1 /* 2 * linux/fs/namespace.c 3 * 4 * (C) Copyright Al Viro 2000, 2001 5 * Released under GPL v2. 6 * 7 * Based on code from fs/super.c, copyright Linus Torvalds and others. 8 * Heavily rewritten. 9 */ 10 11 #include <linux/syscalls.h> 12 #include <linux/export.h> 13 #include <linux/capability.h> 14 #include <linux/mnt_namespace.h> 15 #include <linux/user_namespace.h> 16 #include <linux/namei.h> 17 #include <linux/security.h> 18 #include <linux/cred.h> 19 #include <linux/idr.h> 20 #include <linux/init.h> /* init_rootfs */ 21 #include <linux/fs_struct.h> /* get_fs_root et.al. */ 22 #include <linux/fsnotify.h> /* fsnotify_vfsmount_delete */ 23 #include <linux/uaccess.h> 24 #include <linux/proc_ns.h> 25 #include <linux/magic.h> 26 #include <linux/memblock.h> 27 #include <linux/task_work.h> 28 #include <linux/sched/task.h> 29 #include <uapi/linux/mount.h> 30 31 #include "pnode.h" 32 #include "internal.h" 33 34 /* Maximum number of mounts in a mount namespace */ 35 unsigned int sysctl_mount_max __read_mostly = 100000; 36 37 static unsigned int m_hash_mask __read_mostly; 38 static unsigned int m_hash_shift __read_mostly; 39 static unsigned int mp_hash_mask __read_mostly; 40 static unsigned int mp_hash_shift __read_mostly; 41 42 static __initdata unsigned long mhash_entries; 43 static int __init set_mhash_entries(char *str) 44 { 45 if (!str) 46 return 0; 47 mhash_entries = simple_strtoul(str, &str, 0); 48 return 1; 49 } 50 __setup("mhash_entries=", set_mhash_entries); 51 52 static __initdata unsigned long mphash_entries; 53 static int __init set_mphash_entries(char *str) 54 { 55 if (!str) 56 return 0; 57 mphash_entries = simple_strtoul(str, &str, 0); 58 return 1; 59 } 60 __setup("mphash_entries=", set_mphash_entries); 61 62 static u64 event; 63 static DEFINE_IDA(mnt_id_ida); 64 static DEFINE_IDA(mnt_group_ida); 65 66 static struct hlist_head *mount_hashtable __read_mostly; 67 static struct hlist_head *mountpoint_hashtable __read_mostly; 68 static struct kmem_cache *mnt_cache __read_mostly; 69 static DECLARE_RWSEM(namespace_sem); 70 71 /* /sys/fs */ 72 struct kobject *fs_kobj; 73 EXPORT_SYMBOL_GPL(fs_kobj); 74 75 /* 76 * vfsmount lock may be taken for read to prevent changes to the 77 * vfsmount hash, ie. during mountpoint lookups or walking back 78 * up the tree. 79 * 80 * It should be taken for write in all cases where the vfsmount 81 * tree or hash is modified or when a vfsmount structure is modified. 82 */ 83 __cacheline_aligned_in_smp DEFINE_SEQLOCK(mount_lock); 84 85 static inline struct hlist_head *m_hash(struct vfsmount *mnt, struct dentry *dentry) 86 { 87 unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES); 88 tmp += ((unsigned long)dentry / L1_CACHE_BYTES); 89 tmp = tmp + (tmp >> m_hash_shift); 90 return &mount_hashtable[tmp & m_hash_mask]; 91 } 92 93 static inline struct hlist_head *mp_hash(struct dentry *dentry) 94 { 95 unsigned long tmp = ((unsigned long)dentry / L1_CACHE_BYTES); 96 tmp = tmp + (tmp >> mp_hash_shift); 97 return &mountpoint_hashtable[tmp & mp_hash_mask]; 98 } 99 100 static int mnt_alloc_id(struct mount *mnt) 101 { 102 int res = ida_alloc(&mnt_id_ida, GFP_KERNEL); 103 104 if (res < 0) 105 return res; 106 mnt->mnt_id = res; 107 return 0; 108 } 109 110 static void mnt_free_id(struct mount *mnt) 111 { 112 ida_free(&mnt_id_ida, mnt->mnt_id); 113 } 114 115 /* 116 * Allocate a new peer group ID 117 */ 118 static int mnt_alloc_group_id(struct mount *mnt) 119 { 120 int res = ida_alloc_min(&mnt_group_ida, 1, GFP_KERNEL); 121 122 if (res < 0) 123 return res; 124 mnt->mnt_group_id = res; 125 return 0; 126 } 127 128 /* 129 * Release a peer group ID 130 */ 131 void mnt_release_group_id(struct mount *mnt) 132 { 133 ida_free(&mnt_group_ida, mnt->mnt_group_id); 134 mnt->mnt_group_id = 0; 135 } 136 137 /* 138 * vfsmount lock must be held for read 139 */ 140 static inline void mnt_add_count(struct mount *mnt, int n) 141 { 142 #ifdef CONFIG_SMP 143 this_cpu_add(mnt->mnt_pcp->mnt_count, n); 144 #else 145 preempt_disable(); 146 mnt->mnt_count += n; 147 preempt_enable(); 148 #endif 149 } 150 151 /* 152 * vfsmount lock must be held for write 153 */ 154 unsigned int mnt_get_count(struct mount *mnt) 155 { 156 #ifdef CONFIG_SMP 157 unsigned int count = 0; 158 int cpu; 159 160 for_each_possible_cpu(cpu) { 161 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count; 162 } 163 164 return count; 165 #else 166 return mnt->mnt_count; 167 #endif 168 } 169 170 static void drop_mountpoint(struct fs_pin *p) 171 { 172 struct mount *m = container_of(p, struct mount, mnt_umount); 173 dput(m->mnt_ex_mountpoint); 174 pin_remove(p); 175 mntput(&m->mnt); 176 } 177 178 static struct mount *alloc_vfsmnt(const char *name) 179 { 180 struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL); 181 if (mnt) { 182 int err; 183 184 err = mnt_alloc_id(mnt); 185 if (err) 186 goto out_free_cache; 187 188 if (name) { 189 mnt->mnt_devname = kstrdup_const(name, GFP_KERNEL); 190 if (!mnt->mnt_devname) 191 goto out_free_id; 192 } 193 194 #ifdef CONFIG_SMP 195 mnt->mnt_pcp = alloc_percpu(struct mnt_pcp); 196 if (!mnt->mnt_pcp) 197 goto out_free_devname; 198 199 this_cpu_add(mnt->mnt_pcp->mnt_count, 1); 200 #else 201 mnt->mnt_count = 1; 202 mnt->mnt_writers = 0; 203 #endif 204 205 INIT_HLIST_NODE(&mnt->mnt_hash); 206 INIT_LIST_HEAD(&mnt->mnt_child); 207 INIT_LIST_HEAD(&mnt->mnt_mounts); 208 INIT_LIST_HEAD(&mnt->mnt_list); 209 INIT_LIST_HEAD(&mnt->mnt_expire); 210 INIT_LIST_HEAD(&mnt->mnt_share); 211 INIT_LIST_HEAD(&mnt->mnt_slave_list); 212 INIT_LIST_HEAD(&mnt->mnt_slave); 213 INIT_HLIST_NODE(&mnt->mnt_mp_list); 214 INIT_LIST_HEAD(&mnt->mnt_umounting); 215 init_fs_pin(&mnt->mnt_umount, drop_mountpoint); 216 } 217 return mnt; 218 219 #ifdef CONFIG_SMP 220 out_free_devname: 221 kfree_const(mnt->mnt_devname); 222 #endif 223 out_free_id: 224 mnt_free_id(mnt); 225 out_free_cache: 226 kmem_cache_free(mnt_cache, mnt); 227 return NULL; 228 } 229 230 /* 231 * Most r/o checks on a fs are for operations that take 232 * discrete amounts of time, like a write() or unlink(). 233 * We must keep track of when those operations start 234 * (for permission checks) and when they end, so that 235 * we can determine when writes are able to occur to 236 * a filesystem. 237 */ 238 /* 239 * __mnt_is_readonly: check whether a mount is read-only 240 * @mnt: the mount to check for its write status 241 * 242 * This shouldn't be used directly ouside of the VFS. 243 * It does not guarantee that the filesystem will stay 244 * r/w, just that it is right *now*. This can not and 245 * should not be used in place of IS_RDONLY(inode). 246 * mnt_want/drop_write() will _keep_ the filesystem 247 * r/w. 248 */ 249 bool __mnt_is_readonly(struct vfsmount *mnt) 250 { 251 return (mnt->mnt_flags & MNT_READONLY) || sb_rdonly(mnt->mnt_sb); 252 } 253 EXPORT_SYMBOL_GPL(__mnt_is_readonly); 254 255 static inline void mnt_inc_writers(struct mount *mnt) 256 { 257 #ifdef CONFIG_SMP 258 this_cpu_inc(mnt->mnt_pcp->mnt_writers); 259 #else 260 mnt->mnt_writers++; 261 #endif 262 } 263 264 static inline void mnt_dec_writers(struct mount *mnt) 265 { 266 #ifdef CONFIG_SMP 267 this_cpu_dec(mnt->mnt_pcp->mnt_writers); 268 #else 269 mnt->mnt_writers--; 270 #endif 271 } 272 273 static unsigned int mnt_get_writers(struct mount *mnt) 274 { 275 #ifdef CONFIG_SMP 276 unsigned int count = 0; 277 int cpu; 278 279 for_each_possible_cpu(cpu) { 280 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers; 281 } 282 283 return count; 284 #else 285 return mnt->mnt_writers; 286 #endif 287 } 288 289 static int mnt_is_readonly(struct vfsmount *mnt) 290 { 291 if (mnt->mnt_sb->s_readonly_remount) 292 return 1; 293 /* Order wrt setting s_flags/s_readonly_remount in do_remount() */ 294 smp_rmb(); 295 return __mnt_is_readonly(mnt); 296 } 297 298 /* 299 * Most r/o & frozen checks on a fs are for operations that take discrete 300 * amounts of time, like a write() or unlink(). We must keep track of when 301 * those operations start (for permission checks) and when they end, so that we 302 * can determine when writes are able to occur to a filesystem. 303 */ 304 /** 305 * __mnt_want_write - get write access to a mount without freeze protection 306 * @m: the mount on which to take a write 307 * 308 * This tells the low-level filesystem that a write is about to be performed to 309 * it, and makes sure that writes are allowed (mnt it read-write) before 310 * returning success. This operation does not protect against filesystem being 311 * frozen. When the write operation is finished, __mnt_drop_write() must be 312 * called. This is effectively a refcount. 313 */ 314 int __mnt_want_write(struct vfsmount *m) 315 { 316 struct mount *mnt = real_mount(m); 317 int ret = 0; 318 319 preempt_disable(); 320 mnt_inc_writers(mnt); 321 /* 322 * The store to mnt_inc_writers must be visible before we pass 323 * MNT_WRITE_HOLD loop below, so that the slowpath can see our 324 * incremented count after it has set MNT_WRITE_HOLD. 325 */ 326 smp_mb(); 327 while (READ_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD) 328 cpu_relax(); 329 /* 330 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will 331 * be set to match its requirements. So we must not load that until 332 * MNT_WRITE_HOLD is cleared. 333 */ 334 smp_rmb(); 335 if (mnt_is_readonly(m)) { 336 mnt_dec_writers(mnt); 337 ret = -EROFS; 338 } 339 preempt_enable(); 340 341 return ret; 342 } 343 344 /** 345 * mnt_want_write - get write access to a mount 346 * @m: the mount on which to take a write 347 * 348 * This tells the low-level filesystem that a write is about to be performed to 349 * it, and makes sure that writes are allowed (mount is read-write, filesystem 350 * is not frozen) before returning success. When the write operation is 351 * finished, mnt_drop_write() must be called. This is effectively a refcount. 352 */ 353 int mnt_want_write(struct vfsmount *m) 354 { 355 int ret; 356 357 sb_start_write(m->mnt_sb); 358 ret = __mnt_want_write(m); 359 if (ret) 360 sb_end_write(m->mnt_sb); 361 return ret; 362 } 363 EXPORT_SYMBOL_GPL(mnt_want_write); 364 365 /** 366 * mnt_clone_write - get write access to a mount 367 * @mnt: the mount on which to take a write 368 * 369 * This is effectively like mnt_want_write, except 370 * it must only be used to take an extra write reference 371 * on a mountpoint that we already know has a write reference 372 * on it. This allows some optimisation. 373 * 374 * After finished, mnt_drop_write must be called as usual to 375 * drop the reference. 376 */ 377 int mnt_clone_write(struct vfsmount *mnt) 378 { 379 /* superblock may be r/o */ 380 if (__mnt_is_readonly(mnt)) 381 return -EROFS; 382 preempt_disable(); 383 mnt_inc_writers(real_mount(mnt)); 384 preempt_enable(); 385 return 0; 386 } 387 EXPORT_SYMBOL_GPL(mnt_clone_write); 388 389 /** 390 * __mnt_want_write_file - get write access to a file's mount 391 * @file: the file who's mount on which to take a write 392 * 393 * This is like __mnt_want_write, but it takes a file and can 394 * do some optimisations if the file is open for write already 395 */ 396 int __mnt_want_write_file(struct file *file) 397 { 398 if (!(file->f_mode & FMODE_WRITER)) 399 return __mnt_want_write(file->f_path.mnt); 400 else 401 return mnt_clone_write(file->f_path.mnt); 402 } 403 404 /** 405 * mnt_want_write_file - get write access to a file's mount 406 * @file: the file who's mount on which to take a write 407 * 408 * This is like mnt_want_write, but it takes a file and can 409 * do some optimisations if the file is open for write already 410 */ 411 int mnt_want_write_file(struct file *file) 412 { 413 int ret; 414 415 sb_start_write(file_inode(file)->i_sb); 416 ret = __mnt_want_write_file(file); 417 if (ret) 418 sb_end_write(file_inode(file)->i_sb); 419 return ret; 420 } 421 EXPORT_SYMBOL_GPL(mnt_want_write_file); 422 423 /** 424 * __mnt_drop_write - give up write access to a mount 425 * @mnt: the mount on which to give up write access 426 * 427 * Tells the low-level filesystem that we are done 428 * performing writes to it. Must be matched with 429 * __mnt_want_write() call above. 430 */ 431 void __mnt_drop_write(struct vfsmount *mnt) 432 { 433 preempt_disable(); 434 mnt_dec_writers(real_mount(mnt)); 435 preempt_enable(); 436 } 437 438 /** 439 * mnt_drop_write - give up write access to a mount 440 * @mnt: the mount on which to give up write access 441 * 442 * Tells the low-level filesystem that we are done performing writes to it and 443 * also allows filesystem to be frozen again. Must be matched with 444 * mnt_want_write() call above. 