1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/fs/namespace.c 4 * 5 * (C) Copyright Al Viro 2000, 2001 6 * 7 * Based on code from fs/super.c, copyright Linus Torvalds and others. 8 * Heavily rewritten. 9 */ 10 11 #include <linux/syscalls.h> 12 #include <linux/export.h> 13 #include <linux/capability.h> 14 #include <linux/mnt_namespace.h> 15 #include <linux/user_namespace.h> 16 #include <linux/namei.h> 17 #include <linux/security.h> 18 #include <linux/cred.h> 19 #include <linux/idr.h> 20 #include <linux/init.h> /* init_rootfs */ 21 #include <linux/fs_struct.h> /* get_fs_root et.al. */ 22 #include <linux/fsnotify.h> /* fsnotify_vfsmount_delete */ 23 #include <linux/file.h> 24 #include <linux/uaccess.h> 25 #include <linux/proc_ns.h> 26 #include <linux/magic.h> 27 #include <linux/memblock.h> 28 #include <linux/proc_fs.h> 29 #include <linux/task_work.h> 30 #include <linux/sched/task.h> 31 #include <uapi/linux/mount.h> 32 #include <linux/fs_context.h> 33 #include <linux/shmem_fs.h> 34 #include <linux/mnt_idmapping.h> 35 36 #include "pnode.h" 37 #include "internal.h" 38 39 /* Maximum number of mounts in a mount namespace */ 40 static unsigned int sysctl_mount_max __read_mostly = 100000; 41 42 static unsigned int m_hash_mask __read_mostly; 43 static unsigned int m_hash_shift __read_mostly; 44 static unsigned int mp_hash_mask __read_mostly; 45 static unsigned int mp_hash_shift __read_mostly; 46 47 static __initdata unsigned long mhash_entries; 48 static int __init set_mhash_entries(char *str) 49 { 50 if (!str) 51 return 0; 52 mhash_entries = simple_strtoul(str, &str, 0); 53 return 1; 54 } 55 __setup("mhash_entries=", set_mhash_entries); 56 57 static __initdata unsigned long mphash_entries; 58 static int __init set_mphash_entries(char *str) 59 { 60 if (!str) 61 return 0; 62 mphash_entries = simple_strtoul(str, &str, 0); 63 return 1; 64 } 65 __setup("mphash_entries=", set_mphash_entries); 66 67 static u64 event; 68 static DEFINE_IDA(mnt_id_ida); 69 static DEFINE_IDA(mnt_group_ida); 70 71 static struct hlist_head *mount_hashtable __read_mostly; 72 static struct hlist_head *mountpoint_hashtable __read_mostly; 73 static struct kmem_cache *mnt_cache __read_mostly; 74 static DECLARE_RWSEM(namespace_sem); 75 static HLIST_HEAD(unmounted); /* protected by namespace_sem */ 76 static LIST_HEAD(ex_mountpoints); /* protected by namespace_sem */ 77 78 struct mount_kattr { 79 unsigned int attr_set; 80 unsigned int attr_clr; 81 unsigned int propagation; 82 unsigned int lookup_flags; 83 bool recurse; 84 struct user_namespace *mnt_userns; 85 struct mnt_idmap *mnt_idmap; 86 }; 87 88 /* /sys/fs */ 89 struct kobject *fs_kobj; 90 EXPORT_SYMBOL_GPL(fs_kobj); 91 92 /* 93 * vfsmount lock may be taken for read to prevent changes to the 94 * vfsmount hash, ie. during mountpoint lookups or walking back 95 * up the tree. 96 * 97 * It should be taken for write in all cases where the vfsmount 98 * tree or hash is modified or when a vfsmount structure is modified. 99 */ 100 __cacheline_aligned_in_smp DEFINE_SEQLOCK(mount_lock); 101 102 static inline void lock_mount_hash(void) 103 { 104 write_seqlock(&mount_lock); 105 } 106 107 static inline void unlock_mount_hash(void) 108 { 109 write_sequnlock(&mount_lock); 110 } 111 112 static inline struct hlist_head *m_hash(struct vfsmount *mnt, struct dentry *dentry) 113 { 114 unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES); 115 tmp += ((unsigned long)dentry / L1_CACHE_BYTES); 116 tmp = tmp + (tmp >> m_hash_shift); 117 return &mount_hashtable[tmp & m_hash_mask]; 118 } 119 120 static inline struct hlist_head *mp_hash(struct dentry *dentry) 121 { 122 unsigned long tmp = ((unsigned long)dentry / L1_CACHE_BYTES); 123 tmp = tmp + (tmp >> mp_hash_shift); 124 return &mountpoint_hashtable[tmp & mp_hash_mask]; 125 } 126 127 static int mnt_alloc_id(struct mount *mnt) 128 { 129 int res = ida_alloc(&mnt_id_ida, GFP_KERNEL); 130 131 if (res < 0) 132 return res; 133 mnt->mnt_id = res; 134 return 0; 135 } 136 137 static void mnt_free_id(struct mount *mnt) 138 { 139 ida_free(&mnt_id_ida, mnt->mnt_id); 140 } 141 142 /* 143 * Allocate a new peer group ID 144 */ 145 static int mnt_alloc_group_id(struct mount *mnt) 146 { 147 int res = ida_alloc_min(&mnt_group_ida, 1, GFP_KERNEL); 148 149 if (res < 0) 150 return res; 151 mnt->mnt_group_id = res; 152 return 0; 153 } 154 155 /* 156 * Release a peer group ID 157 */ 158 void mnt_release_group_id(struct mount *mnt) 159 { 160 ida_free(&mnt_group_ida, mnt->mnt_group_id); 161 mnt->mnt_group_id = 0; 162 } 163 164 /* 165 * vfsmount lock must be held for read 166 */ 167 static inline void mnt_add_count(struct mount *mnt, int n) 168 { 169 #ifdef CONFIG_SMP 170 this_cpu_add(mnt->mnt_pcp->mnt_count, n); 171 #else 172 preempt_disable(); 173 mnt->mnt_count += n; 174 preempt_enable(); 175 #endif 176 } 177 178 /* 179 * vfsmount lock must be held for write 180 */ 181 int mnt_get_count(struct mount *mnt) 182 { 183 #ifdef CONFIG_SMP 184 int count = 0; 185 int cpu; 186 187 for_each_possible_cpu(cpu) { 188 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count; 189 } 190 191 return count; 192 #else 193 return mnt->mnt_count; 194 #endif 195 } 196 197 static struct mount *alloc_vfsmnt(const char *name) 198 { 199 struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL); 200 if (mnt) { 201 int err; 202 203 err = mnt_alloc_id(mnt); 204 if (err) 205 goto out_free_cache; 206 207 if (name) { 208 mnt->mnt_devname = kstrdup_const(name, 209 GFP_KERNEL_ACCOUNT); 210 if (!mnt->mnt_devname) 211 goto out_free_id; 212 } 213 214 #ifdef CONFIG_SMP 215 mnt->mnt_pcp = alloc_percpu(struct mnt_pcp); 216 if (!mnt->mnt_pcp) 217 goto out_free_devname; 218 219 this_cpu_add(mnt->mnt_pcp->mnt_count, 1); 220 #else 221 mnt->mnt_count = 1; 222 mnt->mnt_writers = 0; 223 #endif 224 225 INIT_HLIST_NODE(&mnt->mnt_hash); 226 INIT_LIST_HEAD(&mnt->mnt_child); 227 INIT_LIST_HEAD(&mnt->mnt_mounts); 228 INIT_LIST_HEAD(&mnt->mnt_list); 229 INIT_LIST_HEAD(&mnt->mnt_expire); 230 INIT_LIST_HEAD(&mnt->mnt_share); 231 INIT_LIST_HEAD(&mnt->mnt_slave_list); 232 INIT_LIST_HEAD(&mnt->mnt_slave); 233 INIT_HLIST_NODE(&mnt->mnt_mp_list); 234 INIT_LIST_HEAD(&mnt->mnt_umounting); 235 INIT_HLIST_HEAD(&mnt->mnt_stuck_children); 236 mnt->mnt.mnt_idmap = &nop_mnt_idmap; 237 } 238 return mnt; 239 240 #ifdef CONFIG_SMP 241 out_free_devname: 242 kfree_const(mnt->mnt_devname); 243 #endif 244 out_free_id: 245 mnt_free_id(mnt); 246 out_free_cache: 247 kmem_cache_free(mnt_cache, mnt); 248 return NULL; 249 } 250 251 /* 252 * Most r/o checks on a fs are for operations that take 253 * discrete amounts of time, like a write() or unlink(). 254 * We must keep track of when those operations start 255 * (for permission checks) and when they end, so that 256 * we can determine when writes are able to occur to 257 * a filesystem. 258 */ 259 /* 260 * __mnt_is_readonly: check whether a mount is read-only 261 * @mnt: the mount to check for its write status 262 * 263 * This shouldn't be used directly ouside of the VFS. 264 * It does not guarantee that the filesystem will stay 265 * r/w, just that it is right *now*. This can not and 266 * should not be used in place of IS_RDONLY(inode). 267 * mnt_want/drop_write() will _keep_ the filesystem 268 * r/w. 269 */ 270 bool __mnt_is_readonly(struct vfsmount *mnt) 271 { 272 return (mnt->mnt_flags & MNT_READONLY) || sb_rdonly(mnt->mnt_sb); 273 } 274 EXPORT_SYMBOL_GPL(__mnt_is_readonly); 275 276 static inline void mnt_inc_writers(struct mount *mnt) 277 { 278 #ifdef CONFIG_SMP 279 this_cpu_inc(mnt->mnt_pcp->mnt_writers); 280 #else 281 mnt->mnt_writers++; 282 #endif 283 } 284 285 static inline void mnt_dec_writers(struct mount *mnt) 286 { 287 #ifdef CONFIG_SMP 288 this_cpu_dec(mnt->mnt_pcp->mnt_writers); 289 #else 290 mnt->mnt_writers--; 291 #endif 292 } 293 294 static unsigned int mnt_get_writers(struct mount *mnt) 295 { 296 #ifdef CONFIG_SMP 297 unsigned int count = 0; 298 int cpu; 299 300 for_each_possible_cpu(cpu) { 301 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers; 302 } 303 304 return count; 305 #else 306 return mnt->mnt_writers; 307 #endif 308 } 309 310 static int mnt_is_readonly(struct vfsmount *mnt) 311 { 312 if (READ_ONCE(mnt->mnt_sb->s_readonly_remount)) 313 return 1; 314 /* 315 * The barrier pairs with the barrier in sb_start_ro_state_change() 316 * making sure if we don't see s_readonly_remount set yet, we also will 317 * not see any superblock / mount flag changes done by remount. 318 * It also pairs with the barrier in sb_end_ro_state_change() 319 * assuring that if we see s_readonly_remount already cleared, we will 320 * see the values of superblock / mount flags updated by remount. 321 */ 322 smp_rmb(); 323 return __mnt_is_readonly(mnt); 324 } 325 326 /* 327 * Most r/o & frozen checks on a fs are for operations that take discrete 328 * amounts of time, like a write() or unlink(). We must keep track of when 329 * those operations start (for permission checks) and when they end, so that we 330 * can determine when writes are able to occur to a filesystem. 331 */ 332 /** 333 * __mnt_want_write - get write access to a mount without freeze protection 334 * @m: the mount on which to take a write 335 * 336 * This tells the low-level filesystem that a write is about to be performed to 337 * it, and makes sure that writes are allowed (mnt it read-write) before 338 * returning success. This operation does not protect against filesystem being 339 * frozen. When the write operation is finished, __mnt_drop_write() must be 340 * called. This is effectively a refcount. 341 */ 342 int __mnt_want_write(struct vfsmount *m) 343 { 344 struct mount *mnt = real_mount(m); 345 int ret = 0; 346 347 preempt_disable(); 348 mnt_inc_writers(mnt); 349 /* 350 * The store to mnt_inc_writers must be visible before we pass 351 * MNT_WRITE_HOLD loop below, so that the slowpath can see our 352 * incremented count after it has set MNT_WRITE_HOLD. 353 */ 354 smp_mb(); 355 might_lock(&mount_lock.lock); 356 while (READ_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD) { 357 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) { 358 cpu_relax(); 359 } else { 360 /* 361 * This prevents priority inversion, if the task 362 * setting MNT_WRITE_HOLD got preempted on a remote 363 * CPU, and it prevents life lock if the task setting 364 * MNT_WRITE_HOLD has a lower priority and is bound to 365 * the same CPU as the task that is spinning here. 366 */ 367 preempt_enable(); 368 lock_mount_hash(); 369 unlock_mount_hash(); 370 preempt_disable(); 371 } 372 } 373 /* 374 * The barrier pairs with the barrier sb_start_ro_state_change() making 375 * sure that if we see MNT_WRITE_HOLD cleared, we will also see 376 * s_readonly_remount set (or even SB_RDONLY / MNT_READONLY flags) in 377 * mnt_is_readonly() and bail in case we are racing with remount 378 * read-only. 379 */ 380 smp_rmb(); 381 if (mnt_is_readonly(m)) { 382 mnt_dec_writers(mnt); 383 ret = -EROFS; 384 } 385 preempt_enable(); 386 387 return ret; 388 } 389 390 /** 391 * mnt_want_write - get write access to a mount 392 * @m: the mount on which to take a write 393 * 394 * This tells the low-level filesystem that a write is about to be performed to 395 * it, and makes sure that writes are allowed (mount is read-write, filesystem 396 * is not frozen) before returning success. When the write operation is 397 * finished, mnt_drop_write() must be called. This is effectively a refcount. 398 */ 399 int mnt_want_write(struct vfsmount *m) 400 { 401 int ret; 402 403 sb_start_write(m->mnt_sb); 404 ret = __mnt_want_write(m); 405 if (ret) 406 sb_end_write(m->mnt_sb); 407 return ret; 408 } 409 EXPORT_SYMBOL_GPL(mnt_want_write); 410 411 /** 412 * __mnt_want_write_file - get write access to a file's mount 413 * @file: the file who's mount on which to take a write 414 * 415 * This is like __mnt_want_write, but if the file is already open for writing it 416 * skips incrementing mnt_writers (since the open file already has a reference) 417 * and instead only does the check for emergency r/o remounts. This must be 418 * paired with __mnt_drop_write_file. 419 */ 420 int __mnt_want_write_file(struct file *file) 421 { 422 if (file->f_mode & FMODE_WRITER) { 423 /* 424 * Superblock may have become readonly while there are still 425 * writable fd's, e.g. due to a fs error with errors=remount-ro 426 */ 427 if (__mnt_is_readonly(file->f_path.mnt)) 428 return -EROFS; 429 return 0; 430 } 431 return __mnt_want_write(file->f_path.mnt); 432 } 433 434 /** 435 * mnt_want_write_file - get write access to a file's mount 436 * @file: the file who's mount on which to take a write 437 * 438 * This is like mnt_want_write, but if the file is already open for writing it 439 * skips incrementing mnt_writers (since the open file already has a reference) 440 * and instead only does the freeze protection and the check for emergency r/o 441 * remounts. This must be paired with mnt_drop_write_file. 442 */ 443 int mnt_want_write_file(struct file *file) 444 { 445 int ret; 446 447 sb_start_write(file_inode(file)->i_sb); 448 ret = __mnt_want_write_file(file); 449 if (ret) 450 sb_end_write(file_inode(file)->i_sb); 451 return ret; 452 } 453 EXPORT_SYMBOL_GPL(mnt_want_write_file); 454 455 /** 456 * __mnt_drop_write - give up write access to a mount 457 * @mnt: the mount on which to give up write access 458 * 459 * Tells the low-level filesystem that we are done 460 * performing writes to it. Must be matched with 461 * __mnt_want_write() call above. 462 */ 463 void __mnt_drop_write(struct vfsmount *mnt) 464 { 465 preempt_disable(); 466 mnt_dec_writers(real_mount(mnt)); 467 preempt_enable(); 468 } 469 470 /** 471 * mnt_drop_write - give up write access to a mount 472 * @mnt: the mount on which to give up write access 473 * 474 * Tells the low-level filesystem that we are done performing writes to it and 475 * also allows filesystem to be frozen again. Must be matched with 476 * mnt_want_write() call above. 477 */ 478 void mnt_drop_write(struct vfsmount *mnt) 479 { 480 __mnt_drop_write(mnt); 481 sb_end_write(mnt->mnt_sb); 482 } 483 EXPORT_SYMBOL_GPL(mnt_drop_write); 484 485 void __mnt_drop_write_file(struct file *file) 486 { 487 if (!(file->f_mode & FMODE_WRITER)) 488 __mnt_drop_write(file->f_path.mnt); 489 } 490 491 void mnt_drop_write_file(struct file *file) 492 { 493 __mnt_drop_write_file(file); 494 sb_end_write(file_inode(file)->i_sb); 495 } 496 EXPORT_SYMBOL(mnt_drop_write_file); 497 498 /** 499 * mnt_hold_writers - prevent write access to the given mount 500 * @mnt: mnt to prevent write access to 501 * 502 * Prevents write access to @mnt if there are no active writers for @mnt. 503 * This function needs to be called and return successfully before changing 504 * properties of @mnt that need to remain stable for callers with write access 505 * to @mnt. 506 * 507 * After this functions has been called successfully callers must pair it with 508 * a call to mnt_unhold_writers() in order to stop preventing write access to 509 * @mnt. 510 * 511 * Context: This function expects lock_mount_hash() to be held serializing 512 * setting MNT_WRITE_HOLD. 513 * Return: On success 0 is returned. 514 * On error, -EBUSY is returned. 515 */ 516 static inline int mnt_hold_writers(struct mount *mnt) 517 { 518 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD; 519 /* 520 * After storing MNT_WRITE_HOLD, we'll read the counters. This store 521 * should be visible before we do. 522 */ 523 smp_mb(); 524 525 /* 526 * With writers on hold, if this value is zero, then there are 527 * definitely no active writers (although held writers may subsequently 528 * increment the count, they'll have to wait, and decrement it after 529 * seeing MNT_READONLY). 530 * 531 * It is OK to have counter incremented on one CPU and decremented on 532 * another: the sum will add up correctly. The danger would be when we 533 * sum up each counter, if we read a counter before it is incremented, 534 * but then read another CPU's count which it has been subsequently 535 * decremented from -- we would see more decrements than we should. 536 * MNT_WRITE_HOLD protects against this scenario, because 537 * mnt_want_write first increments count, then smp_mb, then spins on 538 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while 539 * we're counting up here. 540 */ 541 if (mnt_get_writers(mnt) > 0) 542 return -EBUSY; 543 544 return 0; 545 } 546 547 /** 548 * mnt_unhold_writers - stop preventing write access to the given mount 549 * @mnt: mnt to stop preventing write access to 550 * 551 * Stop preventing write access to @mnt allowing callers to gain write access 552 * to @mnt again. 553 * 554 * This function can only be called after a successful call to 555 * mnt_hold_writers(). 556 * 557 * Context: This function expects lock_mount_hash() to be held. 558 */ 559 static inline void mnt_unhold_writers(struct mount *mnt) 560 { 561 /* 562 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers 563 * that become unheld will see MNT_READONLY. 564 */ 565 smp_wmb(); 566 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD; 567 } 568 569 static int mnt_make_readonly(struct mount *mnt) 570 { 571 int ret; 572 573 ret = mnt_hold_writers(mnt); 574 if (!ret) 575 mnt->mnt.mnt_flags |= MNT_READONLY; 576 mnt_unhold_writers(mnt); 577 return ret; 578 } 579 580 int sb_prepare_remount_readonly(struct super_block *sb) 581 { 582 struct mount *mnt; 583 int err = 0; 584 585 /* Racy optimization. Recheck the counter under MNT_WRITE_HOLD */ 586 if (atomic_long_read(&sb->s_remove_count)) 587 return -EBUSY; 588 589 lock_mount_hash(); 590 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) { 591 if (!