xref: /openbmc/linux/fs/namespace.c (revision dd093fb0)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/fs/namespace.c
4  *
5  * (C) Copyright Al Viro 2000, 2001
6  *
7  * Based on code from fs/super.c, copyright Linus Torvalds and others.
8  * Heavily rewritten.
9  */
10 
11 #include <linux/syscalls.h>
12 #include <linux/export.h>
13 #include <linux/capability.h>
14 #include <linux/mnt_namespace.h>
15 #include <linux/user_namespace.h>
16 #include <linux/namei.h>
17 #include <linux/security.h>
18 #include <linux/cred.h>
19 #include <linux/idr.h>
20 #include <linux/init.h>		/* init_rootfs */
21 #include <linux/fs_struct.h>	/* get_fs_root et.al. */
22 #include <linux/fsnotify.h>	/* fsnotify_vfsmount_delete */
23 #include <linux/file.h>
24 #include <linux/uaccess.h>
25 #include <linux/proc_ns.h>
26 #include <linux/magic.h>
27 #include <linux/memblock.h>
28 #include <linux/proc_fs.h>
29 #include <linux/task_work.h>
30 #include <linux/sched/task.h>
31 #include <uapi/linux/mount.h>
32 #include <linux/fs_context.h>
33 #include <linux/shmem_fs.h>
34 #include <linux/mnt_idmapping.h>
35 
36 #include "pnode.h"
37 #include "internal.h"
38 
39 /* Maximum number of mounts in a mount namespace */
40 static unsigned int sysctl_mount_max __read_mostly = 100000;
41 
42 static unsigned int m_hash_mask __read_mostly;
43 static unsigned int m_hash_shift __read_mostly;
44 static unsigned int mp_hash_mask __read_mostly;
45 static unsigned int mp_hash_shift __read_mostly;
46 
47 static __initdata unsigned long mhash_entries;
48 static int __init set_mhash_entries(char *str)
49 {
50 	if (!str)
51 		return 0;
52 	mhash_entries = simple_strtoul(str, &str, 0);
53 	return 1;
54 }
55 __setup("mhash_entries=", set_mhash_entries);
56 
57 static __initdata unsigned long mphash_entries;
58 static int __init set_mphash_entries(char *str)
59 {
60 	if (!str)
61 		return 0;
62 	mphash_entries = simple_strtoul(str, &str, 0);
63 	return 1;
64 }
65 __setup("mphash_entries=", set_mphash_entries);
66 
67 static u64 event;
68 static DEFINE_IDA(mnt_id_ida);
69 static DEFINE_IDA(mnt_group_ida);
70 
71 static struct hlist_head *mount_hashtable __read_mostly;
72 static struct hlist_head *mountpoint_hashtable __read_mostly;
73 static struct kmem_cache *mnt_cache __read_mostly;
74 static DECLARE_RWSEM(namespace_sem);
75 static HLIST_HEAD(unmounted);	/* protected by namespace_sem */
76 static LIST_HEAD(ex_mountpoints); /* protected by namespace_sem */
77 
78 struct mount_kattr {
79 	unsigned int attr_set;
80 	unsigned int attr_clr;
81 	unsigned int propagation;
82 	unsigned int lookup_flags;
83 	bool recurse;
84 	struct user_namespace *mnt_userns;
85 	struct mnt_idmap *mnt_idmap;
86 };
87 
88 /* /sys/fs */
89 struct kobject *fs_kobj;
90 EXPORT_SYMBOL_GPL(fs_kobj);
91 
92 /*
93  * vfsmount lock may be taken for read to prevent changes to the
94  * vfsmount hash, ie. during mountpoint lookups or walking back
95  * up the tree.
96  *
97  * It should be taken for write in all cases where the vfsmount
98  * tree or hash is modified or when a vfsmount structure is modified.
99  */
100 __cacheline_aligned_in_smp DEFINE_SEQLOCK(mount_lock);
101 
102 static inline void lock_mount_hash(void)
103 {
104 	write_seqlock(&mount_lock);
105 }
106 
107 static inline void unlock_mount_hash(void)
108 {
109 	write_sequnlock(&mount_lock);
110 }
111 
112 static inline struct hlist_head *m_hash(struct vfsmount *mnt, struct dentry *dentry)
113 {
114 	unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
115 	tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
116 	tmp = tmp + (tmp >> m_hash_shift);
117 	return &mount_hashtable[tmp & m_hash_mask];
118 }
119 
120 static inline struct hlist_head *mp_hash(struct dentry *dentry)
121 {
122 	unsigned long tmp = ((unsigned long)dentry / L1_CACHE_BYTES);
123 	tmp = tmp + (tmp >> mp_hash_shift);
124 	return &mountpoint_hashtable[tmp & mp_hash_mask];
125 }
126 
127 static int mnt_alloc_id(struct mount *mnt)
128 {
129 	int res = ida_alloc(&mnt_id_ida, GFP_KERNEL);
130 
131 	if (res < 0)
132 		return res;
133 	mnt->mnt_id = res;
134 	return 0;
135 }
136 
137 static void mnt_free_id(struct mount *mnt)
138 {
139 	ida_free(&mnt_id_ida, mnt->mnt_id);
140 }
141 
142 /*
143  * Allocate a new peer group ID
144  */
145 static int mnt_alloc_group_id(struct mount *mnt)
146 {
147 	int res = ida_alloc_min(&mnt_group_ida, 1, GFP_KERNEL);
148 
149 	if (res < 0)
150 		return res;
151 	mnt->mnt_group_id = res;
152 	return 0;
153 }
154 
155 /*
156  * Release a peer group ID
157  */
158 void mnt_release_group_id(struct mount *mnt)
159 {
160 	ida_free(&mnt_group_ida, mnt->mnt_group_id);
161 	mnt->mnt_group_id = 0;
162 }
163 
164 /*
165  * vfsmount lock must be held for read
166  */
167 static inline void mnt_add_count(struct mount *mnt, int n)
168 {
169 #ifdef CONFIG_SMP
170 	this_cpu_add(mnt->mnt_pcp->mnt_count, n);
171 #else
172 	preempt_disable();
173 	mnt->mnt_count += n;
174 	preempt_enable();
175 #endif
176 }
177 
178 /*
179  * vfsmount lock must be held for write
180  */
181 int mnt_get_count(struct mount *mnt)
182 {
183 #ifdef CONFIG_SMP
184 	int count = 0;
185 	int cpu;
186 
187 	for_each_possible_cpu(cpu) {
188 		count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
189 	}
190 
191 	return count;
192 #else
193 	return mnt->mnt_count;
194 #endif
195 }
196 
197 static struct mount *alloc_vfsmnt(const char *name)
198 {
199 	struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
200 	if (mnt) {
201 		int err;
202 
203 		err = mnt_alloc_id(mnt);
204 		if (err)
205 			goto out_free_cache;
206 
207 		if (name) {
208 			mnt->mnt_devname = kstrdup_const(name,
209 							 GFP_KERNEL_ACCOUNT);
210 			if (!mnt->mnt_devname)
211 				goto out_free_id;
212 		}
213 
214 #ifdef CONFIG_SMP
215 		mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
216 		if (!mnt->mnt_pcp)
217 			goto out_free_devname;
218 
219 		this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
220 #else
221 		mnt->mnt_count = 1;
222 		mnt->mnt_writers = 0;
223 #endif
224 
225 		INIT_HLIST_NODE(&mnt->mnt_hash);
226 		INIT_LIST_HEAD(&mnt->mnt_child);
227 		INIT_LIST_HEAD(&mnt->mnt_mounts);
228 		INIT_LIST_HEAD(&mnt->mnt_list);
229 		INIT_LIST_HEAD(&mnt->mnt_expire);
230 		INIT_LIST_HEAD(&mnt->mnt_share);
231 		INIT_LIST_HEAD(&mnt->mnt_slave_list);
232 		INIT_LIST_HEAD(&mnt->mnt_slave);
233 		INIT_HLIST_NODE(&mnt->mnt_mp_list);
234 		INIT_LIST_HEAD(&mnt->mnt_umounting);
235 		INIT_HLIST_HEAD(&mnt->mnt_stuck_children);
236 		mnt->mnt.mnt_idmap = &nop_mnt_idmap;
237 	}
238 	return mnt;
239 
240 #ifdef CONFIG_SMP
241 out_free_devname:
242 	kfree_const(mnt->mnt_devname);
243 #endif
244 out_free_id:
245 	mnt_free_id(mnt);
246 out_free_cache:
247 	kmem_cache_free(mnt_cache, mnt);
248 	return NULL;
249 }
250 
251 /*
252  * Most r/o checks on a fs are for operations that take
253  * discrete amounts of time, like a write() or unlink().
254  * We must keep track of when those operations start
255  * (for permission checks) and when they end, so that
256  * we can determine when writes are able to occur to
257  * a filesystem.
258  */
259 /*
260  * __mnt_is_readonly: check whether a mount is read-only
261  * @mnt: the mount to check for its write status
262  *
263  * This shouldn't be used directly ouside of the VFS.
264  * It does not guarantee that the filesystem will stay
265  * r/w, just that it is right *now*.  This can not and
266  * should not be used in place of IS_RDONLY(inode).
267  * mnt_want/drop_write() will _keep_ the filesystem
268  * r/w.
269  */
270 bool __mnt_is_readonly(struct vfsmount *mnt)
271 {
272 	return (mnt->mnt_flags & MNT_READONLY) || sb_rdonly(mnt->mnt_sb);
273 }
274 EXPORT_SYMBOL_GPL(__mnt_is_readonly);
275 
276 static inline void mnt_inc_writers(struct mount *mnt)
277 {
278 #ifdef CONFIG_SMP
279 	this_cpu_inc(mnt->mnt_pcp->mnt_writers);
280 #else
281 	mnt->mnt_writers++;
282 #endif
283 }
284 
285 static inline void mnt_dec_writers(struct mount *mnt)
286 {
287 #ifdef CONFIG_SMP
288 	this_cpu_dec(mnt->mnt_pcp->mnt_writers);
289 #else
290 	mnt->mnt_writers--;
291 #endif
292 }
293 
294 static unsigned int mnt_get_writers(struct mount *mnt)
295 {
296 #ifdef CONFIG_SMP
297 	unsigned int count = 0;
298 	int cpu;
299 
300 	for_each_possible_cpu(cpu) {
301 		count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
302 	}
303 
304 	return count;
305 #else
306 	return mnt->mnt_writers;
307 #endif
308 }
309 
310 static int mnt_is_readonly(struct vfsmount *mnt)
311 {
312 	if (mnt->mnt_sb->s_readonly_remount)
313 		return 1;
314 	/* Order wrt setting s_flags/s_readonly_remount in do_remount() */
315 	smp_rmb();
316 	return __mnt_is_readonly(mnt);
317 }
318 
319 /*
320  * Most r/o & frozen checks on a fs are for operations that take discrete
321  * amounts of time, like a write() or unlink().  We must keep track of when
322  * those operations start (for permission checks) and when they end, so that we
323  * can determine when writes are able to occur to a filesystem.
324  */
325 /**
326  * __mnt_want_write - get write access to a mount without freeze protection
327  * @m: the mount on which to take a write
328  *
329  * This tells the low-level filesystem that a write is about to be performed to
330  * it, and makes sure that writes are allowed (mnt it read-write) before
331  * returning success. This operation does not protect against filesystem being
332  * frozen. When the write operation is finished, __mnt_drop_write() must be
333  * called. This is effectively a refcount.
334  */
335 int __mnt_want_write(struct vfsmount *m)
336 {
337 	struct mount *mnt = real_mount(m);
338 	int ret = 0;
339 
340 	preempt_disable();
341 	mnt_inc_writers(mnt);
342 	/*
343 	 * The store to mnt_inc_writers must be visible before we pass
344 	 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
345 	 * incremented count after it has set MNT_WRITE_HOLD.
346 	 */
347 	smp_mb();
348 	might_lock(&mount_lock.lock);
349 	while (READ_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD) {
350 		if (!IS_ENABLED(CONFIG_PREEMPT_RT)) {
351 			cpu_relax();
352 		} else {
353 			/*
354 			 * This prevents priority inversion, if the task
355 			 * setting MNT_WRITE_HOLD got preempted on a remote
356 			 * CPU, and it prevents life lock if the task setting
357 			 * MNT_WRITE_HOLD has a lower priority and is bound to
358 			 * the same CPU as the task that is spinning here.
359 			 */
360 			preempt_enable();
361 			lock_mount_hash();
362 			unlock_mount_hash();
363 			preempt_disable();
364 		}
365 	}
366 	/*
367 	 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
368 	 * be set to match its requirements. So we must not load that until
369 	 * MNT_WRITE_HOLD is cleared.
370 	 */
371 	smp_rmb();
372 	if (mnt_is_readonly(m)) {
373 		mnt_dec_writers(mnt);
374 		ret = -EROFS;
375 	}
376 	preempt_enable();
377 
378 	return ret;
379 }
380 
381 /**
382  * mnt_want_write - get write access to a mount
383  * @m: the mount on which to take a write
384  *
385  * This tells the low-level filesystem that a write is about to be performed to
386  * it, and makes sure that writes are allowed (mount is read-write, filesystem
387  * is not frozen) before returning success.  When the write operation is
388  * finished, mnt_drop_write() must be called.  This is effectively a refcount.
389  */
390 int mnt_want_write(struct vfsmount *m)
391 {
392 	int ret;
393 
394 	sb_start_write(m->mnt_sb);
395 	ret = __mnt_want_write(m);
396 	if (ret)
397 		sb_end_write(m->mnt_sb);
398 	return ret;
399 }
400 EXPORT_SYMBOL_GPL(mnt_want_write);
401 
402 /**
403  * __mnt_want_write_file - get write access to a file's mount
404  * @file: the file who's mount on which to take a write
405  *
406  * This is like __mnt_want_write, but if the file is already open for writing it
407  * skips incrementing mnt_writers (since the open file already has a reference)
408  * and instead only does the check for emergency r/o remounts.  This must be
409  * paired with __mnt_drop_write_file.
410  */
411 int __mnt_want_write_file(struct file *file)
412 {
413 	if (file->f_mode & FMODE_WRITER) {
414 		/*
415 		 * Superblock may have become readonly while there are still
416 		 * writable fd's, e.g. due to a fs error with errors=remount-ro
417 		 */
418 		if (__mnt_is_readonly(file->f_path.mnt))
419 			return -EROFS;
420 		return 0;
421 	}
422 	return __mnt_want_write(file->f_path.mnt);
423 }
424 
425 /**
426  * mnt_want_write_file - get write access to a file's mount
427  * @file: the file who's mount on which to take a write
428  *
429  * This is like mnt_want_write, but if the file is already open for writing it
430  * skips incrementing mnt_writers (since the open file already has a reference)
431  * and instead only does the freeze protection and the check for emergency r/o
432  * remounts.  This must be paired with mnt_drop_write_file.
433  */
434 int mnt_want_write_file(struct file *file)
435 {
436 	int ret;
437 
438 	sb_start_write(file_inode(file)->i_sb);
439 	ret = __mnt_want_write_file(file);
440 	if (ret)
441 		sb_end_write(file_inode(file)->i_sb);
442 	return ret;
443 }
444 EXPORT_SYMBOL_GPL(mnt_want_write_file);
445 
446 /**
447  * __mnt_drop_write - give up write access to a mount
448  * @mnt: the mount on which to give up write access
449  *
450  * Tells the low-level filesystem that we are done
451  * performing writes to it.  Must be matched with
452  * __mnt_want_write() call above.
453  */
454 void __mnt_drop_write(struct vfsmount *mnt)
455 {
456 	preempt_disable();
457 	mnt_dec_writers(real_mount(mnt));
458 	preempt_enable();
459 }
460 
461 /**
462  * mnt_drop_write - give up write access to a mount
463  * @mnt: the mount on which to give up write access
464  *
465  * Tells the low-level filesystem that we are done performing writes to it and
466  * also allows filesystem to be frozen again.  Must be matched with
467  * mnt_want_write() call above.
468  */
469 void mnt_drop_write(struct vfsmount *mnt)
470 {
471 	__mnt_drop_write(mnt);
472 	sb_end_write(mnt->mnt_sb);
473 }
474 EXPORT_SYMBOL_GPL(mnt_drop_write);
475 
476 void __mnt_drop_write_file(struct file *file)
477 {
478 	if (!(file->f_mode & FMODE_WRITER))
479 		__mnt_drop_write(file->f_path.mnt);
480 }
481 
482 void mnt_drop_write_file(struct file *file)
483 {
484 	__mnt_drop_write_file(file);
485 	sb_end_write(file_inode(file)->i_sb);
486 }
487 EXPORT_SYMBOL(mnt_drop_write_file);
488 
489 /**
490  * mnt_hold_writers - prevent write access to the given mount
491  * @mnt: mnt to prevent write access to
492  *
493  * Prevents write access to @mnt if there are no active writers for @mnt.
494  * This function needs to be called and return successfully before changing
495  * properties of @mnt that need to remain stable for callers with write access
496  * to @mnt.
497  *
498  * After this functions has been called successfully callers must pair it with
499  * a call to mnt_unhold_writers() in order to stop preventing write access to
500  * @mnt.
501  *
502  * Context: This function expects lock_mount_hash() to be held serializing
503  *          setting MNT_WRITE_HOLD.
504  * Return: On success 0 is returned.
505  *	   On error, -EBUSY is returned.
506  */
507 static inline int mnt_hold_writers(struct mount *mnt)
508 {
509 	mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
510 	/*
511 	 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
512 	 * should be visible before we do.
513 	 */
514 	smp_mb();
515 
516 	/*
517 	 * With writers on hold, if this value is zero, then there are
518 	 * definitely no active writers (although held writers may subsequently
519 	 * increment the count, they'll have to wait, and decrement it after
520 	 * seeing MNT_READONLY).
521 	 *
522 	 * It is OK to have counter incremented on one CPU and decremented on
523 	 * another: the sum will add up correctly. The danger would be when we
524 	 * sum up each counter, if we read a counter before it is incremented,
525 	 * but then read another CPU's count which it has been subsequently
526 	 * decremented from -- we would see more decrements than we should.
527 	 * MNT_WRITE_HOLD protects against this scenario, because
528 	 * mnt_want_write first increments count, then smp_mb, then spins on
529 	 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
530 	 * we're counting up here.
531 	 */
532 	if (mnt_get_writers(mnt) > 0)
533 		return -EBUSY;
534 
535 	return 0;
536 }
537 
538 /**
539  * mnt_unhold_writers - stop preventing write access to the given mount
540  * @mnt: mnt to stop preventing write access to
541  *
542  * Stop preventing write access to @mnt allowing callers to gain write access
543  * to @mnt again.
544  *
545  * This function can only be called after a successful call to
546  * mnt_hold_writers().
547  *
548  * Context: This function expects lock_mount_hash() to be held.
549  */
550 static inline void mnt_unhold_writers(struct mount *mnt)
551 {
552 	/*
553 	 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
554 	 * that become unheld will see MNT_READONLY.
555 	 */
556 	smp_wmb();
557 	mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
558 }
559 
560 static int mnt_make_readonly(struct mount *mnt)
561 {
562 	int ret;
563 
564 	ret = mnt_hold_writers(mnt);
565 	if (!ret)
566 		mnt->mnt.mnt_flags |= MNT_READONLY;
567 	mnt_unhold_writers(mnt);
568 	return ret;
569 }
570 
571 int sb_prepare_remount_readonly(struct super_block *sb)
572 {
573 	struct mount *mnt;
574 	int err = 0;
575 
576 	/* Racy optimization.  Recheck the counter under MNT_WRITE_HOLD */
577 	if (atomic_long_read(&sb->s_remove_count))
578 		return -EBUSY;
579 
580 	lock_mount_hash();
581 	list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
582 		if (!(mnt->mnt.mnt_flags & MNT_READONLY)) {
583 			err = mnt_hold_writers(mnt);
584 			if (err)
585 				break;
586 		}
587 	}
588 	if (!err && atomic_long_read(&sb->s_remove_count))
589 		err = -EBUSY;
590 
591 	if (!err) {
592 		sb->s_readonly_remount = 1;
593 		smp_wmb();
594 	}
595 	list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
596 		if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
597 			mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
598 	}
599 	unlock_mount_hash();
600 
601 	return err;
602 }
603 
604 static void free_vfsmnt(struct mount *mnt)
605 {
606 	mnt_idmap_put(mnt_idmap(&mnt->mnt));
607 	kfree_const(mnt->mnt_devname);
608 #ifdef CONFIG_SMP
609 	free_percpu(mnt->mnt_pcp);
610 #endif
611 	kmem_cache_free(mnt_cache, mnt);
612 }
613 
614 static void delayed_free_vfsmnt(struct rcu_head *head)
615 {
616 	free_vfsmnt(container_of(head, struct mount, mnt_rcu));
617 }
618 
619 /* call under rcu_read_lock */
620 int __legitimize_mnt(struct vfsmount *bastard, unsigned seq)
621 {
622 	struct mount *mnt;
623 	if (read_seqretry(&mount_lock, seq))
624 		return 1;
625 	if (bastard == NULL)
626 		return 0;
627 	mnt = real_mount(bastard);
628 	mnt_add_count(mnt, 1);
629 	smp_mb();			// see mntput_no_expire()
630 	if (likely(!read_seqretry(&mount_lock, seq)))
631 		return 0;
632 	if (bastard->mnt_flags & MNT_SYNC_UMOUNT) {
633 		mnt_add_count(mnt, -1);
634 		return 1;
635 	}
636 	lock_mount_hash();
637 	if (unlikely(bastard->mnt_flags & MNT_DOOMED)) {
638 		mnt_add_count(mnt, -1);
639 		unlock_mount_hash();
640 		return 1;
641 	}
642 	unlock_mount_hash();
643 	/* caller will mntput() */
644 	return -1;
645 }
646 
647 /* call under rcu_read_lock */
648 static bool legitimize_mnt(struct vfsmount *bastard, unsigned seq)
649 {
650 	int res = __legitimize_mnt(bastard, seq);
651 	if (likely(!res))
652 		return true;
653 	if (unlikely(res < 0)) {
654 		rcu_read_unlock();
655 		mntput(bastard);
656 		rcu_read_lock();
657 	}
658 	return false;
659 }
660 
661 /*
662  * find the first mount at @dentry on vfsmount @mnt.