445 */ 446 void mnt_drop_write(struct vfsmount *mnt) 447 { 448 __mnt_drop_write(mnt); 449 sb_end_write(mnt->mnt_sb); 450 } 451 EXPORT_SYMBOL_GPL(mnt_drop_write); 452 453 void __mnt_drop_write_file(struct file *file) 454 { 455 __mnt_drop_write(file->f_path.mnt); 456 } 457 458 void mnt_drop_write_file(struct file *file) 459 { 460 __mnt_drop_write_file(file); 461 sb_end_write(file_inode(file)->i_sb); 462 } 463 EXPORT_SYMBOL(mnt_drop_write_file); 464 465 static int mnt_make_readonly(struct mount *mnt) 466 { 467 int ret = 0; 468 469 lock_mount_hash(); 470 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD; 471 /* 472 * After storing MNT_WRITE_HOLD, we'll read the counters. This store 473 * should be visible before we do. 474 */ 475 smp_mb(); 476 477 /* 478 * With writers on hold, if this value is zero, then there are 479 * definitely no active writers (although held writers may subsequently 480 * increment the count, they'll have to wait, and decrement it after 481 * seeing MNT_READONLY). 482 * 483 * It is OK to have counter incremented on one CPU and decremented on 484 * another: the sum will add up correctly. The danger would be when we 485 * sum up each counter, if we read a counter before it is incremented, 486 * but then read another CPU's count which it has been subsequently 487 * decremented from -- we would see more decrements than we should. 488 * MNT_WRITE_HOLD protects against this scenario, because 489 * mnt_want_write first increments count, then smp_mb, then spins on 490 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while 491 * we're counting up here. 492 */ 493 if (mnt_get_writers(mnt) > 0) 494 ret = -EBUSY; 495 else 496 mnt->mnt.mnt_flags |= MNT_READONLY; 497 /* 498 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers 499 * that become unheld will see MNT_READONLY. 500 */ 501 smp_wmb(); 502 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD; 503 unlock_mount_hash(); 504 return ret; 505 } 506 507 static int __mnt_unmake_readonly(struct mount *mnt) 508 { 509 lock_mount_hash(); 510 mnt->mnt.mnt_flags &= ~MNT_READONLY; 511 unlock_mount_hash(); 512 return 0; 513 } 514 515 int sb_prepare_remount_readonly(struct super_block *sb) 516 { 517 struct mount *mnt; 518 int err = 0; 519 520 /* Racy optimization. Recheck the counter under MNT_WRITE_HOLD */ 521 if (atomic_long_read(&sb->s_remove_count)) 522 return -EBUSY; 523 524 lock_mount_hash(); 525 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) { 526 if (!(mnt->mnt.mnt_flags & MNT_READONLY)) { 527 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD; 528 smp_mb(); 529 if (mnt_get_writers(mnt) > 0) { 530 err = -EBUSY; 531 break; 532 } 533 } 534 } 535 if (!err && atomic_long_read(&sb->s_remove_count)) 536 err = -EBUSY; 537 538 if (!err) { 539 sb->s_readonly_remount = 1; 540 smp_wmb(); 541 } 542 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) { 543 if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD) 544 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD; 545 } 546 unlock_mount_hash(); 547 548 return err; 549 } 550 551 static void free_vfsmnt(struct mount *mnt) 552 { 553 kfree_const(mnt->mnt_devname); 554 #ifdef CONFIG_SMP 555 free_percpu(mnt->mnt_pcp); 556 #endif 557 kmem_cache_free(mnt_cache, mnt); 558 } 559 560 static void delayed_free_vfsmnt(struct rcu_head *head) 561 { 562 free_vfsmnt(container_of(head, struct mount, mnt_rcu)); 563 } 564 565 /* call under rcu_read_lock */ 566 int __legitimize_mnt(struct vfsmount *bastard, unsigned seq) 567 { 568 struct mount *mnt; 569 if (read_seqretry(&mount_lock, seq)) 570 return 1; 571 if (bastard == NULL) 572 return 0; 573 mnt = real_mount(bastard); 574 mnt_add_count(mnt, 1); 575 smp_mb(); // see mntput_no_expire() 576 if (likely(!read_seqretry(&mount_lock, seq))) 577 return 0; 578 if (bastard->mnt_flags & MNT_SYNC_UMOUNT) { 579 mnt_add_count(mnt, -1); 580 return 1; 581 } 582 lock_mount_hash(); 583 if (unlikely(bastard->mnt_flags & MNT_DOOMED)) { 584 mnt_add_count(mnt, -1); 585 unlock_mount_hash(); 586 return 1; 587 } 588 unlock_mount_hash(); 589 /* caller will mntput() */ 590 return -1; 591 } 592 593 /* call under rcu_read_lock */ 594 bool legitimize_mnt(struct vfsmount *bastard, unsigned seq) 595 { 596 int res = __legitimize_mnt(bastard, seq); 597 if (likely(!res)) 598 return true; 599 if (unlikely(res < 0)) { 600 rcu_read_unlock(); 601 mntput(bastard); 602 rcu_read_lock(); 603 } 604 return false; 605 } 606 607 /* 608 * find the first mount at @dentry on vfsmount @mnt. 609 * call under rcu_read_lock() 610 */ 611 struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry) 612 { 613 struct hlist_head *head = m_hash(mnt, dentry); 614 struct mount *p; 615 616 hlist_for_each_entry_rcu(p, head, mnt_hash) 617 if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry) 618 return p; 619 return NULL; 620 } 621 622 /* 623 * lookup_mnt - Return the first child mount mounted at path 624 * 625 * "First" means first mounted chronologically. If you create the 626 * following mounts: 627 * 628 * mount /dev/sda1 /mnt 629 * mount /dev/sda2 /mnt 630 * mount /dev/sda3 /mnt 631 * 632 * Then lookup_mnt() on the base /mnt dentry in the root mount will 633 * return successively the root dentry and vfsmount of /dev/sda1, then 634 * /dev/sda2, then /dev/sda3, then NULL. 635 * 636 * lookup_mnt takes a reference to the found vfsmount. 637 */ 638 struct vfsmount *lookup_mnt(const struct path *path) 639 { 640 struct mount *child_mnt; 641 struct vfsmount *m; 642 unsigned seq; 643 644 rcu_read_lock(); 645 do { 646 seq = read_seqbegin(&mount_lock); 647 child_mnt = __lookup_mnt(path->mnt, path->dentry); 648 m = child_mnt ? &child_mnt->mnt : NULL; 649 } while (!legitimize_mnt(m, seq)); 650 rcu_read_unlock(); 651 return m; 652 } 653 654 /* 655 * __is_local_mountpoint - Test to see if dentry is a mountpoint in the 656 * current mount namespace. 657 * 658 * The common case is dentries are not mountpoints at all and that 659 * test is handled inline. For the slow case when we are actually 660 * dealing with a mountpoint of some kind, walk through all of the 661 * mounts in the current mount namespace and test to see if the dentry 662 * is a mountpoint. 663 * 664 * The mount_hashtable is not usable in the context because we 665 * need to identify all mounts that may be in the current mount 666 * namespace not just a mount that happens to have some specified 667 * parent mount. 668 */ 669 bool __is_local_mountpoint(struct dentry *dentry) 670 { 671 struct mnt_namespace *ns = current->nsproxy->mnt_ns; 672 struct mount *mnt; 673 bool is_covered = false; 674 675 if (!d_mountpoint(dentry)) 676 goto out; 677 678 down_read(&namespace_sem); 679 list_for_each_entry(mnt, &ns->list, mnt_list) { 680 is_covered = (mnt->mnt_mountpoint == dentry); 681 if (is_covered) 682 break; 683 } 684 up_read(&namespace_sem); 685 out: 686 return is_covered; 687 } 688 689 static struct mountpoint *lookup_mountpoint(struct dentry *dentry) 690 { 691 struct hlist_head *chain = mp_hash(dentry); 692 struct mountpoint *mp; 693 694 hlist_for_each_entry(mp, chain, m_hash) { 695 if (mp->m_dentry == dentry) { 696 mp->m_count++; 697 return mp; 698 } 699 } 700 return NULL; 701 } 702 703 static struct mountpoint *get_mountpoint(struct dentry *dentry) 704 { 705 struct mountpoint *mp, *new = NULL; 706 int ret; 707 708 if (d_mountpoint(dentry)) { 709 /* might be worth a WARN_ON() */ 710 if (d_unlinked(dentry)) 711 return ERR_PTR(-ENOENT); 712 mountpoint: 713 read_seqlock_excl(&mount_lock); 714 mp = lookup_mountpoint(dentry); 715 read_sequnlock_excl(&mount_lock); 716 if (mp) 717 goto done; 718 } 719 720 if (!new) 721 new = kmalloc(sizeof(struct mountpoint), GFP_KERNEL); 722 if (!new) 723 return ERR_PTR(-ENOMEM); 724 725 726 /* Exactly one processes may set d_mounted */ 727 ret = d_set_mounted(dentry); 728 729 /* Someone else set d_mounted? */ 730 if (ret == -EBUSY) 731 goto mountpoint; 732 733 /* The dentry is not available as a mountpoint? */ 734 mp = ERR_PTR(ret); 735 if (ret) 736 goto done; 737 738 /* Add the new mountpoint to the hash table */ 739 read_seqlock_excl(&mount_lock); 740 new->m_dentry = dentry; 741 new->m_count = 1; 742 hlist_add_head(&new->m_hash, mp_hash(dentry)); 743 INIT_HLIST_HEAD(&new->m_list); 744 read_sequnlock_excl(&mount_lock); 745 746 mp = new; 747 new = NULL; 748 done: 749 kfree(new); 750 return mp; 751 } 752 753 static void put_mountpoint(struct mountpoint *mp) 754 { 755 if (!--mp->m_count) { 756 struct dentry *dentry = mp->m_dentry; 757 BUG_ON(!hlist_empty(&mp->m_list)); 758 spin_lock(&dentry->d_lock); 759 dentry->d_flags &= ~DCACHE_MOUNTED; 760 spin_unlock(&dentry->d_lock); 761 hlist_del(&mp->m_hash); 762 kfree(mp); 763 } 764 } 765 766 static inline int check_mnt(struct mount *mnt) 767 { 768 return mnt->mnt_ns == current->nsproxy->mnt_ns; 769 } 770 771 /* 772 * vfsmount lock must be held for write 773 */ 774 static void touch_mnt_namespace(struct mnt_namespace *ns) 775 { 776 if (ns) { 777 ns->event = ++event; 778 wake_up_interruptible(&ns->poll); 779 } 780 } 781 782 /* 783 * vfsmount lock must be held for write 784 */ 785 static void __touch_mnt_namespace(struct mnt_namespace *ns) 786 { 787 if (ns && ns->event != event) { 788 ns->event = event; 789 wake_up_interruptible(&ns->poll); 790 } 791 } 792 793 /* 794 * vfsmount lock must be held for write 795 */ 796 static void unhash_mnt(struct mount *mnt) 797 { 798 mnt->mnt_parent = mnt; 799 mnt->mnt_mountpoint = mnt->mnt.mnt_root; 800 list_del_init(&mnt->mnt_child); 801 hlist_del_init_rcu(&mnt->mnt_hash); 802 hlist_del_init(&mnt->mnt_mp_list); 803 put_mountpoint(mnt->mnt_mp); 804 mnt->mnt_mp = NULL; 805 } 806 807 /* 808 * vfsmount lock must be held for write 809 */ 810 static void detach_mnt(struct mount *mnt, struct path *old_path) 811 { 812 old_path->dentry = mnt->mnt_mountpoint; 813 old_path->mnt = &mnt->mnt_parent->mnt; 814 unhash_mnt(mnt); 815 } 816 817 /* 818 * vfsmount lock must be held for write 819 */ 820 static void umount_mnt(struct mount *mnt) 821 { 822 /* old mountpoint will be dropped when we can do that */ 823 mnt->mnt_ex_mountpoint = mnt->mnt_mountpoint; 824 unhash_mnt(mnt); 825 } 826 827 /* 828 * vfsmount lock must be held for write 829 */ 830 void mnt_set_mountpoint(struct mount *mnt, 831 struct mountpoint *mp, 832 struct mount *child_mnt) 833 { 834 mp->m_count++; 835 mnt_add_count(mnt, 1); /* essentially, that's mntget */ 836 child_mnt->mnt_mountpoint = dget(mp->m_dentry); 837 child_mnt->mnt_parent = mnt; 838 child_mnt->mnt_mp = mp; 839 hlist_add_head(&child_mnt->mnt_mp_list, &mp->m_list); 840 } 841 842 static void __attach_mnt(struct mount *mnt, struct mount *parent) 843 { 844 hlist_add_head_rcu(&mnt->mnt_hash, 845 m_hash(&parent->mnt, mnt->mnt_mountpoint)); 846 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts); 847 } 848 849 /* 850 * vfsmount lock must be held for write 851 */ 852 static void attach_mnt(struct mount *mnt, 853 struct mount *parent, 854 struct mountpoint *mp) 855 { 856 mnt_set_mountpoint(parent, mp, mnt); 857 __attach_mnt(mnt, parent); 858 } 859 860 void mnt_change_mountpoint(struct mount *parent, struct mountpoint *mp, struct mount *mnt) 861 { 862 struct mountpoint *old_mp = mnt->mnt_mp; 863 struct dentry *old_mountpoint = mnt->mnt_mountpoint; 864 struct mount *old_parent = mnt->mnt_parent; 865 866 list_del_init(&mnt->mnt_child); 867 hlist_del_init(&mnt->mnt_mp_list); 868 hlist_del_init_rcu(&mnt->mnt_hash); 869 870 attach_mnt(mnt, parent, mp); 871 872 put_mountpoint(old_mp); 873 874 /* 875 * Safely avoid even the suggestion this code might sleep or 876 * lock the mount hash by taking advantage of the knowledge that 877 * mnt_change_mountpoint will not release the final reference 878 * to a mountpoint. 879 * 880 * During mounting, the mount passed in as the parent mount will 881 * continue to use the old mountpoint and during unmounting, the 882 * old mountpoint will continue to exist until namespace_unlock, 883 * which happens well after mnt_change_mountpoint. 