1 /* 2 * linux/fs/namespace.c 3 * 4 * (C) Copyright Al Viro 2000, 2001 5 * Released under GPL v2. 6 * 7 * Based on code from fs/super.c, copyright Linus Torvalds and others. 8 * Heavily rewritten. 9 */ 10 11 #include <linux/syscalls.h> 12 #include <linux/export.h> 13 #include <linux/capability.h> 14 #include <linux/mnt_namespace.h> 15 #include <linux/user_namespace.h> 16 #include <linux/namei.h> 17 #include <linux/security.h> 18 #include <linux/idr.h> 19 #include <linux/init.h> /* init_rootfs */ 20 #include <linux/fs_struct.h> /* get_fs_root et.al. */ 21 #include <linux/fsnotify.h> /* fsnotify_vfsmount_delete */ 22 #include <linux/uaccess.h> 23 #include <linux/proc_ns.h> 24 #include <linux/magic.h> 25 #include <linux/bootmem.h> 26 #include <linux/task_work.h> 27 #include "pnode.h" 28 #include "internal.h" 29 30 static unsigned int m_hash_mask __read_mostly; 31 static unsigned int m_hash_shift __read_mostly; 32 static unsigned int mp_hash_mask __read_mostly; 33 static unsigned int mp_hash_shift __read_mostly; 34 35 static __initdata unsigned long mhash_entries; 36 static int __init set_mhash_entries(char *str) 37 { 38 if (!str) 39 return 0; 40 mhash_entries = simple_strtoul(str, &str, 0); 41 return 1; 42 } 43 __setup("mhash_entries=", set_mhash_entries); 44 45 static __initdata unsigned long mphash_entries; 46 static int __init set_mphash_entries(char *str) 47 { 48 if (!str) 49 return 0; 50 mphash_entries = simple_strtoul(str, &str, 0); 51 return 1; 52 } 53 __setup("mphash_entries=", set_mphash_entries); 54 55 static u64 event; 56 static DEFINE_IDA(mnt_id_ida); 57 static DEFINE_IDA(mnt_group_ida); 58 static DEFINE_SPINLOCK(mnt_id_lock); 59 static int mnt_id_start = 0; 60 static int mnt_group_start = 1; 61 62 static struct hlist_head *mount_hashtable __read_mostly; 63 static struct hlist_head *mountpoint_hashtable __read_mostly; 64 static struct kmem_cache *mnt_cache __read_mostly; 65 static DECLARE_RWSEM(namespace_sem); 66 67 /* /sys/fs */ 68 struct kobject *fs_kobj; 69 EXPORT_SYMBOL_GPL(fs_kobj); 70 71 /* 72 * vfsmount lock may be taken for read to prevent changes to the 73 * vfsmount hash, ie. during mountpoint lookups or walking back 74 * up the tree. 75 * 76 * It should be taken for write in all cases where the vfsmount 77 * tree or hash is modified or when a vfsmount structure is modified. 78 */ 79 __cacheline_aligned_in_smp DEFINE_SEQLOCK(mount_lock); 80 81 static inline struct hlist_head *m_hash(struct vfsmount *mnt, struct dentry *dentry) 82 { 83 unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES); 84 tmp += ((unsigned long)dentry / L1_CACHE_BYTES); 85 tmp = tmp + (tmp >> m_hash_shift); 86 return &mount_hashtable[tmp & m_hash_mask]; 87 } 88 89 static inline struct hlist_head *mp_hash(struct dentry *dentry) 90 { 91 unsigned long tmp = ((unsigned long)dentry / L1_CACHE_BYTES); 92 tmp = tmp + (tmp >> mp_hash_shift); 93 return &mountpoint_hashtable[tmp & mp_hash_mask]; 94 } 95 96 /* 97 * allocation is serialized by namespace_sem, but we need the spinlock to 98 * serialize with freeing. 99 */ 100 static int mnt_alloc_id(struct mount *mnt) 101 { 102 int res; 103 104 retry: 105 ida_pre_get(&mnt_id_ida, GFP_KERNEL); 106 spin_lock(&mnt_id_lock); 107 res = ida_get_new_above(&mnt_id_ida, mnt_id_start, &mnt->mnt_id); 108 if (!res) 109 mnt_id_start = mnt->mnt_id + 1; 110 spin_unlock(&mnt_id_lock); 111 if (res == -EAGAIN) 112 goto retry; 113 114 return res; 115 } 116 117 static void mnt_free_id(struct mount *mnt) 118 { 119 int id = mnt->mnt_id; 120 spin_lock(&mnt_id_lock); 121 ida_remove(&mnt_id_ida, id); 122 if (mnt_id_start > id) 123 mnt_id_start = id; 124 spin_unlock(&mnt_id_lock); 125 } 126 127 /* 128 * Allocate a new peer group ID 129 * 130 * mnt_group_ida is protected by namespace_sem 131 */ 132 static int mnt_alloc_group_id(struct mount *mnt) 133 { 134 int res; 135 136 if (!ida_pre_get(&mnt_group_ida, GFP_KERNEL)) 137 return -ENOMEM; 138 139 res = ida_get_new_above(&mnt_group_ida, 140 mnt_group_start, 141 &mnt->mnt_group_id); 142 if (!res) 143 mnt_group_start = mnt->mnt_group_id + 1; 144 145 return res; 146 } 147 148 /* 149 * Release a peer group ID 150 */ 151 void mnt_release_group_id(struct mount *mnt) 152 { 153 int id = mnt->mnt_group_id; 154 ida_remove(&mnt_group_ida, id); 155 if (mnt_group_start > id) 156 mnt_group_start = id; 157 mnt->mnt_group_id = 0; 158 } 159 160 /* 161 * vfsmount lock must be held for read 162 */ 163 static inline void mnt_add_count(struct mount *mnt, int n) 164 { 165 #ifdef CONFIG_SMP 166 this_cpu_add(mnt->mnt_pcp->mnt_count, n); 167 #else 168 preempt_disable(); 169 mnt->mnt_count += n; 170 preempt_enable(); 171 #endif 172 } 173 174 /* 175 * vfsmount lock must be held for write 176 */ 177 unsigned int mnt_get_count(struct mount *mnt) 178 { 179 #ifdef CONFIG_SMP 180 unsigned int count = 0; 181 int cpu; 182 183 for_each_possible_cpu(cpu) { 184 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count; 185 } 186 187 return count; 188 #else 189 return mnt->mnt_count; 190 #endif 191 } 192 193 static void drop_mountpoint(struct fs_pin *p) 194 { 195 struct mount *m = container_of(p, struct mount, mnt_umount); 196 dput(m->mnt_ex_mountpoint); 197 pin_remove(p); 198 mntput(&m->mnt); 199 } 200 201 static struct mount *alloc_vfsmnt(const char *name) 202 { 203 struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL); 204 if (mnt) { 205 int err; 206 207 err = mnt_alloc_id(mnt); 208 if (err) 209 goto out_free_cache; 210 211 if (name) { 212 mnt->mnt_devname = kstrdup_const(name, GFP_KERNEL); 213 if (!mnt->mnt_devname) 214 goto out_free_id; 215 } 216 217 #ifdef CONFIG_SMP 218 mnt->mnt_pcp = alloc_percpu(struct mnt_pcp); 219 if (!mnt->mnt_pcp) 220 goto out_free_devname; 221 222 this_cpu_add(mnt->mnt_pcp->mnt_count, 1); 223 #else 224 mnt->mnt_count = 1; 225 mnt->mnt_writers = 0; 226 #endif 227 228 INIT_HLIST_NODE(&mnt->mnt_hash); 229 INIT_LIST_HEAD(&mnt->mnt_child); 230 INIT_LIST_HEAD(&mnt->mnt_mounts); 231 INIT_LIST_HEAD(&mnt->mnt_list); 232 INIT_LIST_HEAD(&mnt->mnt_expire); 233 INIT_LIST_HEAD(&mnt->mnt_share); 234 INIT_LIST_HEAD(&mnt->mnt_slave_list); 235 INIT_LIST_HEAD(&mnt->mnt_slave); 236 INIT_HLIST_NODE(&mnt->mnt_mp_list); 237 #ifdef CONFIG_FSNOTIFY 238 INIT_HLIST_HEAD(&mnt->mnt_fsnotify_marks); 239 #endif 240 init_fs_pin(&mnt->mnt_umount, drop_mountpoint); 241 } 242 return mnt; 243 244 #ifdef CONFIG_SMP 245 out_free_devname: 246 kfree_const(mnt->mnt_devname); 247 #endif 248 out_free_id: 249 mnt_free_id(mnt); 250 out_free_cache: 251 kmem_cache_free(mnt_cache, mnt); 252 return NULL; 253 } 254 255 /* 256 * Most r/o checks on a fs are for operations that take 257 * discrete amounts of time, like a write() or unlink(). 258 * We must keep track of when those operations start 259 * (for permission checks) and when they end, so that 260 * we can determine when writes are able to occur to 261 * a filesystem. 262 */ 263 /* 264 * __mnt_is_readonly: check whether a mount is read-only 265 * @mnt: the mount to check for its write status 266 * 267 * This shouldn't be used directly ouside of the VFS. 268 * It does not guarantee that the filesystem will stay 269 * r/w, just that it is right *now*. This can not and 270 * should not be used in place of IS_RDONLY(inode). 271 * mnt_want/drop_write() will _keep_ the filesystem 272 * r/w. 273 */ 274 int __mnt_is_readonly(struct vfsmount *mnt) 275 { 276 if (mnt->mnt_flags & MNT_READONLY) 277 return 1; 278 if (mnt->mnt_sb->s_flags & MS_RDONLY) 279 return 1; 280 return 0; 281 } 282 EXPORT_SYMBOL_GPL(__mnt_is_readonly); 283 284 static inline void mnt_inc_writers(struct mount *mnt) 285 { 286 #ifdef CONFIG_SMP 287 this_cpu_inc(mnt->mnt_pcp->mnt_writers); 288 #else 289 mnt->mnt_writers++; 290 #endif 291 } 292 293 static inline void mnt_dec_writers(struct mount *mnt) 294 { 295 #ifdef CONFIG_SMP 296 this_cpu_dec(mnt->mnt_pcp->mnt_writers); 297 #else 298 mnt->mnt_writers--; 299 #endif 300 } 301 302 static unsigned int mnt_get_writers(struct mount *mnt) 303 { 304 #ifdef CONFIG_SMP 305 unsigned int count = 0; 306 int cpu; 307 308 for_each_possible_cpu(cpu) { 309 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers; 310 } 311 312 return count; 313 #else 314 return mnt->mnt_writers; 315 #endif 316 } 317 318 static int mnt_is_readonly(struct vfsmount *mnt) 319 { 320 if (mnt->mnt_sb->s_readonly_remount) 321 return 1; 322 /* Order wrt setting s_flags/s_readonly_remount in do_remount() */ 323 smp_rmb(); 324 return __mnt_is_readonly(mnt); 325 } 326 327 /* 328 * Most r/o & frozen checks on a fs are for operations that take discrete 329 * amounts of time, like a write() or unlink(). We must keep track of when 330 * those operations start (for permission checks) and when they end, so that we 331 * can determine when writes are able to occur to a filesystem. 332 */ 333 /** 334 * __mnt_want_write - get write access to a mount without freeze protection 335 * @m: the mount on which to take a write 336 * 337 * This tells the low-level filesystem that a write is about to be performed to 338 * it, and makes sure that writes are allowed (mnt it read-write) before 339 * returning success. This operation does not protect against filesystem being 340 * frozen. When the write operation is finished, __mnt_drop_write() must be 341 * called. This is effectively a refcount. 342 */ 343 int __mnt_want_write(struct vfsmount *m) 344 { 345 struct mount *mnt = real_mount(m); 346 int ret = 0; 347 348 preempt_disable(); 349 mnt_inc_writers(mnt); 350 /* 351 * The store to mnt_inc_writers must be visible before we pass 352 * MNT_WRITE_HOLD loop below, so that the slowpath can see our 353 * incremented count after it has set MNT_WRITE_HOLD. 354 */ 355 smp_mb(); 356 while (ACCESS_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD) 357 cpu_relax(); 358 /* 359 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will 360 * be set to match its requirements. So we must not load that until 361 * MNT_WRITE_HOLD is cleared. 362 */ 363 smp_rmb(); 364 if (mnt_is_readonly(m)) { 365 mnt_dec_writers(mnt); 366 ret = -EROFS; 367 } 368 preempt_enable(); 369 370 return ret; 371 } 372 373 /** 374 * mnt_want_write - get write access to a mount 375 * @m: the mount on which to take a write 376 * 377 * This tells the low-level filesystem that a write is about to be performed to 378 * it, and makes sure that writes are allowed (mount is read-write, filesystem 379 * is not frozen) before returning success. When the write operation is 380 * finished, mnt_drop_write() must be called. This is effectively a refcount. 381 */ 382 int mnt_want_write(struct vfsmount *m) 383 { 384 int ret; 385 386 sb_start_write(m->mnt_sb); 387 ret = __mnt_want_write(m); 388 if (ret) 389 sb_end_write(m->mnt_sb); 390 return ret; 391 } 392 EXPORT_SYMBOL_GPL(mnt_want_write); 393 394 /** 395 * mnt_clone_write - get write access to a mount 396 * @mnt: the mount on which to take a write 397 * 398 * This is effectively like mnt_want_write, except 399 * it must only be used to take an extra write reference 400 * on a mountpoint that we already know has a write reference 401 * on it. This allows some optimisation. 402 * 403 * After finished, mnt_drop_write must be called as usual to 404 * drop the reference. 