663  * call under rcu_read_lock()
664  */
665 struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry)
666 {
667 	struct hlist_head *head = m_hash(mnt, dentry);
668 	struct mount *p;
669 
670 	hlist_for_each_entry_rcu(p, head, mnt_hash)
671 		if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry)
672 			return p;
673 	return NULL;
674 }
675 
676 /*
677  * lookup_mnt - Return the first child mount mounted at path
678  *
679  * "First" means first mounted chronologically.  If you create the
680  * following mounts:
681  *
682  * mount /dev/sda1 /mnt
683  * mount /dev/sda2 /mnt
684  * mount /dev/sda3 /mnt
685  *
686  * Then lookup_mnt() on the base /mnt dentry in the root mount will
687  * return successively the root dentry and vfsmount of /dev/sda1, then
688  * /dev/sda2, then /dev/sda3, then NULL.
689  *
690  * lookup_mnt takes a reference to the found vfsmount.
691  */
692 struct vfsmount *lookup_mnt(const struct path *path)
693 {
694 	struct mount *child_mnt;
695 	struct vfsmount *m;
696 	unsigned seq;
697 
698 	rcu_read_lock();
699 	do {
700 		seq = read_seqbegin(&mount_lock);
701 		child_mnt = __lookup_mnt(path->mnt, path->dentry);
702 		m = child_mnt ? &child_mnt->mnt : NULL;
703 	} while (!legitimize_mnt(m, seq));
704 	rcu_read_unlock();
705 	return m;
706 }
707 
708 static inline void lock_ns_list(struct mnt_namespace *ns)
709 {
710 	spin_lock(&ns->ns_lock);
711 }
712 
713 static inline void unlock_ns_list(struct mnt_namespace *ns)
714 {
715 	spin_unlock(&ns->ns_lock);
716 }
717 
718 static inline bool mnt_is_cursor(struct mount *mnt)
719 {
720 	return mnt->mnt.mnt_flags & MNT_CURSOR;
721 }
722 
723 /*
724  * __is_local_mountpoint - Test to see if dentry is a mountpoint in the
725  *                         current mount namespace.
726  *
727  * The common case is dentries are not mountpoints at all and that
728  * test is handled inline.  For the slow case when we are actually
729  * dealing with a mountpoint of some kind, walk through all of the
730  * mounts in the current mount namespace and test to see if the dentry
731  * is a mountpoint.
732  *
733  * The mount_hashtable is not usable in the context because we
734  * need to identify all mounts that may be in the current mount
735  * namespace not just a mount that happens to have some specified
736  * parent mount.
737  */
738 bool __is_local_mountpoint(struct dentry *dentry)
739 {
740 	struct mnt_namespace *ns = current->nsproxy->mnt_ns;
741 	struct mount *mnt;
742 	bool is_covered = false;
743 
744 	down_read(&namespace_sem);
745 	lock_ns_list(ns);
746 	list_for_each_entry(mnt, &ns->list, mnt_list) {
747 		if (mnt_is_cursor(mnt))
748 			continue;
749 		is_covered = (mnt->mnt_mountpoint == dentry);
750 		if (is_covered)
751 			break;
752 	}
753 	unlock_ns_list(ns);
754 	up_read(&namespace_sem);
755 
756 	return is_covered;
757 }
758 
759 static struct mountpoint *lookup_mountpoint(struct dentry *dentry)
760 {
761 	struct hlist_head *chain = mp_hash(dentry);
762 	struct mountpoint *mp;
763 
764 	hlist_for_each_entry(mp, chain, m_hash) {
765 		if (mp->m_dentry == dentry) {
766 			mp->m_count++;
767 			return mp;
768 		}
769 	}
770 	return NULL;
771 }
772 
773 static struct mountpoint *get_mountpoint(struct dentry *dentry)
774 {
775 	struct mountpoint *mp, *new = NULL;
776 	int ret;
777 
778 	if (d_mountpoint(dentry)) {
779 		/* might be worth a WARN_ON() */
780 		if (d_unlinked(dentry))
781 			return ERR_PTR(-ENOENT);
782 mountpoint:
783 		read_seqlock_excl(&mount_lock);
784 		mp = lookup_mountpoint(dentry);
785 		read_sequnlock_excl(&mount_lock);
786 		if (mp)
787 			goto done;
788 	}
789 
790 	if (!new)
791 		new = kmalloc(sizeof(struct mountpoint), GFP_KERNEL);
792 	if (!new)
793 		return ERR_PTR(-ENOMEM);
794 
795 
796 	/* Exactly one processes may set d_mounted */
797 	ret = d_set_mounted(dentry);
798 
799 	/* Someone else set d_mounted? */
800 	if (ret == -EBUSY)
801 		goto mountpoint;
802 
803 	/* The dentry is not available as a mountpoint? */
804 	mp = ERR_PTR(ret);
805 	if (ret)
806 		goto done;
807 
808 	/* Add the new mountpoint to the hash table */
809 	read_seqlock_excl(&mount_lock);
810 	new->m_dentry = dget(dentry);
811 	new->m_count = 1;
812 	hlist_add_head(&new->m_hash, mp_hash(dentry));
813 	INIT_HLIST_HEAD(&new->m_list);
814 	read_sequnlock_excl(&mount_lock);
815 
816 	mp = new;
817 	new = NULL;
818 done:
819 	kfree(new);
820 	return mp;
821 }
822 
823 /*
824  * vfsmount lock must be held.  Additionally, the caller is responsible
825  * for serializing calls for given disposal list.
826  */
827 static void __put_mountpoint(struct mountpoint *mp, struct list_head *list)
828 {
829 	if (!--mp->m_count) {
830 		struct dentry *dentry = mp->m_dentry;
831 		BUG_ON(!hlist_empty(&mp->m_list));
832 		spin_lock(&dentry->d_lock);
833 		dentry->d_flags &= ~DCACHE_MOUNTED;
834 		spin_unlock(&dentry->d_lock);
835 		dput_to_list(dentry, list);
836 		hlist_del(&mp->m_hash);
837 		kfree(mp);
838 	}
839 }
840 
841 /* called with namespace_lock and vfsmount lock */
842 static void put_mountpoint(struct mountpoint *mp)
843 {
844 	__put_mountpoint(mp, &ex_mountpoints);
845 }
846 
847 static inline int check_mnt(struct mount *mnt)
848 {
849 	return mnt->mnt_ns == current->nsproxy->mnt_ns;
850 }
851 
852 /*
853  * vfsmount lock must be held for write
854  */
855 static void touch_mnt_namespace(struct mnt_namespace *ns)
856 {
857 	if (ns) {
858 		ns->event = ++event;
859 		wake_up_interruptible(&ns->poll);
860 	}
861 }
862 
863 /*
864  * vfsmount lock must be held for write
865  */
866 static void __touch_mnt_namespace(struct mnt_namespace *ns)
867 {
868 	if (ns && ns->event != event) {
869 		ns->event = event;
870 		wake_up_interruptible(&ns->poll);
871 	}
872 }
873 
874 /*
875  * vfsmount lock must be held for write
876  */
877 static struct mountpoint *unhash_mnt(struct mount *mnt)
878 {
879 	struct mountpoint *mp;
880 	mnt->mnt_parent = mnt;
881 	mnt->mnt_mountpoint = mnt->mnt.mnt_root;
882 	list_del_init(&mnt->mnt_child);
883 	hlist_del_init_rcu(&mnt->mnt_hash);
884 	hlist_del_init(&mnt->mnt_mp_list);
885 	mp = mnt->mnt_mp;
886 	mnt->mnt_mp = NULL;
887 	return mp;
888 }
889 
890 /*
891  * vfsmount lock must be held for write
892  */
893 static void umount_mnt(struct mount *mnt)
894 {
895 	put_mountpoint(unhash_mnt(mnt));
896 }
897 
898 /*
899  * vfsmount lock must be held for write
900  */
901 void mnt_set_mountpoint(struct mount *mnt,
902 			struct mountpoint *mp,
903 			struct mount *child_mnt)
904 {
905 	mp->m_count++;
906 	mnt_add_count(mnt, 1);	/* essentially, that's mntget */
907 	child_mnt->mnt_mountpoint = mp->m_dentry;
908 	child_mnt->mnt_parent = mnt;
909 	child_mnt->mnt_mp = mp;
910 	hlist_add_head(&child_mnt->mnt_mp_list, &mp->m_list);
911 }
912 
913 static void __attach_mnt(struct mount *mnt, struct mount *parent)
914 {
915 	hlist_add_head_rcu(&mnt->mnt_hash,
916 			   m_hash(&parent->mnt, mnt->mnt_mountpoint));
917 	list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
918 }
919 
920 /*
921  * vfsmount lock must be held for write
922  */
923 static void attach_mnt(struct mount *mnt,
924 			struct mount *parent,
925 			struct mountpoint *mp)
926 {
927 	mnt_set_mountpoint(parent, mp, mnt);
928 	__attach_mnt(mnt, parent);
929 }
930 
931 void mnt_change_mountpoint(struct mount *parent, struct mountpoint *mp, struct mount *mnt)
932 {
933 	struct mountpoint *old_mp = mnt->mnt_mp;
934 	struct mount *old_parent = mnt->mnt_parent;
935 
936 	list_del_init(&mnt->mnt_child);
937 	hlist_del_init(&mnt->mnt_mp_list);
938 	hlist_del_init_rcu(&mnt->mnt_hash);
939 
940 	attach_mnt(mnt, parent, mp);
941 
942 	put_mountpoint(old_mp);
943 	mnt_add_count(old_parent, -1);
944 }
945 
946 /*
947  * vfsmount lock must be held for write
948  */
949 static void commit_tree(struct mount *mnt)
950 {
951 	struct mount *parent = mnt->mnt_parent;
952 	struct mount *m;
953 	LIST_HEAD(head);
954 	struct mnt_namespace *n = parent->mnt_ns;
955 
956 	BUG_ON(parent == mnt);
957 
958 	list_add_tail(&head, &mnt->mnt_list);
959 	list_for_each_entry(m, &head, mnt_list)
960 		m->mnt_ns = n;
961 
962 	list_splice(&head, n->list.prev);
963 
964 	n->mounts += n->pending_mounts;
965 	n->pending_mounts = 0;
966 
967 	__attach_mnt(mnt, parent);
968 	touch_mnt_namespace(n);
969 }
970 
971 static struct mount *next_mnt(struct mount *p, struct mount *root)
972 {
973 	struct list_head *next = p->mnt_mounts.next;
974 	if (next == &p->mnt_mounts) {
975 		while (1) {
976 			if (p == root)
977 				return NULL;
978 			next = p->mnt_child.next;
979 			if (next != &p->mnt_parent->mnt_mounts)
980 				break;
981 			p = p->mnt_parent;
982 		}
983 	}
984 	return list_entry(next, struct mount, mnt_child);
985 }
986 
987 static struct mount *skip_mnt_tree(struct mount *p)
988 {
989 	struct list_head *prev = p->mnt_mounts.prev;
990 	while (prev != &p->mnt_mounts) {
991 		p = list_entry(prev, struct mount, mnt_child);
992 		prev = p->mnt_mounts.prev;
993 	}
994 	return p;
995 }
996 
997 /**
998  * vfs_create_mount - Create a mount for a configured superblock
999  * @fc: The configuration context with the superblock attached
1000  *
1001  * Create a mount to an already configured superblock.  If necessary, the
1002  * caller should invoke vfs_get_tree() before calling this.
1003  *
1004  * Note that this does not attach the mount to anything.
1005  */
1006 struct vfsmount *vfs_create_mount(struct fs_context *fc)
1007 {
1008 	struct mount *mnt;
1009 
1010 	if (!fc->root)
1011 		return ERR_PTR(-EINVAL);
1012 
1013 	mnt = alloc_vfsmnt(fc->source ?: "none");
1014 	if (!mnt)
1015 		return ERR_PTR(-ENOMEM);
1016 
1017 	if (fc->sb_flags & SB_KERNMOUNT)
1018 		mnt->mnt.mnt_flags = MNT_INTERNAL;
1019 
1020 	atomic_inc(&fc->root->d_sb->s_active);
1021 	mnt->mnt.mnt_sb		= fc->root->d_sb;
1022 	mnt->mnt.mnt_root	= dget(fc->root);
1023 	mnt->mnt_mountpoint	= mnt->mnt.mnt_root;
1024 	mnt->mnt_parent		= mnt;
1025 
1026 	lock_mount_hash();
1027 	list_add_tail(&mnt->mnt_instance, &mnt->mnt.mnt_sb->s_mounts);
1028 	unlock_mount_hash();
1029 	return &mnt->mnt;
1030 }
1031 EXPORT_SYMBOL(vfs_create_mount);
1032 
1033 struct vfsmount *fc_mount(struct fs_context *fc)
1034 {
1035 	int err = vfs_get_tree(fc);
1036 	if (!err) {
1037 		up_write(&fc->root->d_sb->s_umount);
1038 		return vfs_create_mount(fc);
1039 	}
1040 	return ERR_PTR(err);
1041 }
1042 EXPORT_SYMBOL(fc_mount);
1043 
1044 struct vfsmount *vfs_kern_mount(struct file_system_type *type,
1045 				int flags, const char *name,
1046 				void *data)
1047 {
1048 	struct fs_context *fc;
1049 	struct vfsmount *mnt;
1050 	int ret = 0;
1051 
1052 	if (!type)
1053 		return ERR_PTR(-EINVAL);
1054 
1055 	fc = fs_context_for_mount(type, flags);
1056 	if (IS_ERR(fc))
1057 		return ERR_CAST(fc);
1058 
1059 	if (name)
1060 		ret = vfs_parse_fs_string(fc, "source",
1061 					  name, strlen(name));
1062 	if (!ret)
1063 		ret = parse_monolithic_mount_data(fc, data);
1064 	if (!ret)
1065 		mnt = fc_mount(fc);
1066 	else
1067 		mnt = ERR_PTR(ret);
1068 
1069 	put_fs_context(fc);
1070 	return mnt;
1071 }
1072 EXPORT_SYMBOL_GPL(vfs_kern_mount);
1073 
1074 struct vfsmount *
1075 vfs_submount(const struct dentry *mountpoint, struct file_system_type *type,
1076 	     const char *name, void *data)
1077 {
1078 	/* Until it is worked out how to pass the user namespace
1079 	 * through from the parent mount to the submount don't support
1080 	 * unprivileged mounts with submounts.
1081 	 */
1082 	if (mountpoint->d_sb->s_user_ns != &init_user_ns)
1083 		return ERR_PTR(-EPERM);
1084 
1085 	return vfs_kern_mount(type, SB_SUBMOUNT, name, data);
1086 }
1087 EXPORT_SYMBOL_GPL(vfs_submount);
1088 
1089 static struct mount *clone_mnt(struct mount *old, struct dentry *root,
1090 					int flag)
1091 {
1092 	struct super_block *sb = old->mnt.mnt_sb;
1093 	struct mount *mnt;
1094 	int err;
1095 
1096 	mnt = alloc_vfsmnt(old->mnt_devname);
1097 	if (!mnt)
1098 		return ERR_PTR(-ENOMEM);
1099 
1100 	if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE))
1101 		mnt->mnt_group_id = 0; /* not a peer of original */
1102 	else
1103 		mnt->mnt_group_id = old->mnt_group_id;
1104 
1105 	if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
1106 		err = mnt_alloc_group_id(mnt);
1107 		if (err)
1108 			goto out_free;
1109 	}
1110 
1111 	mnt->mnt.mnt_flags = old->mnt.mnt_flags;
1112 	mnt->mnt.mnt_flags &= ~(MNT_WRITE_HOLD|MNT_MARKED|MNT_INTERNAL);
1113 
1114 	atomic_inc(&sb->s_active);
1115 	mnt->mnt.mnt_idmap = mnt_idmap_get(mnt_idmap(&old->mnt));
1116 
1117 	mnt->mnt.mnt_sb = sb;
1118 	mnt->mnt.mnt_root = dget(root);
1119 	mnt->mnt_mountpoint = mnt->mnt.mnt_root;
1120 	mnt->mnt_parent = mnt;
1121 	lock_mount_hash();
1122 	list_add_tail(&mnt->mnt_instance, &sb->s_mounts);
1123 	unlock_mount_hash();
1124 
1125 	if ((flag & CL_SLAVE) ||
1126 	    ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) {
1127 		list_add(&mnt->mnt_slave, &old->mnt_slave_list);
1128 		mnt->mnt_master = old;
1129 		CLEAR_MNT_SHARED(mnt);
1130 	} else if (!(flag & CL_PRIVATE)) {
1131 		if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
1132 			list_add(&mnt->mnt_share, &old->mnt_share);
1133 		if (IS_MNT_SLAVE(old))
1134 			list_add(&mnt->mnt_slave, &old->mnt_slave);
1135 		mnt->mnt_master = old->mnt_master;
1136 	} else {
1137 		CLEAR_MNT_SHARED(mnt);
1138 	}
1139 	if (flag & CL_MAKE_SHARED)
1140 		set_mnt_shared(mnt);
1141 
1142 	/* stick the duplicate mount on the same expiry list
1143 	 * as the original if that was on one */
1144 	if (flag & CL_EXPIRE) {
1145 		if (!list_empty(&old->mnt_expire))
1146 			list_add(&mnt->mnt_expire, &old->mnt_expire);
1147 	}
1148 
1149 	return mnt;
1150 
1151  out_free:
1152 	mnt_free_id(mnt);
1153 	free_vfsmnt(mnt);
1154 	return ERR_PTR(err);
1155 }
1156 
1157 static void cleanup_mnt(struct mount *mnt)
1158 {
1159 	struct hlist_node *p;
1160 	struct mount *m;
1161 	/*
1162 	 * The warning here probably indicates that somebody messed
1163 	 * up a mnt_want/drop_write() pair.  If this happens, the
1164 	 * filesystem was probably unable to make r/w->r/o transitions.
1165 	 * The locking used to deal with mnt_count decrement provides barriers,
1166 	 * so mnt_get_writers() below is safe.
1167 	 */
1168 	WARN_ON(mnt_get_writers(mnt));
1169 	if (unlikely(mnt->mnt_pins.first))
1170 		mnt_pin_kill(mnt);
1171 	hlist_for_each_entry_safe(m, p, &mnt->mnt_stuck_children, mnt_umount) {
1172 		hlist_del(&m->mnt_umount);
1173 		mntput(&m->mnt);
1174 	}
1175 	fsnotify_vfsmount_delete(&mnt->mnt);
1176 	dput(mnt->mnt.mnt_root);
1177 	deactivate_super(mnt->mnt.mnt_sb);
1178 	mnt_free_id(mnt);
1179 	call_rcu(&mnt->mnt_rcu, delayed_free_vfsmnt);
1180 }
1181 
1182 static void __cleanup_mnt(struct rcu_head *head)
1183 {
1184 	cleanup_mnt(container_of(head, struct mount, mnt_rcu));
1185 }
1186 
1187 static LLIST_HEAD(delayed_mntput_list);
1188 static void delayed_mntput(struct work_struct *unused)
1189 {
1190 	struct llist_node *node = llist_del_all(&delayed_mntput_list);
1191 	struct mount *m, *t;
1192 
1193 	llist_for_each_entry_safe(m, t, node, mnt_llist)
1194 		cleanup_mnt(m);
1195 }
1196 static DECLARE_DELAYED_WORK(delayed_mntput_work, delayed_mntput);
1197 
1198 static void mntput_no_expire(struct mount *mnt)
1199 {
1200 	LIST_HEAD(list);
1201 	int count;
1202 
1203 	rcu_read_lock();
1204 	if (likely(READ_ONCE(mnt->mnt_ns))) {
1205 		/*
1206 		 * Since we don't do lock_mount_hash() here,
1207 		 * ->mnt_ns can change under us.  However, if it's
1208 		 * non-NULL, then there's a reference that won't
1209 		 * be dropped until after an RCU delay done after
1210 		 * turning ->mnt_ns NULL.  So if we observe it
1211 		 * non-NULL under rcu_read_lock(), the reference
1212 		 * we are dropping is not the final one.
1213 		 */
1214 		mnt_add_count(mnt, -1);
1215 		rcu_read_unlock();
1216 		return;
1217 	}
1218 	lock_mount_hash();
1219 	/*
1220 	 * make sure that if __legitimize_mnt() has not seen us grab
1221 	 * mount_lock, we'll see their refcount increment here.