884 */ 885 spin_lock(&old_mountpoint->d_lock); 886 old_mountpoint->d_lockref.count--; 887 spin_unlock(&old_mountpoint->d_lock); 888 889 mnt_add_count(old_parent, -1); 890 } 891 892 /* 893 * vfsmount lock must be held for write 894 */ 895 static void commit_tree(struct mount *mnt) 896 { 897 struct mount *parent = mnt->mnt_parent; 898 struct mount *m; 899 LIST_HEAD(head); 900 struct mnt_namespace *n = parent->mnt_ns; 901 902 BUG_ON(parent == mnt); 903 904 list_add_tail(&head, &mnt->mnt_list); 905 list_for_each_entry(m, &head, mnt_list) 906 m->mnt_ns = n; 907 908 list_splice(&head, n->list.prev); 909 910 n->mounts += n->pending_mounts; 911 n->pending_mounts = 0; 912 913 __attach_mnt(mnt, parent); 914 touch_mnt_namespace(n); 915 } 916 917 static struct mount *next_mnt(struct mount *p, struct mount *root) 918 { 919 struct list_head *next = p->mnt_mounts.next; 920 if (next == &p->mnt_mounts) { 921 while (1) { 922 if (p == root) 923 return NULL; 924 next = p->mnt_child.next; 925 if (next != &p->mnt_parent->mnt_mounts) 926 break; 927 p = p->mnt_parent; 928 } 929 } 930 return list_entry(next, struct mount, mnt_child); 931 } 932 933 static struct mount *skip_mnt_tree(struct mount *p) 934 { 935 struct list_head *prev = p->mnt_mounts.prev; 936 while (prev != &p->mnt_mounts) { 937 p = list_entry(prev, struct mount, mnt_child); 938 prev = p->mnt_mounts.prev; 939 } 940 return p; 941 } 942 943 struct vfsmount * 944 vfs_kern_mount(struct file_system_type *type, int flags, const char *name, void *data) 945 { 946 struct mount *mnt; 947 struct dentry *root; 948 949 if (!type) 950 return ERR_PTR(-ENODEV); 951 952 mnt = alloc_vfsmnt(name); 953 if (!mnt) 954 return ERR_PTR(-ENOMEM); 955 956 if (flags & SB_KERNMOUNT) 957 mnt->mnt.mnt_flags = MNT_INTERNAL; 958 959 root = mount_fs(type, flags, name, data); 960 if (IS_ERR(root)) { 961 mnt_free_id(mnt); 962 free_vfsmnt(mnt); 963 return ERR_CAST(root); 964 } 965 966 mnt->mnt.mnt_root = root; 967 mnt->mnt.mnt_sb = root->d_sb; 968 mnt->mnt_mountpoint = mnt->mnt.mnt_root; 969 mnt->mnt_parent = mnt; 970 lock_mount_hash(); 971 list_add_tail(&mnt->mnt_instance, &root->d_sb->s_mounts); 972 unlock_mount_hash(); 973 return &mnt->mnt; 974 } 975 EXPORT_SYMBOL_GPL(vfs_kern_mount); 976 977 struct vfsmount * 978 vfs_submount(const struct dentry *mountpoint, struct file_system_type *type, 979 const char *name, void *data) 980 { 981 /* Until it is worked out how to pass the user namespace 982 * through from the parent mount to the submount don't support 983 * unprivileged mounts with submounts. 984 */ 985 if (mountpoint->d_sb->s_user_ns != &init_user_ns) 986 return ERR_PTR(-EPERM); 987 988 return vfs_kern_mount(type, SB_SUBMOUNT, name, data); 989 } 990 EXPORT_SYMBOL_GPL(vfs_submount); 991 992 static struct mount *clone_mnt(struct mount *old, struct dentry *root, 993 int flag) 994 { 995 struct super_block *sb = old->mnt.mnt_sb; 996 struct mount *mnt; 997 int err; 998 999 mnt = alloc_vfsmnt(old->mnt_devname); 1000 if (!mnt) 1001 return ERR_PTR(-ENOMEM); 1002 1003 if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE)) 1004 mnt->mnt_group_id = 0; /* not a peer of original */ 1005 else 1006 mnt->mnt_group_id = old->mnt_group_id; 1007 1008 if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) { 1009 err = mnt_alloc_group_id(mnt); 1010 if (err) 1011 goto out_free; 1012 } 1013 1014 mnt->mnt.mnt_flags = old->mnt.mnt_flags; 1015 mnt->mnt.mnt_flags &= ~(MNT_WRITE_HOLD|MNT_MARKED|MNT_INTERNAL); 1016 /* Don't allow unprivileged users to change mount flags */ 1017 if (flag & CL_UNPRIVILEGED) { 1018 mnt->mnt.mnt_flags |= MNT_LOCK_ATIME; 1019 1020 if (mnt->mnt.mnt_flags & MNT_READONLY) 1021 mnt->mnt.mnt_flags |= MNT_LOCK_READONLY; 1022 1023 if (mnt->mnt.mnt_flags & MNT_NODEV) 1024 mnt->mnt.mnt_flags |= MNT_LOCK_NODEV; 1025 1026 if (mnt->mnt.mnt_flags & MNT_NOSUID) 1027 mnt->mnt.mnt_flags |= MNT_LOCK_NOSUID; 1028 1029 if (mnt->mnt.mnt_flags & MNT_NOEXEC) 1030 mnt->mnt.mnt_flags |= MNT_LOCK_NOEXEC; 1031 } 1032 1033 /* Don't allow unprivileged users to reveal what is under a mount */ 1034 if ((flag & CL_UNPRIVILEGED) && 1035 (!(flag & CL_EXPIRE) || list_empty(&old->mnt_expire))) 1036 mnt->mnt.mnt_flags |= MNT_LOCKED; 1037 1038 atomic_inc(&sb->s_active); 1039 mnt->mnt.mnt_sb = sb; 1040 mnt->mnt.mnt_root = dget(root); 1041 mnt->mnt_mountpoint = mnt->mnt.mnt_root; 1042 mnt->mnt_parent = mnt; 1043 lock_mount_hash(); 1044 list_add_tail(&mnt->mnt_instance, &sb->s_mounts); 1045 unlock_mount_hash(); 1046 1047 if ((flag & CL_SLAVE) || 1048 ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) { 1049 list_add(&mnt->mnt_slave, &old->mnt_slave_list); 1050 mnt->mnt_master = old; 1051 CLEAR_MNT_SHARED(mnt); 1052 } else if (!(flag & CL_PRIVATE)) { 1053 if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old)) 1054 list_add(&mnt->mnt_share, &old->mnt_share); 1055 if (IS_MNT_SLAVE(old)) 1056 list_add(&mnt->mnt_slave, &old->mnt_slave); 1057 mnt->mnt_master = old->mnt_master; 1058 } else { 1059 CLEAR_MNT_SHARED(mnt); 1060 } 1061 if (flag & CL_MAKE_SHARED) 1062 set_mnt_shared(mnt); 1063 1064 /* stick the duplicate mount on the same expiry list 1065 * as the original if that was on one */ 1066 if (flag & CL_EXPIRE) { 1067 if (!list_empty(&old->mnt_expire)) 1068 list_add(&mnt->mnt_expire, &old->mnt_expire); 1069 } 1070 1071 return mnt; 1072 1073 out_free: 1074 mnt_free_id(mnt); 1075 free_vfsmnt(mnt); 1076 return ERR_PTR(err); 1077 } 1078 1079 static void cleanup_mnt(struct mount *mnt) 1080 { 1081 /* 1082 * This probably indicates that somebody messed 1083 * up a mnt_want/drop_write() pair. If this 1084 * happens, the filesystem was probably unable 1085 * to make r/w->r/o transitions. 1086 */ 1087 /* 1088 * The locking used to deal with mnt_count decrement provides barriers, 1089 * so mnt_get_writers() below is safe. 1090 */ 1091 WARN_ON(mnt_get_writers(mnt)); 1092 if (unlikely(mnt->mnt_pins.first)) 1093 mnt_pin_kill(mnt); 1094 fsnotify_vfsmount_delete(&mnt->mnt); 1095 dput(mnt->mnt.mnt_root); 1096 deactivate_super(mnt->mnt.mnt_sb); 1097 mnt_free_id(mnt); 1098 call_rcu(&mnt->mnt_rcu, delayed_free_vfsmnt); 1099 } 1100 1101 static void __cleanup_mnt(struct rcu_head *head) 1102 { 1103 cleanup_mnt(container_of(head, struct mount, mnt_rcu)); 1104 } 1105 1106 static LLIST_HEAD(delayed_mntput_list); 1107 static void delayed_mntput(struct work_struct *unused) 1108 { 1109 struct llist_node *node = llist_del_all(&delayed_mntput_list); 1110 struct mount *m, *t; 1111 1112 llist_for_each_entry_safe(m, t, node, mnt_llist) 1113 cleanup_mnt(m); 1114 } 1115 static DECLARE_DELAYED_WORK(delayed_mntput_work, delayed_mntput); 1116 1117 static void mntput_no_expire(struct mount *mnt) 1118 { 1119 rcu_read_lock(); 1120 if (likely(READ_ONCE(mnt->mnt_ns))) { 1121 /* 1122 * Since we don't do lock_mount_hash() here, 1123 * ->mnt_ns can change under us. However, if it's 1124 * non-NULL, then there's a reference that won't 1125 * be dropped until after an RCU delay done after 1126 * turning ->mnt_ns NULL. So if we observe it 1127 * non-NULL under rcu_read_lock(), the reference 1128 * we are dropping is not the final one. 1129 */ 1130 mnt_add_count(mnt, -1); 1131 rcu_read_unlock(); 1132 return; 1133 } 1134 lock_mount_hash(); 1135 /* 1136 * make sure that if __legitimize_mnt() has not seen us grab 1137 * mount_lock, we'll see their refcount increment here. 1138 */ 1139 smp_mb(); 1140 mnt_add_count(mnt, -1); 1141 if (mnt_get_count(mnt)) { 1142 rcu_read_unlock(); 1143 unlock_mount_hash(); 1144 return; 1145 } 1146 if (unlikely(mnt->mnt.mnt_flags & MNT_DOOMED)) { 1147 rcu_read_unlock(); 1148 unlock_mount_hash(); 1149 return; 1150 } 1151 mnt->mnt.mnt_flags |= MNT_DOOMED; 1152 rcu_read_unlock(); 1153 1154 list_del(&mnt->mnt_instance); 1155 1156 if (unlikely(!list_empty(&mnt->mnt_mounts))) { 1157 struct mount *p, *tmp; 1158 list_for_each_entry_safe(p, tmp, &mnt->mnt_mounts, mnt_child) { 1159 umount_mnt(p); 1160 } 1161 } 1162 unlock_mount_hash(); 1163 1164 if (likely(!(mnt->mnt.mnt_flags & MNT_INTERNAL))) { 1165 struct task_struct *task = current; 1166 if (likely(!(task->flags & PF_KTHREAD))) { 1167 init_task_work(&mnt->mnt_rcu, __cleanup_mnt); 1168 if (!task_work_add(task, &mnt->mnt_rcu, true)) 1169 return; 1170 } 1171 if (llist_add(&mnt->mnt_llist, &delayed_mntput_list)) 1172 schedule_delayed_work(&delayed_mntput_work, 1); 1173 return; 1174 } 1175 cleanup_mnt(mnt); 1176 } 1177 1178 void mntput(struct vfsmount *mnt) 1179 { 1180 if (mnt) { 1181 struct mount *m = real_mount(mnt); 1182 /* avoid cacheline pingpong, hope gcc doesn't get "smart" */ 1183 if (unlikely(m->mnt_expiry_mark)) 1184 m->mnt_expiry_mark = 0; 1185 mntput_no_expire(m); 1186 } 1187 } 1188 EXPORT_SYMBOL(mntput); 1189 1190 struct vfsmount *mntget(struct vfsmount *mnt) 1191 { 1192 if (mnt) 1193 mnt_add_count(real_mount(mnt), 1); 1194 return mnt; 1195 } 1196 EXPORT_SYMBOL(mntget); 1197 1198 /* path_is_mountpoint() - Check if path is a mount in the current 1199 * namespace. 1200 * 1201 * d_mountpoint() can only be used reliably to establish if a dentry is 1202 * not mounted in any namespace and that common case is handled inline. 1203 * d_mountpoint() isn't aware of the possibility there may be multiple 1204 * mounts using a given dentry in a different namespace. This function 1205 * checks if the passed in path is a mountpoint rather than the dentry 1206 * alone. 1207 */ 1208 bool path_is_mountpoint(const struct path *path) 1209 { 1210 unsigned seq; 1211 bool res; 1212 1213 if (!d_mountpoint(path->dentry)) 1214 return false; 1215 1216 rcu_read_lock(); 1217 do { 1218 seq = read_seqbegin(&mount_lock); 1219 res = __path_is_mountpoint(path); 1220 } while (read_seqretry(&mount_lock, seq)); 1221 rcu_read_unlock(); 1222 1223 return res; 1224 } 1225 EXPORT_SYMBOL(path_is_mountpoint); 1226 1227 struct vfsmount *mnt_clone_internal(const struct path *path) 1228 { 1229 struct mount *p; 1230 p = clone_mnt(real_mount(path->mnt), path->dentry, CL_PRIVATE); 1231 if (IS_ERR(p)) 1232 return ERR_CAST(p); 1233 p->mnt.mnt_flags |= MNT_INTERNAL; 1234 return &p->mnt; 1235 } 1236 1237 #ifdef CONFIG_PROC_FS 1238 /* iterator; we want it to have access to namespace_sem, thus here... */ 1239 static void *m_start(struct seq_file *m, loff_t *pos) 1240 { 1241 struct proc_mounts *p = m->private; 1242 1243 down_read(&namespace_sem); 1244 if (p->cached_event == p->ns->event) { 1245 void *v = p->cached_mount; 1246 if (*pos == p->cached_index) 1247 return v; 1248 if (*pos == p->cached_index + 1) { 1249 v = seq_list_next(v, &p->ns->list, &p->cached_index); 1250 return p->cached_mount = v; 1251 } 1252 } 1253 1254 p->cached_event = p->ns->event; 1255 p->cached_mount = seq_list_start(&p->ns->list, *pos); 1256 p->cached_index = *pos; 1257 return p->cached_mount; 1258 } 1259 1260 static void *m_next(struct seq_file *m, void *v, loff_t *pos) 1261 { 1262 struct proc_mounts *p = m->private; 1263 1264 p->cached_mount = seq_list_next(v, &p->ns->list, pos); 1265 p->cached_index = *pos; 1266 return p->cached_mount; 1267 } 1268 1269 static void m_stop(struct seq_file *m, void *v) 1270 { 1271 up_read(&namespace_sem); 1272 } 1273 1274 static int m_show(struct seq_file *m, void *v) 1275 { 1276 struct proc_mounts *p = m->private; 1277 struct mount *r = list_entry(v, struct mount, mnt_list); 1278 return p->show(m, &r->mnt); 1279 } 1280 1281 const struct seq_operations mounts_op = { 1282 .start = m_start, 1283 .next = m_next, 1284 .stop = m_stop, 1285 .show = m_show, 1286 }; 1287 #endif /* CONFIG_PROC_FS */ 1288 1289 /** 1290 * may_umount_tree - check if a mount tree is busy 1291 * @mnt: root of mount tree 1292 * 1293 * This is called to check if a tree of mounts has any 1294 * open files, pwds, chroots or sub mounts that are 1295 * busy. 1296 */ 1297 int may_umount_tree(struct vfsmount *m) 1298 { 1299 struct mount *mnt = real_mount(m); 1300 int actual_refs = 0; 1301 int minimum_refs = 0; 1302 struct mount *p; 1303 BUG_ON(!m); 1304 1305 /* write lock needed for mnt_get_count */ 1306 lock_mount_hash(); 1307 for (p = mnt; p; p = next_mnt(p, mnt)) { 1308 actual_refs += mnt_get_count(p); 1309 minimum_refs += 2; 1310 } 1311 unlock_mount_hash(); 1312 1313 if (actual_refs > minimum_refs) 1314 return 0; 1315 1316 return 1; 1317 } 1318 1319 EXPORT_SYMBOL(may_umount_tree); 1320 1321 /** 1322 * may_umount - check if a mount point is busy 1323 * @mnt: root of mount 1324 * 1325 * This is called to check if a mount point has any 1326 * open files, pwds, chroots or sub mounts. If the 1327 * mount has sub mounts this will return busy 1328 * regardless of whether the sub mounts are busy. 1329 * 1330 * Doesn't take quota and stuff into account. IOW, in some cases it will 1331 * give false negatives. The main reason why it's here is that we need 1332 * a non-destructive way to look for easily umountable filesystems. 