405 */ 406 int mnt_clone_write(struct vfsmount *mnt) 407 { 408 /* superblock may be r/o */ 409 if (__mnt_is_readonly(mnt)) 410 return -EROFS; 411 preempt_disable(); 412 mnt_inc_writers(real_mount(mnt)); 413 preempt_enable(); 414 return 0; 415 } 416 EXPORT_SYMBOL_GPL(mnt_clone_write); 417 418 /** 419 * __mnt_want_write_file - get write access to a file's mount 420 * @file: the file who's mount on which to take a write 421 * 422 * This is like __mnt_want_write, but it takes a file and can 423 * do some optimisations if the file is open for write already 424 */ 425 int __mnt_want_write_file(struct file *file) 426 { 427 if (!(file->f_mode & FMODE_WRITER)) 428 return __mnt_want_write(file->f_path.mnt); 429 else 430 return mnt_clone_write(file->f_path.mnt); 431 } 432 433 /** 434 * mnt_want_write_file - get write access to a file's mount 435 * @file: the file who's mount on which to take a write 436 * 437 * This is like mnt_want_write, but it takes a file and can 438 * do some optimisations if the file is open for write already 439 */ 440 int mnt_want_write_file(struct file *file) 441 { 442 int ret; 443 444 sb_start_write(file->f_path.mnt->mnt_sb); 445 ret = __mnt_want_write_file(file); 446 if (ret) 447 sb_end_write(file->f_path.mnt->mnt_sb); 448 return ret; 449 } 450 EXPORT_SYMBOL_GPL(mnt_want_write_file); 451 452 /** 453 * __mnt_drop_write - give up write access to a mount 454 * @mnt: the mount on which to give up write access 455 * 456 * Tells the low-level filesystem that we are done 457 * performing writes to it. Must be matched with 458 * __mnt_want_write() call above. 459 */ 460 void __mnt_drop_write(struct vfsmount *mnt) 461 { 462 preempt_disable(); 463 mnt_dec_writers(real_mount(mnt)); 464 preempt_enable(); 465 } 466 467 /** 468 * mnt_drop_write - give up write access to a mount 469 * @mnt: the mount on which to give up write access 470 * 471 * Tells the low-level filesystem that we are done performing writes to it and 472 * also allows filesystem to be frozen again. Must be matched with 473 * mnt_want_write() call above. 474 */ 475 void mnt_drop_write(struct vfsmount *mnt) 476 { 477 __mnt_drop_write(mnt); 478 sb_end_write(mnt->mnt_sb); 479 } 480 EXPORT_SYMBOL_GPL(mnt_drop_write); 481 482 void __mnt_drop_write_file(struct file *file) 483 { 484 __mnt_drop_write(file->f_path.mnt); 485 } 486 487 void mnt_drop_write_file(struct file *file) 488 { 489 mnt_drop_write(file->f_path.mnt); 490 } 491 EXPORT_SYMBOL(mnt_drop_write_file); 492 493 static int mnt_make_readonly(struct mount *mnt) 494 { 495 int ret = 0; 496 497 lock_mount_hash(); 498 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD; 499 /* 500 * After storing MNT_WRITE_HOLD, we'll read the counters. This store 501 * should be visible before we do. 502 */ 503 smp_mb(); 504 505 /* 506 * With writers on hold, if this value is zero, then there are 507 * definitely no active writers (although held writers may subsequently 508 * increment the count, they'll have to wait, and decrement it after 509 * seeing MNT_READONLY). 510 * 511 * It is OK to have counter incremented on one CPU and decremented on 512 * another: the sum will add up correctly. The danger would be when we 513 * sum up each counter, if we read a counter before it is incremented, 514 * but then read another CPU's count which it has been subsequently 515 * decremented from -- we would see more decrements than we should. 516 * MNT_WRITE_HOLD protects against this scenario, because 517 * mnt_want_write first increments count, then smp_mb, then spins on 518 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while 519 * we're counting up here. 520 */ 521 if (mnt_get_writers(mnt) > 0) 522 ret = -EBUSY; 523 else 524 mnt->mnt.mnt_flags |= MNT_READONLY; 525 /* 526 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers 527 * that become unheld will see MNT_READONLY. 528 */ 529 smp_wmb(); 530 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD; 531 unlock_mount_hash(); 532 return ret; 533 } 534 535 static void __mnt_unmake_readonly(struct mount *mnt) 536 { 537 lock_mount_hash(); 538 mnt->mnt.mnt_flags &= ~MNT_READONLY; 539 unlock_mount_hash(); 540 } 541 542 int sb_prepare_remount_readonly(struct super_block *sb) 543 { 544 struct mount *mnt; 545 int err = 0; 546 547 /* Racy optimization. Recheck the counter under MNT_WRITE_HOLD */ 548 if (atomic_long_read(&sb->s_remove_count)) 549 return -EBUSY; 550 551 lock_mount_hash(); 552 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) { 553 if (!(mnt->mnt.mnt_flags & MNT_READONLY)) { 554 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD; 555 smp_mb(); 556 if (mnt_get_writers(mnt) > 0) { 557 err = -EBUSY; 558 break; 559 } 560 } 561 } 562 if (!err && atomic_long_read(&sb->s_remove_count)) 563 err = -EBUSY; 564 565 if (!err) { 566 sb->s_readonly_remount = 1; 567 smp_wmb(); 568 } 569 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) { 570 if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD) 571 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD; 572 } 573 unlock_mount_hash(); 574 575 return err; 576 } 577 578 static void free_vfsmnt(struct mount *mnt) 579 { 580 kfree_const(mnt->mnt_devname); 581 #ifdef CONFIG_SMP 582 free_percpu(mnt->mnt_pcp); 583 #endif 584 kmem_cache_free(mnt_cache, mnt); 585 } 586 587 static void delayed_free_vfsmnt(struct rcu_head *head) 588 { 589 free_vfsmnt(container_of(head, struct mount, mnt_rcu)); 590 } 591 592 /* call under rcu_read_lock */ 593 bool legitimize_mnt(struct vfsmount *bastard, unsigned seq) 594 { 595 struct mount *mnt; 596 if (read_seqretry(&mount_lock, seq)) 597 return false; 598 if (bastard == NULL) 599 return true; 600 mnt = real_mount(bastard); 601 mnt_add_count(mnt, 1); 602 if (likely(!read_seqretry(&mount_lock, seq))) 603 return true; 604 if (bastard->mnt_flags & MNT_SYNC_UMOUNT) { 605 mnt_add_count(mnt, -1); 606 return false; 607 } 608 rcu_read_unlock(); 609 mntput(bastard); 610 rcu_read_lock(); 611 return false; 612 } 613 614 /* 615 * find the first mount at @dentry on vfsmount @mnt. 616 * call under rcu_read_lock() 617 */ 618 struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry) 619 { 620 struct hlist_head *head = m_hash(mnt, dentry); 621 struct mount *p; 622 623 hlist_for_each_entry_rcu(p, head, mnt_hash) 624 if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry) 625 return p; 626 return NULL; 627 } 628 629 /* 630 * find the last mount at @dentry on vfsmount @mnt. 631 * mount_lock must be held. 632 */ 633 struct mount *__lookup_mnt_last(struct vfsmount *mnt, struct dentry *dentry) 634 { 635 struct mount *p, *res = NULL; 636 p = __lookup_mnt(mnt, dentry); 637 if (!p) 638 goto out; 639 if (!(p->mnt.mnt_flags & MNT_UMOUNT)) 640 res = p; 641 hlist_for_each_entry_continue(p, mnt_hash) { 642 if (&p->mnt_parent->mnt != mnt || p->mnt_mountpoint != dentry) 643 break; 644 if (!(p->mnt.mnt_flags & MNT_UMOUNT)) 645 res = p; 646 } 647 out: 648 return res; 649 } 650 651 /* 652 * lookup_mnt - Return the first child mount mounted at path 653 * 654 * "First" means first mounted chronologically. If you create the 655 * following mounts: 656 * 657 * mount /dev/sda1 /mnt 658 * mount /dev/sda2 /mnt 659 * mount /dev/sda3 /mnt 660 * 661 * Then lookup_mnt() on the base /mnt dentry in the root mount will 662 * return successively the root dentry and vfsmount of /dev/sda1, then 663 * /dev/sda2, then /dev/sda3, then NULL. 664 * 665 * lookup_mnt takes a reference to the found vfsmount. 666 */ 667 struct vfsmount *lookup_mnt(struct path *path) 668 { 669 struct mount *child_mnt; 670 struct vfsmount *m; 671 unsigned seq; 672 673 rcu_read_lock(); 674 do { 675 seq = read_seqbegin(&mount_lock); 676 child_mnt = __lookup_mnt(path->mnt, path->dentry); 677 m = child_mnt ? &child_mnt->mnt : NULL; 678 } while (!legitimize_mnt(m, seq)); 679 rcu_read_unlock(); 680 return m; 681 } 682 683 /* 684 * __is_local_mountpoint - Test to see if dentry is a mountpoint in the 685 * current mount namespace. 686 * 687 * The common case is dentries are not mountpoints at all and that 688 * test is handled inline. For the slow case when we are actually 689 * dealing with a mountpoint of some kind, walk through all of the 690 * mounts in the current mount namespace and test to see if the dentry 691 * is a mountpoint. 692 * 693 * The mount_hashtable is not usable in the context because we 694 * need to identify all mounts that may be in the current mount 695 * namespace not just a mount that happens to have some specified 696 * parent mount. 697 */ 698 bool __is_local_mountpoint(struct dentry *dentry) 699 { 700 struct mnt_namespace *ns = current->nsproxy->mnt_ns; 701 struct mount *mnt; 702 bool is_covered = false; 703 704 if (!d_mountpoint(dentry)) 705 goto out; 706 707 down_read(&namespace_sem); 708 list_for_each_entry(mnt, &ns->list, mnt_list) { 709 is_covered = (mnt->mnt_mountpoint == dentry); 710 if (is_covered) 711 break; 712 } 713 up_read(&namespace_sem); 714 out: 715 return is_covered; 716 } 717 718 static struct mountpoint *lookup_mountpoint(struct dentry *dentry) 719 { 720 struct hlist_head *chain = mp_hash(dentry); 721 struct mountpoint *mp; 722 723 hlist_for_each_entry(mp, chain, m_hash) { 724 if (mp->m_dentry == dentry) { 725 /* might be worth a WARN_ON() */ 726 if (d_unlinked(dentry)) 727 return ERR_PTR(-ENOENT); 728 mp->m_count++; 729 return mp; 730 } 731 } 732 return NULL; 733 } 734 735 static struct mountpoint *new_mountpoint(struct dentry *dentry) 736 { 737 struct hlist_head *chain = mp_hash(dentry); 738 struct mountpoint *mp; 739 int ret; 740 741 mp = kmalloc(sizeof(struct mountpoint), GFP_KERNEL); 742 if (!mp) 743 return ERR_PTR(-ENOMEM); 744 745 ret = d_set_mounted(dentry); 746 if (ret) { 747 kfree(mp); 748 return ERR_PTR(ret); 749 } 750 751 mp->m_dentry = dentry; 752 mp->m_count = 1; 753 hlist_add_head(&mp->m_hash, chain); 754 INIT_HLIST_HEAD(&mp->m_list); 755 return mp; 756 } 757 758 static void put_mountpoint(struct mountpoint *mp) 759 { 760 if (!--mp->m_count) { 761 struct dentry *dentry = mp->m_dentry; 762 BUG_ON(!hlist_empty(&mp->m_list)); 763 spin_lock(&dentry->d_lock); 764 dentry->d_flags &= ~DCACHE_MOUNTED; 765 spin_unlock(&dentry->d_lock); 766 hlist_del(&mp->m_hash); 767 kfree(mp); 768 } 769 } 770 771 static inline int check_mnt(struct mount *mnt) 772 { 773 return mnt->mnt_ns == current->nsproxy->mnt_ns; 774 } 775 776 /* 777 * vfsmount lock must be held for write 778 */ 779 static void touch_mnt_namespace(struct mnt_namespace *ns) 780 { 781 if (ns) { 782 ns->event = ++event; 783 wake_up_interruptible(&ns->poll); 784 } 785 } 786 787 /* 788 * vfsmount lock must be held for write 789 */ 790 static void __touch_mnt_namespace(struct mnt_namespace *ns) 791 { 792 if (ns && ns->event != event) { 793 ns->event = event; 794 wake_up_interruptible(&ns->poll); 795 } 796 } 797 798 /* 799 * vfsmount lock must be held for write 800 */ 801 static void unhash_mnt(struct mount *mnt) 802 { 803 mnt->mnt_parent = mnt; 804 mnt->mnt_mountpoint = mnt->mnt.mnt_root; 805 list_del_init(&mnt->mnt_child); 806 hlist_del_init_rcu(&mnt->mnt_hash); 807 hlist_del_init(&mnt->mnt_mp_list); 808 put_mountpoint(mnt->mnt_mp); 809 mnt->mnt_mp = NULL; 810 } 811 812 /* 813 * vfsmount lock must be held for write 814 */ 815 static void detach_mnt(struct mount *mnt, struct path *old_path) 816 { 817 old_path->dentry = mnt->mnt_mountpoint; 818 old_path->mnt = &mnt->mnt_parent->mnt; 819 unhash_mnt(mnt); 820 } 821 822 /* 823 * vfsmount lock must be held for write 824 */ 825 static void umount_mnt(struct mount *mnt) 826 { 827 /* old mountpoint will be dropped when we can do that */ 828 mnt->mnt_ex_mountpoint = mnt->mnt_mountpoint; 829 unhash_mnt(mnt); 830 } 831 832 /* 833 * vfsmount lock must be held for write 834 */ 835 void mnt_set_mountpoint(struct mount *mnt, 836 struct mountpoint *mp, 837 struct mount *child_mnt) 838 { 839 mp->m_count++; 840 mnt_add_count(mnt, 1); /* essentially, that's mntget */ 841 child_mnt->mnt_mountpoint = dget(mp->m_dentry); 842 child_mnt->mnt_parent = mnt; 843 child_mnt->mnt_mp = mp; 844 hlist_add_head(&child_mnt->mnt_mp_list, &mp->m_list); 845 } 846 847 /* 848 * vfsmount lock must be held for write 849 */ 850 static void attach_mnt(struct mount *mnt, 851 struct mount *parent, 852 struct mountpoint *mp) 853 { 854 mnt_set_mountpoint(parent, mp, mnt); 855 hlist_add_head_rcu(&mnt->mnt_hash, m_hash(&parent->mnt, mp->m_dentry)); 856 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts); 857 } 858 859 static void attach_shadowed(struct mount *mnt, 860 struct mount *parent, 861 struct mount *shadows) 862 { 863 if (shadows) { 864 hlist_add_behind_rcu(&mnt->mnt_hash, &shadows->mnt_hash); 865 list_add(&mnt->mnt_child, &shadows->mnt_child); 866 } else { 867 hlist_add_head_rcu(&mnt->mnt_hash, 868 m_hash(&parent->mnt, mnt->mnt_mountpoint)); 869 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts); 870 } 871 } 872 873 /* 874 * vfsmount lock must be held for write 875 */ 876 static void commit_tree(struct mount *mnt, struct mount *shadows) 877 { 878 struct mount *parent = mnt->mnt_parent; 879 struct mount *m; 880 LIST_HEAD(head); 881 struct mnt_namespace *n = parent->mnt_ns; 882 883 BUG_ON(parent == mnt); 884 885 list_add_tail(&head, &mnt->mnt_list); 886 list_for_each_entry(m, &head, mnt_list) 887 m->mnt_ns = n; 888 889 list_splice(&head, n->list.prev); 890 891 attach_shadowed(mnt, parent, shadows); 892 touch_mnt_namespace(n); 893 } 894 895 static struct mount *next_mnt(struct mount *p, struct mount *root) 896 { 897 struct list_head *next = p->mnt_mounts.next; 898 if (next == &p->mnt_mounts) { 899 while (1) { 900 if (p == root) 901 return NULL; 902 next = p->mnt_child.next; 903 if (next != &p->mnt_parent->mnt_mounts) 904 break; 905 p = p->mnt_parent; 906 } 907 } 908 return list_entry(next, struct mount, mnt_child); 909 } 910 911 static struct mount *skip_mnt_tree(struct mount *p) 912 { 913 struct list_head *prev = p->mnt_mounts.prev; 914 while (prev != &p->mnt_mounts) { 915 p = list_entry(prev, struct mount, mnt_child); 916 prev = p->mnt_mounts.prev; 917 } 918 return p; 919 } 920 921 struct vfsmount * 922 vfs_kern_mount(struct file_system_type *type, int flags, const char *name, void *data) 923 { 924 struct mount *mnt; 925 struct dentry *root; 926 927 if (!type) 928 return ERR_PTR(-ENODEV); 929 930 mnt = alloc_vfsmnt(name); 931 if (!mnt) 932 return ERR_PTR(-ENOMEM); 933 934 if (flags & MS_KERNMOUNT) 935 mnt->mnt.mnt_flags = MNT_INTERNAL; 936 937 root = mount_fs(type, flags, name, data); 938 if (IS_ERR(root)) { 939 mnt_free_id(mnt); 940 free_vfsmnt(mnt); 941 return ERR_CAST(root); 942 } 943 944 mnt->mnt.mnt_root = root; 945 mnt->mnt.mnt_sb = root->d_sb; 946 mnt->mnt_mountpoint = mnt->mnt.mnt_root; 947 mnt->mnt_parent = mnt; 948 lock_mount_hash(); 949 list_add_tail(&mnt->mnt_instance, &root->d_sb->s_mounts); 950 unlock_mount_hash(); 951 return &mnt->mnt; 952 } 953 EXPORT_SYMBOL_GPL(vfs_kern_mount); 954 955 static struct mount *clone_mnt(struct mount *old, struct dentry *root, 956 int flag) 957 { 958 struct super_block *sb = old->mnt.mnt_sb; 959 struct mount *mnt; 960 int err; 961 962 mnt = alloc_vfsmnt(old->mnt_devname); 963 if (!mnt) 964 return ERR_PTR(-ENOMEM); 965 966 if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE)) 967 mnt->mnt_group_id = 0; /* not a peer of original */ 968 else 969 mnt->mnt_group_id = old->mnt_group_id; 970 971 if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) { 972 err = mnt_alloc_group_id(mnt); 973 if (err) 974 goto out_free; 975 } 976 977 mnt->mnt.mnt_flags = old->mnt.mnt_flags & ~(MNT_WRITE_HOLD|MNT_MARKED); 978 /* Don't allow unprivileged users to change mount flags */ 979 if (flag & CL_UNPRIVILEGED) { 980 mnt->mnt.mnt_flags |= MNT_LOCK_ATIME; 981 982 if (mnt->mnt.mnt_flags & MNT_READONLY) 983 mnt->mnt.mnt_flags |= MNT_LOCK_READONLY; 984 985 if (mnt->mnt.mnt_flags & MNT_NODEV) 986 mnt->mnt.mnt_flags |= MNT_LOCK_NODEV; 987 988 if (mnt->mnt.mnt_flags & MNT_NOSUID) 989 mnt->mnt.mnt_flags |= MNT_LOCK_NOSUID; 990 991 if (mnt->mnt.mnt_flags & MNT_NOEXEC) 992 mnt->mnt.mnt_flags |= MNT_LOCK_NOEXEC; 993 } 994 995 /* Don't allow unprivileged users to reveal what is under a mount */ 996 if ((flag & CL_UNPRIVILEGED) && 997 (!(flag & CL_EXPIRE) || list_empty(&old->mnt_expire))) 998 mnt->mnt.mnt_flags |= MNT_LOCKED; 999 1000 atomic_inc(&sb->s_active); 1001 mnt->mnt.mnt_sb = sb; 1002 mnt->mnt.mnt_root = dget(root); 1003 mnt->mnt_mountpoint = mnt->mnt.mnt_root; 1004 mnt->mnt_parent = mnt; 1005 lock_mount_hash(); 1006 list_add_tail(&mnt->mnt_instance, &sb->s_mounts); 1007 unlock_mount_hash(); 1008 1009 if ((flag & CL_SLAVE) || 1010 ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) { 1011 list_add(&mnt->mnt_slave, &old->mnt_slave_list); 1012 mnt->mnt_master = old; 1013 CLEAR_MNT_SHARED(mnt); 1014 } else if (!(flag & CL_PRIVATE)) { 1015 if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old)) 1016 list_add(&mnt->mnt_share, &old->mnt_share); 1017 if (IS_MNT_SLAVE(old)) 1018 list_add(&mnt->mnt_slave, &old->mnt_slave); 1019 mnt->mnt_master = old->mnt_master; 1020 } 1021 if (flag & CL_MAKE_SHARED) 1022 set_mnt_shared(mnt); 1023 1024 /* stick the duplicate mount on the same expiry list 1025 * as the original if that was on one */ 1026 if (flag & CL_EXPIRE) { 1027 if (!list_empty(&old->mnt_expire)) 1028 list_add(&mnt->mnt_expire, &old->mnt_expire); 1029 } 1030 1031 return mnt; 1032 1033 out_free: 1034 mnt_free_id(mnt); 1035 free_vfsmnt(mnt); 1036 return ERR_PTR(err); 1037 } 1038 1039 static void cleanup_mnt(struct mount *mnt) 1040 { 1041 /* 1042 * This probably indicates that somebody messed 1043 * up a mnt_want/drop_write() pair. If this 1044 * happens, the filesystem was probably unable 1045 * to make r/w->r/o transitions. 1046 */ 1047 /* 1048 * The locking used to deal with mnt_count decrement provides barriers, 1049 * so mnt_get_writers() below is safe. 1050 */ 1051 WARN_ON(mnt_get_writers(mnt)); 1052 if (unlikely(mnt->mnt_pins.first)) 1053 mnt_pin_kill(mnt); 1054 fsnotify_vfsmount_delete(&mnt->mnt); 1055 dput(mnt->mnt.mnt_root); 1056 deactivate_super(mnt->mnt.mnt_sb); 1057 mnt_free_id(mnt); 1058 call_rcu(&mnt->mnt_rcu, delayed_free_vfsmnt); 1059 } 1060 1061 static void __cleanup_mnt(struct rcu_head *head) 1062 { 1063 cleanup_mnt(container_of(head, struct mount, mnt_rcu)); 1064 } 1065 1066 static LLIST_HEAD(delayed_mntput_list); 1067 static void delayed_mntput(struct work_struct *unused) 1068 { 1069 struct llist_node *node = llist_del_all(&delayed_mntput_list); 1070 struct llist_node *next; 1071 1072 for (; node; node = next) { 1073 next = llist_next(node); 1074 cleanup_mnt(llist_entry(node, struct mount, mnt_llist)); 1075 } 1076 } 1077 static DECLARE_DELAYED_WORK(delayed_mntput_work, delayed_mntput); 1078 1079 static void mntput_no_expire(struct mount *mnt) 1080 { 1081 rcu_read_lock(); 1082 mnt_add_count(mnt, -1); 1083 if (likely(mnt->mnt_ns)) { /* shouldn't be the last one */ 1084 rcu_read_unlock(); 1085 return; 1086 } 1087 lock_mount_hash(); 1088 if (mnt_get_count(mnt)) { 1089 rcu_read_unlock(); 1090 unlock_mount_hash(); 1091 return; 1092 } 1093 if (unlikely(mnt->mnt.mnt_flags & MNT_DOOMED)) { 1094 rcu_read_unlock(); 1095 unlock_mount_hash(); 1096 return; 1097 } 1098 mnt->mnt.mnt_flags |= MNT_DOOMED; 1099 rcu_read_unlock(); 1100 1101 list_del(&mnt->mnt_instance); 1102 1103 if (unlikely(!list_empty(&mnt->mnt_mounts))) { 1104 struct mount *p, *tmp; 1105 list_for_each_entry_safe(p, tmp, &mnt->mnt_mounts, mnt_child) { 1106 umount_mnt(p); 1107 } 1108 } 1109 unlock_mount_hash(); 1110 1111 if (likely(!(mnt->mnt.mnt_flags & MNT_INTERNAL))) { 1112 struct task_struct *task = current; 1113 if (likely(!(task->flags & PF_KTHREAD))) { 1114 init_task_work(&mnt->mnt_rcu, __cleanup_mnt); 1115 if (!task_work_add(task, &mnt->mnt_rcu, true)) 1116 return; 1117 } 1118 if (llist_add(&mnt->mnt_llist, &delayed_mntput_list)) 1119 schedule_delayed_work(&delayed_mntput_work, 1); 1120 return; 1121 } 1122 cleanup_mnt(mnt); 1123 } 1124 1125 void mntput(struct vfsmount *mnt) 1126 { 1127 if (mnt) { 1128 struct mount *m = real_mount(mnt); 1129 /* avoid cacheline pingpong, hope gcc doesn't get "smart" */ 1130 if (unlikely(m->mnt_expiry_mark)) 1131 m->mnt_expiry_mark = 0; 1132 mntput_no_expire(m); 1133 } 1134 } 1135 EXPORT_SYMBOL(mntput); 1136 1137 struct vfsmount *mntget(struct vfsmount *mnt) 1138 { 1139 if (mnt) 1140 mnt_add_count(real_mount(mnt), 1); 1141 return mnt; 1142 } 1143 EXPORT_SYMBOL(mntget); 1144 1145 struct vfsmount *mnt_clone_internal(struct path *path) 1146 { 1147 struct mount *p; 1148 p = clone_mnt(real_mount(path->mnt), path->dentry, CL_PRIVATE); 1149 if (IS_ERR(p)) 1150 return ERR_CAST(p); 1151 p->mnt.mnt_flags |= MNT_INTERNAL; 1152 return &p->mnt; 1153 } 1154 1155 static inline void mangle(struct seq_file *m, const char *s) 1156 { 1157 seq_escape(m, s, " \t\n\\"); 1158 } 1159 1160 /* 1161 * Simple .show_options callback for filesystems which don't want to 1162 * implement more complex mount option showing. 1163 * 1164 * See also save_mount_options(). 1165 */ 1166 int generic_show_options(struct seq_file *m, struct dentry *root) 1167 { 1168 const char *options; 1169 1170 rcu_read_lock(); 1171 options = rcu_dereference(root->d_sb->s_options); 1172 1173 if (options != NULL && options[0]) { 1174 seq_putc(m, ','); 1175 mangle(m, options); 1176 } 1177 rcu_read_unlock(); 1178 1179 return 0; 1180 } 1181 EXPORT_SYMBOL(generic_show_options); 1182 1183 /* 1184 * If filesystem uses generic_show_options(), this function should be 1185 * called from the fill_super() callback. 1186 * 1187 * The .remount_fs callback usually needs to be handled in a special 1188 * way, to make sure, that previous options are not overwritten if the 1189 * remount fails. 