1 /* 2 * linux/fs/namespace.c 3 * 4 * (C) Copyright Al Viro 2000, 2001 5 * Released under GPL v2. 6 * 7 * Based on code from fs/super.c, copyright Linus Torvalds and others. 8 * Heavily rewritten. 9 */ 10 11 #include <linux/syscalls.h> 12 #include <linux/export.h> 13 #include <linux/capability.h> 14 #include <linux/mnt_namespace.h> 15 #include <linux/user_namespace.h> 16 #include <linux/namei.h> 17 #include <linux/security.h> 18 #include <linux/cred.h> 19 #include <linux/idr.h> 20 #include <linux/init.h> /* init_rootfs */ 21 #include <linux/fs_struct.h> /* get_fs_root et.al. */ 22 #include <linux/fsnotify.h> /* fsnotify_vfsmount_delete */ 23 #include <linux/uaccess.h> 24 #include <linux/proc_ns.h> 25 #include <linux/magic.h> 26 #include <linux/memblock.h> 27 #include <linux/task_work.h> 28 #include <linux/sched/task.h> 29 #include <uapi/linux/mount.h> 30 #include <linux/fs_context.h> 31 32 #include "pnode.h" 33 #include "internal.h" 34 35 /* Maximum number of mounts in a mount namespace */ 36 unsigned int sysctl_mount_max __read_mostly = 100000; 37 38 static unsigned int m_hash_mask __read_mostly; 39 static unsigned int m_hash_shift __read_mostly; 40 static unsigned int mp_hash_mask __read_mostly; 41 static unsigned int mp_hash_shift __read_mostly; 42 43 static __initdata unsigned long mhash_entries; 44 static int __init set_mhash_entries(char *str) 45 { 46 if (!str) 47 return 0; 48 mhash_entries = simple_strtoul(str, &str, 0); 49 return 1; 50 } 51 __setup("mhash_entries=", set_mhash_entries); 52 53 static __initdata unsigned long mphash_entries; 54 static int __init set_mphash_entries(char *str) 55 { 56 if (!str) 57 return 0; 58 mphash_entries = simple_strtoul(str, &str, 0); 59 return 1; 60 } 61 __setup("mphash_entries=", set_mphash_entries); 62 63 static u64 event; 64 static DEFINE_IDA(mnt_id_ida); 65 static DEFINE_IDA(mnt_group_ida); 66 67 static struct hlist_head *mount_hashtable __read_mostly; 68 static struct hlist_head *mountpoint_hashtable __read_mostly; 69 static struct kmem_cache *mnt_cache __read_mostly; 70 static DECLARE_RWSEM(namespace_sem); 71 72 /* /sys/fs */ 73 struct kobject *fs_kobj; 74 EXPORT_SYMBOL_GPL(fs_kobj); 75 76 /* 77 * vfsmount lock may be taken for read to prevent changes to the 78 * vfsmount hash, ie. during mountpoint lookups or walking back 79 * up the tree. 80 * 81 * It should be taken for write in all cases where the vfsmount 82 * tree or hash is modified or when a vfsmount structure is modified. 83 */ 84 __cacheline_aligned_in_smp DEFINE_SEQLOCK(mount_lock); 85 86 static inline struct hlist_head *m_hash(struct vfsmount *mnt, struct dentry *dentry) 87 { 88 unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES); 89 tmp += ((unsigned long)dentry / L1_CACHE_BYTES); 90 tmp = tmp + (tmp >> m_hash_shift); 91 return &mount_hashtable[tmp & m_hash_mask]; 92 } 93 94 static inline struct hlist_head *mp_hash(struct dentry *dentry) 95 { 96 unsigned long tmp = ((unsigned long)dentry / L1_CACHE_BYTES); 97 tmp = tmp + (tmp >> mp_hash_shift); 98 return &mountpoint_hashtable[tmp & mp_hash_mask]; 99 } 100 101 static int mnt_alloc_id(struct mount *mnt) 102 { 103 int res = ida_alloc(&mnt_id_ida, GFP_KERNEL); 104 105 if (res < 0) 106 return res; 107 mnt->mnt_id = res; 108 return 0; 109 } 110 111 static void mnt_free_id(struct mount *mnt) 112 { 113 ida_free(&mnt_id_ida, mnt->mnt_id); 114 } 115 116 /* 117 * Allocate a new peer group ID 118 */ 119 static int mnt_alloc_group_id(struct mount *mnt) 120 { 121 int res = ida_alloc_min(&mnt_group_ida, 1, GFP_KERNEL); 122 123 if (res < 0) 124 return res; 125 mnt->mnt_group_id = res; 126 return 0; 127 } 128 129 /* 130 * Release a peer group ID 131 */ 132 void mnt_release_group_id(struct mount *mnt) 133 { 134 ida_free(&mnt_group_ida, mnt->mnt_group_id); 135 mnt->mnt_group_id = 0; 136 } 137 138 /* 139 * vfsmount lock must be held for read 140 */ 141 static inline void mnt_add_count(struct mount *mnt, int n) 142 { 143 #ifdef CONFIG_SMP 144 this_cpu_add(mnt->mnt_pcp->mnt_count, n); 145 #else 146 preempt_disable(); 147 mnt->mnt_count += n; 148 preempt_enable(); 149 #endif 150 } 151 152 /* 153 * vfsmount lock must be held for write 154 */ 155 unsigned int mnt_get_count(struct mount *mnt) 156 { 157 #ifdef CONFIG_SMP 158 unsigned int count = 0; 159 int cpu; 160 161 for_each_possible_cpu(cpu) { 162 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count; 163 } 164 165 return count; 166 #else 167 return mnt->mnt_count; 168 #endif 169 } 170 171 static void drop_mountpoint(struct fs_pin *p) 172 { 173 struct mount *m = container_of(p, struct mount, mnt_umount); 174 dput(m->mnt_ex_mountpoint); 175 pin_remove(p); 176 mntput(&m->mnt); 177 } 178 179 static struct mount *alloc_vfsmnt(const char *name) 180 { 181 struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL); 182 if (mnt) { 183 int err; 184 185 err = mnt_alloc_id(mnt); 186 if (err) 187 goto out_free_cache; 188 189 if (name) { 190 mnt->mnt_devname = kstrdup_const(name, GFP_KERNEL); 191 if (!mnt->mnt_devname) 192 goto out_free_id; 193 } 194 195 #ifdef CONFIG_SMP 196 mnt->mnt_pcp = alloc_percpu(struct mnt_pcp); 197 if (!mnt->mnt_pcp) 198 goto out_free_devname; 199 200 this_cpu_add(mnt->mnt_pcp->mnt_count, 1); 201 #else 202 mnt->mnt_count = 1; 203 mnt->mnt_writers = 0; 204 #endif 205 206 INIT_HLIST_NODE(&mnt->mnt_hash); 207 INIT_LIST_HEAD(&mnt->mnt_child); 208 INIT_LIST_HEAD(&mnt->mnt_mounts); 209 INIT_LIST_HEAD(&mnt->mnt_list); 210 INIT_LIST_HEAD(&mnt->mnt_expire); 211 INIT_LIST_HEAD(&mnt->mnt_share); 212 INIT_LIST_HEAD(&mnt->mnt_slave_list); 213 INIT_LIST_HEAD(&mnt->mnt_slave); 214 INIT_HLIST_NODE(&mnt->mnt_mp_list); 215 INIT_LIST_HEAD(&mnt->mnt_umounting); 216 init_fs_pin(&mnt->mnt_umount, drop_mountpoint); 217 } 218 return mnt; 219 220 #ifdef CONFIG_SMP 221 out_free_devname: 222 kfree_const(mnt->mnt_devname); 223 #endif 224 out_free_id: 225 mnt_free_id(mnt); 226 out_free_cache: 227 kmem_cache_free(mnt_cache, mnt); 228 return NULL; 229 } 230 231 /* 232 * Most r/o checks on a fs are for operations that take 233 * discrete amounts of time, like a write() or unlink(). 234 * We must keep track of when those operations start 235 * (for permission checks) and when they end, so that 236 * we can determine when writes are able to occur to 237 * a filesystem. 238 */ 239 /* 240 * __mnt_is_readonly: check whether a mount is read-only 241 * @mnt: the mount to check for its write status 242 * 243 * This shouldn't be used directly ouside of the VFS. 244 * It does not guarantee that the filesystem will stay 245 * r/w, just that it is right *now*. This can not and 246 * should not be used in place of IS_RDONLY(inode). 247 * mnt_want/drop_write() will _keep_ the filesystem 248 * r/w. 249 */ 250 bool __mnt_is_readonly(struct vfsmount *mnt) 251 { 252 return (mnt->mnt_flags & MNT_READONLY) || sb_rdonly(mnt->mnt_sb); 253 } 254 EXPORT_SYMBOL_GPL(__mnt_is_readonly); 255 256 static inline void mnt_inc_writers(struct mount *mnt) 257 { 258 #ifdef CONFIG_SMP 259 this_cpu_inc(mnt->mnt_pcp->mnt_writers); 260 #else 261 mnt->mnt_writers++; 262 #endif 263 } 264 265 static inline void mnt_dec_writers(struct mount *mnt) 266 { 267 #ifdef CONFIG_SMP 268 this_cpu_dec(mnt->mnt_pcp->mnt_writers); 269 #else 270 mnt->mnt_writers--; 271 #endif 272 } 273 274 static unsigned int mnt_get_writers(struct mount *mnt) 275 { 276 #ifdef CONFIG_SMP 277 unsigned int count = 0; 278 int cpu; 279 280 for_each_possible_cpu(cpu) { 281 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers; 282 } 283 284 return count; 285 #else 286 return mnt->mnt_writers; 287 #endif 288 } 289 290 static int mnt_is_readonly(struct vfsmount *mnt) 291 { 292 if (mnt->mnt_sb->s_readonly_remount) 293 return 1; 294 /* Order wrt setting s_flags/s_readonly_remount in do_remount() */ 295 smp_rmb(); 296 return __mnt_is_readonly(mnt); 297 } 298 299 /* 300 * Most r/o & frozen checks on a fs are for operations that take discrete 301 * amounts of time, like a write() or unlink(). We must keep track of when 302 * those operations start (for permission checks) and when they end, so that we 303 * can determine when writes are able to occur to a filesystem. 304 */ 305 /** 306 * __mnt_want_write - get write access to a mount without freeze protection 307 * @m: the mount on which to take a write 308 * 309 * This tells the low-level filesystem that a write is about to be performed to 310 * it, and makes sure that writes are allowed (mnt it read-write) before 311 * returning success. This operation does not protect against filesystem being 312 * frozen. When the write operation is finished, __mnt_drop_write() must be 313 * called. This is effectively a refcount. 314 */ 315 int __mnt_want_write(struct vfsmount *m) 316 { 317 struct mount *mnt = real_mount(m); 318 int ret = 0; 319 320 preempt_disable(); 321 mnt_inc_writers(mnt); 322 /* 323 * The store to mnt_inc_writers must be visible before we pass 324 * MNT_WRITE_HOLD loop below, so that the slowpath can see our 325 * incremented count after it has set MNT_WRITE_HOLD. 326 */ 327 smp_mb(); 328 while (READ_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD) 329 cpu_relax(); 330 /* 331 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will 332 * be set to match its requirements. So we must not load that until 333 * MNT_WRITE_HOLD is cleared. 334 */ 335 smp_rmb(); 336 if (mnt_is_readonly(m)) { 337 mnt_dec_writers(mnt); 338 ret = -EROFS; 339 } 340 preempt_enable(); 341 342 return ret; 343 } 344 345 /** 346 * mnt_want_write - get write access to a mount 347 * @m: the mount on which to take a write 348 * 349 * This tells the low-level filesystem that a write is about to be performed to 350 * it, and makes sure that writes are allowed (mount is read-write, filesystem 351 * is not frozen) before returning success. When the write operation is 352 * finished, mnt_drop_write() must be called. This is effectively a refcount. 353 */ 354 int mnt_want_write(struct vfsmount *m) 355 { 356 int ret; 357 358 sb_start_write(m->mnt_sb); 359 ret = __mnt_want_write(m); 360 if (ret) 361 sb_end_write(m->mnt_sb); 362 return ret; 363 } 364 EXPORT_SYMBOL_GPL(mnt_want_write); 365 366 /** 367 * mnt_clone_write - get write access to a mount 368 * @mnt: the mount on which to take a write 369 * 370 * This is effectively like mnt_want_write, except 371 * it must only be used to take an extra write reference 372 * on a mountpoint that we already know has a write reference 373 * on it. This allows some optimisation. 374 * 375 * After finished, mnt_drop_write must be called as usual to 376 * drop the reference. 377 */ 378 int mnt_clone_write(struct vfsmount *mnt) 379 { 380 /* superblock may be r/o */ 381 if (__mnt_is_readonly(mnt)) 382 return -EROFS; 383 preempt_disable(); 384 mnt_inc_writers(real_mount(mnt)); 385 preempt_enable(); 386 return 0; 387 } 388 EXPORT_SYMBOL_GPL(mnt_clone_write); 389 390 /** 391 * __mnt_want_write_file - get write access to a file's mount 392 * @file: the file who's mount on which to take a write 393 * 394 * This is like __mnt_want_write, but it takes a file and can 395 * do some optimisations if the file is open for write already 396 */ 397 int __mnt_want_write_file(struct file *file) 398 { 399 if (!(file->f_mode & FMODE_WRITER)) 400 return __mnt_want_write(file->f_path.mnt); 401 else 402 return mnt_clone_write(file->f_path.mnt); 403 } 404 405 /** 406 * mnt_want_write_file - get write access to a file's mount 407 * @file: the file who's mount on which to take a write 408 * 409 * This is like mnt_want_write, but it takes a file and can 410 * do some optimisations if the file is open for write already 411 */ 412 int mnt_want_write_file(struct file *file) 413 { 414 int ret; 415 416 sb_start_write(file_inode(file)->i_sb); 417 ret = __mnt_want_write_file(file); 418 if (ret) 419 sb_end_write(file_inode(file)->i_sb); 420 return ret; 421 } 422 EXPORT_SYMBOL_GPL(mnt_want_write_file); 423 424 /** 425 * __mnt_drop_write - give up write access to a mount 426 * @mnt: the mount on which to give up write access 427 * 428 * Tells the low-level filesystem that we are done 429 * performing writes to it. Must be matched with 430 * __mnt_want_write() call above. 431 */ 432 void __mnt_drop_write(struct vfsmount *mnt) 433 { 434 preempt_disable(); 435 mnt_dec_writers(real_mount(mnt)); 436 preempt_enable(); 437 } 438 439 /** 440 * mnt_drop_write - give up write access to a mount 441 * @mnt: the mount on which to give up write access 442 * 443 * Tells the low-level filesystem that we are done performing writes to it and 444 * also allows filesystem to be frozen again. Must be matched with 445 * mnt_want_write() call above. 