1333 */ 1334 int may_umount(struct vfsmount *mnt) 1335 { 1336 int ret = 1; 1337 down_read(&namespace_sem); 1338 lock_mount_hash(); 1339 if (propagate_mount_busy(real_mount(mnt), 2)) 1340 ret = 0; 1341 unlock_mount_hash(); 1342 up_read(&namespace_sem); 1343 return ret; 1344 } 1345 1346 EXPORT_SYMBOL(may_umount); 1347 1348 static HLIST_HEAD(unmounted); /* protected by namespace_sem */ 1349 1350 static void namespace_unlock(void) 1351 { 1352 struct hlist_head head; 1353 1354 hlist_move_list(&unmounted, &head); 1355 1356 up_write(&namespace_sem); 1357 1358 if (likely(hlist_empty(&head))) 1359 return; 1360 1361 synchronize_rcu_expedited(); 1362 1363 group_pin_kill(&head); 1364 } 1365 1366 static inline void namespace_lock(void) 1367 { 1368 down_write(&namespace_sem); 1369 } 1370 1371 enum umount_tree_flags { 1372 UMOUNT_SYNC = 1, 1373 UMOUNT_PROPAGATE = 2, 1374 UMOUNT_CONNECTED = 4, 1375 }; 1376 1377 static bool disconnect_mount(struct mount *mnt, enum umount_tree_flags how) 1378 { 1379 /* Leaving mounts connected is only valid for lazy umounts */ 1380 if (how & UMOUNT_SYNC) 1381 return true; 1382 1383 /* A mount without a parent has nothing to be connected to */ 1384 if (!mnt_has_parent(mnt)) 1385 return true; 1386 1387 /* Because the reference counting rules change when mounts are 1388 * unmounted and connected, umounted mounts may not be 1389 * connected to mounted mounts. 1390 */ 1391 if (!(mnt->mnt_parent->mnt.mnt_flags & MNT_UMOUNT)) 1392 return true; 1393 1394 /* Has it been requested that the mount remain connected? */ 1395 if (how & UMOUNT_CONNECTED) 1396 return false; 1397 1398 /* Is the mount locked such that it needs to remain connected? */ 1399 if (IS_MNT_LOCKED(mnt)) 1400 return false; 1401 1402 /* By default disconnect the mount */ 1403 return true; 1404 } 1405 1406 /* 1407 * mount_lock must be held 1408 * namespace_sem must be held for write 1409 */ 1410 static void umount_tree(struct mount *mnt, enum umount_tree_flags how) 1411 { 1412 LIST_HEAD(tmp_list); 1413 struct mount *p; 1414 1415 if (how & UMOUNT_PROPAGATE) 1416 propagate_mount_unlock(mnt); 1417 1418 /* Gather the mounts to umount */ 1419 for (p = mnt; p; p = next_mnt(p, mnt)) { 1420 p->mnt.mnt_flags |= MNT_UMOUNT; 1421 list_move(&p->mnt_list, &tmp_list); 1422 } 1423 1424 /* Hide the mounts from mnt_mounts */ 1425 list_for_each_entry(p, &tmp_list, mnt_list) { 1426 list_del_init(&p->mnt_child); 1427 } 1428 1429 /* Add propogated mounts to the tmp_list */ 1430 if (how & UMOUNT_PROPAGATE) 1431 propagate_umount(&tmp_list); 1432 1433 while (!list_empty(&tmp_list)) { 1434 struct mnt_namespace *ns; 1435 bool disconnect; 1436 p = list_first_entry(&tmp_list, struct mount, mnt_list); 1437 list_del_init(&p->mnt_expire); 1438 list_del_init(&p->mnt_list); 1439 ns = p->mnt_ns; 1440 if (ns) { 1441 ns->mounts--; 1442 __touch_mnt_namespace(ns); 1443 } 1444 p->mnt_ns = NULL; 1445 if (how & UMOUNT_SYNC) 1446 p->mnt.mnt_flags |= MNT_SYNC_UMOUNT; 1447 1448 disconnect = disconnect_mount(p, how); 1449 1450 pin_insert_group(&p->mnt_umount, &p->mnt_parent->mnt, 1451 disconnect ? &unmounted : NULL); 1452 if (mnt_has_parent(p)) { 1453 mnt_add_count(p->mnt_parent, -1); 1454 if (!disconnect) { 1455 /* Don't forget about p */ 1456 list_add_tail(&p->mnt_child, &p->mnt_parent->mnt_mounts); 1457 } else { 1458 umount_mnt(p); 1459 } 1460 } 1461 change_mnt_propagation(p, MS_PRIVATE); 1462 } 1463 } 1464 1465 static void shrink_submounts(struct mount *mnt); 1466 1467 static int do_umount(struct mount *mnt, int flags) 1468 { 1469 struct super_block *sb = mnt->mnt.mnt_sb; 1470 int retval; 1471 1472 retval = security_sb_umount(&mnt->mnt, flags); 1473 if (retval) 1474 return retval; 1475 1476 /* 1477 * Allow userspace to request a mountpoint be expired rather than 1478 * unmounting unconditionally. Unmount only happens if: 1479 * (1) the mark is already set (the mark is cleared by mntput()) 1480 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount] 1481 */ 1482 if (flags & MNT_EXPIRE) { 1483 if (&mnt->mnt == current->fs->root.mnt || 1484 flags & (MNT_FORCE | MNT_DETACH)) 1485 return -EINVAL; 1486 1487 /* 1488 * probably don't strictly need the lock here if we examined 1489 * all race cases, but it's a slowpath. 1490 */ 1491 lock_mount_hash(); 1492 if (mnt_get_count(mnt) != 2) { 1493 unlock_mount_hash(); 1494 return -EBUSY; 1495 } 1496 unlock_mount_hash(); 1497 1498 if (!xchg(&mnt->mnt_expiry_mark, 1)) 1499 return -EAGAIN; 1500 } 1501 1502 /* 1503 * If we may have to abort operations to get out of this 1504 * mount, and they will themselves hold resources we must 1505 * allow the fs to do things. In the Unix tradition of 1506 * 'Gee thats tricky lets do it in userspace' the umount_begin 1507 * might fail to complete on the first run through as other tasks 1508 * must return, and the like. Thats for the mount program to worry 1509 * about for the moment. 1510 */ 1511 1512 if (flags & MNT_FORCE && sb->s_op->umount_begin) { 1513 sb->s_op->umount_begin(sb); 1514 } 1515 1516 /* 1517 * No sense to grab the lock for this test, but test itself looks 1518 * somewhat bogus. Suggestions for better replacement? 1519 * Ho-hum... In principle, we might treat that as umount + switch 1520 * to rootfs. GC would eventually take care of the old vfsmount. 1521 * Actually it makes sense, especially if rootfs would contain a 1522 * /reboot - static binary that would close all descriptors and 1523 * call reboot(9). Then init(8) could umount root and exec /reboot. 1524 */ 1525 if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) { 1526 /* 1527 * Special case for "unmounting" root ... 1528 * we just try to remount it readonly. 1529 */ 1530 if (!ns_capable(sb->s_user_ns, CAP_SYS_ADMIN)) 1531 return -EPERM; 1532 down_write(&sb->s_umount); 1533 if (!sb_rdonly(sb)) 1534 retval = do_remount_sb(sb, SB_RDONLY, NULL, 0); 1535 up_write(&sb->s_umount); 1536 return retval; 1537 } 1538 1539 namespace_lock(); 1540 lock_mount_hash(); 1541 1542 /* Recheck MNT_LOCKED with the locks held */ 1543 retval = -EINVAL; 1544 if (mnt->mnt.mnt_flags & MNT_LOCKED) 1545 goto out; 1546 1547 event++; 1548 if (flags & MNT_DETACH) { 1549 if (!list_empty(&mnt->mnt_list)) 1550 umount_tree(mnt, UMOUNT_PROPAGATE); 1551 retval = 0; 1552 } else { 1553 shrink_submounts(mnt); 1554 retval = -EBUSY; 1555 if (!propagate_mount_busy(mnt, 2)) { 1556 if (!list_empty(&mnt->mnt_list)) 1557 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC); 1558 retval = 0; 1559 } 1560 } 1561 out: 1562 unlock_mount_hash(); 1563 namespace_unlock(); 1564 return retval; 1565 } 1566 1567 /* 1568 * __detach_mounts - lazily unmount all mounts on the specified dentry 1569 * 1570 * During unlink, rmdir, and d_drop it is possible to loose the path 1571 * to an existing mountpoint, and wind up leaking the mount. 1572 * detach_mounts allows lazily unmounting those mounts instead of 1573 * leaking them. 1574 * 1575 * The caller may hold dentry->d_inode->i_mutex. 1576 */ 1577 void __detach_mounts(struct dentry *dentry) 1578 { 1579 struct mountpoint *mp; 1580 struct mount *mnt; 1581 1582 namespace_lock(); 1583 lock_mount_hash(); 1584 mp = lookup_mountpoint(dentry); 1585 if (IS_ERR_OR_NULL(mp)) 1586 goto out_unlock; 1587 1588 event++; 1589 while (!hlist_empty(&mp->m_list)) { 1590 mnt = hlist_entry(mp->m_list.first, struct mount, mnt_mp_list); 1591 if (mnt->mnt.mnt_flags & MNT_UMOUNT) { 1592 hlist_add_head(&mnt->mnt_umount.s_list, &unmounted); 1593 umount_mnt(mnt); 1594 } 1595 else umount_tree(mnt, UMOUNT_CONNECTED); 1596 } 1597 put_mountpoint(mp); 1598 out_unlock: 1599 unlock_mount_hash(); 1600 namespace_unlock(); 1601 } 1602 1603 /* 1604 * Is the caller allowed to modify his namespace? 1605 */ 1606 static inline bool may_mount(void) 1607 { 1608 return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN); 1609 } 1610 1611 static inline bool may_mandlock(void) 1612 { 1613 #ifndef CONFIG_MANDATORY_FILE_LOCKING 1614 return false; 1615 #endif 1616 return capable(CAP_SYS_ADMIN); 1617 } 1618 1619 /* 1620 * Now umount can handle mount points as well as block devices. 1621 * This is important for filesystems which use unnamed block devices. 1622 * 1623 * We now support a flag for forced unmount like the other 'big iron' 1624 * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD 1625 */ 1626 1627 int ksys_umount(char __user *name, int flags) 1628 { 1629 struct path path; 1630 struct mount *mnt; 1631 int retval; 1632 int lookup_flags = 0; 1633 1634 if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW)) 1635 return -EINVAL; 1636 1637 if (!may_mount()) 1638 return -EPERM; 1639 1640 if (!(flags & UMOUNT_NOFOLLOW)) 1641 lookup_flags |= LOOKUP_FOLLOW; 1642 1643 retval = user_path_mountpoint_at(AT_FDCWD, name, lookup_flags, &path); 1644 if (retval) 1645 goto out; 1646 mnt = real_mount(path.mnt); 1647 retval = -EINVAL; 1648 if (path.dentry != path.mnt->mnt_root) 1649 goto dput_and_out; 1650 if (!check_mnt(mnt)) 1651 goto dput_and_out; 1652 if (mnt->mnt.mnt_flags & MNT_LOCKED) /* Check optimistically */ 1653 goto dput_and_out; 1654 retval = -EPERM; 1655 if (flags & MNT_FORCE && !capable(CAP_SYS_ADMIN)) 1656 goto dput_and_out; 1657 1658 retval = do_umount(mnt, flags); 1659 dput_and_out: 1660 /* we mustn't call path_put() as that would clear mnt_expiry_mark */ 1661 dput(path.dentry); 1662 mntput_no_expire(mnt); 1663 out: 1664 return retval; 1665 } 1666 1667 SYSCALL_DEFINE2(umount, char __user *, name, int, flags) 1668 { 1669 return ksys_umount(name, flags); 1670 } 1671 1672 #ifdef __ARCH_WANT_SYS_OLDUMOUNT 1673 1674 /* 1675 * The 2.0 compatible umount. No flags. 1676 */ 1677 SYSCALL_DEFINE1(oldumount, char __user *, name) 1678 { 1679 return ksys_umount(name, 0); 1680 } 1681 1682 #endif 1683 1684 static bool is_mnt_ns_file(struct dentry *dentry) 1685 { 1686 /* Is this a proxy for a mount namespace? */ 1687 return dentry->d_op == &ns_dentry_operations && 1688 dentry->d_fsdata == &mntns_operations; 1689 } 1690 1691 struct mnt_namespace *to_mnt_ns(struct ns_common *ns) 1692 { 1693 return container_of(ns, struct mnt_namespace, ns); 1694 } 1695 1696 static bool mnt_ns_loop(struct dentry *dentry) 1697 { 1698 /* Could bind mounting the mount namespace inode cause a 1699 * mount namespace loop? 1700 */ 1701 struct mnt_namespace *mnt_ns; 1702 if (!is_mnt_ns_file(dentry)) 1703 return false; 1704 1705 mnt_ns = to_mnt_ns(get_proc_ns(dentry->d_inode)); 1706 return current->nsproxy->mnt_ns->seq >= mnt_ns->seq; 1707 } 1708 1709 struct mount *copy_tree(struct mount *mnt, struct dentry *dentry, 1710 int flag) 1711 { 1712 struct mount *res, *p, *q, *r, *parent; 1713 1714 if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(mnt)) 1715 return ERR_PTR(-EINVAL); 1716 1717 if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry)) 1718 return ERR_PTR(-EINVAL); 1719 1720 res = q = clone_mnt(mnt, dentry, flag); 1721 if (IS_ERR(q)) 1722 return q; 1723 1724 q->mnt_mountpoint = mnt->mnt_mountpoint; 1725 1726 p = mnt; 1727 list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) { 1728 struct mount *s; 1729 if (!is_subdir(r->mnt_mountpoint, dentry)) 1730 continue; 1731 1732 for (s = r; s; s = next_mnt(s, r)) { 1733 if (!(flag & CL_COPY_UNBINDABLE) && 1734 IS_MNT_UNBINDABLE(s)) { 1735 if (s->mnt.mnt_flags & MNT_LOCKED) { 1736 /* Both unbindable and locked. */ 1737 q = ERR_PTR(-EPERM); 1738 goto out; 1739 } else { 1740 s = skip_mnt_tree(s); 1741 continue; 1742 } 1743 } 1744 if (!(flag & CL_COPY_MNT_NS_FILE) && 1745 is_mnt_ns_file(s->mnt.mnt_root)) { 1746 s = skip_mnt_tree(s); 1747 continue; 1748 } 1749 while (p != s->mnt_parent) { 1750 p = p->mnt_parent; 1751 q = q->mnt_parent; 1752 } 1753 p = s; 1754 parent = q; 1755 q = clone_mnt(p, p->mnt.mnt_root, flag); 1756 if (IS_ERR(q)) 1757 goto out; 1758 lock_mount_hash(); 1759 list_add_tail(&q->mnt_list, &res->mnt_list); 1760 attach_mnt(q, parent, p->mnt_mp); 1761 unlock_mount_hash(); 1762 } 1763 } 1764 return res; 1765 out: 1766 if (res) { 1767 lock_mount_hash(); 1768 umount_tree(res, UMOUNT_SYNC); 1769 unlock_mount_hash(); 1770 } 1771 return q; 1772 } 1773 1774 /* Caller should check returned pointer for errors */ 1775 1776 struct vfsmount *collect_mounts(const struct path *path) 1777 { 1778 struct mount *tree; 1779 namespace_lock(); 1780 if (!check_mnt(real_mount(path->mnt))) 1781 tree = ERR_PTR(-EINVAL); 1782 else 1783 tree = copy_tree(real_mount(path->mnt), path->dentry, 1784 CL_COPY_ALL | CL_PRIVATE); 1785 namespace_unlock(); 1786 if (IS_ERR(tree)) 1787 return ERR_CAST(tree); 1788 return &tree->mnt; 1789 } 1790 1791 void drop_collected_mounts(struct vfsmount *mnt) 1792 { 1793 namespace_lock(); 1794 lock_mount_hash(); 1795 umount_tree(real_mount(mnt), 0); 1796 unlock_mount_hash(); 1797 namespace_unlock(); 1798 } 1799 1800 /** 1801 * clone_private_mount - create a private clone of a path 1802 * 1803 * This creates a new vfsmount, which will be the clone of @path. The new will 1804 * not be attached anywhere in the namespace and will be private (i.e. changes 1805 * to the originating mount won't be propagated into this). 