xref: /openbmc/linux/fs/namespace.c (revision df2634f43f5106947f3735a0b61a6527a4b278cd)
1 /*
2  *  linux/fs/namespace.c
3  *
4  * (C) Copyright Al Viro 2000, 2001
5  *	Released under GPL v2.
6  *
7  * Based on code from fs/super.c, copyright Linus Torvalds and others.
8  * Heavily rewritten.
9  */
10 
11 #include <linux/syscalls.h>
12 #include <linux/slab.h>
13 #include <linux/sched.h>
14 #include <linux/spinlock.h>
15 #include <linux/percpu.h>
16 #include <linux/init.h>
17 #include <linux/kernel.h>
18 #include <linux/acct.h>
19 #include <linux/capability.h>
20 #include <linux/cpumask.h>
21 #include <linux/module.h>
22 #include <linux/sysfs.h>
23 #include <linux/seq_file.h>
24 #include <linux/mnt_namespace.h>
25 #include <linux/namei.h>
26 #include <linux/nsproxy.h>
27 #include <linux/security.h>
28 #include <linux/mount.h>
29 #include <linux/ramfs.h>
30 #include <linux/log2.h>
31 #include <linux/idr.h>
32 #include <linux/fs_struct.h>
33 #include <linux/fsnotify.h>
34 #include <asm/uaccess.h>
35 #include <asm/unistd.h>
36 #include "pnode.h"
37 #include "internal.h"
38 
39 #define HASH_SHIFT ilog2(PAGE_SIZE / sizeof(struct list_head))
40 #define HASH_SIZE (1UL << HASH_SHIFT)
41 
42 static int event;
43 static DEFINE_IDA(mnt_id_ida);
44 static DEFINE_IDA(mnt_group_ida);
45 static DEFINE_SPINLOCK(mnt_id_lock);
46 static int mnt_id_start = 0;
47 static int mnt_group_start = 1;
48 
49 static struct list_head *mount_hashtable __read_mostly;
50 static struct kmem_cache *mnt_cache __read_mostly;
51 static struct rw_semaphore namespace_sem;
52 
53 /* /sys/fs */
54 struct kobject *fs_kobj;
55 EXPORT_SYMBOL_GPL(fs_kobj);
56 
57 /*
58  * vfsmount lock may be taken for read to prevent changes to the
59  * vfsmount hash, ie. during mountpoint lookups or walking back
60  * up the tree.
61  *
62  * It should be taken for write in all cases where the vfsmount
63  * tree or hash is modified or when a vfsmount structure is modified.
64  */
65 DEFINE_BRLOCK(vfsmount_lock);
66 
67 static inline unsigned long hash(struct vfsmount *mnt, struct dentry *dentry)
68 {
69 	unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
70 	tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
71 	tmp = tmp + (tmp >> HASH_SHIFT);
72 	return tmp & (HASH_SIZE - 1);
73 }
74 
75 #define MNT_WRITER_UNDERFLOW_LIMIT -(1<<16)
76 
77 /*
78  * allocation is serialized by namespace_sem, but we need the spinlock to
79  * serialize with freeing.
80  */
81 static int mnt_alloc_id(struct vfsmount *mnt)
82 {
83 	int res;
84 
85 retry:
86 	ida_pre_get(&mnt_id_ida, GFP_KERNEL);
87 	spin_lock(&mnt_id_lock);
88 	res = ida_get_new_above(&mnt_id_ida, mnt_id_start, &mnt->mnt_id);
89 	if (!res)
90 		mnt_id_start = mnt->mnt_id + 1;
91 	spin_unlock(&mnt_id_lock);
92 	if (res == -EAGAIN)
93 		goto retry;
94 
95 	return res;
96 }
97 
98 static void mnt_free_id(struct vfsmount *mnt)
99 {
100 	int id = mnt->mnt_id;
101 	spin_lock(&mnt_id_lock);
102 	ida_remove(&mnt_id_ida, id);
103 	if (mnt_id_start > id)
104 		mnt_id_start = id;
105 	spin_unlock(&mnt_id_lock);
106 }
107 
108 /*
109  * Allocate a new peer group ID
110  *
111  * mnt_group_ida is protected by namespace_sem
112  */
113 static int mnt_alloc_group_id(struct vfsmount *mnt)
114 {
115 	int res;
116 
117 	if (!ida_pre_get(&mnt_group_ida, GFP_KERNEL))
118 		return -ENOMEM;
119 
120 	res = ida_get_new_above(&mnt_group_ida,
121 				mnt_group_start,
122 				&mnt->mnt_group_id);
123 	if (!res)
124 		mnt_group_start = mnt->mnt_group_id + 1;
125 
126 	return res;
127 }
128 
129 /*
130  * Release a peer group ID
131  */
132 void mnt_release_group_id(struct vfsmount *mnt)
133 {
134 	int id = mnt->mnt_group_id;
135 	ida_remove(&mnt_group_ida, id);
136 	if (mnt_group_start > id)
137 		mnt_group_start = id;
138 	mnt->mnt_group_id = 0;
139 }
140 
141 /*
142  * vfsmount lock must be held for read
143  */
144 static inline void mnt_add_count(struct vfsmount *mnt, int n)
145 {
146 #ifdef CONFIG_SMP
147 	this_cpu_add(mnt->mnt_pcp->mnt_count, n);
148 #else
149 	preempt_disable();
150 	mnt->mnt_count += n;
151 	preempt_enable();
152 #endif
153 }
154 
155 static inline void mnt_set_count(struct vfsmount *mnt, int n)
156 {
157 #ifdef CONFIG_SMP
158 	this_cpu_write(mnt->mnt_pcp->mnt_count, n);
159 #else
160 	mnt->mnt_count = n;
161 #endif
162 }
163 
164 /*
165  * vfsmount lock must be held for read
166  */
167 static inline void mnt_inc_count(struct vfsmount *mnt)
168 {
169 	mnt_add_count(mnt, 1);
170 }
171 
172 /*
173  * vfsmount lock must be held for read
174  */
175 static inline void mnt_dec_count(struct vfsmount *mnt)
176 {
177 	mnt_add_count(mnt, -1);
178 }
179 
180 /*
181  * vfsmount lock must be held for write
182  */
183 unsigned int mnt_get_count(struct vfsmount *mnt)
184 {
185 #ifdef CONFIG_SMP
186 	unsigned int count = 0;
187 	int cpu;
188 
189 	for_each_possible_cpu(cpu) {
190 		count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
191 	}
192 
193 	return count;
194 #else
195 	return mnt->mnt_count;
196 #endif
197 }
198 
199 struct vfsmount *alloc_vfsmnt(const char *name)
200 {
201 	struct vfsmount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
202 	if (mnt) {
203 		int err;
204 
205 		err = mnt_alloc_id(mnt);
206 		if (err)
207 			goto out_free_cache;
208 
209 		if (name) {
210 			mnt->mnt_devname = kstrdup(name, GFP_KERNEL);
211 			if (!mnt->mnt_devname)
212 				goto out_free_id;
213 		}
214 
215 #ifdef CONFIG_SMP
216 		mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
217 		if (!mnt->mnt_pcp)
218 			goto out_free_devname;
219 
220 		this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
221 #else
222 		mnt->mnt_count = 1;
223 		mnt->mnt_writers = 0;
224 #endif
225 
226 		INIT_LIST_HEAD(&mnt->mnt_hash);
227 		INIT_LIST_HEAD(&mnt->mnt_child);
228 		INIT_LIST_HEAD(&mnt->mnt_mounts);
229 		INIT_LIST_HEAD(&mnt->mnt_list);
230 		INIT_LIST_HEAD(&mnt->mnt_expire);
231 		INIT_LIST_HEAD(&mnt->mnt_share);
232 		INIT_LIST_HEAD(&mnt->mnt_slave_list);
233 		INIT_LIST_HEAD(&mnt->mnt_slave);
234 #ifdef CONFIG_FSNOTIFY
235 		INIT_HLIST_HEAD(&mnt->mnt_fsnotify_marks);
236 #endif
237 	}
238 	return mnt;
239 
240 #ifdef CONFIG_SMP
241 out_free_devname:
242 	kfree(mnt->mnt_devname);
243 #endif
244 out_free_id:
245 	mnt_free_id(mnt);
246 out_free_cache:
247 	kmem_cache_free(mnt_cache, mnt);
248 	return NULL;
249 }
250 
251 /*
252  * Most r/o checks on a fs are for operations that take
253  * discrete amounts of time, like a write() or unlink().
254  * We must keep track of when those operations start
255  * (for permission checks) and when they end, so that
256  * we can determine when writes are able to occur to
257  * a filesystem.
258  */
259 /*
260  * __mnt_is_readonly: check whether a mount is read-only
261  * @mnt: the mount to check for its write status
262  *
263  * This shouldn't be used directly ouside of the VFS.
264  * It does not guarantee that the filesystem will stay
265  * r/w, just that it is right *now*.  This can not and
266  * should not be used in place of IS_RDONLY(inode).
267  * mnt_want/drop_write() will _keep_ the filesystem
268  * r/w.
269  */
270 int __mnt_is_readonly(struct vfsmount *mnt)
271 {
272 	if (mnt->mnt_flags & MNT_READONLY)
273 		return 1;
274 	if (mnt->mnt_sb->s_flags & MS_RDONLY)
275 		return 1;
276 	return 0;
277 }
278 EXPORT_SYMBOL_GPL(__mnt_is_readonly);
279 
280 static inline void mnt_inc_writers(struct vfsmount *mnt)
281 {
282 #ifdef CONFIG_SMP
283 	this_cpu_inc(mnt->mnt_pcp->mnt_writers);
284 #else
285 	mnt->mnt_writers++;
286 #endif
287 }
288 
289 static inline void mnt_dec_writers(struct vfsmount *mnt)
290 {
291 #ifdef CONFIG_SMP
292 	this_cpu_dec(mnt->mnt_pcp->mnt_writers);
293 #else
294 	mnt->mnt_writers--;
295 #endif
296 }
297 
298 static unsigned int mnt_get_writers(struct vfsmount *mnt)
299 {
300 #ifdef CONFIG_SMP
301 	unsigned int count = 0;
302 	int cpu;
303 
304 	for_each_possible_cpu(cpu) {
305 		count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
306 	}
307 
308 	return count;
309 #else
310 	return mnt->mnt_writers;
311 #endif
312 }
313 
314 /*
315  * Most r/o checks on a fs are for operations that take
316  * discrete amounts of time, like a write() or unlink().
317  * We must keep track of when those operations start
318  * (for permission checks) and when they end, so that
319  * we can determine when writes are able to occur to
320  * a filesystem.
321  */
322 /**
323  * mnt_want_write - get write access to a mount
324  * @mnt: the mount on which to take a write
325  *
326  * This tells the low-level filesystem that a write is
327  * about to be performed to it, and makes sure that
328  * writes are allowed before returning success.  When
329  * the write operation is finished, mnt_drop_write()
330  * must be called.  This is effectively a refcount.
331  */
332 int mnt_want_write(struct vfsmount *mnt)
333 {
334 	int ret = 0;
335 
336 	preempt_disable();
337 	mnt_inc_writers(mnt);
338 	/*
339 	 * The store to mnt_inc_writers must be visible before we pass
340 	 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
341 	 * incremented count after it has set MNT_WRITE_HOLD.
342 	 */
343 	smp_mb();
344 	while (mnt->mnt_flags & MNT_WRITE_HOLD)
345 		cpu_relax();
346 	/*
347 	 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
348 	 * be set to match its requirements. So we must not load that until
349 	 * MNT_WRITE_HOLD is cleared.