1222 	 */
1223 	smp_mb();
1224 	mnt_add_count(mnt, -1);
1225 	count = mnt_get_count(mnt);
1226 	if (count != 0) {
1227 		WARN_ON(count < 0);
1228 		rcu_read_unlock();
1229 		unlock_mount_hash();
1230 		return;
1231 	}
1232 	if (unlikely(mnt->mnt.mnt_flags & MNT_DOOMED)) {
1233 		rcu_read_unlock();
1234 		unlock_mount_hash();
1235 		return;
1236 	}
1237 	mnt->mnt.mnt_flags |= MNT_DOOMED;
1238 	rcu_read_unlock();
1239 
1240 	list_del(&mnt->mnt_instance);
1241 
1242 	if (unlikely(!list_empty(&mnt->mnt_mounts))) {
1243 		struct mount *p, *tmp;
1244 		list_for_each_entry_safe(p, tmp, &mnt->mnt_mounts,  mnt_child) {
1245 			__put_mountpoint(unhash_mnt(p), &list);
1246 			hlist_add_head(&p->mnt_umount, &mnt->mnt_stuck_children);
1247 		}
1248 	}
1249 	unlock_mount_hash();
1250 	shrink_dentry_list(&list);
1251 
1252 	if (likely(!(mnt->mnt.mnt_flags & MNT_INTERNAL))) {
1253 		struct task_struct *task = current;
1254 		if (likely(!(task->flags & PF_KTHREAD))) {
1255 			init_task_work(&mnt->mnt_rcu, __cleanup_mnt);
1256 			if (!task_work_add(task, &mnt->mnt_rcu, TWA_RESUME))
1257 				return;
1258 		}
1259 		if (llist_add(&mnt->mnt_llist, &delayed_mntput_list))
1260 			schedule_delayed_work(&delayed_mntput_work, 1);
1261 		return;
1262 	}
1263 	cleanup_mnt(mnt);
1264 }
1265 
1266 void mntput(struct vfsmount *mnt)
1267 {
1268 	if (mnt) {
1269 		struct mount *m = real_mount(mnt);
1270 		/* avoid cacheline pingpong, hope gcc doesn't get "smart" */
1271 		if (unlikely(m->mnt_expiry_mark))
1272 			m->mnt_expiry_mark = 0;
1273 		mntput_no_expire(m);
1274 	}
1275 }
1276 EXPORT_SYMBOL(mntput);
1277 
1278 struct vfsmount *mntget(struct vfsmount *mnt)
1279 {
1280 	if (mnt)
1281 		mnt_add_count(real_mount(mnt), 1);
1282 	return mnt;
1283 }
1284 EXPORT_SYMBOL(mntget);
1285 
1286 /**
1287  * path_is_mountpoint() - Check if path is a mount in the current namespace.
1288  * @path: path to check
1289  *
1290  *  d_mountpoint() can only be used reliably to establish if a dentry is
1291  *  not mounted in any namespace and that common case is handled inline.
1292  *  d_mountpoint() isn't aware of the possibility there may be multiple
1293  *  mounts using a given dentry in a different namespace. This function
1294  *  checks if the passed in path is a mountpoint rather than the dentry
1295  *  alone.
1296  */
1297 bool path_is_mountpoint(const struct path *path)
1298 {
1299 	unsigned seq;
1300 	bool res;
1301 
1302 	if (!d_mountpoint(path->dentry))
1303 		return false;
1304 
1305 	rcu_read_lock();
1306 	do {
1307 		seq = read_seqbegin(&mount_lock);
1308 		res = __path_is_mountpoint(path);
1309 	} while (read_seqretry(&mount_lock, seq));
1310 	rcu_read_unlock();
1311 
1312 	return res;
1313 }
1314 EXPORT_SYMBOL(path_is_mountpoint);
1315 
1316 struct vfsmount *mnt_clone_internal(const struct path *path)
1317 {
1318 	struct mount *p;
1319 	p = clone_mnt(real_mount(path->mnt), path->dentry, CL_PRIVATE);
1320 	if (IS_ERR(p))
1321 		return ERR_CAST(p);
1322 	p->mnt.mnt_flags |= MNT_INTERNAL;
1323 	return &p->mnt;
1324 }
1325 
1326 #ifdef CONFIG_PROC_FS
1327 static struct mount *mnt_list_next(struct mnt_namespace *ns,
1328 				   struct list_head *p)
1329 {
1330 	struct mount *mnt, *ret = NULL;
1331 
1332 	lock_ns_list(ns);
1333 	list_for_each_continue(p, &ns->list) {
1334 		mnt = list_entry(p, typeof(*mnt), mnt_list);
1335 		if (!mnt_is_cursor(mnt)) {
1336 			ret = mnt;
1337 			break;
1338 		}
1339 	}
1340 	unlock_ns_list(ns);
1341 
1342 	return ret;
1343 }
1344 
1345 /* iterator; we want it to have access to namespace_sem, thus here... */
1346 static void *m_start(struct seq_file *m, loff_t *pos)
1347 {
1348 	struct proc_mounts *p = m->private;
1349 	struct list_head *prev;
1350 
1351 	down_read(&namespace_sem);
1352 	if (!*pos) {
1353 		prev = &p->ns->list;
1354 	} else {
1355 		prev = &p->cursor.mnt_list;
1356 
1357 		/* Read after we'd reached the end? */
1358 		if (list_empty(prev))
1359 			return NULL;
1360 	}
1361 
1362 	return mnt_list_next(p->ns, prev);
1363 }
1364 
1365 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
1366 {
1367 	struct proc_mounts *p = m->private;
1368 	struct mount *mnt = v;
1369 
1370 	++*pos;
1371 	return mnt_list_next(p->ns, &mnt->mnt_list);
1372 }
1373 
1374 static void m_stop(struct seq_file *m, void *v)
1375 {
1376 	struct proc_mounts *p = m->private;
1377 	struct mount *mnt = v;
1378 
1379 	lock_ns_list(p->ns);
1380 	if (mnt)
1381 		list_move_tail(&p->cursor.mnt_list, &mnt->mnt_list);
1382 	else
1383 		list_del_init(&p->cursor.mnt_list);
1384 	unlock_ns_list(p->ns);
1385 	up_read(&namespace_sem);
1386 }
1387 
1388 static int m_show(struct seq_file *m, void *v)
1389 {
1390 	struct proc_mounts *p = m->private;
1391 	struct mount *r = v;
1392 	return p->show(m, &r->mnt);
1393 }
1394 
1395 const struct seq_operations mounts_op = {
1396 	.start	= m_start,
1397 	.next	= m_next,
1398 	.stop	= m_stop,
1399 	.show	= m_show,
1400 };
1401 
1402 void mnt_cursor_del(struct mnt_namespace *ns, struct mount *cursor)
1403 {
1404 	down_read(&namespace_sem);
1405 	lock_ns_list(ns);
1406 	list_del(&cursor->mnt_list);
1407 	unlock_ns_list(ns);
1408 	up_read(&namespace_sem);
1409 }
1410 #endif  /* CONFIG_PROC_FS */
1411 
1412 /**
1413  * may_umount_tree - check if a mount tree is busy
1414  * @m: root of mount tree
1415  *
1416  * This is called to check if a tree of mounts has any
1417  * open files, pwds, chroots or sub mounts that are
1418  * busy.
1419  */
1420 int may_umount_tree(struct vfsmount *m)
1421 {
1422 	struct mount *mnt = real_mount(m);
1423 	int actual_refs = 0;
1424 	int minimum_refs = 0;
1425 	struct mount *p;
1426 	BUG_ON(!m);
1427 
1428 	/* write lock needed for mnt_get_count */
1429 	lock_mount_hash();
1430 	for (p = mnt; p; p = next_mnt(p, mnt)) {
1431 		actual_refs += mnt_get_count(p);
1432 		minimum_refs += 2;
1433 	}
1434 	unlock_mount_hash();
1435 
1436 	if (actual_refs > minimum_refs)
1437 		return 0;
1438 
1439 	return 1;
1440 }
1441 
1442 EXPORT_SYMBOL(may_umount_tree);
1443 
1444 /**
1445  * may_umount - check if a mount point is busy
1446  * @mnt: root of mount
1447  *
1448  * This is called to check if a mount point has any
1449  * open files, pwds, chroots or sub mounts. If the
1450  * mount has sub mounts this will return busy
1451  * regardless of whether the sub mounts are busy.
1452  *
1453  * Doesn't take quota and stuff into account. IOW, in some cases it will
1454  * give false negatives. The main reason why it's here is that we need
1455  * a non-destructive way to look for easily umountable filesystems.
1456  */
1457 int may_umount(struct vfsmount *mnt)
1458 {
1459 	int ret = 1;
1460 	down_read(&namespace_sem);
1461 	lock_mount_hash();
1462 	if (propagate_mount_busy(real_mount(mnt), 2))
1463 		ret = 0;
1464 	unlock_mount_hash();
1465 	up_read(&namespace_sem);
1466 	return ret;
1467 }
1468 
1469 EXPORT_SYMBOL(may_umount);
1470 
1471 static void namespace_unlock(void)
1472 {
1473 	struct hlist_head head;
1474 	struct hlist_node *p;
1475 	struct mount *m;
1476 	LIST_HEAD(list);
1477 
1478 	hlist_move_list(&unmounted, &head);
1479 	list_splice_init(&ex_mountpoints, &list);
1480 
1481 	up_write(&namespace_sem);
1482 
1483 	shrink_dentry_list(&list);
1484 
1485 	if (likely(hlist_empty(&head)))
1486 		return;
1487 
1488 	synchronize_rcu_expedited();
1489 
1490 	hlist_for_each_entry_safe(m, p, &head, mnt_umount) {
1491 		hlist_del(&m->mnt_umount);
1492 		mntput(&m->mnt);
1493 	}
1494 }
1495 
1496 static inline void namespace_lock(void)
1497 {
1498 	down_write(&namespace_sem);
1499 }
1500 
1501 enum umount_tree_flags {
1502 	UMOUNT_SYNC = 1,
1503 	UMOUNT_PROPAGATE = 2,
1504 	UMOUNT_CONNECTED = 4,
1505 };
1506 
1507 static bool disconnect_mount(struct mount *mnt, enum umount_tree_flags how)
1508 {
1509 	/* Leaving mounts connected is only valid for lazy umounts */
1510 	if (how & UMOUNT_SYNC)
1511 		return true;
1512 
1513 	/* A mount without a parent has nothing to be connected to */
1514 	if (!mnt_has_parent(mnt))
1515 		return true;
1516 
1517 	/* Because the reference counting rules change when mounts are
1518 	 * unmounted and connected, umounted mounts may not be
1519 	 * connected to mounted mounts.
1520 	 */
1521 	if (!(mnt->mnt_parent->mnt.mnt_flags & MNT_UMOUNT))
1522 		return true;
1523 
1524 	/* Has it been requested that the mount remain connected? */
1525 	if (how & UMOUNT_CONNECTED)
1526 		return false;
1527 
1528 	/* Is the mount locked such that it needs to remain connected? */
1529 	if (IS_MNT_LOCKED(mnt))
1530 		return false;
1531 
1532 	/* By default disconnect the mount */
1533 	return true;
1534 }
1535 
1536 /*
1537  * mount_lock must be held
1538  * namespace_sem must be held for write
1539  */
1540 static void umount_tree(struct mount *mnt, enum umount_tree_flags how)
1541 {
1542 	LIST_HEAD(tmp_list);
1543 	struct mount *p;
1544 
1545 	if (how & UMOUNT_PROPAGATE)
1546 		propagate_mount_unlock(mnt);
1547 
1548 	/* Gather the mounts to umount */
1549 	for (p = mnt; p; p = next_mnt(p, mnt)) {
1550 		p->mnt.mnt_flags |= MNT_UMOUNT;
1551 		list_move(&p->mnt_list, &tmp_list);
1552 	}
1553 
1554 	/* Hide the mounts from mnt_mounts */
1555 	list_for_each_entry(p, &tmp_list, mnt_list) {
1556 		list_del_init(&p->mnt_child);
1557 	}
1558 
1559 	/* Add propogated mounts to the tmp_list */
1560 	if (how & UMOUNT_PROPAGATE)
1561 		propagate_umount(&tmp_list);
1562 
1563 	while (!list_empty(&tmp_list)) {
1564 		struct mnt_namespace *ns;
1565 		bool disconnect;
1566 		p = list_first_entry(&tmp_list, struct mount, mnt_list);
1567 		list_del_init(&p->mnt_expire);
1568 		list_del_init(&p->mnt_list);
1569 		ns = p->mnt_ns;
1570 		if (ns) {
1571 			ns->mounts--;
1572 			__touch_mnt_namespace(ns);
1573 		}
1574 		p->mnt_ns = NULL;
1575 		if (how & UMOUNT_SYNC)
1576 			p->mnt.mnt_flags |= MNT_SYNC_UMOUNT;
1577 
1578 		disconnect = disconnect_mount(p, how);
1579 		if (mnt_has_parent(p)) {
1580 			mnt_add_count(p->mnt_parent, -1);
1581 			if (!disconnect) {
1582 				/* Don't forget about p */
1583 				list_add_tail(&p->mnt_child, &p->mnt_parent->mnt_mounts);
1584 			} else {
1585 				umount_mnt(p);
1586 			}
1587 		}
1588 		change_mnt_propagation(p, MS_PRIVATE);
1589 		if (disconnect)
1590 			hlist_add_head(&p->mnt_umount, &unmounted);
1591 	}
1592 }
1593 
1594 static void shrink_submounts(struct mount *mnt);
1595 
1596 static int do_umount_root(struct super_block *sb)
1597 {
1598 	int ret = 0;
1599 
1600 	down_write(&sb->s_umount);
1601 	if (!sb_rdonly(sb)) {
1602 		struct fs_context *fc;
1603 
1604 		fc = fs_context_for_reconfigure(sb->s_root, SB_RDONLY,
1605 						SB_RDONLY);
1606 		if (IS_ERR(fc)) {
1607 			ret = PTR_ERR(fc);
1608 		} else {
1609 			ret = parse_monolithic_mount_data(fc, NULL);
1610 			if (!ret)
1611 				ret = reconfigure_super(fc);
1612 			put_fs_context(fc);
1613 		}
1614 	}
1615 	up_write(&sb->s_umount);
1616 	return ret;
1617 }
1618 
1619 static int do_umount(struct mount *mnt, int flags)
1620 {
1621 	struct super_block *sb = mnt->mnt.mnt_sb;
1622 	int retval;
1623 
1624 	retval = security_sb_umount(&mnt->mnt, flags);
1625 	if (retval)
1626 		return retval;
1627 
1628 	/*
1629 	 * Allow userspace to request a mountpoint be expired rather than
1630 	 * unmounting unconditionally. Unmount only happens if:
1631 	 *  (1) the mark is already set (the mark is cleared by mntput())
1632 	 *  (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1633 	 */
1634 	if (flags & MNT_EXPIRE) {
1635 		if (&mnt->mnt == current->fs->root.mnt ||
1636 		    flags & (MNT_FORCE | MNT_DETACH))
1637 			return -EINVAL;
1638 
1639 		/*
1640 		 * probably don't strictly need the lock here if we examined
1641 		 * all race cases, but it's a slowpath.
1642 		 */
1643 		lock_mount_hash();
1644 		if (mnt_get_count(mnt) != 2) {
1645 			unlock_mount_hash();
1646 			return -EBUSY;
1647 		}
1648 		unlock_mount_hash();
1649 
1650 		if (!xchg(&mnt->mnt_expiry_mark, 1))
1651 			return -EAGAIN;
1652 	}
1653 
1654 	/*
1655 	 * If we may have to abort operations to get out of this
1656 	 * mount, and they will themselves hold resources we must
1657 	 * allow the fs to do things. In the Unix tradition of
1658 	 * 'Gee thats tricky lets do it in userspace' the umount_begin
1659 	 * might fail to complete on the first run through as other tasks
1660 	 * must return, and the like. Thats for the mount program to worry
1661 	 * about for the moment.
1662 	 */
1663 
1664 	if (flags & MNT_FORCE && sb->s_op->umount_begin) {
1665 		sb->s_op->umount_begin(sb);
1666 	}
1667 
1668 	/*
1669 	 * No sense to grab the lock for this test, but test itself looks
1670 	 * somewhat bogus. Suggestions for better replacement?
1671 	 * Ho-hum... In principle, we might treat that as umount + switch
1672 	 * to rootfs. GC would eventually take care of the old vfsmount.
1673 	 * Actually it makes sense, especially if rootfs would contain a
1674 	 * /reboot - static binary that would close all descriptors and
1675 	 * call reboot(9). Then init(8) could umount root and exec /reboot.
1676 	 */
1677 	if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1678 		/*
1679 		 * Special case for "unmounting" root ...
1680 		 * we just try to remount it readonly.
1681 		 */
1682 		if (!ns_capable(sb->s_user_ns, CAP_SYS_ADMIN))
1683 			return -EPERM;
1684 		return do_umount_root(sb);
1685 	}
1686 
1687 	namespace_lock();
1688 	lock_mount_hash();
1689 
1690 	/* Recheck MNT_LOCKED with the locks held */
1691 	retval = -EINVAL;
1692 	if (mnt->mnt.mnt_flags & MNT_LOCKED)
1693 		goto out;
1694 
1695 	event++;
1696 	if (flags & MNT_DETACH) {
1697 		if (!list_empty(&mnt->mnt_list))
1698 			umount_tree(mnt, UMOUNT_PROPAGATE);
1699 		retval = 0;
1700 	} else {
1701 		shrink_submounts(mnt);
1702 		retval = -EBUSY;
1703 		if (!propagate_mount_busy(mnt, 2)) {
1704 			if (!list_empty(&mnt->mnt_list))
1705 				umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
1706 			retval = 0;
1707 		}
1708 	}
1709 out:
1710 	unlock_mount_hash();
1711 	namespace_unlock();
1712 	return retval;
1713 }
1714 
1715 /*
1716  * __detach_mounts - lazily unmount all mounts on the specified dentry
1717  *
1718  * During unlink, rmdir, and d_drop it is possible to loose the path
1719  * to an existing mountpoint, and wind up leaking the mount.
1720  * detach_mounts allows lazily unmounting those mounts instead of
1721  * leaking them.
1722  *
1723  * The caller may hold dentry->d_inode->i_mutex.
1724  */
1725 void __detach_mounts(struct dentry *dentry)
1726 {
1727 	struct mountpoint *mp;
1728 	struct mount *mnt;
1729 
1730 	namespace_lock();
1731 	lock_mount_hash();
1732 	mp = lookup_mountpoint(dentry);
1733 	if (!mp)
1734 		goto out_unlock;
1735 
1736 	event++;
1737 	while (!hlist_empty(&mp->m_list)) {
1738 		mnt = hlist_entry(mp->m_list.first, struct mount, mnt_mp_list);
1739 		if (mnt->mnt.mnt_flags & MNT_UMOUNT) {
1740 			umount_mnt(mnt);
1741 			hlist_add_head(&mnt->mnt_umount, &unmounted);
1742 		}
1743 		else umount_tree(mnt, UMOUNT_CONNECTED);
1744 	}
1745 	put_mountpoint(mp);
1746 out_unlock:
1747 	unlock_mount_hash();
1748 	namespace_unlock();
1749 }
1750 
1751 /*
1752  * Is the caller allowed to modify his namespace?
1753  */
1754 bool may_mount(void)
1755 {
1756 	return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN);
1757 }
1758 
1759 static void warn_mandlock(void)
1760 {
1761 	pr_warn_once("=======================================================\n"
1762 		     "WARNING: The mand mount option has been deprecated and\n"
1763 		     "         and is ignored by this kernel. Remove the mand\n"
1764 		     "         option from the mount to silence this warning.\n"
1765 		     "=======================================================\n");
1766 }
1767 
1768 static int can_umount(const struct path *path, int flags)
1769 {
1770 	struct mount *mnt = real_mount(path->mnt);
1771 
1772 	if (!may_mount())
1773 		return -EPERM;
1774 	if (path->dentry != path->mnt->mnt_root)
1775 		return -EINVAL;
1776 	if (!check_mnt(mnt))
1777 		return -EINVAL;
1778 	if (mnt->mnt.mnt_flags & MNT_LOCKED) /* Check optimistically */
1779 		return -EINVAL;
1780 	if (flags & MNT_FORCE && !capable(CAP_SYS_ADMIN))
1781 		return -EPERM;
1782 	return 0;
1783 }
1784 
1785 // caller is responsible for flags being sane
1786 int path_umount(struct path *path, int flags)
1787 {
1788 	struct mount *mnt = real_mount(path->mnt);
1789 	int ret;
1790 
1791 	ret = can_umount(path, flags);
1792 	if (!ret)
1793 		ret = do_umount(mnt, flags);
1794 
1795 	/* we mustn't call path_put() as that would clear mnt_expiry_mark */
1796 	dput(path->dentry);
1797 	mntput_no_expire(mnt);
1798 	return ret;
1799 }
1800 
1801 static int ksys_umount(char __user *name, int flags)
1802 {
1803 	int lookup_flags = LOOKUP_MOUNTPOINT;
1804 	struct path path;
1805 	int ret;
1806 
1807 	// basic validity checks done first
1808 	if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
1809 		return -EINVAL;
1810 
1811 	if (!(flags & UMOUNT_NOFOLLOW))
1812 		lookup_flags |= LOOKUP_FOLLOW;
1813 	ret = user_path_at(AT_FDCWD, name, lookup_flags, &path);
1814 	if (ret)
1815 		return ret;
1816 	return path_umount(&path, flags);
1817 }
1818 
1819 SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
1820 {
1821 	return ksys_umount(name, flags);
1822 }
1823 
1824 #ifdef __ARCH_WANT_SYS_OLDUMOUNT
1825 
1826 /*
1827  *	The 2.0 compatible umount. No flags.