446 */ 447 void mnt_drop_write(struct vfsmount *mnt) 448 { 449 __mnt_drop_write(mnt); 450 sb_end_write(mnt->mnt_sb); 451 } 452 EXPORT_SYMBOL_GPL(mnt_drop_write); 453 454 void __mnt_drop_write_file(struct file *file) 455 { 456 __mnt_drop_write(file->f_path.mnt); 457 } 458 459 void mnt_drop_write_file(struct file *file) 460 { 461 __mnt_drop_write_file(file); 462 sb_end_write(file_inode(file)->i_sb); 463 } 464 EXPORT_SYMBOL(mnt_drop_write_file); 465 466 static int mnt_make_readonly(struct mount *mnt) 467 { 468 int ret = 0; 469 470 lock_mount_hash(); 471 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD; 472 /* 473 * After storing MNT_WRITE_HOLD, we'll read the counters. This store 474 * should be visible before we do. 475 */ 476 smp_mb(); 477 478 /* 479 * With writers on hold, if this value is zero, then there are 480 * definitely no active writers (although held writers may subsequently 481 * increment the count, they'll have to wait, and decrement it after 482 * seeing MNT_READONLY). 483 * 484 * It is OK to have counter incremented on one CPU and decremented on 485 * another: the sum will add up correctly. The danger would be when we 486 * sum up each counter, if we read a counter before it is incremented, 487 * but then read another CPU's count which it has been subsequently 488 * decremented from -- we would see more decrements than we should. 489 * MNT_WRITE_HOLD protects against this scenario, because 490 * mnt_want_write first increments count, then smp_mb, then spins on 491 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while 492 * we're counting up here. 493 */ 494 if (mnt_get_writers(mnt) > 0) 495 ret = -EBUSY; 496 else 497 mnt->mnt.mnt_flags |= MNT_READONLY; 498 /* 499 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers 500 * that become unheld will see MNT_READONLY. 501 */ 502 smp_wmb(); 503 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD; 504 unlock_mount_hash(); 505 return ret; 506 } 507 508 static int __mnt_unmake_readonly(struct mount *mnt) 509 { 510 lock_mount_hash(); 511 mnt->mnt.mnt_flags &= ~MNT_READONLY; 512 unlock_mount_hash(); 513 return 0; 514 } 515 516 int sb_prepare_remount_readonly(struct super_block *sb) 517 { 518 struct mount *mnt; 519 int err = 0; 520 521 /* Racy optimization. Recheck the counter under MNT_WRITE_HOLD */ 522 if (atomic_long_read(&sb->s_remove_count)) 523 return -EBUSY; 524 525 lock_mount_hash(); 526 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) { 527 if (!(mnt->mnt.mnt_flags & MNT_READONLY)) { 528 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD; 529 smp_mb(); 530 if (mnt_get_writers(mnt) > 0) { 531 err = -EBUSY; 532 break; 533 } 534 } 535 } 536 if (!err && atomic_long_read(&sb->s_remove_count)) 537 err = -EBUSY; 538 539 if (!err) { 540 sb->s_readonly_remount = 1; 541 smp_wmb(); 542 } 543 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) { 544 if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD) 545 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD; 546 } 547 unlock_mount_hash(); 548 549 return err; 550 } 551 552 static void free_vfsmnt(struct mount *mnt) 553 { 554 kfree_const(mnt->mnt_devname); 555 #ifdef CONFIG_SMP 556 free_percpu(mnt->mnt_pcp); 557 #endif 558 kmem_cache_free(mnt_cache, mnt); 559 } 560 561 static void delayed_free_vfsmnt(struct rcu_head *head) 562 { 563 free_vfsmnt(container_of(head, struct mount, mnt_rcu)); 564 } 565 566 /* call under rcu_read_lock */ 567 int __legitimize_mnt(struct vfsmount *bastard, unsigned seq) 568 { 569 struct mount *mnt; 570 if (read_seqretry(&mount_lock, seq)) 571 return 1; 572 if (bastard == NULL) 573 return 0; 574 mnt = real_mount(bastard); 575 mnt_add_count(mnt, 1); 576 smp_mb(); // see mntput_no_expire() 577 if (likely(!read_seqretry(&mount_lock, seq))) 578 return 0; 579 if (bastard->mnt_flags & MNT_SYNC_UMOUNT) { 580 mnt_add_count(mnt, -1); 581 return 1; 582 } 583 lock_mount_hash(); 584 if (unlikely(bastard->mnt_flags & MNT_DOOMED)) { 585 mnt_add_count(mnt, -1); 586 unlock_mount_hash(); 587 return 1; 588 } 589 unlock_mount_hash(); 590 /* caller will mntput() */ 591 return -1; 592 } 593 594 /* call under rcu_read_lock */ 595 bool legitimize_mnt(struct vfsmount *bastard, unsigned seq) 596 { 597 int res = __legitimize_mnt(bastard, seq); 598 if (likely(!res)) 599 return true; 600 if (unlikely(res < 0)) { 601 rcu_read_unlock(); 602 mntput(bastard); 603 rcu_read_lock(); 604 } 605 return false; 606 } 607 608 /* 609 * find the first mount at @dentry on vfsmount @mnt. 610 * call under rcu_read_lock() 611 */ 612 struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry) 613 { 614 struct hlist_head *head = m_hash(mnt, dentry); 615 struct mount *p; 616 617 hlist_for_each_entry_rcu(p, head, mnt_hash) 618 if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry) 619 return p; 620 return NULL; 621 } 622 623 /* 624 * lookup_mnt - Return the first child mount mounted at path 625 * 626 * "First" means first mounted chronologically. If you create the 627 * following mounts: 628 * 629 * mount /dev/sda1 /mnt 630 * mount /dev/sda2 /mnt 631 * mount /dev/sda3 /mnt 632 * 633 * Then lookup_mnt() on the base /mnt dentry in the root mount will 634 * return successively the root dentry and vfsmount of /dev/sda1, then 635 * /dev/sda2, then /dev/sda3, then NULL. 636 * 637 * lookup_mnt takes a reference to the found vfsmount. 638 */ 639 struct vfsmount *lookup_mnt(const struct path *path) 640 { 641 struct mount *child_mnt; 642 struct vfsmount *m; 643 unsigned seq; 644 645 rcu_read_lock(); 646 do { 647 seq = read_seqbegin(&mount_lock); 648 child_mnt = __lookup_mnt(path->mnt, path->dentry); 649 m = child_mnt ? &child_mnt->mnt : NULL; 650 } while (!legitimize_mnt(m, seq)); 651 rcu_read_unlock(); 652 return m; 653 } 654 655 /* 656 * __is_local_mountpoint - Test to see if dentry is a mountpoint in the 657 * current mount namespace. 658 * 659 * The common case is dentries are not mountpoints at all and that 660 * test is handled inline. For the slow case when we are actually 661 * dealing with a mountpoint of some kind, walk through all of the 662 * mounts in the current mount namespace and test to see if the dentry 663 * is a mountpoint. 664 * 665 * The mount_hashtable is not usable in the context because we 666 * need to identify all mounts that may be in the current mount 667 * namespace not just a mount that happens to have some specified 668 * parent mount. 669 */ 670 bool __is_local_mountpoint(struct dentry *dentry) 671 { 672 struct mnt_namespace *ns = current->nsproxy->mnt_ns; 673 struct mount *mnt; 674 bool is_covered = false; 675 676 if (!d_mountpoint(dentry)) 677 goto out; 678 679 down_read(&namespace_sem); 680 list_for_each_entry(mnt, &ns->list, mnt_list) { 681 is_covered = (mnt->mnt_mountpoint == dentry); 682 if (is_covered) 683 break; 684 } 685 up_read(&namespace_sem); 686 out: 687 return is_covered; 688 } 689 690 static struct mountpoint *lookup_mountpoint(struct dentry *dentry) 691 { 692 struct hlist_head *chain = mp_hash(dentry); 693 struct mountpoint *mp; 694 695 hlist_for_each_entry(mp, chain, m_hash) { 696 if (mp->m_dentry == dentry) { 697 mp->m_count++; 698 return mp; 699 } 700 } 701 return NULL; 702 } 703 704 static struct mountpoint *get_mountpoint(struct dentry *dentry) 705 { 706 struct mountpoint *mp, *new = NULL; 707 int ret; 708 709 if (d_mountpoint(dentry)) { 710 /* might be worth a WARN_ON() */ 711 if (d_unlinked(dentry)) 712 return ERR_PTR(-ENOENT); 713 mountpoint: 714 read_seqlock_excl(&mount_lock); 715 mp = lookup_mountpoint(dentry); 716 read_sequnlock_excl(&mount_lock); 717 if (mp) 718 goto done; 719 } 720 721 if (!new) 722 new = kmalloc(sizeof(struct mountpoint), GFP_KERNEL); 723 if (!new) 724 return ERR_PTR(-ENOMEM); 725 726 727 /* Exactly one processes may set d_mounted */ 728 ret = d_set_mounted(dentry); 729 730 /* Someone else set d_mounted? */ 731 if (ret == -EBUSY) 732 goto mountpoint; 733 734 /* The dentry is not available as a mountpoint? */ 735 mp = ERR_PTR(ret); 736 if (ret) 737 goto done; 738 739 /* Add the new mountpoint to the hash table */ 740 read_seqlock_excl(&mount_lock); 741 new->m_dentry = dentry; 742 new->m_count = 1; 743 hlist_add_head(&new->m_hash, mp_hash(dentry)); 744 INIT_HLIST_HEAD(&new->m_list); 745 read_sequnlock_excl(&mount_lock); 746 747 mp = new; 748 new = NULL; 749 done: 750 kfree(new); 751 return mp; 752 } 753 754 static void put_mountpoint(struct mountpoint *mp) 755 { 756 if (!--mp->m_count) { 757 struct dentry *dentry = mp->m_dentry; 758 BUG_ON(!hlist_empty(&mp->m_list)); 759 spin_lock(&dentry->d_lock); 760 dentry->d_flags &= ~DCACHE_MOUNTED; 761 spin_unlock(&dentry->d_lock); 762 hlist_del(&mp->m_hash); 763 kfree(mp); 764 } 765 } 766 767 static inline int check_mnt(struct mount *mnt) 768 { 769 return mnt->mnt_ns == current->nsproxy->mnt_ns; 770 } 771 772 /* 773 * vfsmount lock must be held for write 774 */ 775 static void touch_mnt_namespace(struct mnt_namespace *ns) 776 { 777 if (ns) { 778 ns->event = ++event; 779 wake_up_interruptible(&ns->poll); 780 } 781 } 782 783 /* 784 * vfsmount lock must be held for write 785 */ 786 static void __touch_mnt_namespace(struct mnt_namespace *ns) 787 { 788 if (ns && ns->event != event) { 789 ns->event = event; 790 wake_up_interruptible(&ns->poll); 791 } 792 } 793 794 /* 795 * vfsmount lock must be held for write 796 */ 797 static void unhash_mnt(struct mount *mnt) 798 { 799 mnt->mnt_parent = mnt; 800 mnt->mnt_mountpoint = mnt->mnt.mnt_root; 801 list_del_init(&mnt->mnt_child); 802 hlist_del_init_rcu(&mnt->mnt_hash); 803 hlist_del_init(&mnt->mnt_mp_list); 804 put_mountpoint(mnt->mnt_mp); 805 mnt->mnt_mp = NULL; 806 } 807 808 /* 809 * vfsmount lock must be held for write 810 */ 811 static void detach_mnt(struct mount *mnt, struct path *old_path) 812 { 813 old_path->dentry = mnt->mnt_mountpoint; 814 old_path->mnt = &mnt->mnt_parent->mnt; 815 unhash_mnt(mnt); 816 } 817 818 /* 819 * vfsmount lock must be held for write 820 */ 821 static void umount_mnt(struct mount *mnt) 822 { 823 /* old mountpoint will be dropped when we can do that */ 824 mnt->mnt_ex_mountpoint = mnt->mnt_mountpoint; 825 unhash_mnt(mnt); 826 } 827 828 /* 829 * vfsmount lock must be held for write 830 */ 831 void mnt_set_mountpoint(struct mount *mnt, 832 struct mountpoint *mp, 833 struct mount *child_mnt) 834 { 835 mp->m_count++; 836 mnt_add_count(mnt, 1); /* essentially, that's mntget */ 837 child_mnt->mnt_mountpoint = dget(mp->m_dentry); 838 child_mnt->mnt_parent = mnt; 839 child_mnt->mnt_mp = mp; 840 hlist_add_head(&child_mnt->mnt_mp_list, &mp->m_list); 841 } 842 843 static void __attach_mnt(struct mount *mnt, struct mount *parent) 844 { 845 hlist_add_head_rcu(&mnt->mnt_hash, 846 m_hash(&parent->mnt, mnt->mnt_mountpoint)); 847 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts); 848 } 849 850 /* 851 * vfsmount lock must be held for write 852 */ 853 static void attach_mnt(struct mount *mnt, 854 struct mount *parent, 855 struct mountpoint *mp) 856 { 857 mnt_set_mountpoint(parent, mp, mnt); 858 __attach_mnt(mnt, parent); 859 } 860 861 void mnt_change_mountpoint(struct mount *parent, struct mountpoint *mp, struct mount *mnt) 862 { 863 struct mountpoint *old_mp = mnt->mnt_mp; 864 struct dentry *old_mountpoint = mnt->mnt_mountpoint; 865 struct mount *old_parent = mnt->mnt_parent; 866 867 list_del_init(&mnt->mnt_child); 868 hlist_del_init(&mnt->mnt_mp_list); 869 hlist_del_init_rcu(&mnt->mnt_hash); 870 871 attach_mnt(mnt, parent, mp); 872 873 put_mountpoint(old_mp); 874 875 /* 876 * Safely avoid even the suggestion this code might sleep or 877 * lock the mount hash by taking advantage of the knowledge that 878 * mnt_change_mountpoint will not release the final reference 879 * to a mountpoint. 880 * 881 * During mounting, the mount passed in as the parent mount will 882 * continue to use the old mountpoint and during unmounting, the 883 * old mountpoint will continue to exist until namespace_unlock, 884 * which happens well after mnt_change_mountpoint. 