1806 * 1807 * Release with mntput(). 1808 */ 1809 struct vfsmount *clone_private_mount(const struct path *path) 1810 { 1811 struct mount *old_mnt = real_mount(path->mnt); 1812 struct mount *new_mnt; 1813 1814 if (IS_MNT_UNBINDABLE(old_mnt)) 1815 return ERR_PTR(-EINVAL); 1816 1817 new_mnt = clone_mnt(old_mnt, path->dentry, CL_PRIVATE); 1818 if (IS_ERR(new_mnt)) 1819 return ERR_CAST(new_mnt); 1820 1821 return &new_mnt->mnt; 1822 } 1823 EXPORT_SYMBOL_GPL(clone_private_mount); 1824 1825 int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg, 1826 struct vfsmount *root) 1827 { 1828 struct mount *mnt; 1829 int res = f(root, arg); 1830 if (res) 1831 return res; 1832 list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) { 1833 res = f(&mnt->mnt, arg); 1834 if (res) 1835 return res; 1836 } 1837 return 0; 1838 } 1839 1840 static void cleanup_group_ids(struct mount *mnt, struct mount *end) 1841 { 1842 struct mount *p; 1843 1844 for (p = mnt; p != end; p = next_mnt(p, mnt)) { 1845 if (p->mnt_group_id && !IS_MNT_SHARED(p)) 1846 mnt_release_group_id(p); 1847 } 1848 } 1849 1850 static int invent_group_ids(struct mount *mnt, bool recurse) 1851 { 1852 struct mount *p; 1853 1854 for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) { 1855 if (!p->mnt_group_id && !IS_MNT_SHARED(p)) { 1856 int err = mnt_alloc_group_id(p); 1857 if (err) { 1858 cleanup_group_ids(mnt, p); 1859 return err; 1860 } 1861 } 1862 } 1863 1864 return 0; 1865 } 1866 1867 int count_mounts(struct mnt_namespace *ns, struct mount *mnt) 1868 { 1869 unsigned int max = READ_ONCE(sysctl_mount_max); 1870 unsigned int mounts = 0, old, pending, sum; 1871 struct mount *p; 1872 1873 for (p = mnt; p; p = next_mnt(p, mnt)) 1874 mounts++; 1875 1876 old = ns->mounts; 1877 pending = ns->pending_mounts; 1878 sum = old + pending; 1879 if ((old > sum) || 1880 (pending > sum) || 1881 (max < sum) || 1882 (mounts > (max - sum))) 1883 return -ENOSPC; 1884 1885 ns->pending_mounts = pending + mounts; 1886 return 0; 1887 } 1888 1889 /* 1890 * @source_mnt : mount tree to be attached 1891 * @nd : place the mount tree @source_mnt is attached 1892 * @parent_nd : if non-null, detach the source_mnt from its parent and 1893 * store the parent mount and mountpoint dentry. 1894 * (done when source_mnt is moved) 1895 * 1896 * NOTE: in the table below explains the semantics when a source mount 1897 * of a given type is attached to a destination mount of a given type. 1898 * --------------------------------------------------------------------------- 1899 * | BIND MOUNT OPERATION | 1900 * |************************************************************************** 1901 * | source-->| shared | private | slave | unbindable | 1902 * | dest | | | | | 1903 * | | | | | | | 1904 * | v | | | | | 1905 * |************************************************************************** 1906 * | shared | shared (++) | shared (+) | shared(+++)| invalid | 1907 * | | | | | | 1908 * |non-shared| shared (+) | private | slave (*) | invalid | 1909 * *************************************************************************** 1910 * A bind operation clones the source mount and mounts the clone on the 1911 * destination mount. 1912 * 1913 * (++) the cloned mount is propagated to all the mounts in the propagation 1914 * tree of the destination mount and the cloned mount is added to 1915 * the peer group of the source mount. 1916 * (+) the cloned mount is created under the destination mount and is marked 1917 * as shared. The cloned mount is added to the peer group of the source 1918 * mount. 1919 * (+++) the mount is propagated to all the mounts in the propagation tree 1920 * of the destination mount and the cloned mount is made slave 1921 * of the same master as that of the source mount. The cloned mount 1922 * is marked as 'shared and slave'. 1923 * (*) the cloned mount is made a slave of the same master as that of the 1924 * source mount. 1925 * 1926 * --------------------------------------------------------------------------- 1927 * | MOVE MOUNT OPERATION | 1928 * |************************************************************************** 1929 * | source-->| shared | private | slave | unbindable | 1930 * | dest | | | | | 1931 * | | | | | | | 1932 * | v | | | | | 1933 * |************************************************************************** 1934 * | shared | shared (+) | shared (+) | shared(+++) | invalid | 1935 * | | | | | | 1936 * |non-shared| shared (+*) | private | slave (*) | unbindable | 1937 * *************************************************************************** 1938 * 1939 * (+) the mount is moved to the destination. And is then propagated to 1940 * all the mounts in the propagation tree of the destination mount. 1941 * (+*) the mount is moved to the destination. 1942 * (+++) the mount is moved to the destination and is then propagated to 1943 * all the mounts belonging to the destination mount's propagation tree. 1944 * the mount is marked as 'shared and slave'. 1945 * (*) the mount continues to be a slave at the new location. 1946 * 1947 * if the source mount is a tree, the operations explained above is 1948 * applied to each mount in the tree. 1949 * Must be called without spinlocks held, since this function can sleep 1950 * in allocations. 1951 */ 1952 static int attach_recursive_mnt(struct mount *source_mnt, 1953 struct mount *dest_mnt, 1954 struct mountpoint *dest_mp, 1955 struct path *parent_path) 1956 { 1957 HLIST_HEAD(tree_list); 1958 struct mnt_namespace *ns = dest_mnt->mnt_ns; 1959 struct mountpoint *smp; 1960 struct mount *child, *p; 1961 struct hlist_node *n; 1962 int err; 1963 1964 /* Preallocate a mountpoint in case the new mounts need 1965 * to be tucked under other mounts. 1966 */ 1967 smp = get_mountpoint(source_mnt->mnt.mnt_root); 1968 if (IS_ERR(smp)) 1969 return PTR_ERR(smp); 1970 1971 /* Is there space to add these mounts to the mount namespace? */ 1972 if (!parent_path) { 1973 err = count_mounts(ns, source_mnt); 1974 if (err) 1975 goto out; 1976 } 1977 1978 if (IS_MNT_SHARED(dest_mnt)) { 1979 err = invent_group_ids(source_mnt, true); 1980 if (err) 1981 goto out; 1982 err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list); 1983 lock_mount_hash(); 1984 if (err) 1985 goto out_cleanup_ids; 1986 for (p = source_mnt; p; p = next_mnt(p, source_mnt)) 1987 set_mnt_shared(p); 1988 } else { 1989 lock_mount_hash(); 1990 } 1991 if (parent_path) { 1992 detach_mnt(source_mnt, parent_path); 1993 attach_mnt(source_mnt, dest_mnt, dest_mp); 1994 touch_mnt_namespace(source_mnt->mnt_ns); 1995 } else { 1996 mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt); 1997 commit_tree(source_mnt); 1998 } 1999 2000 hlist_for_each_entry_safe(child, n, &tree_list, mnt_hash) { 2001 struct mount *q; 2002 hlist_del_init(&child->mnt_hash); 2003 q = __lookup_mnt(&child->mnt_parent->mnt, 2004 child->mnt_mountpoint); 2005 if (q) 2006 mnt_change_mountpoint(child, smp, q); 2007 commit_tree(child); 2008 } 2009 put_mountpoint(smp); 2010 unlock_mount_hash(); 2011 2012 return 0; 2013 2014 out_cleanup_ids: 2015 while (!hlist_empty(&tree_list)) { 2016 child = hlist_entry(tree_list.first, struct mount, mnt_hash); 2017 child->mnt_parent->mnt_ns->pending_mounts = 0; 2018 umount_tree(child, UMOUNT_SYNC); 2019 } 2020 unlock_mount_hash(); 2021 cleanup_group_ids(source_mnt, NULL); 2022 out: 2023 ns->pending_mounts = 0; 2024 2025 read_seqlock_excl(&mount_lock); 2026 put_mountpoint(smp); 2027 read_sequnlock_excl(&mount_lock); 2028 2029 return err; 2030 } 2031 2032 static struct mountpoint *lock_mount(struct path *path) 2033 { 2034 struct vfsmount *mnt; 2035 struct dentry *dentry = path->dentry; 2036 retry: 2037 inode_lock(dentry->d_inode); 2038 if (unlikely(cant_mount(dentry))) { 2039 inode_unlock(dentry->d_inode); 2040 return ERR_PTR(-ENOENT); 2041 } 2042 namespace_lock(); 2043 mnt = lookup_mnt(path); 2044 if (likely(!mnt)) { 2045 struct mountpoint *mp = get_mountpoint(dentry); 2046 if (IS_ERR(mp)) { 2047 namespace_unlock(); 2048 inode_unlock(dentry->d_inode); 2049 return mp; 2050 } 2051 return mp; 2052 } 2053 namespace_unlock(); 2054 inode_unlock(path->dentry->d_inode); 2055 path_put(path); 2056 path->mnt = mnt; 2057 dentry = path->dentry = dget(mnt->mnt_root); 2058 goto retry; 2059 } 2060 2061 static void unlock_mount(struct mountpoint *where) 2062 { 2063 struct dentry *dentry = where->m_dentry; 2064 2065 read_seqlock_excl(&mount_lock); 2066 put_mountpoint(where); 2067 read_sequnlock_excl(&mount_lock); 2068 2069 namespace_unlock(); 2070 inode_unlock(dentry->d_inode); 2071 } 2072 2073 static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp) 2074 { 2075 if (mnt->mnt.mnt_sb->s_flags & SB_NOUSER) 2076 return -EINVAL; 2077 2078 if (d_is_dir(mp->m_dentry) != 2079 d_is_dir(mnt->mnt.mnt_root)) 2080 return -ENOTDIR; 2081 2082 return attach_recursive_mnt(mnt, p, mp, NULL); 2083 } 2084 2085 /* 2086 * Sanity check the flags to change_mnt_propagation. 2087 */ 2088 2089 static int flags_to_propagation_type(int ms_flags) 2090 { 2091 int type = ms_flags & ~(MS_REC | MS_SILENT); 2092 2093 /* Fail if any non-propagation flags are set */ 2094 if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE)) 2095 return 0; 2096 /* Only one propagation flag should be set */ 2097 if (!is_power_of_2(type)) 2098 return 0; 2099 return type; 2100 } 2101 2102 /* 2103 * recursively change the type of the mountpoint. 2104 */ 2105 static int do_change_type(struct path *path, int ms_flags) 2106 { 2107 struct mount *m; 2108 struct mount *mnt = real_mount(path->mnt); 2109 int recurse = ms_flags & MS_REC; 2110 int type; 2111 int err = 0; 2112 2113 if (path->dentry != path->mnt->mnt_root) 2114 return -EINVAL; 2115 2116 type = flags_to_propagation_type(ms_flags); 2117 if (!type) 2118 return -EINVAL; 2119 2120 namespace_lock(); 2121 if (type == MS_SHARED) { 2122 err = invent_group_ids(mnt, recurse); 2123 if (err) 2124 goto out_unlock; 2125 } 2126 2127 lock_mount_hash(); 2128 for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL)) 2129 change_mnt_propagation(m, type); 2130 unlock_mount_hash(); 2131 2132 out_unlock: 2133 namespace_unlock(); 2134 return err; 2135 } 2136 2137 static bool has_locked_children(struct mount *mnt, struct dentry *dentry) 2138 { 2139 struct mount *child; 2140 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) { 2141 if (!is_subdir(child->mnt_mountpoint, dentry)) 2142 continue; 2143 2144 if (child->mnt.mnt_flags & MNT_LOCKED) 2145 return true; 2146 } 2147 return false; 2148 } 2149 2150 /* 2151 * do loopback mount. 2152 */ 2153 static int do_loopback(struct path *path, const char *old_name, 2154 int recurse) 2155 { 2156 struct path old_path; 2157 struct mount *mnt = NULL, *old, *parent; 2158 struct mountpoint *mp; 2159 int err; 2160 if (!old_name || !*old_name) 2161 return -EINVAL; 2162 err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path); 2163 if (err) 2164 return err; 2165 2166 err = -EINVAL; 2167 if (mnt_ns_loop(old_path.dentry)) 2168 goto out; 2169 2170 mp = lock_mount(path); 2171 err = PTR_ERR(mp); 2172 if (IS_ERR(mp)) 2173 goto out; 2174 2175 old = real_mount(old_path.mnt); 2176 parent = real_mount(path->mnt); 2177 2178 err = -EINVAL; 2179 if (IS_MNT_UNBINDABLE(old)) 2180 goto out2; 2181 2182 if (!check_mnt(parent)) 2183 goto out2; 2184 2185 if (!check_mnt(old) && old_path.dentry->d_op != &ns_dentry_operations) 2186 goto out2; 2187 2188 if (!recurse && has_locked_children(old, old_path.dentry)) 2189 goto out2; 2190 2191 if (recurse) 2192 mnt = copy_tree(old, old_path.dentry, CL_COPY_MNT_NS_FILE); 2193 else 2194 mnt = clone_mnt(old, old_path.dentry, 0); 2195 2196 if (IS_ERR(mnt)) { 2197 err = PTR_ERR(mnt); 2198 goto out2; 2199 } 2200 2201 mnt->mnt.mnt_flags &= ~MNT_LOCKED; 2202 2203 err = graft_tree(mnt, parent, mp); 2204 if (err) { 2205 lock_mount_hash(); 2206 umount_tree(mnt, UMOUNT_SYNC); 2207 unlock_mount_hash(); 2208 } 2209 out2: 2210 unlock_mount(mp); 2211 out: 2212 path_put(&old_path); 2213 return err; 2214 } 2215 2216 /* 2217 * Don't allow locked mount flags to be cleared. 