350 	 */
351 	smp_rmb();
352 	if (__mnt_is_readonly(mnt)) {
353 		mnt_dec_writers(mnt);
354 		ret = -EROFS;
355 		goto out;
356 	}
357 out:
358 	preempt_enable();
359 	return ret;
360 }
361 EXPORT_SYMBOL_GPL(mnt_want_write);
362 
363 /**
364  * mnt_clone_write - get write access to a mount
365  * @mnt: the mount on which to take a write
366  *
367  * This is effectively like mnt_want_write, except
368  * it must only be used to take an extra write reference
369  * on a mountpoint that we already know has a write reference
370  * on it. This allows some optimisation.
371  *
372  * After finished, mnt_drop_write must be called as usual to
373  * drop the reference.
374  */
375 int mnt_clone_write(struct vfsmount *mnt)
376 {
377 	/* superblock may be r/o */
378 	if (__mnt_is_readonly(mnt))
379 		return -EROFS;
380 	preempt_disable();
381 	mnt_inc_writers(mnt);
382 	preempt_enable();
383 	return 0;
384 }
385 EXPORT_SYMBOL_GPL(mnt_clone_write);
386 
387 /**
388  * mnt_want_write_file - get write access to a file's mount
389  * @file: the file who's mount on which to take a write
390  *
391  * This is like mnt_want_write, but it takes a file and can
392  * do some optimisations if the file is open for write already
393  */
394 int mnt_want_write_file(struct file *file)
395 {
396 	struct inode *inode = file->f_dentry->d_inode;
397 	if (!(file->f_mode & FMODE_WRITE) || special_file(inode->i_mode))
398 		return mnt_want_write(file->f_path.mnt);
399 	else
400 		return mnt_clone_write(file->f_path.mnt);
401 }
402 EXPORT_SYMBOL_GPL(mnt_want_write_file);
403 
404 /**
405  * mnt_drop_write - give up write access to a mount
406  * @mnt: the mount on which to give up write access
407  *
408  * Tells the low-level filesystem that we are done
409  * performing writes to it.  Must be matched with
410  * mnt_want_write() call above.
411  */
412 void mnt_drop_write(struct vfsmount *mnt)
413 {
414 	preempt_disable();
415 	mnt_dec_writers(mnt);
416 	preempt_enable();
417 }
418 EXPORT_SYMBOL_GPL(mnt_drop_write);
419 
420 static int mnt_make_readonly(struct vfsmount *mnt)
421 {
422 	int ret = 0;
423 
424 	br_write_lock(vfsmount_lock);
425 	mnt->mnt_flags |= MNT_WRITE_HOLD;
426 	/*
427 	 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
428 	 * should be visible before we do.
429 	 */
430 	smp_mb();
431 
432 	/*
433 	 * With writers on hold, if this value is zero, then there are
434 	 * definitely no active writers (although held writers may subsequently
435 	 * increment the count, they'll have to wait, and decrement it after
436 	 * seeing MNT_READONLY).
437 	 *
438 	 * It is OK to have counter incremented on one CPU and decremented on
439 	 * another: the sum will add up correctly. The danger would be when we
440 	 * sum up each counter, if we read a counter before it is incremented,
441 	 * but then read another CPU's count which it has been subsequently
442 	 * decremented from -- we would see more decrements than we should.
443 	 * MNT_WRITE_HOLD protects against this scenario, because
444 	 * mnt_want_write first increments count, then smp_mb, then spins on
445 	 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
446 	 * we're counting up here.
447 	 */
448 	if (mnt_get_writers(mnt) > 0)
449 		ret = -EBUSY;
450 	else
451 		mnt->mnt_flags |= MNT_READONLY;
452 	/*
453 	 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
454 	 * that become unheld will see MNT_READONLY.
455 	 */
456 	smp_wmb();
457 	mnt->mnt_flags &= ~MNT_WRITE_HOLD;
458 	br_write_unlock(vfsmount_lock);
459 	return ret;
460 }
461 
462 static void __mnt_unmake_readonly(struct vfsmount *mnt)
463 {
464 	br_write_lock(vfsmount_lock);
465 	mnt->mnt_flags &= ~MNT_READONLY;
466 	br_write_unlock(vfsmount_lock);
467 }
468 
469 void simple_set_mnt(struct vfsmount *mnt, struct super_block *sb)
470 {
471 	mnt->mnt_sb = sb;
472 	mnt->mnt_root = dget(sb->s_root);
473 }
474 
475 EXPORT_SYMBOL(simple_set_mnt);
476 
477 void free_vfsmnt(struct vfsmount *mnt)
478 {
479 	kfree(mnt->mnt_devname);
480 	mnt_free_id(mnt);
481 #ifdef CONFIG_SMP
482 	free_percpu(mnt->mnt_pcp);
483 #endif
484 	kmem_cache_free(mnt_cache, mnt);
485 }
486 
487 /*
488  * find the first or last mount at @dentry on vfsmount @mnt depending on
489  * @dir. If @dir is set return the first mount else return the last mount.
490  * vfsmount_lock must be held for read or write.
491  */
492 struct vfsmount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry,
493 			      int dir)
494 {
495 	struct list_head *head = mount_hashtable + hash(mnt, dentry);
496 	struct list_head *tmp = head;
497 	struct vfsmount *p, *found = NULL;
498 
499 	for (;;) {
500 		tmp = dir ? tmp->next : tmp->prev;
501 		p = NULL;
502 		if (tmp == head)
503 			break;
504 		p = list_entry(tmp, struct vfsmount, mnt_hash);
505 		if (p->mnt_parent == mnt && p->mnt_mountpoint == dentry) {
506 			found = p;
507 			break;
508 		}
509 	}
510 	return found;
511 }
512 
513 /*
514  * lookup_mnt increments the ref count before returning
515  * the vfsmount struct.
516  */
517 struct vfsmount *lookup_mnt(struct path *path)
518 {
519 	struct vfsmount *child_mnt;
520 
521 	br_read_lock(vfsmount_lock);
522 	if ((child_mnt = __lookup_mnt(path->mnt, path->dentry, 1)))
523 		mntget(child_mnt);
524 	br_read_unlock(vfsmount_lock);
525 	return child_mnt;
526 }
527 
528 static inline int check_mnt(struct vfsmount *mnt)
529 {
530 	return mnt->mnt_ns == current->nsproxy->mnt_ns;
531 }
532 
533 /*
534  * vfsmount lock must be held for write
535  */
536 static void touch_mnt_namespace(struct mnt_namespace *ns)
537 {
538 	if (ns) {
539 		ns->event = ++event;
540 		wake_up_interruptible(&ns->poll);
541 	}
542 }
543 
544 /*
545  * vfsmount lock must be held for write
546  */
547 static void __touch_mnt_namespace(struct mnt_namespace *ns)
548 {
549 	if (ns && ns->event != event) {
550 		ns->event = event;
551 		wake_up_interruptible(&ns->poll);
552 	}
553 }
554 
555 /*
556  * Clear dentry's mounted state if it has no remaining mounts.
557  * vfsmount_lock must be held for write.
558  */
559 static void dentry_reset_mounted(struct vfsmount *mnt, struct dentry *dentry)
560 {
561 	unsigned u;
562 
563 	for (u = 0; u < HASH_SIZE; u++) {
564 		struct vfsmount *p;
565 
566 		list_for_each_entry(p, &mount_hashtable[u], mnt_hash) {
567 			if (p->mnt_mountpoint == dentry)
568 				return;
569 		}
570 	}
571 	spin_lock(&dentry->d_lock);
572 	dentry->d_flags &= ~DCACHE_MOUNTED;
573 	spin_unlock(&dentry->d_lock);
574 }
575 
576 /*
577  * vfsmount lock must be held for write
578  */
579 static void detach_mnt(struct vfsmount *mnt, struct path *old_path)
580 {
581 	old_path->dentry = mnt->mnt_mountpoint;
582 	old_path->mnt = mnt->mnt_parent;
583 	mnt->mnt_parent = mnt;
584 	mnt->mnt_mountpoint = mnt->mnt_root;
585 	list_del_init(&mnt->mnt_child);
586 	list_del_init(&mnt->mnt_hash);
587 	dentry_reset_mounted(old_path->mnt, old_path->dentry);
588 }
589 
590 /*
591  * vfsmount lock must be held for write
592  */
593 void mnt_set_mountpoint(struct vfsmount *mnt, struct dentry *dentry,
594 			struct vfsmount *child_mnt)
595 {
596 	child_mnt->mnt_parent = mntget(mnt);
597 	child_mnt->mnt_mountpoint = dget(dentry);
598 	spin_lock(&dentry->d_lock);
599 	dentry->d_flags |= DCACHE_MOUNTED;
600 	spin_unlock(&dentry->d_lock);
601 }
602 
603 /*
604  * vfsmount lock must be held for write
605  */
606 static void attach_mnt(struct vfsmount *mnt, struct path *path)
607 {
608 	mnt_set_mountpoint(path->mnt, path->dentry, mnt);
609 	list_add_tail(&mnt->mnt_hash, mount_hashtable +
610 			hash(path->mnt, path->dentry));
611 	list_add_tail(&mnt->mnt_child, &path->mnt->mnt_mounts);
612 }
613 
614 static inline void __mnt_make_longterm(struct vfsmount *mnt)
615 {
616 #ifdef CONFIG_SMP
617 	atomic_inc(&mnt->mnt_longterm);
618 #endif
619 }
620 
621 /* needs vfsmount lock for write */
622 static inline void __mnt_make_shortterm(struct vfsmount *mnt)
623 {
624 #ifdef CONFIG_SMP
625 	atomic_dec(&mnt->mnt_longterm);
626 #endif
627 }
628 
629 /*
630  * vfsmount lock must be held for write
631  */
632 static void commit_tree(struct vfsmount *mnt)
633 {
634 	struct vfsmount *parent = mnt->mnt_parent;
635 	struct vfsmount *m;
636 	LIST_HEAD(head);
637 	struct mnt_namespace *n = parent->mnt_ns;
638 
639 	BUG_ON(parent == mnt);
640 
641 	list_add_tail(&head, &mnt->mnt_list);
642 	list_for_each_entry(m, &head, mnt_list) {
643 		m->mnt_ns = n;
644 		__mnt_make_longterm(m);
645 	}
646 
647 	list_splice(&head, n->list.prev);
648 
649 	list_add_tail(&mnt->mnt_hash, mount_hashtable +
650 				hash(parent, mnt->mnt_mountpoint));
651 	list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
652 	touch_mnt_namespace(n);
653 }
654 
655 static struct vfsmount *next_mnt(struct vfsmount *p, struct vfsmount *root)
656 {
657 	struct list_head *next = p->mnt_mounts.next;
658 	if (next == &p->mnt_mounts) {
659 		while (1) {
660 			if (p == root)
661 				return NULL;
662 			next = p->mnt_child.next;
663 			if (next != &p->mnt_parent->mnt_mounts)
664 				break;
665 			p = p->mnt_parent;
666 		}
667 	}
668 	return list_entry(next, struct vfsmount, mnt_child);
669 }
670 
671 static struct vfsmount *skip_mnt_tree(struct vfsmount *p)
672 {
673 	struct list_head *prev = p->mnt_mounts.prev;
674 	while (prev != &p->mnt_mounts) {
675 		p = list_entry(prev, struct vfsmount, mnt_child);
676 		prev = p->mnt_mounts.prev;
677 	}
678 	return p;
679 }
680 
681 static struct vfsmount *clone_mnt(struct vfsmount *old, struct dentry *root,
682 					int flag)
683 {
684 	struct super_block *sb = old->mnt_sb;
685 	struct vfsmount *mnt = alloc_vfsmnt(old->mnt_devname);
686 
687 	if (mnt) {
688 		if (flag & (CL_SLAVE | CL_PRIVATE))
689 			mnt->mnt_group_id = 0; /* not a peer of original */
690 		else
691 			mnt->mnt_group_id = old->mnt_group_id;
692 
693 		if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
694 			int err = mnt_alloc_group_id(mnt);
695 			if (err)
696 				goto out_free;
697 		}
698 
699 		mnt->mnt_flags = old->mnt_flags & ~MNT_WRITE_HOLD;
700 		atomic_inc(&sb->s_active);
701 		mnt->mnt_sb = sb;
702 		mnt->mnt_root = dget(root);
703 		mnt->mnt_mountpoint = mnt->mnt_root;
704 		mnt->mnt_parent = mnt;
705 
706 		if (flag & CL_SLAVE) {
707 			list_add(&mnt->mnt_slave, &old->mnt_slave_list);
708 			mnt->mnt_master = old;
709 			CLEAR_MNT_SHARED(mnt);
710 		} else if (!(flag & CL_PRIVATE)) {
711 			if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
712 				list_add(&mnt->mnt_share, &old->mnt_share);
713 			if (IS_MNT_SLAVE(old))
714 				list_add(&mnt->mnt_slave, &old->mnt_slave);
715 			mnt->mnt_master = old->mnt_master;
716 		}
717 		if (flag & CL_MAKE_SHARED)
718 			set_mnt_shared(mnt);
719 
720 		/* stick the duplicate mount on the same expiry list
721 		 * as the original if that was on one */
722 		if (flag & CL_EXPIRE) {
723 			if (!list_empty(&old->mnt_expire))
724 				list_add(&mnt->mnt_expire, &old->mnt_expire);
725 		}
726 	}
727 	return mnt;
728 
729  out_free:
730 	free_vfsmnt(mnt);
731 	return NULL;
732 }
733 
734 static inline void mntfree(struct vfsmount *mnt)
735 {
736 	struct super_block *sb = mnt->mnt_sb;
737 
738 	/*
739 	 * This probably indicates that somebody messed
740 	 * up a mnt_want/drop_write() pair.  If this
741 	 * happens, the filesystem was probably unable
742 	 * to make r/w->r/o transitions.