885 */ 886 spin_lock(&old_mountpoint->d_lock); 887 old_mountpoint->d_lockref.count--; 888 spin_unlock(&old_mountpoint->d_lock); 889 890 mnt_add_count(old_parent, -1); 891 } 892 893 /* 894 * vfsmount lock must be held for write 895 */ 896 static void commit_tree(struct mount *mnt) 897 { 898 struct mount *parent = mnt->mnt_parent; 899 struct mount *m; 900 LIST_HEAD(head); 901 struct mnt_namespace *n = parent->mnt_ns; 902 903 BUG_ON(parent == mnt); 904 905 list_add_tail(&head, &mnt->mnt_list); 906 list_for_each_entry(m, &head, mnt_list) 907 m->mnt_ns = n; 908 909 list_splice(&head, n->list.prev); 910 911 n->mounts += n->pending_mounts; 912 n->pending_mounts = 0; 913 914 __attach_mnt(mnt, parent); 915 touch_mnt_namespace(n); 916 } 917 918 static struct mount *next_mnt(struct mount *p, struct mount *root) 919 { 920 struct list_head *next = p->mnt_mounts.next; 921 if (next == &p->mnt_mounts) { 922 while (1) { 923 if (p == root) 924 return NULL; 925 next = p->mnt_child.next; 926 if (next != &p->mnt_parent->mnt_mounts) 927 break; 928 p = p->mnt_parent; 929 } 930 } 931 return list_entry(next, struct mount, mnt_child); 932 } 933 934 static struct mount *skip_mnt_tree(struct mount *p) 935 { 936 struct list_head *prev = p->mnt_mounts.prev; 937 while (prev != &p->mnt_mounts) { 938 p = list_entry(prev, struct mount, mnt_child); 939 prev = p->mnt_mounts.prev; 940 } 941 return p; 942 } 943 944 /** 945 * vfs_create_mount - Create a mount for a configured superblock 946 * @fc: The configuration context with the superblock attached 947 * 948 * Create a mount to an already configured superblock. If necessary, the 949 * caller should invoke vfs_get_tree() before calling this. 950 * 951 * Note that this does not attach the mount to anything. 952 */ 953 struct vfsmount *vfs_create_mount(struct fs_context *fc) 954 { 955 struct mount *mnt; 956 957 if (!fc->root) 958 return ERR_PTR(-EINVAL); 959 960 mnt = alloc_vfsmnt(fc->source ?: "none"); 961 if (!mnt) 962 return ERR_PTR(-ENOMEM); 963 964 if (fc->sb_flags & SB_KERNMOUNT) 965 mnt->mnt.mnt_flags = MNT_INTERNAL; 966 967 atomic_inc(&fc->root->d_sb->s_active); 968 mnt->mnt.mnt_sb = fc->root->d_sb; 969 mnt->mnt.mnt_root = dget(fc->root); 970 mnt->mnt_mountpoint = mnt->mnt.mnt_root; 971 mnt->mnt_parent = mnt; 972 973 lock_mount_hash(); 974 list_add_tail(&mnt->mnt_instance, &mnt->mnt.mnt_sb->s_mounts); 975 unlock_mount_hash(); 976 return &mnt->mnt; 977 } 978 EXPORT_SYMBOL(vfs_create_mount); 979 980 struct vfsmount *fc_mount(struct fs_context *fc) 981 { 982 int err = vfs_get_tree(fc); 983 if (!err) { 984 up_write(&fc->root->d_sb->s_umount); 985 return vfs_create_mount(fc); 986 } 987 return ERR_PTR(err); 988 } 989 EXPORT_SYMBOL(fc_mount); 990 991 struct vfsmount *vfs_kern_mount(struct file_system_type *type, 992 int flags, const char *name, 993 void *data) 994 { 995 struct fs_context *fc; 996 struct vfsmount *mnt; 997 int ret = 0; 998 999 if (!type) 1000 return ERR_PTR(-EINVAL); 1001 1002 fc = fs_context_for_mount(type, flags); 1003 if (IS_ERR(fc)) 1004 return ERR_CAST(fc); 1005 1006 if (name) 1007 ret = vfs_parse_fs_string(fc, "source", 1008 name, strlen(name)); 1009 if (!ret) 1010 ret = parse_monolithic_mount_data(fc, data); 1011 if (!ret) 1012 mnt = fc_mount(fc); 1013 else 1014 mnt = ERR_PTR(ret); 1015 1016 put_fs_context(fc); 1017 return mnt; 1018 } 1019 EXPORT_SYMBOL_GPL(vfs_kern_mount); 1020 1021 struct vfsmount * 1022 vfs_submount(const struct dentry *mountpoint, struct file_system_type *type, 1023 const char *name, void *data) 1024 { 1025 /* Until it is worked out how to pass the user namespace 1026 * through from the parent mount to the submount don't support 1027 * unprivileged mounts with submounts. 1028 */ 1029 if (mountpoint->d_sb->s_user_ns != &init_user_ns) 1030 return ERR_PTR(-EPERM); 1031 1032 return vfs_kern_mount(type, SB_SUBMOUNT, name, data); 1033 } 1034 EXPORT_SYMBOL_GPL(vfs_submount); 1035 1036 static struct mount *clone_mnt(struct mount *old, struct dentry *root, 1037 int flag) 1038 { 1039 struct super_block *sb = old->mnt.mnt_sb; 1040 struct mount *mnt; 1041 int err; 1042 1043 mnt = alloc_vfsmnt(old->mnt_devname); 1044 if (!mnt) 1045 return ERR_PTR(-ENOMEM); 1046 1047 if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE)) 1048 mnt->mnt_group_id = 0; /* not a peer of original */ 1049 else 1050 mnt->mnt_group_id = old->mnt_group_id; 1051 1052 if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) { 1053 err = mnt_alloc_group_id(mnt); 1054 if (err) 1055 goto out_free; 1056 } 1057 1058 mnt->mnt.mnt_flags = old->mnt.mnt_flags; 1059 mnt->mnt.mnt_flags &= ~(MNT_WRITE_HOLD|MNT_MARKED|MNT_INTERNAL); 1060 1061 atomic_inc(&sb->s_active); 1062 mnt->mnt.mnt_sb = sb; 1063 mnt->mnt.mnt_root = dget(root); 1064 mnt->mnt_mountpoint = mnt->mnt.mnt_root; 1065 mnt->mnt_parent = mnt; 1066 lock_mount_hash(); 1067 list_add_tail(&mnt->mnt_instance, &sb->s_mounts); 1068 unlock_mount_hash(); 1069 1070 if ((flag & CL_SLAVE) || 1071 ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) { 1072 list_add(&mnt->mnt_slave, &old->mnt_slave_list); 1073 mnt->mnt_master = old; 1074 CLEAR_MNT_SHARED(mnt); 1075 } else if (!(flag & CL_PRIVATE)) { 1076 if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old)) 1077 list_add(&mnt->mnt_share, &old->mnt_share); 1078 if (IS_MNT_SLAVE(old)) 1079 list_add(&mnt->mnt_slave, &old->mnt_slave); 1080 mnt->mnt_master = old->mnt_master; 1081 } else { 1082 CLEAR_MNT_SHARED(mnt); 1083 } 1084 if (flag & CL_MAKE_SHARED) 1085 set_mnt_shared(mnt); 1086 1087 /* stick the duplicate mount on the same expiry list 1088 * as the original if that was on one */ 1089 if (flag & CL_EXPIRE) { 1090 if (!list_empty(&old->mnt_expire)) 1091 list_add(&mnt->mnt_expire, &old->mnt_expire); 1092 } 1093 1094 return mnt; 1095 1096 out_free: 1097 mnt_free_id(mnt); 1098 free_vfsmnt(mnt); 1099 return ERR_PTR(err); 1100 } 1101 1102 static void cleanup_mnt(struct mount *mnt) 1103 { 1104 /* 1105 * This probably indicates that somebody messed 1106 * up a mnt_want/drop_write() pair. If this 1107 * happens, the filesystem was probably unable 1108 * to make r/w->r/o transitions. 1109 */ 1110 /* 1111 * The locking used to deal with mnt_count decrement provides barriers, 1112 * so mnt_get_writers() below is safe. 1113 */ 1114 WARN_ON(mnt_get_writers(mnt)); 1115 if (unlikely(mnt->mnt_pins.first)) 1116 mnt_pin_kill(mnt); 1117 fsnotify_vfsmount_delete(&mnt->mnt); 1118 dput(mnt->mnt.mnt_root); 1119 deactivate_super(mnt->mnt.mnt_sb); 1120 mnt_free_id(mnt); 1121 call_rcu(&mnt->mnt_rcu, delayed_free_vfsmnt); 1122 } 1123 1124 static void __cleanup_mnt(struct rcu_head *head) 1125 { 1126 cleanup_mnt(container_of(head, struct mount, mnt_rcu)); 1127 } 1128 1129 static LLIST_HEAD(delayed_mntput_list); 1130 static void delayed_mntput(struct work_struct *unused) 1131 { 1132 struct llist_node *node = llist_del_all(&delayed_mntput_list); 1133 struct mount *m, *t; 1134 1135 llist_for_each_entry_safe(m, t, node, mnt_llist) 1136 cleanup_mnt(m); 1137 } 1138 static DECLARE_DELAYED_WORK(delayed_mntput_work, delayed_mntput); 1139 1140 static void mntput_no_expire(struct mount *mnt) 1141 { 1142 rcu_read_lock(); 1143 if (likely(READ_ONCE(mnt->mnt_ns))) { 1144 /* 1145 * Since we don't do lock_mount_hash() here, 1146 * ->mnt_ns can change under us. However, if it's 1147 * non-NULL, then there's a reference that won't 1148 * be dropped until after an RCU delay done after 1149 * turning ->mnt_ns NULL. So if we observe it 1150 * non-NULL under rcu_read_lock(), the reference 1151 * we are dropping is not the final one. 1152 */ 1153 mnt_add_count(mnt, -1); 1154 rcu_read_unlock(); 1155 return; 1156 } 1157 lock_mount_hash(); 1158 /* 1159 * make sure that if __legitimize_mnt() has not seen us grab 1160 * mount_lock, we'll see their refcount increment here. 1161 */ 1162 smp_mb(); 1163 mnt_add_count(mnt, -1); 1164 if (mnt_get_count(mnt)) { 1165 rcu_read_unlock(); 1166 unlock_mount_hash(); 1167 return; 1168 } 1169 if (unlikely(mnt->mnt.mnt_flags & MNT_DOOMED)) { 1170 rcu_read_unlock(); 1171 unlock_mount_hash(); 1172 return; 1173 } 1174 mnt->mnt.mnt_flags |= MNT_DOOMED; 1175 rcu_read_unlock(); 1176 1177 list_del(&mnt->mnt_instance); 1178 1179 if (unlikely(!list_empty(&mnt->mnt_mounts))) { 1180 struct mount *p, *tmp; 1181 list_for_each_entry_safe(p, tmp, &mnt->mnt_mounts, mnt_child) { 1182 umount_mnt(p); 1183 } 1184 } 1185 unlock_mount_hash(); 1186 1187 if (likely(!(mnt->mnt.mnt_flags & MNT_INTERNAL))) { 1188 struct task_struct *task = current; 1189 if (likely(!(task->flags & PF_KTHREAD))) { 1190 init_task_work(&mnt->mnt_rcu, __cleanup_mnt); 1191 if (!task_work_add(task, &mnt->mnt_rcu, true)) 1192 return; 1193 } 1194 if (llist_add(&mnt->mnt_llist, &delayed_mntput_list)) 1195 schedule_delayed_work(&delayed_mntput_work, 1); 1196 return; 1197 } 1198 cleanup_mnt(mnt); 1199 } 1200 1201 void mntput(struct vfsmount *mnt) 1202 { 1203 if (mnt) { 1204 struct mount *m = real_mount(mnt); 1205 /* avoid cacheline pingpong, hope gcc doesn't get "smart" */ 1206 if (unlikely(m->mnt_expiry_mark)) 1207 m->mnt_expiry_mark = 0; 1208 mntput_no_expire(m); 1209 } 1210 } 1211 EXPORT_SYMBOL(mntput); 1212 1213 struct vfsmount *mntget(struct vfsmount *mnt) 1214 { 1215 if (mnt) 1216 mnt_add_count(real_mount(mnt), 1); 1217 return mnt; 1218 } 1219 EXPORT_SYMBOL(mntget); 1220 1221 /* path_is_mountpoint() - Check if path is a mount in the current 1222 * namespace. 1223 * 1224 * d_mountpoint() can only be used reliably to establish if a dentry is 1225 * not mounted in any namespace and that common case is handled inline. 1226 * d_mountpoint() isn't aware of the possibility there may be multiple 1227 * mounts using a given dentry in a different namespace. This function 1228 * checks if the passed in path is a mountpoint rather than the dentry 1229 * alone. 1230 */ 1231 bool path_is_mountpoint(const struct path *path) 1232 { 1233 unsigned seq; 1234 bool res; 1235 1236 if (!d_mountpoint(path->dentry)) 1237 return false; 1238 1239 rcu_read_lock(); 1240 do { 1241 seq = read_seqbegin(&mount_lock); 1242 res = __path_is_mountpoint(path); 1243 } while (read_seqretry(&mount_lock, seq)); 1244 rcu_read_unlock(); 1245 1246 return res; 1247 } 1248 EXPORT_SYMBOL(path_is_mountpoint); 1249 1250 struct vfsmount *mnt_clone_internal(const struct path *path) 1251 { 1252 struct mount *p; 1253 p = clone_mnt(real_mount(path->mnt), path->dentry, CL_PRIVATE); 1254 if (IS_ERR(p)) 1255 return ERR_CAST(p); 1256 p->mnt.mnt_flags |= MNT_INTERNAL; 1257 return &p->mnt; 1258 } 1259 1260 #ifdef CONFIG_PROC_FS 1261 /* iterator; we want it to have access to namespace_sem, thus here... */ 1262 static void *m_start(struct seq_file *m, loff_t *pos) 1263 { 1264 struct proc_mounts *p = m->private; 1265 1266 down_read(&namespace_sem); 1267 if (p->cached_event == p->ns->event) { 1268 void *v = p->cached_mount; 1269 if (*pos == p->cached_index) 1270 return v; 1271 if (*pos == p->cached_index + 1) { 1272 v = seq_list_next(v, &p->ns->list, &p->cached_index); 1273 return p->cached_mount = v; 1274 } 1275 } 1276 1277 p->cached_event = p->ns->event; 1278 p->cached_mount = seq_list_start(&p->ns->list, *pos); 1279 p->cached_index = *pos; 1280 return p->cached_mount; 1281 } 1282 1283 static void *m_next(struct seq_file *m, void *v, loff_t *pos) 1284 { 1285 struct proc_mounts *p = m->private; 1286 1287 p->cached_mount = seq_list_next(v, &p->ns->list, pos); 1288 p->cached_index = *pos; 1289 return p->cached_mount; 1290 } 1291 1292 static void m_stop(struct seq_file *m, void *v) 1293 { 1294 up_read(&namespace_sem); 1295 } 1296 1297 static int m_show(struct seq_file *m, void *v) 1298 { 1299 struct proc_mounts *p = m->private; 1300 struct mount *r = list_entry(v, struct mount, mnt_list); 1301 return p->show(m, &r->mnt); 1302 } 1303 1304 const struct seq_operations mounts_op = { 1305 .start = m_start, 1306 .next = m_next, 1307 .stop = m_stop, 1308 .show = m_show, 1309 }; 1310 #endif /* CONFIG_PROC_FS */ 1311 1312 /** 1313 * may_umount_tree - check if a mount tree is busy 1314 * @mnt: root of mount tree 1315 * 1316 * This is called to check if a tree of mounts has any 1317 * open files, pwds, chroots or sub mounts that are 1318 * busy. 1319 */ 1320 int may_umount_tree(struct vfsmount *m) 1321 { 1322 struct mount *mnt = real_mount(m); 1323 int actual_refs = 0; 1324 int minimum_refs = 0; 1325 struct mount *p; 1326 BUG_ON(!m); 1327 1328 /* write lock needed for mnt_get_count */ 1329 lock_mount_hash(); 1330 for (p = mnt; p; p = next_mnt(p, mnt)) { 1331 actual_refs += mnt_get_count(p); 1332 minimum_refs += 2; 1333 } 1334 unlock_mount_hash(); 1335 1336 if (actual_refs > minimum_refs) 1337 return 0; 1338 1339 return 1; 1340 } 1341 1342 EXPORT_SYMBOL(may_umount_tree); 1343 1344 /** 1345 * may_umount - check if a mount point is busy 1346 * @mnt: root of mount 1347 * 1348 * This is called to check if a mount point has any 1349 * open files, pwds, chroots or sub mounts. If the 1350 * mount has sub mounts this will return busy 1351 * regardless of whether the sub mounts are busy. 1352 * 1353 * Doesn't take quota and stuff into account. IOW, in some cases it will 1354 * give false negatives. The main reason why it's here is that we need 1355 * a non-destructive way to look for easily umountable filesystems. 