1828  */
1829 SYSCALL_DEFINE1(oldumount, char __user *, name)
1830 {
1831 	return ksys_umount(name, 0);
1832 }
1833 
1834 #endif
1835 
1836 static bool is_mnt_ns_file(struct dentry *dentry)
1837 {
1838 	/* Is this a proxy for a mount namespace? */
1839 	return dentry->d_op == &ns_dentry_operations &&
1840 	       dentry->d_fsdata == &mntns_operations;
1841 }
1842 
1843 static struct mnt_namespace *to_mnt_ns(struct ns_common *ns)
1844 {
1845 	return container_of(ns, struct mnt_namespace, ns);
1846 }
1847 
1848 struct ns_common *from_mnt_ns(struct mnt_namespace *mnt)
1849 {
1850 	return &mnt->ns;
1851 }
1852 
1853 static bool mnt_ns_loop(struct dentry *dentry)
1854 {
1855 	/* Could bind mounting the mount namespace inode cause a
1856 	 * mount namespace loop?
1857 	 */
1858 	struct mnt_namespace *mnt_ns;
1859 	if (!is_mnt_ns_file(dentry))
1860 		return false;
1861 
1862 	mnt_ns = to_mnt_ns(get_proc_ns(dentry->d_inode));
1863 	return current->nsproxy->mnt_ns->seq >= mnt_ns->seq;
1864 }
1865 
1866 struct mount *copy_tree(struct mount *mnt, struct dentry *dentry,
1867 					int flag)
1868 {
1869 	struct mount *res, *p, *q, *r, *parent;
1870 
1871 	if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(mnt))
1872 		return ERR_PTR(-EINVAL);
1873 
1874 	if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry))
1875 		return ERR_PTR(-EINVAL);
1876 
1877 	res = q = clone_mnt(mnt, dentry, flag);
1878 	if (IS_ERR(q))
1879 		return q;
1880 
1881 	q->mnt_mountpoint = mnt->mnt_mountpoint;
1882 
1883 	p = mnt;
1884 	list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
1885 		struct mount *s;
1886 		if (!is_subdir(r->mnt_mountpoint, dentry))
1887 			continue;
1888 
1889 		for (s = r; s; s = next_mnt(s, r)) {
1890 			if (!(flag & CL_COPY_UNBINDABLE) &&
1891 			    IS_MNT_UNBINDABLE(s)) {
1892 				if (s->mnt.mnt_flags & MNT_LOCKED) {
1893 					/* Both unbindable and locked. */
1894 					q = ERR_PTR(-EPERM);
1895 					goto out;
1896 				} else {
1897 					s = skip_mnt_tree(s);
1898 					continue;
1899 				}
1900 			}
1901 			if (!(flag & CL_COPY_MNT_NS_FILE) &&
1902 			    is_mnt_ns_file(s->mnt.mnt_root)) {
1903 				s = skip_mnt_tree(s);
1904 				continue;
1905 			}
1906 			while (p != s->mnt_parent) {
1907 				p = p->mnt_parent;
1908 				q = q->mnt_parent;
1909 			}
1910 			p = s;
1911 			parent = q;
1912 			q = clone_mnt(p, p->mnt.mnt_root, flag);
1913 			if (IS_ERR(q))
1914 				goto out;
1915 			lock_mount_hash();
1916 			list_add_tail(&q->mnt_list, &res->mnt_list);
1917 			attach_mnt(q, parent, p->mnt_mp);
1918 			unlock_mount_hash();
1919 		}
1920 	}
1921 	return res;
1922 out:
1923 	if (res) {
1924 		lock_mount_hash();
1925 		umount_tree(res, UMOUNT_SYNC);
1926 		unlock_mount_hash();
1927 	}
1928 	return q;
1929 }
1930 
1931 /* Caller should check returned pointer for errors */
1932 
1933 struct vfsmount *collect_mounts(const struct path *path)
1934 {
1935 	struct mount *tree;
1936 	namespace_lock();
1937 	if (!check_mnt(real_mount(path->mnt)))
1938 		tree = ERR_PTR(-EINVAL);
1939 	else
1940 		tree = copy_tree(real_mount(path->mnt), path->dentry,
1941 				 CL_COPY_ALL | CL_PRIVATE);
1942 	namespace_unlock();
1943 	if (IS_ERR(tree))
1944 		return ERR_CAST(tree);
1945 	return &tree->mnt;
1946 }
1947 
1948 static void free_mnt_ns(struct mnt_namespace *);
1949 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *, bool);
1950 
1951 void dissolve_on_fput(struct vfsmount *mnt)
1952 {
1953 	struct mnt_namespace *ns;
1954 	namespace_lock();
1955 	lock_mount_hash();
1956 	ns = real_mount(mnt)->mnt_ns;
1957 	if (ns) {
1958 		if (is_anon_ns(ns))
1959 			umount_tree(real_mount(mnt), UMOUNT_CONNECTED);
1960 		else
1961 			ns = NULL;
1962 	}
1963 	unlock_mount_hash();
1964 	namespace_unlock();
1965 	if (ns)
1966 		free_mnt_ns(ns);
1967 }
1968 
1969 void drop_collected_mounts(struct vfsmount *mnt)
1970 {
1971 	namespace_lock();
1972 	lock_mount_hash();
1973 	umount_tree(real_mount(mnt), 0);
1974 	unlock_mount_hash();
1975 	namespace_unlock();
1976 }
1977 
1978 static bool has_locked_children(struct mount *mnt, struct dentry *dentry)
1979 {
1980 	struct mount *child;
1981 
1982 	list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
1983 		if (!is_subdir(child->mnt_mountpoint, dentry))
1984 			continue;
1985 
1986 		if (child->mnt.mnt_flags & MNT_LOCKED)
1987 			return true;
1988 	}
1989 	return false;
1990 }
1991 
1992 /**
1993  * clone_private_mount - create a private clone of a path
1994  * @path: path to clone
1995  *
1996  * This creates a new vfsmount, which will be the clone of @path.  The new mount
1997  * will not be attached anywhere in the namespace and will be private (i.e.
1998  * changes to the originating mount won't be propagated into this).
1999  *
2000  * Release with mntput().
2001  */
2002 struct vfsmount *clone_private_mount(const struct path *path)
2003 {
2004 	struct mount *old_mnt = real_mount(path->mnt);
2005 	struct mount *new_mnt;
2006 
2007 	down_read(&namespace_sem);
2008 	if (IS_MNT_UNBINDABLE(old_mnt))
2009 		goto invalid;
2010 
2011 	if (!check_mnt(old_mnt))
2012 		goto invalid;
2013 
2014 	if (has_locked_children(old_mnt, path->dentry))
2015 		goto invalid;
2016 
2017 	new_mnt = clone_mnt(old_mnt, path->dentry, CL_PRIVATE);
2018 	up_read(&namespace_sem);
2019 
2020 	if (IS_ERR(new_mnt))
2021 		return ERR_CAST(new_mnt);
2022 
2023 	/* Longterm mount to be removed by kern_unmount*() */
2024 	new_mnt->mnt_ns = MNT_NS_INTERNAL;
2025 
2026 	return &new_mnt->mnt;
2027 
2028 invalid:
2029 	up_read(&namespace_sem);
2030 	return ERR_PTR(-EINVAL);
2031 }
2032 EXPORT_SYMBOL_GPL(clone_private_mount);
2033 
2034 int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
2035 		   struct vfsmount *root)
2036 {
2037 	struct mount *mnt;
2038 	int res = f(root, arg);
2039 	if (res)
2040 		return res;
2041 	list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) {
2042 		res = f(&mnt->mnt, arg);
2043 		if (res)
2044 			return res;
2045 	}
2046 	return 0;
2047 }
2048 
2049 static void lock_mnt_tree(struct mount *mnt)
2050 {
2051 	struct mount *p;
2052 
2053 	for (p = mnt; p; p = next_mnt(p, mnt)) {
2054 		int flags = p->mnt.mnt_flags;
2055 		/* Don't allow unprivileged users to change mount flags */
2056 		flags |= MNT_LOCK_ATIME;
2057 
2058 		if (flags & MNT_READONLY)
2059 			flags |= MNT_LOCK_READONLY;
2060 
2061 		if (flags & MNT_NODEV)
2062 			flags |= MNT_LOCK_NODEV;
2063 
2064 		if (flags & MNT_NOSUID)
2065 			flags |= MNT_LOCK_NOSUID;
2066 
2067 		if (flags & MNT_NOEXEC)
2068 			flags |= MNT_LOCK_NOEXEC;
2069 		/* Don't allow unprivileged users to reveal what is under a mount */
2070 		if (list_empty(&p->mnt_expire))
2071 			flags |= MNT_LOCKED;
2072 		p->mnt.mnt_flags = flags;
2073 	}
2074 }
2075 
2076 static void cleanup_group_ids(struct mount *mnt, struct mount *end)
2077 {
2078 	struct mount *p;
2079 
2080 	for (p = mnt; p != end; p = next_mnt(p, mnt)) {
2081 		if (p->mnt_group_id && !IS_MNT_SHARED(p))
2082 			mnt_release_group_id(p);
2083 	}
2084 }
2085 
2086 static int invent_group_ids(struct mount *mnt, bool recurse)
2087 {
2088 	struct mount *p;
2089 
2090 	for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
2091 		if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
2092 			int err = mnt_alloc_group_id(p);
2093 			if (err) {
2094 				cleanup_group_ids(mnt, p);
2095 				return err;
2096 			}
2097 		}
2098 	}
2099 
2100 	return 0;
2101 }
2102 
2103 int count_mounts(struct mnt_namespace *ns, struct mount *mnt)
2104 {
2105 	unsigned int max = READ_ONCE(sysctl_mount_max);
2106 	unsigned int mounts = 0;
2107 	struct mount *p;
2108 
2109 	if (ns->mounts >= max)
2110 		return -ENOSPC;
2111 	max -= ns->mounts;
2112 	if (ns->pending_mounts >= max)
2113 		return -ENOSPC;
2114 	max -= ns->pending_mounts;
2115 
2116 	for (p = mnt; p; p = next_mnt(p, mnt))
2117 		mounts++;
2118 
2119 	if (mounts > max)
2120 		return -ENOSPC;
2121 
2122 	ns->pending_mounts += mounts;
2123 	return 0;
2124 }
2125 
2126 /*
2127  *  @source_mnt : mount tree to be attached
2128  *  @nd         : place the mount tree @source_mnt is attached
2129  *  @parent_nd  : if non-null, detach the source_mnt from its parent and
2130  *  		   store the parent mount and mountpoint dentry.
2131  *  		   (done when source_mnt is moved)
2132  *
2133  *  NOTE: in the table below explains the semantics when a source mount
2134  *  of a given type is attached to a destination mount of a given type.
2135  * ---------------------------------------------------------------------------
2136  * |         BIND MOUNT OPERATION                                            |
2137  * |**************************************************************************
2138  * | source-->| shared        |       private  |       slave    | unbindable |
2139  * | dest     |               |                |                |            |
2140  * |   |      |               |                |                |            |
2141  * |   v      |               |                |                |            |
2142  * |**************************************************************************
2143  * |  shared  | shared (++)   |     shared (+) |     shared(+++)|  invalid   |
2144  * |          |               |                |                |            |
2145  * |non-shared| shared (+)    |      private   |      slave (*) |  invalid   |
2146  * ***************************************************************************
2147  * A bind operation clones the source mount and mounts the clone on the
2148  * destination mount.
2149  *
2150  * (++)  the cloned mount is propagated to all the mounts in the propagation
2151  * 	 tree of the destination mount and the cloned mount is added to
2152  * 	 the peer group of the source mount.
2153  * (+)   the cloned mount is created under the destination mount and is marked
2154  *       as shared. The cloned mount is added to the peer group of the source
2155  *       mount.
2156  * (+++) the mount is propagated to all the mounts in the propagation tree
2157  *       of the destination mount and the cloned mount is made slave
2158  *       of the same master as that of the source mount. The cloned mount
2159  *       is marked as 'shared and slave'.
2160  * (*)   the cloned mount is made a slave of the same master as that of the
2161  * 	 source mount.
2162  *
2163  * ---------------------------------------------------------------------------
2164  * |         		MOVE MOUNT OPERATION                                 |
2165  * |**************************************************************************
2166  * | source-->| shared        |       private  |       slave    | unbindable |
2167  * | dest     |               |                |                |            |
2168  * |   |      |               |                |                |            |
2169  * |   v      |               |                |                |            |
2170  * |**************************************************************************
2171  * |  shared  | shared (+)    |     shared (+) |    shared(+++) |  invalid   |
2172  * |          |               |                |                |            |
2173  * |non-shared| shared (+*)   |      private   |    slave (*)   | unbindable |
2174  * ***************************************************************************
2175  *
2176  * (+)  the mount is moved to the destination. And is then propagated to
2177  * 	all the mounts in the propagation tree of the destination mount.
2178  * (+*)  the mount is moved to the destination.
2179  * (+++)  the mount is moved to the destination and is then propagated to
2180  * 	all the mounts belonging to the destination mount's propagation tree.
2181  * 	the mount is marked as 'shared and slave'.
2182  * (*)	the mount continues to be a slave at the new location.
2183  *
2184  * if the source mount is a tree, the operations explained above is
2185  * applied to each mount in the tree.
2186  * Must be called without spinlocks held, since this function can sleep
2187  * in allocations.
2188  */
2189 static int attach_recursive_mnt(struct mount *source_mnt,
2190 			struct mount *dest_mnt,
2191 			struct mountpoint *dest_mp,
2192 			bool moving)
2193 {
2194 	struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns;
2195 	HLIST_HEAD(tree_list);
2196 	struct mnt_namespace *ns = dest_mnt->mnt_ns;
2197 	struct mountpoint *smp;
2198 	struct mount *child, *p;
2199 	struct hlist_node *n;
2200 	int err;
2201 
2202 	/* Preallocate a mountpoint in case the new mounts need
2203 	 * to be tucked under other mounts.
2204 	 */
2205 	smp = get_mountpoint(source_mnt->mnt.mnt_root);
2206 	if (IS_ERR(smp))
2207 		return PTR_ERR(smp);
2208 
2209 	/* Is there space to add these mounts to the mount namespace? */
2210 	if (!moving) {
2211 		err = count_mounts(ns, source_mnt);
2212 		if (err)
2213 			goto out;
2214 	}
2215 
2216 	if (IS_MNT_SHARED(dest_mnt)) {
2217 		err = invent_group_ids(source_mnt, true);
2218 		if (err)
2219 			goto out;
2220 		err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list);
2221 		lock_mount_hash();
2222 		if (err)
2223 			goto out_cleanup_ids;
2224 		for (p = source_mnt; p; p = next_mnt(p, source_mnt))
2225 			set_mnt_shared(p);
2226 	} else {
2227 		lock_mount_hash();
2228 	}
2229 	if (moving) {
2230 		unhash_mnt(source_mnt);
2231 		attach_mnt(source_mnt, dest_mnt, dest_mp);
2232 		touch_mnt_namespace(source_mnt->mnt_ns);
2233 	} else {
2234 		if (source_mnt->mnt_ns) {
2235 			/* move from anon - the caller will destroy */
2236 			list_del_init(&source_mnt->mnt_ns->list);
2237 		}
2238 		mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt);
2239 		commit_tree(source_mnt);
2240 	}
2241 
2242 	hlist_for_each_entry_safe(child, n, &tree_list, mnt_hash) {
2243 		struct mount *q;
2244 		hlist_del_init(&child->mnt_hash);
2245 		q = __lookup_mnt(&child->mnt_parent->mnt,
2246 				 child->mnt_mountpoint);
2247 		if (q)
2248 			mnt_change_mountpoint(child, smp, q);
2249 		/* Notice when we are propagating across user namespaces */
2250 		if (child->mnt_parent->mnt_ns->user_ns != user_ns)
2251 			lock_mnt_tree(child);
2252 		child->mnt.mnt_flags &= ~MNT_LOCKED;
2253 		commit_tree(child);
2254 	}
2255 	put_mountpoint(smp);
2256 	unlock_mount_hash();
2257 
2258 	return 0;
2259 
2260  out_cleanup_ids:
2261 	while (!hlist_empty(&tree_list)) {
2262 		child = hlist_entry(tree_list.first, struct mount, mnt_hash);
2263 		child->mnt_parent->mnt_ns->pending_mounts = 0;
2264 		umount_tree(child, UMOUNT_SYNC);
2265 	}
2266 	unlock_mount_hash();
2267 	cleanup_group_ids(source_mnt, NULL);
2268  out:
2269 	ns->pending_mounts = 0;
2270 
2271 	read_seqlock_excl(&mount_lock);
2272 	put_mountpoint(smp);
2273 	read_sequnlock_excl(&mount_lock);
2274 
2275 	return err;
2276 }
2277 
2278 static struct mountpoint *lock_mount(struct path *path)
2279 {
2280 	struct vfsmount *mnt;
2281 	struct dentry *dentry = path->dentry;
2282 retry:
2283 	inode_lock(dentry->d_inode);
2284 	if (unlikely(cant_mount(dentry))) {
2285 		inode_unlock(dentry->d_inode);
2286 		return ERR_PTR(-ENOENT);
2287 	}
2288 	namespace_lock();
2289 	mnt = lookup_mnt(path);
2290 	if (likely(!mnt)) {
2291 		struct mountpoint *mp = get_mountpoint(dentry);
2292 		if (IS_ERR(mp)) {
2293 			namespace_unlock();
2294 			inode_unlock(dentry->d_inode);
2295 			return mp;
2296 		}
2297 		return mp;
2298 	}
2299 	namespace_unlock();
2300 	inode_unlock(path->dentry->d_inode);
2301 	path_put(path);
2302 	path->mnt = mnt;
2303 	dentry = path->dentry = dget(mnt->mnt_root);
2304 	goto retry;
2305 }
2306 
2307 static void unlock_mount(struct mountpoint *where)
2308 {
2309 	struct dentry *dentry = where->m_dentry;
2310 
2311 	read_seqlock_excl(&mount_lock);
2312 	put_mountpoint(where);
2313 	read_sequnlock_excl(&mount_lock);
2314 
2315 	namespace_unlock();
2316 	inode_unlock(dentry->d_inode);
2317 }
2318 
2319 static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp)
2320 {
2321 	if (mnt->mnt.mnt_sb->s_flags & SB_NOUSER)
2322 		return -EINVAL;
2323 
2324 	if (d_is_dir(mp->m_dentry) !=
2325 	      d_is_dir(mnt->mnt.mnt_root))
2326 		return -ENOTDIR;
2327 
2328 	return attach_recursive_mnt(mnt, p, mp, false);
2329 }
2330 
2331 /*
2332  * Sanity check the flags to change_mnt_propagation.
2333  */
2334 
2335 static int flags_to_propagation_type(int ms_flags)
2336 {
2337 	int type = ms_flags & ~(MS_REC | MS_SILENT);
2338 
2339 	/* Fail if any non-propagation flags are set */
2340 	if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2341 		return 0;
2342 	/* Only one propagation flag should be set */
2343 	if (!is_power_of_2(type))
2344 		return 0;
2345 	return type;
2346 }
2347 
2348 /*
2349  * recursively change the type of the mountpoint.
2350  */
2351 static int do_change_type(struct path *path, int ms_flags)
2352 {
2353 	struct mount *m;
2354 	struct mount *mnt = real_mount(path->mnt);
2355 	int recurse = ms_flags & MS_REC;
2356 	int type;
2357 	int err = 0;
2358 
2359 	if (path->dentry != path->mnt->mnt_root)
2360 		return -EINVAL;
2361 
2362 	type = flags_to_propagation_type(ms_flags);
2363 	if (!type)
2364 		return -EINVAL;
2365 
2366 	namespace_lock();
2367 	if (type == MS_SHARED) {
2368 		err = invent_group_ids(mnt, recurse);
2369 		if (err)
2370 			goto out_unlock;
2371 	}
2372 
2373 	lock_mount_hash();
2374 	for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
2375 		change_mnt_propagation(m, type);
2376 	unlock_mount_hash();
2377 
2378  out_unlock:
2379 	namespace_unlock();
2380 	return err;
2381 }
2382 
2383 static struct mount *__do_loopback(struct path *old_path, int recurse)
2384 {
2385 	struct mount *mnt = ERR_PTR(-EINVAL), *old = real_mount(old_path->mnt);
2386 
2387 	if (IS_MNT_UNBINDABLE(old))
2388 		return mnt;
2389 
2390 	if (!check_mnt(old) && old_path->dentry->d_op != &ns_dentry_operations)
2391 		return mnt;
2392 
2393 	if (!recurse && has_locked_children(old, old_path->dentry))
2394 		return mnt;
2395 
2396 	if (recurse)
2397 		mnt = copy_tree(old, old_path->dentry, CL_COPY_MNT_NS_FILE);
2398 	else
2399 		mnt = clone_mnt(old, old_path->dentry, 0);
2400 
2401 	if (!IS_ERR(mnt))
2402 		mnt->mnt.mnt_flags &= ~MNT_LOCKED;
2403 
2404 	return mnt;
2405 }
2406 
2407 /*
2408  * do loopback mount.