1190 * 1191 * Also note, that if the filesystem's .remount_fs function doesn't 1192 * reset all options to their default value, but changes only newly 1193 * given options, then the displayed options will not reflect reality 1194 * any more. 1195 */ 1196 void save_mount_options(struct super_block *sb, char *options) 1197 { 1198 BUG_ON(sb->s_options); 1199 rcu_assign_pointer(sb->s_options, kstrdup(options, GFP_KERNEL)); 1200 } 1201 EXPORT_SYMBOL(save_mount_options); 1202 1203 void replace_mount_options(struct super_block *sb, char *options) 1204 { 1205 char *old = sb->s_options; 1206 rcu_assign_pointer(sb->s_options, options); 1207 if (old) { 1208 synchronize_rcu(); 1209 kfree(old); 1210 } 1211 } 1212 EXPORT_SYMBOL(replace_mount_options); 1213 1214 #ifdef CONFIG_PROC_FS 1215 /* iterator; we want it to have access to namespace_sem, thus here... */ 1216 static void *m_start(struct seq_file *m, loff_t *pos) 1217 { 1218 struct proc_mounts *p = proc_mounts(m); 1219 1220 down_read(&namespace_sem); 1221 if (p->cached_event == p->ns->event) { 1222 void *v = p->cached_mount; 1223 if (*pos == p->cached_index) 1224 return v; 1225 if (*pos == p->cached_index + 1) { 1226 v = seq_list_next(v, &p->ns->list, &p->cached_index); 1227 return p->cached_mount = v; 1228 } 1229 } 1230 1231 p->cached_event = p->ns->event; 1232 p->cached_mount = seq_list_start(&p->ns->list, *pos); 1233 p->cached_index = *pos; 1234 return p->cached_mount; 1235 } 1236 1237 static void *m_next(struct seq_file *m, void *v, loff_t *pos) 1238 { 1239 struct proc_mounts *p = proc_mounts(m); 1240 1241 p->cached_mount = seq_list_next(v, &p->ns->list, pos); 1242 p->cached_index = *pos; 1243 return p->cached_mount; 1244 } 1245 1246 static void m_stop(struct seq_file *m, void *v) 1247 { 1248 up_read(&namespace_sem); 1249 } 1250 1251 static int m_show(struct seq_file *m, void *v) 1252 { 1253 struct proc_mounts *p = proc_mounts(m); 1254 struct mount *r = list_entry(v, struct mount, mnt_list); 1255 return p->show(m, &r->mnt); 1256 } 1257 1258 const struct seq_operations mounts_op = { 1259 .start = m_start, 1260 .next = m_next, 1261 .stop = m_stop, 1262 .show = m_show, 1263 }; 1264 #endif /* CONFIG_PROC_FS */ 1265 1266 /** 1267 * may_umount_tree - check if a mount tree is busy 1268 * @mnt: root of mount tree 1269 * 1270 * This is called to check if a tree of mounts has any 1271 * open files, pwds, chroots or sub mounts that are 1272 * busy. 1273 */ 1274 int may_umount_tree(struct vfsmount *m) 1275 { 1276 struct mount *mnt = real_mount(m); 1277 int actual_refs = 0; 1278 int minimum_refs = 0; 1279 struct mount *p; 1280 BUG_ON(!m); 1281 1282 /* write lock needed for mnt_get_count */ 1283 lock_mount_hash(); 1284 for (p = mnt; p; p = next_mnt(p, mnt)) { 1285 actual_refs += mnt_get_count(p); 1286 minimum_refs += 2; 1287 } 1288 unlock_mount_hash(); 1289 1290 if (actual_refs > minimum_refs) 1291 return 0; 1292 1293 return 1; 1294 } 1295 1296 EXPORT_SYMBOL(may_umount_tree); 1297 1298 /** 1299 * may_umount - check if a mount point is busy 1300 * @mnt: root of mount 1301 * 1302 * This is called to check if a mount point has any 1303 * open files, pwds, chroots or sub mounts. If the 1304 * mount has sub mounts this will return busy 1305 * regardless of whether the sub mounts are busy. 1306 * 1307 * Doesn't take quota and stuff into account. IOW, in some cases it will 1308 * give false negatives. The main reason why it's here is that we need 1309 * a non-destructive way to look for easily umountable filesystems. 1310 */ 1311 int may_umount(struct vfsmount *mnt) 1312 { 1313 int ret = 1; 1314 down_read(&namespace_sem); 1315 lock_mount_hash(); 1316 if (propagate_mount_busy(real_mount(mnt), 2)) 1317 ret = 0; 1318 unlock_mount_hash(); 1319 up_read(&namespace_sem); 1320 return ret; 1321 } 1322 1323 EXPORT_SYMBOL(may_umount); 1324 1325 static HLIST_HEAD(unmounted); /* protected by namespace_sem */ 1326 1327 static void namespace_unlock(void) 1328 { 1329 struct hlist_head head; 1330 1331 hlist_move_list(&unmounted, &head); 1332 1333 up_write(&namespace_sem); 1334 1335 if (likely(hlist_empty(&head))) 1336 return; 1337 1338 synchronize_rcu(); 1339 1340 group_pin_kill(&head); 1341 } 1342 1343 static inline void namespace_lock(void) 1344 { 1345 down_write(&namespace_sem); 1346 } 1347 1348 enum umount_tree_flags { 1349 UMOUNT_SYNC = 1, 1350 UMOUNT_PROPAGATE = 2, 1351 UMOUNT_CONNECTED = 4, 1352 }; 1353 /* 1354 * mount_lock must be held 1355 * namespace_sem must be held for write 1356 */ 1357 static void umount_tree(struct mount *mnt, enum umount_tree_flags how) 1358 { 1359 LIST_HEAD(tmp_list); 1360 struct mount *p; 1361 1362 if (how & UMOUNT_PROPAGATE) 1363 propagate_mount_unlock(mnt); 1364 1365 /* Gather the mounts to umount */ 1366 for (p = mnt; p; p = next_mnt(p, mnt)) { 1367 p->mnt.mnt_flags |= MNT_UMOUNT; 1368 list_move(&p->mnt_list, &tmp_list); 1369 } 1370 1371 /* Hide the mounts from mnt_mounts */ 1372 list_for_each_entry(p, &tmp_list, mnt_list) { 1373 list_del_init(&p->mnt_child); 1374 } 1375 1376 /* Add propogated mounts to the tmp_list */ 1377 if (how & UMOUNT_PROPAGATE) 1378 propagate_umount(&tmp_list); 1379 1380 while (!list_empty(&tmp_list)) { 1381 bool disconnect; 1382 p = list_first_entry(&tmp_list, struct mount, mnt_list); 1383 list_del_init(&p->mnt_expire); 1384 list_del_init(&p->mnt_list); 1385 __touch_mnt_namespace(p->mnt_ns); 1386 p->mnt_ns = NULL; 1387 if (how & UMOUNT_SYNC) 1388 p->mnt.mnt_flags |= MNT_SYNC_UMOUNT; 1389 1390 disconnect = !(((how & UMOUNT_CONNECTED) && 1391 mnt_has_parent(p) && 1392 (p->mnt_parent->mnt.mnt_flags & MNT_UMOUNT)) || 1393 IS_MNT_LOCKED_AND_LAZY(p)); 1394 1395 pin_insert_group(&p->mnt_umount, &p->mnt_parent->mnt, 1396 disconnect ? &unmounted : NULL); 1397 if (mnt_has_parent(p)) { 1398 mnt_add_count(p->mnt_parent, -1); 1399 if (!disconnect) { 1400 /* Don't forget about p */ 1401 list_add_tail(&p->mnt_child, &p->mnt_parent->mnt_mounts); 1402 } else { 1403 umount_mnt(p); 1404 } 1405 } 1406 change_mnt_propagation(p, MS_PRIVATE); 1407 } 1408 } 1409 1410 static void shrink_submounts(struct mount *mnt); 1411 1412 static int do_umount(struct mount *mnt, int flags) 1413 { 1414 struct super_block *sb = mnt->mnt.mnt_sb; 1415 int retval; 1416 1417 retval = security_sb_umount(&mnt->mnt, flags); 1418 if (retval) 1419 return retval; 1420 1421 /* 1422 * Allow userspace to request a mountpoint be expired rather than 1423 * unmounting unconditionally. Unmount only happens if: 1424 * (1) the mark is already set (the mark is cleared by mntput()) 1425 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount] 1426 */ 1427 if (flags & MNT_EXPIRE) { 1428 if (&mnt->mnt == current->fs->root.mnt || 1429 flags & (MNT_FORCE | MNT_DETACH)) 1430 return -EINVAL; 1431 1432 /* 1433 * probably don't strictly need the lock here if we examined 1434 * all race cases, but it's a slowpath. 1435 */ 1436 lock_mount_hash(); 1437 if (mnt_get_count(mnt) != 2) { 1438 unlock_mount_hash(); 1439 return -EBUSY; 1440 } 1441 unlock_mount_hash(); 1442 1443 if (!xchg(&mnt->mnt_expiry_mark, 1)) 1444 return -EAGAIN; 1445 } 1446 1447 /* 1448 * If we may have to abort operations to get out of this 1449 * mount, and they will themselves hold resources we must 1450 * allow the fs to do things. In the Unix tradition of 1451 * 'Gee thats tricky lets do it in userspace' the umount_begin 1452 * might fail to complete on the first run through as other tasks 1453 * must return, and the like. Thats for the mount program to worry 1454 * about for the moment. 1455 */ 1456 1457 if (flags & MNT_FORCE && sb->s_op->umount_begin) { 1458 sb->s_op->umount_begin(sb); 1459 } 1460 1461 /* 1462 * No sense to grab the lock for this test, but test itself looks 1463 * somewhat bogus. Suggestions for better replacement? 1464 * Ho-hum... In principle, we might treat that as umount + switch 1465 * to rootfs. GC would eventually take care of the old vfsmount. 1466 * Actually it makes sense, especially if rootfs would contain a 1467 * /reboot - static binary that would close all descriptors and 1468 * call reboot(9). Then init(8) could umount root and exec /reboot. 1469 */ 1470 if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) { 1471 /* 1472 * Special case for "unmounting" root ... 1473 * we just try to remount it readonly. 1474 */ 1475 if (!capable(CAP_SYS_ADMIN)) 1476 return -EPERM; 1477 down_write(&sb->s_umount); 1478 if (!(sb->s_flags & MS_RDONLY)) 1479 retval = do_remount_sb(sb, MS_RDONLY, NULL, 0); 1480 up_write(&sb->s_umount); 1481 return retval; 1482 } 1483 1484 namespace_lock(); 1485 lock_mount_hash(); 1486 event++; 1487 1488 if (flags & MNT_DETACH) { 1489 if (!list_empty(&mnt->mnt_list)) 1490 umount_tree(mnt, UMOUNT_PROPAGATE); 1491 retval = 0; 1492 } else { 1493 shrink_submounts(mnt); 1494 retval = -EBUSY; 1495 if (!propagate_mount_busy(mnt, 2)) { 1496 if (!list_empty(&mnt->mnt_list)) 1497 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC); 1498 retval = 0; 1499 } 1500 } 1501 unlock_mount_hash(); 1502 namespace_unlock(); 1503 return retval; 1504 } 1505 1506 /* 1507 * __detach_mounts - lazily unmount all mounts on the specified dentry 1508 * 1509 * During unlink, rmdir, and d_drop it is possible to loose the path 1510 * to an existing mountpoint, and wind up leaking the mount. 1511 * detach_mounts allows lazily unmounting those mounts instead of 1512 * leaking them. 1513 * 1514 * The caller may hold dentry->d_inode->i_mutex. 1515 */ 1516 void __detach_mounts(struct dentry *dentry) 1517 { 1518 struct mountpoint *mp; 1519 struct mount *mnt; 1520 1521 namespace_lock(); 1522 mp = lookup_mountpoint(dentry); 1523 if (IS_ERR_OR_NULL(mp)) 1524 goto out_unlock; 1525 1526 lock_mount_hash(); 1527 while (!hlist_empty(&mp->m_list)) { 1528 mnt = hlist_entry(mp->m_list.first, struct mount, mnt_mp_list); 1529 if (mnt->mnt.mnt_flags & MNT_UMOUNT) { 1530 struct mount *p, *tmp; 1531 list_for_each_entry_safe(p, tmp, &mnt->mnt_mounts, mnt_child) { 1532 hlist_add_head(&p->mnt_umount.s_list, &unmounted); 1533 umount_mnt(p); 1534 } 1535 } 1536 else umount_tree(mnt, UMOUNT_CONNECTED); 1537 } 1538 unlock_mount_hash(); 1539 put_mountpoint(mp); 1540 out_unlock: 1541 namespace_unlock(); 1542 } 1543 1544 /* 1545 * Is the caller allowed to modify his namespace? 1546 */ 1547 static inline bool may_mount(void) 1548 { 1549 return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN); 1550 } 1551 1552 /* 1553 * Now umount can handle mount points as well as block devices. 1554 * This is important for filesystems which use unnamed block devices. 1555 * 1556 * We now support a flag for forced unmount like the other 'big iron' 1557 * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD 1558 */ 1559 1560 SYSCALL_DEFINE2(umount, char __user *, name, int, flags) 1561 { 1562 struct path path; 1563 struct mount *mnt; 1564 int retval; 1565 int lookup_flags = 0; 1566 1567 if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW)) 1568 return -EINVAL; 1569 1570 if (!may_mount()) 1571 return -EPERM; 1572 1573 if (!(flags & UMOUNT_NOFOLLOW)) 1574 lookup_flags |= LOOKUP_FOLLOW; 1575 1576 retval = user_path_mountpoint_at(AT_FDCWD, name, lookup_flags, &path); 1577 if (retval) 1578 goto out; 1579 mnt = real_mount(path.mnt); 1580 retval = -EINVAL; 1581 if (path.dentry != path.mnt->mnt_root) 1582 goto dput_and_out; 1583 if (!check_mnt(mnt)) 1584 goto dput_and_out; 1585 if (mnt->mnt.mnt_flags & MNT_LOCKED) 1586 goto dput_and_out; 1587 retval = -EPERM; 1588 if (flags & MNT_FORCE && !capable(CAP_SYS_ADMIN)) 1589 goto dput_and_out; 1590 1591 retval = do_umount(mnt, flags); 1592 dput_and_out: 1593 /* we mustn't call path_put() as that would clear mnt_expiry_mark */ 1594 dput(path.dentry); 1595 mntput_no_expire(mnt); 1596 out: 1597 return retval; 1598 } 1599 1600 #ifdef __ARCH_WANT_SYS_OLDUMOUNT 1601 1602 /* 1603 * The 2.0 compatible umount. No flags. 1604 */ 1605 SYSCALL_DEFINE1(oldumount, char __user *, name) 1606 { 1607 return sys_umount(name, 0); 1608 } 1609 1610 #endif 1611 1612 static bool is_mnt_ns_file(struct dentry *dentry) 1613 { 1614 /* Is this a proxy for a mount namespace? */ 1615 return dentry->d_op == &ns_dentry_operations && 1616 dentry->d_fsdata == &mntns_operations; 1617 } 1618 1619 struct mnt_namespace *to_mnt_ns(struct ns_common *ns) 1620 { 1621 return container_of(ns, struct mnt_namespace, ns); 1622 } 1623 1624 static bool mnt_ns_loop(struct dentry *dentry) 1625 { 1626 /* Could bind mounting the mount namespace inode cause a 1627 * mount namespace loop? 1628 */ 1629 struct mnt_namespace *mnt_ns; 1630 if (!is_mnt_ns_file(dentry)) 1631 return false; 1632 1633 mnt_ns = to_mnt_ns(get_proc_ns(dentry->d_inode)); 1634 return current->nsproxy->mnt_ns->seq >= mnt_ns->seq; 1635 } 1636 1637 struct mount *copy_tree(struct mount *mnt, struct dentry *dentry, 1638 int flag) 1639 { 1640 struct mount *res, *p, *q, *r, *parent; 1641 1642 if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(mnt)) 1643 return ERR_PTR(-EINVAL); 1644 1645 if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry)) 1646 return ERR_PTR(-EINVAL); 1647 1648 res = q = clone_mnt(mnt, dentry, flag); 1649 if (IS_ERR(q)) 1650 return q; 1651 1652 q->mnt_mountpoint = mnt->mnt_mountpoint; 1653 1654 p = mnt; 1655 list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) { 1656 struct mount *s; 1657 if (!is_subdir(r->mnt_mountpoint, dentry)) 1658 continue; 1659 1660 for (s = r; s; s = next_mnt(s, r)) { 1661 struct mount *t = NULL; 1662 if (!