1356 */ 1357 int may_umount(struct vfsmount *mnt) 1358 { 1359 int ret = 1; 1360 down_read(&namespace_sem); 1361 lock_mount_hash(); 1362 if (propagate_mount_busy(real_mount(mnt), 2)) 1363 ret = 0; 1364 unlock_mount_hash(); 1365 up_read(&namespace_sem); 1366 return ret; 1367 } 1368 1369 EXPORT_SYMBOL(may_umount); 1370 1371 static HLIST_HEAD(unmounted); /* protected by namespace_sem */ 1372 1373 static void namespace_unlock(void) 1374 { 1375 struct hlist_head head; 1376 1377 hlist_move_list(&unmounted, &head); 1378 1379 up_write(&namespace_sem); 1380 1381 if (likely(hlist_empty(&head))) 1382 return; 1383 1384 synchronize_rcu_expedited(); 1385 1386 group_pin_kill(&head); 1387 } 1388 1389 static inline void namespace_lock(void) 1390 { 1391 down_write(&namespace_sem); 1392 } 1393 1394 enum umount_tree_flags { 1395 UMOUNT_SYNC = 1, 1396 UMOUNT_PROPAGATE = 2, 1397 UMOUNT_CONNECTED = 4, 1398 }; 1399 1400 static bool disconnect_mount(struct mount *mnt, enum umount_tree_flags how) 1401 { 1402 /* Leaving mounts connected is only valid for lazy umounts */ 1403 if (how & UMOUNT_SYNC) 1404 return true; 1405 1406 /* A mount without a parent has nothing to be connected to */ 1407 if (!mnt_has_parent(mnt)) 1408 return true; 1409 1410 /* Because the reference counting rules change when mounts are 1411 * unmounted and connected, umounted mounts may not be 1412 * connected to mounted mounts. 1413 */ 1414 if (!(mnt->mnt_parent->mnt.mnt_flags & MNT_UMOUNT)) 1415 return true; 1416 1417 /* Has it been requested that the mount remain connected? */ 1418 if (how & UMOUNT_CONNECTED) 1419 return false; 1420 1421 /* Is the mount locked such that it needs to remain connected? */ 1422 if (IS_MNT_LOCKED(mnt)) 1423 return false; 1424 1425 /* By default disconnect the mount */ 1426 return true; 1427 } 1428 1429 /* 1430 * mount_lock must be held 1431 * namespace_sem must be held for write 1432 */ 1433 static void umount_tree(struct mount *mnt, enum umount_tree_flags how) 1434 { 1435 LIST_HEAD(tmp_list); 1436 struct mount *p; 1437 1438 if (how & UMOUNT_PROPAGATE) 1439 propagate_mount_unlock(mnt); 1440 1441 /* Gather the mounts to umount */ 1442 for (p = mnt; p; p = next_mnt(p, mnt)) { 1443 p->mnt.mnt_flags |= MNT_UMOUNT; 1444 list_move(&p->mnt_list, &tmp_list); 1445 } 1446 1447 /* Hide the mounts from mnt_mounts */ 1448 list_for_each_entry(p, &tmp_list, mnt_list) { 1449 list_del_init(&p->mnt_child); 1450 } 1451 1452 /* Add propogated mounts to the tmp_list */ 1453 if (how & UMOUNT_PROPAGATE) 1454 propagate_umount(&tmp_list); 1455 1456 while (!list_empty(&tmp_list)) { 1457 struct mnt_namespace *ns; 1458 bool disconnect; 1459 p = list_first_entry(&tmp_list, struct mount, mnt_list); 1460 list_del_init(&p->mnt_expire); 1461 list_del_init(&p->mnt_list); 1462 ns = p->mnt_ns; 1463 if (ns) { 1464 ns->mounts--; 1465 __touch_mnt_namespace(ns); 1466 } 1467 p->mnt_ns = NULL; 1468 if (how & UMOUNT_SYNC) 1469 p->mnt.mnt_flags |= MNT_SYNC_UMOUNT; 1470 1471 disconnect = disconnect_mount(p, how); 1472 1473 pin_insert_group(&p->mnt_umount, &p->mnt_parent->mnt, 1474 disconnect ? &unmounted : NULL); 1475 if (mnt_has_parent(p)) { 1476 mnt_add_count(p->mnt_parent, -1); 1477 if (!disconnect) { 1478 /* Don't forget about p */ 1479 list_add_tail(&p->mnt_child, &p->mnt_parent->mnt_mounts); 1480 } else { 1481 umount_mnt(p); 1482 } 1483 } 1484 change_mnt_propagation(p, MS_PRIVATE); 1485 } 1486 } 1487 1488 static void shrink_submounts(struct mount *mnt); 1489 1490 static int do_umount_root(struct super_block *sb) 1491 { 1492 int ret = 0; 1493 1494 down_write(&sb->s_umount); 1495 if (!sb_rdonly(sb)) { 1496 struct fs_context *fc; 1497 1498 fc = fs_context_for_reconfigure(sb->s_root, SB_RDONLY, 1499 SB_RDONLY); 1500 if (IS_ERR(fc)) { 1501 ret = PTR_ERR(fc); 1502 } else { 1503 ret = parse_monolithic_mount_data(fc, NULL); 1504 if (!ret) 1505 ret = reconfigure_super(fc); 1506 put_fs_context(fc); 1507 } 1508 } 1509 up_write(&sb->s_umount); 1510 return ret; 1511 } 1512 1513 static int do_umount(struct mount *mnt, int flags) 1514 { 1515 struct super_block *sb = mnt->mnt.mnt_sb; 1516 int retval; 1517 1518 retval = security_sb_umount(&mnt->mnt, flags); 1519 if (retval) 1520 return retval; 1521 1522 /* 1523 * Allow userspace to request a mountpoint be expired rather than 1524 * unmounting unconditionally. Unmount only happens if: 1525 * (1) the mark is already set (the mark is cleared by mntput()) 1526 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount] 1527 */ 1528 if (flags & MNT_EXPIRE) { 1529 if (&mnt->mnt == current->fs->root.mnt || 1530 flags & (MNT_FORCE | MNT_DETACH)) 1531 return -EINVAL; 1532 1533 /* 1534 * probably don't strictly need the lock here if we examined 1535 * all race cases, but it's a slowpath. 1536 */ 1537 lock_mount_hash(); 1538 if (mnt_get_count(mnt) != 2) { 1539 unlock_mount_hash(); 1540 return -EBUSY; 1541 } 1542 unlock_mount_hash(); 1543 1544 if (!xchg(&mnt->mnt_expiry_mark, 1)) 1545 return -EAGAIN; 1546 } 1547 1548 /* 1549 * If we may have to abort operations to get out of this 1550 * mount, and they will themselves hold resources we must 1551 * allow the fs to do things. In the Unix tradition of 1552 * 'Gee thats tricky lets do it in userspace' the umount_begin 1553 * might fail to complete on the first run through as other tasks 1554 * must return, and the like. Thats for the mount program to worry 1555 * about for the moment. 1556 */ 1557 1558 if (flags & MNT_FORCE && sb->s_op->umount_begin) { 1559 sb->s_op->umount_begin(sb); 1560 } 1561 1562 /* 1563 * No sense to grab the lock for this test, but test itself looks 1564 * somewhat bogus. Suggestions for better replacement? 1565 * Ho-hum... In principle, we might treat that as umount + switch 1566 * to rootfs. GC would eventually take care of the old vfsmount. 1567 * Actually it makes sense, especially if rootfs would contain a 1568 * /reboot - static binary that would close all descriptors and 1569 * call reboot(9). Then init(8) could umount root and exec /reboot. 1570 */ 1571 if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) { 1572 /* 1573 * Special case for "unmounting" root ... 1574 * we just try to remount it readonly. 1575 */ 1576 if (!ns_capable(sb->s_user_ns, CAP_SYS_ADMIN)) 1577 return -EPERM; 1578 return do_umount_root(sb); 1579 } 1580 1581 namespace_lock(); 1582 lock_mount_hash(); 1583 1584 /* Recheck MNT_LOCKED with the locks held */ 1585 retval = -EINVAL; 1586 if (mnt->mnt.mnt_flags & MNT_LOCKED) 1587 goto out; 1588 1589 event++; 1590 if (flags & MNT_DETACH) { 1591 if (!list_empty(&mnt->mnt_list)) 1592 umount_tree(mnt, UMOUNT_PROPAGATE); 1593 retval = 0; 1594 } else { 1595 shrink_submounts(mnt); 1596 retval = -EBUSY; 1597 if (!propagate_mount_busy(mnt, 2)) { 1598 if (!list_empty(&mnt->mnt_list)) 1599 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC); 1600 retval = 0; 1601 } 1602 } 1603 out: 1604 unlock_mount_hash(); 1605 namespace_unlock(); 1606 return retval; 1607 } 1608 1609 /* 1610 * __detach_mounts - lazily unmount all mounts on the specified dentry 1611 * 1612 * During unlink, rmdir, and d_drop it is possible to loose the path 1613 * to an existing mountpoint, and wind up leaking the mount. 1614 * detach_mounts allows lazily unmounting those mounts instead of 1615 * leaking them. 1616 * 1617 * The caller may hold dentry->d_inode->i_mutex. 1618 */ 1619 void __detach_mounts(struct dentry *dentry) 1620 { 1621 struct mountpoint *mp; 1622 struct mount *mnt; 1623 1624 namespace_lock(); 1625 lock_mount_hash(); 1626 mp = lookup_mountpoint(dentry); 1627 if (IS_ERR_OR_NULL(mp)) 1628 goto out_unlock; 1629 1630 event++; 1631 while (!hlist_empty(&mp->m_list)) { 1632 mnt = hlist_entry(mp->m_list.first, struct mount, mnt_mp_list); 1633 if (mnt->mnt.mnt_flags & MNT_UMOUNT) { 1634 hlist_add_head(&mnt->mnt_umount.s_list, &unmounted); 1635 umount_mnt(mnt); 1636 } 1637 else umount_tree(mnt, UMOUNT_CONNECTED); 1638 } 1639 put_mountpoint(mp); 1640 out_unlock: 1641 unlock_mount_hash(); 1642 namespace_unlock(); 1643 } 1644 1645 /* 1646 * Is the caller allowed to modify his namespace? 1647 */ 1648 static inline bool may_mount(void) 1649 { 1650 return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN); 1651 } 1652 1653 static inline bool may_mandlock(void) 1654 { 1655 #ifndef CONFIG_MANDATORY_FILE_LOCKING 1656 return false; 1657 #endif 1658 return capable(CAP_SYS_ADMIN); 1659 } 1660 1661 /* 1662 * Now umount can handle mount points as well as block devices. 1663 * This is important for filesystems which use unnamed block devices. 1664 * 1665 * We now support a flag for forced unmount like the other 'big iron' 1666 * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD 1667 */ 1668 1669 int ksys_umount(char __user *name, int flags) 1670 { 1671 struct path path; 1672 struct mount *mnt; 1673 int retval; 1674 int lookup_flags = 0; 1675 1676 if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW)) 1677 return -EINVAL; 1678 1679 if (!may_mount()) 1680 return -EPERM; 1681 1682 if (!(flags & UMOUNT_NOFOLLOW)) 1683 lookup_flags |= LOOKUP_FOLLOW; 1684 1685 lookup_flags |= LOOKUP_NO_EVAL; 1686 1687 retval = user_path_mountpoint_at(AT_FDCWD, name, lookup_flags, &path); 1688 if (retval) 1689 goto out; 1690 mnt = real_mount(path.mnt); 1691 retval = -EINVAL; 1692 if (path.dentry != path.mnt->mnt_root) 1693 goto dput_and_out; 1694 if (!check_mnt(mnt)) 1695 goto dput_and_out; 1696 if (mnt->mnt.mnt_flags & MNT_LOCKED) /* Check optimistically */ 1697 goto dput_and_out; 1698 retval = -EPERM; 1699 if (flags & MNT_FORCE && !capable(CAP_SYS_ADMIN)) 1700 goto dput_and_out; 1701 1702 retval = do_umount(mnt, flags); 1703 dput_and_out: 1704 /* we mustn't call path_put() as that would clear mnt_expiry_mark */ 1705 dput(path.dentry); 1706 mntput_no_expire(mnt); 1707 out: 1708 return retval; 1709 } 1710 1711 SYSCALL_DEFINE2(umount, char __user *, name, int, flags) 1712 { 1713 return ksys_umount(name, flags); 1714 } 1715 1716 #ifdef __ARCH_WANT_SYS_OLDUMOUNT 1717 1718 /* 1719 * The 2.0 compatible umount. No flags. 1720 */ 1721 SYSCALL_DEFINE1(oldumount, char __user *, name) 1722 { 1723 return ksys_umount(name, 0); 1724 } 1725 1726 #endif 1727 1728 static bool is_mnt_ns_file(struct dentry *dentry) 1729 { 1730 /* Is this a proxy for a mount namespace? */ 1731 return dentry->d_op == &ns_dentry_operations && 1732 dentry->d_fsdata == &mntns_operations; 1733 } 1734 1735 struct mnt_namespace *to_mnt_ns(struct ns_common *ns) 1736 { 1737 return container_of(ns, struct mnt_namespace, ns); 1738 } 1739 1740 static bool mnt_ns_loop(struct dentry *dentry) 1741 { 1742 /* Could bind mounting the mount namespace inode cause a 1743 * mount namespace loop? 1744 */ 1745 struct mnt_namespace *mnt_ns; 1746 if (!is_mnt_ns_file(dentry)) 1747 return false; 1748 1749 mnt_ns = to_mnt_ns(get_proc_ns(dentry->d_inode)); 1750 return current->nsproxy->mnt_ns->seq >= mnt_ns->seq; 1751 } 1752 1753 struct mount *copy_tree(struct mount *mnt, struct dentry *dentry, 1754 int flag) 1755 { 1756 struct mount *res, *p, *q, *r, *parent; 1757 1758 if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(mnt)) 1759 return ERR_PTR(-EINVAL); 1760 1761 if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry)) 1762 return ERR_PTR(-EINVAL); 1763 1764 res = q = clone_mnt(mnt, dentry, flag); 1765 if (IS_ERR(q)) 1766 return q; 1767 1768 q->mnt_mountpoint = mnt->mnt_mountpoint; 1769 1770 p = mnt; 1771 list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) { 1772 struct mount *s; 1773 if (!is_subdir(r->mnt_mountpoint, dentry)) 1774 continue; 1775 1776 for (s = r; s; s = next_mnt(s, r)) { 1777 if (!(flag & CL_COPY_UNBINDABLE) && 1778 IS_MNT_UNBINDABLE(s)) { 1779 if (s->mnt.mnt_flags & MNT_LOCKED) { 1780 /* Both unbindable and locked. */ 1781 q = ERR_PTR(-EPERM); 1782 goto out; 1783 } else { 1784 s = skip_mnt_tree(s); 1785 continue; 1786 } 1787 } 1788 if (!(flag & CL_COPY_MNT_NS_FILE) && 1789 is_mnt_ns_file(s->mnt.mnt_root)) { 1790 s = skip_mnt_tree(s); 1791 continue; 1792 } 1793 while (p != s->mnt_parent) { 1794 p = p->mnt_parent; 1795 q = q->mnt_parent; 1796 } 1797 p = s; 1798 parent = q; 1799 q = clone_mnt(p, p->mnt.mnt_root, flag); 1800 if (IS_ERR(q)) 1801 goto out; 1802 lock_mount_hash(); 1803 list_add_tail(&q->mnt_list, &res->mnt_list); 1804 attach_mnt(q, parent, p->mnt_mp); 1805 unlock_mount_hash(); 1806 } 1807 } 1808 return res; 1809 out: 1810 if (res) { 1811 lock_mount_hash(); 1812 umount_tree(res, UMOUNT_SYNC); 1813 unlock_mount_hash(); 1814 } 1815 return q; 1816 } 1817 1818 /* Caller should check returned pointer for errors */ 1819 1820 struct vfsmount *collect_mounts(const struct path *path) 1821 { 1822 struct mount *tree; 1823 namespace_lock(); 1824 if (!check_mnt(real_mount(path->mnt))) 1825 tree = ERR_PTR(-EINVAL); 1826 else 1827 tree = copy_tree(real_mount(path->mnt), path->dentry, 1828 CL_COPY_ALL | CL_PRIVATE); 1829 namespace_unlock(); 1830 if (IS_ERR(tree)) 1831 return ERR_CAST(tree); 1832 return &tree->mnt; 1833 } 1834 1835 void drop_collected_mounts(struct vfsmount *mnt) 1836 { 1837 namespace_lock(); 1838 lock_mount_hash(); 1839 umount_tree(real_mount(mnt), 0); 1840 unlock_mount_hash(); 1841 namespace_unlock(); 1842 } 1843 1844 /** 1845 * clone_private_mount - create a private clone of a path 1846 * 1847 * This creates a new vfsmount, which will be the clone of @path. The new will 1848 * not be attached anywhere in the namespace and will be private (i.e. changes 1849 * to the originating mount won't be propagated into this). 