2409  */
2410 static int do_loopback(struct path *path, const char *old_name,
2411 				int recurse)
2412 {
2413 	struct path old_path;
2414 	struct mount *mnt = NULL, *parent;
2415 	struct mountpoint *mp;
2416 	int err;
2417 	if (!old_name || !*old_name)
2418 		return -EINVAL;
2419 	err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
2420 	if (err)
2421 		return err;
2422 
2423 	err = -EINVAL;
2424 	if (mnt_ns_loop(old_path.dentry))
2425 		goto out;
2426 
2427 	mp = lock_mount(path);
2428 	if (IS_ERR(mp)) {
2429 		err = PTR_ERR(mp);
2430 		goto out;
2431 	}
2432 
2433 	parent = real_mount(path->mnt);
2434 	if (!check_mnt(parent))
2435 		goto out2;
2436 
2437 	mnt = __do_loopback(&old_path, recurse);
2438 	if (IS_ERR(mnt)) {
2439 		err = PTR_ERR(mnt);
2440 		goto out2;
2441 	}
2442 
2443 	err = graft_tree(mnt, parent, mp);
2444 	if (err) {
2445 		lock_mount_hash();
2446 		umount_tree(mnt, UMOUNT_SYNC);
2447 		unlock_mount_hash();
2448 	}
2449 out2:
2450 	unlock_mount(mp);
2451 out:
2452 	path_put(&old_path);
2453 	return err;
2454 }
2455 
2456 static struct file *open_detached_copy(struct path *path, bool recursive)
2457 {
2458 	struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns;
2459 	struct mnt_namespace *ns = alloc_mnt_ns(user_ns, true);
2460 	struct mount *mnt, *p;
2461 	struct file *file;
2462 
2463 	if (IS_ERR(ns))
2464 		return ERR_CAST(ns);
2465 
2466 	namespace_lock();
2467 	mnt = __do_loopback(path, recursive);
2468 	if (IS_ERR(mnt)) {
2469 		namespace_unlock();
2470 		free_mnt_ns(ns);
2471 		return ERR_CAST(mnt);
2472 	}
2473 
2474 	lock_mount_hash();
2475 	for (p = mnt; p; p = next_mnt(p, mnt)) {
2476 		p->mnt_ns = ns;
2477 		ns->mounts++;
2478 	}
2479 	ns->root = mnt;
2480 	list_add_tail(&ns->list, &mnt->mnt_list);
2481 	mntget(&mnt->mnt);
2482 	unlock_mount_hash();
2483 	namespace_unlock();
2484 
2485 	mntput(path->mnt);
2486 	path->mnt = &mnt->mnt;
2487 	file = dentry_open(path, O_PATH, current_cred());
2488 	if (IS_ERR(file))
2489 		dissolve_on_fput(path->mnt);
2490 	else
2491 		file->f_mode |= FMODE_NEED_UNMOUNT;
2492 	return file;
2493 }
2494 
2495 SYSCALL_DEFINE3(open_tree, int, dfd, const char __user *, filename, unsigned, flags)
2496 {
2497 	struct file *file;
2498 	struct path path;
2499 	int lookup_flags = LOOKUP_AUTOMOUNT | LOOKUP_FOLLOW;
2500 	bool detached = flags & OPEN_TREE_CLONE;
2501 	int error;
2502 	int fd;
2503 
2504 	BUILD_BUG_ON(OPEN_TREE_CLOEXEC != O_CLOEXEC);
2505 
2506 	if (flags & ~(AT_EMPTY_PATH | AT_NO_AUTOMOUNT | AT_RECURSIVE |
2507 		      AT_SYMLINK_NOFOLLOW | OPEN_TREE_CLONE |
2508 		      OPEN_TREE_CLOEXEC))
2509 		return -EINVAL;
2510 
2511 	if ((flags & (AT_RECURSIVE | OPEN_TREE_CLONE)) == AT_RECURSIVE)
2512 		return -EINVAL;
2513 
2514 	if (flags & AT_NO_AUTOMOUNT)
2515 		lookup_flags &= ~LOOKUP_AUTOMOUNT;
2516 	if (flags & AT_SYMLINK_NOFOLLOW)
2517 		lookup_flags &= ~LOOKUP_FOLLOW;
2518 	if (flags & AT_EMPTY_PATH)
2519 		lookup_flags |= LOOKUP_EMPTY;
2520 
2521 	if (detached && !may_mount())
2522 		return -EPERM;
2523 
2524 	fd = get_unused_fd_flags(flags & O_CLOEXEC);
2525 	if (fd < 0)
2526 		return fd;
2527 
2528 	error = user_path_at(dfd, filename, lookup_flags, &path);
2529 	if (unlikely(error)) {
2530 		file = ERR_PTR(error);
2531 	} else {
2532 		if (detached)
2533 			file = open_detached_copy(&path, flags & AT_RECURSIVE);
2534 		else
2535 			file = dentry_open(&path, O_PATH, current_cred());
2536 		path_put(&path);
2537 	}
2538 	if (IS_ERR(file)) {
2539 		put_unused_fd(fd);
2540 		return PTR_ERR(file);
2541 	}
2542 	fd_install(fd, file);
2543 	return fd;
2544 }
2545 
2546 /*
2547  * Don't allow locked mount flags to be cleared.
2548  *
2549  * No locks need to be held here while testing the various MNT_LOCK
2550  * flags because those flags can never be cleared once they are set.
2551  */
2552 static bool can_change_locked_flags(struct mount *mnt, unsigned int mnt_flags)
2553 {
2554 	unsigned int fl = mnt->mnt.mnt_flags;
2555 
2556 	if ((fl & MNT_LOCK_READONLY) &&
2557 	    !(mnt_flags & MNT_READONLY))
2558 		return false;
2559 
2560 	if ((fl & MNT_LOCK_NODEV) &&
2561 	    !(mnt_flags & MNT_NODEV))
2562 		return false;
2563 
2564 	if ((fl & MNT_LOCK_NOSUID) &&
2565 	    !(mnt_flags & MNT_NOSUID))
2566 		return false;
2567 
2568 	if ((fl & MNT_LOCK_NOEXEC) &&
2569 	    !(mnt_flags & MNT_NOEXEC))
2570 		return false;
2571 
2572 	if ((fl & MNT_LOCK_ATIME) &&
2573 	    ((fl & MNT_ATIME_MASK) != (mnt_flags & MNT_ATIME_MASK)))
2574 		return false;
2575 
2576 	return true;
2577 }
2578 
2579 static int change_mount_ro_state(struct mount *mnt, unsigned int mnt_flags)
2580 {
2581 	bool readonly_request = (mnt_flags & MNT_READONLY);
2582 
2583 	if (readonly_request == __mnt_is_readonly(&mnt->mnt))
2584 		return 0;
2585 
2586 	if (readonly_request)
2587 		return mnt_make_readonly(mnt);
2588 
2589 	mnt->mnt.mnt_flags &= ~MNT_READONLY;
2590 	return 0;
2591 }
2592 
2593 static void set_mount_attributes(struct mount *mnt, unsigned int mnt_flags)
2594 {
2595 	mnt_flags |= mnt->mnt.mnt_flags & ~MNT_USER_SETTABLE_MASK;
2596 	mnt->mnt.mnt_flags = mnt_flags;
2597 	touch_mnt_namespace(mnt->mnt_ns);
2598 }
2599 
2600 static void mnt_warn_timestamp_expiry(struct path *mountpoint, struct vfsmount *mnt)
2601 {
2602 	struct super_block *sb = mnt->mnt_sb;
2603 
2604 	if (!__mnt_is_readonly(mnt) &&
2605 	   (!(sb->s_iflags & SB_I_TS_EXPIRY_WARNED)) &&
2606 	   (ktime_get_real_seconds() + TIME_UPTIME_SEC_MAX > sb->s_time_max)) {
2607 		char *buf = (char *)__get_free_page(GFP_KERNEL);
2608 		char *mntpath = buf ? d_path(mountpoint, buf, PAGE_SIZE) : ERR_PTR(-ENOMEM);
2609 		struct tm tm;
2610 
2611 		time64_to_tm(sb->s_time_max, 0, &tm);
2612 
2613 		pr_warn("%s filesystem being %s at %s supports timestamps until %04ld (0x%llx)\n",
2614 			sb->s_type->name,
2615 			is_mounted(mnt) ? "remounted" : "mounted",
2616 			mntpath,
2617 			tm.tm_year+1900, (unsigned long long)sb->s_time_max);
2618 
2619 		free_page((unsigned long)buf);
2620 		sb->s_iflags |= SB_I_TS_EXPIRY_WARNED;
2621 	}
2622 }
2623 
2624 /*
2625  * Handle reconfiguration of the mountpoint only without alteration of the
2626  * superblock it refers to.  This is triggered by specifying MS_REMOUNT|MS_BIND
2627  * to mount(2).
2628  */
2629 static int do_reconfigure_mnt(struct path *path, unsigned int mnt_flags)
2630 {
2631 	struct super_block *sb = path->mnt->mnt_sb;
2632 	struct mount *mnt = real_mount(path->mnt);
2633 	int ret;
2634 
2635 	if (!check_mnt(mnt))
2636 		return -EINVAL;
2637 
2638 	if (path->dentry != mnt->mnt.mnt_root)
2639 		return -EINVAL;
2640 
2641 	if (!can_change_locked_flags(mnt, mnt_flags))
2642 		return -EPERM;
2643 
2644 	/*
2645 	 * We're only checking whether the superblock is read-only not
2646 	 * changing it, so only take down_read(&sb->s_umount).
2647 	 */
2648 	down_read(&sb->s_umount);
2649 	lock_mount_hash();
2650 	ret = change_mount_ro_state(mnt, mnt_flags);
2651 	if (ret == 0)
2652 		set_mount_attributes(mnt, mnt_flags);
2653 	unlock_mount_hash();
2654 	up_read(&sb->s_umount);
2655 
2656 	mnt_warn_timestamp_expiry(path, &mnt->mnt);
2657 
2658 	return ret;
2659 }
2660 
2661 /*
2662  * change filesystem flags. dir should be a physical root of filesystem.
2663  * If you've mounted a non-root directory somewhere and want to do remount
2664  * on it - tough luck.
2665  */
2666 static int do_remount(struct path *path, int ms_flags, int sb_flags,
2667 		      int mnt_flags, void *data)
2668 {
2669 	int err;
2670 	struct super_block *sb = path->mnt->mnt_sb;
2671 	struct mount *mnt = real_mount(path->mnt);
2672 	struct fs_context *fc;
2673 
2674 	if (!check_mnt(mnt))
2675 		return -EINVAL;
2676 
2677 	if (path->dentry != path->mnt->mnt_root)
2678 		return -EINVAL;
2679 
2680 	if (!can_change_locked_flags(mnt, mnt_flags))
2681 		return -EPERM;
2682 
2683 	fc = fs_context_for_reconfigure(path->dentry, sb_flags, MS_RMT_MASK);
2684 	if (IS_ERR(fc))
2685 		return PTR_ERR(fc);
2686 
2687 	fc->oldapi = true;
2688 	err = parse_monolithic_mount_data(fc, data);
2689 	if (!err) {
2690 		down_write(&sb->s_umount);
2691 		err = -EPERM;
2692 		if (ns_capable(sb->s_user_ns, CAP_SYS_ADMIN)) {
2693 			err = reconfigure_super(fc);
2694 			if (!err) {
2695 				lock_mount_hash();
2696 				set_mount_attributes(mnt, mnt_flags);
2697 				unlock_mount_hash();
2698 			}
2699 		}
2700 		up_write(&sb->s_umount);
2701 	}
2702 
2703 	mnt_warn_timestamp_expiry(path, &mnt->mnt);
2704 
2705 	put_fs_context(fc);
2706 	return err;
2707 }
2708 
2709 static inline int tree_contains_unbindable(struct mount *mnt)
2710 {
2711 	struct mount *p;
2712 	for (p = mnt; p; p = next_mnt(p, mnt)) {
2713 		if (IS_MNT_UNBINDABLE(p))
2714 			return 1;
2715 	}
2716 	return 0;
2717 }
2718 
2719 /*
2720  * Check that there aren't references to earlier/same mount namespaces in the
2721  * specified subtree.  Such references can act as pins for mount namespaces
2722  * that aren't checked by the mount-cycle checking code, thereby allowing
2723  * cycles to be made.
2724  */
2725 static bool check_for_nsfs_mounts(struct mount *subtree)
2726 {
2727 	struct mount *p;
2728 	bool ret = false;
2729 
2730 	lock_mount_hash();
2731 	for (p = subtree; p; p = next_mnt(p, subtree))
2732 		if (mnt_ns_loop(p->mnt.mnt_root))
2733 			goto out;
2734 
2735 	ret = true;
2736 out:
2737 	unlock_mount_hash();
2738 	return ret;
2739 }
2740 
2741 static int do_set_group(struct path *from_path, struct path *to_path)
2742 {
2743 	struct mount *from, *to;
2744 	int err;
2745 
2746 	from = real_mount(from_path->mnt);
2747 	to = real_mount(to_path->mnt);
2748 
2749 	namespace_lock();
2750 
2751 	err = -EINVAL;
2752 	/* To and From must be mounted */
2753 	if (!is_mounted(&from->mnt))
2754 		goto out;
2755 	if (!is_mounted(&to->mnt))
2756 		goto out;
2757 
2758 	err = -EPERM;
2759 	/* We should be allowed to modify mount namespaces of both mounts */
2760 	if (!ns_capable(from->mnt_ns->user_ns, CAP_SYS_ADMIN))
2761 		goto out;
2762 	if (!ns_capable(to->mnt_ns->user_ns, CAP_SYS_ADMIN))
2763 		goto out;
2764 
2765 	err = -EINVAL;
2766 	/* To and From paths should be mount roots */
2767 	if (from_path->dentry != from_path->mnt->mnt_root)
2768 		goto out;
2769 	if (to_path->dentry != to_path->mnt->mnt_root)
2770 		goto out;
2771 
2772 	/* Setting sharing groups is only allowed across same superblock */
2773 	if (from->mnt.mnt_sb != to->mnt.mnt_sb)
2774 		goto out;
2775 
2776 	/* From mount root should be wider than To mount root */
2777 	if (!is_subdir(to->mnt.mnt_root, from->mnt.mnt_root))
2778 		goto out;
2779 
2780 	/* From mount should not have locked children in place of To's root */
2781 	if (has_locked_children(from, to->mnt.mnt_root))
2782 		goto out;
2783 
2784 	/* Setting sharing groups is only allowed on private mounts */
2785 	if (IS_MNT_SHARED(to) || IS_MNT_SLAVE(to))
2786 		goto out;
2787 
2788 	/* From should not be private */
2789 	if (!IS_MNT_SHARED(from) && !IS_MNT_SLAVE(from))
2790 		goto out;
2791 
2792 	if (IS_MNT_SLAVE(from)) {
2793 		struct mount *m = from->mnt_master;
2794 
2795 		list_add(&to->mnt_slave, &m->mnt_slave_list);
2796 		to->mnt_master = m;
2797 	}
2798 
2799 	if (IS_MNT_SHARED(from)) {
2800 		to->mnt_group_id = from->mnt_group_id;
2801 		list_add(&to->mnt_share, &from->mnt_share);
2802 		lock_mount_hash();
2803 		set_mnt_shared(to);
2804 		unlock_mount_hash();
2805 	}
2806 
2807 	err = 0;
2808 out:
2809 	namespace_unlock();
2810 	return err;
2811 }
2812 
2813 static int do_move_mount(struct path *old_path, struct path *new_path)
2814 {
2815 	struct mnt_namespace *ns;
2816 	struct mount *p;
2817 	struct mount *old;
2818 	struct mount *parent;
2819 	struct mountpoint *mp, *old_mp;
2820 	int err;
2821 	bool attached;
2822 
2823 	mp = lock_mount(new_path);
2824 	if (IS_ERR(mp))
2825 		return PTR_ERR(mp);
2826 
2827 	old = real_mount(old_path->mnt);
2828 	p = real_mount(new_path->mnt);
2829 	parent = old->mnt_parent;
2830 	attached = mnt_has_parent(old);
2831 	old_mp = old->mnt_mp;
2832 	ns = old->mnt_ns;
2833 
2834 	err = -EINVAL;
2835 	/* The mountpoint must be in our namespace. */
2836 	if (!check_mnt(p))
2837 		goto out;
2838 
2839 	/* The thing moved must be mounted... */
2840 	if (!is_mounted(&old->mnt))
2841 		goto out;
2842 
2843 	/* ... and either ours or the root of anon namespace */
2844 	if (!(attached ? check_mnt(old) : is_anon_ns(ns)))
2845 		goto out;
2846 
2847 	if (old->mnt.mnt_flags & MNT_LOCKED)
2848 		goto out;
2849 
2850 	if (old_path->dentry != old_path->mnt->mnt_root)
2851 		goto out;
2852 
2853 	if (d_is_dir(new_path->dentry) !=
2854 	    d_is_dir(old_path->dentry))
2855 		goto out;
2856 	/*
2857 	 * Don't move a mount residing in a shared parent.
2858 	 */
2859 	if (attached && IS_MNT_SHARED(parent))
2860 		goto out;
2861 	/*
2862 	 * Don't move a mount tree containing unbindable mounts to a destination
2863 	 * mount which is shared.
2864 	 */
2865 	if (IS_MNT_SHARED(p) && tree_contains_unbindable(old))
2866 		goto out;
2867 	err = -ELOOP;
2868 	if (!check_for_nsfs_mounts(old))
2869 		goto out;
2870 	for (; mnt_has_parent(p); p = p->mnt_parent)
2871 		if (p == old)
2872 			goto out;
2873 
2874 	err = attach_recursive_mnt(old, real_mount(new_path->mnt), mp,
2875 				   attached);
2876 	if (err)
2877 		goto out;
2878 
2879 	/* if the mount is moved, it should no longer be expire
2880 	 * automatically */
2881 	list_del_init(&old->mnt_expire);
2882 	if (attached)
2883 		put_mountpoint(old_mp);
2884 out:
2885 	unlock_mount(mp);
2886 	if (!err) {
2887 		if (attached)
2888 			mntput_no_expire(parent);
2889 		else
2890 			free_mnt_ns(ns);
2891 	}
2892 	return err;
2893 }
2894 
2895 static int do_move_mount_old(struct path *path, const char *old_name)
2896 {
2897 	struct path old_path;
2898 	int err;
2899 
2900 	if (!old_name || !*old_name)
2901 		return -EINVAL;
2902 
2903 	err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
2904 	if (err)
2905 		return err;
2906 
2907 	err = do_move_mount(&old_path, path);
2908 	path_put(&old_path);
2909 	return err;
2910 }
2911 
2912 /*
2913  * add a mount into a namespace's mount tree
2914  */
2915 static int do_add_mount(struct mount *newmnt, struct mountpoint *mp,
2916 			const struct path *path, int mnt_flags)
2917 {
2918 	struct mount *parent = real_mount(path->mnt);
2919 
2920 	mnt_flags &= ~MNT_INTERNAL_FLAGS;
2921 
2922 	if (unlikely(!check_mnt(parent))) {
2923 		/* that's acceptable only for automounts done in private ns */
2924 		if (!(mnt_flags & MNT_SHRINKABLE))
2925 			return -EINVAL;
2926 		/* ... and for those we'd better have mountpoint still alive */
2927 		if (!parent->mnt_ns)
2928 			return -EINVAL;
2929 	}
2930 
2931 	/* Refuse the same filesystem on the same mount point */
2932 	if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb &&
2933 	    path->mnt->mnt_root == path->dentry)
2934 		return -EBUSY;
2935 
2936 	if (d_is_symlink(newmnt->mnt.mnt_root))
2937 		return -EINVAL;
2938 
2939 	newmnt->mnt.mnt_flags = mnt_flags;
2940 	return graft_tree(newmnt, parent, mp);
2941 }
2942 
2943 static bool mount_too_revealing(const struct super_block *sb, int *new_mnt_flags);
2944 
2945 /*
2946  * Create a new mount using a superblock configuration and request it
2947  * be added to the namespace tree.
2948  */
2949 static int do_new_mount_fc(struct fs_context *fc, struct path *mountpoint,
2950 			   unsigned int mnt_flags)
2951 {
2952 	struct vfsmount *mnt;
2953 	struct mountpoint *mp;
2954 	struct super_block *sb = fc->root->d_sb;
2955 	int error;
2956 
2957 	error = security_sb_kern_mount(sb);
2958 	if (!error && mount_too_revealing(sb, &mnt_flags))
2959 		error = -EPERM;
2960 
2961 	if (unlikely(error)) {
2962 		fc_drop_locked(fc);
2963 		return error;
2964 	}
2965 
2966 	up_write(&sb->s_umount);
2967 
2968 	mnt = vfs_create_mount(fc);
2969 	if (IS_ERR(mnt))
2970 		return PTR_ERR(mnt);
2971 
2972 	mnt_warn_timestamp_expiry(mountpoint, mnt);
2973 
2974 	mp = lock_mount(mountpoint);
2975 	if (IS_ERR(mp)) {
2976 		mntput(mnt);
2977 		return PTR_ERR(mp);
2978 	}
2979 	error = do_add_mount(real_mount(mnt), mp, mountpoint, mnt_flags);
2980 	unlock_mount(mp);
2981 	if (error < 0)
2982 		mntput(mnt);
2983 	return error;
2984 }
2985 
2986 /*
2987  * create a new mount for userspace and request it to be added into the
2988  * namespace's tree
2989  */
2990 static int do_new_mount(struct path *path, const char *fstype, int sb_flags,
2991 			int mnt_flags, const char *name, void *data)
2992 {
2993 	struct file_system_type *type;
2994 	struct fs_context *fc;
2995 	const char *subtype = NULL;
2996 	int err = 0;
2997 
2998 	if (!fstype)
2999 		return -EINVAL;
3000 
3001 	type = get_fs_type(fstype);
3002 	if (!type)
3003 		return -ENODEV;
3004 
3005 	if (type->fs_flags & FS_HAS_SUBTYPE) {
3006 		subtype = strchr(fstype, '.');
3007 		if (subtype) {
3008 			subtype++;
3009 			if (!*subtype) {
3010 				put_filesystem(type);
3011 				return -EINVAL;
3012 			}
3013 		}
3014 	}
3015 
3016 	fc = fs_context_for_mount(type, sb_flags);
3017 	put_filesystem(type);
3018 	if (IS_ERR(fc))
3019 		return PTR_ERR(fc);
3020 
3021 	if (subtype)
3022 		err = vfs_parse_fs_string(fc, "subtype",
3023 					  subtype, strlen(subtype));
3024 	if (!err && name)
3025 		err = vfs_parse_fs_string(fc, "source", name, strlen(name));
3026 	if (!err)
3027 		err = parse_monolithic_mount_data(fc, data);
3028 	if (!err && !mount_capable(fc))
3029 		err = -EPERM;
3030 	if (!err)
3031 		err = vfs_get_tree(fc);
3032 	if (!err)
3033 		err = do_new_mount_fc(fc, path, mnt_flags);
3034 
3035 	put_fs_context(fc);
3036 	return err;
3037 }
3038 
3039 int finish_automount(struct vfsmount *m, const struct path *path)
3040 {
3041 	struct dentry *dentry = path->dentry;
3042 	struct mountpoint *mp;
3043 	struct mount *mnt;
3044 	int err;
3045 
3046 	if (!m)
3047 		return 0;
3048 	if (IS_ERR(m))
3049 		return PTR_ERR(m);
3050 
3051 	mnt = real_mount(m);
3052 	/* The new mount record should have at least 2 refs to prevent it being
3053 	 * expired before we get a chance to add it
3054 	 */
3055 	BUG_ON(mnt_get_count(mnt) < 2);
3056 
3057 	if (m->mnt_sb == path->mnt->mnt_sb &&
3058 	    m->mnt_root == dentry) {
3059 		err = -ELOOP;
3060 		goto discard;
3061 	}
3062 
3063 	/*
3064 	 * we don't want to use lock_mount() - in this case finding something
3065 	 * that overmounts our mountpoint to be means "quitely drop what we've
3066 	 * got", not "try to mount it on top".