(flag & CL_COPY_UNBINDABLE) && 1663 IS_MNT_UNBINDABLE(s)) { 1664 s = skip_mnt_tree(s); 1665 continue; 1666 } 1667 if (!(flag & CL_COPY_MNT_NS_FILE) && 1668 is_mnt_ns_file(s->mnt.mnt_root)) { 1669 s = skip_mnt_tree(s); 1670 continue; 1671 } 1672 while (p != s->mnt_parent) { 1673 p = p->mnt_parent; 1674 q = q->mnt_parent; 1675 } 1676 p = s; 1677 parent = q; 1678 q = clone_mnt(p, p->mnt.mnt_root, flag); 1679 if (IS_ERR(q)) 1680 goto out; 1681 lock_mount_hash(); 1682 list_add_tail(&q->mnt_list, &res->mnt_list); 1683 mnt_set_mountpoint(parent, p->mnt_mp, q); 1684 if (!list_empty(&parent->mnt_mounts)) { 1685 t = list_last_entry(&parent->mnt_mounts, 1686 struct mount, mnt_child); 1687 if (t->mnt_mp != p->mnt_mp) 1688 t = NULL; 1689 } 1690 attach_shadowed(q, parent, t); 1691 unlock_mount_hash(); 1692 } 1693 } 1694 return res; 1695 out: 1696 if (res) { 1697 lock_mount_hash(); 1698 umount_tree(res, UMOUNT_SYNC); 1699 unlock_mount_hash(); 1700 } 1701 return q; 1702 } 1703 1704 /* Caller should check returned pointer for errors */ 1705 1706 struct vfsmount *collect_mounts(struct path *path) 1707 { 1708 struct mount *tree; 1709 namespace_lock(); 1710 if (!check_mnt(real_mount(path->mnt))) 1711 tree = ERR_PTR(-EINVAL); 1712 else 1713 tree = copy_tree(real_mount(path->mnt), path->dentry, 1714 CL_COPY_ALL | CL_PRIVATE); 1715 namespace_unlock(); 1716 if (IS_ERR(tree)) 1717 return ERR_CAST(tree); 1718 return &tree->mnt; 1719 } 1720 1721 void drop_collected_mounts(struct vfsmount *mnt) 1722 { 1723 namespace_lock(); 1724 lock_mount_hash(); 1725 umount_tree(real_mount(mnt), UMOUNT_SYNC); 1726 unlock_mount_hash(); 1727 namespace_unlock(); 1728 } 1729 1730 /** 1731 * clone_private_mount - create a private clone of a path 1732 * 1733 * This creates a new vfsmount, which will be the clone of @path. The new will 1734 * not be attached anywhere in the namespace and will be private (i.e. changes 1735 * to the originating mount won't be propagated into this). 1736 * 1737 * Release with mntput(). 1738 */ 1739 struct vfsmount *clone_private_mount(struct path *path) 1740 { 1741 struct mount *old_mnt = real_mount(path->mnt); 1742 struct mount *new_mnt; 1743 1744 if (IS_MNT_UNBINDABLE(old_mnt)) 1745 return ERR_PTR(-EINVAL); 1746 1747 down_read(&namespace_sem); 1748 new_mnt = clone_mnt(old_mnt, path->dentry, CL_PRIVATE); 1749 up_read(&namespace_sem); 1750 if (IS_ERR(new_mnt)) 1751 return ERR_CAST(new_mnt); 1752 1753 return &new_mnt->mnt; 1754 } 1755 EXPORT_SYMBOL_GPL(clone_private_mount); 1756 1757 int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg, 1758 struct vfsmount *root) 1759 { 1760 struct mount *mnt; 1761 int res = f(root, arg); 1762 if (res) 1763 return res; 1764 list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) { 1765 res = f(&mnt->mnt, arg); 1766 if (res) 1767 return res; 1768 } 1769 return 0; 1770 } 1771 1772 static void cleanup_group_ids(struct mount *mnt, struct mount *end) 1773 { 1774 struct mount *p; 1775 1776 for (p = mnt; p != end; p = next_mnt(p, mnt)) { 1777 if (p->mnt_group_id && !IS_MNT_SHARED(p)) 1778 mnt_release_group_id(p); 1779 } 1780 } 1781 1782 static int invent_group_ids(struct mount *mnt, bool recurse) 1783 { 1784 struct mount *p; 1785 1786 for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) { 1787 if (!p->mnt_group_id && !IS_MNT_SHARED(p)) { 1788 int err = mnt_alloc_group_id(p); 1789 if (err) { 1790 cleanup_group_ids(mnt, p); 1791 return err; 1792 } 1793 } 1794 } 1795 1796 return 0; 1797 } 1798 1799 /* 1800 * @source_mnt : mount tree to be attached 1801 * @nd : place the mount tree @source_mnt is attached 1802 * @parent_nd : if non-null, detach the source_mnt from its parent and 1803 * store the parent mount and mountpoint dentry. 1804 * (done when source_mnt is moved) 1805 * 1806 * NOTE: in the table below explains the semantics when a source mount 1807 * of a given type is attached to a destination mount of a given type. 1808 * --------------------------------------------------------------------------- 1809 * | BIND MOUNT OPERATION | 1810 * |************************************************************************** 1811 * | source-->| shared | private | slave | unbindable | 1812 * | dest | | | | | 1813 * | | | | | | | 1814 * | v | | | | | 1815 * |************************************************************************** 1816 * | shared | shared (++) | shared (+) | shared(+++)| invalid | 1817 * | | | | | | 1818 * |non-shared| shared (+) | private | slave (*) | invalid | 1819 * *************************************************************************** 1820 * A bind operation clones the source mount and mounts the clone on the 1821 * destination mount. 1822 * 1823 * (++) the cloned mount is propagated to all the mounts in the propagation 1824 * tree of the destination mount and the cloned mount is added to 1825 * the peer group of the source mount. 1826 * (+) the cloned mount is created under the destination mount and is marked 1827 * as shared. The cloned mount is added to the peer group of the source 1828 * mount. 1829 * (+++) the mount is propagated to all the mounts in the propagation tree 1830 * of the destination mount and the cloned mount is made slave 1831 * of the same master as that of the source mount. The cloned mount 1832 * is marked as 'shared and slave'. 1833 * (*) the cloned mount is made a slave of the same master as that of the 1834 * source mount. 1835 * 1836 * --------------------------------------------------------------------------- 1837 * | MOVE MOUNT OPERATION | 1838 * |************************************************************************** 1839 * | source-->| shared | private | slave | unbindable | 1840 * | dest | | | | | 1841 * | | | | | | | 1842 * | v | | | | | 1843 * |************************************************************************** 1844 * | shared | shared (+) | shared (+) | shared(+++) | invalid | 1845 * | | | | | | 1846 * |non-shared| shared (+*) | private | slave (*) | unbindable | 1847 * *************************************************************************** 1848 * 1849 * (+) the mount is moved to the destination. And is then propagated to 1850 * all the mounts in the propagation tree of the destination mount. 1851 * (+*) the mount is moved to the destination. 1852 * (+++) the mount is moved to the destination and is then propagated to 1853 * all the mounts belonging to the destination mount's propagation tree. 1854 * the mount is marked as 'shared and slave'. 1855 * (*) the mount continues to be a slave at the new location. 1856 * 1857 * if the source mount is a tree, the operations explained above is 1858 * applied to each mount in the tree. 1859 * Must be called without spinlocks held, since this function can sleep 1860 * in allocations. 1861 */ 1862 static int attach_recursive_mnt(struct mount *source_mnt, 1863 struct mount *dest_mnt, 1864 struct mountpoint *dest_mp, 1865 struct path *parent_path) 1866 { 1867 HLIST_HEAD(tree_list); 1868 struct mount *child, *p; 1869 struct hlist_node *n; 1870 int err; 1871 1872 if (IS_MNT_SHARED(dest_mnt)) { 1873 err = invent_group_ids(source_mnt, true); 1874 if (err) 1875 goto out; 1876 err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list); 1877 lock_mount_hash(); 1878 if (err) 1879 goto out_cleanup_ids; 1880 for (p = source_mnt; p; p = next_mnt(p, source_mnt)) 1881 set_mnt_shared(p); 1882 } else { 1883 lock_mount_hash(); 1884 } 1885 if (parent_path) { 1886 detach_mnt(source_mnt, parent_path); 1887 attach_mnt(source_mnt, dest_mnt, dest_mp); 1888 touch_mnt_namespace(source_mnt->mnt_ns); 1889 } else { 1890 mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt); 1891 commit_tree(source_mnt, NULL); 1892 } 1893 1894 hlist_for_each_entry_safe(child, n, &tree_list, mnt_hash) { 1895 struct mount *q; 1896 hlist_del_init(&child->mnt_hash); 1897 q = __lookup_mnt_last(&child->mnt_parent->mnt, 1898 child->mnt_mountpoint); 1899 commit_tree(child, q); 1900 } 1901 unlock_mount_hash(); 1902 1903 return 0; 1904 1905 out_cleanup_ids: 1906 while (!hlist_empty(&tree_list)) { 1907 child = hlist_entry(tree_list.first, struct mount, mnt_hash); 1908 umount_tree(child, UMOUNT_SYNC); 1909 } 1910 unlock_mount_hash(); 1911 cleanup_group_ids(source_mnt, NULL); 1912 out: 1913 return err; 1914 } 1915 1916 static struct mountpoint *lock_mount(struct path *path) 1917 { 1918 struct vfsmount *mnt; 1919 struct dentry *dentry = path->dentry; 1920 retry: 1921 mutex_lock(&dentry->d_inode->i_mutex); 1922 if (unlikely(cant_mount(dentry))) { 1923 mutex_unlock(&dentry->d_inode->i_mutex); 1924 return ERR_PTR(-ENOENT); 1925 } 1926 namespace_lock(); 1927 mnt = lookup_mnt(path); 1928 if (likely(!mnt)) { 1929 struct mountpoint *mp = lookup_mountpoint(dentry); 1930 if (!mp) 1931 mp = new_mountpoint(dentry); 1932 if (IS_ERR(mp)) { 1933 namespace_unlock(); 1934 mutex_unlock(&dentry->d_inode->i_mutex); 1935 return mp; 1936 } 1937 return mp; 1938 } 1939 namespace_unlock(); 1940 mutex_unlock(&path->dentry->d_inode->i_mutex); 1941 path_put(path); 1942 path->mnt = mnt; 1943 dentry = path->dentry = dget(mnt->mnt_root); 1944 goto retry; 1945 } 1946 1947 static void unlock_mount(struct mountpoint *where) 1948 { 1949 struct dentry *dentry = where->m_dentry; 1950 put_mountpoint(where); 1951 namespace_unlock(); 1952 mutex_unlock(&dentry->d_inode->i_mutex); 1953 } 1954 1955 static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp) 1956 { 1957 if (mnt->mnt.mnt_sb->s_flags & MS_NOUSER) 1958 return -EINVAL; 1959 1960 if (d_is_dir(mp->m_dentry) != 1961 d_is_dir(mnt->mnt.mnt_root)) 1962 return -ENOTDIR; 1963 1964 return attach_recursive_mnt(mnt, p, mp, NULL); 1965 } 1966 1967 /* 1968 * Sanity check the flags to change_mnt_propagation. 1969 */ 1970 1971 static int flags_to_propagation_type(int flags) 1972 { 1973 int type = flags & ~(MS_REC | MS_SILENT); 1974 1975 /* Fail if any non-propagation flags are set */ 1976 if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE)) 1977 return 0; 1978 /* Only one propagation flag should be set */ 1979 if (!is_power_of_2(type)) 1980 return 0; 1981 return type; 1982 } 1983 1984 /* 1985 * recursively change the type of the mountpoint. 1986 */ 1987 static int do_change_type(struct path *path, int flag) 1988 { 1989 struct mount *m; 1990 struct mount *mnt = real_mount(path->mnt); 1991 int recurse = flag & MS_REC; 1992 int type; 1993 int err = 0; 1994 1995 if (path->dentry != path->mnt->mnt_root) 1996 return -EINVAL; 1997 1998 type = flags_to_propagation_type(flag); 1999 if (!type) 2000 return -EINVAL; 2001 2002 namespace_lock(); 2003 if (type == MS_SHARED) { 2004 err = invent_group_ids(mnt, recurse); 2005 if (err) 2006 goto out_unlock; 2007 } 2008 2009 lock_mount_hash(); 2010 for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL)) 2011 change_mnt_propagation(m, type); 2012 unlock_mount_hash(); 2013 2014 out_unlock: 2015 namespace_unlock(); 2016 return err; 2017 } 2018 2019 static bool has_locked_children(struct mount *mnt, struct dentry *dentry) 2020 { 2021 struct mount *child; 2022 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) { 2023 if (!is_subdir(child->mnt_mountpoint, dentry)) 2024 continue; 2025 2026 if (child->mnt.mnt_flags & MNT_LOCKED) 2027 return true; 2028 } 2029 return false; 2030 } 2031 2032 /* 2033 * do loopback mount. 