1850 * 1851 * Release with mntput(). 1852 */ 1853 struct vfsmount *clone_private_mount(const struct path *path) 1854 { 1855 struct mount *old_mnt = real_mount(path->mnt); 1856 struct mount *new_mnt; 1857 1858 if (IS_MNT_UNBINDABLE(old_mnt)) 1859 return ERR_PTR(-EINVAL); 1860 1861 new_mnt = clone_mnt(old_mnt, path->dentry, CL_PRIVATE); 1862 if (IS_ERR(new_mnt)) 1863 return ERR_CAST(new_mnt); 1864 1865 return &new_mnt->mnt; 1866 } 1867 EXPORT_SYMBOL_GPL(clone_private_mount); 1868 1869 int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg, 1870 struct vfsmount *root) 1871 { 1872 struct mount *mnt; 1873 int res = f(root, arg); 1874 if (res) 1875 return res; 1876 list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) { 1877 res = f(&mnt->mnt, arg); 1878 if (res) 1879 return res; 1880 } 1881 return 0; 1882 } 1883 1884 static void lock_mnt_tree(struct mount *mnt) 1885 { 1886 struct mount *p; 1887 1888 for (p = mnt; p; p = next_mnt(p, mnt)) { 1889 int flags = p->mnt.mnt_flags; 1890 /* Don't allow unprivileged users to change mount flags */ 1891 flags |= MNT_LOCK_ATIME; 1892 1893 if (flags & MNT_READONLY) 1894 flags |= MNT_LOCK_READONLY; 1895 1896 if (flags & MNT_NODEV) 1897 flags |= MNT_LOCK_NODEV; 1898 1899 if (flags & MNT_NOSUID) 1900 flags |= MNT_LOCK_NOSUID; 1901 1902 if (flags & MNT_NOEXEC) 1903 flags |= MNT_LOCK_NOEXEC; 1904 /* Don't allow unprivileged users to reveal what is under a mount */ 1905 if (list_empty(&p->mnt_expire)) 1906 flags |= MNT_LOCKED; 1907 p->mnt.mnt_flags = flags; 1908 } 1909 } 1910 1911 static void cleanup_group_ids(struct mount *mnt, struct mount *end) 1912 { 1913 struct mount *p; 1914 1915 for (p = mnt; p != end; p = next_mnt(p, mnt)) { 1916 if (p->mnt_group_id && !IS_MNT_SHARED(p)) 1917 mnt_release_group_id(p); 1918 } 1919 } 1920 1921 static int invent_group_ids(struct mount *mnt, bool recurse) 1922 { 1923 struct mount *p; 1924 1925 for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) { 1926 if (!p->mnt_group_id && !IS_MNT_SHARED(p)) { 1927 int err = mnt_alloc_group_id(p); 1928 if (err) { 1929 cleanup_group_ids(mnt, p); 1930 return err; 1931 } 1932 } 1933 } 1934 1935 return 0; 1936 } 1937 1938 int count_mounts(struct mnt_namespace *ns, struct mount *mnt) 1939 { 1940 unsigned int max = READ_ONCE(sysctl_mount_max); 1941 unsigned int mounts = 0, old, pending, sum; 1942 struct mount *p; 1943 1944 for (p = mnt; p; p = next_mnt(p, mnt)) 1945 mounts++; 1946 1947 old = ns->mounts; 1948 pending = ns->pending_mounts; 1949 sum = old + pending; 1950 if ((old > sum) || 1951 (pending > sum) || 1952 (max < sum) || 1953 (mounts > (max - sum))) 1954 return -ENOSPC; 1955 1956 ns->pending_mounts = pending + mounts; 1957 return 0; 1958 } 1959 1960 /* 1961 * @source_mnt : mount tree to be attached 1962 * @nd : place the mount tree @source_mnt is attached 1963 * @parent_nd : if non-null, detach the source_mnt from its parent and 1964 * store the parent mount and mountpoint dentry. 1965 * (done when source_mnt is moved) 1966 * 1967 * NOTE: in the table below explains the semantics when a source mount 1968 * of a given type is attached to a destination mount of a given type. 1969 * --------------------------------------------------------------------------- 1970 * | BIND MOUNT OPERATION | 1971 * |************************************************************************** 1972 * | source-->| shared | private | slave | unbindable | 1973 * | dest | | | | | 1974 * | | | | | | | 1975 * | v | | | | | 1976 * |************************************************************************** 1977 * | shared | shared (++) | shared (+) | shared(+++)| invalid | 1978 * | | | | | | 1979 * |non-shared| shared (+) | private | slave (*) | invalid | 1980 * *************************************************************************** 1981 * A bind operation clones the source mount and mounts the clone on the 1982 * destination mount. 1983 * 1984 * (++) the cloned mount is propagated to all the mounts in the propagation 1985 * tree of the destination mount and the cloned mount is added to 1986 * the peer group of the source mount. 1987 * (+) the cloned mount is created under the destination mount and is marked 1988 * as shared. The cloned mount is added to the peer group of the source 1989 * mount. 1990 * (+++) the mount is propagated to all the mounts in the propagation tree 1991 * of the destination mount and the cloned mount is made slave 1992 * of the same master as that of the source mount. The cloned mount 1993 * is marked as 'shared and slave'. 1994 * (*) the cloned mount is made a slave of the same master as that of the 1995 * source mount. 1996 * 1997 * --------------------------------------------------------------------------- 1998 * | MOVE MOUNT OPERATION | 1999 * |************************************************************************** 2000 * | source-->| shared | private | slave | unbindable | 2001 * | dest | | | | | 2002 * | | | | | | | 2003 * | v | | | | | 2004 * |************************************************************************** 2005 * | shared | shared (+) | shared (+) | shared(+++) | invalid | 2006 * | | | | | | 2007 * |non-shared| shared (+*) | private | slave (*) | unbindable | 2008 * *************************************************************************** 2009 * 2010 * (+) the mount is moved to the destination. And is then propagated to 2011 * all the mounts in the propagation tree of the destination mount. 2012 * (+*) the mount is moved to the destination. 2013 * (+++) the mount is moved to the destination and is then propagated to 2014 * all the mounts belonging to the destination mount's propagation tree. 2015 * the mount is marked as 'shared and slave'. 2016 * (*) the mount continues to be a slave at the new location. 2017 * 2018 * if the source mount is a tree, the operations explained above is 2019 * applied to each mount in the tree. 2020 * Must be called without spinlocks held, since this function can sleep 2021 * in allocations. 2022 */ 2023 static int attach_recursive_mnt(struct mount *source_mnt, 2024 struct mount *dest_mnt, 2025 struct mountpoint *dest_mp, 2026 struct path *parent_path) 2027 { 2028 struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns; 2029 HLIST_HEAD(tree_list); 2030 struct mnt_namespace *ns = dest_mnt->mnt_ns; 2031 struct mountpoint *smp; 2032 struct mount *child, *p; 2033 struct hlist_node *n; 2034 int err; 2035 2036 /* Preallocate a mountpoint in case the new mounts need 2037 * to be tucked under other mounts. 2038 */ 2039 smp = get_mountpoint(source_mnt->mnt.mnt_root); 2040 if (IS_ERR(smp)) 2041 return PTR_ERR(smp); 2042 2043 /* Is there space to add these mounts to the mount namespace? */ 2044 if (!parent_path) { 2045 err = count_mounts(ns, source_mnt); 2046 if (err) 2047 goto out; 2048 } 2049 2050 if (IS_MNT_SHARED(dest_mnt)) { 2051 err = invent_group_ids(source_mnt, true); 2052 if (err) 2053 goto out; 2054 err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list); 2055 lock_mount_hash(); 2056 if (err) 2057 goto out_cleanup_ids; 2058 for (p = source_mnt; p; p = next_mnt(p, source_mnt)) 2059 set_mnt_shared(p); 2060 } else { 2061 lock_mount_hash(); 2062 } 2063 if (parent_path) { 2064 detach_mnt(source_mnt, parent_path); 2065 attach_mnt(source_mnt, dest_mnt, dest_mp); 2066 touch_mnt_namespace(source_mnt->mnt_ns); 2067 } else { 2068 mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt); 2069 commit_tree(source_mnt); 2070 } 2071 2072 hlist_for_each_entry_safe(child, n, &tree_list, mnt_hash) { 2073 struct mount *q; 2074 hlist_del_init(&child->mnt_hash); 2075 q = __lookup_mnt(&child->mnt_parent->mnt, 2076 child->mnt_mountpoint); 2077 if (q) 2078 mnt_change_mountpoint(child, smp, q); 2079 /* Notice when we are propagating across user namespaces */ 2080 if (child->mnt_parent->mnt_ns->user_ns != user_ns) 2081 lock_mnt_tree(child); 2082 commit_tree(child); 2083 } 2084 put_mountpoint(smp); 2085 unlock_mount_hash(); 2086 2087 return 0; 2088 2089 out_cleanup_ids: 2090 while (!hlist_empty(&tree_list)) { 2091 child = hlist_entry(tree_list.first, struct mount, mnt_hash); 2092 child->mnt_parent->mnt_ns->pending_mounts = 0; 2093 umount_tree(child, UMOUNT_SYNC); 2094 } 2095 unlock_mount_hash(); 2096 cleanup_group_ids(source_mnt, NULL); 2097 out: 2098 ns->pending_mounts = 0; 2099 2100 read_seqlock_excl(&mount_lock); 2101 put_mountpoint(smp); 2102 read_sequnlock_excl(&mount_lock); 2103 2104 return err; 2105 } 2106 2107 static struct mountpoint *lock_mount(struct path *path) 2108 { 2109 struct vfsmount *mnt; 2110 struct dentry *dentry = path->dentry; 2111 retry: 2112 inode_lock(dentry->d_inode); 2113 if (unlikely(cant_mount(dentry))) { 2114 inode_unlock(dentry->d_inode); 2115 return ERR_PTR(-ENOENT); 2116 } 2117 namespace_lock(); 2118 mnt = lookup_mnt(path); 2119 if (likely(!mnt)) { 2120 struct mountpoint *mp = get_mountpoint(dentry); 2121 if (IS_ERR(mp)) { 2122 namespace_unlock(); 2123 inode_unlock(dentry->d_inode); 2124 return mp; 2125 } 2126 return mp; 2127 } 2128 namespace_unlock(); 2129 inode_unlock(path->dentry->d_inode); 2130 path_put(path); 2131 path->mnt = mnt; 2132 dentry = path->dentry = dget(mnt->mnt_root); 2133 goto retry; 2134 } 2135 2136 static void unlock_mount(struct mountpoint *where) 2137 { 2138 struct dentry *dentry = where->m_dentry; 2139 2140 read_seqlock_excl(&mount_lock); 2141 put_mountpoint(where); 2142 read_sequnlock_excl(&mount_lock); 2143 2144 namespace_unlock(); 2145 inode_unlock(dentry->d_inode); 2146 } 2147 2148 static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp) 2149 { 2150 if (mnt->mnt.mnt_sb->s_flags & SB_NOUSER) 2151 return -EINVAL; 2152 2153 if (d_is_dir(mp->m_dentry) != 2154 d_is_dir(mnt->mnt.mnt_root)) 2155 return -ENOTDIR; 2156 2157 return attach_recursive_mnt(mnt, p, mp, NULL); 2158 } 2159 2160 /* 2161 * Sanity check the flags to change_mnt_propagation. 2162 */ 2163 2164 static int flags_to_propagation_type(int ms_flags) 2165 { 2166 int type = ms_flags & ~(MS_REC | MS_SILENT); 2167 2168 /* Fail if any non-propagation flags are set */ 2169 if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE)) 2170 return 0; 2171 /* Only one propagation flag should be set */ 2172 if (!is_power_of_2(type)) 2173 return 0; 2174 return type; 2175 } 2176 2177 /* 2178 * recursively change the type of the mountpoint. 2179 */ 2180 static int do_change_type(struct path *path, int ms_flags) 2181 { 2182 struct mount *m; 2183 struct mount *mnt = real_mount(path->mnt); 2184 int recurse = ms_flags & MS_REC; 2185 int type; 2186 int err = 0; 2187 2188 if (path->dentry != path->mnt->mnt_root) 2189 return -EINVAL; 2190 2191 type = flags_to_propagation_type(ms_flags); 2192 if (!type) 2193 return -EINVAL; 2194 2195 namespace_lock(); 2196 if (type == MS_SHARED) { 2197 err = invent_group_ids(mnt, recurse); 2198 if (err) 2199 goto out_unlock; 2200 } 2201 2202 lock_mount_hash(); 2203 for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL)) 2204 change_mnt_propagation(m, type); 2205 unlock_mount_hash(); 2206 2207 out_unlock: 2208 namespace_unlock(); 2209 return err; 2210 } 2211 2212 static bool has_locked_children(struct mount *mnt, struct dentry *dentry) 2213 { 2214 struct mount *child; 2215 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) { 2216 if (!is_subdir(child->mnt_mountpoint, dentry)) 2217 continue; 2218 2219 if (child->mnt.mnt_flags & MNT_LOCKED) 2220 return true; 2221 } 2222 return false; 2223 } 2224 2225 /* 2226 * do loopback mount. 2227 */ 2228 static int do_loopback(struct path *path, const char *old_name, 2229 int recurse) 2230 { 2231 struct path old_path; 2232 struct mount *mnt = NULL, *old, *parent; 2233 struct mountpoint *mp; 2234 int err; 2235 if (!old_name || !