(mnt->mnt.mnt_flags & MNT_READONLY)) { 592 err = mnt_hold_writers(mnt); 593 if (err) 594 break; 595 } 596 } 597 if (!err && atomic_long_read(&sb->s_remove_count)) 598 err = -EBUSY; 599 600 if (!err) 601 sb_start_ro_state_change(sb); 602 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) { 603 if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD) 604 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD; 605 } 606 unlock_mount_hash(); 607 608 return err; 609 } 610 611 static void free_vfsmnt(struct mount *mnt) 612 { 613 mnt_idmap_put(mnt_idmap(&mnt->mnt)); 614 kfree_const(mnt->mnt_devname); 615 #ifdef CONFIG_SMP 616 free_percpu(mnt->mnt_pcp); 617 #endif 618 kmem_cache_free(mnt_cache, mnt); 619 } 620 621 static void delayed_free_vfsmnt(struct rcu_head *head) 622 { 623 free_vfsmnt(container_of(head, struct mount, mnt_rcu)); 624 } 625 626 /* call under rcu_read_lock */ 627 int __legitimize_mnt(struct vfsmount *bastard, unsigned seq) 628 { 629 struct mount *mnt; 630 if (read_seqretry(&mount_lock, seq)) 631 return 1; 632 if (bastard == NULL) 633 return 0; 634 mnt = real_mount(bastard); 635 mnt_add_count(mnt, 1); 636 smp_mb(); // see mntput_no_expire() 637 if (likely(!read_seqretry(&mount_lock, seq))) 638 return 0; 639 if (bastard->mnt_flags & MNT_SYNC_UMOUNT) { 640 mnt_add_count(mnt, -1); 641 return 1; 642 } 643 lock_mount_hash(); 644 if (unlikely(bastard->mnt_flags & MNT_DOOMED)) { 645 mnt_add_count(mnt, -1); 646 unlock_mount_hash(); 647 return 1; 648 } 649 unlock_mount_hash(); 650 /* caller will mntput() */ 651 return -1; 652 } 653 654 /* call under rcu_read_lock */ 655 static bool legitimize_mnt(struct vfsmount *bastard, unsigned seq) 656 { 657 int res = __legitimize_mnt(bastard, seq); 658 if (likely(!res)) 659 return true; 660 if (unlikely(res < 0)) { 661 rcu_read_unlock(); 662 mntput(bastard); 663 rcu_read_lock(); 664 } 665 return false; 666 } 667 668 /** 669 * __lookup_mnt - find first child mount 670 * @mnt: parent mount 671 * @dentry: mountpoint 672 * 673 * If @mnt has a child mount @c mounted @dentry find and return it. 674 * 675 * Note that the child mount @c need not be unique. There are cases 676 * where shadow mounts are created. For example, during mount 677 * propagation when a source mount @mnt whose root got overmounted by a 678 * mount @o after path lookup but before @namespace_sem could be 679 * acquired gets copied and propagated. So @mnt gets copied including 680 * @o. When @mnt is propagated to a destination mount @d that already 681 * has another mount @n mounted at the same mountpoint then the source 682 * mount @mnt will be tucked beneath @n, i.e., @n will be mounted on 683 * @mnt and @mnt mounted on @d. Now both @n and @o are mounted at @mnt 684 * on @dentry. 685 * 686 * Return: The first child of @mnt mounted @dentry or NULL. 687 */ 688 struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry) 689 { 690 struct hlist_head *head = m_hash(mnt, dentry); 691 struct mount *p; 692 693 hlist_for_each_entry_rcu(p, head, mnt_hash) 694 if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry) 695 return p; 696 return NULL; 697 } 698 699 /* 700 * lookup_mnt - Return the first child mount mounted at path 701 * 702 * "First" means first mounted chronologically. If you create the 703 * following mounts: 704 * 705 * mount /dev/sda1 /mnt 706 * mount /dev/sda2 /mnt 707 * mount /dev/sda3 /mnt 708 * 709 * Then lookup_mnt() on the base /mnt dentry in the root mount will 710 * return successively the root dentry and vfsmount of /dev/sda1, then 711 * /dev/sda2, then /dev/sda3, then NULL. 712 * 713 * lookup_mnt takes a reference to the found vfsmount. 714 */ 715 struct vfsmount *lookup_mnt(const struct path *path) 716 { 717 struct mount *child_mnt; 718 struct vfsmount *m; 719 unsigned seq; 720 721 rcu_read_lock(); 722 do { 723 seq = read_seqbegin(&mount_lock); 724 child_mnt = __lookup_mnt(path->mnt, path->dentry); 725 m = child_mnt ? &child_mnt->mnt : NULL; 726 } while (!legitimize_mnt(m, seq)); 727 rcu_read_unlock(); 728 return m; 729 } 730 731 static inline void lock_ns_list(struct mnt_namespace *ns) 732 { 733 spin_lock(&ns->ns_lock); 734 } 735 736 static inline void unlock_ns_list(struct mnt_namespace *ns) 737 { 738 spin_unlock(&ns->ns_lock); 739 } 740 741 static inline bool mnt_is_cursor(struct mount *mnt) 742 { 743 return mnt->mnt.mnt_flags & MNT_CURSOR; 744 } 745 746 /* 747 * __is_local_mountpoint - Test to see if dentry is a mountpoint in the 748 * current mount namespace. 749 * 750 * The common case is dentries are not mountpoints at all and that 751 * test is handled inline. For the slow case when we are actually 752 * dealing with a mountpoint of some kind, walk through all of the 753 * mounts in the current mount namespace and test to see if the dentry 754 * is a mountpoint. 755 * 756 * The mount_hashtable is not usable in the context because we 757 * need to identify all mounts that may be in the current mount 758 * namespace not just a mount that happens to have some specified 759 * parent mount. 760 */ 761 bool __is_local_mountpoint(struct dentry *dentry) 762 { 763 struct mnt_namespace *ns = current->nsproxy->mnt_ns; 764 struct mount *mnt; 765 bool is_covered = false; 766 767 down_read(&namespace_sem); 768 lock_ns_list(ns); 769 list_for_each_entry(mnt, &ns->list, mnt_list) { 770 if (mnt_is_cursor(mnt)) 771 continue; 772 is_covered = (mnt->mnt_mountpoint == dentry); 773 if (is_covered) 774 break; 775 } 776 unlock_ns_list(ns); 777 up_read(&namespace_sem); 778 779 return is_covered; 780 } 781 782 static struct mountpoint *lookup_mountpoint(struct dentry *dentry) 783 { 784 struct hlist_head *chain = mp_hash(dentry); 785 struct mountpoint *mp; 786 787 hlist_for_each_entry(mp, chain, m_hash) { 788 if (mp->m_dentry == dentry) { 789 mp->m_count++; 790 return mp; 791 } 792 } 793 return NULL; 794 } 795 796 static struct mountpoint *get_mountpoint(struct dentry *dentry) 797 { 798 struct mountpoint *mp, *new = NULL; 799 int ret; 800 801 if (d_mountpoint(dentry)) { 802 /* might be worth a WARN_ON() */ 803 if (d_unlinked(dentry)) 804 return ERR_PTR(-ENOENT); 805 mountpoint: 806 read_seqlock_excl(&mount_lock); 807 mp = lookup_mountpoint(dentry); 808 read_sequnlock_excl(&mount_lock); 809 if (mp) 810 goto done; 811 } 812 813 if (!new) 814 new = kmalloc(sizeof(struct mountpoint), GFP_KERNEL); 815 if (!new) 816 return ERR_PTR(-ENOMEM); 817 818 819 /* Exactly one processes may set d_mounted */ 820 ret = d_set_mounted(dentry); 821 822 /* Someone else set d_mounted? */ 823 if (ret == -EBUSY) 824 goto mountpoint; 825 826 /* The dentry is not available as a mountpoint? */ 827 mp = ERR_PTR(ret); 828 if (ret) 829 goto done; 830 831 /* Add the new mountpoint to the hash table */ 832 read_seqlock_excl(&mount_lock); 833 new->m_dentry = dget(dentry); 834 new->m_count = 1; 835 hlist_add_head(&new->m_hash, mp_hash(dentry)); 836 INIT_HLIST_HEAD(&new->m_list); 837 read_sequnlock_excl(&mount_lock); 838 839 mp = new; 840 new = NULL; 841 done: 842 kfree(new); 843 return mp; 844 } 845 846 /* 847 * vfsmount lock must be held. Additionally, the caller is responsible 848 * for serializing calls for given disposal list. 849 */ 850 static void __put_mountpoint(struct mountpoint *mp, struct list_head *list) 851 { 852 if (!--mp->m_count) { 853 struct dentry *dentry = mp->m_dentry; 854 BUG_ON(!hlist_empty(&mp->m_list)); 855 spin_lock(&dentry->d_lock); 856 dentry->d_flags &= ~DCACHE_MOUNTED; 857 spin_unlock(&dentry->d_lock); 858 dput_to_list(dentry, list); 859 hlist_del(&mp->m_hash); 860 kfree(mp); 861 } 862 } 863 864 /* called with namespace_lock and vfsmount lock */ 865 static void put_mountpoint(struct mountpoint *mp) 866 { 867 __put_mountpoint(mp, &ex_mountpoints); 868 } 869 870 static inline int check_mnt(struct mount *mnt) 871 { 872 return mnt->mnt_ns == current->nsproxy->mnt_ns; 873 } 874 875 /* 876 * vfsmount lock must be held for write 877 */ 878 static void touch_mnt_namespace(struct mnt_namespace *ns) 879 { 880 if (ns) { 881 ns->event = ++event; 882 wake_up_interruptible(&ns->poll); 883 } 884 } 885 886 /* 887 * vfsmount lock must be held for write 888 */ 889 static void __touch_mnt_namespace(struct mnt_namespace *ns) 890 { 891 if (ns && ns->event != event) { 892 ns->event = event; 893 wake_up_interruptible(&ns->poll); 894 } 895 } 896 897 /* 898 * vfsmount lock must be held for write 899 */ 900 static struct mountpoint *unhash_mnt(struct mount *mnt) 901 { 902 struct mountpoint *mp; 903 mnt->mnt_parent = mnt; 904 mnt->mnt_mountpoint = mnt->mnt.mnt_root; 905 list_del_init(&mnt->mnt_child); 906 hlist_del_init_rcu(&mnt->mnt_hash); 907 hlist_del_init(&mnt->mnt_mp_list); 908 mp = mnt->mnt_mp; 909 mnt->mnt_mp = NULL; 910 return mp; 911 } 912 913 /* 914 * vfsmount lock must be held for write 915 */ 916 static void umount_mnt(struct mount *mnt) 917 { 918 put_mountpoint(unhash_mnt(mnt)); 919 } 920 921 /* 922 * vfsmount lock must be held for write 923 */ 924 void mnt_set_mountpoint(struct mount *mnt, 925 struct mountpoint *mp, 926 struct mount *child_mnt) 927 { 928 mp->m_count++; 929 mnt_add_count(mnt, 1); /* essentially, that's mntget */ 930 child_mnt->mnt_mountpoint = mp->m_dentry; 931 child_mnt->mnt_parent = mnt; 932 child_mnt->mnt_mp = mp; 933 hlist_add_head(&child_mnt->mnt_mp_list, &mp->m_list); 934 } 935 936 /** 937 * mnt_set_mountpoint_beneath - mount a mount beneath another one 938 * 939 * @new_parent: the source mount 940 * @top_mnt: the mount beneath which @new_parent is mounted 941 * @new_mp: the new mountpoint of @top_mnt on @new_parent 942 * 943 * Remove @top_mnt from its current mountpoint @top_mnt->mnt_mp and 944 * parent @top_mnt->mnt_parent and mount it on top of @new_parent at 945 * @new_mp. And mount @new_parent on the old parent and old 946 * mountpoint of @top_mnt. 947 * 948 * Context: This function expects namespace_lock() and lock_mount_hash() 949 * to have been acquired in that order. 950 */ 951 static void mnt_set_mountpoint_beneath(struct mount *new_parent, 952 struct mount *top_mnt, 953 struct mountpoint *new_mp) 954 { 955 struct mount *old_top_parent = top_mnt->mnt_parent; 956 struct mountpoint *old_top_mp = top_mnt->mnt_mp; 957 958 mnt_set_mountpoint(old_top_parent, old_top_mp, new_parent); 959 mnt_change_mountpoint(new_parent, new_mp, top_mnt); 960 } 961 962 963 static void __attach_mnt(struct mount *mnt, struct mount *parent) 964 { 965 hlist_add_head_rcu(&mnt->mnt_hash, 966 m_hash(&parent->mnt, mnt->mnt_mountpoint)); 967 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts); 968 } 969 970 /** 971 * attach_mnt - mount a mount, attach to @mount_hashtable and parent's 972 * list of child mounts 973 * @parent: the parent 974 * @mnt: the new mount 975 * @mp: the new mountpoint 976 * @beneath: whether to mount @mnt beneath or on top of @parent 977 * 978 * If @beneath is false, mount @mnt at @mp on @parent. Then attach @mnt 979 * to @parent's child mount list and to @mount_hashtable. 980 * 981 * If @beneath is true, remove @mnt from its current parent and 982 * mountpoint and mount it on @mp on @parent, and mount @parent on the 983 * old parent and old mountpoint of @mnt. Finally, attach @parent to 984 * @mnt_hashtable and @parent->mnt_parent->mnt_mounts. 985 * 986 * Note, when __attach_mnt() is called @mnt->mnt_parent already points 987 * to the correct parent. 988 * 989 * Context: This function expects namespace_lock() and lock_mount_hash() 990 * to have been acquired in that order. 991 */ 992 static void attach_mnt(struct mount *mnt, struct mount *parent, 993 struct mountpoint *mp, bool beneath) 994 { 995 if (beneath) 996 mnt_set_mountpoint_beneath(mnt, parent, mp); 997 else 998 mnt_set_mountpoint(parent, mp, mnt); 999 /* 1000 * Note, @mnt->mnt_parent has to be used. If @mnt was mounted 1001 * beneath @parent then @mnt will need to be attached to 1002 * @parent's old parent, not @parent. IOW, @mnt->mnt_parent 1003 * isn't the same mount as @parent. 1004 */ 1005 __attach_mnt(mnt, mnt->mnt_parent); 1006 } 1007 1008 void mnt_change_mountpoint(struct mount *parent, struct mountpoint *mp, struct mount *mnt) 1009 { 1010 struct mountpoint *old_mp = mnt->mnt_mp; 1011 struct mount *old_parent = mnt->mnt_parent; 1012 1013 list_del_init(&mnt->mnt_child); 1014 hlist_del_init(&mnt->mnt_mp_list); 1015 hlist_del_init_rcu(&mnt->mnt_hash); 1016 1017 attach_mnt(mnt, parent, mp, false); 1018 1019 put_mountpoint(old_mp); 1020 mnt_add_count(old_parent, -1); 1021 } 1022 1023 /* 1024 * vfsmount lock must be held for write 1025 */ 1026 static void commit_tree(struct mount *mnt) 1027 { 1028 struct mount *parent = mnt->mnt_parent; 1029 struct mount *m; 1030 LIST_HEAD(head); 1031 struct mnt_namespace *n = parent->mnt_ns; 1032 1033 BUG_ON(parent == mnt); 1034 1035 list_add_tail(&head, &mnt->mnt_list); 1036 list_for_each_entry(m, &head, mnt_list) 1037 m->mnt_ns = n; 1038 1039 list_splice(&head, n->list.prev); 1040 1041 n->mounts += n->pending_mounts; 1042 n->pending_mounts = 0; 1043 1044 __attach_mnt(mnt, parent); 1045 touch_mnt_namespace(n); 1046 } 1047 1048 static struct mount *next_mnt(struct mount *p, struct mount *root) 1049 { 1050 struct list_head *next = p->mnt_mounts.next; 1051 if (next == &p->mnt_mounts) { 1052 while (1) { 1053 if (p == root) 1054 return NULL; 1055 next = p->mnt_child.next; 1056 if (next != &p->mnt_parent->mnt_mounts) 1057 break; 1058 p = p->mnt_parent; 1059 } 1060 } 1061 return list_entry(next, struct mount, mnt_child); 1062 } 1063 1064 static struct mount *skip_mnt_tree(struct mount *p) 1065 { 1066 struct list_head *prev = p->mnt_mounts.prev; 1067 while (prev != &p->mnt_mounts) { 1068 p = list_entry(prev, struct mount, mnt_child); 1069 prev = p->mnt_mounts.prev; 1070 } 1071 return p; 1072 } 1073 1074 /** 1075 * vfs_create_mount - Create a mount for a configured superblock 1076 * @fc: The configuration context with the superblock attached 1077 * 1078 * Create a mount to an already configured superblock. If necessary, the 1079 * caller should invoke vfs_get_tree() before calling this. 1080 * 1081 * Note that this does not attach the mount to anything. 1082 */ 1083 struct vfsmount *vfs_create_mount(struct fs_context *fc) 1084 { 1085 struct mount *mnt; 1086 1087 if (!fc->root) 1088 return ERR_PTR(-EINVAL); 1089 1090 mnt = alloc_vfsmnt(fc->source ?: "none"); 1091 if (!mnt) 1092 return ERR_PTR(-ENOMEM); 1093 1094 if (fc->sb_flags & SB_KERNMOUNT) 1095 mnt->mnt.mnt_flags = MNT_INTERNAL; 1096 1097 atomic_inc(&fc->root->d_sb->s_active); 1098 mnt->mnt.mnt_sb = fc->root->d_sb; 1099 mnt->mnt.mnt_root = dget(fc->root); 1100 mnt->mnt_mountpoint = mnt->mnt.mnt_root; 1101 mnt->mnt_parent = mnt; 1102 1103 lock_mount_hash(); 1104 list_add_tail(&mnt->mnt_instance, &mnt->mnt.mnt_sb->s_mounts); 1105 unlock_mount_hash(); 1106 return &mnt->mnt; 1107 } 1108 EXPORT_SYMBOL(vfs_create_mount); 1109 1110 struct vfsmount *fc_mount(struct fs_context *fc) 1111 { 1112 int err = vfs_get_tree(fc); 1113 if (!err) { 1114 up_write(&fc->root->d_sb->s_umount); 1115 return vfs_create_mount(fc); 1116 } 1117 return ERR_PTR(err); 1118 } 1119 EXPORT_SYMBOL(fc_mount); 1120 1121 struct vfsmount *vfs_kern_mount(struct file_system_type *type, 1122 int flags, const char *name, 1123 void *data) 1124 { 1125 struct fs_context *fc; 1126 struct vfsmount *mnt; 1127 int ret = 0; 1128 1129 if (!type) 1130 return ERR_PTR(-EINVAL); 1131 1132 fc = fs_context_for_mount(type, flags); 1133 if (IS_ERR(fc)) 1134 return ERR_CAST(fc); 1135 1136 if (name) 1137 ret = vfs_parse_fs_string(fc, "source", 1138 name, strlen(name)); 1139 if (!ret) 1140 ret = parse_monolithic_mount_data(fc, data); 1141 if (!ret) 1142 mnt = fc_mount(fc); 1143 else 1144 mnt = ERR_PTR(ret); 1145 1146 put_fs_context(fc); 1147 return mnt; 1148 } 1149 EXPORT_SYMBOL_GPL(vfs_kern_mount); 1150 1151 struct vfsmount * 1152 vfs_submount(const struct dentry *mountpoint, struct file_system_type *type, 1153 const char *name, void *data) 1154 { 1155 /* Until it is worked out how to pass the user namespace 1156 * through from the parent mount to the submount don't support 1157 * unprivileged mounts with submounts. 1158 */ 1159 if (mountpoint->d_sb->s_user_ns != &init_user_ns) 1160 return ERR_PTR(-EPERM); 1161 1162 return vfs_kern_mount(type, SB_SUBMOUNT, name, data); 1163 } 1164 EXPORT_SYMBOL_GPL(vfs_submount); 1165 1166 static struct mount *clone_mnt(struct mount *old, struct dentry *root, 1167 int flag) 1168 { 1169 struct super_block *sb = old->mnt.mnt_sb; 1170 struct mount *mnt; 1171 int err; 1172 1173 mnt = alloc_vfsmnt(old->mnt_devname); 1174 if (!mnt) 1175 return ERR_PTR(-ENOMEM); 1176 1177 if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE)) 1178 mnt->mnt_group_id = 0; /* not a peer of original */ 1179 else 1180 mnt->mnt_group_id = old->mnt_group_id; 1181 1182 if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) { 1183 err = mnt_alloc_group_id(mnt); 1184 if (err) 1185 goto out_free; 1186 } 1187 1188 mnt->mnt.mnt_flags = old->mnt.mnt_flags; 1189 mnt->mnt.mnt_flags &= ~(MNT_WRITE_HOLD|MNT_MARKED|MNT_INTERNAL); 1190 1191 atomic_inc(&sb->s_active); 1192 mnt->mnt.mnt_idmap = mnt_idmap_get(mnt_idmap(&old->mnt)); 1193 1194 mnt->mnt.mnt_sb = sb; 1195 mnt->mnt.mnt_root = dget(root); 1196 mnt->mnt_mountpoint = mnt->mnt.mnt_root; 1197 mnt->mnt_parent = mnt; 1198 lock_mount_hash(); 1199 list_add_tail(&mnt->mnt_instance, &sb->s_mounts); 1200 unlock_mount_hash(); 1201 1202 if ((flag & CL_SLAVE) || 1203 ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) { 1204 list_add(&mnt->mnt_slave, &old->mnt_slave_list); 1205 mnt->mnt_master = old; 1206 CLEAR_MNT_SHARED(mnt); 1207 } else if (!(flag & CL_PRIVATE)) { 1208 if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old)) 1209 list_add(&mnt->mnt_share, &old->mnt_share); 1210 if (IS_MNT_SLAVE(old)) 1211 list_add(&mnt->mnt_slave, &old->mnt_slave); 1212 mnt->mnt_master = old->mnt_master; 1213 } else { 1214 CLEAR_MNT_SHARED(mnt); 1215 } 1216 if (flag & CL_MAKE_SHARED) 1217 set_mnt_shared(mnt); 1218 1219 /* stick the duplicate mount on the same expiry list 1220 * as the original if that was on one */ 1221 if (flag & CL_EXPIRE) { 1222 if (!list_empty(&old->mnt_expire)) 1223 list_add(&mnt->mnt_expire, &old->mnt_expire); 1224 } 1225 1226 return mnt; 1227 1228 out_free: 1229 mnt_free_id(mnt); 1230 free_vfsmnt(mnt); 1231 return ERR_PTR(err); 1232 } 1233 1234 static void cleanup_mnt(struct mount *mnt) 1235 { 1236 struct hlist_node *p; 1237 struct mount *m; 1238 /* 1239 * The warning here probably indicates that somebody messed 1240 * up a mnt_want/drop_write() pair. If this happens, the 1241 * filesystem was probably unable to make r/w->r/o transitions. 