2218 * 2219 * No locks need to be held here while testing the various MNT_LOCK 2220 * flags because those flags can never be cleared once they are set. 2221 */ 2222 static bool can_change_locked_flags(struct mount *mnt, unsigned int mnt_flags) 2223 { 2224 unsigned int fl = mnt->mnt.mnt_flags; 2225 2226 if ((fl & MNT_LOCK_READONLY) && 2227 !(mnt_flags & MNT_READONLY)) 2228 return false; 2229 2230 if ((fl & MNT_LOCK_NODEV) && 2231 !(mnt_flags & MNT_NODEV)) 2232 return false; 2233 2234 if ((fl & MNT_LOCK_NOSUID) && 2235 !(mnt_flags & MNT_NOSUID)) 2236 return false; 2237 2238 if ((fl & MNT_LOCK_NOEXEC) && 2239 !(mnt_flags & MNT_NOEXEC)) 2240 return false; 2241 2242 if ((fl & MNT_LOCK_ATIME) && 2243 ((fl & MNT_ATIME_MASK) != (mnt_flags & MNT_ATIME_MASK))) 2244 return false; 2245 2246 return true; 2247 } 2248 2249 static int change_mount_ro_state(struct mount *mnt, unsigned int mnt_flags) 2250 { 2251 bool readonly_request = (mnt_flags & MNT_READONLY); 2252 2253 if (readonly_request == __mnt_is_readonly(&mnt->mnt)) 2254 return 0; 2255 2256 if (readonly_request) 2257 return mnt_make_readonly(mnt); 2258 2259 return __mnt_unmake_readonly(mnt); 2260 } 2261 2262 /* 2263 * Update the user-settable attributes on a mount. The caller must hold 2264 * sb->s_umount for writing. 2265 */ 2266 static void set_mount_attributes(struct mount *mnt, unsigned int mnt_flags) 2267 { 2268 lock_mount_hash(); 2269 mnt_flags |= mnt->mnt.mnt_flags & ~MNT_USER_SETTABLE_MASK; 2270 mnt->mnt.mnt_flags = mnt_flags; 2271 touch_mnt_namespace(mnt->mnt_ns); 2272 unlock_mount_hash(); 2273 } 2274 2275 /* 2276 * Handle reconfiguration of the mountpoint only without alteration of the 2277 * superblock it refers to. This is triggered by specifying MS_REMOUNT|MS_BIND 2278 * to mount(2). 2279 */ 2280 static int do_reconfigure_mnt(struct path *path, unsigned int mnt_flags) 2281 { 2282 struct super_block *sb = path->mnt->mnt_sb; 2283 struct mount *mnt = real_mount(path->mnt); 2284 int ret; 2285 2286 if (!check_mnt(mnt)) 2287 return -EINVAL; 2288 2289 if (path->dentry != mnt->mnt.mnt_root) 2290 return -EINVAL; 2291 2292 if (!can_change_locked_flags(mnt, mnt_flags)) 2293 return -EPERM; 2294 2295 down_write(&sb->s_umount); 2296 ret = change_mount_ro_state(mnt, mnt_flags); 2297 if (ret == 0) 2298 set_mount_attributes(mnt, mnt_flags); 2299 up_write(&sb->s_umount); 2300 return ret; 2301 } 2302 2303 /* 2304 * change filesystem flags. dir should be a physical root of filesystem. 2305 * If you've mounted a non-root directory somewhere and want to do remount 2306 * on it - tough luck. 2307 */ 2308 static int do_remount(struct path *path, int ms_flags, int sb_flags, 2309 int mnt_flags, void *data) 2310 { 2311 int err; 2312 struct super_block *sb = path->mnt->mnt_sb; 2313 struct mount *mnt = real_mount(path->mnt); 2314 void *sec_opts = NULL; 2315 2316 if (!check_mnt(mnt)) 2317 return -EINVAL; 2318 2319 if (path->dentry != path->mnt->mnt_root) 2320 return -EINVAL; 2321 2322 if (!can_change_locked_flags(mnt, mnt_flags)) 2323 return -EPERM; 2324 2325 if (data && !(sb->s_type->fs_flags & FS_BINARY_MOUNTDATA)) { 2326 err = security_sb_eat_lsm_opts(data, &sec_opts); 2327 if (err) 2328 return err; 2329 } 2330 err = security_sb_remount(sb, sec_opts); 2331 security_free_mnt_opts(&sec_opts); 2332 if (err) 2333 return err; 2334 2335 down_write(&sb->s_umount); 2336 err = -EPERM; 2337 if (ns_capable(sb->s_user_ns, CAP_SYS_ADMIN)) { 2338 err = do_remount_sb(sb, sb_flags, data, 0); 2339 if (!err) 2340 set_mount_attributes(mnt, mnt_flags); 2341 } 2342 up_write(&sb->s_umount); 2343 return err; 2344 } 2345 2346 static inline int tree_contains_unbindable(struct mount *mnt) 2347 { 2348 struct mount *p; 2349 for (p = mnt; p; p = next_mnt(p, mnt)) { 2350 if (IS_MNT_UNBINDABLE(p)) 2351 return 1; 2352 } 2353 return 0; 2354 } 2355 2356 static int do_move_mount(struct path *path, const char *old_name) 2357 { 2358 struct path old_path, parent_path; 2359 struct mount *p; 2360 struct mount *old; 2361 struct mountpoint *mp; 2362 int err; 2363 if (!old_name || !*old_name) 2364 return -EINVAL; 2365 err = kern_path(old_name, LOOKUP_FOLLOW, &old_path); 2366 if (err) 2367 return err; 2368 2369 mp = lock_mount(path); 2370 err = PTR_ERR(mp); 2371 if (IS_ERR(mp)) 2372 goto out; 2373 2374 old = real_mount(old_path.mnt); 2375 p = real_mount(path->mnt); 2376 2377 err = -EINVAL; 2378 if (!check_mnt(p) || !check_mnt(old)) 2379 goto out1; 2380 2381 if (old->mnt.mnt_flags & MNT_LOCKED) 2382 goto out1; 2383 2384 err = -EINVAL; 2385 if (old_path.dentry != old_path.mnt->mnt_root) 2386 goto out1; 2387 2388 if (!mnt_has_parent(old)) 2389 goto out1; 2390 2391 if (d_is_dir(path->dentry) != 2392 d_is_dir(old_path.dentry)) 2393 goto out1; 2394 /* 2395 * Don't move a mount residing in a shared parent. 2396 */ 2397 if (IS_MNT_SHARED(old->mnt_parent)) 2398 goto out1; 2399 /* 2400 * Don't move a mount tree containing unbindable mounts to a destination 2401 * mount which is shared. 2402 */ 2403 if (IS_MNT_SHARED(p) && tree_contains_unbindable(old)) 2404 goto out1; 2405 err = -ELOOP; 2406 for (; mnt_has_parent(p); p = p->mnt_parent) 2407 if (p == old) 2408 goto out1; 2409 2410 err = attach_recursive_mnt(old, real_mount(path->mnt), mp, &parent_path); 2411 if (err) 2412 goto out1; 2413 2414 /* if the mount is moved, it should no longer be expire 2415 * automatically */ 2416 list_del_init(&old->mnt_expire); 2417 out1: 2418 unlock_mount(mp); 2419 out: 2420 if (!err) 2421 path_put(&parent_path); 2422 path_put(&old_path); 2423 return err; 2424 } 2425 2426 static struct vfsmount *fs_set_subtype(struct vfsmount *mnt, const char *fstype) 2427 { 2428 int err; 2429 const char *subtype = strchr(fstype, '.'); 2430 if (subtype) { 2431 subtype++; 2432 err = -EINVAL; 2433 if (!subtype[0]) 2434 goto err; 2435 } else 2436 subtype = ""; 2437 2438 mnt->mnt_sb->s_subtype = kstrdup(subtype, GFP_KERNEL); 2439 err = -ENOMEM; 2440 if (!mnt->mnt_sb->s_subtype) 2441 goto err; 2442 return mnt; 2443 2444 err: 2445 mntput(mnt); 2446 return ERR_PTR(err); 2447 } 2448 2449 /* 2450 * add a mount into a namespace's mount tree 2451 */ 2452 static int do_add_mount(struct mount *newmnt, struct path *path, int mnt_flags) 2453 { 2454 struct mountpoint *mp; 2455 struct mount *parent; 2456 int err; 2457 2458 mnt_flags &= ~MNT_INTERNAL_FLAGS; 2459 2460 mp = lock_mount(path); 2461 if (IS_ERR(mp)) 2462 return PTR_ERR(mp); 2463 2464 parent = real_mount(path->mnt); 2465 err = -EINVAL; 2466 if (unlikely(!check_mnt(parent))) { 2467 /* that's acceptable only for automounts done in private ns */ 2468 if (!(mnt_flags & MNT_SHRINKABLE)) 2469 goto unlock; 2470 /* ... and for those we'd better have mountpoint still alive */ 2471 if (!parent->mnt_ns) 2472 goto unlock; 2473 } 2474 2475 /* Refuse the same filesystem on the same mount point */ 2476 err = -EBUSY; 2477 if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb && 2478 path->mnt->mnt_root == path->dentry) 2479 goto unlock; 2480 2481 err = -EINVAL; 2482 if (d_is_symlink(newmnt->mnt.mnt_root)) 2483 goto unlock; 2484 2485 newmnt->mnt.mnt_flags = mnt_flags; 2486 err = graft_tree(newmnt, parent, mp); 2487 2488 unlock: 2489 unlock_mount(mp); 2490 return err; 2491 } 2492 2493 static bool mount_too_revealing(struct vfsmount *mnt, int *new_mnt_flags); 2494 2495 /* 2496 * create a new mount for userspace and request it to be added into the 2497 * namespace's tree 2498 */ 2499 static int do_new_mount(struct path *path, const char *fstype, int sb_flags, 2500 int mnt_flags, const char *name, void *data) 2501 { 2502 struct file_system_type *type; 2503 struct vfsmount *mnt; 2504 int err; 2505 2506 if (!fstype) 2507 return -EINVAL; 2508 2509 type = get_fs_type(fstype); 2510 if (!type) 2511 return -ENODEV; 2512 2513 mnt = vfs_kern_mount(type, sb_flags, name, data); 2514 if (!IS_ERR(mnt) && (type->fs_flags & FS_HAS_SUBTYPE) && 2515 !mnt->mnt_sb->s_subtype) 2516 mnt = fs_set_subtype(mnt, fstype); 2517 2518 put_filesystem(type); 2519 if (IS_ERR(mnt)) 2520 return PTR_ERR(mnt); 2521 2522 if (mount_too_revealing(mnt, &mnt_flags)) { 2523 mntput(mnt); 2524 return -EPERM; 2525 } 2526 2527 err = do_add_mount(real_mount(mnt), path, mnt_flags); 2528 if (err) 2529 mntput(mnt); 2530 return err; 2531 } 2532 2533 int finish_automount(struct vfsmount *m, struct path *path) 2534 { 2535 struct mount *mnt = real_mount(m); 2536 int err; 2537 /* The new mount record should have at least 2 refs to prevent it being 2538 * expired before we get a chance to add it 2539 */ 2540 BUG_ON(mnt_get_count(mnt) < 2); 2541 2542 if (m->mnt_sb == path->mnt->mnt_sb && 2543 m->mnt_root == path->dentry) { 2544 err = -ELOOP; 2545 goto fail; 2546 } 2547 2548 err = do_add_mount(mnt, path, path->mnt->mnt_flags | MNT_SHRINKABLE); 2549 if (!err) 2550 return 0; 2551 fail: 2552 /* remove m from any expiration list it may be on */ 2553 if (!list_empty(&mnt->mnt_expire)) { 2554 namespace_lock(); 2555 list_del_init(&mnt->mnt_expire); 2556 namespace_unlock(); 2557 } 2558 mntput(m); 2559 mntput(m); 2560 return err; 2561 } 2562 2563 /** 2564 * mnt_set_expiry - Put a mount on an expiration list 2565 * @mnt: The mount to list. 2566 * @expiry_list: The list to add the mount to. 2567 */ 2568 void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list) 2569 { 2570 namespace_lock(); 2571 2572 list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list); 2573 2574 namespace_unlock(); 2575 } 2576 EXPORT_SYMBOL(mnt_set_expiry); 2577 2578 /* 2579 * process a list of expirable mountpoints with the intent of discarding any 2580 * mountpoints that aren't in use and haven't been touched since last we came 2581 * here 2582 */ 2583 void mark_mounts_for_expiry(struct list_head *mounts) 2584 { 2585 struct mount *mnt, *next; 2586 LIST_HEAD(graveyard); 2587 2588 if (list_empty(mounts)) 2589 return; 2590 2591 namespace_lock(); 2592 lock_mount_hash(); 2593 2594 /* extract from the expiration list every vfsmount that matches the 2595 * following criteria: 2596 * - only referenced by its parent vfsmount 2597 * - still marked for expiry (marked on the last call here; marks are 2598 * cleared by mntput()) 2599 */ 2600 list_for_each_entry_safe(mnt, next, mounts, mnt_expire) { 2601 if (!xchg(&mnt->mnt_expiry_mark, 1) || 2602 propagate_mount_busy(mnt, 1)) 2603 continue; 2604 list_move(&mnt->mnt_expire, &graveyard); 2605 } 2606 while (!list_empty(&graveyard)) { 2607 mnt = list_first_entry(&graveyard, struct mount, mnt_expire); 2608 touch_mnt_namespace(mnt->mnt_ns); 2609 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC); 2610 } 2611 unlock_mount_hash(); 2612 namespace_unlock(); 2613 } 2614 2615 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry); 2616 2617 /* 2618 * Ripoff of 'select_parent()' 2619 * 2620 * search the list of submounts for a given mountpoint, and move any 2621 * shrinkable submounts to the 'graveyard' list. 2622 */ 2623 static int select_submounts(struct mount *parent, struct list_head *graveyard) 2624 { 2625 struct mount *this_parent = parent; 2626 struct list_head *next; 2627 int found = 0; 2628 2629 repeat: 2630 next = this_parent->mnt_mounts.next; 2631 resume: 2632 while (next != &this_parent->mnt_mounts) { 2633 struct list_head *tmp = next; 2634 struct mount *mnt = list_entry(tmp, struct mount, mnt_child); 2635 2636 next = tmp->next; 2637 if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE)) 2638 continue; 2639 /* 2640 * Descend a level if the d_mounts list is non-empty. 