743 	 */
744 	/*
745 	 * The locking used to deal with mnt_count decrement provides barriers,
746 	 * so mnt_get_writers() below is safe.
747 	 */
748 	WARN_ON(mnt_get_writers(mnt));
749 	fsnotify_vfsmount_delete(mnt);
750 	dput(mnt->mnt_root);
751 	free_vfsmnt(mnt);
752 	deactivate_super(sb);
753 }
754 
755 static void mntput_no_expire(struct vfsmount *mnt)
756 {
757 put_again:
758 #ifdef CONFIG_SMP
759 	br_read_lock(vfsmount_lock);
760 	if (likely(atomic_read(&mnt->mnt_longterm))) {
761 		mnt_dec_count(mnt);
762 		br_read_unlock(vfsmount_lock);
763 		return;
764 	}
765 	br_read_unlock(vfsmount_lock);
766 
767 	br_write_lock(vfsmount_lock);
768 	mnt_dec_count(mnt);
769 	if (mnt_get_count(mnt)) {
770 		br_write_unlock(vfsmount_lock);
771 		return;
772 	}
773 #else
774 	mnt_dec_count(mnt);
775 	if (likely(mnt_get_count(mnt)))
776 		return;
777 	br_write_lock(vfsmount_lock);
778 #endif
779 	if (unlikely(mnt->mnt_pinned)) {
780 		mnt_add_count(mnt, mnt->mnt_pinned + 1);
781 		mnt->mnt_pinned = 0;
782 		br_write_unlock(vfsmount_lock);
783 		acct_auto_close_mnt(mnt);
784 		goto put_again;
785 	}
786 	br_write_unlock(vfsmount_lock);
787 	mntfree(mnt);
788 }
789 
790 void mntput(struct vfsmount *mnt)
791 {
792 	if (mnt) {
793 		/* avoid cacheline pingpong, hope gcc doesn't get "smart" */
794 		if (unlikely(mnt->mnt_expiry_mark))
795 			mnt->mnt_expiry_mark = 0;
796 		mntput_no_expire(mnt);
797 	}
798 }
799 EXPORT_SYMBOL(mntput);
800 
801 struct vfsmount *mntget(struct vfsmount *mnt)
802 {
803 	if (mnt)
804 		mnt_inc_count(mnt);
805 	return mnt;
806 }
807 EXPORT_SYMBOL(mntget);
808 
809 void mnt_pin(struct vfsmount *mnt)
810 {
811 	br_write_lock(vfsmount_lock);
812 	mnt->mnt_pinned++;
813 	br_write_unlock(vfsmount_lock);
814 }
815 EXPORT_SYMBOL(mnt_pin);
816 
817 void mnt_unpin(struct vfsmount *mnt)
818 {
819 	br_write_lock(vfsmount_lock);
820 	if (mnt->mnt_pinned) {
821 		mnt_inc_count(mnt);
822 		mnt->mnt_pinned--;
823 	}
824 	br_write_unlock(vfsmount_lock);
825 }
826 EXPORT_SYMBOL(mnt_unpin);
827 
828 static inline void mangle(struct seq_file *m, const char *s)
829 {
830 	seq_escape(m, s, " \t\n\\");
831 }
832 
833 /*
834  * Simple .show_options callback for filesystems which don't want to
835  * implement more complex mount option showing.
836  *
837  * See also save_mount_options().
838  */
839 int generic_show_options(struct seq_file *m, struct vfsmount *mnt)
840 {
841 	const char *options;
842 
843 	rcu_read_lock();
844 	options = rcu_dereference(mnt->mnt_sb->s_options);
845 
846 	if (options != NULL && options[0]) {
847 		seq_putc(m, ',');
848 		mangle(m, options);
849 	}
850 	rcu_read_unlock();
851 
852 	return 0;
853 }
854 EXPORT_SYMBOL(generic_show_options);
855 
856 /*
857  * If filesystem uses generic_show_options(), this function should be
858  * called from the fill_super() callback.
859  *
860  * The .remount_fs callback usually needs to be handled in a special
861  * way, to make sure, that previous options are not overwritten if the
862  * remount fails.
863  *
864  * Also note, that if the filesystem's .remount_fs function doesn't
865  * reset all options to their default value, but changes only newly
866  * given options, then the displayed options will not reflect reality
867  * any more.
868  */
869 void save_mount_options(struct super_block *sb, char *options)
870 {
871 	BUG_ON(sb->s_options);
872 	rcu_assign_pointer(sb->s_options, kstrdup(options, GFP_KERNEL));
873 }
874 EXPORT_SYMBOL(save_mount_options);
875 
876 void replace_mount_options(struct super_block *sb, char *options)
877 {
878 	char *old = sb->s_options;
879 	rcu_assign_pointer(sb->s_options, options);
880 	if (old) {
881 		synchronize_rcu();
882 		kfree(old);
883 	}
884 }
885 EXPORT_SYMBOL(replace_mount_options);
886 
887 #ifdef CONFIG_PROC_FS
888 /* iterator */
889 static void *m_start(struct seq_file *m, loff_t *pos)
890 {
891 	struct proc_mounts *p = m->private;
892 
893 	down_read(&namespace_sem);
894 	return seq_list_start(&p->ns->list, *pos);
895 }
896 
897 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
898 {
899 	struct proc_mounts *p = m->private;
900 
901 	return seq_list_next(v, &p->ns->list, pos);
902 }
903 
904 static void m_stop(struct seq_file *m, void *v)
905 {
906 	up_read(&namespace_sem);
907 }
908 
909 int mnt_had_events(struct proc_mounts *p)
910 {
911 	struct mnt_namespace *ns = p->ns;
912 	int res = 0;
913 
914 	br_read_lock(vfsmount_lock);
915 	if (p->event != ns->event) {
916 		p->event = ns->event;
917 		res = 1;
918 	}
919 	br_read_unlock(vfsmount_lock);
920 
921 	return res;
922 }
923 
924 struct proc_fs_info {
925 	int flag;
926 	const char *str;
927 };
928 
929 static int show_sb_opts(struct seq_file *m, struct super_block *sb)
930 {
931 	static const struct proc_fs_info fs_info[] = {
932 		{ MS_SYNCHRONOUS, ",sync" },
933 		{ MS_DIRSYNC, ",dirsync" },
934 		{ MS_MANDLOCK, ",mand" },
935 		{ 0, NULL }
936 	};
937 	const struct proc_fs_info *fs_infop;
938 
939 	for (fs_infop = fs_info; fs_infop->flag; fs_infop++) {
940 		if (sb->s_flags & fs_infop->flag)
941 			seq_puts(m, fs_infop->str);
942 	}
943 
944 	return security_sb_show_options(m, sb);
945 }
946 
947 static void show_mnt_opts(struct seq_file *m, struct vfsmount *mnt)
948 {
949 	static const struct proc_fs_info mnt_info[] = {
950 		{ MNT_NOSUID, ",nosuid" },
951 		{ MNT_NODEV, ",nodev" },
952 		{ MNT_NOEXEC, ",noexec" },
953 		{ MNT_NOATIME, ",noatime" },
954 		{ MNT_NODIRATIME, ",nodiratime" },
955 		{ MNT_RELATIME, ",relatime" },
956 		{ 0, NULL }
957 	};
958 	const struct proc_fs_info *fs_infop;
959 
960 	for (fs_infop = mnt_info; fs_infop->flag; fs_infop++) {
961 		if (mnt->mnt_flags & fs_infop->flag)
962 			seq_puts(m, fs_infop->str);
963 	}
964 }
965 
966 static void show_type(struct seq_file *m, struct super_block *sb)
967 {
968 	mangle(m, sb->s_type->name);
969 	if (sb->s_subtype && sb->s_subtype[0]) {
970 		seq_putc(m, '.');
971 		mangle(m, sb->s_subtype);
972 	}
973 }
974 
975 static int show_vfsmnt(struct seq_file *m, void *v)
976 {
977 	struct vfsmount *mnt = list_entry(v, struct vfsmount, mnt_list);
978 	int err = 0;
979 	struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt };
980 
981 	mangle(m, mnt->mnt_devname ? mnt->mnt_devname : "none");
982 	seq_putc(m, ' ');
983 	seq_path(m, &mnt_path, " \t\n\\");
984 	seq_putc(m, ' ');
985 	show_type(m, mnt->mnt_sb);
986 	seq_puts(m, __mnt_is_readonly(mnt) ? " ro" : " rw");
987 	err = show_sb_opts(m, mnt->mnt_sb);
988 	if (err)
989 		goto out;
990 	show_mnt_opts(m, mnt);
991 	if (mnt->mnt_sb->s_op->show_options)
992 		err = mnt->mnt_sb->s_op->show_options(m, mnt);
993 	seq_puts(m, " 0 0\n");
994 out:
995 	return err;
996 }
997 
998 const struct seq_operations mounts_op = {
999 	.start	= m_start,
1000 	.next	= m_next,
1001 	.stop	= m_stop,
1002 	.show	= show_vfsmnt
1003 };
1004 
1005 static int show_mountinfo(struct seq_file *m, void *v)
1006 {
1007 	struct proc_mounts *p = m->private;
1008 	struct vfsmount *mnt = list_entry(v, struct vfsmount, mnt_list);
1009 	struct super_block *sb = mnt->mnt_sb;
1010 	struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt };
1011 	struct path root = p->root;
1012 	int err = 0;
1013 
1014 	seq_printf(m, "%i %i %u:%u ", mnt->mnt_id, mnt->mnt_parent->mnt_id,
1015 		   MAJOR(sb->s_dev), MINOR(sb->s_dev));
1016 	seq_dentry(m, mnt->mnt_root, " \t\n\\");
1017 	seq_putc(m, ' ');
1018 	seq_path_root(m, &mnt_path, &root, " \t\n\\");
1019 	if (root.mnt != p->root.mnt || root.dentry != p->root.dentry) {
1020 		/*
1021 		 * Mountpoint is outside root, discard that one.  Ugly,
1022 		 * but less so than trying to do that in iterator in a
1023 		 * race-free way (due to renames).