1242 * The locking used to deal with mnt_count decrement provides barriers, 1243 * so mnt_get_writers() below is safe. 1244 */ 1245 WARN_ON(mnt_get_writers(mnt)); 1246 if (unlikely(mnt->mnt_pins.first)) 1247 mnt_pin_kill(mnt); 1248 hlist_for_each_entry_safe(m, p, &mnt->mnt_stuck_children, mnt_umount) { 1249 hlist_del(&m->mnt_umount); 1250 mntput(&m->mnt); 1251 } 1252 fsnotify_vfsmount_delete(&mnt->mnt); 1253 dput(mnt->mnt.mnt_root); 1254 deactivate_super(mnt->mnt.mnt_sb); 1255 mnt_free_id(mnt); 1256 call_rcu(&mnt->mnt_rcu, delayed_free_vfsmnt); 1257 } 1258 1259 static void __cleanup_mnt(struct rcu_head *head) 1260 { 1261 cleanup_mnt(container_of(head, struct mount, mnt_rcu)); 1262 } 1263 1264 static LLIST_HEAD(delayed_mntput_list); 1265 static void delayed_mntput(struct work_struct *unused) 1266 { 1267 struct llist_node *node = llist_del_all(&delayed_mntput_list); 1268 struct mount *m, *t; 1269 1270 llist_for_each_entry_safe(m, t, node, mnt_llist) 1271 cleanup_mnt(m); 1272 } 1273 static DECLARE_DELAYED_WORK(delayed_mntput_work, delayed_mntput); 1274 1275 static void mntput_no_expire(struct mount *mnt) 1276 { 1277 LIST_HEAD(list); 1278 int count; 1279 1280 rcu_read_lock(); 1281 if (likely(READ_ONCE(mnt->mnt_ns))) { 1282 /* 1283 * Since we don't do lock_mount_hash() here, 1284 * ->mnt_ns can change under us. However, if it's 1285 * non-NULL, then there's a reference that won't 1286 * be dropped until after an RCU delay done after 1287 * turning ->mnt_ns NULL. So if we observe it 1288 * non-NULL under rcu_read_lock(), the reference 1289 * we are dropping is not the final one. 1290 */ 1291 mnt_add_count(mnt, -1); 1292 rcu_read_unlock(); 1293 return; 1294 } 1295 lock_mount_hash(); 1296 /* 1297 * make sure that if __legitimize_mnt() has not seen us grab 1298 * mount_lock, we'll see their refcount increment here. 1299 */ 1300 smp_mb(); 1301 mnt_add_count(mnt, -1); 1302 count = mnt_get_count(mnt); 1303 if (count != 0) { 1304 WARN_ON(count < 0); 1305 rcu_read_unlock(); 1306 unlock_mount_hash(); 1307 return; 1308 } 1309 if (unlikely(mnt->mnt.mnt_flags & MNT_DOOMED)) { 1310 rcu_read_unlock(); 1311 unlock_mount_hash(); 1312 return; 1313 } 1314 mnt->mnt.mnt_flags |= MNT_DOOMED; 1315 rcu_read_unlock(); 1316 1317 list_del(&mnt->mnt_instance); 1318 1319 if (unlikely(!list_empty(&mnt->mnt_mounts))) { 1320 struct mount *p, *tmp; 1321 list_for_each_entry_safe(p, tmp, &mnt->mnt_mounts, mnt_child) { 1322 __put_mountpoint(unhash_mnt(p), &list); 1323 hlist_add_head(&p->mnt_umount, &mnt->mnt_stuck_children); 1324 } 1325 } 1326 unlock_mount_hash(); 1327 shrink_dentry_list(&list); 1328 1329 if (likely(!(mnt->mnt.mnt_flags & MNT_INTERNAL))) { 1330 struct task_struct *task = current; 1331 if (likely(!(task->flags & PF_KTHREAD))) { 1332 init_task_work(&mnt->mnt_rcu, __cleanup_mnt); 1333 if (!task_work_add(task, &mnt->mnt_rcu, TWA_RESUME)) 1334 return; 1335 } 1336 if (llist_add(&mnt->mnt_llist, &delayed_mntput_list)) 1337 schedule_delayed_work(&delayed_mntput_work, 1); 1338 return; 1339 } 1340 cleanup_mnt(mnt); 1341 } 1342 1343 void mntput(struct vfsmount *mnt) 1344 { 1345 if (mnt) { 1346 struct mount *m = real_mount(mnt); 1347 /* avoid cacheline pingpong, hope gcc doesn't get "smart" */ 1348 if (unlikely(m->mnt_expiry_mark)) 1349 m->mnt_expiry_mark = 0; 1350 mntput_no_expire(m); 1351 } 1352 } 1353 EXPORT_SYMBOL(mntput); 1354 1355 struct vfsmount *mntget(struct vfsmount *mnt) 1356 { 1357 if (mnt) 1358 mnt_add_count(real_mount(mnt), 1); 1359 return mnt; 1360 } 1361 EXPORT_SYMBOL(mntget); 1362 1363 /* 1364 * Make a mount point inaccessible to new lookups. 1365 * Because there may still be current users, the caller MUST WAIT 1366 * for an RCU grace period before destroying the mount point. 1367 */ 1368 void mnt_make_shortterm(struct vfsmount *mnt) 1369 { 1370 if (mnt) 1371 real_mount(mnt)->mnt_ns = NULL; 1372 } 1373 1374 /** 1375 * path_is_mountpoint() - Check if path is a mount in the current namespace. 1376 * @path: path to check 1377 * 1378 * d_mountpoint() can only be used reliably to establish if a dentry is 1379 * not mounted in any namespace and that common case is handled inline. 1380 * d_mountpoint() isn't aware of the possibility there may be multiple 1381 * mounts using a given dentry in a different namespace. This function 1382 * checks if the passed in path is a mountpoint rather than the dentry 1383 * alone. 1384 */ 1385 bool path_is_mountpoint(const struct path *path) 1386 { 1387 unsigned seq; 1388 bool res; 1389 1390 if (!d_mountpoint(path->dentry)) 1391 return false; 1392 1393 rcu_read_lock(); 1394 do { 1395 seq = read_seqbegin(&mount_lock); 1396 res = __path_is_mountpoint(path); 1397 } while (read_seqretry(&mount_lock, seq)); 1398 rcu_read_unlock(); 1399 1400 return res; 1401 } 1402 EXPORT_SYMBOL(path_is_mountpoint); 1403 1404 struct vfsmount *mnt_clone_internal(const struct path *path) 1405 { 1406 struct mount *p; 1407 p = clone_mnt(real_mount(path->mnt), path->dentry, CL_PRIVATE); 1408 if (IS_ERR(p)) 1409 return ERR_CAST(p); 1410 p->mnt.mnt_flags |= MNT_INTERNAL; 1411 return &p->mnt; 1412 } 1413 1414 #ifdef CONFIG_PROC_FS 1415 static struct mount *mnt_list_next(struct mnt_namespace *ns, 1416 struct list_head *p) 1417 { 1418 struct mount *mnt, *ret = NULL; 1419 1420 lock_ns_list(ns); 1421 list_for_each_continue(p, &ns->list) { 1422 mnt = list_entry(p, typeof(*mnt), mnt_list); 1423 if (!mnt_is_cursor(mnt)) { 1424 ret = mnt; 1425 break; 1426 } 1427 } 1428 unlock_ns_list(ns); 1429 1430 return ret; 1431 } 1432 1433 /* iterator; we want it to have access to namespace_sem, thus here... */ 1434 static void *m_start(struct seq_file *m, loff_t *pos) 1435 { 1436 struct proc_mounts *p = m->private; 1437 struct list_head *prev; 1438 1439 down_read(&namespace_sem); 1440 if (!*pos) { 1441 prev = &p->ns->list; 1442 } else { 1443 prev = &p->cursor.mnt_list; 1444 1445 /* Read after we'd reached the end? */ 1446 if (list_empty(prev)) 1447 return NULL; 1448 } 1449 1450 return mnt_list_next(p->ns, prev); 1451 } 1452 1453 static void *m_next(struct seq_file *m, void *v, loff_t *pos) 1454 { 1455 struct proc_mounts *p = m->private; 1456 struct mount *mnt = v; 1457 1458 ++*pos; 1459 return mnt_list_next(p->ns, &mnt->mnt_list); 1460 } 1461 1462 static void m_stop(struct seq_file *m, void *v) 1463 { 1464 struct proc_mounts *p = m->private; 1465 struct mount *mnt = v; 1466 1467 lock_ns_list(p->ns); 1468 if (mnt) 1469 list_move_tail(&p->cursor.mnt_list, &mnt->mnt_list); 1470 else 1471 list_del_init(&p->cursor.mnt_list); 1472 unlock_ns_list(p->ns); 1473 up_read(&namespace_sem); 1474 } 1475 1476 static int m_show(struct seq_file *m, void *v) 1477 { 1478 struct proc_mounts *p = m->private; 1479 struct mount *r = v; 1480 return p->show(m, &r->mnt); 1481 } 1482 1483 const struct seq_operations mounts_op = { 1484 .start = m_start, 1485 .next = m_next, 1486 .stop = m_stop, 1487 .show = m_show, 1488 }; 1489 1490 void mnt_cursor_del(struct mnt_namespace *ns, struct mount *cursor) 1491 { 1492 down_read(&namespace_sem); 1493 lock_ns_list(ns); 1494 list_del(&cursor->mnt_list); 1495 unlock_ns_list(ns); 1496 up_read(&namespace_sem); 1497 } 1498 #endif /* CONFIG_PROC_FS */ 1499 1500 /** 1501 * may_umount_tree - check if a mount tree is busy 1502 * @m: root of mount tree 1503 * 1504 * This is called to check if a tree of mounts has any 1505 * open files, pwds, chroots or sub mounts that are 1506 * busy. 1507 */ 1508 int may_umount_tree(struct vfsmount *m) 1509 { 1510 struct mount *mnt = real_mount(m); 1511 int actual_refs = 0; 1512 int minimum_refs = 0; 1513 struct mount *p; 1514 BUG_ON(!m); 1515 1516 /* write lock needed for mnt_get_count */ 1517 lock_mount_hash(); 1518 for (p = mnt; p; p = next_mnt(p, mnt)) { 1519 actual_refs += mnt_get_count(p); 1520 minimum_refs += 2; 1521 } 1522 unlock_mount_hash(); 1523 1524 if (actual_refs > minimum_refs) 1525 return 0; 1526 1527 return 1; 1528 } 1529 1530 EXPORT_SYMBOL(may_umount_tree); 1531 1532 /** 1533 * may_umount - check if a mount point is busy 1534 * @mnt: root of mount 1535 * 1536 * This is called to check if a mount point has any 1537 * open files, pwds, chroots or sub mounts. If the 1538 * mount has sub mounts this will return busy 1539 * regardless of whether the sub mounts are busy. 1540 * 1541 * Doesn't take quota and stuff into account. IOW, in some cases it will 1542 * give false negatives. The main reason why it's here is that we need 1543 * a non-destructive way to look for easily umountable filesystems. 1544 */ 1545 int may_umount(struct vfsmount *mnt) 1546 { 1547 int ret = 1; 1548 down_read(&namespace_sem); 1549 lock_mount_hash(); 1550 if (propagate_mount_busy(real_mount(mnt), 2)) 1551 ret = 0; 1552 unlock_mount_hash(); 1553 up_read(&namespace_sem); 1554 return ret; 1555 } 1556 1557 EXPORT_SYMBOL(may_umount); 1558 1559 static void namespace_unlock(void) 1560 { 1561 struct hlist_head head; 1562 struct hlist_node *p; 1563 struct mount *m; 1564 LIST_HEAD(list); 1565 1566 hlist_move_list(&unmounted, &head); 1567 list_splice_init(&ex_mountpoints, &list); 1568 1569 up_write(&namespace_sem); 1570 1571 shrink_dentry_list(&list); 1572 1573 if (likely(hlist_empty(&head))) 1574 return; 1575 1576 synchronize_rcu_expedited(); 1577 1578 hlist_for_each_entry_safe(m, p, &head, mnt_umount) { 1579 hlist_del(&m->mnt_umount); 1580 mntput(&m->mnt); 1581 } 1582 } 1583 1584 static inline void namespace_lock(void) 1585 { 1586 down_write(&namespace_sem); 1587 } 1588 1589 enum umount_tree_flags { 1590 UMOUNT_SYNC = 1, 1591 UMOUNT_PROPAGATE = 2, 1592 UMOUNT_CONNECTED = 4, 1593 }; 1594 1595 static bool disconnect_mount(struct mount *mnt, enum umount_tree_flags how) 1596 { 1597 /* Leaving mounts connected is only valid for lazy umounts */ 1598 if (how & UMOUNT_SYNC) 1599 return true; 1600 1601 /* A mount without a parent has nothing to be connected to */ 1602 if (!mnt_has_parent(mnt)) 1603 return true; 1604 1605 /* Because the reference counting rules change when mounts are 1606 * unmounted and connected, umounted mounts may not be 1607 * connected to mounted mounts. 1608 */ 1609 if (!(mnt->mnt_parent->mnt.mnt_flags & MNT_UMOUNT)) 1610 return true; 1611 1612 /* Has it been requested that the mount remain connected? */ 1613 if (how & UMOUNT_CONNECTED) 1614 return false; 1615 1616 /* Is the mount locked such that it needs to remain connected? */ 1617 if (IS_MNT_LOCKED(mnt)) 1618 return false; 1619 1620 /* By default disconnect the mount */ 1621 return true; 1622 } 1623 1624 /* 1625 * mount_lock must be held 1626 * namespace_sem must be held for write 1627 */ 1628 static void umount_tree(struct mount *mnt, enum umount_tree_flags how) 1629 { 1630 LIST_HEAD(tmp_list); 1631 struct mount *p; 1632 1633 if (how & UMOUNT_PROPAGATE) 1634 propagate_mount_unlock(mnt); 1635 1636 /* Gather the mounts to umount */ 1637 for (p = mnt; p; p = next_mnt(p, mnt)) { 1638 p->mnt.mnt_flags |= MNT_UMOUNT; 1639 list_move(&p->mnt_list, &tmp_list); 1640 } 1641 1642 /* Hide the mounts from mnt_mounts */ 1643 list_for_each_entry(p, &tmp_list, mnt_list) { 1644 list_del_init(&p->mnt_child); 1645 } 1646 1647 /* Add propogated mounts to the tmp_list */ 1648 if (how & UMOUNT_PROPAGATE) 1649 propagate_umount(&tmp_list); 1650 1651 while (!list_empty(&tmp_list)) { 1652 struct mnt_namespace *ns; 1653 bool disconnect; 1654 p = list_first_entry(&tmp_list, struct mount, mnt_list); 1655 list_del_init(&p->mnt_expire); 1656 list_del_init(&p->mnt_list); 1657 ns = p->mnt_ns; 1658 if (ns) { 1659 ns->mounts--; 1660 __touch_mnt_namespace(ns); 1661 } 1662 p->mnt_ns = NULL; 1663 if (how & UMOUNT_SYNC) 1664 p->mnt.mnt_flags |= MNT_SYNC_UMOUNT; 1665 1666 disconnect = disconnect_mount(p, how); 1667 if (mnt_has_parent(p)) { 1668 mnt_add_count(p->mnt_parent, -1); 1669 if (!disconnect) { 1670 /* Don't forget about p */ 1671 list_add_tail(&p->mnt_child, &p->mnt_parent->mnt_mounts); 1672 } else { 1673 umount_mnt(p); 1674 } 1675 } 1676 change_mnt_propagation(p, MS_PRIVATE); 1677 if (disconnect) 1678 hlist_add_head(&p->mnt_umount, &unmounted); 1679 } 1680 } 1681 1682 static void shrink_submounts(struct mount *mnt); 1683 1684 static int do_umount_root(struct super_block *sb) 1685 { 1686 int ret = 0; 1687 1688 down_write(&sb->s_umount); 1689 if (!sb_rdonly(sb)) { 1690 struct fs_context *fc; 1691 1692 fc = fs_context_for_reconfigure(sb->s_root, SB_RDONLY, 1693 SB_RDONLY); 1694 if (IS_ERR(fc)) { 1695 ret = PTR_ERR(fc); 1696 } else { 1697 ret = parse_monolithic_mount_data(fc, NULL); 1698 if (!ret) 1699 ret = reconfigure_super(fc); 1700 put_fs_context(fc); 1701 } 1702 } 1703 up_write(&sb->s_umount); 1704 return ret; 1705 } 1706 1707 static int do_umount(struct mount *mnt, int flags) 1708 { 1709 struct super_block *sb = mnt->mnt.mnt_sb; 1710 int retval; 1711 1712 retval = security_sb_umount(&mnt->mnt, flags); 1713 if (retval) 1714 return retval; 1715 1716 /* 1717 * Allow userspace to request a mountpoint be expired rather than 1718 * unmounting unconditionally. Unmount only happens if: 1719 * (1) the mark is already set (the mark is cleared by mntput()) 1720 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount] 1721 */ 1722 if (flags & MNT_EXPIRE) { 1723 if (&mnt->mnt == current->fs->root.mnt || 1724 flags & (MNT_FORCE | MNT_DETACH)) 1725 return -EINVAL; 1726 1727 /* 1728 * probably don't strictly need the lock here if we examined 1729 * all race cases, but it's a slowpath. 1730 */ 1731 lock_mount_hash(); 1732 if (mnt_get_count(mnt) != 2) { 1733 unlock_mount_hash(); 1734 return -EBUSY; 1735 } 1736 unlock_mount_hash(); 1737 1738 if (!xchg(&mnt->mnt_expiry_mark, 1)) 1739 return -EAGAIN; 1740 } 1741 1742 /* 1743 * If we may have to abort operations to get out of this 1744 * mount, and they will themselves hold resources we must 1745 * allow the fs to do things. In the Unix tradition of 1746 * 'Gee thats tricky lets do it in userspace' the umount_begin 1747 * might fail to complete on the first run through as other tasks 1748 * must return, and the like. Thats for the mount program to worry 1749 * about for the moment. 1750 */ 1751 1752 if (flags & MNT_FORCE && sb->s_op->umount_begin) { 1753 sb->s_op->umount_begin(sb); 1754 } 1755 1756 /* 1757 * No sense to grab the lock for this test, but test itself looks 1758 * somewhat bogus. Suggestions for better replacement? 1759 * Ho-hum... In principle, we might treat that as umount + switch 1760 * to rootfs. GC would eventually take care of the old vfsmount. 1761 * Actually it makes sense, especially if rootfs would contain a 1762 * /reboot - static binary that would close all descriptors and 1763 * call reboot(9). Then init(8) could umount root and exec /reboot. 1764 */ 1765 if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) { 1766 /* 1767 * Special case for "unmounting" root ... 1768 * we just try to remount it readonly. 1769 */ 1770 if (!ns_capable(sb->s_user_ns, CAP_SYS_ADMIN)) 1771 return -EPERM; 1772 return do_umount_root(sb); 1773 } 1774 1775 namespace_lock(); 1776 lock_mount_hash(); 1777 1778 /* Recheck MNT_LOCKED with the locks held */ 1779 retval = -EINVAL; 1780 if (mnt->mnt.mnt_flags & MNT_LOCKED) 1781 goto out; 1782 1783 event++; 1784 if (flags & MNT_DETACH) { 1785 if (!list_empty(&mnt->mnt_list)) 1786 umount_tree(mnt, UMOUNT_PROPAGATE); 1787 retval = 0; 1788 } else { 1789 shrink_submounts(mnt); 1790 retval = -EBUSY; 1791 if (!propagate_mount_busy(mnt, 2)) { 1792 if (!list_empty(&mnt->mnt_list)) 1793 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC); 1794 retval = 0; 1795 } 1796 } 1797 out: 1798 unlock_mount_hash(); 1799 namespace_unlock(); 1800 return retval; 1801 } 1802 1803 /* 1804 * __detach_mounts - lazily unmount all mounts on the specified dentry 1805 * 1806 * During unlink, rmdir, and d_drop it is possible to loose the path 1807 * to an existing mountpoint, and wind up leaking the mount. 1808 * detach_mounts allows lazily unmounting those mounts instead of 1809 * leaking them. 1810 * 1811 * The caller may hold dentry->d_inode->i_mutex. 1812 */ 1813 void __detach_mounts(struct dentry *dentry) 1814 { 1815 struct mountpoint *mp; 1816 struct mount *mnt; 1817 1818 namespace_lock(); 1819 lock_mount_hash(); 1820 mp = lookup_mountpoint(dentry); 1821 if (!mp) 1822 goto out_unlock; 1823 1824 event++; 1825 while (!hlist_empty(&mp->m_list)) { 1826 mnt = hlist_entry(mp->m_list.first, struct mount, mnt_mp_list); 1827 if (mnt->mnt.mnt_flags & MNT_UMOUNT) { 1828 umount_mnt(mnt); 1829 hlist_add_head(&mnt->mnt_umount, &unmounted); 1830 } 1831 else umount_tree(mnt, UMOUNT_CONNECTED); 1832 } 1833 put_mountpoint(mp); 1834 out_unlock: 1835 unlock_mount_hash(); 1836 namespace_unlock(); 1837 } 1838 1839 /* 1840 * Is the caller allowed to modify his namespace? 1841 */ 1842 bool may_mount(void) 1843 { 1844 return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN); 1845 } 1846 1847 /** 1848 * path_mounted - check whether path is mounted 1849 * @path: path to check 1850 * 1851 * Determine whether @path refers to the root of a mount. 1852 * 1853 * Return: true if @path is the root of a mount, false if not. 1854 */ 1855 static inline bool path_mounted(const struct path *path) 1856 { 1857 return path->mnt->mnt_root == path->dentry; 1858 } 1859 1860 static void warn_mandlock(void) 1861 { 1862 pr_warn_once("=======================================================\n" 1863 "WARNING: The mand mount option has been deprecated and\n" 1864 " and is ignored by this kernel. Remove the mand\n" 1865 " option from the mount to silence this warning.