3067 	 */
3068 	inode_lock(dentry->d_inode);
3069 	namespace_lock();
3070 	if (unlikely(cant_mount(dentry))) {
3071 		err = -ENOENT;
3072 		goto discard_locked;
3073 	}
3074 	rcu_read_lock();
3075 	if (unlikely(__lookup_mnt(path->mnt, dentry))) {
3076 		rcu_read_unlock();
3077 		err = 0;
3078 		goto discard_locked;
3079 	}
3080 	rcu_read_unlock();
3081 	mp = get_mountpoint(dentry);
3082 	if (IS_ERR(mp)) {
3083 		err = PTR_ERR(mp);
3084 		goto discard_locked;
3085 	}
3086 
3087 	err = do_add_mount(mnt, mp, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
3088 	unlock_mount(mp);
3089 	if (unlikely(err))
3090 		goto discard;
3091 	mntput(m);
3092 	return 0;
3093 
3094 discard_locked:
3095 	namespace_unlock();
3096 	inode_unlock(dentry->d_inode);
3097 discard:
3098 	/* remove m from any expiration list it may be on */
3099 	if (!list_empty(&mnt->mnt_expire)) {
3100 		namespace_lock();
3101 		list_del_init(&mnt->mnt_expire);
3102 		namespace_unlock();
3103 	}
3104 	mntput(m);
3105 	mntput(m);
3106 	return err;
3107 }
3108 
3109 /**
3110  * mnt_set_expiry - Put a mount on an expiration list
3111  * @mnt: The mount to list.
3112  * @expiry_list: The list to add the mount to.
3113  */
3114 void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
3115 {
3116 	namespace_lock();
3117 
3118 	list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
3119 
3120 	namespace_unlock();
3121 }
3122 EXPORT_SYMBOL(mnt_set_expiry);
3123 
3124 /*
3125  * process a list of expirable mountpoints with the intent of discarding any
3126  * mountpoints that aren't in use and haven't been touched since last we came
3127  * here
3128  */
3129 void mark_mounts_for_expiry(struct list_head *mounts)
3130 {
3131 	struct mount *mnt, *next;
3132 	LIST_HEAD(graveyard);
3133 
3134 	if (list_empty(mounts))
3135 		return;
3136 
3137 	namespace_lock();
3138 	lock_mount_hash();
3139 
3140 	/* extract from the expiration list every vfsmount that matches the
3141 	 * following criteria:
3142 	 * - only referenced by its parent vfsmount
3143 	 * - still marked for expiry (marked on the last call here; marks are
3144 	 *   cleared by mntput())
3145 	 */
3146 	list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
3147 		if (!xchg(&mnt->mnt_expiry_mark, 1) ||
3148 			propagate_mount_busy(mnt, 1))
3149 			continue;
3150 		list_move(&mnt->mnt_expire, &graveyard);
3151 	}
3152 	while (!list_empty(&graveyard)) {
3153 		mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
3154 		touch_mnt_namespace(mnt->mnt_ns);
3155 		umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
3156 	}
3157 	unlock_mount_hash();
3158 	namespace_unlock();
3159 }
3160 
3161 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
3162 
3163 /*
3164  * Ripoff of 'select_parent()'
3165  *
3166  * search the list of submounts for a given mountpoint, and move any
3167  * shrinkable submounts to the 'graveyard' list.
3168  */
3169 static int select_submounts(struct mount *parent, struct list_head *graveyard)
3170 {
3171 	struct mount *this_parent = parent;
3172 	struct list_head *next;
3173 	int found = 0;
3174 
3175 repeat:
3176 	next = this_parent->mnt_mounts.next;
3177 resume:
3178 	while (next != &this_parent->mnt_mounts) {
3179 		struct list_head *tmp = next;
3180 		struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
3181 
3182 		next = tmp->next;
3183 		if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
3184 			continue;
3185 		/*
3186 		 * Descend a level if the d_mounts list is non-empty.
3187 		 */
3188 		if (!list_empty(&mnt->mnt_mounts)) {
3189 			this_parent = mnt;
3190 			goto repeat;
3191 		}
3192 
3193 		if (!propagate_mount_busy(mnt, 1)) {
3194 			list_move_tail(&mnt->mnt_expire, graveyard);
3195 			found++;
3196 		}
3197 	}
3198 	/*
3199 	 * All done at this level ... ascend and resume the search
3200 	 */
3201 	if (this_parent != parent) {
3202 		next = this_parent->mnt_child.next;
3203 		this_parent = this_parent->mnt_parent;
3204 		goto resume;
3205 	}
3206 	return found;
3207 }
3208 
3209 /*
3210  * process a list of expirable mountpoints with the intent of discarding any
3211  * submounts of a specific parent mountpoint
3212  *
3213  * mount_lock must be held for write
3214  */
3215 static void shrink_submounts(struct mount *mnt)
3216 {
3217 	LIST_HEAD(graveyard);
3218 	struct mount *m;
3219 
3220 	/* extract submounts of 'mountpoint' from the expiration list */
3221 	while (select_submounts(mnt, &graveyard)) {
3222 		while (!list_empty(&graveyard)) {
3223 			m = list_first_entry(&graveyard, struct mount,
3224 						mnt_expire);
3225 			touch_mnt_namespace(m->mnt_ns);
3226 			umount_tree(m, UMOUNT_PROPAGATE|UMOUNT_SYNC);
3227 		}
3228 	}
3229 }
3230 
3231 static void *copy_mount_options(const void __user * data)
3232 {
3233 	char *copy;
3234 	unsigned left, offset;
3235 
3236 	if (!data)
3237 		return NULL;
3238 
3239 	copy = kmalloc(PAGE_SIZE, GFP_KERNEL);
3240 	if (!copy)
3241 		return ERR_PTR(-ENOMEM);
3242 
3243 	left = copy_from_user(copy, data, PAGE_SIZE);
3244 
3245 	/*
3246 	 * Not all architectures have an exact copy_from_user(). Resort to
3247 	 * byte at a time.
3248 	 */
3249 	offset = PAGE_SIZE - left;
3250 	while (left) {
3251 		char c;
3252 		if (get_user(c, (const char __user *)data + offset))
3253 			break;
3254 		copy[offset] = c;
3255 		left--;
3256 		offset++;
3257 	}
3258 
3259 	if (left == PAGE_SIZE) {
3260 		kfree(copy);
3261 		return ERR_PTR(-EFAULT);
3262 	}
3263 
3264 	return copy;
3265 }
3266 
3267 static char *copy_mount_string(const void __user *data)
3268 {
3269 	return data ? strndup_user(data, PATH_MAX) : NULL;
3270 }
3271 
3272 /*
3273  * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
3274  * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
3275  *
3276  * data is a (void *) that can point to any structure up to
3277  * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
3278  * information (or be NULL).
3279  *
3280  * Pre-0.97 versions of mount() didn't have a flags word.
3281  * When the flags word was introduced its top half was required
3282  * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
3283  * Therefore, if this magic number is present, it carries no information
3284  * and must be discarded.
3285  */
3286 int path_mount(const char *dev_name, struct path *path,
3287 		const char *type_page, unsigned long flags, void *data_page)
3288 {
3289 	unsigned int mnt_flags = 0, sb_flags;
3290 	int ret;
3291 
3292 	/* Discard magic */
3293 	if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
3294 		flags &= ~MS_MGC_MSK;
3295 
3296 	/* Basic sanity checks */
3297 	if (data_page)
3298 		((char *)data_page)[PAGE_SIZE - 1] = 0;
3299 
3300 	if (flags & MS_NOUSER)
3301 		return -EINVAL;
3302 
3303 	ret = security_sb_mount(dev_name, path, type_page, flags, data_page);
3304 	if (ret)
3305 		return ret;
3306 	if (!may_mount())
3307 		return -EPERM;
3308 	if (flags & SB_MANDLOCK)
3309 		warn_mandlock();
3310 
3311 	/* Default to relatime unless overriden */
3312 	if (!(flags & MS_NOATIME))
3313 		mnt_flags |= MNT_RELATIME;
3314 
3315 	/* Separate the per-mountpoint flags */
3316 	if (flags & MS_NOSUID)
3317 		mnt_flags |= MNT_NOSUID;
3318 	if (flags & MS_NODEV)
3319 		mnt_flags |= MNT_NODEV;
3320 	if (flags & MS_NOEXEC)
3321 		mnt_flags |= MNT_NOEXEC;
3322 	if (flags & MS_NOATIME)
3323 		mnt_flags |= MNT_NOATIME;
3324 	if (flags & MS_NODIRATIME)
3325 		mnt_flags |= MNT_NODIRATIME;
3326 	if (flags & MS_STRICTATIME)
3327 		mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
3328 	if (flags & MS_RDONLY)
3329 		mnt_flags |= MNT_READONLY;
3330 	if (flags & MS_NOSYMFOLLOW)
3331 		mnt_flags |= MNT_NOSYMFOLLOW;
3332 
3333 	/* The default atime for remount is preservation */
3334 	if ((flags & MS_REMOUNT) &&
3335 	    ((flags & (MS_NOATIME | MS_NODIRATIME | MS_RELATIME |
3336 		       MS_STRICTATIME)) == 0)) {
3337 		mnt_flags &= ~MNT_ATIME_MASK;
3338 		mnt_flags |= path->mnt->mnt_flags & MNT_ATIME_MASK;
3339 	}
3340 
3341 	sb_flags = flags & (SB_RDONLY |
3342 			    SB_SYNCHRONOUS |
3343 			    SB_MANDLOCK |
3344 			    SB_DIRSYNC |
3345 			    SB_SILENT |
3346 			    SB_POSIXACL |
3347 			    SB_LAZYTIME |
3348 			    SB_I_VERSION);
3349 
3350 	if ((flags & (MS_REMOUNT | MS_BIND)) == (MS_REMOUNT | MS_BIND))
3351 		return do_reconfigure_mnt(path, mnt_flags);
3352 	if (flags & MS_REMOUNT)
3353 		return do_remount(path, flags, sb_flags, mnt_flags, data_page);
3354 	if (flags & MS_BIND)
3355 		return do_loopback(path, dev_name, flags & MS_REC);
3356 	if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
3357 		return do_change_type(path, flags);
3358 	if (flags & MS_MOVE)
3359 		return do_move_mount_old(path, dev_name);
3360 
3361 	return do_new_mount(path, type_page, sb_flags, mnt_flags, dev_name,
3362 			    data_page);
3363 }
3364 
3365 long do_mount(const char *dev_name, const char __user *dir_name,
3366 		const char *type_page, unsigned long flags, void *data_page)
3367 {
3368 	struct path path;
3369 	int ret;
3370 
3371 	ret = user_path_at(AT_FDCWD, dir_name, LOOKUP_FOLLOW, &path);
3372 	if (ret)
3373 		return ret;
3374 	ret = path_mount(dev_name, &path, type_page, flags, data_page);
3375 	path_put(&path);
3376 	return ret;
3377 }
3378 
3379 static struct ucounts *inc_mnt_namespaces(struct user_namespace *ns)
3380 {
3381 	return inc_ucount(ns, current_euid(), UCOUNT_MNT_NAMESPACES);
3382 }
3383 
3384 static void dec_mnt_namespaces(struct ucounts *ucounts)
3385 {
3386 	dec_ucount(ucounts, UCOUNT_MNT_NAMESPACES);
3387 }
3388 
3389 static void free_mnt_ns(struct mnt_namespace *ns)
3390 {
3391 	if (!is_anon_ns(ns))
3392 		ns_free_inum(&ns->ns);
3393 	dec_mnt_namespaces(ns->ucounts);
3394 	put_user_ns(ns->user_ns);
3395 	kfree(ns);
3396 }
3397 
3398 /*
3399  * Assign a sequence number so we can detect when we attempt to bind
3400  * mount a reference to an older mount namespace into the current
3401  * mount namespace, preventing reference counting loops.  A 64bit
3402  * number incrementing at 10Ghz will take 12,427 years to wrap which
3403  * is effectively never, so we can ignore the possibility.
3404  */
3405 static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1);
3406 
3407 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns, bool anon)
3408 {
3409 	struct mnt_namespace *new_ns;
3410 	struct ucounts *ucounts;
3411 	int ret;
3412 
3413 	ucounts = inc_mnt_namespaces(user_ns);
3414 	if (!ucounts)
3415 		return ERR_PTR(-ENOSPC);
3416 
3417 	new_ns = kzalloc(sizeof(struct mnt_namespace), GFP_KERNEL_ACCOUNT);
3418 	if (!new_ns) {
3419 		dec_mnt_namespaces(ucounts);
3420 		return ERR_PTR(-ENOMEM);
3421 	}
3422 	if (!anon) {
3423 		ret = ns_alloc_inum(&new_ns->ns);
3424 		if (ret) {
3425 			kfree(new_ns);
3426 			dec_mnt_namespaces(ucounts);
3427 			return ERR_PTR(ret);
3428 		}
3429 	}
3430 	new_ns->ns.ops = &mntns_operations;
3431 	if (!anon)
3432 		new_ns->seq = atomic64_add_return(1, &mnt_ns_seq);
3433 	refcount_set(&new_ns->ns.count, 1);
3434 	INIT_LIST_HEAD(&new_ns->list);
3435 	init_waitqueue_head(&new_ns->poll);
3436 	spin_lock_init(&new_ns->ns_lock);
3437 	new_ns->user_ns = get_user_ns(user_ns);
3438 	new_ns->ucounts = ucounts;
3439 	return new_ns;
3440 }
3441 
3442 __latent_entropy
3443 struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
3444 		struct user_namespace *user_ns, struct fs_struct *new_fs)
3445 {
3446 	struct mnt_namespace *new_ns;
3447 	struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
3448 	struct mount *p, *q;
3449 	struct mount *old;
3450 	struct mount *new;
3451 	int copy_flags;
3452 
3453 	BUG_ON(!ns);
3454 
3455 	if (likely(!(flags & CLONE_NEWNS))) {
3456 		get_mnt_ns(ns);
3457 		return ns;
3458 	}
3459 
3460 	old = ns->root;
3461 
3462 	new_ns = alloc_mnt_ns(user_ns, false);
3463 	if (IS_ERR(new_ns))
3464 		return new_ns;
3465 
3466 	namespace_lock();
3467 	/* First pass: copy the tree topology */
3468 	copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE;
3469 	if (user_ns != ns->user_ns)
3470 		copy_flags |= CL_SHARED_TO_SLAVE;
3471 	new = copy_tree(old, old->mnt.mnt_root, copy_flags);
3472 	if (IS_ERR(new)) {
3473 		namespace_unlock();
3474 		free_mnt_ns(new_ns);
3475 		return ERR_CAST(new);
3476 	}
3477 	if (user_ns != ns->user_ns) {
3478 		lock_mount_hash();
3479 		lock_mnt_tree(new);
3480 		unlock_mount_hash();
3481 	}
3482 	new_ns->root = new;
3483 	list_add_tail(&new_ns->list, &new->mnt_list);
3484 
3485 	/*
3486 	 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
3487 	 * as belonging to new namespace.  We have already acquired a private
3488 	 * fs_struct, so tsk->fs->lock is not needed.
3489 	 */
3490 	p = old;
3491 	q = new;
3492 	while (p) {
3493 		q->mnt_ns = new_ns;
3494 		new_ns->mounts++;
3495 		if (new_fs) {
3496 			if (&p->mnt == new_fs->root.mnt) {
3497 				new_fs->root.mnt = mntget(&q->mnt);
3498 				rootmnt = &p->mnt;
3499 			}
3500 			if (&p->mnt == new_fs->pwd.mnt) {
3501 				new_fs->pwd.mnt = mntget(&q->mnt);
3502 				pwdmnt = &p->mnt;
3503 			}
3504 		}
3505 		p = next_mnt(p, old);
3506 		q = next_mnt(q, new);
3507 		if (!q)
3508 			break;
3509 		// an mntns binding we'd skipped?
3510 		while (p->mnt.mnt_root != q->mnt.mnt_root)
3511 			p = next_mnt(skip_mnt_tree(p), old);
3512 	}
3513 	namespace_unlock();
3514 
3515 	if (rootmnt)
3516 		mntput(rootmnt);
3517 	if (pwdmnt)
3518 		mntput(pwdmnt);
3519 
3520 	return new_ns;
3521 }
3522 
3523 struct dentry *mount_subtree(struct vfsmount *m, const char *name)
3524 {
3525 	struct mount *mnt = real_mount(m);
3526 	struct mnt_namespace *ns;
3527 	struct super_block *s;
3528 	struct path path;
3529 	int err;
3530 
3531 	ns = alloc_mnt_ns(&init_user_ns, true);
3532 	if (IS_ERR(ns)) {
3533 		mntput(m);
3534 		return ERR_CAST(ns);
3535 	}
3536 	mnt->mnt_ns = ns;
3537 	ns->root = mnt;
3538 	ns->mounts++;
3539 	list_add(&mnt->mnt_list, &ns->list);
3540 
3541 	err = vfs_path_lookup(m->mnt_root, m,
3542 			name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
3543 
3544 	put_mnt_ns(ns);
3545 
3546 	if (err)
3547 		return ERR_PTR(err);
3548 
3549 	/* trade a vfsmount reference for active sb one */
3550 	s = path.mnt->mnt_sb;
3551 	atomic_inc(&s->s_active);
3552 	mntput(path.mnt);
3553 	/* lock the sucker */
3554 	down_write(&s->s_umount);
3555 	/* ... and return the root of (sub)tree on it */
3556 	return path.dentry;
3557 }
3558 EXPORT_SYMBOL(mount_subtree);
3559 
3560 SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
3561 		char __user *, type, unsigned long, flags, void __user *, data)
3562 {
3563 	int ret;
3564 	char *kernel_type;
3565 	char *kernel_dev;
3566 	void *options;
3567 
3568 	kernel_type = copy_mount_string(type);
3569 	ret = PTR_ERR(kernel_type);
3570 	if (IS_ERR(kernel_type))
3571 		goto out_type;
3572 
3573 	kernel_dev = copy_mount_string(dev_name);
3574 	ret = PTR_ERR(kernel_dev);
3575 	if (IS_ERR(kernel_dev))
3576 		goto out_dev;
3577 
3578 	options = copy_mount_options(data);
3579 	ret = PTR_ERR(options);
3580 	if (IS_ERR(options))
3581 		goto out_data;
3582 
3583 	ret = do_mount(kernel_dev, dir_name, kernel_type, flags, options);
3584 
3585 	kfree(options);
3586 out_data:
3587 	kfree(kernel_dev);
3588 out_dev:
3589 	kfree(kernel_type);
3590 out_type:
3591 	return ret;
3592 }
3593 
3594 #define FSMOUNT_VALID_FLAGS                                                    \
3595 	(MOUNT_ATTR_RDONLY | MOUNT_ATTR_NOSUID | MOUNT_ATTR_NODEV |            \
3596 	 MOUNT_ATTR_NOEXEC | MOUNT_ATTR__ATIME | MOUNT_ATTR_NODIRATIME |       \
3597 	 MOUNT_ATTR_NOSYMFOLLOW)
3598 
3599 #define MOUNT_SETATTR_VALID_FLAGS (FSMOUNT_VALID_FLAGS | MOUNT_ATTR_IDMAP)
3600 
3601 #define MOUNT_SETATTR_PROPAGATION_FLAGS \
3602 	(MS_UNBINDABLE | MS_PRIVATE | MS_SLAVE | MS_SHARED)
3603 
3604 static unsigned int attr_flags_to_mnt_flags(u64 attr_flags)
3605 {
3606 	unsigned int mnt_flags = 0;
3607 
3608 	if (attr_flags & MOUNT_ATTR_RDONLY)
3609 		mnt_flags |= MNT_READONLY;
3610 	if (attr_flags & MOUNT_ATTR_NOSUID)
3611 		mnt_flags |= MNT_NOSUID;
3612 	if (attr_flags & MOUNT_ATTR_NODEV)
3613 		mnt_flags |= MNT_NODEV;
3614 	if (attr_flags & MOUNT_ATTR_NOEXEC)
3615 		mnt_flags |= MNT_NOEXEC;
3616 	if (attr_flags & MOUNT_ATTR_NODIRATIME)
3617 		mnt_flags |= MNT_NODIRATIME;
3618 	if (attr_flags & MOUNT_ATTR_NOSYMFOLLOW)
3619 		mnt_flags |= MNT_NOSYMFOLLOW;
3620 
3621 	return mnt_flags;
3622 }
3623 
3624 /*
3625  * Create a kernel mount representation for a new, prepared superblock
3626  * (specified by fs_fd) and attach to an open_tree-like file descriptor.