1024 		 */
1025 		return SEQ_SKIP;
1026 	}
1027 	seq_puts(m, mnt->mnt_flags & MNT_READONLY ? " ro" : " rw");
1028 	show_mnt_opts(m, mnt);
1029 
1030 	/* Tagged fields ("foo:X" or "bar") */
1031 	if (IS_MNT_SHARED(mnt))
1032 		seq_printf(m, " shared:%i", mnt->mnt_group_id);
1033 	if (IS_MNT_SLAVE(mnt)) {
1034 		int master = mnt->mnt_master->mnt_group_id;
1035 		int dom = get_dominating_id(mnt, &p->root);
1036 		seq_printf(m, " master:%i", master);
1037 		if (dom && dom != master)
1038 			seq_printf(m, " propagate_from:%i", dom);
1039 	}
1040 	if (IS_MNT_UNBINDABLE(mnt))
1041 		seq_puts(m, " unbindable");
1042 
1043 	/* Filesystem specific data */
1044 	seq_puts(m, " - ");
1045 	show_type(m, sb);
1046 	seq_putc(m, ' ');
1047 	mangle(m, mnt->mnt_devname ? mnt->mnt_devname : "none");
1048 	seq_puts(m, sb->s_flags & MS_RDONLY ? " ro" : " rw");
1049 	err = show_sb_opts(m, sb);
1050 	if (err)
1051 		goto out;
1052 	if (sb->s_op->show_options)
1053 		err = sb->s_op->show_options(m, mnt);
1054 	seq_putc(m, '\n');
1055 out:
1056 	return err;
1057 }
1058 
1059 const struct seq_operations mountinfo_op = {
1060 	.start	= m_start,
1061 	.next	= m_next,
1062 	.stop	= m_stop,
1063 	.show	= show_mountinfo,
1064 };
1065 
1066 static int show_vfsstat(struct seq_file *m, void *v)
1067 {
1068 	struct vfsmount *mnt = list_entry(v, struct vfsmount, mnt_list);
1069 	struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt };
1070 	int err = 0;
1071 
1072 	/* device */
1073 	if (mnt->mnt_devname) {
1074 		seq_puts(m, "device ");
1075 		mangle(m, mnt->mnt_devname);
1076 	} else
1077 		seq_puts(m, "no device");
1078 
1079 	/* mount point */
1080 	seq_puts(m, " mounted on ");
1081 	seq_path(m, &mnt_path, " \t\n\\");
1082 	seq_putc(m, ' ');
1083 
1084 	/* file system type */
1085 	seq_puts(m, "with fstype ");
1086 	show_type(m, mnt->mnt_sb);
1087 
1088 	/* optional statistics */
1089 	if (mnt->mnt_sb->s_op->show_stats) {
1090 		seq_putc(m, ' ');
1091 		err = mnt->mnt_sb->s_op->show_stats(m, mnt);
1092 	}
1093 
1094 	seq_putc(m, '\n');
1095 	return err;
1096 }
1097 
1098 const struct seq_operations mountstats_op = {
1099 	.start	= m_start,
1100 	.next	= m_next,
1101 	.stop	= m_stop,
1102 	.show	= show_vfsstat,
1103 };
1104 #endif  /* CONFIG_PROC_FS */
1105 
1106 /**
1107  * may_umount_tree - check if a mount tree is busy
1108  * @mnt: root of mount tree
1109  *
1110  * This is called to check if a tree of mounts has any
1111  * open files, pwds, chroots or sub mounts that are
1112  * busy.
1113  */
1114 int may_umount_tree(struct vfsmount *mnt)
1115 {
1116 	int actual_refs = 0;
1117 	int minimum_refs = 0;
1118 	struct vfsmount *p;
1119 
1120 	/* write lock needed for mnt_get_count */
1121 	br_write_lock(vfsmount_lock);
1122 	for (p = mnt; p; p = next_mnt(p, mnt)) {
1123 		actual_refs += mnt_get_count(p);
1124 		minimum_refs += 2;
1125 	}
1126 	br_write_unlock(vfsmount_lock);
1127 
1128 	if (actual_refs > minimum_refs)
1129 		return 0;
1130 
1131 	return 1;
1132 }
1133 
1134 EXPORT_SYMBOL(may_umount_tree);
1135 
1136 /**
1137  * may_umount - check if a mount point is busy
1138  * @mnt: root of mount
1139  *
1140  * This is called to check if a mount point has any
1141  * open files, pwds, chroots or sub mounts. If the
1142  * mount has sub mounts this will return busy
1143  * regardless of whether the sub mounts are busy.
1144  *
1145  * Doesn't take quota and stuff into account. IOW, in some cases it will
1146  * give false negatives. The main reason why it's here is that we need
1147  * a non-destructive way to look for easily umountable filesystems.
1148  */
1149 int may_umount(struct vfsmount *mnt)
1150 {
1151 	int ret = 1;
1152 	down_read(&namespace_sem);
1153 	br_write_lock(vfsmount_lock);
1154 	if (propagate_mount_busy(mnt, 2))
1155 		ret = 0;
1156 	br_write_unlock(vfsmount_lock);
1157 	up_read(&namespace_sem);
1158 	return ret;
1159 }
1160 
1161 EXPORT_SYMBOL(may_umount);
1162 
1163 void release_mounts(struct list_head *head)
1164 {
1165 	struct vfsmount *mnt;
1166 	while (!list_empty(head)) {
1167 		mnt = list_first_entry(head, struct vfsmount, mnt_hash);
1168 		list_del_init(&mnt->mnt_hash);
1169 		if (mnt->mnt_parent != mnt) {
1170 			struct dentry *dentry;
1171 			struct vfsmount *m;
1172 
1173 			br_write_lock(vfsmount_lock);
1174 			dentry = mnt->mnt_mountpoint;
1175 			m = mnt->mnt_parent;
1176 			mnt->mnt_mountpoint = mnt->mnt_root;
1177 			mnt->mnt_parent = mnt;
1178 			m->mnt_ghosts--;
1179 			br_write_unlock(vfsmount_lock);
1180 			dput(dentry);
1181 			mntput(m);
1182 		}
1183 		mntput(mnt);
1184 	}
1185 }
1186 
1187 /*
1188  * vfsmount lock must be held for write
1189  * namespace_sem must be held for write
1190  */
1191 void umount_tree(struct vfsmount *mnt, int propagate, struct list_head *kill)
1192 {
1193 	LIST_HEAD(tmp_list);
1194 	struct vfsmount *p;
1195 
1196 	for (p = mnt; p; p = next_mnt(p, mnt))
1197 		list_move(&p->mnt_hash, &tmp_list);
1198 
1199 	if (propagate)
1200 		propagate_umount(&tmp_list);
1201 
1202 	list_for_each_entry(p, &tmp_list, mnt_hash) {
1203 		list_del_init(&p->mnt_expire);
1204 		list_del_init(&p->mnt_list);
1205 		__touch_mnt_namespace(p->mnt_ns);
1206 		p->mnt_ns = NULL;
1207 		__mnt_make_shortterm(p);
1208 		list_del_init(&p->mnt_child);
1209 		if (p->mnt_parent != p) {
1210 			p->mnt_parent->mnt_ghosts++;
1211 			dentry_reset_mounted(p->mnt_parent, p->mnt_mountpoint);
1212 		}
1213 		change_mnt_propagation(p, MS_PRIVATE);
1214 	}
1215 	list_splice(&tmp_list, kill);
1216 }
1217 
1218 static void shrink_submounts(struct vfsmount *mnt, struct list_head *umounts);
1219 
1220 static int do_umount(struct vfsmount *mnt, int flags)
1221 {
1222 	struct super_block *sb = mnt->mnt_sb;
1223 	int retval;
1224 	LIST_HEAD(umount_list);
1225 
1226 	retval = security_sb_umount(mnt, flags);
1227 	if (retval)
1228 		return retval;
1229 
1230 	/*
1231 	 * Allow userspace to request a mountpoint be expired rather than
1232 	 * unmounting unconditionally. Unmount only happens if:
1233 	 *  (1) the mark is already set (the mark is cleared by mntput())
1234 	 *  (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1235 	 */
1236 	if (flags & MNT_EXPIRE) {
1237 		if (mnt == current->fs->root.mnt ||
1238 		    flags & (MNT_FORCE | MNT_DETACH))
1239 			return -EINVAL;
1240 
1241 		/*
1242 		 * probably don't strictly need the lock here if we examined
1243 		 * all race cases, but it's a slowpath.
1244 		 */
1245 		br_write_lock(vfsmount_lock);
1246 		if (mnt_get_count(mnt) != 2) {
1247 			br_write_lock(vfsmount_lock);
1248 			return -EBUSY;
1249 		}
1250 		br_write_unlock(vfsmount_lock);
1251 
1252 		if (!xchg(&mnt->mnt_expiry_mark, 1))
1253 			return -EAGAIN;
1254 	}
1255 
1256 	/*
1257 	 * If we may have to abort operations to get out of this
1258 	 * mount, and they will themselves hold resources we must
1259 	 * allow the fs to do things. In the Unix tradition of
1260 	 * 'Gee thats tricky lets do it in userspace' the umount_begin
1261 	 * might fail to complete on the first run through as other tasks
1262 	 * must return, and the like. Thats for the mount program to worry
1263 	 * about for the moment.
1264 	 */
1265 
1266 	if (flags & MNT_FORCE && sb->s_op->umount_begin) {
1267 		sb->s_op->umount_begin(sb);
1268 	}
1269 
1270 	/*
1271 	 * No sense to grab the lock for this test, but test itself looks
1272 	 * somewhat bogus. Suggestions for better replacement?
1273 	 * Ho-hum... In principle, we might treat that as umount + switch
1274 	 * to rootfs. GC would eventually take care of the old vfsmount.
1275 	 * Actually it makes sense, especially if rootfs would contain a
1276 	 * /reboot - static binary that would close all descriptors and
1277 	 * call reboot(9). Then init(8) could umount root and exec /reboot.
1278 	 */
1279 	if (mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1280 		/*
1281 		 * Special case for "unmounting" root ...
1282 		 * we just try to remount it readonly.
1283 		 */
1284 		down_write(&sb->s_umount);
1285 		if (!(sb->s_flags & MS_RDONLY))
1286 			retval = do_remount_sb(sb, MS_RDONLY, NULL, 0);
1287 		up_write(&sb->s_umount);
1288 		return retval;
1289 	}
1290 
1291 	down_write(&namespace_sem);
1292 	br_write_lock(vfsmount_lock);
1293 	event++;
1294 
1295 	if (!(flags & MNT_DETACH))
1296 		shrink_submounts(mnt, &umount_list);
1297 
1298 	retval = -EBUSY;
1299 	if (flags & MNT_DETACH || !propagate_mount_busy(mnt, 2)) {
1300 		if (!list_empty(&mnt->mnt_list))
1301 			umount_tree(mnt, 1, &umount_list);
1302 		retval = 0;
1303 	}
1304 	br_write_unlock(vfsmount_lock);
1305 	up_write(&namespace_sem);
1306 	release_mounts(&umount_list);
1307 	return retval;
1308 }
1309 
1310 /*
1311  * Now umount can handle mount points as well as block devices.
1312  * This is important for filesystems which use unnamed block devices.