\n" 1866 "=======================================================\n"); 1867 } 1868 1869 static int can_umount(const struct path *path, int flags) 1870 { 1871 struct mount *mnt = real_mount(path->mnt); 1872 1873 if (!may_mount()) 1874 return -EPERM; 1875 if (!path_mounted(path)) 1876 return -EINVAL; 1877 if (!check_mnt(mnt)) 1878 return -EINVAL; 1879 if (mnt->mnt.mnt_flags & MNT_LOCKED) /* Check optimistically */ 1880 return -EINVAL; 1881 if (flags & MNT_FORCE && !capable(CAP_SYS_ADMIN)) 1882 return -EPERM; 1883 return 0; 1884 } 1885 1886 // caller is responsible for flags being sane 1887 int path_umount(struct path *path, int flags) 1888 { 1889 struct mount *mnt = real_mount(path->mnt); 1890 int ret; 1891 1892 ret = can_umount(path, flags); 1893 if (!ret) 1894 ret = do_umount(mnt, flags); 1895 1896 /* we mustn't call path_put() as that would clear mnt_expiry_mark */ 1897 dput(path->dentry); 1898 mntput_no_expire(mnt); 1899 return ret; 1900 } 1901 1902 static int ksys_umount(char __user *name, int flags) 1903 { 1904 int lookup_flags = LOOKUP_MOUNTPOINT; 1905 struct path path; 1906 int ret; 1907 1908 // basic validity checks done first 1909 if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW)) 1910 return -EINVAL; 1911 1912 if (!(flags & UMOUNT_NOFOLLOW)) 1913 lookup_flags |= LOOKUP_FOLLOW; 1914 ret = user_path_at(AT_FDCWD, name, lookup_flags, &path); 1915 if (ret) 1916 return ret; 1917 return path_umount(&path, flags); 1918 } 1919 1920 SYSCALL_DEFINE2(umount, char __user *, name, int, flags) 1921 { 1922 return ksys_umount(name, flags); 1923 } 1924 1925 #ifdef __ARCH_WANT_SYS_OLDUMOUNT 1926 1927 /* 1928 * The 2.0 compatible umount. No flags. 1929 */ 1930 SYSCALL_DEFINE1(oldumount, char __user *, name) 1931 { 1932 return ksys_umount(name, 0); 1933 } 1934 1935 #endif 1936 1937 static bool is_mnt_ns_file(struct dentry *dentry) 1938 { 1939 /* Is this a proxy for a mount namespace? */ 1940 return dentry->d_op == &ns_dentry_operations && 1941 dentry->d_fsdata == &mntns_operations; 1942 } 1943 1944 static struct mnt_namespace *to_mnt_ns(struct ns_common *ns) 1945 { 1946 return container_of(ns, struct mnt_namespace, ns); 1947 } 1948 1949 struct ns_common *from_mnt_ns(struct mnt_namespace *mnt) 1950 { 1951 return &mnt->ns; 1952 } 1953 1954 static bool mnt_ns_loop(struct dentry *dentry) 1955 { 1956 /* Could bind mounting the mount namespace inode cause a 1957 * mount namespace loop? 1958 */ 1959 struct mnt_namespace *mnt_ns; 1960 if (!is_mnt_ns_file(dentry)) 1961 return false; 1962 1963 mnt_ns = to_mnt_ns(get_proc_ns(dentry->d_inode)); 1964 return current->nsproxy->mnt_ns->seq >= mnt_ns->seq; 1965 } 1966 1967 struct mount *copy_tree(struct mount *mnt, struct dentry *dentry, 1968 int flag) 1969 { 1970 struct mount *res, *p, *q, *r, *parent; 1971 1972 if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(mnt)) 1973 return ERR_PTR(-EINVAL); 1974 1975 if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry)) 1976 return ERR_PTR(-EINVAL); 1977 1978 res = q = clone_mnt(mnt, dentry, flag); 1979 if (IS_ERR(q)) 1980 return q; 1981 1982 q->mnt_mountpoint = mnt->mnt_mountpoint; 1983 1984 p = mnt; 1985 list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) { 1986 struct mount *s; 1987 if (!is_subdir(r->mnt_mountpoint, dentry)) 1988 continue; 1989 1990 for (s = r; s; s = next_mnt(s, r)) { 1991 if (!(flag & CL_COPY_UNBINDABLE) && 1992 IS_MNT_UNBINDABLE(s)) { 1993 if (s->mnt.mnt_flags & MNT_LOCKED) { 1994 /* Both unbindable and locked. */ 1995 q = ERR_PTR(-EPERM); 1996 goto out; 1997 } else { 1998 s = skip_mnt_tree(s); 1999 continue; 2000 } 2001 } 2002 if (!(flag & CL_COPY_MNT_NS_FILE) && 2003 is_mnt_ns_file(s->mnt.mnt_root)) { 2004 s = skip_mnt_tree(s); 2005 continue; 2006 } 2007 while (p != s->mnt_parent) { 2008 p = p->mnt_parent; 2009 q = q->mnt_parent; 2010 } 2011 p = s; 2012 parent = q; 2013 q = clone_mnt(p, p->mnt.mnt_root, flag); 2014 if (IS_ERR(q)) 2015 goto out; 2016 lock_mount_hash(); 2017 list_add_tail(&q->mnt_list, &res->mnt_list); 2018 attach_mnt(q, parent, p->mnt_mp, false); 2019 unlock_mount_hash(); 2020 } 2021 } 2022 return res; 2023 out: 2024 if (res) { 2025 lock_mount_hash(); 2026 umount_tree(res, UMOUNT_SYNC); 2027 unlock_mount_hash(); 2028 } 2029 return q; 2030 } 2031 2032 /* Caller should check returned pointer for errors */ 2033 2034 struct vfsmount *collect_mounts(const struct path *path) 2035 { 2036 struct mount *tree; 2037 namespace_lock(); 2038 if (!check_mnt(real_mount(path->mnt))) 2039 tree = ERR_PTR(-EINVAL); 2040 else 2041 tree = copy_tree(real_mount(path->mnt), path->dentry, 2042 CL_COPY_ALL | CL_PRIVATE); 2043 namespace_unlock(); 2044 if (IS_ERR(tree)) 2045 return ERR_CAST(tree); 2046 return &tree->mnt; 2047 } 2048 2049 static void free_mnt_ns(struct mnt_namespace *); 2050 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *, bool); 2051 2052 void dissolve_on_fput(struct vfsmount *mnt) 2053 { 2054 struct mnt_namespace *ns; 2055 namespace_lock(); 2056 lock_mount_hash(); 2057 ns = real_mount(mnt)->mnt_ns; 2058 if (ns) { 2059 if (is_anon_ns(ns)) 2060 umount_tree(real_mount(mnt), UMOUNT_CONNECTED); 2061 else 2062 ns = NULL; 2063 } 2064 unlock_mount_hash(); 2065 namespace_unlock(); 2066 if (ns) 2067 free_mnt_ns(ns); 2068 } 2069 2070 void drop_collected_mounts(struct vfsmount *mnt) 2071 { 2072 namespace_lock(); 2073 lock_mount_hash(); 2074 umount_tree(real_mount(mnt), 0); 2075 unlock_mount_hash(); 2076 namespace_unlock(); 2077 } 2078 2079 static bool has_locked_children(struct mount *mnt, struct dentry *dentry) 2080 { 2081 struct mount *child; 2082 2083 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) { 2084 if (!is_subdir(child->mnt_mountpoint, dentry)) 2085 continue; 2086 2087 if (child->mnt.mnt_flags & MNT_LOCKED) 2088 return true; 2089 } 2090 return false; 2091 } 2092 2093 /** 2094 * clone_private_mount - create a private clone of a path 2095 * @path: path to clone 2096 * 2097 * This creates a new vfsmount, which will be the clone of @path. The new mount 2098 * will not be attached anywhere in the namespace and will be private (i.e. 2099 * changes to the originating mount won't be propagated into this). 2100 * 2101 * Release with mntput(). 2102 */ 2103 struct vfsmount *clone_private_mount(const struct path *path) 2104 { 2105 struct mount *old_mnt = real_mount(path->mnt); 2106 struct mount *new_mnt; 2107 2108 down_read(&namespace_sem); 2109 if (IS_MNT_UNBINDABLE(old_mnt)) 2110 goto invalid; 2111 2112 if (!check_mnt(old_mnt)) 2113 goto invalid; 2114 2115 if (has_locked_children(old_mnt, path->dentry)) 2116 goto invalid; 2117 2118 new_mnt = clone_mnt(old_mnt, path->dentry, CL_PRIVATE); 2119 up_read(&namespace_sem); 2120 2121 if (IS_ERR(new_mnt)) 2122 return ERR_CAST(new_mnt); 2123 2124 /* Longterm mount to be removed by kern_unmount*() */ 2125 new_mnt->mnt_ns = MNT_NS_INTERNAL; 2126 2127 return &new_mnt->mnt; 2128 2129 invalid: 2130 up_read(&namespace_sem); 2131 return ERR_PTR(-EINVAL); 2132 } 2133 EXPORT_SYMBOL_GPL(clone_private_mount); 2134 2135 int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg, 2136 struct vfsmount *root) 2137 { 2138 struct mount *mnt; 2139 int res = f(root, arg); 2140 if (res) 2141 return res; 2142 list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) { 2143 res = f(&mnt->mnt, arg); 2144 if (res) 2145 return res; 2146 } 2147 return 0; 2148 } 2149 2150 static void lock_mnt_tree(struct mount *mnt) 2151 { 2152 struct mount *p; 2153 2154 for (p = mnt; p; p = next_mnt(p, mnt)) { 2155 int flags = p->mnt.mnt_flags; 2156 /* Don't allow unprivileged users to change mount flags */ 2157 flags |= MNT_LOCK_ATIME; 2158 2159 if (flags & MNT_READONLY) 2160 flags |= MNT_LOCK_READONLY; 2161 2162 if (flags & MNT_NODEV) 2163 flags |= MNT_LOCK_NODEV; 2164 2165 if (flags & MNT_NOSUID) 2166 flags |= MNT_LOCK_NOSUID; 2167 2168 if (flags & MNT_NOEXEC) 2169 flags |= MNT_LOCK_NOEXEC; 2170 /* Don't allow unprivileged users to reveal what is under a mount */ 2171 if (list_empty(&p->mnt_expire)) 2172 flags |= MNT_LOCKED; 2173 p->mnt.mnt_flags = flags; 2174 } 2175 } 2176 2177 static void cleanup_group_ids(struct mount *mnt, struct mount *end) 2178 { 2179 struct mount *p; 2180 2181 for (p = mnt; p != end; p = next_mnt(p, mnt)) { 2182 if (p->mnt_group_id && !IS_MNT_SHARED(p)) 2183 mnt_release_group_id(p); 2184 } 2185 } 2186 2187 static int invent_group_ids(struct mount *mnt, bool recurse) 2188 { 2189 struct mount *p; 2190 2191 for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) { 2192 if (!p->mnt_group_id && !IS_MNT_SHARED(p)) { 2193 int err = mnt_alloc_group_id(p); 2194 if (err) { 2195 cleanup_group_ids(mnt, p); 2196 return err; 2197 } 2198 } 2199 } 2200 2201 return 0; 2202 } 2203 2204 int count_mounts(struct mnt_namespace *ns, struct mount *mnt) 2205 { 2206 unsigned int max = READ_ONCE(sysctl_mount_max); 2207 unsigned int mounts = 0; 2208 struct mount *p; 2209 2210 if (ns->mounts >= max) 2211 return -ENOSPC; 2212 max -= ns->mounts; 2213 if (ns->pending_mounts >= max) 2214 return -ENOSPC; 2215 max -= ns->pending_mounts; 2216 2217 for (p = mnt; p; p = next_mnt(p, mnt)) 2218 mounts++; 2219 2220 if (mounts > max) 2221 return -ENOSPC; 2222 2223 ns->pending_mounts += mounts; 2224 return 0; 2225 } 2226 2227 enum mnt_tree_flags_t { 2228 MNT_TREE_MOVE = BIT(0), 2229 MNT_TREE_BENEATH = BIT(1), 2230 }; 2231 2232 /** 2233 * attach_recursive_mnt - attach a source mount tree 2234 * @source_mnt: mount tree to be attached 2235 * @top_mnt: mount that @source_mnt will be mounted on or mounted beneath 2236 * @dest_mp: the mountpoint @source_mnt will be mounted at 2237 * @flags: modify how @source_mnt is supposed to be attached 2238 * 2239 * NOTE: in the table below explains the semantics when a source mount 2240 * of a given type is attached to a destination mount of a given type. 2241 * --------------------------------------------------------------------------- 2242 * | BIND MOUNT OPERATION | 2243 * |************************************************************************** 2244 * | source-->| shared | private | slave | unbindable | 2245 * | dest | | | | | 2246 * | | | | | | | 2247 * | v | | | | | 2248 * |************************************************************************** 2249 * | shared | shared (++) | shared (+) | shared(+++)| invalid | 2250 * | | | | | | 2251 * |non-shared| shared (+) | private | slave (*) | invalid | 2252 * *************************************************************************** 2253 * A bind operation clones the source mount and mounts the clone on the 2254 * destination mount. 2255 * 2256 * (++) the cloned mount is propagated to all the mounts in the propagation 2257 * tree of the destination mount and the cloned mount is added to 2258 * the peer group of the source mount. 2259 * (+) the cloned mount is created under the destination mount and is marked 2260 * as shared. The cloned mount is added to the peer group of the source 2261 * mount. 2262 * (+++) the mount is propagated to all the mounts in the propagation tree 2263 * of the destination mount and the cloned mount is made slave 2264 * of the same master as that of the source mount. The cloned mount 2265 * is marked as 'shared and slave'. 2266 * (*) the cloned mount is made a slave of the same master as that of the 2267 * source mount. 2268 * 2269 * --------------------------------------------------------------------------- 2270 * | MOVE MOUNT OPERATION | 2271 * |************************************************************************** 2272 * | source-->| shared | private | slave | unbindable | 2273 * | dest | | | | | 2274 * | | | | | | | 2275 * | v | | | | | 2276 * |************************************************************************** 2277 * | shared | shared (+) | shared (+) | shared(+++) | invalid | 2278 * | | | | | | 2279 * |non-shared| shared (+*) | private | slave (*) | unbindable | 2280 * *************************************************************************** 2281 * 2282 * (+) the mount is moved to the destination. And is then propagated to 2283 * all the mounts in the propagation tree of the destination mount. 2284 * (+*) the mount is moved to the destination. 2285 * (+++) the mount is moved to the destination and is then propagated to 2286 * all the mounts belonging to the destination mount's propagation tree. 2287 * the mount is marked as 'shared and slave'. 2288 * (*) the mount continues to be a slave at the new location. 2289 * 2290 * if the source mount is a tree, the operations explained above is 2291 * applied to each mount in the tree. 2292 * Must be called without spinlocks held, since this function can sleep 2293 * in allocations. 2294 * 2295 * Context: The function expects namespace_lock() to be held. 2296 * Return: If @source_mnt was successfully attached 0 is returned. 2297 * Otherwise a negative error code is returned. 2298 */ 2299 static int attach_recursive_mnt(struct mount *source_mnt, 2300 struct mount *top_mnt, 2301 struct mountpoint *dest_mp, 2302 enum mnt_tree_flags_t flags) 2303 { 2304 struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns; 2305 HLIST_HEAD(tree_list); 2306 struct mnt_namespace *ns = top_mnt->mnt_ns; 2307 struct mountpoint *smp; 2308 struct mount *child, *dest_mnt, *p; 2309 struct hlist_node *n; 2310 int err = 0; 2311 bool moving = flags & MNT_TREE_MOVE, beneath = flags & MNT_TREE_BENEATH; 2312 2313 /* 2314 * Preallocate a mountpoint in case the new mounts need to be 2315 * mounted beneath mounts on the same mountpoint. 2316 */ 2317 smp = get_mountpoint(source_mnt->mnt.mnt_root); 2318 if (IS_ERR(smp)) 2319 return PTR_ERR(smp); 2320 2321 /* Is there space to add these mounts to the mount namespace? */ 2322 if (!moving) { 2323 err = count_mounts(ns, source_mnt); 2324 if (err) 2325 goto out; 2326 } 2327 2328 if (beneath) 2329 dest_mnt = top_mnt->mnt_parent; 2330 else 2331 dest_mnt = top_mnt; 2332 2333 if (IS_MNT_SHARED(dest_mnt)) { 2334 err = invent_group_ids(source_mnt, true); 2335 if (err) 2336 goto out; 2337 err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list); 2338 } 2339 lock_mount_hash(); 2340 if (err) 2341 goto out_cleanup_ids; 2342 2343 if (IS_MNT_SHARED(dest_mnt)) { 2344 for (p = source_mnt; p; p = next_mnt(p, source_mnt)) 2345 set_mnt_shared(p); 2346 } 2347 2348 if (moving) { 2349 if (beneath) 2350 dest_mp = smp; 2351 unhash_mnt(source_mnt); 2352 attach_mnt(source_mnt, top_mnt, dest_mp, beneath); 2353 touch_mnt_namespace(source_mnt->mnt_ns); 2354 } else { 2355 if (source_mnt->mnt_ns) { 2356 /* move from anon - the caller will destroy */ 2357 list_del_init(&source_mnt->mnt_ns->list); 2358 } 2359 if (beneath) 2360 mnt_set_mountpoint_beneath(source_mnt, top_mnt, smp); 2361 else 2362 mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt); 2363 commit_tree(source_mnt); 2364 } 2365 2366 hlist_for_each_entry_safe(child, n, &tree_list, mnt_hash) { 2367 struct mount *q; 2368 hlist_del_init(&child->mnt_hash); 2369 q = __lookup_mnt(&child->mnt_parent->mnt, 2370 child->mnt_mountpoint); 2371 if (q) 2372 mnt_change_mountpoint(child, smp, q); 2373 /* Notice when we are propagating across user namespaces */ 2374 if (child->mnt_parent->mnt_ns->user_ns != user_ns) 2375 lock_mnt_tree(child); 2376 child->mnt.mnt_flags &= ~MNT_LOCKED; 2377 commit_tree(child); 2378 } 2379 put_mountpoint(smp); 2380 unlock_mount_hash(); 2381 2382 return 0; 2383 2384 out_cleanup_ids: 2385 while (!hlist_empty(&tree_list)) { 2386 child = hlist_entry(tree_list.first, struct mount, mnt_hash); 2387 child->mnt_parent->mnt_ns->pending_mounts = 0; 2388 umount_tree(child, UMOUNT_SYNC); 2389 } 2390 unlock_mount_hash(); 2391 cleanup_group_ids(source_mnt, NULL); 2392 out: 2393 ns->pending_mounts = 0; 2394 2395 read_seqlock_excl(&mount_lock); 2396 put_mountpoint(smp); 2397 read_sequnlock_excl(&mount_lock); 2398 2399 return err; 2400 } 2401 2402 /** 2403 * do_lock_mount - lock mount and mountpoint 2404 * @path: target path 2405 * @beneath: whether the intention is to mount beneath @path 2406 * 2407 * Follow the mount stack on @path until the top mount @mnt is found. If 2408 * the initial @path->{mnt,dentry} is a mountpoint lookup the first 2409 * mount stacked on top of it. Then simply follow @{mnt,mnt->mnt_root} 2410 * until nothing is stacked on top of it anymore. 2411 * 2412 * Acquire the inode_lock() on the top mount's ->mnt_root to protect 2413 * against concurrent removal of the new mountpoint from another mount 2414 * namespace. 2415 * 2416 * If @beneath is requested, acquire inode_lock() on @mnt's mountpoint 2417 * @mp on @mnt->mnt_parent must be acquired. This protects against a 2418 * concurrent unlink of @mp->mnt_dentry from another mount namespace 2419 * where @mnt doesn't have a child mount mounted @mp. A concurrent 2420 * removal of @mnt->mnt_root doesn't matter as nothing will be mounted 2421 * on top of it for @beneath. 2422 * 2423 * In addition, @beneath needs to make sure that @mnt hasn't been 2424 * unmounted or moved from its current mountpoint in between dropping 2425 * @mount_lock and acquiring @namespace_sem. For the !@beneath case @mnt 2426 * being unmounted would be detected later by e.g., calling 2427 * check_mnt(mnt) in the function it's called from. For the @beneath 2428 * case however, it's useful to detect it directly in do_lock_mount(). 2429 * If @mnt hasn't been unmounted then @mnt->mnt_mountpoint still points 2430 * to @mnt->mnt_mp->m_dentry. But if @mnt has been unmounted it will 2431 * point to @mnt->mnt_root and @mnt->mnt_mp will be NULL. 2432 * 2433 * Return: Either the target mountpoint on the top mount or the top 2434 * mount's mountpoint. 