2034 */ 2035 static int do_loopback(struct path *path, const char *old_name, 2036 int recurse) 2037 { 2038 struct path old_path; 2039 struct mount *mnt = NULL, *old, *parent; 2040 struct mountpoint *mp; 2041 int err; 2042 if (!old_name || !*old_name) 2043 return -EINVAL; 2044 err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path); 2045 if (err) 2046 return err; 2047 2048 err = -EINVAL; 2049 if (mnt_ns_loop(old_path.dentry)) 2050 goto out; 2051 2052 mp = lock_mount(path); 2053 err = PTR_ERR(mp); 2054 if (IS_ERR(mp)) 2055 goto out; 2056 2057 old = real_mount(old_path.mnt); 2058 parent = real_mount(path->mnt); 2059 2060 err = -EINVAL; 2061 if (IS_MNT_UNBINDABLE(old)) 2062 goto out2; 2063 2064 if (!check_mnt(parent)) 2065 goto out2; 2066 2067 if (!check_mnt(old) && old_path.dentry->d_op != &ns_dentry_operations) 2068 goto out2; 2069 2070 if (!recurse && has_locked_children(old, old_path.dentry)) 2071 goto out2; 2072 2073 if (recurse) 2074 mnt = copy_tree(old, old_path.dentry, CL_COPY_MNT_NS_FILE); 2075 else 2076 mnt = clone_mnt(old, old_path.dentry, 0); 2077 2078 if (IS_ERR(mnt)) { 2079 err = PTR_ERR(mnt); 2080 goto out2; 2081 } 2082 2083 mnt->mnt.mnt_flags &= ~MNT_LOCKED; 2084 2085 err = graft_tree(mnt, parent, mp); 2086 if (err) { 2087 lock_mount_hash(); 2088 umount_tree(mnt, UMOUNT_SYNC); 2089 unlock_mount_hash(); 2090 } 2091 out2: 2092 unlock_mount(mp); 2093 out: 2094 path_put(&old_path); 2095 return err; 2096 } 2097 2098 static int change_mount_flags(struct vfsmount *mnt, int ms_flags) 2099 { 2100 int error = 0; 2101 int readonly_request = 0; 2102 2103 if (ms_flags & MS_RDONLY) 2104 readonly_request = 1; 2105 if (readonly_request == __mnt_is_readonly(mnt)) 2106 return 0; 2107 2108 if (readonly_request) 2109 error = mnt_make_readonly(real_mount(mnt)); 2110 else 2111 __mnt_unmake_readonly(real_mount(mnt)); 2112 return error; 2113 } 2114 2115 /* 2116 * change filesystem flags. dir should be a physical root of filesystem. 2117 * If you've mounted a non-root directory somewhere and want to do remount 2118 * on it - tough luck. 2119 */ 2120 static int do_remount(struct path *path, int flags, int mnt_flags, 2121 void *data) 2122 { 2123 int err; 2124 struct super_block *sb = path->mnt->mnt_sb; 2125 struct mount *mnt = real_mount(path->mnt); 2126 2127 if (!check_mnt(mnt)) 2128 return -EINVAL; 2129 2130 if (path->dentry != path->mnt->mnt_root) 2131 return -EINVAL; 2132 2133 /* Don't allow changing of locked mnt flags. 2134 * 2135 * No locks need to be held here while testing the various 2136 * MNT_LOCK flags because those flags can never be cleared 2137 * once they are set. 2138 */ 2139 if ((mnt->mnt.mnt_flags & MNT_LOCK_READONLY) && 2140 !(mnt_flags & MNT_READONLY)) { 2141 return -EPERM; 2142 } 2143 if ((mnt->mnt.mnt_flags & MNT_LOCK_NODEV) && 2144 !(mnt_flags & MNT_NODEV)) { 2145 /* Was the nodev implicitly added in mount? */ 2146 if ((mnt->mnt_ns->user_ns != &init_user_ns) && 2147 !(sb->s_type->fs_flags & FS_USERNS_DEV_MOUNT)) { 2148 mnt_flags |= MNT_NODEV; 2149 } else { 2150 return -EPERM; 2151 } 2152 } 2153 if ((mnt->mnt.mnt_flags & MNT_LOCK_NOSUID) && 2154 !(mnt_flags & MNT_NOSUID)) { 2155 return -EPERM; 2156 } 2157 if ((mnt->mnt.mnt_flags & MNT_LOCK_NOEXEC) && 2158 !(mnt_flags & MNT_NOEXEC)) { 2159 return -EPERM; 2160 } 2161 if ((mnt->mnt.mnt_flags & MNT_LOCK_ATIME) && 2162 ((mnt->mnt.mnt_flags & MNT_ATIME_MASK) != (mnt_flags & MNT_ATIME_MASK))) { 2163 return -EPERM; 2164 } 2165 2166 err = security_sb_remount(sb, data); 2167 if (err) 2168 return err; 2169 2170 down_write(&sb->s_umount); 2171 if (flags & MS_BIND) 2172 err = change_mount_flags(path->mnt, flags); 2173 else if (!capable(CAP_SYS_ADMIN)) 2174 err = -EPERM; 2175 else 2176 err = do_remount_sb(sb, flags, data, 0); 2177 if (!err) { 2178 lock_mount_hash(); 2179 mnt_flags |= mnt->mnt.mnt_flags & ~MNT_USER_SETTABLE_MASK; 2180 mnt->mnt.mnt_flags = mnt_flags; 2181 touch_mnt_namespace(mnt->mnt_ns); 2182 unlock_mount_hash(); 2183 } 2184 up_write(&sb->s_umount); 2185 return err; 2186 } 2187 2188 static inline int tree_contains_unbindable(struct mount *mnt) 2189 { 2190 struct mount *p; 2191 for (p = mnt; p; p = next_mnt(p, mnt)) { 2192 if (IS_MNT_UNBINDABLE(p)) 2193 return 1; 2194 } 2195 return 0; 2196 } 2197 2198 static int do_move_mount(struct path *path, const char *old_name) 2199 { 2200 struct path old_path, parent_path; 2201 struct mount *p; 2202 struct mount *old; 2203 struct mountpoint *mp; 2204 int err; 2205 if (!old_name || !*old_name) 2206 return -EINVAL; 2207 err = kern_path(old_name, LOOKUP_FOLLOW, &old_path); 2208 if (err) 2209 return err; 2210 2211 mp = lock_mount(path); 2212 err = PTR_ERR(mp); 2213 if (IS_ERR(mp)) 2214 goto out; 2215 2216 old = real_mount(old_path.mnt); 2217 p = real_mount(path->mnt); 2218 2219 err = -EINVAL; 2220 if (!check_mnt(p) || !check_mnt(old)) 2221 goto out1; 2222 2223 if (old->mnt.mnt_flags & MNT_LOCKED) 2224 goto out1; 2225 2226 err = -EINVAL; 2227 if (old_path.dentry != old_path.mnt->mnt_root) 2228 goto out1; 2229 2230 if (!mnt_has_parent(old)) 2231 goto out1; 2232 2233 if (d_is_dir(path->dentry) != 2234 d_is_dir(old_path.dentry)) 2235 goto out1; 2236 /* 2237 * Don't move a mount residing in a shared parent. 2238 */ 2239 if (IS_MNT_SHARED(old->mnt_parent)) 2240 goto out1; 2241 /* 2242 * Don't move a mount tree containing unbindable mounts to a destination 2243 * mount which is shared. 2244 */ 2245 if (IS_MNT_SHARED(p) && tree_contains_unbindable(old)) 2246 goto out1; 2247 err = -ELOOP; 2248 for (; mnt_has_parent(p); p = p->mnt_parent) 2249 if (p == old) 2250 goto out1; 2251 2252 err = attach_recursive_mnt(old, real_mount(path->mnt), mp, &parent_path); 2253 if (err) 2254 goto out1; 2255 2256 /* if the mount is moved, it should no longer be expire 2257 * automatically */ 2258 list_del_init(&old->mnt_expire); 2259 out1: 2260 unlock_mount(mp); 2261 out: 2262 if (!err) 2263 path_put(&parent_path); 2264 path_put(&old_path); 2265 return err; 2266 } 2267 2268 static struct vfsmount *fs_set_subtype(struct vfsmount *mnt, const char *fstype) 2269 { 2270 int err; 2271 const char *subtype = strchr(fstype, '.'); 2272 if (subtype) { 2273 subtype++; 2274 err = -EINVAL; 2275 if (!subtype[0]) 2276 goto err; 2277 } else 2278 subtype = ""; 2279 2280 mnt->mnt_sb->s_subtype = kstrdup(subtype, GFP_KERNEL); 2281 err = -ENOMEM; 2282 if (!mnt->mnt_sb->s_subtype) 2283 goto err; 2284 return mnt; 2285 2286 err: 2287 mntput(mnt); 2288 return ERR_PTR(err); 2289 } 2290 2291 /* 2292 * add a mount into a namespace's mount tree 2293 */ 2294 static int do_add_mount(struct mount *newmnt, struct path *path, int mnt_flags) 2295 { 2296 struct mountpoint *mp; 2297 struct mount *parent; 2298 int err; 2299 2300 mnt_flags &= ~MNT_INTERNAL_FLAGS; 2301 2302 mp = lock_mount(path); 2303 if (IS_ERR(mp)) 2304 return PTR_ERR(mp); 2305 2306 parent = real_mount(path->mnt); 2307 err = -EINVAL; 2308 if (unlikely(!check_mnt(parent))) { 2309 /* that's acceptable only for automounts done in private ns */ 2310 if (!(mnt_flags & MNT_SHRINKABLE)) 2311 goto unlock; 2312 /* ... and for those we'd better have mountpoint still alive */ 2313 if (!parent->mnt_ns) 2314 goto unlock; 2315 } 2316 2317 /* Refuse the same filesystem on the same mount point */ 2318 err = -EBUSY; 2319 if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb && 2320 path->mnt->mnt_root == path->dentry) 2321 goto unlock; 2322 2323 err = -EINVAL; 2324 if (d_is_symlink(newmnt->mnt.mnt_root)) 2325 goto unlock; 2326 2327 newmnt->mnt.mnt_flags = mnt_flags; 2328 err = graft_tree(newmnt, parent, mp); 2329 2330 unlock: 2331 unlock_mount(mp); 2332 return err; 2333 } 2334 2335 /* 2336 * create a new mount for userspace and request it to be added into the 2337 * namespace's tree 2338 */ 2339 static int do_new_mount(struct path *path, const char *fstype, int flags, 2340 int mnt_flags, const char *name, void *data) 2341 { 2342 struct file_system_type *type; 2343 struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns; 2344 struct vfsmount *mnt; 2345 int err; 2346 2347 if (!fstype) 2348 return -EINVAL; 2349 2350 type = get_fs_type(fstype); 2351 if (!type) 2352 return -ENODEV; 2353 2354 if (user_ns != &init_user_ns) { 2355 if (!(type->fs_flags & FS_USERNS_MOUNT)) { 2356 put_filesystem(type); 2357 return -EPERM; 2358 } 2359 /* Only in special cases allow devices from mounts 2360 * created outside the initial user namespace. 2361 */ 2362 if (!(type->fs_flags & FS_USERNS_DEV_MOUNT)) { 2363 flags |= MS_NODEV; 2364 mnt_flags |= MNT_NODEV | MNT_LOCK_NODEV; 2365 } 2366 } 2367 2368 mnt = vfs_kern_mount(type, flags, name, data); 2369 if (!IS_ERR(mnt) && (type->fs_flags & FS_HAS_SUBTYPE) && 2370 !mnt->mnt_sb->s_subtype) 2371 mnt = fs_set_subtype(mnt, fstype); 2372 2373 put_filesystem(type); 2374 if (IS_ERR(mnt)) 2375 return PTR_ERR(mnt); 2376 2377 err = do_add_mount(real_mount(mnt), path, mnt_flags); 2378 if (err) 2379 mntput(mnt); 2380 return err; 2381 } 2382 2383 int finish_automount(struct vfsmount *m, struct path *path) 2384 { 2385 struct mount *mnt = real_mount(m); 2386 int err; 2387 /* The new mount record should have at least 2 refs to prevent it being 2388 * expired before we get a chance to add it 2389 */ 2390 BUG_ON(mnt_get_count(mnt) < 2); 2391 2392 if (m->mnt_sb == path->mnt->mnt_sb && 2393 m->mnt_root == path->dentry) { 2394 err = -ELOOP; 2395 goto fail; 2396 } 2397 2398 err = do_add_mount(mnt, path, path->mnt->mnt_flags | MNT_SHRINKABLE); 2399 if (!err) 2400 return 0; 2401 fail: 2402 /* remove m from any expiration list it may be on */ 2403 if (!list_empty(&mnt->mnt_expire)) { 2404 namespace_lock(); 2405 list_del_init(&mnt->mnt_expire); 2406 namespace_unlock(); 2407 } 2408 mntput(m); 2409 mntput(m); 2410 return err; 2411 } 2412 2413 /** 2414 * mnt_set_expiry - Put a mount on an expiration list 2415 * @mnt: The mount to list. 2416 * @expiry_list: The list to add the mount to. 2417 */ 2418 void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list) 2419 { 2420 namespace_lock(); 2421 2422 list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list); 2423 2424 namespace_unlock(); 2425 } 2426 EXPORT_SYMBOL(mnt_set_expiry); 2427 2428 /* 2429 * process a list of expirable mountpoints with the intent of discarding any 2430 * mountpoints that aren't in use and haven't been touched since last we came 2431 * here 2432 */ 2433 void mark_mounts_for_expiry(struct list_head *mounts) 2434 { 2435 struct mount *mnt, *next; 2436 LIST_HEAD(graveyard); 2437 2438 if (list_empty(mounts)) 2439 return; 2440 2441 namespace_lock(); 2442 lock_mount_hash(); 2443 2444 /* extract from the expiration list every vfsmount that matches the 2445 * following criteria: 2446 * - only referenced by its parent vfsmount 2447 * - still marked for expiry (marked on the last call here; marks are 2448 * cleared by mntput()) 2449 */ 2450 list_for_each_entry_safe(mnt, next, mounts, mnt_expire) { 2451 if (!xchg(&mnt->mnt_expiry_mark, 1) || 2452 propagate_mount_busy(mnt, 1)) 2453 continue; 2454 list_move(&mnt->mnt_expire, &graveyard); 2455 } 2456 while (!list_empty(&graveyard)) { 2457 mnt = list_first_entry(&graveyard, struct mount, mnt_expire); 2458 touch_mnt_namespace(mnt->mnt_ns); 2459 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC); 2460 } 2461 unlock_mount_hash(); 2462 namespace_unlock(); 2463 } 2464 2465 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry); 2466 2467 /* 2468 * Ripoff of 'select_parent()' 2469 * 2470 * search the list of submounts for a given mountpoint, and move any 2471 * shrinkable submounts to the 'graveyard' list. 2472 */ 2473 static int select_submounts(struct mount *parent, struct list_head *graveyard) 2474 { 2475 struct mount *this_parent = parent; 2476 struct list_head *next; 2477 int found = 0; 2478 2479 repeat: 2480 next = this_parent->mnt_mounts.next; 2481 resume: 2482 while (next != &this_parent->mnt_mounts) { 2483 struct list_head *tmp = next; 2484 struct mount *mnt = list_entry(tmp, struct mount, mnt_child); 2485 2486 next = tmp->next; 2487 if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE)) 2488 continue; 2489 /* 2490 * Descend a level if the d_mounts list is non-empty. 