1313  *
1314  * We now support a flag for forced unmount like the other 'big iron'
1315  * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
1316  */
1317 
1318 SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
1319 {
1320 	struct path path;
1321 	int retval;
1322 	int lookup_flags = 0;
1323 
1324 	if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
1325 		return -EINVAL;
1326 
1327 	if (!(flags & UMOUNT_NOFOLLOW))
1328 		lookup_flags |= LOOKUP_FOLLOW;
1329 
1330 	retval = user_path_at(AT_FDCWD, name, lookup_flags, &path);
1331 	if (retval)
1332 		goto out;
1333 	retval = -EINVAL;
1334 	if (path.dentry != path.mnt->mnt_root)
1335 		goto dput_and_out;
1336 	if (!check_mnt(path.mnt))
1337 		goto dput_and_out;
1338 
1339 	retval = -EPERM;
1340 	if (!capable(CAP_SYS_ADMIN))
1341 		goto dput_and_out;
1342 
1343 	retval = do_umount(path.mnt, flags);
1344 dput_and_out:
1345 	/* we mustn't call path_put() as that would clear mnt_expiry_mark */
1346 	dput(path.dentry);
1347 	mntput_no_expire(path.mnt);
1348 out:
1349 	return retval;
1350 }
1351 
1352 #ifdef __ARCH_WANT_SYS_OLDUMOUNT
1353 
1354 /*
1355  *	The 2.0 compatible umount. No flags.
1356  */
1357 SYSCALL_DEFINE1(oldumount, char __user *, name)
1358 {
1359 	return sys_umount(name, 0);
1360 }
1361 
1362 #endif
1363 
1364 static int mount_is_safe(struct path *path)
1365 {
1366 	if (capable(CAP_SYS_ADMIN))
1367 		return 0;
1368 	return -EPERM;
1369 #ifdef notyet
1370 	if (S_ISLNK(path->dentry->d_inode->i_mode))
1371 		return -EPERM;
1372 	if (path->dentry->d_inode->i_mode & S_ISVTX) {
1373 		if (current_uid() != path->dentry->d_inode->i_uid)
1374 			return -EPERM;
1375 	}
1376 	if (inode_permission(path->dentry->d_inode, MAY_WRITE))
1377 		return -EPERM;
1378 	return 0;
1379 #endif
1380 }
1381 
1382 struct vfsmount *copy_tree(struct vfsmount *mnt, struct dentry *dentry,
1383 					int flag)
1384 {
1385 	struct vfsmount *res, *p, *q, *r, *s;
1386 	struct path path;
1387 
1388 	if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(mnt))
1389 		return NULL;
1390 
1391 	res = q = clone_mnt(mnt, dentry, flag);
1392 	if (!q)
1393 		goto Enomem;
1394 	q->mnt_mountpoint = mnt->mnt_mountpoint;
1395 
1396 	p = mnt;
1397 	list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
1398 		if (!is_subdir(r->mnt_mountpoint, dentry))
1399 			continue;
1400 
1401 		for (s = r; s; s = next_mnt(s, r)) {
1402 			if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(s)) {
1403 				s = skip_mnt_tree(s);
1404 				continue;
1405 			}
1406 			while (p != s->mnt_parent) {
1407 				p = p->mnt_parent;
1408 				q = q->mnt_parent;
1409 			}
1410 			p = s;
1411 			path.mnt = q;
1412 			path.dentry = p->mnt_mountpoint;
1413 			q = clone_mnt(p, p->mnt_root, flag);
1414 			if (!q)
1415 				goto Enomem;
1416 			br_write_lock(vfsmount_lock);
1417 			list_add_tail(&q->mnt_list, &res->mnt_list);
1418 			attach_mnt(q, &path);
1419 			br_write_unlock(vfsmount_lock);
1420 		}
1421 	}
1422 	return res;
1423 Enomem:
1424 	if (res) {
1425 		LIST_HEAD(umount_list);
1426 		br_write_lock(vfsmount_lock);
1427 		umount_tree(res, 0, &umount_list);
1428 		br_write_unlock(vfsmount_lock);
1429 		release_mounts(&umount_list);
1430 	}
1431 	return NULL;
1432 }
1433 
1434 struct vfsmount *collect_mounts(struct path *path)
1435 {
1436 	struct vfsmount *tree;
1437 	down_write(&namespace_sem);
1438 	tree = copy_tree(path->mnt, path->dentry, CL_COPY_ALL | CL_PRIVATE);
1439 	up_write(&namespace_sem);
1440 	return tree;
1441 }
1442 
1443 void drop_collected_mounts(struct vfsmount *mnt)
1444 {
1445 	LIST_HEAD(umount_list);
1446 	down_write(&namespace_sem);
1447 	br_write_lock(vfsmount_lock);
1448 	umount_tree(mnt, 0, &umount_list);
1449 	br_write_unlock(vfsmount_lock);
1450 	up_write(&namespace_sem);
1451 	release_mounts(&umount_list);
1452 }
1453 
1454 int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
1455 		   struct vfsmount *root)
1456 {
1457 	struct vfsmount *mnt;
1458 	int res = f(root, arg);
1459 	if (res)
1460 		return res;
1461 	list_for_each_entry(mnt, &root->mnt_list, mnt_list) {
1462 		res = f(mnt, arg);
1463 		if (res)
1464 			return res;
1465 	}
1466 	return 0;
1467 }
1468 
1469 static void cleanup_group_ids(struct vfsmount *mnt, struct vfsmount *end)
1470 {
1471 	struct vfsmount *p;
1472 
1473 	for (p = mnt; p != end; p = next_mnt(p, mnt)) {
1474 		if (p->mnt_group_id && !IS_MNT_SHARED(p))
1475 			mnt_release_group_id(p);
1476 	}
1477 }
1478 
1479 static int invent_group_ids(struct vfsmount *mnt, bool recurse)
1480 {
1481 	struct vfsmount *p;
1482 
1483 	for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
1484 		if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
1485 			int err = mnt_alloc_group_id(p);
1486 			if (err) {
1487 				cleanup_group_ids(mnt, p);
1488 				return err;
1489 			}
1490 		}
1491 	}
1492 
1493 	return 0;
1494 }
1495 
1496 /*
1497  *  @source_mnt : mount tree to be attached
1498  *  @nd         : place the mount tree @source_mnt is attached
1499  *  @parent_nd  : if non-null, detach the source_mnt from its parent and
1500  *  		   store the parent mount and mountpoint dentry.
1501  *  		   (done when source_mnt is moved)
1502  *
1503  *  NOTE: in the table below explains the semantics when a source mount
1504  *  of a given type is attached to a destination mount of a given type.
1505  * ---------------------------------------------------------------------------
1506  * |         BIND MOUNT OPERATION                                            |
1507  * |**************************************************************************
1508  * | source-->| shared        |       private  |       slave    | unbindable |
1509  * | dest     |               |                |                |            |
1510  * |   |      |               |                |                |            |
1511  * |   v      |               |                |                |            |
1512  * |**************************************************************************
1513  * |  shared  | shared (++)   |     shared (+) |     shared(+++)|  invalid   |
1514  * |          |               |                |                |            |
1515  * |non-shared| shared (+)    |      private   |      slave (*) |  invalid   |
1516  * ***************************************************************************
1517  * A bind operation clones the source mount and mounts the clone on the
1518  * destination mount.
1519  *
1520  * (++)  the cloned mount is propagated to all the mounts in the propagation
1521  * 	 tree of the destination mount and the cloned mount is added to
1522  * 	 the peer group of the source mount.
1523  * (+)   the cloned mount is created under the destination mount and is marked
1524  *       as shared. The cloned mount is added to the peer group of the source
1525  *       mount.
1526  * (+++) the mount is propagated to all the mounts in the propagation tree
1527  *       of the destination mount and the cloned mount is made slave
1528  *       of the same master as that of the source mount. The cloned mount
1529  *       is marked as 'shared and slave'.
1530  * (*)   the cloned mount is made a slave of the same master as that of the
1531  * 	 source mount.
1532  *
1533  * ---------------------------------------------------------------------------
1534  * |         		MOVE MOUNT OPERATION                                 |
1535  * |**************************************************************************
1536  * | source-->| shared        |       private  |       slave    | unbindable |
1537  * | dest     |               |                |                |            |
1538  * |   |      |               |                |                |            |
1539  * |   v      |               |                |                |            |
1540  * |**************************************************************************
1541  * |  shared  | shared (+)    |     shared (+) |    shared(+++) |  invalid   |
1542  * |          |               |                |                |            |
1543  * |non-shared| shared (+*)   |      private   |    slave (*)   | unbindable |
1544  * ***************************************************************************
1545  *
1546  * (+)  the mount is moved to the destination. And is then propagated to
1547  * 	all the mounts in the propagation tree of the destination mount.
1548  * (+*)  the mount is moved to the destination.
1549  * (+++)  the mount is moved to the destination and is then propagated to
1550  * 	all the mounts belonging to the destination mount's propagation tree.
1551  * 	the mount is marked as 'shared and slave'.
1552  * (*)	the mount continues to be a slave at the new location.
1553  *
1554  * if the source mount is a tree, the operations explained above is
1555  * applied to each mount in the tree.
1556  * Must be called without spinlocks held, since this function can sleep
1557  * in allocations.
1558  */
1559 static int attach_recursive_mnt(struct vfsmount *source_mnt,
1560 			struct path *path, struct path *parent_path)
1561 {
1562 	LIST_HEAD(tree_list);
1563 	struct vfsmount *dest_mnt = path->mnt;
1564 	struct dentry *dest_dentry = path->dentry;
1565 	struct vfsmount *child, *p;
1566 	int err;
1567 
1568 	if (IS_MNT_SHARED(dest_mnt)) {
1569 		err = invent_group_ids(source_mnt, true);
1570 		if (err)
1571 			goto out;
1572 	}
1573 	err = propagate_mnt(dest_mnt, dest_dentry, source_mnt, &tree_list);
1574 	if (err)
1575 		goto out_cleanup_ids;
1576 
1577 	br_write_lock(vfsmount_lock);
1578 
1579 	if (IS_MNT_SHARED(dest_mnt)) {
1580 		for (p = source_mnt; p; p = next_mnt(p, source_mnt))
1581 			set_mnt_shared(p);
1582 	}
1583 	if (parent_path) {
1584 		detach_mnt(source_mnt, parent_path);
1585 		attach_mnt(source_mnt, path);
1586 		touch_mnt_namespace(parent_path->mnt->mnt_ns);
1587 	} else {
1588 		mnt_set_mountpoint(dest_mnt, dest_dentry, source_mnt);
1589 		commit_tree(source_mnt);
1590 	}
1591 
1592 	list_for_each_entry_safe(child, p, &tree_list, mnt_hash) {
1593 		list_del_init(&child->mnt_hash);
1594 		commit_tree(child);
1595 	}
1596 	br_write_unlock(vfsmount_lock);
1597 
1598 	return 0;
1599 
1600  out_cleanup_ids:
1601 	if (IS_MNT_SHARED(dest_mnt))
1602 		cleanup_group_ids(source_mnt, NULL);
1603  out:
1604 	return err;
1605 }
1606 
1607 static int graft_tree(struct vfsmount *mnt, struct path *path)
1608 {
1609 	int err;
1610 	if (mnt->mnt_sb->s_flags & MS_NOUSER)
1611 		return -EINVAL;
1612 
1613 	if (S_ISDIR(path->dentry->d_inode->i_mode) !=
1614 	      S_ISDIR(mnt->mnt_root->d_inode->i_mode))
1615 		return -ENOTDIR;
1616 
1617 	err = -ENOENT;
1618 	mutex_lock(&path->dentry->d_inode->i_mutex);
1619 	if (cant_mount(path->dentry))
1620 		goto out_unlock;
1621 
1622 	if (!d_unlinked(path->dentry))
1623 		err = attach_recursive_mnt(mnt, path, NULL);
1624 out_unlock:
1625 	mutex_unlock(&path->dentry->d_inode->i_mutex);
1626 	return err;
1627 }
1628 
1629 /*
1630  * Sanity check the flags to change_mnt_propagation.