2435 */ 2436 static struct mountpoint *do_lock_mount(struct path *path, bool beneath) 2437 { 2438 struct vfsmount *mnt = path->mnt; 2439 struct dentry *dentry; 2440 struct mountpoint *mp = ERR_PTR(-ENOENT); 2441 2442 for (;;) { 2443 struct mount *m; 2444 2445 if (beneath) { 2446 m = real_mount(mnt); 2447 read_seqlock_excl(&mount_lock); 2448 dentry = dget(m->mnt_mountpoint); 2449 read_sequnlock_excl(&mount_lock); 2450 } else { 2451 dentry = path->dentry; 2452 } 2453 2454 inode_lock(dentry->d_inode); 2455 if (unlikely(cant_mount(dentry))) { 2456 inode_unlock(dentry->d_inode); 2457 goto out; 2458 } 2459 2460 namespace_lock(); 2461 2462 if (beneath && (!is_mounted(mnt) || m->mnt_mountpoint != dentry)) { 2463 namespace_unlock(); 2464 inode_unlock(dentry->d_inode); 2465 goto out; 2466 } 2467 2468 mnt = lookup_mnt(path); 2469 if (likely(!mnt)) 2470 break; 2471 2472 namespace_unlock(); 2473 inode_unlock(dentry->d_inode); 2474 if (beneath) 2475 dput(dentry); 2476 path_put(path); 2477 path->mnt = mnt; 2478 path->dentry = dget(mnt->mnt_root); 2479 } 2480 2481 mp = get_mountpoint(dentry); 2482 if (IS_ERR(mp)) { 2483 namespace_unlock(); 2484 inode_unlock(dentry->d_inode); 2485 } 2486 2487 out: 2488 if (beneath) 2489 dput(dentry); 2490 2491 return mp; 2492 } 2493 2494 static inline struct mountpoint *lock_mount(struct path *path) 2495 { 2496 return do_lock_mount(path, false); 2497 } 2498 2499 static void unlock_mount(struct mountpoint *where) 2500 { 2501 struct dentry *dentry = where->m_dentry; 2502 2503 read_seqlock_excl(&mount_lock); 2504 put_mountpoint(where); 2505 read_sequnlock_excl(&mount_lock); 2506 2507 namespace_unlock(); 2508 inode_unlock(dentry->d_inode); 2509 } 2510 2511 static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp) 2512 { 2513 if (mnt->mnt.mnt_sb->s_flags & SB_NOUSER) 2514 return -EINVAL; 2515 2516 if (d_is_dir(mp->m_dentry) != 2517 d_is_dir(mnt->mnt.mnt_root)) 2518 return -ENOTDIR; 2519 2520 return attach_recursive_mnt(mnt, p, mp, 0); 2521 } 2522 2523 /* 2524 * Sanity check the flags to change_mnt_propagation. 2525 */ 2526 2527 static int flags_to_propagation_type(int ms_flags) 2528 { 2529 int type = ms_flags & ~(MS_REC | MS_SILENT); 2530 2531 /* Fail if any non-propagation flags are set */ 2532 if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE)) 2533 return 0; 2534 /* Only one propagation flag should be set */ 2535 if (!is_power_of_2(type)) 2536 return 0; 2537 return type; 2538 } 2539 2540 /* 2541 * recursively change the type of the mountpoint. 2542 */ 2543 static int do_change_type(struct path *path, int ms_flags) 2544 { 2545 struct mount *m; 2546 struct mount *mnt = real_mount(path->mnt); 2547 int recurse = ms_flags & MS_REC; 2548 int type; 2549 int err = 0; 2550 2551 if (!path_mounted(path)) 2552 return -EINVAL; 2553 2554 type = flags_to_propagation_type(ms_flags); 2555 if (!type) 2556 return -EINVAL; 2557 2558 namespace_lock(); 2559 if (type == MS_SHARED) { 2560 err = invent_group_ids(mnt, recurse); 2561 if (err) 2562 goto out_unlock; 2563 } 2564 2565 lock_mount_hash(); 2566 for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL)) 2567 change_mnt_propagation(m, type); 2568 unlock_mount_hash(); 2569 2570 out_unlock: 2571 namespace_unlock(); 2572 return err; 2573 } 2574 2575 static struct mount *__do_loopback(struct path *old_path, int recurse) 2576 { 2577 struct mount *mnt = ERR_PTR(-EINVAL), *old = real_mount(old_path->mnt); 2578 2579 if (IS_MNT_UNBINDABLE(old)) 2580 return mnt; 2581 2582 if (!check_mnt(old) && old_path->dentry->d_op != &ns_dentry_operations) 2583 return mnt; 2584 2585 if (!recurse && has_locked_children(old, old_path->dentry)) 2586 return mnt; 2587 2588 if (recurse) 2589 mnt = copy_tree(old, old_path->dentry, CL_COPY_MNT_NS_FILE); 2590 else 2591 mnt = clone_mnt(old, old_path->dentry, 0); 2592 2593 if (!IS_ERR(mnt)) 2594 mnt->mnt.mnt_flags &= ~MNT_LOCKED; 2595 2596 return mnt; 2597 } 2598 2599 /* 2600 * do loopback mount. 2601 */ 2602 static int do_loopback(struct path *path, const char *old_name, 2603 int recurse) 2604 { 2605 struct path old_path; 2606 struct mount *mnt = NULL, *parent; 2607 struct mountpoint *mp; 2608 int err; 2609 if (!old_name || !*old_name) 2610 return -EINVAL; 2611 err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path); 2612 if (err) 2613 return err; 2614 2615 err = -EINVAL; 2616 if (mnt_ns_loop(old_path.dentry)) 2617 goto out; 2618 2619 mp = lock_mount(path); 2620 if (IS_ERR(mp)) { 2621 err = PTR_ERR(mp); 2622 goto out; 2623 } 2624 2625 parent = real_mount(path->mnt); 2626 if (!check_mnt(parent)) 2627 goto out2; 2628 2629 mnt = __do_loopback(&old_path, recurse); 2630 if (IS_ERR(mnt)) { 2631 err = PTR_ERR(mnt); 2632 goto out2; 2633 } 2634 2635 err = graft_tree(mnt, parent, mp); 2636 if (err) { 2637 lock_mount_hash(); 2638 umount_tree(mnt, UMOUNT_SYNC); 2639 unlock_mount_hash(); 2640 } 2641 out2: 2642 unlock_mount(mp); 2643 out: 2644 path_put(&old_path); 2645 return err; 2646 } 2647 2648 static struct file *open_detached_copy(struct path *path, bool recursive) 2649 { 2650 struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns; 2651 struct mnt_namespace *ns = alloc_mnt_ns(user_ns, true); 2652 struct mount *mnt, *p; 2653 struct file *file; 2654 2655 if (IS_ERR(ns)) 2656 return ERR_CAST(ns); 2657 2658 namespace_lock(); 2659 mnt = __do_loopback(path, recursive); 2660 if (IS_ERR(mnt)) { 2661 namespace_unlock(); 2662 free_mnt_ns(ns); 2663 return ERR_CAST(mnt); 2664 } 2665 2666 lock_mount_hash(); 2667 for (p = mnt; p; p = next_mnt(p, mnt)) { 2668 p->mnt_ns = ns; 2669 ns->mounts++; 2670 } 2671 ns->root = mnt; 2672 list_add_tail(&ns->list, &mnt->mnt_list); 2673 mntget(&mnt->mnt); 2674 unlock_mount_hash(); 2675 namespace_unlock(); 2676 2677 mntput(path->mnt); 2678 path->mnt = &mnt->mnt; 2679 file = dentry_open(path, O_PATH, current_cred()); 2680 if (IS_ERR(file)) 2681 dissolve_on_fput(path->mnt); 2682 else 2683 file->f_mode |= FMODE_NEED_UNMOUNT; 2684 return file; 2685 } 2686 2687 SYSCALL_DEFINE3(open_tree, int, dfd, const char __user *, filename, unsigned, flags) 2688 { 2689 struct file *file; 2690 struct path path; 2691 int lookup_flags = LOOKUP_AUTOMOUNT | LOOKUP_FOLLOW; 2692 bool detached = flags & OPEN_TREE_CLONE; 2693 int error; 2694 int fd; 2695 2696 BUILD_BUG_ON(OPEN_TREE_CLOEXEC != O_CLOEXEC); 2697 2698 if (flags & ~(AT_EMPTY_PATH | AT_NO_AUTOMOUNT | AT_RECURSIVE | 2699 AT_SYMLINK_NOFOLLOW | OPEN_TREE_CLONE | 2700 OPEN_TREE_CLOEXEC)) 2701 return -EINVAL; 2702 2703 if ((flags & (AT_RECURSIVE | OPEN_TREE_CLONE)) == AT_RECURSIVE) 2704 return -EINVAL; 2705 2706 if (flags & AT_NO_AUTOMOUNT) 2707 lookup_flags &= ~LOOKUP_AUTOMOUNT; 2708 if (flags & AT_SYMLINK_NOFOLLOW) 2709 lookup_flags &= ~LOOKUP_FOLLOW; 2710 if (flags & AT_EMPTY_PATH) 2711 lookup_flags |= LOOKUP_EMPTY; 2712 2713 if (detached && !may_mount()) 2714 return -EPERM; 2715 2716 fd = get_unused_fd_flags(flags & O_CLOEXEC); 2717 if (fd < 0) 2718 return fd; 2719 2720 error = user_path_at(dfd, filename, lookup_flags, &path); 2721 if (unlikely(error)) { 2722 file = ERR_PTR(error); 2723 } else { 2724 if (detached) 2725 file = open_detached_copy(&path, flags & AT_RECURSIVE); 2726 else 2727 file = dentry_open(&path, O_PATH, current_cred()); 2728 path_put(&path); 2729 } 2730 if (IS_ERR(file)) { 2731 put_unused_fd(fd); 2732 return PTR_ERR(file); 2733 } 2734 fd_install(fd, file); 2735 return fd; 2736 } 2737 2738 /* 2739 * Don't allow locked mount flags to be cleared. 2740 * 2741 * No locks need to be held here while testing the various MNT_LOCK 2742 * flags because those flags can never be cleared once they are set. 2743 */ 2744 static bool can_change_locked_flags(struct mount *mnt, unsigned int mnt_flags) 2745 { 2746 unsigned int fl = mnt->mnt.mnt_flags; 2747 2748 if ((fl & MNT_LOCK_READONLY) && 2749 !(mnt_flags & MNT_READONLY)) 2750 return false; 2751 2752 if ((fl & MNT_LOCK_NODEV) && 2753 !(mnt_flags & MNT_NODEV)) 2754 return false; 2755 2756 if ((fl & MNT_LOCK_NOSUID) && 2757 !(mnt_flags & MNT_NOSUID)) 2758 return false; 2759 2760 if ((fl & MNT_LOCK_NOEXEC) && 2761 !(mnt_flags & MNT_NOEXEC)) 2762 return false; 2763 2764 if ((fl & MNT_LOCK_ATIME) && 2765 ((fl & MNT_ATIME_MASK) != (mnt_flags & MNT_ATIME_MASK))) 2766 return false; 2767 2768 return true; 2769 } 2770 2771 static int change_mount_ro_state(struct mount *mnt, unsigned int mnt_flags) 2772 { 2773 bool readonly_request = (mnt_flags & MNT_READONLY); 2774 2775 if (readonly_request == __mnt_is_readonly(&mnt->mnt)) 2776 return 0; 2777 2778 if (readonly_request) 2779 return mnt_make_readonly(mnt); 2780 2781 mnt->mnt.mnt_flags &= ~MNT_READONLY; 2782 return 0; 2783 } 2784 2785 static void set_mount_attributes(struct mount *mnt, unsigned int mnt_flags) 2786 { 2787 mnt_flags |= mnt->mnt.mnt_flags & ~MNT_USER_SETTABLE_MASK; 2788 mnt->mnt.mnt_flags = mnt_flags; 2789 touch_mnt_namespace(mnt->mnt_ns); 2790 } 2791 2792 static void mnt_warn_timestamp_expiry(struct path *mountpoint, struct vfsmount *mnt) 2793 { 2794 struct super_block *sb = mnt->mnt_sb; 2795 2796 if (!__mnt_is_readonly(mnt) && 2797 (!(sb->s_iflags & SB_I_TS_EXPIRY_WARNED)) && 2798 (ktime_get_real_seconds() + TIME_UPTIME_SEC_MAX > sb->s_time_max)) { 2799 char *buf = (char *)__get_free_page(GFP_KERNEL); 2800 char *mntpath = buf ? d_path(mountpoint, buf, PAGE_SIZE) : ERR_PTR(-ENOMEM); 2801 2802 pr_warn("%s filesystem being %s at %s supports timestamps until %ptTd (0x%llx)\n", 2803 sb->s_type->name, 2804 is_mounted(mnt) ? "remounted" : "mounted", 2805 mntpath, &sb->s_time_max, 2806 (unsigned long long)sb->s_time_max); 2807 2808 free_page((unsigned long)buf); 2809 sb->s_iflags |= SB_I_TS_EXPIRY_WARNED; 2810 } 2811 } 2812 2813 /* 2814 * Handle reconfiguration of the mountpoint only without alteration of the 2815 * superblock it refers to. This is triggered by specifying MS_REMOUNT|MS_BIND 2816 * to mount(2). 2817 */ 2818 static int do_reconfigure_mnt(struct path *path, unsigned int mnt_flags) 2819 { 2820 struct super_block *sb = path->mnt->mnt_sb; 2821 struct mount *mnt = real_mount(path->mnt); 2822 int ret; 2823 2824 if (!check_mnt(mnt)) 2825 return -EINVAL; 2826 2827 if (!path_mounted(path)) 2828 return -EINVAL; 2829 2830 if (!can_change_locked_flags(mnt, mnt_flags)) 2831 return -EPERM; 2832 2833 /* 2834 * We're only checking whether the superblock is read-only not 2835 * changing it, so only take down_read(&sb->s_umount). 2836 */ 2837 down_read(&sb->s_umount); 2838 lock_mount_hash(); 2839 ret = change_mount_ro_state(mnt, mnt_flags); 2840 if (ret == 0) 2841 set_mount_attributes(mnt, mnt_flags); 2842 unlock_mount_hash(); 2843 up_read(&sb->s_umount); 2844 2845 mnt_warn_timestamp_expiry(path, &mnt->mnt); 2846 2847 return ret; 2848 } 2849 2850 /* 2851 * change filesystem flags. dir should be a physical root of filesystem. 2852 * If you've mounted a non-root directory somewhere and want to do remount 2853 * on it - tough luck. 2854 */ 2855 static int do_remount(struct path *path, int ms_flags, int sb_flags, 2856 int mnt_flags, void *data) 2857 { 2858 int err; 2859 struct super_block *sb = path->mnt->mnt_sb; 2860 struct mount *mnt = real_mount(path->mnt); 2861 struct fs_context *fc; 2862 2863 if (!check_mnt(mnt)) 2864 return -EINVAL; 2865 2866 if (!path_mounted(path)) 2867 return -EINVAL; 2868 2869 if (!can_change_locked_flags(mnt, mnt_flags)) 2870 return -EPERM; 2871 2872 fc = fs_context_for_reconfigure(path->dentry, sb_flags, MS_RMT_MASK); 2873 if (IS_ERR(fc)) 2874 return PTR_ERR(fc); 2875 2876 /* 2877 * Indicate to the filesystem that the remount request is coming 2878 * from the legacy mount system call. 2879 */ 2880 fc->oldapi = true; 2881 2882 err = parse_monolithic_mount_data(fc, data); 2883 if (!err) { 2884 down_write(&sb->s_umount); 2885 err = -EPERM; 2886 if (ns_capable(sb->s_user_ns, CAP_SYS_ADMIN)) { 2887 err = reconfigure_super(fc); 2888 if (!err) { 2889 lock_mount_hash(); 2890 set_mount_attributes(mnt, mnt_flags); 2891 unlock_mount_hash(); 2892 } 2893 } 2894 up_write(&sb->s_umount); 2895 } 2896 2897 mnt_warn_timestamp_expiry(path, &mnt->mnt); 2898 2899 put_fs_context(fc); 2900 return err; 2901 } 2902 2903 static inline int tree_contains_unbindable(struct mount *mnt) 2904 { 2905 struct mount *p; 2906 for (p = mnt; p; p = next_mnt(p, mnt)) { 2907 if (IS_MNT_UNBINDABLE(p)) 2908 return 1; 2909 } 2910 return 0; 2911 } 2912 2913 /* 2914 * Check that there aren't references to earlier/same mount namespaces in the 2915 * specified subtree. Such references can act as pins for mount namespaces 2916 * that aren't checked by the mount-cycle checking code, thereby allowing 2917 * cycles to be made. 2918 */ 2919 static bool check_for_nsfs_mounts(struct mount *subtree) 2920 { 2921 struct mount *p; 2922 bool ret = false; 2923 2924 lock_mount_hash(); 2925 for (p = subtree; p; p = next_mnt(p, subtree)) 2926 if (mnt_ns_loop(p->mnt.mnt_root)) 2927 goto out; 2928 2929 ret = true; 2930 out: 2931 unlock_mount_hash(); 2932 return ret; 2933 } 2934 2935 static int do_set_group(struct path *from_path, struct path *to_path) 2936 { 2937 struct mount *from, *to; 2938 int err; 2939 2940 from = real_mount(from_path->mnt); 2941 to = real_mount(to_path->mnt); 2942 2943 namespace_lock(); 2944 2945 err = -EINVAL; 2946 /* To and From must be mounted */ 2947 if (!is_mounted(&from->mnt)) 2948 goto out; 2949 if (!is_mounted(&to->mnt)) 2950 goto out; 2951 2952 err = -EPERM; 2953 /* We should be allowed to modify mount namespaces of both mounts */ 2954 if (!ns_capable(from->mnt_ns->user_ns, CAP_SYS_ADMIN)) 2955 goto out; 2956 if (!ns_capable(to->mnt_ns->user_ns, CAP_SYS_ADMIN)) 2957 goto out; 2958 2959 err = -EINVAL; 2960 /* To and From paths should be mount roots */ 2961 if (!path_mounted(from_path)) 2962 goto out; 2963 if (!path_mounted(to_path)) 2964 goto out; 2965 2966 /* Setting sharing groups is only allowed across same superblock */ 2967 if (from->mnt.mnt_sb != to->mnt.mnt_sb) 2968 goto out; 2969 2970 /* From mount root should be wider than To mount root */ 2971 if (!is_subdir(to->mnt.mnt_root, from->mnt.mnt_root)) 2972 goto out; 2973 2974 /* From mount should not have locked children in place of To's root */ 2975 if (has_locked_children(from, to->mnt.mnt_root)) 2976 goto out; 2977 2978 /* Setting sharing groups is only allowed on private mounts */ 2979 if (IS_MNT_SHARED(to) || IS_MNT_SLAVE(to)) 2980 goto out; 2981 2982 /* From should not be private */ 2983 if (!IS_MNT_SHARED(from) && !IS_MNT_SLAVE(from)) 2984 goto out; 2985 2986 if (IS_MNT_SLAVE(from)) { 2987 struct mount *m = from->mnt_master; 2988 2989 list_add(&to->mnt_slave, &m->mnt_slave_list); 2990 to->mnt_master = m; 2991 } 2992 2993 if (IS_MNT_SHARED(from)) { 2994 to->mnt_group_id = from->mnt_group_id; 2995 list_add(&to->mnt_share, &from->mnt_share); 2996 lock_mount_hash(); 2997 set_mnt_shared(to); 2998 unlock_mount_hash(); 2999 } 3000 3001 err = 0; 3002 out: 3003 namespace_unlock(); 3004 return err; 3005 } 3006 3007 /** 3008 * path_overmounted - check if path is overmounted 3009 * @path: path to check 3010 * 3011 * Check if path is overmounted, i.e., if there's a mount on top of 3012 * @path->mnt with @path->dentry as mountpoint. 3013 * 3014 * Context: This function expects namespace_lock() to be held. 3015 * Return: If path is overmounted true is returned, false if not. 3016 */ 3017 static inline bool path_overmounted(const struct path *path) 3018 { 3019 rcu_read_lock(); 3020 if (unlikely(__lookup_mnt(path->mnt, path->dentry))) { 3021 rcu_read_unlock(); 3022 return true; 3023 } 3024 rcu_read_unlock(); 3025 return false; 3026 } 3027 3028 /** 3029 * can_move_mount_beneath - check that we can mount beneath the top mount 3030 * @from: mount to mount beneath 3031 * @to: mount under which to mount 3032 * 3033 * - Make sure that @to->dentry is actually the root of a mount under 3034 * which we can mount another mount. 3035 * - Make sure that nothing can be mounted beneath the caller's current 3036 * root or the rootfs of the namespace. 3037 * - Make sure that the caller can unmount the topmost mount ensuring 3038 * that the caller could reveal the underlying mountpoint. 3039 * - Ensure that nothing has been mounted on top of @from before we 3040 * grabbed @namespace_sem to avoid creating pointless shadow mounts. 3041 * - Prevent mounting beneath a mount if the propagation relationship 3042 * between the source mount, parent mount, and top mount would lead to 3043 * nonsensical mount trees. 3044 * 3045 * Context: This function expects namespace_lock() to be held. 3046 * Return: On success 0, and on error a negative error code is returned. 3047 */ 3048 static int can_move_mount_beneath(const struct path *from, 3049 const struct path *to, 3050 const struct mountpoint *mp) 3051 { 3052 struct mount *mnt_from = real_mount(from->mnt), 3053 *mnt_to = real_mount(to->mnt), 3054 *parent_mnt_to = mnt_to->mnt_parent; 3055 3056 if (!mnt_has_parent(mnt_to)) 3057 return -EINVAL; 3058 3059 if (!path_mounted(to)) 3060 return -EINVAL; 3061 3062 if (IS_MNT_LOCKED(mnt_to)) 3063 return -EINVAL; 3064 3065 /* Avoid creating shadow mounts during mount propagation. */ 3066 if (path_overmounted(from)) 3067 return -EINVAL; 3068 3069 /* 3070 * Mounting beneath the rootfs only makes sense when the 3071 * semantics of pivot_root(".", ".") are used. 3072 */ 3073 if (&mnt_to->mnt == current->fs->root.mnt) 3074 return -EINVAL; 3075 if (parent_mnt_to == current->nsproxy->mnt_ns->root) 3076 return -EINVAL; 3077 3078 for (struct mount *p = mnt_from; mnt_has_parent(p); p = p->mnt_parent) 3079 if (p == mnt_to) 3080 return -EINVAL; 3081 3082 /* 3083 * If the parent mount propagates to the child mount this would 3084 * mean mounting @mnt_from on @mnt_to->mnt_parent and then 3085 * propagating a copy @c of @mnt_from on top of @mnt_to. This 3086 * defeats the whole purpose of mounting beneath another mount. 3087 */ 3088 if (propagation_would_overmount(parent_mnt_to, mnt_to, mp)) 3089 return -EINVAL; 3090 3091 /* 3092 * If @mnt_to->mnt_parent propagates to @mnt_from this would 3093 * mean propagating a copy @c of @mnt_from on top of @mnt_from. 3094 * Afterwards @mnt_from would be mounted on top of 3095 * @mnt_to->mnt_parent and @mnt_to would be unmounted from 3096 * @mnt->mnt_parent and remounted on @mnt_from. But since @c is 3097 * already mounted on @mnt_from, @mnt_to would ultimately be 3098 * remounted on top of @c. Afterwards, @mnt_from would be 3099 * covered by a copy @c of @mnt_from and @c would be covered by 3100 * @mnt_from itself. This defeats the whole purpose of mounting 3101 * @mnt_from beneath @mnt_to. 3102 */ 3103 if (propagation_would_overmount(parent_mnt_to, mnt_from, mp)) 3104 return -EINVAL; 3105 3106 return 0; 3107 } 3108 3109 static int do_move_mount(struct path *old_path, struct path *new_path, 3110 bool beneath) 3111 { 3112 struct mnt_namespace *ns; 3113 struct mount *p; 3114 struct mount *old; 3115 struct mount *parent; 3116 struct mountpoint *mp, *old_mp; 3117 int err; 3118 bool attached; 3119 enum mnt_tree_flags_t flags = 0; 3120 3121 mp = do_lock_mount(new_path, beneath); 3122 if (IS_ERR(mp)) 3123 return PTR_ERR(mp); 3124 3125 old = real_mount(old_path->mnt); 3126 p = real_mount(new_path->mnt); 3127 parent = old->mnt_parent; 3128 attached = mnt_has_parent(old); 3129 if (attached) 3130 flags |= MNT_TREE_MOVE; 3131 old_mp = old->mnt_mp; 3132 ns = old->mnt_ns; 3133 3134 err = -EINVAL; 3135 /* The mountpoint must be in our namespace. */ 3136 if (!check_mnt(p)) 3137 goto out; 3138 3139 /* The thing moved must be mounted... */ 3140 if (!is_mounted(&old->mnt)) 3141 goto out; 3142 3143 /* ... and either ours or the root of anon namespace */ 3144 if (!