3627  */
3628 SYSCALL_DEFINE3(fsmount, int, fs_fd, unsigned int, flags,
3629 		unsigned int, attr_flags)
3630 {
3631 	struct mnt_namespace *ns;
3632 	struct fs_context *fc;
3633 	struct file *file;
3634 	struct path newmount;
3635 	struct mount *mnt;
3636 	struct fd f;
3637 	unsigned int mnt_flags = 0;
3638 	long ret;
3639 
3640 	if (!may_mount())
3641 		return -EPERM;
3642 
3643 	if ((flags & ~(FSMOUNT_CLOEXEC)) != 0)
3644 		return -EINVAL;
3645 
3646 	if (attr_flags & ~FSMOUNT_VALID_FLAGS)
3647 		return -EINVAL;
3648 
3649 	mnt_flags = attr_flags_to_mnt_flags(attr_flags);
3650 
3651 	switch (attr_flags & MOUNT_ATTR__ATIME) {
3652 	case MOUNT_ATTR_STRICTATIME:
3653 		break;
3654 	case MOUNT_ATTR_NOATIME:
3655 		mnt_flags |= MNT_NOATIME;
3656 		break;
3657 	case MOUNT_ATTR_RELATIME:
3658 		mnt_flags |= MNT_RELATIME;
3659 		break;
3660 	default:
3661 		return -EINVAL;
3662 	}
3663 
3664 	f = fdget(fs_fd);
3665 	if (!f.file)
3666 		return -EBADF;
3667 
3668 	ret = -EINVAL;
3669 	if (f.file->f_op != &fscontext_fops)
3670 		goto err_fsfd;
3671 
3672 	fc = f.file->private_data;
3673 
3674 	ret = mutex_lock_interruptible(&fc->uapi_mutex);
3675 	if (ret < 0)
3676 		goto err_fsfd;
3677 
3678 	/* There must be a valid superblock or we can't mount it */
3679 	ret = -EINVAL;
3680 	if (!fc->root)
3681 		goto err_unlock;
3682 
3683 	ret = -EPERM;
3684 	if (mount_too_revealing(fc->root->d_sb, &mnt_flags)) {
3685 		pr_warn("VFS: Mount too revealing\n");
3686 		goto err_unlock;
3687 	}
3688 
3689 	ret = -EBUSY;
3690 	if (fc->phase != FS_CONTEXT_AWAITING_MOUNT)
3691 		goto err_unlock;
3692 
3693 	if (fc->sb_flags & SB_MANDLOCK)
3694 		warn_mandlock();
3695 
3696 	newmount.mnt = vfs_create_mount(fc);
3697 	if (IS_ERR(newmount.mnt)) {
3698 		ret = PTR_ERR(newmount.mnt);
3699 		goto err_unlock;
3700 	}
3701 	newmount.dentry = dget(fc->root);
3702 	newmount.mnt->mnt_flags = mnt_flags;
3703 
3704 	/* We've done the mount bit - now move the file context into more or
3705 	 * less the same state as if we'd done an fspick().  We don't want to
3706 	 * do any memory allocation or anything like that at this point as we
3707 	 * don't want to have to handle any errors incurred.
3708 	 */
3709 	vfs_clean_context(fc);
3710 
3711 	ns = alloc_mnt_ns(current->nsproxy->mnt_ns->user_ns, true);
3712 	if (IS_ERR(ns)) {
3713 		ret = PTR_ERR(ns);
3714 		goto err_path;
3715 	}
3716 	mnt = real_mount(newmount.mnt);
3717 	mnt->mnt_ns = ns;
3718 	ns->root = mnt;
3719 	ns->mounts = 1;
3720 	list_add(&mnt->mnt_list, &ns->list);
3721 	mntget(newmount.mnt);
3722 
3723 	/* Attach to an apparent O_PATH fd with a note that we need to unmount
3724 	 * it, not just simply put it.
3725 	 */
3726 	file = dentry_open(&newmount, O_PATH, fc->cred);
3727 	if (IS_ERR(file)) {
3728 		dissolve_on_fput(newmount.mnt);
3729 		ret = PTR_ERR(file);
3730 		goto err_path;
3731 	}
3732 	file->f_mode |= FMODE_NEED_UNMOUNT;
3733 
3734 	ret = get_unused_fd_flags((flags & FSMOUNT_CLOEXEC) ? O_CLOEXEC : 0);
3735 	if (ret >= 0)
3736 		fd_install(ret, file);
3737 	else
3738 		fput(file);
3739 
3740 err_path:
3741 	path_put(&newmount);
3742 err_unlock:
3743 	mutex_unlock(&fc->uapi_mutex);
3744 err_fsfd:
3745 	fdput(f);
3746 	return ret;
3747 }
3748 
3749 /*
3750  * Move a mount from one place to another.  In combination with
3751  * fsopen()/fsmount() this is used to install a new mount and in combination
3752  * with open_tree(OPEN_TREE_CLONE [| AT_RECURSIVE]) it can be used to copy
3753  * a mount subtree.
3754  *
3755  * Note the flags value is a combination of MOVE_MOUNT_* flags.
3756  */
3757 SYSCALL_DEFINE5(move_mount,
3758 		int, from_dfd, const char __user *, from_pathname,
3759 		int, to_dfd, const char __user *, to_pathname,
3760 		unsigned int, flags)
3761 {
3762 	struct path from_path, to_path;
3763 	unsigned int lflags;
3764 	int ret = 0;
3765 
3766 	if (!may_mount())
3767 		return -EPERM;
3768 
3769 	if (flags & ~MOVE_MOUNT__MASK)
3770 		return -EINVAL;
3771 
3772 	/* If someone gives a pathname, they aren't permitted to move
3773 	 * from an fd that requires unmount as we can't get at the flag
3774 	 * to clear it afterwards.
3775 	 */
3776 	lflags = 0;
3777 	if (flags & MOVE_MOUNT_F_SYMLINKS)	lflags |= LOOKUP_FOLLOW;
3778 	if (flags & MOVE_MOUNT_F_AUTOMOUNTS)	lflags |= LOOKUP_AUTOMOUNT;
3779 	if (flags & MOVE_MOUNT_F_EMPTY_PATH)	lflags |= LOOKUP_EMPTY;
3780 
3781 	ret = user_path_at(from_dfd, from_pathname, lflags, &from_path);
3782 	if (ret < 0)
3783 		return ret;
3784 
3785 	lflags = 0;
3786 	if (flags & MOVE_MOUNT_T_SYMLINKS)	lflags |= LOOKUP_FOLLOW;
3787 	if (flags & MOVE_MOUNT_T_AUTOMOUNTS)	lflags |= LOOKUP_AUTOMOUNT;
3788 	if (flags & MOVE_MOUNT_T_EMPTY_PATH)	lflags |= LOOKUP_EMPTY;
3789 
3790 	ret = user_path_at(to_dfd, to_pathname, lflags, &to_path);
3791 	if (ret < 0)
3792 		goto out_from;
3793 
3794 	ret = security_move_mount(&from_path, &to_path);
3795 	if (ret < 0)
3796 		goto out_to;
3797 
3798 	if (flags & MOVE_MOUNT_SET_GROUP)
3799 		ret = do_set_group(&from_path, &to_path);
3800 	else
3801 		ret = do_move_mount(&from_path, &to_path);
3802 
3803 out_to:
3804 	path_put(&to_path);
3805 out_from:
3806 	path_put(&from_path);
3807 	return ret;
3808 }
3809 
3810 /*
3811  * Return true if path is reachable from root
3812  *
3813  * namespace_sem or mount_lock is held
3814  */
3815 bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
3816 			 const struct path *root)
3817 {
3818 	while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
3819 		dentry = mnt->mnt_mountpoint;
3820 		mnt = mnt->mnt_parent;
3821 	}
3822 	return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
3823 }
3824 
3825 bool path_is_under(const struct path *path1, const struct path *path2)
3826 {
3827 	bool res;
3828 	read_seqlock_excl(&mount_lock);
3829 	res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
3830 	read_sequnlock_excl(&mount_lock);
3831 	return res;
3832 }
3833 EXPORT_SYMBOL(path_is_under);
3834 
3835 /*
3836  * pivot_root Semantics:
3837  * Moves the root file system of the current process to the directory put_old,
3838  * makes new_root as the new root file system of the current process, and sets
3839  * root/cwd of all processes which had them on the current root to new_root.
3840  *
3841  * Restrictions:
3842  * The new_root and put_old must be directories, and  must not be on the
3843  * same file  system as the current process root. The put_old  must  be
3844  * underneath new_root,  i.e. adding a non-zero number of /.. to the string
3845  * pointed to by put_old must yield the same directory as new_root. No other
3846  * file system may be mounted on put_old. After all, new_root is a mountpoint.
3847  *
3848  * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
3849  * See Documentation/filesystems/ramfs-rootfs-initramfs.rst for alternatives
3850  * in this situation.
3851  *
3852  * Notes:
3853  *  - we don't move root/cwd if they are not at the root (reason: if something
3854  *    cared enough to change them, it's probably wrong to force them elsewhere)
3855  *  - it's okay to pick a root that isn't the root of a file system, e.g.
3856  *    /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
3857  *    though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
3858  *    first.
3859  */
3860 SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
3861 		const char __user *, put_old)
3862 {
3863 	struct path new, old, root;
3864 	struct mount *new_mnt, *root_mnt, *old_mnt, *root_parent, *ex_parent;
3865 	struct mountpoint *old_mp, *root_mp;
3866 	int error;
3867 
3868 	if (!may_mount())
3869 		return -EPERM;
3870 
3871 	error = user_path_at(AT_FDCWD, new_root,
3872 			     LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &new);
3873 	if (error)
3874 		goto out0;
3875 
3876 	error = user_path_at(AT_FDCWD, put_old,
3877 			     LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &old);
3878 	if (error)
3879 		goto out1;
3880 
3881 	error = security_sb_pivotroot(&old, &new);
3882 	if (error)
3883 		goto out2;
3884 
3885 	get_fs_root(current->fs, &root);
3886 	old_mp = lock_mount(&old);
3887 	error = PTR_ERR(old_mp);
3888 	if (IS_ERR(old_mp))
3889 		goto out3;
3890 
3891 	error = -EINVAL;
3892 	new_mnt = real_mount(new.mnt);
3893 	root_mnt = real_mount(root.mnt);
3894 	old_mnt = real_mount(old.mnt);
3895 	ex_parent = new_mnt->mnt_parent;
3896 	root_parent = root_mnt->mnt_parent;
3897 	if (IS_MNT_SHARED(old_mnt) ||
3898 		IS_MNT_SHARED(ex_parent) ||
3899 		IS_MNT_SHARED(root_parent))
3900 		goto out4;
3901 	if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
3902 		goto out4;
3903 	if (new_mnt->mnt.mnt_flags & MNT_LOCKED)
3904 		goto out4;
3905 	error = -ENOENT;
3906 	if (d_unlinked(new.dentry))
3907 		goto out4;
3908 	error = -EBUSY;
3909 	if (new_mnt == root_mnt || old_mnt == root_mnt)
3910 		goto out4; /* loop, on the same file system  */
3911 	error = -EINVAL;
3912 	if (root.mnt->mnt_root != root.dentry)
3913 		goto out4; /* not a mountpoint */
3914 	if (!mnt_has_parent(root_mnt))
3915 		goto out4; /* not attached */
3916 	if (new.mnt->mnt_root != new.dentry)
3917 		goto out4; /* not a mountpoint */
3918 	if (!mnt_has_parent(new_mnt))
3919 		goto out4; /* not attached */
3920 	/* make sure we can reach put_old from new_root */
3921 	if (!is_path_reachable(old_mnt, old.dentry, &new))
3922 		goto out4;
3923 	/* make certain new is below the root */
3924 	if (!is_path_reachable(new_mnt, new.dentry, &root))
3925 		goto out4;
3926 	lock_mount_hash();
3927 	umount_mnt(new_mnt);
3928 	root_mp = unhash_mnt(root_mnt);  /* we'll need its mountpoint */
3929 	if (root_mnt->mnt.mnt_flags & MNT_LOCKED) {
3930 		new_mnt->mnt.mnt_flags |= MNT_LOCKED;
3931 		root_mnt->mnt.mnt_flags &= ~MNT_LOCKED;
3932 	}
3933 	/* mount old root on put_old */
3934 	attach_mnt(root_mnt, old_mnt, old_mp);
3935 	/* mount new_root on / */
3936 	attach_mnt(new_mnt, root_parent, root_mp);
3937 	mnt_add_count(root_parent, -1);
3938 	touch_mnt_namespace(current->nsproxy->mnt_ns);
3939 	/* A moved mount should not expire automatically */
3940 	list_del_init(&new_mnt->mnt_expire);
3941 	put_mountpoint(root_mp);
3942 	unlock_mount_hash();
3943 	chroot_fs_refs(&root, &new);
3944 	error = 0;
3945 out4:
3946 	unlock_mount(old_mp);
3947 	if (!error)
3948 		mntput_no_expire(ex_parent);
3949 out3:
3950 	path_put(&root);
3951 out2:
3952 	path_put(&old);
3953 out1:
3954 	path_put(&new);
3955 out0:
3956 	return error;
3957 }
3958 
3959 static unsigned int recalc_flags(struct mount_kattr *kattr, struct mount *mnt)
3960 {
3961 	unsigned int flags = mnt->mnt.mnt_flags;
3962 
3963 	/*  flags to clear */
3964 	flags &= ~kattr->attr_clr;
3965 	/* flags to raise */
3966 	flags |= kattr->attr_set;
3967 
3968 	return flags;
3969 }
3970 
3971 static int can_idmap_mount(const struct mount_kattr *kattr, struct mount *mnt)
3972 {
3973 	struct vfsmount *m = &mnt->mnt;
3974 	struct user_namespace *fs_userns = m->mnt_sb->s_user_ns;
3975 
3976 	if (!kattr->mnt_idmap)
3977 		return 0;
3978 
3979 	/*
3980 	 * Creating an idmapped mount with the filesystem wide idmapping
3981 	 * doesn't make sense so block that. We don't allow mushy semantics.
3982 	 */
3983 	if (!check_fsmapping(kattr->mnt_idmap, m->mnt_sb))
3984 		return -EINVAL;
3985 
3986 	/*
3987 	 * Once a mount has been idmapped we don't allow it to change its
3988 	 * mapping. It makes things simpler and callers can just create
3989 	 * another bind-mount they can idmap if they want to.
3990 	 */
3991 	if (is_idmapped_mnt(m))
3992 		return -EPERM;
3993 
3994 	/* The underlying filesystem doesn't support idmapped mounts yet. */
3995 	if (!(m->mnt_sb->s_type->fs_flags & FS_ALLOW_IDMAP))
3996 		return -EINVAL;
3997 
3998 	/* We're not controlling the superblock. */
3999 	if (!ns_capable(fs_userns, CAP_SYS_ADMIN))
4000 		return -EPERM;
4001 
4002 	/* Mount has already been visible in the filesystem hierarchy. */
4003 	if (!is_anon_ns(mnt->mnt_ns))
4004 		return -EINVAL;
4005 
4006 	return 0;
4007 }
4008 
4009 /**
4010  * mnt_allow_writers() - check whether the attribute change allows writers
4011  * @kattr: the new mount attributes
4012  * @mnt: the mount to which @kattr will be applied
4013  *
4014  * Check whether thew new mount attributes in @kattr allow concurrent writers.
4015  *
4016  * Return: true if writers need to be held, false if not
4017  */
4018 static inline bool mnt_allow_writers(const struct mount_kattr *kattr,
4019 				     const struct mount *mnt)
4020 {
4021 	return (!(kattr->attr_set & MNT_READONLY) ||
4022 		(mnt->mnt.mnt_flags & MNT_READONLY)) &&
4023 	       !kattr->mnt_idmap;
4024 }
4025 
4026 static int mount_setattr_prepare(struct mount_kattr *kattr, struct mount *mnt)
4027 {
4028 	struct mount *m;
4029 	int err;
4030 
4031 	for (m = mnt; m; m = next_mnt(m, mnt)) {
4032 		if (!can_change_locked_flags(m, recalc_flags(kattr, m))) {
4033 			err = -EPERM;
4034 			break;
4035 		}
4036 
4037 		err = can_idmap_mount(kattr, m);
4038 		if (err)
4039 			break;
4040 
4041 		if (!mnt_allow_writers(kattr, m)) {
4042 			err = mnt_hold_writers(m);
4043 			if (err)
4044 				break;
4045 		}
4046 
4047 		if (!kattr->recurse)
4048 			return 0;
4049 	}
4050 
4051 	if (err) {
4052 		struct mount *p;
4053 
4054 		/*
4055 		 * If we had to call mnt_hold_writers() MNT_WRITE_HOLD will
4056 		 * be set in @mnt_flags. The loop unsets MNT_WRITE_HOLD for all
4057 		 * mounts and needs to take care to include the first mount.
4058 		 */
4059 		for (p = mnt; p; p = next_mnt(p, mnt)) {
4060 			/* If we had to hold writers unblock them. */
4061 			if (p->mnt.mnt_flags & MNT_WRITE_HOLD)
4062 				mnt_unhold_writers(p);
4063 
4064 			/*
4065 			 * We're done once the first mount we changed got
4066 			 * MNT_WRITE_HOLD unset.
4067 			 */
4068 			if (p == m)
4069 				break;
4070 		}
4071 	}
4072 	return err;
4073 }
4074 
4075 static void do_idmap_mount(const struct mount_kattr *kattr, struct mount *mnt)
4076 {
4077 	if (!kattr->mnt_idmap)
4078 		return;
4079 
4080 	/*
4081 	 * Pairs with smp_load_acquire() in mnt_idmap().
4082 	 *
4083 	 * Since we only allow a mount to change the idmapping once and
4084 	 * verified this in can_idmap_mount() we know that the mount has
4085 	 * @nop_mnt_idmap attached to it. So there's no need to drop any
4086 	 * references.
4087 	 */
4088 	smp_store_release(&mnt->mnt.mnt_idmap, mnt_idmap_get(kattr->mnt_idmap));
4089 }
4090 
4091 static void mount_setattr_commit(struct mount_kattr *kattr, struct mount *mnt)
4092 {
4093 	struct mount *m;
4094 
4095 	for (m = mnt; m; m = next_mnt(m, mnt)) {
4096 		unsigned int flags;
4097 
4098 		do_idmap_mount(kattr, m);
4099 		flags = recalc_flags(kattr, m);
4100 		WRITE_ONCE(m->mnt.mnt_flags, flags);
4101 
4102 		/* If we had to hold writers unblock them. */
4103 		if (m->mnt.mnt_flags & MNT_WRITE_HOLD)
4104 			mnt_unhold_writers(m);
4105 
4106 		if (kattr->propagation)
4107 			change_mnt_propagation(m, kattr->propagation);
4108 		if (!kattr->recurse)
4109 			break;
4110 	}
4111 	touch_mnt_namespace(mnt->mnt_ns);
4112 }
4113 
4114 static int do_mount_setattr(struct path *path, struct mount_kattr *kattr)
4115 {
4116 	struct mount *mnt = real_mount(path->mnt);
4117 	int err = 0;
4118 
4119 	if (path->dentry != mnt->mnt.mnt_root)
4120 		return -EINVAL;
4121 
4122 	if (kattr->mnt_userns) {
4123 		struct mnt_idmap *mnt_idmap;
4124 
4125 		mnt_idmap = alloc_mnt_idmap(kattr->mnt_userns);
4126 		if (IS_ERR(mnt_idmap))
4127 			return PTR_ERR(mnt_idmap);
4128 		kattr->mnt_idmap = mnt_idmap;
4129 	}
4130 
4131 	if (kattr->propagation) {
4132 		/*
4133 		 * Only take namespace_lock() if we're actually changing
4134 		 * propagation.
4135 		 */
4136 		namespace_lock();
4137 		if (kattr->propagation == MS_SHARED) {
4138 			err = invent_group_ids(mnt, kattr->recurse);
4139 			if (err) {
4140 				namespace_unlock();
4141 				return err;
4142 			}
4143 		}
4144 	}
4145 
4146 	err = -EINVAL;
4147 	lock_mount_hash();
4148 
4149 	/* Ensure that this isn't anything purely vfs internal. */
4150 	if (!is_mounted(&mnt->mnt))
4151 		goto out;
4152 
4153 	/*
4154 	 * If this is an attached mount make sure it's located in the callers
4155 	 * mount namespace. If it's not don't let the caller interact with it.
4156 	 * If this is a detached mount make sure it has an anonymous mount
4157 	 * namespace attached to it, i.e. we've created it via OPEN_TREE_CLONE.