1631  */
1632 
1633 static int flags_to_propagation_type(int flags)
1634 {
1635 	int type = flags & ~MS_REC;
1636 
1637 	/* Fail if any non-propagation flags are set */
1638 	if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
1639 		return 0;
1640 	/* Only one propagation flag should be set */
1641 	if (!is_power_of_2(type))
1642 		return 0;
1643 	return type;
1644 }
1645 
1646 /*
1647  * recursively change the type of the mountpoint.
1648  */
1649 static int do_change_type(struct path *path, int flag)
1650 {
1651 	struct vfsmount *m, *mnt = path->mnt;
1652 	int recurse = flag & MS_REC;
1653 	int type;
1654 	int err = 0;
1655 
1656 	if (!capable(CAP_SYS_ADMIN))
1657 		return -EPERM;
1658 
1659 	if (path->dentry != path->mnt->mnt_root)
1660 		return -EINVAL;
1661 
1662 	type = flags_to_propagation_type(flag);
1663 	if (!type)
1664 		return -EINVAL;
1665 
1666 	down_write(&namespace_sem);
1667 	if (type == MS_SHARED) {
1668 		err = invent_group_ids(mnt, recurse);
1669 		if (err)
1670 			goto out_unlock;
1671 	}
1672 
1673 	br_write_lock(vfsmount_lock);
1674 	for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
1675 		change_mnt_propagation(m, type);
1676 	br_write_unlock(vfsmount_lock);
1677 
1678  out_unlock:
1679 	up_write(&namespace_sem);
1680 	return err;
1681 }
1682 
1683 /*
1684  * do loopback mount.
1685  */
1686 static int do_loopback(struct path *path, char *old_name,
1687 				int recurse)
1688 {
1689 	struct path old_path;
1690 	struct vfsmount *mnt = NULL;
1691 	int err = mount_is_safe(path);
1692 	if (err)
1693 		return err;
1694 	if (!old_name || !*old_name)
1695 		return -EINVAL;
1696 	err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
1697 	if (err)
1698 		return err;
1699 
1700 	down_write(&namespace_sem);
1701 	err = -EINVAL;
1702 	if (IS_MNT_UNBINDABLE(old_path.mnt))
1703 		goto out;
1704 
1705 	if (!check_mnt(path->mnt) || !check_mnt(old_path.mnt))
1706 		goto out;
1707 
1708 	err = -ENOMEM;
1709 	if (recurse)
1710 		mnt = copy_tree(old_path.mnt, old_path.dentry, 0);
1711 	else
1712 		mnt = clone_mnt(old_path.mnt, old_path.dentry, 0);
1713 
1714 	if (!mnt)
1715 		goto out;
1716 
1717 	err = graft_tree(mnt, path);
1718 	if (err) {
1719 		LIST_HEAD(umount_list);
1720 
1721 		br_write_lock(vfsmount_lock);
1722 		umount_tree(mnt, 0, &umount_list);
1723 		br_write_unlock(vfsmount_lock);
1724 		release_mounts(&umount_list);
1725 	}
1726 
1727 out:
1728 	up_write(&namespace_sem);
1729 	path_put(&old_path);
1730 	return err;
1731 }
1732 
1733 static int change_mount_flags(struct vfsmount *mnt, int ms_flags)
1734 {
1735 	int error = 0;
1736 	int readonly_request = 0;
1737 
1738 	if (ms_flags & MS_RDONLY)
1739 		readonly_request = 1;
1740 	if (readonly_request == __mnt_is_readonly(mnt))
1741 		return 0;
1742 
1743 	if (readonly_request)
1744 		error = mnt_make_readonly(mnt);
1745 	else
1746 		__mnt_unmake_readonly(mnt);
1747 	return error;
1748 }
1749 
1750 /*
1751  * change filesystem flags. dir should be a physical root of filesystem.
1752  * If you've mounted a non-root directory somewhere and want to do remount
1753  * on it - tough luck.
1754  */
1755 static int do_remount(struct path *path, int flags, int mnt_flags,
1756 		      void *data)
1757 {
1758 	int err;
1759 	struct super_block *sb = path->mnt->mnt_sb;
1760 
1761 	if (!capable(CAP_SYS_ADMIN))
1762 		return -EPERM;
1763 
1764 	if (!check_mnt(path->mnt))
1765 		return -EINVAL;
1766 
1767 	if (path->dentry != path->mnt->mnt_root)
1768 		return -EINVAL;
1769 
1770 	down_write(&sb->s_umount);
1771 	if (flags & MS_BIND)
1772 		err = change_mount_flags(path->mnt, flags);
1773 	else
1774 		err = do_remount_sb(sb, flags, data, 0);
1775 	if (!err) {
1776 		br_write_lock(vfsmount_lock);
1777 		mnt_flags |= path->mnt->mnt_flags & MNT_PROPAGATION_MASK;
1778 		path->mnt->mnt_flags = mnt_flags;
1779 		br_write_unlock(vfsmount_lock);
1780 	}
1781 	up_write(&sb->s_umount);
1782 	if (!err) {
1783 		br_write_lock(vfsmount_lock);
1784 		touch_mnt_namespace(path->mnt->mnt_ns);
1785 		br_write_unlock(vfsmount_lock);
1786 	}
1787 	return err;
1788 }
1789 
1790 static inline int tree_contains_unbindable(struct vfsmount *mnt)
1791 {
1792 	struct vfsmount *p;
1793 	for (p = mnt; p; p = next_mnt(p, mnt)) {
1794 		if (IS_MNT_UNBINDABLE(p))
1795 			return 1;
1796 	}
1797 	return 0;
1798 }
1799 
1800 static int do_move_mount(struct path *path, char *old_name)
1801 {
1802 	struct path old_path, parent_path;
1803 	struct vfsmount *p;
1804 	int err = 0;
1805 	if (!capable(CAP_SYS_ADMIN))
1806 		return -EPERM;
1807 	if (!old_name || !*old_name)
1808 		return -EINVAL;
1809 	err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
1810 	if (err)
1811 		return err;
1812 
1813 	down_write(&namespace_sem);
1814 	err = follow_down(path, true);
1815 	if (err < 0)
1816 		goto out;
1817 
1818 	err = -EINVAL;
1819 	if (!check_mnt(path->mnt) || !check_mnt(old_path.mnt))
1820 		goto out;
1821 
1822 	err = -ENOENT;
1823 	mutex_lock(&path->dentry->d_inode->i_mutex);
1824 	if (cant_mount(path->dentry))
1825 		goto out1;
1826 
1827 	if (d_unlinked(path->dentry))
1828 		goto out1;
1829 
1830 	err = -EINVAL;
1831 	if (old_path.dentry != old_path.mnt->mnt_root)
1832 		goto out1;
1833 
1834 	if (old_path.mnt == old_path.mnt->mnt_parent)
1835 		goto out1;
1836 
1837 	if (S_ISDIR(path->dentry->d_inode->i_mode) !=
1838 	      S_ISDIR(old_path.dentry->d_inode->i_mode))
1839 		goto out1;
1840 	/*
1841 	 * Don't move a mount residing in a shared parent.
1842 	 */
1843 	if (old_path.mnt->mnt_parent &&
1844 	    IS_MNT_SHARED(old_path.mnt->mnt_parent))
1845 		goto out1;
1846 	/*
1847 	 * Don't move a mount tree containing unbindable mounts to a destination
1848 	 * mount which is shared.
1849 	 */
1850 	if (IS_MNT_SHARED(path->mnt) &&
1851 	    tree_contains_unbindable(old_path.mnt))
1852 		goto out1;
1853 	err = -ELOOP;
1854 	for (p = path->mnt; p->mnt_parent != p; p = p->mnt_parent)
1855 		if (p == old_path.mnt)
1856 			goto out1;
1857 
1858 	err = attach_recursive_mnt(old_path.mnt, path, &parent_path);
1859 	if (err)
1860 		goto out1;
1861 
1862 	/* if the mount is moved, it should no longer be expire
1863 	 * automatically */
1864 	list_del_init(&old_path.mnt->mnt_expire);
1865 out1:
1866 	mutex_unlock(&path->dentry->d_inode->i_mutex);
1867 out:
1868 	up_write(&namespace_sem);
1869 	if (!err)
1870 		path_put(&parent_path);
1871 	path_put(&old_path);
1872 	return err;
1873 }
1874 
1875 static int do_add_mount(struct vfsmount *, struct path *, int);
1876 
1877 /*
1878  * create a new mount for userspace and request it to be added into the
1879  * namespace's tree
1880  */
1881 static int do_new_mount(struct path *path, char *type, int flags,
1882 			int mnt_flags, char *name, void *data)
1883 {
1884 	struct vfsmount *mnt;
1885 	int err;
1886 
1887 	if (!type)
1888 		return -EINVAL;
1889 
1890 	/* we need capabilities... */
1891 	if (!capable(CAP_SYS_ADMIN))
1892 		return -EPERM;
1893 
1894 	mnt = do_kern_mount(type, flags, name, data);
1895 	if (IS_ERR(mnt))
1896 		return PTR_ERR(mnt);
1897 
1898 	err = do_add_mount(mnt, path, mnt_flags);
1899 	if (err)
1900 		mntput(mnt);
1901 	return err;
1902 }
1903 
1904 int finish_automount(struct vfsmount *m, struct path *path)
1905 {
1906 	int err;
1907 	/* The new mount record should have at least 2 refs to prevent it being
1908 	 * expired before we get a chance to add it
1909 	 */
1910 	BUG_ON(mnt_get_count(m) < 2);
1911 
1912 	if (m->mnt_sb == path->mnt->mnt_sb &&
1913 	    m->mnt_root == path->dentry) {
1914 		err = -ELOOP;
1915 		goto fail;
1916 	}
1917 
1918 	err = do_add_mount(m, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
1919 	if (!err)
1920 		return 0;
1921 fail:
1922 	/* remove m from any expiration list it may be on */
1923 	if (!list_empty(&m->mnt_expire)) {
1924 		down_write(&namespace_sem);
1925 		br_write_lock(vfsmount_lock);
1926 		list_del_init(&m->mnt_expire);
1927 		br_write_unlock(vfsmount_lock);
1928 		up_write(&namespace_sem);
1929 	}
1930 	mntput(m);
1931 	mntput(m);
1932 	return err;
1933 }
1934 
1935 /*
1936  * add a mount into a namespace's mount tree
1937  */
1938 static int do_add_mount(struct vfsmount *newmnt, struct path *path, int mnt_flags)
1939 {
1940 	int err;
1941 
1942 	mnt_flags &= ~(MNT_SHARED | MNT_WRITE_HOLD | MNT_INTERNAL);
1943 
1944 	down_write(&namespace_sem);
1945 	/* Something was mounted here while we slept */
1946 	err = follow_down(path, true);
1947 	if (err < 0)
1948 		goto unlock;
1949 
1950 	err = -EINVAL;
1951 	if (!(mnt_flags & MNT_SHRINKABLE) && !check_mnt(path->mnt))
1952 		goto unlock;
1953 
1954 	/* Refuse the same filesystem on the same mount point */
1955 	err = -EBUSY;
1956 	if (path->mnt->mnt_sb == newmnt->mnt_sb &&
1957 	    path->mnt->mnt_root == path->dentry)
1958 		goto unlock;
1959 
1960 	err = -EINVAL;
1961 	if (S_ISLNK(newmnt->mnt_root->d_inode->i_mode))
1962 		goto unlock;
1963 
1964 	newmnt->mnt_flags = mnt_flags;
1965 	err = graft_tree(newmnt, path);
1966 
1967 unlock:
1968 	up_write(&namespace_sem);
1969 	return err;
1970 }
1971 
1972 /**
1973  * mnt_set_expiry - Put a mount on an expiration list
1974  * @mnt: The mount to list.
1975  * @expiry_list: The list to add the mount to.