(attached ? check_mnt(old) : is_anon_ns(ns))) 3145 goto out; 3146 3147 if (old->mnt.mnt_flags & MNT_LOCKED) 3148 goto out; 3149 3150 if (!path_mounted(old_path)) 3151 goto out; 3152 3153 if (d_is_dir(new_path->dentry) != 3154 d_is_dir(old_path->dentry)) 3155 goto out; 3156 /* 3157 * Don't move a mount residing in a shared parent. 3158 */ 3159 if (attached && IS_MNT_SHARED(parent)) 3160 goto out; 3161 3162 if (beneath) { 3163 err = can_move_mount_beneath(old_path, new_path, mp); 3164 if (err) 3165 goto out; 3166 3167 err = -EINVAL; 3168 p = p->mnt_parent; 3169 flags |= MNT_TREE_BENEATH; 3170 } 3171 3172 /* 3173 * Don't move a mount tree containing unbindable mounts to a destination 3174 * mount which is shared. 3175 */ 3176 if (IS_MNT_SHARED(p) && tree_contains_unbindable(old)) 3177 goto out; 3178 err = -ELOOP; 3179 if (!check_for_nsfs_mounts(old)) 3180 goto out; 3181 for (; mnt_has_parent(p); p = p->mnt_parent) 3182 if (p == old) 3183 goto out; 3184 3185 err = attach_recursive_mnt(old, real_mount(new_path->mnt), mp, flags); 3186 if (err) 3187 goto out; 3188 3189 /* if the mount is moved, it should no longer be expire 3190 * automatically */ 3191 list_del_init(&old->mnt_expire); 3192 if (attached) 3193 put_mountpoint(old_mp); 3194 out: 3195 unlock_mount(mp); 3196 if (!err) { 3197 if (attached) 3198 mntput_no_expire(parent); 3199 else 3200 free_mnt_ns(ns); 3201 } 3202 return err; 3203 } 3204 3205 static int do_move_mount_old(struct path *path, const char *old_name) 3206 { 3207 struct path old_path; 3208 int err; 3209 3210 if (!old_name || !*old_name) 3211 return -EINVAL; 3212 3213 err = kern_path(old_name, LOOKUP_FOLLOW, &old_path); 3214 if (err) 3215 return err; 3216 3217 err = do_move_mount(&old_path, path, false); 3218 path_put(&old_path); 3219 return err; 3220 } 3221 3222 /* 3223 * add a mount into a namespace's mount tree 3224 */ 3225 static int do_add_mount(struct mount *newmnt, struct mountpoint *mp, 3226 const struct path *path, int mnt_flags) 3227 { 3228 struct mount *parent = real_mount(path->mnt); 3229 3230 mnt_flags &= ~MNT_INTERNAL_FLAGS; 3231 3232 if (unlikely(!check_mnt(parent))) { 3233 /* that's acceptable only for automounts done in private ns */ 3234 if (!(mnt_flags & MNT_SHRINKABLE)) 3235 return -EINVAL; 3236 /* ... and for those we'd better have mountpoint still alive */ 3237 if (!parent->mnt_ns) 3238 return -EINVAL; 3239 } 3240 3241 /* Refuse the same filesystem on the same mount point */ 3242 if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb && path_mounted(path)) 3243 return -EBUSY; 3244 3245 if (d_is_symlink(newmnt->mnt.mnt_root)) 3246 return -EINVAL; 3247 3248 newmnt->mnt.mnt_flags = mnt_flags; 3249 return graft_tree(newmnt, parent, mp); 3250 } 3251 3252 static bool mount_too_revealing(const struct super_block *sb, int *new_mnt_flags); 3253 3254 /* 3255 * Create a new mount using a superblock configuration and request it 3256 * be added to the namespace tree. 3257 */ 3258 static int do_new_mount_fc(struct fs_context *fc, struct path *mountpoint, 3259 unsigned int mnt_flags) 3260 { 3261 struct vfsmount *mnt; 3262 struct mountpoint *mp; 3263 struct super_block *sb = fc->root->d_sb; 3264 int error; 3265 3266 error = security_sb_kern_mount(sb); 3267 if (!error && mount_too_revealing(sb, &mnt_flags)) 3268 error = -EPERM; 3269 3270 if (unlikely(error)) { 3271 fc_drop_locked(fc); 3272 return error; 3273 } 3274 3275 up_write(&sb->s_umount); 3276 3277 mnt = vfs_create_mount(fc); 3278 if (IS_ERR(mnt)) 3279 return PTR_ERR(mnt); 3280 3281 mnt_warn_timestamp_expiry(mountpoint, mnt); 3282 3283 mp = lock_mount(mountpoint); 3284 if (IS_ERR(mp)) { 3285 mntput(mnt); 3286 return PTR_ERR(mp); 3287 } 3288 error = do_add_mount(real_mount(mnt), mp, mountpoint, mnt_flags); 3289 unlock_mount(mp); 3290 if (error < 0) 3291 mntput(mnt); 3292 return error; 3293 } 3294 3295 /* 3296 * create a new mount for userspace and request it to be added into the 3297 * namespace's tree 3298 */ 3299 static int do_new_mount(struct path *path, const char *fstype, int sb_flags, 3300 int mnt_flags, const char *name, void *data) 3301 { 3302 struct file_system_type *type; 3303 struct fs_context *fc; 3304 const char *subtype = NULL; 3305 int err = 0; 3306 3307 if (!fstype) 3308 return -EINVAL; 3309 3310 type = get_fs_type(fstype); 3311 if (!type) 3312 return -ENODEV; 3313 3314 if (type->fs_flags & FS_HAS_SUBTYPE) { 3315 subtype = strchr(fstype, '.'); 3316 if (subtype) { 3317 subtype++; 3318 if (!*subtype) { 3319 put_filesystem(type); 3320 return -EINVAL; 3321 } 3322 } 3323 } 3324 3325 fc = fs_context_for_mount(type, sb_flags); 3326 put_filesystem(type); 3327 if (IS_ERR(fc)) 3328 return PTR_ERR(fc); 3329 3330 /* 3331 * Indicate to the filesystem that the mount request is coming 3332 * from the legacy mount system call. 3333 */ 3334 fc->oldapi = true; 3335 3336 if (subtype) 3337 err = vfs_parse_fs_string(fc, "subtype", 3338 subtype, strlen(subtype)); 3339 if (!err && name) 3340 err = vfs_parse_fs_string(fc, "source", name, strlen(name)); 3341 if (!err) 3342 err = parse_monolithic_mount_data(fc, data); 3343 if (!err && !mount_capable(fc)) 3344 err = -EPERM; 3345 if (!err) 3346 err = vfs_get_tree(fc); 3347 if (!err) 3348 err = do_new_mount_fc(fc, path, mnt_flags); 3349 3350 put_fs_context(fc); 3351 return err; 3352 } 3353 3354 int finish_automount(struct vfsmount *m, const struct path *path) 3355 { 3356 struct dentry *dentry = path->dentry; 3357 struct mountpoint *mp; 3358 struct mount *mnt; 3359 int err; 3360 3361 if (!m) 3362 return 0; 3363 if (IS_ERR(m)) 3364 return PTR_ERR(m); 3365 3366 mnt = real_mount(m); 3367 /* The new mount record should have at least 2 refs to prevent it being 3368 * expired before we get a chance to add it 3369 */ 3370 BUG_ON(mnt_get_count(mnt) < 2); 3371 3372 if (m->mnt_sb == path->mnt->mnt_sb && 3373 m->mnt_root == dentry) { 3374 err = -ELOOP; 3375 goto discard; 3376 } 3377 3378 /* 3379 * we don't want to use lock_mount() - in this case finding something 3380 * that overmounts our mountpoint to be means "quitely drop what we've 3381 * got", not "try to mount it on top". 3382 */ 3383 inode_lock(dentry->d_inode); 3384 namespace_lock(); 3385 if (unlikely(cant_mount(dentry))) { 3386 err = -ENOENT; 3387 goto discard_locked; 3388 } 3389 if (path_overmounted(path)) { 3390 err = 0; 3391 goto discard_locked; 3392 } 3393 mp = get_mountpoint(dentry); 3394 if (IS_ERR(mp)) { 3395 err = PTR_ERR(mp); 3396 goto discard_locked; 3397 } 3398 3399 err = do_add_mount(mnt, mp, path, path->mnt->mnt_flags | MNT_SHRINKABLE); 3400 unlock_mount(mp); 3401 if (unlikely(err)) 3402 goto discard; 3403 mntput(m); 3404 return 0; 3405 3406 discard_locked: 3407 namespace_unlock(); 3408 inode_unlock(dentry->d_inode); 3409 discard: 3410 /* remove m from any expiration list it may be on */ 3411 if (!list_empty(&mnt->mnt_expire)) { 3412 namespace_lock(); 3413 list_del_init(&mnt->mnt_expire); 3414 namespace_unlock(); 3415 } 3416 mntput(m); 3417 mntput(m); 3418 return err; 3419 } 3420 3421 /** 3422 * mnt_set_expiry - Put a mount on an expiration list 3423 * @mnt: The mount to list. 3424 * @expiry_list: The list to add the mount to. 3425 */ 3426 void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list) 3427 { 3428 namespace_lock(); 3429 3430 list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list); 3431 3432 namespace_unlock(); 3433 } 3434 EXPORT_SYMBOL(mnt_set_expiry); 3435 3436 /* 3437 * process a list of expirable mountpoints with the intent of discarding any 3438 * mountpoints that aren't in use and haven't been touched since last we came 3439 * here 3440 */ 3441 void mark_mounts_for_expiry(struct list_head *mounts) 3442 { 3443 struct mount *mnt, *next; 3444 LIST_HEAD(graveyard); 3445 3446 if (list_empty(mounts)) 3447 return; 3448 3449 namespace_lock(); 3450 lock_mount_hash(); 3451 3452 /* extract from the expiration list every vfsmount that matches the 3453 * following criteria: 3454 * - only referenced by its parent vfsmount 3455 * - still marked for expiry (marked on the last call here; marks are 3456 * cleared by mntput()) 3457 */ 3458 list_for_each_entry_safe(mnt, next, mounts, mnt_expire) { 3459 if (!xchg(&mnt->mnt_expiry_mark, 1) || 3460 propagate_mount_busy(mnt, 1)) 3461 continue; 3462 list_move(&mnt->mnt_expire, &graveyard); 3463 } 3464 while (!list_empty(&graveyard)) { 3465 mnt = list_first_entry(&graveyard, struct mount, mnt_expire); 3466 touch_mnt_namespace(mnt->mnt_ns); 3467 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC); 3468 } 3469 unlock_mount_hash(); 3470 namespace_unlock(); 3471 } 3472 3473 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry); 3474 3475 /* 3476 * Ripoff of 'select_parent()' 3477 * 3478 * search the list of submounts for a given mountpoint, and move any 3479 * shrinkable submounts to the 'graveyard' list. 3480 */ 3481 static int select_submounts(struct mount *parent, struct list_head *graveyard) 3482 { 3483 struct mount *this_parent = parent; 3484 struct list_head *next; 3485 int found = 0; 3486 3487 repeat: 3488 next = this_parent->mnt_mounts.next; 3489 resume: 3490 while (next != &this_parent->mnt_mounts) { 3491 struct list_head *tmp = next; 3492 struct mount *mnt = list_entry(tmp, struct mount, mnt_child); 3493 3494 next = tmp->next; 3495 if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE)) 3496 continue; 3497 /* 3498 * Descend a level if the d_mounts list is non-empty. 3499 */ 3500 if (!list_empty(&mnt->mnt_mounts)) { 3501 this_parent = mnt; 3502 goto repeat; 3503 } 3504 3505 if (!propagate_mount_busy(mnt, 1)) { 3506 list_move_tail(&mnt->mnt_expire, graveyard); 3507 found++; 3508 } 3509 } 3510 /* 3511 * All done at this level ... ascend and resume the search 3512 */ 3513 if (this_parent != parent) { 3514 next = this_parent->mnt_child.next; 3515 this_parent = this_parent->mnt_parent; 3516 goto resume; 3517 } 3518 return found; 3519 } 3520 3521 /* 3522 * process a list of expirable mountpoints with the intent of discarding any 3523 * submounts of a specific parent mountpoint 3524 * 3525 * mount_lock must be held for write 3526 */ 3527 static void shrink_submounts(struct mount *mnt) 3528 { 3529 LIST_HEAD(graveyard); 3530 struct mount *m; 3531 3532 /* extract submounts of 'mountpoint' from the expiration list */ 3533 while (select_submounts(mnt, &graveyard)) { 3534 while (!list_empty(&graveyard)) { 3535 m = list_first_entry(&graveyard, struct mount, 3536 mnt_expire); 3537 touch_mnt_namespace(m->mnt_ns); 3538 umount_tree(m, UMOUNT_PROPAGATE|UMOUNT_SYNC); 3539 } 3540 } 3541 } 3542 3543 static void *copy_mount_options(const void __user * data) 3544 { 3545 char *copy; 3546 unsigned left, offset; 3547 3548 if (!data) 3549 return NULL; 3550 3551 copy = kmalloc(PAGE_SIZE, GFP_KERNEL); 3552 if (!copy) 3553 return ERR_PTR(-ENOMEM); 3554 3555 left = copy_from_user(copy, data, PAGE_SIZE); 3556 3557 /* 3558 * Not all architectures have an exact copy_from_user(). Resort to 3559 * byte at a time. 3560 */ 3561 offset = PAGE_SIZE - left; 3562 while (left) { 3563 char c; 3564 if (get_user(c, (const char __user *)data + offset)) 3565 break; 3566 copy[offset] = c; 3567 left--; 3568 offset++; 3569 } 3570 3571 if (left == PAGE_SIZE) { 3572 kfree(copy); 3573 return ERR_PTR(-EFAULT); 3574 } 3575 3576 return copy; 3577 } 3578 3579 static char *copy_mount_string(const void __user *data) 3580 { 3581 return data ? strndup_user(data, PATH_MAX) : NULL; 3582 } 3583 3584 /* 3585 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to 3586 * be given to the mount() call (ie: read-only, no-dev, no-suid etc). 3587 * 3588 * data is a (void *) that can point to any structure up to 3589 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent 3590 * information (or be NULL). 3591 * 3592 * Pre-0.97 versions of mount() didn't have a flags word. 3593 * When the flags word was introduced its top half was required 3594 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9. 3595 * Therefore, if this magic number is present, it carries no information 3596 * and must be discarded. 3597 */ 3598 int path_mount(const char *dev_name, struct path *path, 3599 const char *type_page, unsigned long flags, void *data_page) 3600 { 3601 unsigned int mnt_flags = 0, sb_flags; 3602 int ret; 3603 3604 /* Discard magic */ 3605 if ((flags & MS_MGC_MSK) == MS_MGC_VAL) 3606 flags &= ~MS_MGC_MSK; 3607 3608 /* Basic sanity checks */ 3609 if (data_page) 3610 ((char *)data_page)[PAGE_SIZE - 1] = 0; 3611 3612 if (flags & MS_NOUSER) 3613 return -EINVAL; 3614 3615 ret = security_sb_mount(dev_name, path, type_page, flags, data_page); 3616 if (ret) 3617 return ret; 3618 if (!may_mount()) 3619 return -EPERM; 3620 if (flags & SB_MANDLOCK) 3621 warn_mandlock(); 3622 3623 /* Default to relatime unless overriden */ 3624 if (!(flags & MS_NOATIME)) 3625 mnt_flags |= MNT_RELATIME; 3626 3627 /* Separate the per-mountpoint flags */ 3628 if (flags & MS_NOSUID) 3629 mnt_flags |= MNT_NOSUID; 3630 if (flags & MS_NODEV) 3631 mnt_flags |= MNT_NODEV; 3632 if (flags & MS_NOEXEC) 3633 mnt_flags |= MNT_NOEXEC; 3634 if (flags & MS_NOATIME) 3635 mnt_flags |= MNT_NOATIME; 3636 if (flags & MS_NODIRATIME) 3637 mnt_flags |= MNT_NODIRATIME; 3638 if (flags & MS_STRICTATIME) 3639 mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME); 3640 if (flags & MS_RDONLY) 3641 mnt_flags |= MNT_READONLY; 3642 if (flags & MS_NOSYMFOLLOW) 3643 mnt_flags |= MNT_NOSYMFOLLOW; 3644 3645 /* The default atime for remount is preservation */ 3646 if ((flags & MS_REMOUNT) && 3647 ((flags & (MS_NOATIME | MS_NODIRATIME | MS_RELATIME | 3648 MS_STRICTATIME)) == 0)) { 3649 mnt_flags &= ~MNT_ATIME_MASK; 3650 mnt_flags |= path->mnt->mnt_flags & MNT_ATIME_MASK; 3651 } 3652 3653 sb_flags = flags & (SB_RDONLY | 3654 SB_SYNCHRONOUS | 3655 SB_MANDLOCK | 3656 SB_DIRSYNC | 3657 SB_SILENT | 3658 SB_POSIXACL | 3659 SB_LAZYTIME | 3660 SB_I_VERSION); 3661 3662 if ((flags & (MS_REMOUNT | MS_BIND)) == (MS_REMOUNT | MS_BIND)) 3663 return do_reconfigure_mnt(path, mnt_flags); 3664 if (flags & MS_REMOUNT) 3665 return do_remount(path, flags, sb_flags, mnt_flags, data_page); 3666 if (flags & MS_BIND) 3667 return do_loopback(path, dev_name, flags & MS_REC); 3668 if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE)) 3669 return do_change_type(path, flags); 3670 if (flags & MS_MOVE) 3671 return do_move_mount_old(path, dev_name); 3672 3673 return do_new_mount(path, type_page, sb_flags, mnt_flags, dev_name, 3674 data_page); 3675 } 3676 3677 long do_mount(const char *dev_name, const char __user *dir_name, 3678 const char *type_page, unsigned long flags, void *data_page) 3679 { 3680 struct path path; 3681 int ret; 3682 3683 ret = user_path_at(AT_FDCWD, dir_name, LOOKUP_FOLLOW, &path); 3684 if (ret) 3685 return ret; 3686 ret = path_mount(dev_name, &path, type_page, flags, data_page); 3687 path_put(&path); 3688 return ret; 3689 } 3690 3691 static struct ucounts *inc_mnt_namespaces(struct user_namespace *ns) 3692 { 3693 return inc_ucount(ns, current_euid(), UCOUNT_MNT_NAMESPACES); 3694 } 3695 3696 static void dec_mnt_namespaces(struct ucounts *ucounts) 3697 { 3698 dec_ucount(ucounts, UCOUNT_MNT_NAMESPACES); 3699 } 3700 3701 static void free_mnt_ns(struct mnt_namespace *ns) 3702 { 3703 if (!is_anon_ns(ns)) 3704 ns_free_inum(&ns->ns); 3705 dec_mnt_namespaces(ns->ucounts); 3706 put_user_ns(ns->user_ns); 3707 kfree(ns); 3708 } 3709 3710 /* 3711 * Assign a sequence number so we can detect when we attempt to bind 3712 * mount a reference to an older mount namespace into the current 3713 * mount namespace, preventing reference counting loops. A 64bit 3714 * number incrementing at 10Ghz will take 12,427 years to wrap which 3715 * is effectively never, so we can ignore the possibility. 3716 */ 3717 static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1); 3718 3719 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns, bool anon) 3720 { 3721 struct mnt_namespace *new_ns; 3722 struct ucounts *ucounts; 3723 int ret; 3724 3725 ucounts = inc_mnt_namespaces(user_ns); 3726 if (!ucounts) 3727 return ERR_PTR(-ENOSPC); 3728 3729 new_ns = kzalloc(sizeof(struct mnt_namespace), GFP_KERNEL_ACCOUNT); 3730 if (!new_ns) { 3731 dec_mnt_namespaces(ucounts); 3732 return ERR_PTR(-ENOMEM); 3733 } 3734 if (!anon) { 3735 ret = ns_alloc_inum(&new_ns->ns); 3736 if (ret) { 3737 kfree(new_ns); 3738 dec_mnt_namespaces(ucounts); 3739 return ERR_PTR(ret); 3740 } 3741 } 3742 new_ns->ns.ops = &mntns_operations; 3743 if (!anon) 3744 new_ns->seq = atomic64_add_return(1, &mnt_ns_seq); 3745 refcount_set(&new_ns->ns.count, 1); 3746 INIT_LIST_HEAD(&new_ns->list); 3747 init_waitqueue_head(&new_ns->poll); 3748 spin_lock_init(&new_ns->ns_lock); 3749 new_ns->user_ns = get_user_ns(user_ns); 3750 new_ns->ucounts = ucounts; 3751 return new_ns; 3752 } 3753 3754 __latent_entropy 3755 struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns, 3756 struct user_namespace *user_ns, struct fs_struct *new_fs) 3757 { 3758 struct mnt_namespace *new_ns; 3759 struct vfsmount *rootmnt = NULL, *pwdmnt = NULL; 3760 struct mount *p, *q; 3761 struct mount *old; 3762 struct mount *new; 3763 int copy_flags; 3764 3765 BUG_ON(!ns); 3766 3767 if (likely(!