2491 */ 2492 if (!list_empty(&mnt->mnt_mounts)) { 2493 this_parent = mnt; 2494 goto repeat; 2495 } 2496 2497 if (!propagate_mount_busy(mnt, 1)) { 2498 list_move_tail(&mnt->mnt_expire, graveyard); 2499 found++; 2500 } 2501 } 2502 /* 2503 * All done at this level ... ascend and resume the search 2504 */ 2505 if (this_parent != parent) { 2506 next = this_parent->mnt_child.next; 2507 this_parent = this_parent->mnt_parent; 2508 goto resume; 2509 } 2510 return found; 2511 } 2512 2513 /* 2514 * process a list of expirable mountpoints with the intent of discarding any 2515 * submounts of a specific parent mountpoint 2516 * 2517 * mount_lock must be held for write 2518 */ 2519 static void shrink_submounts(struct mount *mnt) 2520 { 2521 LIST_HEAD(graveyard); 2522 struct mount *m; 2523 2524 /* extract submounts of 'mountpoint' from the expiration list */ 2525 while (select_submounts(mnt, &graveyard)) { 2526 while (!list_empty(&graveyard)) { 2527 m = list_first_entry(&graveyard, struct mount, 2528 mnt_expire); 2529 touch_mnt_namespace(m->mnt_ns); 2530 umount_tree(m, UMOUNT_PROPAGATE|UMOUNT_SYNC); 2531 } 2532 } 2533 } 2534 2535 /* 2536 * Some copy_from_user() implementations do not return the exact number of 2537 * bytes remaining to copy on a fault. But copy_mount_options() requires that. 2538 * Note that this function differs from copy_from_user() in that it will oops 2539 * on bad values of `to', rather than returning a short copy. 2540 */ 2541 static long exact_copy_from_user(void *to, const void __user * from, 2542 unsigned long n) 2543 { 2544 char *t = to; 2545 const char __user *f = from; 2546 char c; 2547 2548 if (!access_ok(VERIFY_READ, from, n)) 2549 return n; 2550 2551 while (n) { 2552 if (__get_user(c, f)) { 2553 memset(t, 0, n); 2554 break; 2555 } 2556 *t++ = c; 2557 f++; 2558 n--; 2559 } 2560 return n; 2561 } 2562 2563 int copy_mount_options(const void __user * data, unsigned long *where) 2564 { 2565 int i; 2566 unsigned long page; 2567 unsigned long size; 2568 2569 *where = 0; 2570 if (!data) 2571 return 0; 2572 2573 if (!(page = __get_free_page(GFP_KERNEL))) 2574 return -ENOMEM; 2575 2576 /* We only care that *some* data at the address the user 2577 * gave us is valid. Just in case, we'll zero 2578 * the remainder of the page. 2579 */ 2580 /* copy_from_user cannot cross TASK_SIZE ! */ 2581 size = TASK_SIZE - (unsigned long)data; 2582 if (size > PAGE_SIZE) 2583 size = PAGE_SIZE; 2584 2585 i = size - exact_copy_from_user((void *)page, data, size); 2586 if (!i) { 2587 free_page(page); 2588 return -EFAULT; 2589 } 2590 if (i != PAGE_SIZE) 2591 memset((char *)page + i, 0, PAGE_SIZE - i); 2592 *where = page; 2593 return 0; 2594 } 2595 2596 char *copy_mount_string(const void __user *data) 2597 { 2598 return data ? strndup_user(data, PAGE_SIZE) : NULL; 2599 } 2600 2601 /* 2602 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to 2603 * be given to the mount() call (ie: read-only, no-dev, no-suid etc). 2604 * 2605 * data is a (void *) that can point to any structure up to 2606 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent 2607 * information (or be NULL). 2608 * 2609 * Pre-0.97 versions of mount() didn't have a flags word. 2610 * When the flags word was introduced its top half was required 2611 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9. 2612 * Therefore, if this magic number is present, it carries no information 2613 * and must be discarded. 2614 */ 2615 long do_mount(const char *dev_name, const char __user *dir_name, 2616 const char *type_page, unsigned long flags, void *data_page) 2617 { 2618 struct path path; 2619 int retval = 0; 2620 int mnt_flags = 0; 2621 2622 /* Discard magic */ 2623 if ((flags & MS_MGC_MSK) == MS_MGC_VAL) 2624 flags &= ~MS_MGC_MSK; 2625 2626 /* Basic sanity checks */ 2627 if (data_page) 2628 ((char *)data_page)[PAGE_SIZE - 1] = 0; 2629 2630 /* ... and get the mountpoint */ 2631 retval = user_path(dir_name, &path); 2632 if (retval) 2633 return retval; 2634 2635 retval = security_sb_mount(dev_name, &path, 2636 type_page, flags, data_page); 2637 if (!retval && !may_mount()) 2638 retval = -EPERM; 2639 if (retval) 2640 goto dput_out; 2641 2642 /* Default to relatime unless overriden */ 2643 if (!(flags & MS_NOATIME)) 2644 mnt_flags |= MNT_RELATIME; 2645 2646 /* Separate the per-mountpoint flags */ 2647 if (flags & MS_NOSUID) 2648 mnt_flags |= MNT_NOSUID; 2649 if (flags & MS_NODEV) 2650 mnt_flags |= MNT_NODEV; 2651 if (flags & MS_NOEXEC) 2652 mnt_flags |= MNT_NOEXEC; 2653 if (flags & MS_NOATIME) 2654 mnt_flags |= MNT_NOATIME; 2655 if (flags & MS_NODIRATIME) 2656 mnt_flags |= MNT_NODIRATIME; 2657 if (flags & MS_STRICTATIME) 2658 mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME); 2659 if (flags & MS_RDONLY) 2660 mnt_flags |= MNT_READONLY; 2661 2662 /* The default atime for remount is preservation */ 2663 if ((flags & MS_REMOUNT) && 2664 ((flags & (MS_NOATIME | MS_NODIRATIME | MS_RELATIME | 2665 MS_STRICTATIME)) == 0)) { 2666 mnt_flags &= ~MNT_ATIME_MASK; 2667 mnt_flags |= path.mnt->mnt_flags & MNT_ATIME_MASK; 2668 } 2669 2670 flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE | MS_BORN | 2671 MS_NOATIME | MS_NODIRATIME | MS_RELATIME| MS_KERNMOUNT | 2672 MS_STRICTATIME); 2673 2674 if (flags & MS_REMOUNT) 2675 retval = do_remount(&path, flags & ~MS_REMOUNT, mnt_flags, 2676 data_page); 2677 else if (flags & MS_BIND) 2678 retval = do_loopback(&path, dev_name, flags & MS_REC); 2679 else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE)) 2680 retval = do_change_type(&path, flags); 2681 else if (flags & MS_MOVE) 2682 retval = do_move_mount(&path, dev_name); 2683 else 2684 retval = do_new_mount(&path, type_page, flags, mnt_flags, 2685 dev_name, data_page); 2686 dput_out: 2687 path_put(&path); 2688 return retval; 2689 } 2690 2691 static void free_mnt_ns(struct mnt_namespace *ns) 2692 { 2693 ns_free_inum(&ns->ns); 2694 put_user_ns(ns->user_ns); 2695 kfree(ns); 2696 } 2697 2698 /* 2699 * Assign a sequence number so we can detect when we attempt to bind 2700 * mount a reference to an older mount namespace into the current 2701 * mount namespace, preventing reference counting loops. A 64bit 2702 * number incrementing at 10Ghz will take 12,427 years to wrap which 2703 * is effectively never, so we can ignore the possibility. 2704 */ 2705 static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1); 2706 2707 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns) 2708 { 2709 struct mnt_namespace *new_ns; 2710 int ret; 2711 2712 new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL); 2713 if (!new_ns) 2714 return ERR_PTR(-ENOMEM); 2715 ret = ns_alloc_inum(&new_ns->ns); 2716 if (ret) { 2717 kfree(new_ns); 2718 return ERR_PTR(ret); 2719 } 2720 new_ns->ns.ops = &mntns_operations; 2721 new_ns->seq = atomic64_add_return(1, &mnt_ns_seq); 2722 atomic_set(&new_ns->count, 1); 2723 new_ns->root = NULL; 2724 INIT_LIST_HEAD(&new_ns->list); 2725 init_waitqueue_head(&new_ns->poll); 2726 new_ns->event = 0; 2727 new_ns->user_ns = get_user_ns(user_ns); 2728 return new_ns; 2729 } 2730 2731 struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns, 2732 struct user_namespace *user_ns, struct fs_struct *new_fs) 2733 { 2734 struct mnt_namespace *new_ns; 2735 struct vfsmount *rootmnt = NULL, *pwdmnt = NULL; 2736 struct mount *p, *q; 2737 struct mount *old; 2738 struct mount *new; 2739 int copy_flags; 2740 2741 BUG_ON(!ns); 2742 2743 if (likely(!(flags & CLONE_NEWNS))) { 2744 get_mnt_ns(ns); 2745 return ns; 2746 } 2747 2748 old = ns->root; 2749 2750 new_ns = alloc_mnt_ns(user_ns); 2751 if (IS_ERR(new_ns)) 2752 return new_ns; 2753 2754 namespace_lock(); 2755 /* First pass: copy the tree topology */ 2756 copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE; 2757 if (user_ns != ns->user_ns) 2758 copy_flags |= CL_SHARED_TO_SLAVE | CL_UNPRIVILEGED; 2759 new = copy_tree(old, old->mnt.mnt_root, copy_flags); 2760 if (IS_ERR(new)) { 2761 namespace_unlock(); 2762 free_mnt_ns(new_ns); 2763 return ERR_CAST(new); 2764 } 2765 new_ns->root = new; 2766 list_add_tail(&new_ns->list, &new->mnt_list); 2767 2768 /* 2769 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts 2770 * as belonging to new namespace. We have already acquired a private 2771 * fs_struct, so tsk->fs->lock is not needed. 2772 */ 2773 p = old; 2774 q = new; 2775 while (p) { 2776 q->mnt_ns = new_ns; 2777 if (new_fs) { 2778 if (&p->mnt == new_fs->root.mnt) { 2779 new_fs->root.mnt = mntget(&q->mnt); 2780 rootmnt = &p->mnt; 2781 } 2782 if (&p->mnt == new_fs->pwd.mnt) { 2783 new_fs->pwd.mnt = mntget(&q->mnt); 2784 pwdmnt = &p->mnt; 2785 } 2786 } 2787 p = next_mnt(p, old); 2788 q = next_mnt(q, new); 2789 if (!q) 2790 break; 2791 while (p->mnt.mnt_root != q->mnt.mnt_root) 2792 p = next_mnt(p, old); 2793 } 2794 namespace_unlock(); 2795 2796 if (rootmnt) 2797 mntput(rootmnt); 2798 if (pwdmnt) 2799 mntput(pwdmnt); 2800 2801 return new_ns; 2802 } 2803 2804 /** 2805 * create_mnt_ns - creates a private namespace and adds a root filesystem 2806 * @mnt: pointer to the new root filesystem mountpoint 2807 */ 2808 static struct mnt_namespace *create_mnt_ns(struct vfsmount *m) 2809 { 2810 struct mnt_namespace *new_ns = alloc_mnt_ns(&init_user_ns); 2811 if (!IS_ERR(new_ns)) { 2812 struct mount *mnt = real_mount(m); 2813 mnt->mnt_ns = new_ns; 2814 new_ns->root = mnt; 2815 list_add(&mnt->mnt_list, &new_ns->list); 2816 } else { 2817 mntput(m); 2818 } 2819 return new_ns; 2820 } 2821 2822 struct dentry *mount_subtree(struct vfsmount *mnt, const char *name) 2823 { 2824 struct mnt_namespace *ns; 2825 struct super_block *s; 2826 struct path path; 2827 int err; 2828 2829 ns = create_mnt_ns(mnt); 2830 if (IS_ERR(ns)) 2831 return ERR_CAST(ns); 2832 2833 err = vfs_path_lookup(mnt->mnt_root, mnt, 2834 name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path); 2835 2836 put_mnt_ns(ns); 2837 2838 if (err) 2839 return ERR_PTR(err); 2840 2841 /* trade a vfsmount reference for active sb one */ 2842 s = path.mnt->mnt_sb; 2843 atomic_inc(&s->s_active); 2844 mntput(path.mnt); 2845 /* lock the sucker */ 2846 down_write(&s->s_umount); 2847 /* ... and return the root of (sub)tree on it */ 2848 return path.dentry; 2849 } 2850 EXPORT_SYMBOL(mount_subtree); 2851 2852 SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name, 2853 char __user *, type, unsigned long, flags, void __user *, data) 2854 { 2855 int ret; 2856 char *kernel_type; 2857 char *kernel_dev; 2858 unsigned long data_page; 2859 2860 kernel_type = copy_mount_string(type); 2861 ret = PTR_ERR(kernel_type); 2862 if (IS_ERR(kernel_type)) 2863 goto out_type; 2864 2865 kernel_dev = copy_mount_string(dev_name); 2866 ret = PTR_ERR(kernel_dev); 2867 if (IS_ERR(kernel_dev)) 2868 goto out_dev; 2869 