->mnt_ns->ns;
3403 		get_mnt_ns(to_mnt_ns(ns));
3404 	}
3405 	task_unlock(task);
3406 
3407 	return ns;
3408 }
3409 
3410 static void mntns_put(struct ns_common *ns)
3411 {
3412 	put_mnt_ns(to_mnt_ns(ns));
3413 }
3414 
3415 static int mntns_install(struct nsproxy *nsproxy, struct ns_common *ns)
3416 {
3417 	struct fs_struct *fs = current->fs;
3418 	struct mnt_namespace *mnt_ns = to_mnt_ns(ns), *old_mnt_ns;
3419 	struct path root;
3420 	int err;
3421 
3422 	if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) ||
3423 	    !ns_capable(current_user_ns(), CAP_SYS_CHROOT) ||
3424 	    !ns_capable(current_user_ns(), CAP_SYS_ADMIN))
3425 		return -EPERM;
3426 
3427 	if (fs->users != 1)
3428 		return -EINVAL;
3429 
3430 	get_mnt_ns(mnt_ns);
3431 	old_mnt_ns = nsproxy->mnt_ns;
3432 	nsproxy->mnt_ns = mnt_ns;
3433 
3434 	/* Find the root */
3435 	err = vfs_path_lookup(mnt_ns->root->mnt.mnt_root, &mnt_ns->root->mnt,
3436 				"/", LOOKUP_DOWN, &root);
3437 	if (err) {
3438 		/* revert to old namespace */
3439 		nsproxy->mnt_ns = old_mnt_ns;
3440 		put_mnt_ns(mnt_ns);
3441 		return err;
3442 	}
3443 
3444 	put_mnt_ns(old_mnt_ns);
3445 
3446 	/* Update the pwd and root */
3447 	set_fs_pwd(fs, &root);
3448 	set_fs_root(fs, &root);
3449 
3450 	path_put(&root);
3451 	return 0;
3452 }
3453 
3454 static struct user_namespace *mntns_owner(struct ns_common *ns)
3455 {
3456 	return to_mnt_ns(ns)->user_ns;
3457 }
3458 
3459 const struct proc_ns_operations mntns_operations = {
3460 	.name		= "mnt",
3461 	.type		= CLONE_NEWNS,
3462 	.get		= mntns_get,
3463 	.put		= mntns_put,
3464 	.install	= mntns_install,
3465 	.owner		= mntns_owner,
3466 };
3467