*old_name) 2236 return -EINVAL; 2237 err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path); 2238 if (err) 2239 return err; 2240 2241 err = -EINVAL; 2242 if (mnt_ns_loop(old_path.dentry)) 2243 goto out; 2244 2245 mp = lock_mount(path); 2246 err = PTR_ERR(mp); 2247 if (IS_ERR(mp)) 2248 goto out; 2249 2250 old = real_mount(old_path.mnt); 2251 parent = real_mount(path->mnt); 2252 2253 err = -EINVAL; 2254 if (IS_MNT_UNBINDABLE(old)) 2255 goto out2; 2256 2257 if (!check_mnt(parent)) 2258 goto out2; 2259 2260 if (!check_mnt(old) && old_path.dentry->d_op != &ns_dentry_operations) 2261 goto out2; 2262 2263 if (!recurse && has_locked_children(old, old_path.dentry)) 2264 goto out2; 2265 2266 if (recurse) 2267 mnt = copy_tree(old, old_path.dentry, CL_COPY_MNT_NS_FILE); 2268 else 2269 mnt = clone_mnt(old, old_path.dentry, 0); 2270 2271 if (IS_ERR(mnt)) { 2272 err = PTR_ERR(mnt); 2273 goto out2; 2274 } 2275 2276 mnt->mnt.mnt_flags &= ~MNT_LOCKED; 2277 2278 err = graft_tree(mnt, parent, mp); 2279 if (err) { 2280 lock_mount_hash(); 2281 umount_tree(mnt, UMOUNT_SYNC); 2282 unlock_mount_hash(); 2283 } 2284 out2: 2285 unlock_mount(mp); 2286 out: 2287 path_put(&old_path); 2288 return err; 2289 } 2290 2291 /* 2292 * Don't allow locked mount flags to be cleared. 2293 * 2294 * No locks need to be held here while testing the various MNT_LOCK 2295 * flags because those flags can never be cleared once they are set. 2296 */ 2297 static bool can_change_locked_flags(struct mount *mnt, unsigned int mnt_flags) 2298 { 2299 unsigned int fl = mnt->mnt.mnt_flags; 2300 2301 if ((fl & MNT_LOCK_READONLY) && 2302 !(mnt_flags & MNT_READONLY)) 2303 return false; 2304 2305 if ((fl & MNT_LOCK_NODEV) && 2306 !(mnt_flags & MNT_NODEV)) 2307 return false; 2308 2309 if ((fl & MNT_LOCK_NOSUID) && 2310 !(mnt_flags & MNT_NOSUID)) 2311 return false; 2312 2313 if ((fl & MNT_LOCK_NOEXEC) && 2314 !(mnt_flags & MNT_NOEXEC)) 2315 return false; 2316 2317 if ((fl & MNT_LOCK_ATIME) && 2318 ((fl & MNT_ATIME_MASK) != (mnt_flags & MNT_ATIME_MASK))) 2319 return false; 2320 2321 return true; 2322 } 2323 2324 static int change_mount_ro_state(struct mount *mnt, unsigned int mnt_flags) 2325 { 2326 bool readonly_request = (mnt_flags & MNT_READONLY); 2327 2328 if (readonly_request == __mnt_is_readonly(&mnt->mnt)) 2329 return 0; 2330 2331 if (readonly_request) 2332 return mnt_make_readonly(mnt); 2333 2334 return __mnt_unmake_readonly(mnt); 2335 } 2336 2337 /* 2338 * Update the user-settable attributes on a mount. The caller must hold 2339 * sb->s_umount for writing. 2340 */ 2341 static void set_mount_attributes(struct mount *mnt, unsigned int mnt_flags) 2342 { 2343 lock_mount_hash(); 2344 mnt_flags |= mnt->mnt.mnt_flags & ~MNT_USER_SETTABLE_MASK; 2345 mnt->mnt.mnt_flags = mnt_flags; 2346 touch_mnt_namespace(mnt->mnt_ns); 2347 unlock_mount_hash(); 2348 } 2349 2350 /* 2351 * Handle reconfiguration of the mountpoint only without alteration of the 2352 * superblock it refers to. This is triggered by specifying MS_REMOUNT|MS_BIND 2353 * to mount(2). 2354 */ 2355 static int do_reconfigure_mnt(struct path *path, unsigned int mnt_flags) 2356 { 2357 struct super_block *sb = path->mnt->mnt_sb; 2358 struct mount *mnt = real_mount(path->mnt); 2359 int ret; 2360 2361 if (!check_mnt(mnt)) 2362 return -EINVAL; 2363 2364 if (path->dentry != mnt->mnt.mnt_root) 2365 return -EINVAL; 2366 2367 if (!can_change_locked_flags(mnt, mnt_flags)) 2368 return -EPERM; 2369 2370 down_write(&sb->s_umount); 2371 ret = change_mount_ro_state(mnt, mnt_flags); 2372 if (ret == 0) 2373 set_mount_attributes(mnt, mnt_flags); 2374 up_write(&sb->s_umount); 2375 return ret; 2376 } 2377 2378 /* 2379 * change filesystem flags. dir should be a physical root of filesystem. 2380 * If you've mounted a non-root directory somewhere and want to do remount 2381 * on it - tough luck. 2382 */ 2383 static int do_remount(struct path *path, int ms_flags, int sb_flags, 2384 int mnt_flags, void *data) 2385 { 2386 int err; 2387 struct super_block *sb = path->mnt->mnt_sb; 2388 struct mount *mnt = real_mount(path->mnt); 2389 struct fs_context *fc; 2390 2391 if (!check_mnt(mnt)) 2392 return -EINVAL; 2393 2394 if (path->dentry != path->mnt->mnt_root) 2395 return -EINVAL; 2396 2397 if (!can_change_locked_flags(mnt, mnt_flags)) 2398 return -EPERM; 2399 2400 fc = fs_context_for_reconfigure(path->dentry, sb_flags, MS_RMT_MASK); 2401 if (IS_ERR(fc)) 2402 return PTR_ERR(fc); 2403 2404 err = parse_monolithic_mount_data(fc, data); 2405 if (!err) { 2406 down_write(&sb->s_umount); 2407 err = -EPERM; 2408 if (ns_capable(sb->s_user_ns, CAP_SYS_ADMIN)) { 2409 err = reconfigure_super(fc); 2410 if (!err) 2411 set_mount_attributes(mnt, mnt_flags); 2412 } 2413 up_write(&sb->s_umount); 2414 } 2415 put_fs_context(fc); 2416 return err; 2417 } 2418 2419 static inline int tree_contains_unbindable(struct mount *mnt) 2420 { 2421 struct mount *p; 2422 for (p = mnt; p; p = next_mnt(p, mnt)) { 2423 if (IS_MNT_UNBINDABLE(p)) 2424 return 1; 2425 } 2426 return 0; 2427 } 2428 2429 static int do_move_mount(struct path *path, const char *old_name) 2430 { 2431 struct path old_path, parent_path; 2432 struct mount *p; 2433 struct mount *old; 2434 struct mountpoint *mp; 2435 int err; 2436 if (!old_name || !*old_name) 2437 return -EINVAL; 2438 err = kern_path(old_name, LOOKUP_FOLLOW, &old_path); 2439 if (err) 2440 return err; 2441 2442 mp = lock_mount(path); 2443 err = PTR_ERR(mp); 2444 if (IS_ERR(mp)) 2445 goto out; 2446 2447 old = real_mount(old_path.mnt); 2448 p = real_mount(path->mnt); 2449 2450 err = -EINVAL; 2451 if (!check_mnt(p) || !check_mnt(old)) 2452 goto out1; 2453 2454 if (old->mnt.mnt_flags & MNT_LOCKED) 2455 goto out1; 2456 2457 err = -EINVAL; 2458 if (old_path.dentry != old_path.mnt->mnt_root) 2459 goto out1; 2460 2461 if (!mnt_has_parent(old)) 2462 goto out1; 2463 2464 if (d_is_dir(path->dentry) != 2465 d_is_dir(old_path.dentry)) 2466 goto out1; 2467 /* 2468 * Don't move a mount residing in a shared parent. 2469 */ 2470 if (IS_MNT_SHARED(old->mnt_parent)) 2471 goto out1; 2472 /* 2473 * Don't move a mount tree containing unbindable mounts to a destination 2474 * mount which is shared. 2475 */ 2476 if (IS_MNT_SHARED(p) && tree_contains_unbindable(old)) 2477 goto out1; 2478 err = -ELOOP; 2479 for (; mnt_has_parent(p); p = p->mnt_parent) 2480 if (p == old) 2481 goto out1; 2482 2483 err = attach_recursive_mnt(old, real_mount(path->mnt), mp, &parent_path); 2484 if (err) 2485 goto out1; 2486 2487 /* if the mount is moved, it should no longer be expire 2488 * automatically */ 2489 list_del_init(&old->mnt_expire); 2490 out1: 2491 unlock_mount(mp); 2492 out: 2493 if (!err) 2494 path_put(&parent_path); 2495 path_put(&old_path); 2496 return err; 2497 } 2498 2499 /* 2500 * add a mount into a namespace's mount tree 2501 */ 2502 static int do_add_mount(struct mount *newmnt, struct path *path, int mnt_flags) 2503 { 2504 struct mountpoint *mp; 2505 struct mount *parent; 2506 int err; 2507 2508 mnt_flags &= ~MNT_INTERNAL_FLAGS; 2509 2510 mp = lock_mount(path); 2511 if (IS_ERR(mp)) 2512 return PTR_ERR(mp); 2513 2514 parent = real_mount(path->mnt); 2515 err = -EINVAL; 2516 if (unlikely(!check_mnt(parent))) { 2517 /* that's acceptable only for automounts done in private ns */ 2518 if (!(mnt_flags & MNT_SHRINKABLE)) 2519 goto unlock; 2520 /* ... and for those we'd better have mountpoint still alive */ 2521 if (!parent->mnt_ns) 2522 goto unlock; 2523 } 2524 2525 /* Refuse the same filesystem on the same mount point */ 2526 err = -EBUSY; 2527 if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb && 2528 path->mnt->mnt_root == path->dentry) 2529 goto unlock; 2530 2531 err = -EINVAL; 2532 if (d_is_symlink(newmnt->mnt.mnt_root)) 2533 goto unlock; 2534 2535 newmnt->mnt.mnt_flags = mnt_flags; 2536 err = graft_tree(newmnt, parent, mp); 2537 2538 unlock: 2539 unlock_mount(mp); 2540 return err; 2541 } 2542 2543 static bool mount_too_revealing(const struct super_block *sb, int *new_mnt_flags); 2544 2545 /* 2546 * Create a new mount using a superblock configuration and request it 2547 * be added to the namespace tree. 2548 */ 2549 static int do_new_mount_fc(struct fs_context *fc, struct path *mountpoint, 2550 unsigned int mnt_flags) 2551 { 2552 struct vfsmount *mnt; 2553 struct super_block *sb = fc->root->d_sb; 2554 int error; 2555 2556 error = security_sb_kern_mount(sb); 2557 if (!error && mount_too_revealing(sb, &mnt_flags)) 2558 error = -EPERM; 2559 2560 if (unlikely(error)) { 2561 fc_drop_locked(fc); 2562 return error; 2563 } 2564 2565 up_write(&sb->s_umount); 2566 2567 mnt = vfs_create_mount(fc); 2568 if (IS_ERR(mnt)) 2569 return PTR_ERR(mnt); 2570 2571 error = do_add_mount(real_mount(mnt), mountpoint, mnt_flags); 2572 if (error < 0) 2573 mntput(mnt); 2574 return error; 2575 } 2576 2577 /* 2578 * create a new mount for userspace and request it to be added into the 2579 * namespace's tree 2580 */ 2581 static int do_new_mount(struct path *path, const char *fstype, int sb_flags, 2582 int mnt_flags, const char *name, void *data) 2583 { 2584 struct file_system_type *type; 2585 struct fs_context *fc; 2586 const char *subtype = NULL; 2587 int err = 0; 2588 2589 if (!fstype) 2590 return -EINVAL; 2591 2592 type = get_fs_type(fstype); 2593 if (!type) 2594 return -ENODEV; 2595 2596 if (type->fs_flags & FS_HAS_SUBTYPE) { 2597 subtype = strchr(fstype, '.'); 2598 if (subtype) { 2599 subtype++; 2600 if (!*subtype) { 2601 put_filesystem(type); 2602 return -EINVAL; 2603 } 2604 } else { 2605 subtype = ""; 2606 } 2607 } 2608 2609 fc = fs_context_for_mount(type, sb_flags); 2610 put_filesystem(type); 2611 if (IS_ERR(fc)) 2612 return PTR_ERR(fc); 2613 2614 if (subtype) 2615 err = vfs_parse_fs_string(fc, "subtype", 2616 subtype, strlen(subtype)); 2617 if (!err && name) 2618 err = vfs_parse_fs_string(fc, "source", name, strlen(name)); 2619 if (!err) 2620 err = parse_monolithic_mount_data(fc, data); 2621 if (!err) 2622 err = vfs_get_tree(fc); 2623 if (!err) 2624 err = do_new_mount_fc(fc, path, mnt_flags); 2625 2626 put_fs_context(fc); 2627 return err; 2628 } 2629 2630 int finish_automount(struct vfsmount *m, struct path *path) 2631 { 2632 struct mount *mnt = real_mount(m); 2633 int err; 2634 /* The new mount record should have at least 2 refs to prevent it being 2635 * expired before we get a chance to add it 2636 */ 2637 BUG_ON(mnt_get_count(mnt) < 2); 2638 2639 if (m->mnt_sb == path->mnt->mnt_sb && 2640 m->mnt_root == path->dentry) { 2641 err = -ELOOP; 2642 goto fail; 2643 } 2644 2645 err = do_add_mount(mnt, path, path->mnt->mnt_flags | MNT_SHRINKABLE); 2646 if (!err) 2647 return 0; 2648 fail: 2649 /* remove m from any expiration list it may be on */ 2650 if (!list_empty(&mnt->mnt_expire)) { 2651 namespace_lock(); 2652 list_del_init(&mnt->mnt_expire); 2653 namespace_unlock(); 2654 } 2655 mntput(m); 2656 mntput(m); 2657 return err; 2658 } 2659 2660 /** 2661 * mnt_set_expiry - Put a mount on an expiration list 2662 * @mnt: The mount to list. 2663 * @expiry_list: The list to add the mount to. 2664 */ 2665 void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list) 2666 { 2667 namespace_lock(); 2668 2669 list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list); 2670 2671 namespace_unlock(); 2672 } 2673 EXPORT_SYMBOL(mnt_set_expiry); 2674 2675 /* 2676 * process a list of expirable mountpoints with the intent of discarding any 2677 * mountpoints that aren't in use and haven't been touched since last we came 2678 * here 2679 */ 2680 void mark_mounts_for_expiry(struct list_head *mounts) 2681 { 2682 struct mount *mnt, *next; 2683 LIST_HEAD(graveyard); 2684 2685 if (list_empty(mounts)) 2686 return; 2687 2688 namespace_lock(); 2689 lock_mount_hash(); 2690 2691 /* extract from the expiration list every vfsmount that matches the 2692 * following criteria: 2693 * - only referenced by its parent vfsmount 2694 * - still marked for expiry (marked on the last call here; marks are 2695 * cleared by mntput()) 2696 */ 2697 list_for_each_entry_safe(mnt, next, mounts, mnt_expire) { 2698 if (!xchg(&mnt->mnt_expiry_mark, 1) || 2699 propagate_mount_busy(mnt, 1)) 2700 continue; 2701 list_move(&mnt->mnt_expire, &graveyard); 2702 } 2703 while (!list_empty(&graveyard)) { 2704 mnt = list_first_entry(&graveyard, struct mount, mnt_expire); 2705 touch_mnt_namespace(mnt->mnt_ns); 2706 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC); 2707 } 2708 unlock_mount_hash(); 2709 namespace_unlock(); 2710 } 2711 2712 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry); 2713 2714 /* 2715 * Ripoff of 'select_parent()' 2716 * 2717 * search the list of submounts for a given mountpoint, and move any 2718 * shrinkable submounts to the 'graveyard' list. 2719 */ 2720 static int select_submounts(struct mount *parent, struct list_head *graveyard) 2721 { 2722 struct mount *this_parent = parent; 2723 struct list_head *next; 2724 int found = 0; 2725 2726 repeat: 2727 next = this_parent->mnt_mounts.next; 2728 resume: 2729 while (next != &this_parent->mnt_mounts) { 2730 struct list_head *tmp = next; 2731 struct mount *mnt = list_entry(tmp, struct mount, mnt_child); 2732 2733 next = tmp->next; 2734 if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE)) 2735 continue; 2736 /* 2737 * Descend a level if the d_mounts list is non-empty. 