2870 ret = copy_mount_options(data, &data_page); 2871 if (ret < 0) 2872 goto out_data; 2873 2874 ret = do_mount(kernel_dev, dir_name, kernel_type, flags, 2875 (void *) data_page); 2876 2877 free_page(data_page); 2878 out_data: 2879 kfree(kernel_dev); 2880 out_dev: 2881 kfree(kernel_type); 2882 out_type: 2883 return ret; 2884 } 2885 2886 /* 2887 * Return true if path is reachable from root 2888 * 2889 * namespace_sem or mount_lock is held 2890 */ 2891 bool is_path_reachable(struct mount *mnt, struct dentry *dentry, 2892 const struct path *root) 2893 { 2894 while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) { 2895 dentry = mnt->mnt_mountpoint; 2896 mnt = mnt->mnt_parent; 2897 } 2898 return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry); 2899 } 2900 2901 int path_is_under(struct path *path1, struct path *path2) 2902 { 2903 int res; 2904 read_seqlock_excl(&mount_lock); 2905 res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2); 2906 read_sequnlock_excl(&mount_lock); 2907 return res; 2908 } 2909 EXPORT_SYMBOL(path_is_under); 2910 2911 /* 2912 * pivot_root Semantics: 2913 * Moves the root file system of the current process to the directory put_old, 2914 * makes new_root as the new root file system of the current process, and sets 2915 * root/cwd of all processes which had them on the current root to new_root. 2916 * 2917 * Restrictions: 2918 * The new_root and put_old must be directories, and must not be on the 2919 * same file system as the current process root. The put_old must be 2920 * underneath new_root, i.e. adding a non-zero number of /.. to the string 2921 * pointed to by put_old must yield the same directory as new_root. No other 2922 * file system may be mounted on put_old. After all, new_root is a mountpoint. 2923 * 2924 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem. 2925 * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives 2926 * in this situation. 2927 * 2928 * Notes: 2929 * - we don't move root/cwd if they are not at the root (reason: if something 2930 * cared enough to change them, it's probably wrong to force them elsewhere) 2931 * - it's okay to pick a root that isn't the root of a file system, e.g. 2932 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint, 2933 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root 2934 * first. 2935 */ 2936 SYSCALL_DEFINE2(pivot_root, const char __user *, new_root, 2937 const char __user *, put_old) 2938 { 2939 struct path new, old, parent_path, root_parent, root; 2940 struct mount *new_mnt, *root_mnt, *old_mnt; 2941 struct mountpoint *old_mp, *root_mp; 2942 int error; 2943 2944 if (!may_mount()) 2945 return -EPERM; 2946 2947 error = user_path_dir(new_root, &new); 2948 if (error) 2949 goto out0; 2950 2951 error = user_path_dir(put_old, &old); 2952 if (error) 2953 goto out1; 2954 2955 error = security_sb_pivotroot(&old, &new); 2956 if (error) 2957 goto out2; 2958 2959 get_fs_root(current->fs, &root); 2960 old_mp = lock_mount(&old); 2961 error = PTR_ERR(old_mp); 2962 if (IS_ERR(old_mp)) 2963 goto out3; 2964 2965 error = -EINVAL; 2966 new_mnt = real_mount(new.mnt); 2967 root_mnt = real_mount(root.mnt); 2968 old_mnt = real_mount(old.mnt); 2969 if (IS_MNT_SHARED(old_mnt) || 2970 IS_MNT_SHARED(new_mnt->mnt_parent) || 2971 IS_MNT_SHARED(root_mnt->mnt_parent)) 2972 goto out4; 2973 if (!check_mnt(root_mnt) || !check_mnt(new_mnt)) 2974 goto out4; 2975 if (new_mnt->mnt.mnt_flags & MNT_LOCKED) 2976 goto out4; 2977 error = -ENOENT; 2978 if (d_unlinked(new.dentry)) 2979 goto out4; 2980 error = -EBUSY; 2981 if (new_mnt == root_mnt || old_mnt == root_mnt) 2982 goto out4; /* loop, on the same file system */ 2983 error = -EINVAL; 2984 if (root.mnt->mnt_root != root.dentry) 2985 goto out4; /* not a mountpoint */ 2986 if (!mnt_has_parent(root_mnt)) 2987 goto out4; /* not attached */ 2988 root_mp = root_mnt->mnt_mp; 2989 if (new.mnt->mnt_root != new.dentry) 2990 goto out4; /* not a mountpoint */ 2991 if (!mnt_has_parent(new_mnt)) 2992 goto out4; /* not attached */ 2993 /* make sure we can reach put_old from new_root */ 2994 if (!is_path_reachable(old_mnt, old.dentry, &new)) 2995 goto out4; 2996 /* make certain new is below the root */ 2997 if (!is_path_reachable(new_mnt, new.dentry, &root)) 2998 goto out4; 2999 root_mp->m_count++; /* pin it so it won't go away */ 3000 lock_mount_hash(); 3001 detach_mnt(new_mnt, &parent_path); 3002 detach_mnt(root_mnt, &root_parent); 3003 if (root_mnt->mnt.mnt_flags & MNT_LOCKED) { 3004 new_mnt->mnt.mnt_flags |= MNT_LOCKED; 3005 root_mnt->mnt.mnt_flags &= ~MNT_LOCKED; 3006 } 3007 /* mount old root on put_old */ 3008 attach_mnt(root_mnt, old_mnt, old_mp); 3009 /* mount new_root on / */ 3010 attach_mnt(new_mnt, real_mount(root_parent.mnt), root_mp); 3011 touch_mnt_namespace(current->nsproxy->mnt_ns); 3012 /* A moved mount should not expire automatically */ 3013 list_del_init(&new_mnt->mnt_expire); 3014 unlock_mount_hash(); 3015 chroot_fs_refs(&root, &new); 3016 put_mountpoint(root_mp); 3017 error = 0; 3018 out4: 3019 unlock_mount(old_mp); 3020 if (!error) { 3021 path_put(&root_parent); 3022 path_put(&parent_path); 3023 } 3024 out3: 3025 path_put(&root); 3026 out2: 3027 path_put(&old); 3028 out1: 3029 path_put(&new); 3030 out0: 3031 return error; 3032 } 3033 3034 static void __init init_mount_tree(void) 3035 { 3036 struct vfsmount *mnt; 3037 struct mnt_namespace *ns; 3038 struct path root; 3039 struct file_system_type *type; 3040 3041 type = get_fs_type("rootfs"); 3042 if (!type) 3043 panic("Can't find rootfs type"); 3044 mnt = vfs_kern_mount(type, 0, "rootfs", NULL); 3045 put_filesystem(type); 3046 if (IS_ERR(mnt)) 3047 panic("Can't create rootfs"); 3048 3049 ns = create_mnt_ns(mnt); 3050 if (IS_ERR(ns)) 3051 panic("Can't allocate initial namespace"); 3052 3053 init_task.nsproxy->mnt_ns = ns; 3054 get_mnt_ns(ns); 3055 3056 root.mnt = mnt; 3057 root.dentry = mnt->mnt_root; 3058 mnt->mnt_flags |= MNT_LOCKED; 3059 3060 set_fs_pwd(current->fs, &root); 3061 set_fs_root(current->fs, &root); 3062 } 3063 3064 void __init mnt_init(void) 3065 { 3066 unsigned u; 3067 int err; 3068 3069 mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount), 3070 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL); 3071 3072 mount_hashtable = alloc_large_system_hash("Mount-cache", 3073 sizeof(struct hlist_head), 3074 mhash_entries, 19, 3075 0, 3076 &m_hash_shift, &m_hash_mask, 0, 0); 3077 mountpoint_hashtable = alloc_large_system_hash("Mountpoint-cache", 3078 sizeof(struct hlist_head), 3079 mphash_entries, 19, 3080 0, 3081 &mp_hash_shift, &mp_hash_mask, 0, 0); 3082 3083 if (!mount_hashtable || !mountpoint_hashtable) 3084 panic("Failed to allocate mount hash table\n"); 3085 3086 for (u = 0; u <= m_hash_mask; u++) 3087 INIT_HLIST_HEAD(&mount_hashtable[u]); 3088 for (u = 0; u <= mp_hash_mask; u++) 3089 INIT_HLIST_HEAD(&mountpoint_hashtable[u]); 3090 3091 kernfs_init(); 3092 3093 err = sysfs_init(); 3094 if (err) 3095 printk(KERN_WARNING "%s: sysfs_init error: %d\n", 3096 __func__, err); 3097 fs_kobj = kobject_create_and_add("fs", NULL); 3098 if (!fs_kobj) 3099 printk(KERN_WARNING "%s: kobj create error\n", __func__); 3100 init_rootfs(); 3101 init_mount_tree(); 3102 } 3103 3104 void put_mnt_ns(struct mnt_namespace *ns) 3105 { 3106 if (!atomic_dec_and_test(&ns->count)) 3107 return; 3108 drop_collected_mounts(&ns->root->mnt); 3109 free_mnt_ns(ns); 3110 } 3111 3112 struct vfsmount *kern_mount_data(struct file_system_type *type, void *data) 3113 { 3114 struct vfsmount *mnt; 3115 mnt = vfs_kern_mount(type, MS_KERNMOUNT, type->name, data); 3116 if (!IS_ERR(mnt)) { 3117 /* 3118 * it is a longterm mount, don't release mnt until 3119 * we unmount before file sys is unregistered 3120 */ 3121 real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL; 3122 } 3123 return mnt; 3124 } 3125 EXPORT_SYMBOL_GPL(kern_mount_data); 3126 3127 void kern_unmount(struct vfsmount *mnt) 3128 { 3129 /* release long term mount so mount point can be released */ 3130 if (!IS_ERR_OR_NULL(mnt)) { 3131 real_mount(mnt)->mnt_ns = NULL; 3132 synchronize_rcu(); /* yecchhh... */ 3133 mntput(mnt); 3134 } 3135 } 3136 EXPORT_SYMBOL(kern_unmount); 3137 3138 bool our_mnt(struct vfsmount *mnt) 3139 { 3140 return check_mnt(real_mount(mnt)); 3141 } 3142 3143 bool current_chrooted(void) 3144 { 3145 /* Does the current process have a non-standard root */ 3146 struct path ns_root; 3147 struct path fs_root; 3148 bool chrooted; 3149 3150 /* Find the namespace root */ 3151 ns_root.mnt = ¤t->nsproxy->mnt_ns->root->mnt; 3152 ns_root.dentry = ns_root.mnt->mnt_root; 3153 path_get(&ns_root); 3154 while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root)) 3155 ; 3156 3157 get_fs_root(current->fs, &fs_root); 3158 3159 chrooted = !path_equal(&fs_root, &ns_root); 3160 3161 path_put(&fs_root); 3162 path_put(&ns_root); 3163 3164 return chrooted; 3165 } 3166 3167 bool fs_fully_visible(struct file_system_type *type) 3168 { 3169 struct mnt_namespace *ns = current->nsproxy->mnt_ns; 3170 struct mount *mnt; 3171 bool visible = false; 3172 3173 if (unlikely(!ns)) 3174 return false; 3175 3176 down_read(&namespace_sem); 3177 list_for_each_entry(mnt, &ns->list, mnt_list) { 3178 struct mount *child; 3179 if (mnt->mnt.mnt_sb->s_type != type) 3180 continue; 3181 3182 /* This mount is not fully visible if it's root directory 3183 * is not the root directory of the filesystem. 3184 */ 3185 if (mnt->mnt.mnt_root != mnt->mnt.mnt_sb->s_root) 3186 continue; 3187 3188 /* This mount is not fully visible if there are any child mounts 3189 * that cover anything except for empty directories. 3190 */ 3191 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) { 3192 struct inode *inode = child->mnt_mountpoint->d_inode; 3193 if (!S_ISDIR(inode->i_mode)) 3194 goto next; 3195 if (inode->i_nlink > 2) 3196 goto next; 3197 } 3198 visible = true; 3199 goto found; 3200 next: ; 3201 } 3202 found: 3203 up_read(&namespace_sem); 3204 return visible; 3205 } 3206 3207 static struct ns_common *mntns_get(struct task_struct *task) 3208 { 3209 struct ns_common *ns = NULL; 3210 struct nsproxy *nsproxy; 3211 3212 task_lock(task); 3213 nsproxy = task->nsproxy; 3214 if (nsproxy) { 3215 ns = &nsproxy->mnt_ns->ns; 3216 get_mnt_ns(to_mnt_ns(ns)); 3217 } 3218 task_unlock(task); 3219 3220 return ns; 3221 } 3222 3223 static void mntns_put(struct ns_common *ns) 3224 { 3225 put_mnt_ns(to_mnt_ns(ns)); 3226 } 3227 3228 static int mntns_install(struct nsproxy *nsproxy, struct ns_common *ns) 3229 { 3230 struct fs_struct *fs = current->fs; 3231 struct mnt_namespace *mnt_ns = to_mnt_ns(ns); 3232 struct path root; 3233 3234 if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) || 3235 !ns_capable(current_user_ns(), CAP_SYS_CHROOT) || 3236 !ns_capable(current_user_ns(), CAP_SYS_ADMIN)) 3237 return -EPERM; 3238 3239 if (fs->users != 1) 3240 return -EINVAL; 3241 3242 get_mnt_ns(mnt_ns); 3243 put_mnt_ns(nsproxy->mnt_ns); 3244 nsproxy->mnt_ns = mnt_ns; 3245 3246 /* Find the root */ 3247 root.mnt = &mnt_ns->root->mnt; 3248 root.dentry = mnt_ns->root->mnt.mnt_root; 3249 path_get(&root); 3250 while(d_mountpoint(root.dentry) && follow_down_one(&root)) 3251 ; 3252 3253 /* Update the pwd and root */ 3254 set_fs_pwd(fs, &root); 3255 set_fs_root(fs, &root); 3256 3257 path_put(&root); 3258 return 0; 3259 } 3260 3261 const struct proc_ns_operations mntns_operations = { 3262 .name = "mnt", 3263 .type = CLONE_NEWNS, 3264 .get = mntns_get, 3265 .put = mntns_put, 3266 .install = mntns_install, 3267 }; 3268