2641 */ 2642 if (!list_empty(&mnt->mnt_mounts)) { 2643 this_parent = mnt; 2644 goto repeat; 2645 } 2646 2647 if (!propagate_mount_busy(mnt, 1)) { 2648 list_move_tail(&mnt->mnt_expire, graveyard); 2649 found++; 2650 } 2651 } 2652 /* 2653 * All done at this level ... ascend and resume the search 2654 */ 2655 if (this_parent != parent) { 2656 next = this_parent->mnt_child.next; 2657 this_parent = this_parent->mnt_parent; 2658 goto resume; 2659 } 2660 return found; 2661 } 2662 2663 /* 2664 * process a list of expirable mountpoints with the intent of discarding any 2665 * submounts of a specific parent mountpoint 2666 * 2667 * mount_lock must be held for write 2668 */ 2669 static void shrink_submounts(struct mount *mnt) 2670 { 2671 LIST_HEAD(graveyard); 2672 struct mount *m; 2673 2674 /* extract submounts of 'mountpoint' from the expiration list */ 2675 while (select_submounts(mnt, &graveyard)) { 2676 while (!list_empty(&graveyard)) { 2677 m = list_first_entry(&graveyard, struct mount, 2678 mnt_expire); 2679 touch_mnt_namespace(m->mnt_ns); 2680 umount_tree(m, UMOUNT_PROPAGATE|UMOUNT_SYNC); 2681 } 2682 } 2683 } 2684 2685 /* 2686 * Some copy_from_user() implementations do not return the exact number of 2687 * bytes remaining to copy on a fault. But copy_mount_options() requires that. 2688 * Note that this function differs from copy_from_user() in that it will oops 2689 * on bad values of `to', rather than returning a short copy. 2690 */ 2691 static long exact_copy_from_user(void *to, const void __user * from, 2692 unsigned long n) 2693 { 2694 char *t = to; 2695 const char __user *f = from; 2696 char c; 2697 2698 if (!access_ok(from, n)) 2699 return n; 2700 2701 current->kernel_uaccess_faults_ok++; 2702 while (n) { 2703 if (__get_user(c, f)) { 2704 memset(t, 0, n); 2705 break; 2706 } 2707 *t++ = c; 2708 f++; 2709 n--; 2710 } 2711 current->kernel_uaccess_faults_ok--; 2712 return n; 2713 } 2714 2715 void *copy_mount_options(const void __user * data) 2716 { 2717 int i; 2718 unsigned long size; 2719 char *copy; 2720 2721 if (!data) 2722 return NULL; 2723 2724 copy = kmalloc(PAGE_SIZE, GFP_KERNEL); 2725 if (!copy) 2726 return ERR_PTR(-ENOMEM); 2727 2728 /* We only care that *some* data at the address the user 2729 * gave us is valid. Just in case, we'll zero 2730 * the remainder of the page. 2731 */ 2732 /* copy_from_user cannot cross TASK_SIZE ! */ 2733 size = TASK_SIZE - (unsigned long)data; 2734 if (size > PAGE_SIZE) 2735 size = PAGE_SIZE; 2736 2737 i = size - exact_copy_from_user(copy, data, size); 2738 if (!i) { 2739 kfree(copy); 2740 return ERR_PTR(-EFAULT); 2741 } 2742 if (i != PAGE_SIZE) 2743 memset(copy + i, 0, PAGE_SIZE - i); 2744 return copy; 2745 } 2746 2747 char *copy_mount_string(const void __user *data) 2748 { 2749 return data ? strndup_user(data, PAGE_SIZE) : NULL; 2750 } 2751 2752 /* 2753 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to 2754 * be given to the mount() call (ie: read-only, no-dev, no-suid etc). 2755 * 2756 * data is a (void *) that can point to any structure up to 2757 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent 2758 * information (or be NULL). 2759 * 2760 * Pre-0.97 versions of mount() didn't have a flags word. 2761 * When the flags word was introduced its top half was required 2762 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9. 2763 * Therefore, if this magic number is present, it carries no information 2764 * and must be discarded. 2765 */ 2766 long do_mount(const char *dev_name, const char __user *dir_name, 2767 const char *type_page, unsigned long flags, void *data_page) 2768 { 2769 struct path path; 2770 unsigned int mnt_flags = 0, sb_flags; 2771 int retval = 0; 2772 2773 /* Discard magic */ 2774 if ((flags & MS_MGC_MSK) == MS_MGC_VAL) 2775 flags &= ~MS_MGC_MSK; 2776 2777 /* Basic sanity checks */ 2778 if (data_page) 2779 ((char *)data_page)[PAGE_SIZE - 1] = 0; 2780 2781 if (flags & MS_NOUSER) 2782 return -EINVAL; 2783 2784 /* ... and get the mountpoint */ 2785 retval = user_path(dir_name, &path); 2786 if (retval) 2787 return retval; 2788 2789 retval = security_sb_mount(dev_name, &path, 2790 type_page, flags, data_page); 2791 if (!retval && !may_mount()) 2792 retval = -EPERM; 2793 if (!retval && (flags & SB_MANDLOCK) && !may_mandlock()) 2794 retval = -EPERM; 2795 if (retval) 2796 goto dput_out; 2797 2798 /* Default to relatime unless overriden */ 2799 if (!(flags & MS_NOATIME)) 2800 mnt_flags |= MNT_RELATIME; 2801 2802 /* Separate the per-mountpoint flags */ 2803 if (flags & MS_NOSUID) 2804 mnt_flags |= MNT_NOSUID; 2805 if (flags & MS_NODEV) 2806 mnt_flags |= MNT_NODEV; 2807 if (flags & MS_NOEXEC) 2808 mnt_flags |= MNT_NOEXEC; 2809 if (flags & MS_NOATIME) 2810 mnt_flags |= MNT_NOATIME; 2811 if (flags & MS_NODIRATIME) 2812 mnt_flags |= MNT_NODIRATIME; 2813 if (flags & MS_STRICTATIME) 2814 mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME); 2815 if (flags & MS_RDONLY) 2816 mnt_flags |= MNT_READONLY; 2817 2818 /* The default atime for remount is preservation */ 2819 if ((flags & MS_REMOUNT) && 2820 ((flags & (MS_NOATIME | MS_NODIRATIME | MS_RELATIME | 2821 MS_STRICTATIME)) == 0)) { 2822 mnt_flags &= ~MNT_ATIME_MASK; 2823 mnt_flags |= path.mnt->mnt_flags & MNT_ATIME_MASK; 2824 } 2825 2826 sb_flags = flags & (SB_RDONLY | 2827 SB_SYNCHRONOUS | 2828 SB_MANDLOCK | 2829 SB_DIRSYNC | 2830 SB_SILENT | 2831 SB_POSIXACL | 2832 SB_LAZYTIME | 2833 SB_I_VERSION); 2834 2835 if ((flags & (MS_REMOUNT | MS_BIND)) == (MS_REMOUNT | MS_BIND)) 2836 retval = do_reconfigure_mnt(&path, mnt_flags); 2837 else if (flags & MS_REMOUNT) 2838 retval = do_remount(&path, flags, sb_flags, mnt_flags, 2839 data_page); 2840 else if (flags & MS_BIND) 2841 retval = do_loopback(&path, dev_name, flags & MS_REC); 2842 else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE)) 2843 retval = do_change_type(&path, flags); 2844 else if (flags & MS_MOVE) 2845 retval = do_move_mount(&path, dev_name); 2846 else 2847 retval = do_new_mount(&path, type_page, sb_flags, mnt_flags, 2848 dev_name, data_page); 2849 dput_out: 2850 path_put(&path); 2851 return retval; 2852 } 2853 2854 static struct ucounts *inc_mnt_namespaces(struct user_namespace *ns) 2855 { 2856 return inc_ucount(ns, current_euid(), UCOUNT_MNT_NAMESPACES); 2857 } 2858 2859 static void dec_mnt_namespaces(struct ucounts *ucounts) 2860 { 2861 dec_ucount(ucounts, UCOUNT_MNT_NAMESPACES); 2862 } 2863 2864 static void free_mnt_ns(struct mnt_namespace *ns) 2865 { 2866 ns_free_inum(&ns->ns); 2867 dec_mnt_namespaces(ns->ucounts); 2868 put_user_ns(ns->user_ns); 2869 kfree(ns); 2870 } 2871 2872 /* 2873 * Assign a sequence number so we can detect when we attempt to bind 2874 * mount a reference to an older mount namespace into the current 2875 * mount namespace, preventing reference counting loops. A 64bit 2876 * number incrementing at 10Ghz will take 12,427 years to wrap which 2877 * is effectively never, so we can ignore the possibility. 2878 */ 2879 static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1); 2880 2881 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns) 2882 { 2883 struct mnt_namespace *new_ns; 2884 struct ucounts *ucounts; 2885 int ret; 2886 2887 ucounts = inc_mnt_namespaces(user_ns); 2888 if (!ucounts) 2889 return ERR_PTR(-ENOSPC); 2890 2891 new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL); 2892 if (!new_ns) { 2893 dec_mnt_namespaces(ucounts); 2894 return ERR_PTR(-ENOMEM); 2895 } 2896 ret = ns_alloc_inum(&new_ns->ns); 2897 if (ret) { 2898 kfree(new_ns); 2899 dec_mnt_namespaces(ucounts); 2900 return ERR_PTR(ret); 2901 } 2902 new_ns->ns.ops = &mntns_operations; 2903 new_ns->seq = atomic64_add_return(1, &mnt_ns_seq); 2904 atomic_set(&new_ns->count, 1); 2905 new_ns->root = NULL; 2906 INIT_LIST_HEAD(&new_ns->list); 2907 init_waitqueue_head(&new_ns->poll); 2908 new_ns->event = 0; 2909 new_ns->user_ns = get_user_ns(user_ns); 2910 new_ns->ucounts = ucounts; 2911 new_ns->mounts = 0; 2912 new_ns->pending_mounts = 0; 2913 return new_ns; 2914 } 2915 2916 __latent_entropy 2917 struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns, 2918 struct user_namespace *user_ns, struct fs_struct *new_fs) 2919 { 2920 struct mnt_namespace *new_ns; 2921 struct vfsmount *rootmnt = NULL, *pwdmnt = NULL; 2922 struct mount *p, *q; 2923 struct mount *old; 2924 struct mount *new; 2925 int copy_flags; 2926 2927 BUG_ON(!ns); 2928 2929 if (likely(!(flags & CLONE_NEWNS))) { 2930 get_mnt_ns(ns); 2931 return ns; 2932 } 2933 2934 old = ns->root; 2935 2936 new_ns = alloc_mnt_ns(user_ns); 2937 if (IS_ERR(new_ns)) 2938 return new_ns; 2939 2940 namespace_lock(); 2941 /* First pass: copy the tree topology */ 2942 copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE; 2943 if (user_ns != ns->user_ns) 2944 copy_flags |= CL_SHARED_TO_SLAVE | CL_UNPRIVILEGED; 2945 new = copy_tree(old, old->mnt.mnt_root, copy_flags); 2946 if (IS_ERR(new)) { 2947 namespace_unlock(); 2948 free_mnt_ns(new_ns); 2949 return ERR_CAST(new); 2950 } 2951 new_ns->root = new; 2952 list_add_tail(&new_ns->list, &new->mnt_list); 2953 2954 /* 2955 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts 2956 * as belonging to new namespace. We have already acquired a private 2957 * fs_struct, so tsk->fs->lock is not needed. 2958 */ 2959 p = old; 2960 q = new; 2961 while (p) { 2962 q->mnt_ns = new_ns; 2963 new_ns->mounts++; 2964 if (new_fs) { 2965 if (&p->mnt == new_fs->root.mnt) { 2966 new_fs->root.mnt = mntget(&q->mnt); 2967 rootmnt = &p->mnt; 2968 } 2969 if (&p->mnt == new_fs->pwd.mnt) { 2970 new_fs->pwd.mnt = mntget(&q->mnt); 2971 pwdmnt = &p->mnt; 2972 } 2973 } 2974 p = next_mnt(p, old); 2975 q = next_mnt(q, new); 2976 if (!q) 2977 break; 2978 while (p->mnt.mnt_root != q->mnt.mnt_root) 2979 p = next_mnt(p, old); 2980 } 2981 namespace_unlock(); 2982 2983 if (rootmnt) 2984 mntput(rootmnt); 2985 if (pwdmnt) 2986 mntput(pwdmnt); 2987 2988 return new_ns; 2989 } 2990 2991 /** 2992 * create_mnt_ns - creates a private namespace and adds a root filesystem 2993 * @mnt: pointer to the new root filesystem mountpoint 2994 */ 2995 static struct mnt_namespace *create_mnt_ns(struct vfsmount *m) 2996 { 2997 struct mnt_namespace *new_ns = alloc_mnt_ns(&init_user_ns); 2998 if (!IS_ERR(new_ns)) { 2999 struct mount *mnt = real_mount(m); 3000 mnt->mnt_ns = new_ns; 3001 new_ns->root = mnt; 3002 new_ns->mounts++; 3003 list_add(&mnt->mnt_list, &new_ns->list); 3004 } else { 3005 mntput(m); 3006 } 3007 return new_ns; 3008 } 3009 3010 struct dentry *mount_subtree(struct vfsmount *mnt, const char *name) 3011 { 3012 struct mnt_namespace *ns; 3013 struct super_block *s; 3014 struct path path; 3015 int err; 3016 3017 ns = create_mnt_ns(mnt); 3018 if (IS_ERR(ns)) 3019 return ERR_CAST(ns); 3020 3021 err = vfs_path_lookup(mnt->mnt_root, mnt, 3022 name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path); 3023 3024 put_mnt_ns(ns); 3025 3026 if (err) 3027 return ERR_PTR(err); 3028 3029 /* trade a vfsmount reference for active sb one */ 3030 s = path.mnt->mnt_sb; 3031 atomic_inc(&s->s_active); 3032 mntput(path.mnt); 3033 /* lock the sucker */ 3034 down_write(&s->s_umount); 3035 /* ... and return the root of (sub)tree on it */ 3036 return path.dentry; 3037 } 3038 EXPORT_SYMBOL(mount_subtree); 3039 3040 int ksys_mount(char __user *dev_name, char __user *dir_name, char __user *type, 3041 unsigned long flags, void __user *data) 3042 { 3043 int ret; 3044 char *kernel_type; 3045 char *kernel_dev; 3046 void *options; 3047 3048 kernel_type = copy_mount_string(type); 3049 ret = PTR_ERR(kernel_type); 3050 if (IS_ERR(kernel_type)) 3051 goto out_type; 3052 3053 kernel_dev = copy_mount_string(dev_name); 3054 ret = PTR_ERR(kernel_dev); 3055 if (IS_ERR(kernel_dev)) 3056 goto out_dev; 3057 3058 options = copy_mount_options(data); 3059 ret = PTR_ERR(options); 3060 if (IS_ERR(options)) 3061 goto out_data; 3062 3063 ret = do_mount(kernel_dev, dir_name, kernel_type, flags, options); 3064 3065 kfree(options); 3066 out_data: 3067 kfree(kernel_dev); 3068 out_dev: 3069 kfree(kernel_type); 3070 out_type: 3071 return ret; 3072 } 3073 3074 SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name, 3075 char __user *, type, unsigned long, flags, void __user *, data) 3076 { 3077 return ksys_mount(dev_name, dir_name, type, flags, data); 3078 } 3079 3080 /* 3081 * Return true if path is reachable from root 3082 * 3083 * namespace_sem or mount_lock is held 3084 */ 3085 bool is_path_reachable(struct mount *mnt, struct dentry *dentry, 3086 const struct path *root) 3087 { 3088 while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) { 3089 dentry = mnt->mnt_mountpoint; 3090 mnt = mnt->mnt_parent; 3091 } 3092 return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry); 3093 } 3094 3095 bool path_is_under(const struct path *path1, const struct path *path2) 3096 { 3097 bool res; 3098 read_seqlock_excl(&mount_lock); 3099 res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2); 3100 read_sequnlock_excl(&mount_lock); 3101 return res; 3102 } 3103 EXPORT_SYMBOL(path_is_under); 3104 3105 /* 3106 * pivot_root Semantics: 3107 * Moves the root file system of the current process to the directory put_old, 3108 * makes new_root as the new root file system of the current process, and sets 3109 * root/cwd of all processes which had them on the current root to new_root. 3110 * 3111 * Restrictions: 3112 * The new_root and put_old must be directories, and must not be on the 3113 * same file system as the current process root. The put_old must be 3114 * underneath new_root, i.e. adding a non-zero number of /.. to the string 3115 * pointed to by put_old must yield the same directory as new_root. No other 3116 * file system may be mounted on put_old. After all, new_root is a mountpoint. 