1976  */
1977 void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
1978 {
1979 	down_write(&namespace_sem);
1980 	br_write_lock(vfsmount_lock);
1981 
1982 	list_add_tail(&mnt->mnt_expire, expiry_list);
1983 
1984 	br_write_unlock(vfsmount_lock);
1985 	up_write(&namespace_sem);
1986 }
1987 EXPORT_SYMBOL(mnt_set_expiry);
1988 
1989 /*
1990  * process a list of expirable mountpoints with the intent of discarding any
1991  * mountpoints that aren't in use and haven't been touched since last we came
1992  * here
1993  */
1994 void mark_mounts_for_expiry(struct list_head *mounts)
1995 {
1996 	struct vfsmount *mnt, *next;
1997 	LIST_HEAD(graveyard);
1998 	LIST_HEAD(umounts);
1999 
2000 	if (list_empty(mounts))
2001 		return;
2002 
2003 	down_write(&namespace_sem);
2004 	br_write_lock(vfsmount_lock);
2005 
2006 	/* extract from the expiration list every vfsmount that matches the
2007 	 * following criteria:
2008 	 * - only referenced by its parent vfsmount
2009 	 * - still marked for expiry (marked on the last call here; marks are
2010 	 *   cleared by mntput())
2011 	 */
2012 	list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
2013 		if (!xchg(&mnt->mnt_expiry_mark, 1) ||
2014 			propagate_mount_busy(mnt, 1))
2015 			continue;
2016 		list_move(&mnt->mnt_expire, &graveyard);
2017 	}
2018 	while (!list_empty(&graveyard)) {
2019 		mnt = list_first_entry(&graveyard, struct vfsmount, mnt_expire);
2020 		touch_mnt_namespace(mnt->mnt_ns);
2021 		umount_tree(mnt, 1, &umounts);
2022 	}
2023 	br_write_unlock(vfsmount_lock);
2024 	up_write(&namespace_sem);
2025 
2026 	release_mounts(&umounts);
2027 }
2028 
2029 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
2030 
2031 /*
2032  * Ripoff of 'select_parent()'
2033  *
2034  * search the list of submounts for a given mountpoint, and move any
2035  * shrinkable submounts to the 'graveyard' list.
2036  */
2037 static int select_submounts(struct vfsmount *parent, struct list_head *graveyard)
2038 {
2039 	struct vfsmount *this_parent = parent;
2040 	struct list_head *next;
2041 	int found = 0;
2042 
2043 repeat:
2044 	next = this_parent->mnt_mounts.next;
2045 resume:
2046 	while (next != &this_parent->mnt_mounts) {
2047 		struct list_head *tmp = next;
2048 		struct vfsmount *mnt = list_entry(tmp, struct vfsmount, mnt_child);
2049 
2050 		next = tmp->next;
2051 		if (!(mnt->mnt_flags & MNT_SHRINKABLE))
2052 			continue;
2053 		/*
2054 		 * Descend a level if the d_mounts list is non-empty.
2055 		 */
2056 		if (!list_empty(&mnt->mnt_mounts)) {
2057 			this_parent = mnt;
2058 			goto repeat;
2059 		}
2060 
2061 		if (!propagate_mount_busy(mnt, 1)) {
2062 			list_move_tail(&mnt->mnt_expire, graveyard);
2063 			found++;
2064 		}
2065 	}
2066 	/*
2067 	 * All done at this level ... ascend and resume the search
2068 	 */
2069 	if (this_parent != parent) {
2070 		next = this_parent->mnt_child.next;
2071 		this_parent = this_parent->mnt_parent;
2072 		goto resume;
2073 	}
2074 	return found;
2075 }
2076 
2077 /*
2078  * process a list of expirable mountpoints with the intent of discarding any
2079  * submounts of a specific parent mountpoint
2080  *
2081  * vfsmount_lock must be held for write
2082  */
2083 static void shrink_submounts(struct vfsmount *mnt, struct list_head *umounts)
2084 {
2085 	LIST_HEAD(graveyard);
2086 	struct vfsmount *m;
2087 
2088 	/* extract submounts of 'mountpoint' from the expiration list */
2089 	while (select_submounts(mnt, &graveyard)) {
2090 		while (!list_empty(&graveyard)) {
2091 			m = list_first_entry(&graveyard, struct vfsmount,
2092 						mnt_expire);
2093 			touch_mnt_namespace(m->mnt_ns);
2094 			umount_tree(m, 1, umounts);
2095 		}
2096 	}
2097 }
2098 
2099 /*
2100  * Some copy_from_user() implementations do not return the exact number of
2101  * bytes remaining to copy on a fault.  But copy_mount_options() requires that.
2102  * Note that this function differs from copy_from_user() in that it will oops
2103  * on bad values of `to', rather than returning a short copy.
2104  */
2105 static long exact_copy_from_user(void *to, const void __user * from,
2106 				 unsigned long n)
2107 {
2108 	char *t = to;
2109 	const char __user *f = from;
2110 	char c;
2111 
2112 	if (!access_ok(VERIFY_READ, from, n))
2113 		return n;
2114 
2115 	while (n) {
2116 		if (__get_user(c, f)) {
2117 			memset(t, 0, n);
2118 			break;
2119 		}
2120 		*t++ = c;
2121 		f++;
2122 		n--;
2123 	}
2124 	return n;
2125 }
2126 
2127 int copy_mount_options(const void __user * data, unsigned long *where)
2128 {
2129 	int i;
2130 	unsigned long page;
2131 	unsigned long size;
2132 
2133 	*where = 0;
2134 	if (!data)
2135 		return 0;
2136 
2137 	if (!(page = __get_free_page(GFP_KERNEL)))
2138 		return -ENOMEM;
2139 
2140 	/* We only care that *some* data at the address the user
2141 	 * gave us is valid.  Just in case, we'll zero
2142 	 * the remainder of the page.
2143 	 */
2144 	/* copy_from_user cannot cross TASK_SIZE ! */
2145 	size = TASK_SIZE - (unsigned long)data;
2146 	if (size > PAGE_SIZE)
2147 		size = PAGE_SIZE;
2148 
2149 	i = size - exact_copy_from_user((void *)page, data, size);
2150 	if (!i) {
2151 		free_page(page);
2152 		return -EFAULT;
2153 	}
2154 	if (i != PAGE_SIZE)
2155 		memset((char *)page + i, 0, PAGE_SIZE - i);
2156 	*where = page;
2157 	return 0;
2158 }
2159 
2160 int copy_mount_string(const void __user *data, char **where)
2161 {
2162 	char *tmp;
2163 
2164 	if (!data) {
2165 		*where = NULL;
2166 		return 0;
2167 	}
2168 
2169 	tmp = strndup_user(data, PAGE_SIZE);
2170 	if (IS_ERR(tmp))
2171 		return PTR_ERR(tmp);
2172 
2173 	*where = tmp;
2174 	return 0;
2175 }
2176 
2177 /*
2178  * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
2179  * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
2180  *
2181  * data is a (void *) that can point to any structure up to
2182  * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
2183  * information (or be NULL).
2184  *
2185  * Pre-0.97 versions of mount() didn't have a flags word.
2186  * When the flags word was introduced its top half was required
2187  * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
2188  * Therefore, if this magic number is present, it carries no information
2189  * and must be discarded.
2190  */
2191 long do_mount(char *dev_name, char *dir_name, char *type_page,
2192 		  unsigned long flags, void *data_page)
2193 {
2194 	struct path path;
2195 	int retval = 0;
2196 	int mnt_flags = 0;
2197 
2198 	/* Discard magic */
2199 	if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
2200 		flags &= ~MS_MGC_MSK;
2201 
2202 	/* Basic sanity checks */
2203 
2204 	if (!dir_name || !*dir_name || !memchr(dir_name, 0, PAGE_SIZE))
2205 		return -EINVAL;
2206 
2207 	if (data_page)
2208 		((char *)data_page)[PAGE_SIZE - 1] = 0;
2209 
2210 	/* ... and get the mountpoint */
2211 	retval = kern_path(dir_name, LOOKUP_FOLLOW, &path);
2212 	if (retval)
2213 		return retval;
2214 
2215 	retval = security_sb_mount(dev_name, &path,
2216 				   type_page, flags, data_page);
2217 	if (retval)
2218 		goto dput_out;
2219 
2220 	/* Default to relatime unless overriden */
2221 	if (!(flags & MS_NOATIME))
2222 		mnt_flags |= MNT_RELATIME;
2223 
2224 	/* Separate the per-mountpoint flags */
2225 	if (flags & MS_NOSUID)
2226 		mnt_flags |= MNT_NOSUID;
2227 	if (flags & MS_NODEV)
2228 		mnt_flags |= MNT_NODEV;
2229 	if (flags & MS_NOEXEC)
2230 		mnt_flags |= MNT_NOEXEC;
2231 	if (flags & MS_NOATIME)
2232 		mnt_flags |= MNT_NOATIME;
2233 	if (flags & MS_NODIRATIME)
2234 		mnt_flags |= MNT_NODIRATIME;
2235 	if (flags & MS_STRICTATIME)
2236 		mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
2237 	if (flags & MS_RDONLY)
2238 		mnt_flags |= MNT_READONLY;
2239 
2240 	flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE | MS_BORN |
2241 		   MS_NOATIME | MS_NODIRATIME | MS_RELATIME| MS_KERNMOUNT |
2242 		   MS_STRICTATIME);
2243 
2244 	if (flags & MS_REMOUNT)
2245 		retval = do_remount(&path, flags & ~MS_REMOUNT, mnt_flags,
2246 				    data_page);
2247 	else if (flags & MS_BIND)
2248 		retval = do_loopback(&path, dev_name, flags & MS_REC);
2249 	else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2250 		retval = do_change_type(&path, flags);
2251 	else if (flags & MS_MOVE)
2252 		retval = do_move_mount(&path, dev_name);
2253 	else
2254 		retval = do_new_mount(&path, type_page, flags, mnt_flags,
2255 				      dev_name, data_page);
2256 dput_out:
2257 	path_put(&path);
2258 	return retval;
2259 }
2260 
2261 static struct mnt_namespace *alloc_mnt_ns(void)
2262 {
2263 	struct mnt_namespace *new_ns;
2264 
2265 	new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
2266 	if (!new_ns)
2267 		return ERR_PTR(-ENOMEM);
2268 	atomic_set(&new_ns->count, 1);
2269 	new_ns->root = NULL;
2270 	INIT_LIST_HEAD(&new_ns->list);
2271 	init_waitqueue_head(&new_ns->poll);
2272 	new_ns->event = 0;
2273 	return new_ns;
2274 }
2275 
2276 void mnt_make_longterm(struct vfsmount *mnt)
2277 {
2278 	__mnt_make_longterm(mnt);
2279 }
2280 
2281 void mnt_make_shortterm(struct vfsmount *mnt)
2282 {
2283 #ifdef CONFIG_SMP
2284 	if (atomic_add_unless(&mnt->mnt_longterm, -1, 1))
2285 		return;
2286 	br_write_lock(vfsmount_lock);
2287 	atomic_dec(&mnt->mnt_longterm);
2288 	br_write_unlock(vfsmount_lock);
2289 #endif
2290 }
2291 
2292 /*
2293  * Allocate a new namespace structure and populate it with contents
2294  * copied from the namespace of the passed in task structure.