(flags & CLONE_NEWNS))) { 3768 get_mnt_ns(ns); 3769 return ns; 3770 } 3771 3772 old = ns->root; 3773 3774 new_ns = alloc_mnt_ns(user_ns, false); 3775 if (IS_ERR(new_ns)) 3776 return new_ns; 3777 3778 namespace_lock(); 3779 /* First pass: copy the tree topology */ 3780 copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE; 3781 if (user_ns != ns->user_ns) 3782 copy_flags |= CL_SHARED_TO_SLAVE; 3783 new = copy_tree(old, old->mnt.mnt_root, copy_flags); 3784 if (IS_ERR(new)) { 3785 namespace_unlock(); 3786 free_mnt_ns(new_ns); 3787 return ERR_CAST(new); 3788 } 3789 if (user_ns != ns->user_ns) { 3790 lock_mount_hash(); 3791 lock_mnt_tree(new); 3792 unlock_mount_hash(); 3793 } 3794 new_ns->root = new; 3795 list_add_tail(&new_ns->list, &new->mnt_list); 3796 3797 /* 3798 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts 3799 * as belonging to new namespace. We have already acquired a private 3800 * fs_struct, so tsk->fs->lock is not needed. 3801 */ 3802 p = old; 3803 q = new; 3804 while (p) { 3805 q->mnt_ns = new_ns; 3806 new_ns->mounts++; 3807 if (new_fs) { 3808 if (&p->mnt == new_fs->root.mnt) { 3809 new_fs->root.mnt = mntget(&q->mnt); 3810 rootmnt = &p->mnt; 3811 } 3812 if (&p->mnt == new_fs->pwd.mnt) { 3813 new_fs->pwd.mnt = mntget(&q->mnt); 3814 pwdmnt = &p->mnt; 3815 } 3816 } 3817 p = next_mnt(p, old); 3818 q = next_mnt(q, new); 3819 if (!q) 3820 break; 3821 // an mntns binding we'd skipped? 3822 while (p->mnt.mnt_root != q->mnt.mnt_root) 3823 p = next_mnt(skip_mnt_tree(p), old); 3824 } 3825 namespace_unlock(); 3826 3827 if (rootmnt) 3828 mntput(rootmnt); 3829 if (pwdmnt) 3830 mntput(pwdmnt); 3831 3832 return new_ns; 3833 } 3834 3835 struct dentry *mount_subtree(struct vfsmount *m, const char *name) 3836 { 3837 struct mount *mnt = real_mount(m); 3838 struct mnt_namespace *ns; 3839 struct super_block *s; 3840 struct path path; 3841 int err; 3842 3843 ns = alloc_mnt_ns(&init_user_ns, true); 3844 if (IS_ERR(ns)) { 3845 mntput(m); 3846 return ERR_CAST(ns); 3847 } 3848 mnt->mnt_ns = ns; 3849 ns->root = mnt; 3850 ns->mounts++; 3851 list_add(&mnt->mnt_list, &ns->list); 3852 3853 err = vfs_path_lookup(m->mnt_root, m, 3854 name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path); 3855 3856 put_mnt_ns(ns); 3857 3858 if (err) 3859 return ERR_PTR(err); 3860 3861 /* trade a vfsmount reference for active sb one */ 3862 s = path.mnt->mnt_sb; 3863 atomic_inc(&s->s_active); 3864 mntput(path.mnt); 3865 /* lock the sucker */ 3866 down_write(&s->s_umount); 3867 /* ... and return the root of (sub)tree on it */ 3868 return path.dentry; 3869 } 3870 EXPORT_SYMBOL(mount_subtree); 3871 3872 SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name, 3873 char __user *, type, unsigned long, flags, void __user *, data) 3874 { 3875 int ret; 3876 char *kernel_type; 3877 char *kernel_dev; 3878 void *options; 3879 3880 kernel_type = copy_mount_string(type); 3881 ret = PTR_ERR(kernel_type); 3882 if (IS_ERR(kernel_type)) 3883 goto out_type; 3884 3885 kernel_dev = copy_mount_string(dev_name); 3886 ret = PTR_ERR(kernel_dev); 3887 if (IS_ERR(kernel_dev)) 3888 goto out_dev; 3889 3890 options = copy_mount_options(data); 3891 ret = PTR_ERR(options); 3892 if (IS_ERR(options)) 3893 goto out_data; 3894 3895 ret = do_mount(kernel_dev, dir_name, kernel_type, flags, options); 3896 3897 kfree(options); 3898 out_data: 3899 kfree(kernel_dev); 3900 out_dev: 3901 kfree(kernel_type); 3902 out_type: 3903 return ret; 3904 } 3905 3906 #define FSMOUNT_VALID_FLAGS \ 3907 (MOUNT_ATTR_RDONLY | MOUNT_ATTR_NOSUID | MOUNT_ATTR_NODEV | \ 3908 MOUNT_ATTR_NOEXEC | MOUNT_ATTR__ATIME | MOUNT_ATTR_NODIRATIME | \ 3909 MOUNT_ATTR_NOSYMFOLLOW) 3910 3911 #define MOUNT_SETATTR_VALID_FLAGS (FSMOUNT_VALID_FLAGS | MOUNT_ATTR_IDMAP) 3912 3913 #define MOUNT_SETATTR_PROPAGATION_FLAGS \ 3914 (MS_UNBINDABLE | MS_PRIVATE | MS_SLAVE | MS_SHARED) 3915 3916 static unsigned int attr_flags_to_mnt_flags(u64 attr_flags) 3917 { 3918 unsigned int mnt_flags = 0; 3919 3920 if (attr_flags & MOUNT_ATTR_RDONLY) 3921 mnt_flags |= MNT_READONLY; 3922 if (attr_flags & MOUNT_ATTR_NOSUID) 3923 mnt_flags |= MNT_NOSUID; 3924 if (attr_flags & MOUNT_ATTR_NODEV) 3925 mnt_flags |= MNT_NODEV; 3926 if (attr_flags & MOUNT_ATTR_NOEXEC) 3927 mnt_flags |= MNT_NOEXEC; 3928 if (attr_flags & MOUNT_ATTR_NODIRATIME) 3929 mnt_flags |= MNT_NODIRATIME; 3930 if (attr_flags & MOUNT_ATTR_NOSYMFOLLOW) 3931 mnt_flags |= MNT_NOSYMFOLLOW; 3932 3933 return mnt_flags; 3934 } 3935 3936 /* 3937 * Create a kernel mount representation for a new, prepared superblock 3938 * (specified by fs_fd) and attach to an open_tree-like file descriptor. 3939 */ 3940 SYSCALL_DEFINE3(fsmount, int, fs_fd, unsigned int, flags, 3941 unsigned int, attr_flags) 3942 { 3943 struct mnt_namespace *ns; 3944 struct fs_context *fc; 3945 struct file *file; 3946 struct path newmount; 3947 struct mount *mnt; 3948 struct fd f; 3949 unsigned int mnt_flags = 0; 3950 long ret; 3951 3952 if (!may_mount()) 3953 return -EPERM; 3954 3955 if ((flags & ~(FSMOUNT_CLOEXEC)) != 0) 3956 return -EINVAL; 3957 3958 if (attr_flags & ~FSMOUNT_VALID_FLAGS) 3959 return -EINVAL; 3960 3961 mnt_flags = attr_flags_to_mnt_flags(attr_flags); 3962 3963 switch (attr_flags & MOUNT_ATTR__ATIME) { 3964 case MOUNT_ATTR_STRICTATIME: 3965 break; 3966 case MOUNT_ATTR_NOATIME: 3967 mnt_flags |= MNT_NOATIME; 3968 break; 3969 case MOUNT_ATTR_RELATIME: 3970 mnt_flags |= MNT_RELATIME; 3971 break; 3972 default: 3973 return -EINVAL; 3974 } 3975 3976 f = fdget(fs_fd); 3977 if (!f.file) 3978 return -EBADF; 3979 3980 ret = -EINVAL; 3981 if (f.file->f_op != &fscontext_fops) 3982 goto err_fsfd; 3983 3984 fc = f.file->private_data; 3985 3986 ret = mutex_lock_interruptible(&fc->uapi_mutex); 3987 if (ret < 0) 3988 goto err_fsfd; 3989 3990 /* There must be a valid superblock or we can't mount it */ 3991 ret = -EINVAL; 3992 if (!fc->root) 3993 goto err_unlock; 3994 3995 ret = -EPERM; 3996 if (mount_too_revealing(fc->root->d_sb, &mnt_flags)) { 3997 pr_warn("VFS: Mount too revealing\n"); 3998 goto err_unlock; 3999 } 4000 4001 ret = -EBUSY; 4002 if (fc->phase != FS_CONTEXT_AWAITING_MOUNT) 4003 goto err_unlock; 4004 4005 if (fc->sb_flags & SB_MANDLOCK) 4006 warn_mandlock(); 4007 4008 newmount.mnt = vfs_create_mount(fc); 4009 if (IS_ERR(newmount.mnt)) { 4010 ret = PTR_ERR(newmount.mnt); 4011 goto err_unlock; 4012 } 4013 newmount.dentry = dget(fc->root); 4014 newmount.mnt->mnt_flags = mnt_flags; 4015 4016 /* We've done the mount bit - now move the file context into more or 4017 * less the same state as if we'd done an fspick(). We don't want to 4018 * do any memory allocation or anything like that at this point as we 4019 * don't want to have to handle any errors incurred. 4020 */ 4021 vfs_clean_context(fc); 4022 4023 ns = alloc_mnt_ns(current->nsproxy->mnt_ns->user_ns, true); 4024 if (IS_ERR(ns)) { 4025 ret = PTR_ERR(ns); 4026 goto err_path; 4027 } 4028 mnt = real_mount(newmount.mnt); 4029 mnt->mnt_ns = ns; 4030 ns->root = mnt; 4031 ns->mounts = 1; 4032 list_add(&mnt->mnt_list, &ns->list); 4033 mntget(newmount.mnt); 4034 4035 /* Attach to an apparent O_PATH fd with a note that we need to unmount 4036 * it, not just simply put it. 4037 */ 4038 file = dentry_open(&newmount, O_PATH, fc->cred); 4039 if (IS_ERR(file)) { 4040 dissolve_on_fput(newmount.mnt); 4041 ret = PTR_ERR(file); 4042 goto err_path; 4043 } 4044 file->f_mode |= FMODE_NEED_UNMOUNT; 4045 4046 ret = get_unused_fd_flags((flags & FSMOUNT_CLOEXEC) ? O_CLOEXEC : 0); 4047 if (ret >= 0) 4048 fd_install(ret, file); 4049 else 4050 fput(file); 4051 4052 err_path: 4053 path_put(&newmount); 4054 err_unlock: 4055 mutex_unlock(&fc->uapi_mutex); 4056 err_fsfd: 4057 fdput(f); 4058 return ret; 4059 } 4060 4061 /* 4062 * Move a mount from one place to another. In combination with 4063 * fsopen()/fsmount() this is used to install a new mount and in combination 4064 * with open_tree(OPEN_TREE_CLONE [| AT_RECURSIVE]) it can be used to copy 4065 * a mount subtree. 4066 * 4067 * Note the flags value is a combination of MOVE_MOUNT_* flags. 4068 */ 4069 SYSCALL_DEFINE5(move_mount, 4070 int, from_dfd, const char __user *, from_pathname, 4071 int, to_dfd, const char __user *, to_pathname, 4072 unsigned int, flags) 4073 { 4074 struct path from_path, to_path; 4075 unsigned int lflags; 4076 int ret = 0; 4077 4078 if (!may_mount()) 4079 return -EPERM; 4080 4081 if (flags & ~MOVE_MOUNT__MASK) 4082 return -EINVAL; 4083 4084 if ((flags & (MOVE_MOUNT_BENEATH | MOVE_MOUNT_SET_GROUP)) == 4085 (MOVE_MOUNT_BENEATH | MOVE_MOUNT_SET_GROUP)) 4086 return -EINVAL; 4087 4088 /* If someone gives a pathname, they aren't permitted to move 4089 * from an fd that requires unmount as we can't get at the flag 4090 * to clear it afterwards. 4091 */ 4092 lflags = 0; 4093 if (flags & MOVE_MOUNT_F_SYMLINKS) lflags |= LOOKUP_FOLLOW; 4094 if (flags & MOVE_MOUNT_F_AUTOMOUNTS) lflags |= LOOKUP_AUTOMOUNT; 4095 if (flags & MOVE_MOUNT_F_EMPTY_PATH) lflags |= LOOKUP_EMPTY; 4096 4097 ret = user_path_at(from_dfd, from_pathname, lflags, &from_path); 4098 if (ret < 0) 4099 return ret; 4100 4101 lflags = 0; 4102 if (flags & MOVE_MOUNT_T_SYMLINKS) lflags |= LOOKUP_FOLLOW; 4103 if (flags & MOVE_MOUNT_T_AUTOMOUNTS) lflags |= LOOKUP_AUTOMOUNT; 4104 if (flags & MOVE_MOUNT_T_EMPTY_PATH) lflags |= LOOKUP_EMPTY; 4105 4106 ret = user_path_at(to_dfd, to_pathname, lflags, &to_path); 4107 if (ret < 0) 4108 goto out_from; 4109 4110 ret = security_move_mount(&from_path, &to_path); 4111 if (ret < 0) 4112 goto out_to; 4113 4114 if (flags & MOVE_MOUNT_SET_GROUP) 4115 ret = do_set_group(&from_path, &to_path); 4116 else 4117 ret = do_move_mount(&from_path, &to_path, 4118 (flags & MOVE_MOUNT_BENEATH)); 4119 4120 out_to: 4121 path_put(&to_path); 4122 out_from: 4123 path_put(&from_path); 4124 return ret; 4125 } 4126 4127 /* 4128 * Return true if path is reachable from root 4129 * 4130 * namespace_sem or mount_lock is held 4131 */ 4132 bool is_path_reachable(struct mount *mnt, struct dentry *dentry, 4133 const struct path *root) 4134 { 4135 while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) { 4136 dentry = mnt->mnt_mountpoint; 4137 mnt = mnt->mnt_parent; 4138 } 4139 return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry); 4140 } 4141 4142 bool path_is_under(const struct path *path1, const struct path *path2) 4143 { 4144 bool res; 4145 read_seqlock_excl(&mount_lock); 4146 res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2); 4147 read_sequnlock_excl(&mount_lock); 4148 return res; 4149 } 4150 EXPORT_SYMBOL(path_is_under); 4151 4152 /* 4153 * pivot_root Semantics: 4154 * Moves the root file system of the current process to the directory put_old, 4155 * makes new_root as the new root file system of the current process, and sets 4156 * root/cwd of all processes which had them on the current root to new_root. 4157 * 4158 * Restrictions: 4159 * The new_root and put_old must be directories, and must not be on the 4160 * same file system as the current process root. The put_old must be 4161 * underneath new_root, i.e. adding a non-zero number of /.. to the string 4162 * pointed to by put_old must yield the same directory as new_root. No other 4163 * file system may be mounted on put_old. After all, new_root is a mountpoint. 4164 * 4165 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem. 4166 * See Documentation/filesystems/ramfs-rootfs-initramfs.rst for alternatives 4167 * in this situation. 4168 * 4169 * Notes: 4170 * - we don't move root/cwd if they are not at the root (reason: if something 4171 * cared enough to change them, it's probably wrong to force them elsewhere) 4172 * - it's okay to pick a root that isn't the root of a file system, e.g. 4173 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint, 4174 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root 4175 * first. 4176 */ 4177 SYSCALL_DEFINE2(pivot_root, const char __user *, new_root, 4178 const char __user *, put_old) 4179 { 4180 struct path new, old, root; 4181 struct mount *new_mnt, *root_mnt, *old_mnt, *root_parent, *ex_parent; 4182 struct mountpoint *old_mp, *root_mp; 4183 int error; 4184 4185 if (!may_mount()) 4186 return -EPERM; 4187 4188 error = user_path_at(AT_FDCWD, new_root, 4189 LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &new); 4190 if (error) 4191 goto out0; 4192 4193 error = user_path_at(AT_FDCWD, put_old, 4194 LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &old); 4195 if (error) 4196 goto out1; 4197 4198 error = security_sb_pivotroot(&old, &new); 4199 if (error) 4200 goto out2; 4201 4202 get_fs_root(current->fs, &root); 4203 old_mp = lock_mount(&old); 4204 error = PTR_ERR(old_mp); 4205 if (IS_ERR(old_mp)) 4206 goto out3; 4207 4208 error = -EINVAL; 4209 new_mnt = real_mount(new.mnt); 4210 root_mnt = real_mount(root.mnt); 4211 old_mnt = real_mount(old.mnt); 4212 ex_parent = new_mnt->mnt_parent; 4213 root_parent = root_mnt->mnt_parent; 4214 if (IS_MNT_SHARED(old_mnt) || 4215 IS_MNT_SHARED(ex_parent) || 4216 IS_MNT_SHARED(root_parent)) 4217 goto out4; 4218 if (!check_mnt(root_mnt) || !check_mnt(new_mnt)) 4219 goto out4; 4220 if (new_mnt->mnt.mnt_flags & MNT_LOCKED) 4221 goto out4; 4222 error = -ENOENT; 4223 if (d_unlinked(new.dentry)) 4224 goto out4; 4225 error = -EBUSY; 4226 if (new_mnt == root_mnt || old_mnt == root_mnt) 4227 goto out4; /* loop, on the same file system */ 4228 error = -EINVAL; 4229 if (!path_mounted(&root)) 4230 goto out4; /* not a mountpoint */ 4231 if (!mnt_has_parent(root_mnt)) 4232 goto out4; /* not attached */ 4233 if (!path_mounted(&new)) 4234 goto out4; /* not a mountpoint */ 4235 if (!mnt_has_parent(new_mnt)) 4236 goto out4; /* not attached */ 4237 /* make sure we can reach put_old from new_root */ 4238 if (!is_path_reachable(old_mnt, old.dentry, &new)) 4239 goto out4; 4240 /* make certain new is below the root */ 4241 if (!is_path_reachable(new_mnt, new.dentry, &root)) 4242 goto out4; 4243 lock_mount_hash(); 4244 umount_mnt(new_mnt); 4245 root_mp = unhash_mnt(root_mnt); /* we'll need its mountpoint */ 4246 if (root_mnt->mnt.mnt_flags & MNT_LOCKED) { 4247 new_mnt->mnt.mnt_flags |= MNT_LOCKED; 4248 root_mnt->mnt.mnt_flags &= ~MNT_LOCKED; 4249 } 4250 /* mount old root on put_old */ 4251 attach_mnt(root_mnt, old_mnt, old_mp, false); 4252 /* mount new_root on / */ 4253 attach_mnt(new_mnt, root_parent, root_mp, false); 4254 mnt_add_count(root_parent, -1); 4255 touch_mnt_namespace(current->nsproxy->mnt_ns); 4256 /* A moved mount should not expire automatically */ 4257 list_del_init(&new_mnt->mnt_expire); 4258 put_mountpoint(root_mp); 4259 unlock_mount_hash(); 4260 chroot_fs_refs(&root, &new); 4261 error = 0; 4262 out4: 4263 unlock_mount(old_mp); 4264 if (!error) 4265 mntput_no_expire(ex_parent); 4266 out3: 4267 path_put(&root); 4268 out2: 4269 path_put(&old); 4270 out1: 4271 path_put(&new); 4272 out0: 4273 return error; 4274 } 4275 4276 static unsigned int recalc_flags(struct mount_kattr *kattr, struct mount *mnt) 4277 { 4278 unsigned int flags = mnt->mnt.mnt_flags; 4279 4280 /* flags to clear */ 4281 flags &= ~kattr->attr_clr; 4282 /* flags to raise */ 4283 flags |= kattr->attr_set; 4284 4285 return flags; 4286 } 4287 4288 static int can_idmap_mount(const struct mount_kattr *kattr, struct mount *mnt) 4289 { 4290 struct vfsmount *m = &mnt->mnt; 4291 struct user_namespace *fs_userns = m->mnt_sb->s_user_ns; 4292 4293 if (!kattr->mnt_idmap) 4294 return 0; 4295 4296 /* 4297 * Creating an idmapped mount with the filesystem wide idmapping 4298 * doesn't make sense so block that. We don't allow mushy semantics. 4299 */ 4300 if (!check_fsmapping(kattr->mnt_idmap, m->mnt_sb)) 4301 return -EINVAL; 4302 4303 /* 4304 * Once a mount has been idmapped we don't allow it to change its 4305 * mapping. It makes things simpler and callers can just create 4306 * another bind-mount they can idmap if they want to. 4307 */ 4308 if (is_idmapped_mnt(m)) 4309 return -EPERM; 4310 4311 /* The underlying filesystem doesn't support idmapped mounts yet. */ 4312 if (!(m->mnt_sb->s_type->fs_flags & FS_ALLOW_IDMAP)) 4313 return -EINVAL; 4314 4315 /* We're not controlling the superblock. */ 4316 if (!ns_capable(fs_userns, CAP_SYS_ADMIN)) 4317 return -EPERM; 4318 4319 /* Mount has already been visible in the filesystem hierarchy. */ 4320 if (!is_anon_ns(mnt->mnt_ns)) 4321 return -EINVAL; 4322 4323 return 0; 4324 } 4325 4326 /** 4327 * mnt_allow_writers() - check whether the attribute change allows writers 4328 * @kattr: the new mount attributes 4329 * @mnt: the mount to which @kattr will be applied 4330 * 4331 * Check whether thew new mount attributes in @kattr allow concurrent writers. 4332 * 4333 * Return: true if writers need to be held, false if not 4334 */ 4335 static inline bool mnt_allow_writers(const struct mount_kattr *kattr, 4336 const struct mount *mnt) 4337 { 4338 return (!(kattr->attr_set & MNT_READONLY) || 4339 (mnt->mnt.mnt_flags & MNT_READONLY)) && 4340 !kattr->mnt_idmap; 4341 } 4342 4343 static int mount_setattr_prepare(struct mount_kattr *kattr, struct mount *mnt) 4344 { 4345 struct mount *m; 4346 int err; 4347 4348 for (m = mnt; m; m = next_mnt(m, mnt)) { 4349 if (!can_change_locked_flags(m, recalc_flags(kattr, m))) { 4350 err = -EPERM; 4351 break; 4352 } 4353 4354 err = can_idmap_mount(kattr, m); 4355 if (err) 4356 break; 4357 4358 if (!mnt_allow_writers(kattr, m)) { 4359 err = mnt_hold_writers(m); 4360 if (err) 4361 break; 4362 } 4363 4364 if (!kattr->recurse) 4365 return 0; 4366 } 4367 4368 if (err) { 4369 struct mount *p; 4370 4371 /* 4372 * If we had to call mnt_hold_writers() MNT_WRITE_HOLD will 4373 * be set in @mnt_flags. The loop unsets MNT_WRITE_HOLD for all 4374 * mounts and needs to take care to include the first mount. 4375 */ 4376 for (p = mnt; p; p = next_mnt(p, mnt)) { 4377 /* If we had to hold writers unblock them. */ 4378 if (p->mnt.mnt_flags & MNT_WRITE_HOLD) 4379 mnt_unhold_writers(p); 4380 4381 /* 4382 * We're done once the first mount we changed got 4383 * MNT_WRITE_HOLD unset. 4384 */ 4385 if (p == m) 4386 break; 4387 } 4388 } 4389 return err; 4390 } 4391 4392 static void do_idmap_mount(const struct mount_kattr *kattr, struct mount *mnt) 4393 { 4394 if (!kattr->mnt_idmap) 4395 return; 4396 4397 /* 4398 * Pairs with smp_load_acquire() in mnt_idmap(). 