2738 */ 2739 if (!list_empty(&mnt->mnt_mounts)) { 2740 this_parent = mnt; 2741 goto repeat; 2742 } 2743 2744 if (!propagate_mount_busy(mnt, 1)) { 2745 list_move_tail(&mnt->mnt_expire, graveyard); 2746 found++; 2747 } 2748 } 2749 /* 2750 * All done at this level ... ascend and resume the search 2751 */ 2752 if (this_parent != parent) { 2753 next = this_parent->mnt_child.next; 2754 this_parent = this_parent->mnt_parent; 2755 goto resume; 2756 } 2757 return found; 2758 } 2759 2760 /* 2761 * process a list of expirable mountpoints with the intent of discarding any 2762 * submounts of a specific parent mountpoint 2763 * 2764 * mount_lock must be held for write 2765 */ 2766 static void shrink_submounts(struct mount *mnt) 2767 { 2768 LIST_HEAD(graveyard); 2769 struct mount *m; 2770 2771 /* extract submounts of 'mountpoint' from the expiration list */ 2772 while (select_submounts(mnt, &graveyard)) { 2773 while (!list_empty(&graveyard)) { 2774 m = list_first_entry(&graveyard, struct mount, 2775 mnt_expire); 2776 touch_mnt_namespace(m->mnt_ns); 2777 umount_tree(m, UMOUNT_PROPAGATE|UMOUNT_SYNC); 2778 } 2779 } 2780 } 2781 2782 /* 2783 * Some copy_from_user() implementations do not return the exact number of 2784 * bytes remaining to copy on a fault. But copy_mount_options() requires that. 2785 * Note that this function differs from copy_from_user() in that it will oops 2786 * on bad values of `to', rather than returning a short copy. 2787 */ 2788 static long exact_copy_from_user(void *to, const void __user * from, 2789 unsigned long n) 2790 { 2791 char *t = to; 2792 const char __user *f = from; 2793 char c; 2794 2795 if (!access_ok(from, n)) 2796 return n; 2797 2798 while (n) { 2799 if (__get_user(c, f)) { 2800 memset(t, 0, n); 2801 break; 2802 } 2803 *t++ = c; 2804 f++; 2805 n--; 2806 } 2807 return n; 2808 } 2809 2810 void *copy_mount_options(const void __user * data) 2811 { 2812 int i; 2813 unsigned long size; 2814 char *copy; 2815 2816 if (!data) 2817 return NULL; 2818 2819 copy = kmalloc(PAGE_SIZE, GFP_KERNEL); 2820 if (!copy) 2821 return ERR_PTR(-ENOMEM); 2822 2823 /* We only care that *some* data at the address the user 2824 * gave us is valid. Just in case, we'll zero 2825 * the remainder of the page. 2826 */ 2827 /* copy_from_user cannot cross TASK_SIZE ! */ 2828 size = TASK_SIZE - (unsigned long)data; 2829 if (size > PAGE_SIZE) 2830 size = PAGE_SIZE; 2831 2832 i = size - exact_copy_from_user(copy, data, size); 2833 if (!i) { 2834 kfree(copy); 2835 return ERR_PTR(-EFAULT); 2836 } 2837 if (i != PAGE_SIZE) 2838 memset(copy + i, 0, PAGE_SIZE - i); 2839 return copy; 2840 } 2841 2842 char *copy_mount_string(const void __user *data) 2843 { 2844 return data ? strndup_user(data, PATH_MAX) : NULL; 2845 } 2846 2847 /* 2848 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to 2849 * be given to the mount() call (ie: read-only, no-dev, no-suid etc). 2850 * 2851 * data is a (void *) that can point to any structure up to 2852 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent 2853 * information (or be NULL). 2854 * 2855 * Pre-0.97 versions of mount() didn't have a flags word. 2856 * When the flags word was introduced its top half was required 2857 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9. 2858 * Therefore, if this magic number is present, it carries no information 2859 * and must be discarded. 2860 */ 2861 long do_mount(const char *dev_name, const char __user *dir_name, 2862 const char *type_page, unsigned long flags, void *data_page) 2863 { 2864 struct path path; 2865 unsigned int mnt_flags = 0, sb_flags; 2866 int retval = 0; 2867 2868 /* Discard magic */ 2869 if ((flags & MS_MGC_MSK) == MS_MGC_VAL) 2870 flags &= ~MS_MGC_MSK; 2871 2872 /* Basic sanity checks */ 2873 if (data_page) 2874 ((char *)data_page)[PAGE_SIZE - 1] = 0; 2875 2876 if (flags & MS_NOUSER) 2877 return -EINVAL; 2878 2879 /* ... and get the mountpoint */ 2880 retval = user_path(dir_name, &path); 2881 if (retval) 2882 return retval; 2883 2884 retval = security_sb_mount(dev_name, &path, 2885 type_page, flags, data_page); 2886 if (!retval && !may_mount()) 2887 retval = -EPERM; 2888 if (!retval && (flags & SB_MANDLOCK) && !may_mandlock()) 2889 retval = -EPERM; 2890 if (retval) 2891 goto dput_out; 2892 2893 /* Default to relatime unless overriden */ 2894 if (!(flags & MS_NOATIME)) 2895 mnt_flags |= MNT_RELATIME; 2896 2897 /* Separate the per-mountpoint flags */ 2898 if (flags & MS_NOSUID) 2899 mnt_flags |= MNT_NOSUID; 2900 if (flags & MS_NODEV) 2901 mnt_flags |= MNT_NODEV; 2902 if (flags & MS_NOEXEC) 2903 mnt_flags |= MNT_NOEXEC; 2904 if (flags & MS_NOATIME) 2905 mnt_flags |= MNT_NOATIME; 2906 if (flags & MS_NODIRATIME) 2907 mnt_flags |= MNT_NODIRATIME; 2908 if (flags & MS_STRICTATIME) 2909 mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME); 2910 if (flags & MS_RDONLY) 2911 mnt_flags |= MNT_READONLY; 2912 2913 /* The default atime for remount is preservation */ 2914 if ((flags & MS_REMOUNT) && 2915 ((flags & (MS_NOATIME | MS_NODIRATIME | MS_RELATIME | 2916 MS_STRICTATIME)) == 0)) { 2917 mnt_flags &= ~MNT_ATIME_MASK; 2918 mnt_flags |= path.mnt->mnt_flags & MNT_ATIME_MASK; 2919 } 2920 2921 sb_flags = flags & (SB_RDONLY | 2922 SB_SYNCHRONOUS | 2923 SB_MANDLOCK | 2924 SB_DIRSYNC | 2925 SB_SILENT | 2926 SB_POSIXACL | 2927 SB_LAZYTIME | 2928 SB_I_VERSION); 2929 2930 if ((flags & (MS_REMOUNT | MS_BIND)) == (MS_REMOUNT | MS_BIND)) 2931 retval = do_reconfigure_mnt(&path, mnt_flags); 2932 else if (flags & MS_REMOUNT) 2933 retval = do_remount(&path, flags, sb_flags, mnt_flags, 2934 data_page); 2935 else if (flags & MS_BIND) 2936 retval = do_loopback(&path, dev_name, flags & MS_REC); 2937 else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE)) 2938 retval = do_change_type(&path, flags); 2939 else if (flags & MS_MOVE) 2940 retval = do_move_mount(&path, dev_name); 2941 else 2942 retval = do_new_mount(&path, type_page, sb_flags, mnt_flags, 2943 dev_name, data_page); 2944 dput_out: 2945 path_put(&path); 2946 return retval; 2947 } 2948 2949 static struct ucounts *inc_mnt_namespaces(struct user_namespace *ns) 2950 { 2951 return inc_ucount(ns, current_euid(), UCOUNT_MNT_NAMESPACES); 2952 } 2953 2954 static void dec_mnt_namespaces(struct ucounts *ucounts) 2955 { 2956 dec_ucount(ucounts, UCOUNT_MNT_NAMESPACES); 2957 } 2958 2959 static void free_mnt_ns(struct mnt_namespace *ns) 2960 { 2961 if (!is_anon_ns(ns)) 2962 ns_free_inum(&ns->ns); 2963 dec_mnt_namespaces(ns->ucounts); 2964 put_user_ns(ns->user_ns); 2965 kfree(ns); 2966 } 2967 2968 /* 2969 * Assign a sequence number so we can detect when we attempt to bind 2970 * mount a reference to an older mount namespace into the current 2971 * mount namespace, preventing reference counting loops. A 64bit 2972 * number incrementing at 10Ghz will take 12,427 years to wrap which 2973 * is effectively never, so we can ignore the possibility. 2974 */ 2975 static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1); 2976 2977 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns, bool anon) 2978 { 2979 struct mnt_namespace *new_ns; 2980 struct ucounts *ucounts; 2981 int ret; 2982 2983 ucounts = inc_mnt_namespaces(user_ns); 2984 if (!ucounts) 2985 return ERR_PTR(-ENOSPC); 2986 2987 new_ns = kzalloc(sizeof(struct mnt_namespace), GFP_KERNEL); 2988 if (!new_ns) { 2989 dec_mnt_namespaces(ucounts); 2990 return ERR_PTR(-ENOMEM); 2991 } 2992 if (!anon) { 2993 ret = ns_alloc_inum(&new_ns->ns); 2994 if (ret) { 2995 kfree(new_ns); 2996 dec_mnt_namespaces(ucounts); 2997 return ERR_PTR(ret); 2998 } 2999 } 3000 new_ns->ns.ops = &mntns_operations; 3001 if (!anon) 3002 new_ns->seq = atomic64_add_return(1, &mnt_ns_seq); 3003 atomic_set(&new_ns->count, 1); 3004 INIT_LIST_HEAD(&new_ns->list); 3005 init_waitqueue_head(&new_ns->poll); 3006 new_ns->user_ns = get_user_ns(user_ns); 3007 new_ns->ucounts = ucounts; 3008 return new_ns; 3009 } 3010 3011 __latent_entropy 3012 struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns, 3013 struct user_namespace *user_ns, struct fs_struct *new_fs) 3014 { 3015 struct mnt_namespace *new_ns; 3016 struct vfsmount *rootmnt = NULL, *pwdmnt = NULL; 3017 struct mount *p, *q; 3018 struct mount *old; 3019 struct mount *new; 3020 int copy_flags; 3021 3022 BUG_ON(!ns); 3023 3024 if (likely(!(flags & CLONE_NEWNS))) { 3025 get_mnt_ns(ns); 3026 return ns; 3027 } 3028 3029 old = ns->root; 3030 3031 new_ns = alloc_mnt_ns(user_ns, false); 3032 if (IS_ERR(new_ns)) 3033 return new_ns; 3034 3035 namespace_lock(); 3036 /* First pass: copy the tree topology */ 3037 copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE; 3038 if (user_ns != ns->user_ns) 3039 copy_flags |= CL_SHARED_TO_SLAVE; 3040 new = copy_tree(old, old->mnt.mnt_root, copy_flags); 3041 if (IS_ERR(new)) { 3042 namespace_unlock(); 3043 free_mnt_ns(new_ns); 3044 return ERR_CAST(new); 3045 } 3046 if (user_ns != ns->user_ns) { 3047 lock_mount_hash(); 3048 lock_mnt_tree(new); 3049 unlock_mount_hash(); 3050 } 3051 new_ns->root = new; 3052 list_add_tail(&new_ns->list, &new->mnt_list); 3053 3054 /* 3055 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts 3056 * as belonging to new namespace. We have already acquired a private 3057 * fs_struct, so tsk->fs->lock is not needed. 3058 */ 3059 p = old; 3060 q = new; 3061 while (p) { 3062 q->mnt_ns = new_ns; 3063 new_ns->mounts++; 3064 if (new_fs) { 3065 if (&p->mnt == new_fs->root.mnt) { 3066 new_fs->root.mnt = mntget(&q->mnt); 3067 rootmnt = &p->mnt; 3068 } 3069 if (&p->mnt == new_fs->pwd.mnt) { 3070 new_fs->pwd.mnt = mntget(&q->mnt); 3071 pwdmnt = &p->mnt; 3072 } 3073 } 3074 p = next_mnt(p, old); 3075 q = next_mnt(q, new); 3076 if (!q) 3077 break; 3078 while (p->mnt.mnt_root != q->mnt.mnt_root) 3079 p = next_mnt(p, old); 3080 } 3081 namespace_unlock(); 3082 3083 if (rootmnt) 3084 mntput(rootmnt); 3085 if (pwdmnt) 3086 mntput(pwdmnt); 3087 3088 return new_ns; 3089 } 3090 3091 struct dentry *mount_subtree(struct vfsmount *m, const char *name) 3092 { 3093 struct mount *mnt = real_mount(m); 3094 struct mnt_namespace *ns; 3095 struct super_block *s; 3096 struct path path; 3097 int err; 3098 3099 ns = alloc_mnt_ns(&init_user_ns, true); 3100 if (IS_ERR(ns)) { 3101 mntput(m); 3102 return ERR_CAST(ns); 3103 } 3104 mnt->mnt_ns = ns; 3105 ns->root = mnt; 3106 ns->mounts++; 3107 list_add(&mnt->mnt_list, &ns->list); 3108 3109 err = vfs_path_lookup(m->mnt_root, m, 3110 name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path); 3111 3112 put_mnt_ns(ns); 3113 3114 if (err) 3115 return ERR_PTR(err); 3116 3117 /* trade a vfsmount reference for active sb one */ 3118 s = path.mnt->mnt_sb; 3119 atomic_inc(&s->s_active); 3120 mntput(path.mnt); 3121 /* lock the sucker */ 3122 down_write(&s->s_umount); 3123 /* ... and return the root of (sub)tree on it */ 3124 return path.dentry; 3125 } 3126 EXPORT_SYMBOL(mount_subtree); 3127 3128 int ksys_mount(char __user *dev_name, char __user *dir_name, char __user *type, 3129 unsigned long flags, void __user *data) 3130 { 3131 int ret; 3132 char *kernel_type; 3133 char *kernel_dev; 3134 void *options; 3135 3136 kernel_type = copy_mount_string(type); 3137 ret = PTR_ERR(kernel_type); 3138 if (IS_ERR(kernel_type)) 3139 goto out_type; 3140 3141 kernel_dev = copy_mount_string(dev_name); 3142 ret = PTR_ERR(kernel_dev); 3143 if (IS_ERR(kernel_dev)) 3144 goto out_dev; 3145 3146 options = copy_mount_options(data); 3147 ret = PTR_ERR(options); 3148 if (IS_ERR(options)) 3149 goto out_data; 3150 3151 ret = do_mount(kernel_dev, dir_name, kernel_type, flags, options); 3152 3153 kfree(options); 3154 out_data: 3155 kfree(kernel_dev); 3156 out_dev: 3157 kfree(kernel_type); 3158 out_type: 3159 return ret; 3160 } 3161 3162 SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name, 3163 char __user *, type, unsigned long, flags, void __user *, data) 3164 { 3165 return ksys_mount(dev_name, dir_name, type, flags, data); 3166 } 3167 3168 /* 3169 * Return true if path is reachable from root 3170 * 3171 * namespace_sem or mount_lock is held 3172 */ 3173 bool is_path_reachable(struct mount *mnt, struct dentry *dentry, 3174 const struct path *root) 3175 { 3176 while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) { 3177 dentry = mnt->mnt_mountpoint; 3178 mnt = mnt->mnt_parent; 3179 } 3180 return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry); 3181 } 3182 3183 bool path_is_under(const struct path *path1, const struct path *path2) 3184 { 3185 bool res; 3186 read_seqlock_excl(&mount_lock); 3187 res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2); 3188 read_sequnlock_excl(&mount_lock); 3189 return res; 3190 } 3191 EXPORT_SYMBOL(path_is_under); 3192 3193 /* 3194 * pivot_root Semantics: 3195 * Moves the root file system of the current process to the directory put_old, 3196 * makes new_root as the new root file system of the current process, and sets 3197 * root/cwd of all processes which had them on the current root to new_root. 3198 * 3199 * Restrictions: 3200 * The new_root and put_old must be directories, and must not be on the 3201 * same file system as the current process root. The put_old must be 3202 * underneath new_root, i.e. adding a non-zero number of /.. to the string 3203 * pointed to by put_old must yield the same directory as new_root. No other 3204 * file system may be mounted on put_old. After all, new_root is a mountpoint. 