4158 	 */
4159 	if (!(mnt_has_parent(mnt) ? check_mnt(mnt) : is_anon_ns(mnt->mnt_ns)))
4160 		goto out;
4161 
4162 	/*
4163 	 * First, we get the mount tree in a shape where we can change mount
4164 	 * properties without failure. If we succeeded to do so we commit all
4165 	 * changes and if we failed we clean up.
4166 	 */
4167 	err = mount_setattr_prepare(kattr, mnt);
4168 	if (!err)
4169 		mount_setattr_commit(kattr, mnt);
4170 
4171 out:
4172 	unlock_mount_hash();
4173 
4174 	if (kattr->propagation) {
4175 		namespace_unlock();
4176 		if (err)
4177 			cleanup_group_ids(mnt, NULL);
4178 	}
4179 
4180 	return err;
4181 }
4182 
4183 static int build_mount_idmapped(const struct mount_attr *attr, size_t usize,
4184 				struct mount_kattr *kattr, unsigned int flags)
4185 {
4186 	int err = 0;
4187 	struct ns_common *ns;
4188 	struct user_namespace *mnt_userns;
4189 	struct file *file;
4190 
4191 	if (!((attr->attr_set | attr->attr_clr) & MOUNT_ATTR_IDMAP))
4192 		return 0;
4193 
4194 	/*
4195 	 * We currently do not support clearing an idmapped mount. If this ever
4196 	 * is a use-case we can revisit this but for now let's keep it simple
4197 	 * and not allow it.
4198 	 */
4199 	if (attr->attr_clr & MOUNT_ATTR_IDMAP)
4200 		return -EINVAL;
4201 
4202 	if (attr->userns_fd > INT_MAX)
4203 		return -EINVAL;
4204 
4205 	file = fget(attr->userns_fd);
4206 	if (!file)
4207 		return -EBADF;
4208 
4209 	if (!proc_ns_file(file)) {
4210 		err = -EINVAL;
4211 		goto out_fput;
4212 	}
4213 
4214 	ns = get_proc_ns(file_inode(file));
4215 	if (ns->ops->type != CLONE_NEWUSER) {
4216 		err = -EINVAL;
4217 		goto out_fput;
4218 	}
4219 
4220 	/*
4221 	 * The initial idmapping cannot be used to create an idmapped
4222 	 * mount. We use the initial idmapping as an indicator of a mount
4223 	 * that is not idmapped. It can simply be passed into helpers that
4224 	 * are aware of idmapped mounts as a convenient shortcut. A user
4225 	 * can just create a dedicated identity mapping to achieve the same
4226 	 * result.
4227 	 */
4228 	mnt_userns = container_of(ns, struct user_namespace, ns);
4229 	if (mnt_userns == &init_user_ns) {
4230 		err = -EPERM;
4231 		goto out_fput;
4232 	}
4233 
4234 	/* We're not controlling the target namespace. */
4235 	if (!ns_capable(mnt_userns, CAP_SYS_ADMIN)) {
4236 		err = -EPERM;
4237 		goto out_fput;
4238 	}
4239 
4240 	kattr->mnt_userns = get_user_ns(mnt_userns);
4241 
4242 out_fput:
4243 	fput(file);
4244 	return err;
4245 }
4246 
4247 static int build_mount_kattr(const struct mount_attr *attr, size_t usize,
4248 			     struct mount_kattr *kattr, unsigned int flags)
4249 {
4250 	unsigned int lookup_flags = LOOKUP_AUTOMOUNT | LOOKUP_FOLLOW;
4251 
4252 	if (flags & AT_NO_AUTOMOUNT)
4253 		lookup_flags &= ~LOOKUP_AUTOMOUNT;
4254 	if (flags & AT_SYMLINK_NOFOLLOW)
4255 		lookup_flags &= ~LOOKUP_FOLLOW;
4256 	if (flags & AT_EMPTY_PATH)
4257 		lookup_flags |= LOOKUP_EMPTY;
4258 
4259 	*kattr = (struct mount_kattr) {
4260 		.lookup_flags	= lookup_flags,
4261 		.recurse	= !!(flags & AT_RECURSIVE),
4262 	};
4263 
4264 	if (attr->propagation & ~MOUNT_SETATTR_PROPAGATION_FLAGS)
4265 		return -EINVAL;
4266 	if (hweight32(attr->propagation & MOUNT_SETATTR_PROPAGATION_FLAGS) > 1)
4267 		return -EINVAL;
4268 	kattr->propagation = attr->propagation;
4269 
4270 	if ((attr->attr_set | attr->attr_clr) & ~MOUNT_SETATTR_VALID_FLAGS)
4271 		return -EINVAL;
4272 
4273 	kattr->attr_set = attr_flags_to_mnt_flags(attr->attr_set);
4274 	kattr->attr_clr = attr_flags_to_mnt_flags(attr->attr_clr);
4275 
4276 	/*
4277 	 * Since the MOUNT_ATTR_<atime> values are an enum, not a bitmap,
4278 	 * users wanting to transition to a different atime setting cannot
4279 	 * simply specify the atime setting in @attr_set, but must also
4280 	 * specify MOUNT_ATTR__ATIME in the @attr_clr field.
4281 	 * So ensure that MOUNT_ATTR__ATIME can't be partially set in
4282 	 * @attr_clr and that @attr_set can't have any atime bits set if
4283 	 * MOUNT_ATTR__ATIME isn't set in @attr_clr.
4284 	 */
4285 	if (attr->attr_clr & MOUNT_ATTR__ATIME) {
4286 		if ((attr->attr_clr & MOUNT_ATTR__ATIME) != MOUNT_ATTR__ATIME)
4287 			return -EINVAL;
4288 
4289 		/*
4290 		 * Clear all previous time settings as they are mutually
4291 		 * exclusive.
4292 		 */
4293 		kattr->attr_clr |= MNT_RELATIME | MNT_NOATIME;
4294 		switch (attr->attr_set & MOUNT_ATTR__ATIME) {
4295 		case MOUNT_ATTR_RELATIME:
4296 			kattr->attr_set |= MNT_RELATIME;
4297 			break;
4298 		case MOUNT_ATTR_NOATIME:
4299 			kattr->attr_set |= MNT_NOATIME;
4300 			break;
4301 		case MOUNT_ATTR_STRICTATIME:
4302 			break;
4303 		default:
4304 			return -EINVAL;
4305 		}
4306 	} else {
4307 		if (attr->attr_set & MOUNT_ATTR__ATIME)
4308 			return -EINVAL;
4309 	}
4310 
4311 	return build_mount_idmapped(attr, usize, kattr, flags);
4312 }
4313 
4314 static void finish_mount_kattr(struct mount_kattr *kattr)
4315 {
4316 	put_user_ns(kattr->mnt_userns);
4317 	kattr->mnt_userns = NULL;
4318 
4319 	if (kattr->mnt_idmap)
4320 		mnt_idmap_put(kattr->mnt_idmap);
4321 }
4322 
4323 SYSCALL_DEFINE5(mount_setattr, int, dfd, const char __user *, path,
4324 		unsigned int, flags, struct mount_attr __user *, uattr,
4325 		size_t, usize)
4326 {
4327 	int err;
4328 	struct path target;
4329 	struct mount_attr attr;
4330 	struct mount_kattr kattr;
4331 
4332 	BUILD_BUG_ON(sizeof(struct mount_attr) != MOUNT_ATTR_SIZE_VER0);
4333 
4334 	if (flags & ~(AT_EMPTY_PATH |
4335 		      AT_RECURSIVE |
4336 		      AT_SYMLINK_NOFOLLOW |
4337 		      AT_NO_AUTOMOUNT))
4338 		return -EINVAL;
4339 
4340 	if (unlikely(usize > PAGE_SIZE))
4341 		return -E2BIG;
4342 	if (unlikely(usize < MOUNT_ATTR_SIZE_VER0))
4343 		return -EINVAL;
4344 
4345 	if (!may_mount())
4346 		return -EPERM;
4347 
4348 	err = copy_struct_from_user(&attr, sizeof(attr), uattr, usize);
4349 	if (err)
4350 		return err;
4351 
4352 	/* Don't bother walking through the mounts if this is a nop. */
4353 	if (attr.attr_set == 0 &&
4354 	    attr.attr_clr == 0 &&
4355 	    attr.propagation == 0)
4356 		return 0;
4357 
4358 	err = build_mount_kattr(&attr, usize, &kattr, flags);
4359 	if (err)
4360 		return err;
4361 
4362 	err = user_path_at(dfd, path, kattr.lookup_flags, &target);
4363 	if (!err) {
4364 		err = do_mount_setattr(&target, &kattr);
4365 		path_put(&target);
4366 	}
4367 	finish_mount_kattr(&kattr);
4368 	return err;
4369 }
4370 
4371 static void __init init_mount_tree(void)
4372 {
4373 	struct vfsmount *mnt;
4374 	struct mount *m;
4375 	struct mnt_namespace *ns;
4376 	struct path root;
4377 
4378 	mnt = vfs_kern_mount(&rootfs_fs_type, 0, "rootfs", NULL);
4379 	if (IS_ERR(mnt))
4380 		panic("Can't create rootfs");
4381 
4382 	ns = alloc_mnt_ns(&init_user_ns, false);
4383 	if (IS_ERR(ns))
4384 		panic("Can't allocate initial namespace");
4385 	m = real_mount(mnt);
4386 	m->mnt_ns = ns;
4387 	ns->root = m;
4388 	ns->mounts = 1;
4389 	list_add(&m->mnt_list, &ns->list);
4390 	init_task.nsproxy->mnt_ns = ns;
4391 	get_mnt_ns(ns);
4392 
4393 	root.mnt = mnt;
4394 	root.dentry = mnt->mnt_root;
4395 	mnt->mnt_flags |= MNT_LOCKED;
4396 
4397 	set_fs_pwd(current->fs, &root);
4398 	set_fs_root(current->fs, &root);
4399 }
4400 
4401 void __init mnt_init(void)
4402 {
4403 	int err;
4404 
4405 	mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
4406 			0, SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, NULL);
4407 
4408 	mount_hashtable = alloc_large_system_hash("Mount-cache",
4409 				sizeof(struct hlist_head),
4410 				mhash_entries, 19,
4411 				HASH_ZERO,
4412 				&m_hash_shift, &m_hash_mask, 0, 0);
4413 	mountpoint_hashtable = alloc_large_system_hash("Mountpoint-cache",
4414 				sizeof(struct hlist_head),
4415 				mphash_entries, 19,
4416 				HASH_ZERO,
4417 				&mp_hash_shift, &mp_hash_mask, 0, 0);
4418 
4419 	if (!mount_hashtable || !mountpoint_hashtable)
4420 		panic("Failed to allocate mount hash table\n");
4421 
4422 	kernfs_init();
4423 
4424 	err = sysfs_init();
4425 	if (err)
4426 		printk(KERN_WARNING "%s: sysfs_init error: %d\n",
4427 			__func__, err);
4428 	fs_kobj = kobject_create_and_add("fs", NULL);
4429 	if (!fs_kobj)
4430 		printk(KERN_WARNING "%s: kobj create error\n", __func__);
4431 	shmem_init();
4432 	init_rootfs();
4433 	init_mount_tree();
4434 }
4435 
4436 void put_mnt_ns(struct mnt_namespace *ns)
4437 {
4438 	if (!refcount_dec_and_test(&ns->ns.count))
4439 		return;
4440 	drop_collected_mounts(&ns->root->mnt);
4441 	free_mnt_ns(ns);
4442 }
4443 
4444 struct vfsmount *kern_mount(struct file_system_type *type)
4445 {
4446 	struct vfsmount *mnt;
4447 	mnt = vfs_kern_mount(type, SB_KERNMOUNT, type->name, NULL);
4448 	if (!IS_ERR(mnt)) {
4449 		/*
4450 		 * it is a longterm mount, don't release mnt until
4451 		 * we unmount before file sys is unregistered
4452 		*/
4453 		real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
4454 	}
4455 	return mnt;
4456 }
4457 EXPORT_SYMBOL_GPL(kern_mount);
4458 
4459 void kern_unmount(struct vfsmount *mnt)
4460 {
4461 	/* release long term mount so mount point can be released */
4462 	if (!IS_ERR_OR_NULL(mnt)) {
4463 		real_mount(mnt)->mnt_ns = NULL;
4464 		synchronize_rcu();	/* yecchhh... */
4465 		mntput(mnt);
4466 	}
4467 }
4468 EXPORT_SYMBOL(kern_unmount);
4469 
4470 void kern_unmount_array(struct vfsmount *mnt[], unsigned int num)
4471 {
4472 	unsigned int i;
4473 
4474 	for (i = 0; i < num; i++)
4475 		if (mnt[i])
4476 			real_mount(mnt[i])->mnt_ns = NULL;
4477 	synchronize_rcu_expedited();
4478 	for (i = 0; i < num; i++)
4479 		mntput(mnt[i]);
4480 }
4481 EXPORT_SYMBOL(kern_unmount_array);
4482 
4483 bool our_mnt(struct vfsmount *mnt)
4484 {
4485 	return check_mnt(real_mount(mnt));
4486 }
4487 
4488 bool current_chrooted(void)
4489 {
4490 	/* Does the current process have a non-standard root */
4491 	struct path ns_root;
4492 	struct path fs_root;
4493 	bool chrooted;
4494 
4495 	/* Find the namespace root */
4496 	ns_root.mnt = &current->nsproxy->mnt_ns->root->mnt;
4497 	ns_root.dentry = ns_root.mnt->mnt_root;
4498 	path_get(&ns_root);
4499 	while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root))
4500 		;
4501 
4502 	get_fs_root(current->fs, &fs_root);
4503 
4504 	chrooted = !path_equal(&fs_root, &ns_root);
4505 
4506 	path_put(&fs_root);
4507 	path_put(&ns_root);
4508 
4509 	return chrooted;
4510 }
4511 
4512 static bool mnt_already_visible(struct mnt_namespace *ns,
4513 				const struct super_block *sb,
4514 				int *new_mnt_flags)
4515 {
4516 	int new_flags = *new_mnt_flags;
4517 	struct mount *mnt;
4518 	bool visible = false;
4519 
4520 	down_read(&namespace_sem);
4521 	lock_ns_list(ns);
4522 	list_for_each_entry(mnt, &ns->list, mnt_list) {
4523 		struct mount *child;
4524 		int mnt_flags;
4525 
4526 		if (mnt_is_cursor(mnt))
4527 			continue;
4528 
4529 		if (mnt->mnt.mnt_sb->s_type != sb->s_type)
4530 			continue;
4531 
4532 		/* This mount is not fully visible if it's root directory
4533 		 * is not the root directory of the filesystem.
4534 		 */
4535 		if (mnt->mnt.mnt_root != mnt->mnt.mnt_sb->s_root)
4536 			continue;
4537 
4538 		/* A local view of the mount flags */
4539 		mnt_flags = mnt->mnt.mnt_flags;
4540 
4541 		/* Don't miss readonly hidden in the superblock flags */
4542 		if (sb_rdonly(mnt->mnt.mnt_sb))
4543 			mnt_flags |= MNT_LOCK_READONLY;
4544 
4545 		/* Verify the mount flags are equal to or more permissive
4546 		 * than the proposed new mount.
4547 		 */
4548 		if ((mnt_flags & MNT_LOCK_READONLY) &&
4549 		    !(new_flags & MNT_READONLY))
4550 			continue;
4551 		if ((mnt_flags & MNT_LOCK_ATIME) &&
4552 		    ((mnt_flags & MNT_ATIME_MASK) != (new_flags & MNT_ATIME_MASK)))
4553 			continue;
4554 
4555 		/* This mount is not fully visible if there are any
4556 		 * locked child mounts that cover anything except for
4557 		 * empty directories.
4558 		 */
4559 		list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
4560 			struct inode *inode = child->mnt_mountpoint->d_inode;
4561 			/* Only worry about locked mounts */
4562 			if (!(child->mnt.mnt_flags & MNT_LOCKED))
4563 				continue;
4564 			/* Is the directory permanetly empty? */
4565 			if (!is_empty_dir_inode(inode))
4566 				goto next;
4567 		}
4568 		/* Preserve the locked attributes */
4569 		*new_mnt_flags |= mnt_flags & (MNT_LOCK_READONLY | \
4570 					       MNT_LOCK_ATIME);
4571 		visible = true;
4572 		goto found;
4573 	next:	;
4574 	}
4575 found:
4576 	unlock_ns_list(ns);
4577 	up_read(&namespace_sem);
4578 	return visible;
4579 }
4580 
4581 static bool mount_too_revealing(const struct super_block *sb, int *new_mnt_flags)
4582 {
4583 	const unsigned long required_iflags = SB_I_NOEXEC | SB_I_NODEV;
4584 	struct mnt_namespace *ns = current->nsproxy->mnt_ns;
4585 	unsigned long s_iflags;
4586 
4587 	if (ns->user_ns == &init_user_ns)
4588 		return false;
4589 
4590 	/* Can this filesystem be too revealing? */
4591 	s_iflags = sb->s_iflags;
4592 	if (!(s_iflags & SB_I_USERNS_VISIBLE))
4593 		return false;
4594 
4595 	if ((s_iflags & required_iflags) != required_iflags) {
4596 		WARN_ONCE(1, "Expected s_iflags to contain 0x%lx\n",
4597 			  required_iflags);
4598 		return true;
4599 	}
4600 
4601 	return !mnt_already_visible(ns, sb, new_mnt_flags);
4602 }
4603 
4604 bool mnt_may_suid(struct vfsmount *mnt)
4605 {
4606 	/*
4607 	 * Foreign mounts (accessed via fchdir or through /proc
4608 	 * symlinks) are always treated as if they are nosuid.  This
4609 	 * prevents namespaces from trusting potentially unsafe
4610 	 * suid/sgid bits, file caps, or security labels that originate
4611 	 * in other namespaces.
4612 	 */
4613 	return !(mnt->mnt_flags & MNT_NOSUID) && check_mnt(real_mount(mnt)) &&
4614 	       current_in_userns(mnt->mnt_sb->s_user_ns);
4615 }
4616 
4617 static struct ns_common *mntns_get(struct task_struct *task)
4618 {
4619 	struct ns_common *ns = NULL;
4620 	struct nsproxy *nsproxy;
4621 
4622 	task_lock(task);
4623 	nsproxy = task->nsproxy;
4624 	if (nsproxy) {
4625 		ns = &nsproxy->mnt_ns->ns;
4626 		get_mnt_ns(to_mnt_ns(ns));
4627 	}
4628 	task_unlock(task);
4629 
4630 	return ns;
4631 }
4632 
4633 static void mntns_put(struct ns_common *ns)
4634 {
4635 	put_mnt_ns(to_mnt_ns(ns));
4636 }
4637 
4638 static int mntns_install(struct nsset *nsset, struct ns_common *ns)
4639 {
4640 	struct nsproxy *nsproxy = nsset->nsproxy;
4641 	struct fs_struct *fs = nsset->fs;
4642 	struct mnt_namespace *mnt_ns = to_mnt_ns(ns), *old_mnt_ns;
4643 	struct user_namespace *user_ns = nsset->cred->user_ns;
4644 	struct path root;
4645 	int err;
4646 
4647 	if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) ||
4648 	    !ns_capable(user_ns, CAP_SYS_CHROOT) ||
4649 	    !ns_capable(user_ns, CAP_SYS_ADMIN))
4650 		return -EPERM;
4651 
4652 	if (is_anon_ns(mnt_ns))
4653 		return -EINVAL;
4654 
4655 	if (fs->users != 1)
4656 		return -EINVAL;
4657 
4658 	get_mnt_ns(mnt_ns);
4659 	old_mnt_ns = nsproxy->mnt_ns;
4660 	nsproxy->mnt_ns = mnt_ns;
4661 
4662 	/* Find the root */
4663 	err = vfs_path_lookup(mnt_ns->root->mnt.mnt_root, &mnt_ns->root->mnt,
4664 				"/", LOOKUP_DOWN, &root);
4665 	if (err) {
4666 		/* revert to old namespace */
4667 		nsproxy->mnt_ns = old_mnt_ns;
4668 		put_mnt_ns(mnt_ns);
4669 		return err;
4670 	}
4671 
4672 	put_mnt_ns(old_mnt_ns);
4673 
4674 	/* Update the pwd and root */
4675 	set_fs_pwd(fs, &root);
4676 	set_fs_root(fs, &root);
4677 
4678 	path_put(&root);
4679 	return 0;
4680 }
4681 
4682 static struct user_namespace *mntns_owner(struct ns_common *ns)
4683 {
4684 	return to_mnt_ns(ns)->user_ns;
4685 }
4686 
4687 const struct proc_ns_operations mntns_operations = {
4688 	.name		= "mnt",
4689 	.type		= CLONE_NEWNS,
4690 	.get		= mntns_get,
4691 	.put		= mntns_put,
4692 	.install	= mntns_install,
4693 	.owner		= mntns_owner,
4694 };
4695 
4696 #ifdef CONFIG_SYSCTL
4697 static struct ctl_table fs_namespace_sysctls[] = {
4698 	{
4699 		.procname	= "mount-max",
4700 		.data		= &sysctl_mount_max,
4701 		.maxlen		= sizeof(unsigned int),
4702 		.mode		= 0644,
4703 		.proc_handler	= proc_dointvec_minmax,
4704 		.extra1		= SYSCTL_ONE,
4705 	},
4706 	{ }
4707 };
4708 
4709 static int __init init_fs_namespace_sysctls(void)
4710 {
4711 	register_sysctl_init("fs", fs_namespace_sysctls);
4712 	return 0;
4713 }
4714 fs_initcall(init_fs_namespace_sysctls);
4715 
4716 #endif /* CONFIG_SYSCTL */
4717