2295  */
2296 static struct mnt_namespace *dup_mnt_ns(struct mnt_namespace *mnt_ns,
2297 		struct fs_struct *fs)
2298 {
2299 	struct mnt_namespace *new_ns;
2300 	struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
2301 	struct vfsmount *p, *q;
2302 
2303 	new_ns = alloc_mnt_ns();
2304 	if (IS_ERR(new_ns))
2305 		return new_ns;
2306 
2307 	down_write(&namespace_sem);
2308 	/* First pass: copy the tree topology */
2309 	new_ns->root = copy_tree(mnt_ns->root, mnt_ns->root->mnt_root,
2310 					CL_COPY_ALL | CL_EXPIRE);
2311 	if (!new_ns->root) {
2312 		up_write(&namespace_sem);
2313 		kfree(new_ns);
2314 		return ERR_PTR(-ENOMEM);
2315 	}
2316 	br_write_lock(vfsmount_lock);
2317 	list_add_tail(&new_ns->list, &new_ns->root->mnt_list);
2318 	br_write_unlock(vfsmount_lock);
2319 
2320 	/*
2321 	 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
2322 	 * as belonging to new namespace.  We have already acquired a private
2323 	 * fs_struct, so tsk->fs->lock is not needed.
2324 	 */
2325 	p = mnt_ns->root;
2326 	q = new_ns->root;
2327 	while (p) {
2328 		q->mnt_ns = new_ns;
2329 		__mnt_make_longterm(q);
2330 		if (fs) {
2331 			if (p == fs->root.mnt) {
2332 				fs->root.mnt = mntget(q);
2333 				__mnt_make_longterm(q);
2334 				mnt_make_shortterm(p);
2335 				rootmnt = p;
2336 			}
2337 			if (p == fs->pwd.mnt) {
2338 				fs->pwd.mnt = mntget(q);
2339 				__mnt_make_longterm(q);
2340 				mnt_make_shortterm(p);
2341 				pwdmnt = p;
2342 			}
2343 		}
2344 		p = next_mnt(p, mnt_ns->root);
2345 		q = next_mnt(q, new_ns->root);
2346 	}
2347 	up_write(&namespace_sem);
2348 
2349 	if (rootmnt)
2350 		mntput(rootmnt);
2351 	if (pwdmnt)
2352 		mntput(pwdmnt);
2353 
2354 	return new_ns;
2355 }
2356 
2357 struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
2358 		struct fs_struct *new_fs)
2359 {
2360 	struct mnt_namespace *new_ns;
2361 
2362 	BUG_ON(!ns);
2363 	get_mnt_ns(ns);
2364 
2365 	if (!(flags & CLONE_NEWNS))
2366 		return ns;
2367 
2368 	new_ns = dup_mnt_ns(ns, new_fs);
2369 
2370 	put_mnt_ns(ns);
2371 	return new_ns;
2372 }
2373 
2374 /**
2375  * create_mnt_ns - creates a private namespace and adds a root filesystem
2376  * @mnt: pointer to the new root filesystem mountpoint
2377  */
2378 struct mnt_namespace *create_mnt_ns(struct vfsmount *mnt)
2379 {
2380 	struct mnt_namespace *new_ns;
2381 
2382 	new_ns = alloc_mnt_ns();
2383 	if (!IS_ERR(new_ns)) {
2384 		mnt->mnt_ns = new_ns;
2385 		__mnt_make_longterm(mnt);
2386 		new_ns->root = mnt;
2387 		list_add(&new_ns->list, &new_ns->root->mnt_list);
2388 	}
2389 	return new_ns;
2390 }
2391 EXPORT_SYMBOL(create_mnt_ns);
2392 
2393 SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
2394 		char __user *, type, unsigned long, flags, void __user *, data)
2395 {
2396 	int ret;
2397 	char *kernel_type;
2398 	char *kernel_dir;
2399 	char *kernel_dev;
2400 	unsigned long data_page;
2401 
2402 	ret = copy_mount_string(type, &kernel_type);
2403 	if (ret < 0)
2404 		goto out_type;
2405 
2406 	kernel_dir = getname(dir_name);
2407 	if (IS_ERR(kernel_dir)) {
2408 		ret = PTR_ERR(kernel_dir);
2409 		goto out_dir;
2410 	}
2411 
2412 	ret = copy_mount_string(dev_name, &kernel_dev);
2413 	if (ret < 0)
2414 		goto out_dev;
2415 
2416 	ret = copy_mount_options(data, &data_page);
2417 	if (ret < 0)
2418 		goto out_data;
2419 
2420 	ret = do_mount(kernel_dev, kernel_dir, kernel_type, flags,
2421 		(void *) data_page);
2422 
2423 	free_page(data_page);
2424 out_data:
2425 	kfree(kernel_dev);
2426 out_dev:
2427 	putname(kernel_dir);
2428 out_dir:
2429 	kfree(kernel_type);
2430 out_type:
2431 	return ret;
2432 }
2433 
2434 /*
2435  * pivot_root Semantics:
2436  * Moves the root file system of the current process to the directory put_old,
2437  * makes new_root as the new root file system of the current process, and sets
2438  * root/cwd of all processes which had them on the current root to new_root.
2439  *
2440  * Restrictions:
2441  * The new_root and put_old must be directories, and  must not be on the
2442  * same file  system as the current process root. The put_old  must  be
2443  * underneath new_root,  i.e. adding a non-zero number of /.. to the string
2444  * pointed to by put_old must yield the same directory as new_root. No other
2445  * file system may be mounted on put_old. After all, new_root is a mountpoint.
2446  *
2447  * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
2448  * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
2449  * in this situation.
2450  *
2451  * Notes:
2452  *  - we don't move root/cwd if they are not at the root (reason: if something
2453  *    cared enough to change them, it's probably wrong to force them elsewhere)
2454  *  - it's okay to pick a root that isn't the root of a file system, e.g.
2455  *    /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
2456  *    though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
2457  *    first.
2458  */
2459 SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
2460 		const char __user *, put_old)
2461 {
2462 	struct vfsmount *tmp;
2463 	struct path new, old, parent_path, root_parent, root;
2464 	int error;
2465 
2466 	if (!capable(CAP_SYS_ADMIN))
2467 		return -EPERM;
2468 
2469 	error = user_path_dir(new_root, &new);
2470 	if (error)
2471 		goto out0;
2472 	error = -EINVAL;
2473 	if (!check_mnt(new.mnt))
2474 		goto out1;
2475 
2476 	error = user_path_dir(put_old, &old);
2477 	if (error)
2478 		goto out1;
2479 
2480 	error = security_sb_pivotroot(&old, &new);
2481 	if (error) {
2482 		path_put(&old);
2483 		goto out1;
2484 	}
2485 
2486 	get_fs_root(current->fs, &root);
2487 	down_write(&namespace_sem);
2488 	mutex_lock(&old.dentry->d_inode->i_mutex);
2489 	error = -EINVAL;
2490 	if (IS_MNT_SHARED(old.mnt) ||
2491 		IS_MNT_SHARED(new.mnt->mnt_parent) ||
2492 		IS_MNT_SHARED(root.mnt->mnt_parent))
2493 		goto out2;
2494 	if (!check_mnt(root.mnt))
2495 		goto out2;
2496 	error = -ENOENT;
2497 	if (cant_mount(old.dentry))
2498 		goto out2;
2499 	if (d_unlinked(new.dentry))
2500 		goto out2;
2501 	if (d_unlinked(old.dentry))
2502 		goto out2;
2503 	error = -EBUSY;
2504 	if (new.mnt == root.mnt ||
2505 	    old.mnt == root.mnt)
2506 		goto out2; /* loop, on the same file system  */
2507 	error = -EINVAL;
2508 	if (root.mnt->mnt_root != root.dentry)
2509 		goto out2; /* not a mountpoint */
2510 	if (root.mnt->mnt_parent == root.mnt)
2511 		goto out2; /* not attached */
2512 	if (new.mnt->mnt_root != new.dentry)
2513 		goto out2; /* not a mountpoint */
2514 	if (new.mnt->mnt_parent == new.mnt)
2515 		goto out2; /* not attached */
2516 	/* make sure we can reach put_old from new_root */
2517 	tmp = old.mnt;
2518 	br_write_lock(vfsmount_lock);
2519 	if (tmp != new.mnt) {
2520 		for (;;) {
2521 			if (tmp->mnt_parent == tmp)
2522 				goto out3; /* already mounted on put_old */
2523 			if (tmp->mnt_parent == new.mnt)
2524 				break;
2525 			tmp = tmp->mnt_parent;
2526 		}
2527 		if (!is_subdir(tmp->mnt_mountpoint, new.dentry))
2528 			goto out3;
2529 	} else if (!is_subdir(old.dentry, new.dentry))
2530 		goto out3;
2531 	detach_mnt(new.mnt, &parent_path);
2532 	detach_mnt(root.mnt, &root_parent);
2533 	/* mount old root on put_old */
2534 	attach_mnt(root.mnt, &old);
2535 	/* mount new_root on / */
2536 	attach_mnt(new.mnt, &root_parent);
2537 	touch_mnt_namespace(current->nsproxy->mnt_ns);
2538 	br_write_unlock(vfsmount_lock);
2539 	chroot_fs_refs(&root, &new);
2540 
2541 	error = 0;
2542 	path_put(&root_parent);
2543 	path_put(&parent_path);
2544 out2:
2545 	mutex_unlock(&old.dentry->d_inode->i_mutex);
2546 	up_write(&namespace_sem);
2547 	path_put(&root);
2548 	path_put(&old);
2549 out1:
2550 	path_put(&new);
2551 out0:
2552 	return error;
2553 out3:
2554 	br_write_unlock(vfsmount_lock);
2555 	goto out2;
2556 }
2557 
2558 static void __init init_mount_tree(void)
2559 {
2560 	struct vfsmount *mnt;
2561 	struct mnt_namespace *ns;
2562 	struct path root;
2563 
2564 	mnt = do_kern_mount("rootfs", 0, "rootfs", NULL);
2565 	if (IS_ERR(mnt))
2566 		panic("Can't create rootfs");
2567 
2568 	ns = create_mnt_ns(mnt);
2569 	if (IS_ERR(ns))
2570 		panic("Can't allocate initial namespace");
2571 
2572 	init_task.nsproxy->mnt_ns = ns;
2573 	get_mnt_ns(ns);
2574 
2575 	root.mnt = ns->root;
2576 	root.dentry = ns->root->mnt_root;
2577 
2578 	set_fs_pwd(current->fs, &root);
2579 	set_fs_root(current->fs, &root);
2580 }
2581 
2582 void __init mnt_init(void)
2583 {
2584 	unsigned u;
2585 	int err;
2586 
2587 	init_rwsem(&namespace_sem);
2588 
2589 	mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct vfsmount),
2590 			0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
2591 
2592 	mount_hashtable = (struct list_head *)__get_free_page(GFP_ATOMIC);
2593 
2594 	if (!mount_hashtable)
2595 		panic("Failed to allocate mount hash table\n");
2596 
2597 	printk("Mount-cache hash table entries: %lu\n", HASH_SIZE);
2598 
2599 	for (u = 0; u < HASH_SIZE; u++)
2600 		INIT_LIST_HEAD(&mount_hashtable[u]);
2601 
2602 	br_lock_init(vfsmount_lock);
2603 
2604 	err = sysfs_init();
2605 	if (err)
2606 		printk(KERN_WARNING "%s: sysfs_init error: %d\n",
2607 			__func__, err);
2608 	fs_kobj = kobject_create_and_add("fs", NULL);
2609 	if (!fs_kobj)
2610 		printk(KERN_WARNING "%s: kobj create error\n", __func__);
2611 	init_rootfs();
2612 	init_mount_tree();
2613 }
2614 
2615 void put_mnt_ns(struct mnt_namespace *ns)
2616 {
2617 	LIST_HEAD(umount_list);
2618 
2619 	if (!atomic_dec_and_test(&ns->count))
2620 		return;
2621 	down_write(&namespace_sem);
2622 	br_write_lock(vfsmount_lock);
2623 	umount_tree(ns->root, 0, &umount_list);
2624 	br_write_unlock(vfsmount_lock);
2625 	up_write(&namespace_sem);
2626 	release_mounts(&umount_list);
2627 	kfree(ns);
2628 }
2629 EXPORT_SYMBOL(put_mnt_ns);
2630