4399 * 4400 * Since we only allow a mount to change the idmapping once and 4401 * verified this in can_idmap_mount() we know that the mount has 4402 * @nop_mnt_idmap attached to it. So there's no need to drop any 4403 * references. 4404 */ 4405 smp_store_release(&mnt->mnt.mnt_idmap, mnt_idmap_get(kattr->mnt_idmap)); 4406 } 4407 4408 static void mount_setattr_commit(struct mount_kattr *kattr, struct mount *mnt) 4409 { 4410 struct mount *m; 4411 4412 for (m = mnt; m; m = next_mnt(m, mnt)) { 4413 unsigned int flags; 4414 4415 do_idmap_mount(kattr, m); 4416 flags = recalc_flags(kattr, m); 4417 WRITE_ONCE(m->mnt.mnt_flags, flags); 4418 4419 /* If we had to hold writers unblock them. */ 4420 if (m->mnt.mnt_flags & MNT_WRITE_HOLD) 4421 mnt_unhold_writers(m); 4422 4423 if (kattr->propagation) 4424 change_mnt_propagation(m, kattr->propagation); 4425 if (!kattr->recurse) 4426 break; 4427 } 4428 touch_mnt_namespace(mnt->mnt_ns); 4429 } 4430 4431 static int do_mount_setattr(struct path *path, struct mount_kattr *kattr) 4432 { 4433 struct mount *mnt = real_mount(path->mnt); 4434 int err = 0; 4435 4436 if (!path_mounted(path)) 4437 return -EINVAL; 4438 4439 if (kattr->mnt_userns) { 4440 struct mnt_idmap *mnt_idmap; 4441 4442 mnt_idmap = alloc_mnt_idmap(kattr->mnt_userns); 4443 if (IS_ERR(mnt_idmap)) 4444 return PTR_ERR(mnt_idmap); 4445 kattr->mnt_idmap = mnt_idmap; 4446 } 4447 4448 if (kattr->propagation) { 4449 /* 4450 * Only take namespace_lock() if we're actually changing 4451 * propagation. 4452 */ 4453 namespace_lock(); 4454 if (kattr->propagation == MS_SHARED) { 4455 err = invent_group_ids(mnt, kattr->recurse); 4456 if (err) { 4457 namespace_unlock(); 4458 return err; 4459 } 4460 } 4461 } 4462 4463 err = -EINVAL; 4464 lock_mount_hash(); 4465 4466 /* Ensure that this isn't anything purely vfs internal. */ 4467 if (!is_mounted(&mnt->mnt)) 4468 goto out; 4469 4470 /* 4471 * If this is an attached mount make sure it's located in the callers 4472 * mount namespace. If it's not don't let the caller interact with it. 4473 * 4474 * If this mount doesn't have a parent it's most often simply a 4475 * detached mount with an anonymous mount namespace. IOW, something 4476 * that's simply not attached yet. But there are apparently also users 4477 * that do change mount properties on the rootfs itself. That obviously 4478 * neither has a parent nor is it a detached mount so we cannot 4479 * unconditionally check for detached mounts. 4480 */ 4481 if ((mnt_has_parent(mnt) || !is_anon_ns(mnt->mnt_ns)) && !check_mnt(mnt)) 4482 goto out; 4483 4484 /* 4485 * First, we get the mount tree in a shape where we can change mount 4486 * properties without failure. If we succeeded to do so we commit all 4487 * changes and if we failed we clean up. 4488 */ 4489 err = mount_setattr_prepare(kattr, mnt); 4490 if (!err) 4491 mount_setattr_commit(kattr, mnt); 4492 4493 out: 4494 unlock_mount_hash(); 4495 4496 if (kattr->propagation) { 4497 if (err) 4498 cleanup_group_ids(mnt, NULL); 4499 namespace_unlock(); 4500 } 4501 4502 return err; 4503 } 4504 4505 static int build_mount_idmapped(const struct mount_attr *attr, size_t usize, 4506 struct mount_kattr *kattr, unsigned int flags) 4507 { 4508 int err = 0; 4509 struct ns_common *ns; 4510 struct user_namespace *mnt_userns; 4511 struct fd f; 4512 4513 if (!((attr->attr_set | attr->attr_clr) & MOUNT_ATTR_IDMAP)) 4514 return 0; 4515 4516 /* 4517 * We currently do not support clearing an idmapped mount. If this ever 4518 * is a use-case we can revisit this but for now let's keep it simple 4519 * and not allow it. 4520 */ 4521 if (attr->attr_clr & MOUNT_ATTR_IDMAP) 4522 return -EINVAL; 4523 4524 if (attr->userns_fd > INT_MAX) 4525 return -EINVAL; 4526 4527 f = fdget(attr->userns_fd); 4528 if (!f.file) 4529 return -EBADF; 4530 4531 if (!proc_ns_file(f.file)) { 4532 err = -EINVAL; 4533 goto out_fput; 4534 } 4535 4536 ns = get_proc_ns(file_inode(f.file)); 4537 if (ns->ops->type != CLONE_NEWUSER) { 4538 err = -EINVAL; 4539 goto out_fput; 4540 } 4541 4542 /* 4543 * The initial idmapping cannot be used to create an idmapped 4544 * mount. We use the initial idmapping as an indicator of a mount 4545 * that is not idmapped. It can simply be passed into helpers that 4546 * are aware of idmapped mounts as a convenient shortcut. A user 4547 * can just create a dedicated identity mapping to achieve the same 4548 * result. 4549 */ 4550 mnt_userns = container_of(ns, struct user_namespace, ns); 4551 if (mnt_userns == &init_user_ns) { 4552 err = -EPERM; 4553 goto out_fput; 4554 } 4555 4556 /* We're not controlling the target namespace. */ 4557 if (!ns_capable(mnt_userns, CAP_SYS_ADMIN)) { 4558 err = -EPERM; 4559 goto out_fput; 4560 } 4561 4562 kattr->mnt_userns = get_user_ns(mnt_userns); 4563 4564 out_fput: 4565 fdput(f); 4566 return err; 4567 } 4568 4569 static int build_mount_kattr(const struct mount_attr *attr, size_t usize, 4570 struct mount_kattr *kattr, unsigned int flags) 4571 { 4572 unsigned int lookup_flags = LOOKUP_AUTOMOUNT | LOOKUP_FOLLOW; 4573 4574 if (flags & AT_NO_AUTOMOUNT) 4575 lookup_flags &= ~LOOKUP_AUTOMOUNT; 4576 if (flags & AT_SYMLINK_NOFOLLOW) 4577 lookup_flags &= ~LOOKUP_FOLLOW; 4578 if (flags & AT_EMPTY_PATH) 4579 lookup_flags |= LOOKUP_EMPTY; 4580 4581 *kattr = (struct mount_kattr) { 4582 .lookup_flags = lookup_flags, 4583 .recurse = !!(flags & AT_RECURSIVE), 4584 }; 4585 4586 if (attr->propagation & ~MOUNT_SETATTR_PROPAGATION_FLAGS) 4587 return -EINVAL; 4588 if (hweight32(attr->propagation & MOUNT_SETATTR_PROPAGATION_FLAGS) > 1) 4589 return -EINVAL; 4590 kattr->propagation = attr->propagation; 4591 4592 if ((attr->attr_set | attr->attr_clr) & ~MOUNT_SETATTR_VALID_FLAGS) 4593 return -EINVAL; 4594 4595 kattr->attr_set = attr_flags_to_mnt_flags(attr->attr_set); 4596 kattr->attr_clr = attr_flags_to_mnt_flags(attr->attr_clr); 4597 4598 /* 4599 * Since the MOUNT_ATTR_<atime> values are an enum, not a bitmap, 4600 * users wanting to transition to a different atime setting cannot 4601 * simply specify the atime setting in @attr_set, but must also 4602 * specify MOUNT_ATTR__ATIME in the @attr_clr field. 4603 * So ensure that MOUNT_ATTR__ATIME can't be partially set in 4604 * @attr_clr and that @attr_set can't have any atime bits set if 4605 * MOUNT_ATTR__ATIME isn't set in @attr_clr. 4606 */ 4607 if (attr->attr_clr & MOUNT_ATTR__ATIME) { 4608 if ((attr->attr_clr & MOUNT_ATTR__ATIME) != MOUNT_ATTR__ATIME) 4609 return -EINVAL; 4610 4611 /* 4612 * Clear all previous time settings as they are mutually 4613 * exclusive. 4614 */ 4615 kattr->attr_clr |= MNT_RELATIME | MNT_NOATIME; 4616 switch (attr->attr_set & MOUNT_ATTR__ATIME) { 4617 case MOUNT_ATTR_RELATIME: 4618 kattr->attr_set |= MNT_RELATIME; 4619 break; 4620 case MOUNT_ATTR_NOATIME: 4621 kattr->attr_set |= MNT_NOATIME; 4622 break; 4623 case MOUNT_ATTR_STRICTATIME: 4624 break; 4625 default: 4626 return -EINVAL; 4627 } 4628 } else { 4629 if (attr->attr_set & MOUNT_ATTR__ATIME) 4630 return -EINVAL; 4631 } 4632 4633 return build_mount_idmapped(attr, usize, kattr, flags); 4634 } 4635 4636 static void finish_mount_kattr(struct mount_kattr *kattr) 4637 { 4638 put_user_ns(kattr->mnt_userns); 4639 kattr->mnt_userns = NULL; 4640 4641 if (kattr->mnt_idmap) 4642 mnt_idmap_put(kattr->mnt_idmap); 4643 } 4644 4645 SYSCALL_DEFINE5(mount_setattr, int, dfd, const char __user *, path, 4646 unsigned int, flags, struct mount_attr __user *, uattr, 4647 size_t, usize) 4648 { 4649 int err; 4650 struct path target; 4651 struct mount_attr attr; 4652 struct mount_kattr kattr; 4653 4654 BUILD_BUG_ON(sizeof(struct mount_attr) != MOUNT_ATTR_SIZE_VER0); 4655 4656 if (flags & ~(AT_EMPTY_PATH | 4657 AT_RECURSIVE | 4658 AT_SYMLINK_NOFOLLOW | 4659 AT_NO_AUTOMOUNT)) 4660 return -EINVAL; 4661 4662 if (unlikely(usize > PAGE_SIZE)) 4663 return -E2BIG; 4664 if (unlikely(usize < MOUNT_ATTR_SIZE_VER0)) 4665 return -EINVAL; 4666 4667 if (!may_mount()) 4668 return -EPERM; 4669 4670 err = copy_struct_from_user(&attr, sizeof(attr), uattr, usize); 4671 if (err) 4672 return err; 4673 4674 /* Don't bother walking through the mounts if this is a nop. */ 4675 if (attr.attr_set == 0 && 4676 attr.attr_clr == 0 && 4677 attr.propagation == 0) 4678 return 0; 4679 4680 err = build_mount_kattr(&attr, usize, &kattr, flags); 4681 if (err) 4682 return err; 4683 4684 err = user_path_at(dfd, path, kattr.lookup_flags, &target); 4685 if (!err) { 4686 err = do_mount_setattr(&target, &kattr); 4687 path_put(&target); 4688 } 4689 finish_mount_kattr(&kattr); 4690 return err; 4691 } 4692 4693 static void __init init_mount_tree(void) 4694 { 4695 struct vfsmount *mnt; 4696 struct mount *m; 4697 struct mnt_namespace *ns; 4698 struct path root; 4699 4700 mnt = vfs_kern_mount(&rootfs_fs_type, 0, "rootfs", NULL); 4701 if (IS_ERR(mnt)) 4702 panic("Can't create rootfs"); 4703 4704 ns = alloc_mnt_ns(&init_user_ns, false); 4705 if (IS_ERR(ns)) 4706 panic("Can't allocate initial namespace"); 4707 m = real_mount(mnt); 4708 m->mnt_ns = ns; 4709 ns->root = m; 4710 ns->mounts = 1; 4711 list_add(&m->mnt_list, &ns->list); 4712 init_task.nsproxy->mnt_ns = ns; 4713 get_mnt_ns(ns); 4714 4715 root.mnt = mnt; 4716 root.dentry = mnt->mnt_root; 4717 mnt->mnt_flags |= MNT_LOCKED; 4718 4719 set_fs_pwd(current->fs, &root); 4720 set_fs_root(current->fs, &root); 4721 } 4722 4723 void __init mnt_init(void) 4724 { 4725 int err; 4726 4727 mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount), 4728 0, SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, NULL); 4729 4730 mount_hashtable = alloc_large_system_hash("Mount-cache", 4731 sizeof(struct hlist_head), 4732 mhash_entries, 19, 4733 HASH_ZERO, 4734 &m_hash_shift, &m_hash_mask, 0, 0); 4735 mountpoint_hashtable = alloc_large_system_hash("Mountpoint-cache", 4736 sizeof(struct hlist_head), 4737 mphash_entries, 19, 4738 HASH_ZERO, 4739 &mp_hash_shift, &mp_hash_mask, 0, 0); 4740 4741 if (!mount_hashtable || !mountpoint_hashtable) 4742 panic("Failed to allocate mount hash table\n"); 4743 4744 kernfs_init(); 4745 4746 err = sysfs_init(); 4747 if (err) 4748 printk(KERN_WARNING "%s: sysfs_init error: %d\n", 4749 __func__, err); 4750 fs_kobj = kobject_create_and_add("fs", NULL); 4751 if (!fs_kobj) 4752 printk(KERN_WARNING "%s: kobj create error\n", __func__); 4753 shmem_init(); 4754 init_rootfs(); 4755 init_mount_tree(); 4756 } 4757 4758 void put_mnt_ns(struct mnt_namespace *ns) 4759 { 4760 if (!refcount_dec_and_test(&ns->ns.count)) 4761 return; 4762 drop_collected_mounts(&ns->root->mnt); 4763 free_mnt_ns(ns); 4764 } 4765 4766 struct vfsmount *kern_mount(struct file_system_type *type) 4767 { 4768 struct vfsmount *mnt; 4769 mnt = vfs_kern_mount(type, SB_KERNMOUNT, type->name, NULL); 4770 if (!IS_ERR(mnt)) { 4771 /* 4772 * it is a longterm mount, don't release mnt until 4773 * we unmount before file sys is unregistered 4774 */ 4775 real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL; 4776 } 4777 return mnt; 4778 } 4779 EXPORT_SYMBOL_GPL(kern_mount); 4780 4781 void kern_unmount(struct vfsmount *mnt) 4782 { 4783 /* release long term mount so mount point can be released */ 4784 if (!IS_ERR(mnt)) { 4785 mnt_make_shortterm(mnt); 4786 synchronize_rcu(); /* yecchhh... */ 4787 mntput(mnt); 4788 } 4789 } 4790 EXPORT_SYMBOL(kern_unmount); 4791 4792 void kern_unmount_array(struct vfsmount *mnt[], unsigned int num) 4793 { 4794 unsigned int i; 4795 4796 for (i = 0; i < num; i++) 4797 mnt_make_shortterm(mnt[i]); 4798 synchronize_rcu_expedited(); 4799 for (i = 0; i < num; i++) 4800 mntput(mnt[i]); 4801 } 4802 EXPORT_SYMBOL(kern_unmount_array); 4803 4804 bool our_mnt(struct vfsmount *mnt) 4805 { 4806 return check_mnt(real_mount(mnt)); 4807 } 4808 4809 bool current_chrooted(void) 4810 { 4811 /* Does the current process have a non-standard root */ 4812 struct path ns_root; 4813 struct path fs_root; 4814 bool chrooted; 4815 4816 /* Find the namespace root */ 4817 ns_root.mnt = ¤t->nsproxy->mnt_ns->root->mnt; 4818 ns_root.dentry = ns_root.mnt->mnt_root; 4819 path_get(&ns_root); 4820 while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root)) 4821 ; 4822 4823 get_fs_root(current->fs, &fs_root); 4824 4825 chrooted = !path_equal(&fs_root, &ns_root); 4826 4827 path_put(&fs_root); 4828 path_put(&ns_root); 4829 4830 return chrooted; 4831 } 4832 4833 static bool mnt_already_visible(struct mnt_namespace *ns, 4834 const struct super_block *sb, 4835 int *new_mnt_flags) 4836 { 4837 int new_flags = *new_mnt_flags; 4838 struct mount *mnt; 4839 bool visible = false; 4840 4841 down_read(&namespace_sem); 4842 lock_ns_list(ns); 4843 list_for_each_entry(mnt, &ns->list, mnt_list) { 4844 struct mount *child; 4845 int mnt_flags; 4846 4847 if (mnt_is_cursor(mnt)) 4848 continue; 4849 4850 if (mnt->mnt.mnt_sb->s_type != sb->s_type) 4851 continue; 4852 4853 /* This mount is not fully visible if it's root directory 4854 * is not the root directory of the filesystem. 4855 */ 4856 if (mnt->mnt.mnt_root != mnt->mnt.mnt_sb->s_root) 4857 continue; 4858 4859 /* A local view of the mount flags */ 4860 mnt_flags = mnt->mnt.mnt_flags; 4861 4862 /* Don't miss readonly hidden in the superblock flags */ 4863 if (sb_rdonly(mnt->mnt.mnt_sb)) 4864 mnt_flags |= MNT_LOCK_READONLY; 4865 4866 /* Verify the mount flags are equal to or more permissive 4867 * than the proposed new mount. 4868 */ 4869 if ((mnt_flags & MNT_LOCK_READONLY) && 4870 !(new_flags & MNT_READONLY)) 4871 continue; 4872 if ((mnt_flags & MNT_LOCK_ATIME) && 4873 ((mnt_flags & MNT_ATIME_MASK) != (new_flags & MNT_ATIME_MASK))) 4874 continue; 4875 4876 /* This mount is not fully visible if there are any 4877 * locked child mounts that cover anything except for 4878 * empty directories. 4879 */ 4880 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) { 4881 struct inode *inode = child->mnt_mountpoint->d_inode; 4882 /* Only worry about locked mounts */ 4883 if (!(child->mnt.mnt_flags & MNT_LOCKED)) 4884 continue; 4885 /* Is the directory permanetly empty? */ 4886 if (!is_empty_dir_inode(inode)) 4887 goto next; 4888 } 4889 /* Preserve the locked attributes */ 4890 *new_mnt_flags |= mnt_flags & (MNT_LOCK_READONLY | \ 4891 MNT_LOCK_ATIME); 4892 visible = true; 4893 goto found; 4894 next: ; 4895 } 4896 found: 4897 unlock_ns_list(ns); 4898 up_read(&namespace_sem); 4899 return visible; 4900 } 4901 4902 static bool mount_too_revealing(const struct super_block *sb, int *new_mnt_flags) 4903 { 4904 const unsigned long required_iflags = SB_I_NOEXEC | SB_I_NODEV; 4905 struct mnt_namespace *ns = current->nsproxy->mnt_ns; 4906 unsigned long s_iflags; 4907 4908 if (ns->user_ns == &init_user_ns) 4909 return false; 4910 4911 /* Can this filesystem be too revealing? */ 4912 s_iflags = sb->s_iflags; 4913 if (!(s_iflags & SB_I_USERNS_VISIBLE)) 4914 return false; 4915 4916 if ((s_iflags & required_iflags) != required_iflags) { 4917 WARN_ONCE(1, "Expected s_iflags to contain 0x%lx\n", 4918 required_iflags); 4919 return true; 4920 } 4921 4922 return !mnt_already_visible(ns, sb, new_mnt_flags); 4923 } 4924 4925 bool mnt_may_suid(struct vfsmount *mnt) 4926 { 4927 /* 4928 * Foreign mounts (accessed via fchdir or through /proc 4929 * symlinks) are always treated as if they are nosuid. This 4930 * prevents namespaces from trusting potentially unsafe 4931 * suid/sgid bits, file caps, or security labels that originate 4932 * in other namespaces. 4933 */ 4934 return !(mnt->mnt_flags & MNT_NOSUID) && check_mnt(real_mount(mnt)) && 4935 current_in_userns(mnt->mnt_sb->s_user_ns); 4936 } 4937 4938 static struct ns_common *mntns_get(struct task_struct *task) 4939 { 4940 struct ns_common *ns = NULL; 4941 struct nsproxy *nsproxy; 4942 4943 task_lock(task); 4944 nsproxy = task->nsproxy; 4945 if (nsproxy) { 4946 ns = &nsproxy->mnt_ns->ns; 4947 get_mnt_ns(to_mnt_ns(ns)); 4948 } 4949 task_unlock(task); 4950 4951 return ns; 4952 } 4953 4954 static void mntns_put(struct ns_common *ns) 4955 { 4956 put_mnt_ns(to_mnt_ns(ns)); 4957 } 4958 4959 static int mntns_install(struct nsset *nsset, struct ns_common *ns) 4960 { 4961 struct nsproxy *nsproxy = nsset->nsproxy; 4962 struct fs_struct *fs = nsset->fs; 4963 struct mnt_namespace *mnt_ns = to_mnt_ns(ns), *old_mnt_ns; 4964 struct user_namespace *user_ns = nsset->cred->user_ns; 4965 struct path root; 4966 int err; 4967 4968 if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) || 4969 !ns_capable(user_ns, CAP_SYS_CHROOT) || 4970 !ns_capable(user_ns, CAP_SYS_ADMIN)) 4971 return -EPERM; 4972 4973 if (is_anon_ns(mnt_ns)) 4974 return -EINVAL; 4975 4976 if (fs->users != 1) 4977 return -EINVAL; 4978 4979 get_mnt_ns(mnt_ns); 4980 old_mnt_ns = nsproxy->mnt_ns; 4981 nsproxy->mnt_ns = mnt_ns; 4982 4983 /* Find the root */ 4984 err = vfs_path_lookup(mnt_ns->root->mnt.mnt_root, &mnt_ns->root->mnt, 4985 "/", LOOKUP_DOWN, &root); 4986 if (err) { 4987 /* revert to old namespace */ 4988 nsproxy->mnt_ns = old_mnt_ns; 4989 put_mnt_ns(mnt_ns); 4990 return err; 4991 } 4992 4993 put_mnt_ns(old_mnt_ns); 4994 4995 /* Update the pwd and root */ 4996 set_fs_pwd(fs, &root); 4997 set_fs_root(fs, &root); 4998 4999 path_put(&root); 5000 return 0; 5001 } 5002 5003 static struct user_namespace *mntns_owner(struct ns_common *ns) 5004 { 5005 return to_mnt_ns(ns)->user_ns; 5006 } 5007 5008 const struct proc_ns_operations mntns_operations = { 5009 .name = "mnt", 5010 .type = CLONE_NEWNS, 5011 .get = mntns_get, 5012 .put = mntns_put, 5013 .install = mntns_install, 5014 .owner = mntns_owner, 5015 }; 5016 5017 #ifdef CONFIG_SYSCTL 5018 static struct ctl_table fs_namespace_sysctls[] = { 5019 { 5020 .procname = "mount-max", 5021 .data = &sysctl_mount_max, 5022 .maxlen = sizeof(unsigned int), 5023 .mode = 0644, 5024 .proc_handler = proc_dointvec_minmax, 5025 .extra1 = SYSCTL_ONE, 5026 }, 5027 { } 5028 }; 5029 5030 static int __init init_fs_namespace_sysctls(void) 5031 { 5032 register_sysctl_init("fs", fs_namespace_sysctls); 5033 return 0; 5034 } 5035 fs_initcall(init_fs_namespace_sysctls); 5036 5037 #endif /* CONFIG_SYSCTL */ 5038