3117 * 3118 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem. 3119 * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives 3120 * in this situation. 3121 * 3122 * Notes: 3123 * - we don't move root/cwd if they are not at the root (reason: if something 3124 * cared enough to change them, it's probably wrong to force them elsewhere) 3125 * - it's okay to pick a root that isn't the root of a file system, e.g. 3126 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint, 3127 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root 3128 * first. 3129 */ 3130 SYSCALL_DEFINE2(pivot_root, const char __user *, new_root, 3131 const char __user *, put_old) 3132 { 3133 struct path new, old, parent_path, root_parent, root; 3134 struct mount *new_mnt, *root_mnt, *old_mnt; 3135 struct mountpoint *old_mp, *root_mp; 3136 int error; 3137 3138 if (!may_mount()) 3139 return -EPERM; 3140 3141 error = user_path_dir(new_root, &new); 3142 if (error) 3143 goto out0; 3144 3145 error = user_path_dir(put_old, &old); 3146 if (error) 3147 goto out1; 3148 3149 error = security_sb_pivotroot(&old, &new); 3150 if (error) 3151 goto out2; 3152 3153 get_fs_root(current->fs, &root); 3154 old_mp = lock_mount(&old); 3155 error = PTR_ERR(old_mp); 3156 if (IS_ERR(old_mp)) 3157 goto out3; 3158 3159 error = -EINVAL; 3160 new_mnt = real_mount(new.mnt); 3161 root_mnt = real_mount(root.mnt); 3162 old_mnt = real_mount(old.mnt); 3163 if (IS_MNT_SHARED(old_mnt) || 3164 IS_MNT_SHARED(new_mnt->mnt_parent) || 3165 IS_MNT_SHARED(root_mnt->mnt_parent)) 3166 goto out4; 3167 if (!check_mnt(root_mnt) || !check_mnt(new_mnt)) 3168 goto out4; 3169 if (new_mnt->mnt.mnt_flags & MNT_LOCKED) 3170 goto out4; 3171 error = -ENOENT; 3172 if (d_unlinked(new.dentry)) 3173 goto out4; 3174 error = -EBUSY; 3175 if (new_mnt == root_mnt || old_mnt == root_mnt) 3176 goto out4; /* loop, on the same file system */ 3177 error = -EINVAL; 3178 if (root.mnt->mnt_root != root.dentry) 3179 goto out4; /* not a mountpoint */ 3180 if (!mnt_has_parent(root_mnt)) 3181 goto out4; /* not attached */ 3182 root_mp = root_mnt->mnt_mp; 3183 if (new.mnt->mnt_root != new.dentry) 3184 goto out4; /* not a mountpoint */ 3185 if (!mnt_has_parent(new_mnt)) 3186 goto out4; /* not attached */ 3187 /* make sure we can reach put_old from new_root */ 3188 if (!is_path_reachable(old_mnt, old.dentry, &new)) 3189 goto out4; 3190 /* make certain new is below the root */ 3191 if (!is_path_reachable(new_mnt, new.dentry, &root)) 3192 goto out4; 3193 root_mp->m_count++; /* pin it so it won't go away */ 3194 lock_mount_hash(); 3195 detach_mnt(new_mnt, &parent_path); 3196 detach_mnt(root_mnt, &root_parent); 3197 if (root_mnt->mnt.mnt_flags & MNT_LOCKED) { 3198 new_mnt->mnt.mnt_flags |= MNT_LOCKED; 3199 root_mnt->mnt.mnt_flags &= ~MNT_LOCKED; 3200 } 3201 /* mount old root on put_old */ 3202 attach_mnt(root_mnt, old_mnt, old_mp); 3203 /* mount new_root on / */ 3204 attach_mnt(new_mnt, real_mount(root_parent.mnt), root_mp); 3205 touch_mnt_namespace(current->nsproxy->mnt_ns); 3206 /* A moved mount should not expire automatically */ 3207 list_del_init(&new_mnt->mnt_expire); 3208 put_mountpoint(root_mp); 3209 unlock_mount_hash(); 3210 chroot_fs_refs(&root, &new); 3211 error = 0; 3212 out4: 3213 unlock_mount(old_mp); 3214 if (!error) { 3215 path_put(&root_parent); 3216 path_put(&parent_path); 3217 } 3218 out3: 3219 path_put(&root); 3220 out2: 3221 path_put(&old); 3222 out1: 3223 path_put(&new); 3224 out0: 3225 return error; 3226 } 3227 3228 static void __init init_mount_tree(void) 3229 { 3230 struct vfsmount *mnt; 3231 struct mnt_namespace *ns; 3232 struct path root; 3233 struct file_system_type *type; 3234 3235 type = get_fs_type("rootfs"); 3236 if (!type) 3237 panic("Can't find rootfs type"); 3238 mnt = vfs_kern_mount(type, 0, "rootfs", NULL); 3239 put_filesystem(type); 3240 if (IS_ERR(mnt)) 3241 panic("Can't create rootfs"); 3242 3243 ns = create_mnt_ns(mnt); 3244 if (IS_ERR(ns)) 3245 panic("Can't allocate initial namespace"); 3246 3247 init_task.nsproxy->mnt_ns = ns; 3248 get_mnt_ns(ns); 3249 3250 root.mnt = mnt; 3251 root.dentry = mnt->mnt_root; 3252 mnt->mnt_flags |= MNT_LOCKED; 3253 3254 set_fs_pwd(current->fs, &root); 3255 set_fs_root(current->fs, &root); 3256 } 3257 3258 void __init mnt_init(void) 3259 { 3260 int err; 3261 3262 mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount), 3263 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL); 3264 3265 mount_hashtable = alloc_large_system_hash("Mount-cache", 3266 sizeof(struct hlist_head), 3267 mhash_entries, 19, 3268 HASH_ZERO, 3269 &m_hash_shift, &m_hash_mask, 0, 0); 3270 mountpoint_hashtable = alloc_large_system_hash("Mountpoint-cache", 3271 sizeof(struct hlist_head), 3272 mphash_entries, 19, 3273 HASH_ZERO, 3274 &mp_hash_shift, &mp_hash_mask, 0, 0); 3275 3276 if (!mount_hashtable || !mountpoint_hashtable) 3277 panic("Failed to allocate mount hash table\n"); 3278 3279 kernfs_init(); 3280 3281 err = sysfs_init(); 3282 if (err) 3283 printk(KERN_WARNING "%s: sysfs_init error: %d\n", 3284 __func__, err); 3285 fs_kobj = kobject_create_and_add("fs", NULL); 3286 if (!fs_kobj) 3287 printk(KERN_WARNING "%s: kobj create error\n", __func__); 3288 init_rootfs(); 3289 init_mount_tree(); 3290 } 3291 3292 void put_mnt_ns(struct mnt_namespace *ns) 3293 { 3294 if (!atomic_dec_and_test(&ns->count)) 3295 return; 3296 drop_collected_mounts(&ns->root->mnt); 3297 free_mnt_ns(ns); 3298 } 3299 3300 struct vfsmount *kern_mount_data(struct file_system_type *type, void *data) 3301 { 3302 struct vfsmount *mnt; 3303 mnt = vfs_kern_mount(type, SB_KERNMOUNT, type->name, data); 3304 if (!IS_ERR(mnt)) { 3305 /* 3306 * it is a longterm mount, don't release mnt until 3307 * we unmount before file sys is unregistered 3308 */ 3309 real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL; 3310 } 3311 return mnt; 3312 } 3313 EXPORT_SYMBOL_GPL(kern_mount_data); 3314 3315 void kern_unmount(struct vfsmount *mnt) 3316 { 3317 /* release long term mount so mount point can be released */ 3318 if (!IS_ERR_OR_NULL(mnt)) { 3319 real_mount(mnt)->mnt_ns = NULL; 3320 synchronize_rcu(); /* yecchhh... */ 3321 mntput(mnt); 3322 } 3323 } 3324 EXPORT_SYMBOL(kern_unmount); 3325 3326 bool our_mnt(struct vfsmount *mnt) 3327 { 3328 return check_mnt(real_mount(mnt)); 3329 } 3330 3331 bool current_chrooted(void) 3332 { 3333 /* Does the current process have a non-standard root */ 3334 struct path ns_root; 3335 struct path fs_root; 3336 bool chrooted; 3337 3338 /* Find the namespace root */ 3339 ns_root.mnt = ¤t->nsproxy->mnt_ns->root->mnt; 3340 ns_root.dentry = ns_root.mnt->mnt_root; 3341 path_get(&ns_root); 3342 while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root)) 3343 ; 3344 3345 get_fs_root(current->fs, &fs_root); 3346 3347 chrooted = !path_equal(&fs_root, &ns_root); 3348 3349 path_put(&fs_root); 3350 path_put(&ns_root); 3351 3352 return chrooted; 3353 } 3354 3355 static bool mnt_already_visible(struct mnt_namespace *ns, struct vfsmount *new, 3356 int *new_mnt_flags) 3357 { 3358 int new_flags = *new_mnt_flags; 3359 struct mount *mnt; 3360 bool visible = false; 3361 3362 down_read(&namespace_sem); 3363 list_for_each_entry(mnt, &ns->list, mnt_list) { 3364 struct mount *child; 3365 int mnt_flags; 3366 3367 if (mnt->mnt.mnt_sb->s_type != new->mnt_sb->s_type) 3368 continue; 3369 3370 /* This mount is not fully visible if it's root directory 3371 * is not the root directory of the filesystem. 3372 */ 3373 if (mnt->mnt.mnt_root != mnt->mnt.mnt_sb->s_root) 3374 continue; 3375 3376 /* A local view of the mount flags */ 3377 mnt_flags = mnt->mnt.mnt_flags; 3378 3379 /* Don't miss readonly hidden in the superblock flags */ 3380 if (sb_rdonly(mnt->mnt.mnt_sb)) 3381 mnt_flags |= MNT_LOCK_READONLY; 3382 3383 /* Verify the mount flags are equal to or more permissive 3384 * than the proposed new mount. 3385 */ 3386 if ((mnt_flags & MNT_LOCK_READONLY) && 3387 !(new_flags & MNT_READONLY)) 3388 continue; 3389 if ((mnt_flags & MNT_LOCK_ATIME) && 3390 ((mnt_flags & MNT_ATIME_MASK) != (new_flags & MNT_ATIME_MASK))) 3391 continue; 3392 3393 /* This mount is not fully visible if there are any 3394 * locked child mounts that cover anything except for 3395 * empty directories. 3396 */ 3397 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) { 3398 struct inode *inode = child->mnt_mountpoint->d_inode; 3399 /* Only worry about locked mounts */ 3400 if (!(child->mnt.mnt_flags & MNT_LOCKED)) 3401 continue; 3402 /* Is the directory permanetly empty? */ 3403 if (!is_empty_dir_inode(inode)) 3404 goto next; 3405 } 3406 /* Preserve the locked attributes */ 3407 *new_mnt_flags |= mnt_flags & (MNT_LOCK_READONLY | \ 3408 MNT_LOCK_ATIME); 3409 visible = true; 3410 goto found; 3411 next: ; 3412 } 3413 found: 3414 up_read(&namespace_sem); 3415 return visible; 3416 } 3417 3418 static bool mount_too_revealing(struct vfsmount *mnt, int *new_mnt_flags) 3419 { 3420 const unsigned long required_iflags = SB_I_NOEXEC | SB_I_NODEV; 3421 struct mnt_namespace *ns = current->nsproxy->mnt_ns; 3422 unsigned long s_iflags; 3423 3424 if (ns->user_ns == &init_user_ns) 3425 return false; 3426 3427 /* Can this filesystem be too revealing? */ 3428 s_iflags = mnt->mnt_sb->s_iflags; 3429 if (!(s_iflags & SB_I_USERNS_VISIBLE)) 3430 return false; 3431 3432 if ((s_iflags & required_iflags) != required_iflags) { 3433 WARN_ONCE(1, "Expected s_iflags to contain 0x%lx\n", 3434 required_iflags); 3435 return true; 3436 } 3437 3438 return !mnt_already_visible(ns, mnt, new_mnt_flags); 3439 } 3440 3441 bool mnt_may_suid(struct vfsmount *mnt) 3442 { 3443 /* 3444 * Foreign mounts (accessed via fchdir or through /proc 3445 * symlinks) are always treated as if they are nosuid. This 3446 * prevents namespaces from trusting potentially unsafe 3447 * suid/sgid bits, file caps, or security labels that originate 3448 * in other namespaces. 3449 */ 3450 return !(mnt->mnt_flags & MNT_NOSUID) && check_mnt(real_mount(mnt)) && 3451 current_in_userns(mnt->mnt_sb->s_user_ns); 3452 } 3453 3454 static struct ns_common *mntns_get(struct task_struct *task) 3455 { 3456 struct ns_common *ns = NULL; 3457 struct nsproxy *nsproxy; 3458 3459 task_lock(task); 3460 nsproxy = task->nsproxy; 3461 if (nsproxy) { 3462 ns = &nsproxy->mnt_ns->ns; 3463 get_mnt_ns(to_mnt_ns(ns)); 3464 } 3465 task_unlock(task); 3466 3467 return ns; 3468 } 3469 3470 static void mntns_put(struct ns_common *ns) 3471 { 3472 put_mnt_ns(to_mnt_ns(ns)); 3473 } 3474 3475 static int mntns_install(struct nsproxy *nsproxy, struct ns_common *ns) 3476 { 3477 struct fs_struct *fs = current->fs; 3478 struct mnt_namespace *mnt_ns = to_mnt_ns(ns), *old_mnt_ns; 3479 struct path root; 3480 int err; 3481 3482 if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) || 3483 !ns_capable(current_user_ns(), CAP_SYS_CHROOT) || 3484 !ns_capable(current_user_ns(), CAP_SYS_ADMIN)) 3485 return -EPERM; 3486 3487 if (fs->users != 1) 3488 return -EINVAL; 3489 3490 get_mnt_ns(mnt_ns); 3491 old_mnt_ns = nsproxy->mnt_ns; 3492 nsproxy->mnt_ns = mnt_ns; 3493 3494 /* Find the root */ 3495 err = vfs_path_lookup(mnt_ns->root->mnt.mnt_root, &mnt_ns->root->mnt, 3496 "/", LOOKUP_DOWN, &root); 3497 if (err) { 3498 /* revert to old namespace */ 3499 nsproxy->mnt_ns = old_mnt_ns; 3500 put_mnt_ns(mnt_ns); 3501 return err; 3502 } 3503 3504 put_mnt_ns(old_mnt_ns); 3505 3506 /* Update the pwd and root */ 3507 set_fs_pwd(fs, &root); 3508 set_fs_root(fs, &root); 3509 3510 path_put(&root); 3511 return 0; 3512 } 3513 3514 static struct user_namespace *mntns_owner(struct ns_common *ns) 3515 { 3516 return to_mnt_ns(ns)->user_ns; 3517 } 3518 3519 const struct proc_ns_operations mntns_operations = { 3520 .name = "mnt", 3521 .type = CLONE_NEWNS, 3522 .get = mntns_get, 3523 .put = mntns_put, 3524 .install = mntns_install, 3525 .owner = mntns_owner, 3526 }; 3527