3205 * 3206 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem. 3207 * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives 3208 * in this situation. 3209 * 3210 * Notes: 3211 * - we don't move root/cwd if they are not at the root (reason: if something 3212 * cared enough to change them, it's probably wrong to force them elsewhere) 3213 * - it's okay to pick a root that isn't the root of a file system, e.g. 3214 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint, 3215 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root 3216 * first. 3217 */ 3218 SYSCALL_DEFINE2(pivot_root, const char __user *, new_root, 3219 const char __user *, put_old) 3220 { 3221 struct path new, old, parent_path, root_parent, root; 3222 struct mount *new_mnt, *root_mnt, *old_mnt; 3223 struct mountpoint *old_mp, *root_mp; 3224 int error; 3225 3226 if (!may_mount()) 3227 return -EPERM; 3228 3229 error = user_path_dir(new_root, &new); 3230 if (error) 3231 goto out0; 3232 3233 error = user_path_dir(put_old, &old); 3234 if (error) 3235 goto out1; 3236 3237 error = security_sb_pivotroot(&old, &new); 3238 if (error) 3239 goto out2; 3240 3241 get_fs_root(current->fs, &root); 3242 old_mp = lock_mount(&old); 3243 error = PTR_ERR(old_mp); 3244 if (IS_ERR(old_mp)) 3245 goto out3; 3246 3247 error = -EINVAL; 3248 new_mnt = real_mount(new.mnt); 3249 root_mnt = real_mount(root.mnt); 3250 old_mnt = real_mount(old.mnt); 3251 if (IS_MNT_SHARED(old_mnt) || 3252 IS_MNT_SHARED(new_mnt->mnt_parent) || 3253 IS_MNT_SHARED(root_mnt->mnt_parent)) 3254 goto out4; 3255 if (!check_mnt(root_mnt) || !check_mnt(new_mnt)) 3256 goto out4; 3257 if (new_mnt->mnt.mnt_flags & MNT_LOCKED) 3258 goto out4; 3259 error = -ENOENT; 3260 if (d_unlinked(new.dentry)) 3261 goto out4; 3262 error = -EBUSY; 3263 if (new_mnt == root_mnt || old_mnt == root_mnt) 3264 goto out4; /* loop, on the same file system */ 3265 error = -EINVAL; 3266 if (root.mnt->mnt_root != root.dentry) 3267 goto out4; /* not a mountpoint */ 3268 if (!mnt_has_parent(root_mnt)) 3269 goto out4; /* not attached */ 3270 root_mp = root_mnt->mnt_mp; 3271 if (new.mnt->mnt_root != new.dentry) 3272 goto out4; /* not a mountpoint */ 3273 if (!mnt_has_parent(new_mnt)) 3274 goto out4; /* not attached */ 3275 /* make sure we can reach put_old from new_root */ 3276 if (!is_path_reachable(old_mnt, old.dentry, &new)) 3277 goto out4; 3278 /* make certain new is below the root */ 3279 if (!is_path_reachable(new_mnt, new.dentry, &root)) 3280 goto out4; 3281 root_mp->m_count++; /* pin it so it won't go away */ 3282 lock_mount_hash(); 3283 detach_mnt(new_mnt, &parent_path); 3284 detach_mnt(root_mnt, &root_parent); 3285 if (root_mnt->mnt.mnt_flags & MNT_LOCKED) { 3286 new_mnt->mnt.mnt_flags |= MNT_LOCKED; 3287 root_mnt->mnt.mnt_flags &= ~MNT_LOCKED; 3288 } 3289 /* mount old root on put_old */ 3290 attach_mnt(root_mnt, old_mnt, old_mp); 3291 /* mount new_root on / */ 3292 attach_mnt(new_mnt, real_mount(root_parent.mnt), root_mp); 3293 touch_mnt_namespace(current->nsproxy->mnt_ns); 3294 /* A moved mount should not expire automatically */ 3295 list_del_init(&new_mnt->mnt_expire); 3296 put_mountpoint(root_mp); 3297 unlock_mount_hash(); 3298 chroot_fs_refs(&root, &new); 3299 error = 0; 3300 out4: 3301 unlock_mount(old_mp); 3302 if (!error) { 3303 path_put(&root_parent); 3304 path_put(&parent_path); 3305 } 3306 out3: 3307 path_put(&root); 3308 out2: 3309 path_put(&old); 3310 out1: 3311 path_put(&new); 3312 out0: 3313 return error; 3314 } 3315 3316 static void __init init_mount_tree(void) 3317 { 3318 struct vfsmount *mnt; 3319 struct mount *m; 3320 struct mnt_namespace *ns; 3321 struct path root; 3322 struct file_system_type *type; 3323 3324 type = get_fs_type("rootfs"); 3325 if (!type) 3326 panic("Can't find rootfs type"); 3327 mnt = vfs_kern_mount(type, 0, "rootfs", NULL); 3328 put_filesystem(type); 3329 if (IS_ERR(mnt)) 3330 panic("Can't create rootfs"); 3331 3332 ns = alloc_mnt_ns(&init_user_ns, false); 3333 if (IS_ERR(ns)) 3334 panic("Can't allocate initial namespace"); 3335 m = real_mount(mnt); 3336 m->mnt_ns = ns; 3337 ns->root = m; 3338 ns->mounts = 1; 3339 list_add(&m->mnt_list, &ns->list); 3340 init_task.nsproxy->mnt_ns = ns; 3341 get_mnt_ns(ns); 3342 3343 root.mnt = mnt; 3344 root.dentry = mnt->mnt_root; 3345 mnt->mnt_flags |= MNT_LOCKED; 3346 3347 set_fs_pwd(current->fs, &root); 3348 set_fs_root(current->fs, &root); 3349 } 3350 3351 void __init mnt_init(void) 3352 { 3353 int err; 3354 3355 mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount), 3356 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL); 3357 3358 mount_hashtable = alloc_large_system_hash("Mount-cache", 3359 sizeof(struct hlist_head), 3360 mhash_entries, 19, 3361 HASH_ZERO, 3362 &m_hash_shift, &m_hash_mask, 0, 0); 3363 mountpoint_hashtable = alloc_large_system_hash("Mountpoint-cache", 3364 sizeof(struct hlist_head), 3365 mphash_entries, 19, 3366 HASH_ZERO, 3367 &mp_hash_shift, &mp_hash_mask, 0, 0); 3368 3369 if (!mount_hashtable || !mountpoint_hashtable) 3370 panic("Failed to allocate mount hash table\n"); 3371 3372 kernfs_init(); 3373 3374 err = sysfs_init(); 3375 if (err) 3376 printk(KERN_WARNING "%s: sysfs_init error: %d\n", 3377 __func__, err); 3378 fs_kobj = kobject_create_and_add("fs", NULL); 3379 if (!fs_kobj) 3380 printk(KERN_WARNING "%s: kobj create error\n", __func__); 3381 init_rootfs(); 3382 init_mount_tree(); 3383 } 3384 3385 void put_mnt_ns(struct mnt_namespace *ns) 3386 { 3387 if (!atomic_dec_and_test(&ns->count)) 3388 return; 3389 drop_collected_mounts(&ns->root->mnt); 3390 free_mnt_ns(ns); 3391 } 3392 3393 struct vfsmount *kern_mount(struct file_system_type *type) 3394 { 3395 struct vfsmount *mnt; 3396 mnt = vfs_kern_mount(type, SB_KERNMOUNT, type->name, NULL); 3397 if (!IS_ERR(mnt)) { 3398 /* 3399 * it is a longterm mount, don't release mnt until 3400 * we unmount before file sys is unregistered 3401 */ 3402 real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL; 3403 } 3404 return mnt; 3405 } 3406 EXPORT_SYMBOL_GPL(kern_mount); 3407 3408 void kern_unmount(struct vfsmount *mnt) 3409 { 3410 /* release long term mount so mount point can be released */ 3411 if (!IS_ERR_OR_NULL(mnt)) { 3412 real_mount(mnt)->mnt_ns = NULL; 3413 synchronize_rcu(); /* yecchhh... */ 3414 mntput(mnt); 3415 } 3416 } 3417 EXPORT_SYMBOL(kern_unmount); 3418 3419 bool our_mnt(struct vfsmount *mnt) 3420 { 3421 return check_mnt(real_mount(mnt)); 3422 } 3423 3424 bool current_chrooted(void) 3425 { 3426 /* Does the current process have a non-standard root */ 3427 struct path ns_root; 3428 struct path fs_root; 3429 bool chrooted; 3430 3431 /* Find the namespace root */ 3432 ns_root.mnt = ¤t->nsproxy->mnt_ns->root->mnt; 3433 ns_root.dentry = ns_root.mnt->mnt_root; 3434 path_get(&ns_root); 3435 while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root)) 3436 ; 3437 3438 get_fs_root(current->fs, &fs_root); 3439 3440 chrooted = !path_equal(&fs_root, &ns_root); 3441 3442 path_put(&fs_root); 3443 path_put(&ns_root); 3444 3445 return chrooted; 3446 } 3447 3448 static bool mnt_already_visible(struct mnt_namespace *ns, 3449 const struct super_block *sb, 3450 int *new_mnt_flags) 3451 { 3452 int new_flags = *new_mnt_flags; 3453 struct mount *mnt; 3454 bool visible = false; 3455 3456 down_read(&namespace_sem); 3457 list_for_each_entry(mnt, &ns->list, mnt_list) { 3458 struct mount *child; 3459 int mnt_flags; 3460 3461 if (mnt->mnt.mnt_sb->s_type != sb->s_type) 3462 continue; 3463 3464 /* This mount is not fully visible if it's root directory 3465 * is not the root directory of the filesystem. 3466 */ 3467 if (mnt->mnt.mnt_root != mnt->mnt.mnt_sb->s_root) 3468 continue; 3469 3470 /* A local view of the mount flags */ 3471 mnt_flags = mnt->mnt.mnt_flags; 3472 3473 /* Don't miss readonly hidden in the superblock flags */ 3474 if (sb_rdonly(mnt->mnt.mnt_sb)) 3475 mnt_flags |= MNT_LOCK_READONLY; 3476 3477 /* Verify the mount flags are equal to or more permissive 3478 * than the proposed new mount. 3479 */ 3480 if ((mnt_flags & MNT_LOCK_READONLY) && 3481 !(new_flags & MNT_READONLY)) 3482 continue; 3483 if ((mnt_flags & MNT_LOCK_ATIME) && 3484 ((mnt_flags & MNT_ATIME_MASK) != (new_flags & MNT_ATIME_MASK))) 3485 continue; 3486 3487 /* This mount is not fully visible if there are any 3488 * locked child mounts that cover anything except for 3489 * empty directories. 3490 */ 3491 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) { 3492 struct inode *inode = child->mnt_mountpoint->d_inode; 3493 /* Only worry about locked mounts */ 3494 if (!(child->mnt.mnt_flags & MNT_LOCKED)) 3495 continue; 3496 /* Is the directory permanetly empty? */ 3497 if (!is_empty_dir_inode(inode)) 3498 goto next; 3499 } 3500 /* Preserve the locked attributes */ 3501 *new_mnt_flags |= mnt_flags & (MNT_LOCK_READONLY | \ 3502 MNT_LOCK_ATIME); 3503 visible = true; 3504 goto found; 3505 next: ; 3506 } 3507 found: 3508 up_read(&namespace_sem); 3509 return visible; 3510 } 3511 3512 static bool mount_too_revealing(const struct super_block *sb, int *new_mnt_flags) 3513 { 3514 const unsigned long required_iflags = SB_I_NOEXEC | SB_I_NODEV; 3515 struct mnt_namespace *ns = current->nsproxy->mnt_ns; 3516 unsigned long s_iflags; 3517 3518 if (ns->user_ns == &init_user_ns) 3519 return false; 3520 3521 /* Can this filesystem be too revealing? */ 3522 s_iflags = sb->s_iflags; 3523 if (!(s_iflags & SB_I_USERNS_VISIBLE)) 3524 return false; 3525 3526 if ((s_iflags & required_iflags) != required_iflags) { 3527 WARN_ONCE(1, "Expected s_iflags to contain 0x%lx\n", 3528 required_iflags); 3529 return true; 3530 } 3531 3532 return !mnt_already_visible(ns, sb, new_mnt_flags); 3533 } 3534 3535 bool mnt_may_suid(struct vfsmount *mnt) 3536 { 3537 /* 3538 * Foreign mounts (accessed via fchdir or through /proc 3539 * symlinks) are always treated as if they are nosuid. This 3540 * prevents namespaces from trusting potentially unsafe 3541 * suid/sgid bits, file caps, or security labels that originate 3542 * in other namespaces. 3543 */ 3544 return !(mnt->mnt_flags & MNT_NOSUID) && check_mnt(real_mount(mnt)) && 3545 current_in_userns(mnt->mnt_sb->s_user_ns); 3546 } 3547 3548 static struct ns_common *mntns_get(struct task_struct *task) 3549 { 3550 struct ns_common *ns = NULL; 3551 struct nsproxy *nsproxy; 3552 3553 task_lock(task); 3554 nsproxy = task->nsproxy; 3555 if (nsproxy) { 3556 ns = &nsproxy->mnt_ns->ns; 3557 get_mnt_ns(to_mnt_ns(ns)); 3558 } 3559 task_unlock(task); 3560 3561 return ns; 3562 } 3563 3564 static void mntns_put(struct ns_common *ns) 3565 { 3566 put_mnt_ns(to_mnt_ns(ns)); 3567 } 3568 3569 static int mntns_install(struct nsproxy *nsproxy, struct ns_common *ns) 3570 { 3571 struct fs_struct *fs = current->fs; 3572 struct mnt_namespace *mnt_ns = to_mnt_ns(ns), *old_mnt_ns; 3573 struct path root; 3574 int err; 3575 3576 if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) || 3577 !ns_capable(current_user_ns(), CAP_SYS_CHROOT) || 3578 !ns_capable(current_user_ns(), CAP_SYS_ADMIN)) 3579 return -EPERM; 3580 3581 if (is_anon_ns(mnt_ns)) 3582 return -EINVAL; 3583 3584 if (fs->users != 1) 3585 return -EINVAL; 3586 3587 get_mnt_ns(mnt_ns); 3588 old_mnt_ns = nsproxy->mnt_ns; 3589 nsproxy->mnt_ns = mnt_ns; 3590 3591 /* Find the root */ 3592 err = vfs_path_lookup(mnt_ns->root->mnt.mnt_root, &mnt_ns->root->mnt, 3593 "/", LOOKUP_DOWN, &root); 3594 if (err) { 3595 /* revert to old namespace */ 3596 nsproxy->mnt_ns = old_mnt_ns; 3597 put_mnt_ns(mnt_ns); 3598 return err; 3599 } 3600 3601 put_mnt_ns(old_mnt_ns); 3602 3603 /* Update the pwd and root */ 3604 set_fs_pwd(fs, &root); 3605 set_fs_root(fs, &root); 3606 3607 path_put(&root); 3608 return 0; 3609 } 3610 3611 static struct user_namespace *mntns_owner(struct ns_common *ns) 3612 { 3613 return to_mnt_ns(ns)->user_ns; 3614 } 3615 3616 const struct proc_ns_operations mntns_operations = { 3617 .name = "mnt", 3618 .type = CLONE_NEWNS, 3619 .get = mntns_get, 3620 .put = mntns_put, 3621 .install = mntns_install, 3622 .owner = mntns_owner, 3623 }; 3624