xref: /openbmc/linux/fs/namespace.c (revision ca79522c)
1 /*
2  *  linux/fs/namespace.c
3  *
4  * (C) Copyright Al Viro 2000, 2001
5  *	Released under GPL v2.
6  *
7  * Based on code from fs/super.c, copyright Linus Torvalds and others.
8  * Heavily rewritten.
9  */
10 
11 #include <linux/syscalls.h>
12 #include <linux/export.h>
13 #include <linux/capability.h>
14 #include <linux/mnt_namespace.h>
15 #include <linux/user_namespace.h>
16 #include <linux/namei.h>
17 #include <linux/security.h>
18 #include <linux/idr.h>
19 #include <linux/acct.h>		/* acct_auto_close_mnt */
20 #include <linux/ramfs.h>	/* init_rootfs */
21 #include <linux/fs_struct.h>	/* get_fs_root et.al. */
22 #include <linux/fsnotify.h>	/* fsnotify_vfsmount_delete */
23 #include <linux/uaccess.h>
24 #include <linux/proc_ns.h>
25 #include <linux/magic.h>
26 #include "pnode.h"
27 #include "internal.h"
28 
29 #define HASH_SHIFT ilog2(PAGE_SIZE / sizeof(struct list_head))
30 #define HASH_SIZE (1UL << HASH_SHIFT)
31 
32 static int event;
33 static DEFINE_IDA(mnt_id_ida);
34 static DEFINE_IDA(mnt_group_ida);
35 static DEFINE_SPINLOCK(mnt_id_lock);
36 static int mnt_id_start = 0;
37 static int mnt_group_start = 1;
38 
39 static struct list_head *mount_hashtable __read_mostly;
40 static struct list_head *mountpoint_hashtable __read_mostly;
41 static struct kmem_cache *mnt_cache __read_mostly;
42 static struct rw_semaphore namespace_sem;
43 
44 /* /sys/fs */
45 struct kobject *fs_kobj;
46 EXPORT_SYMBOL_GPL(fs_kobj);
47 
48 /*
49  * vfsmount lock may be taken for read to prevent changes to the
50  * vfsmount hash, ie. during mountpoint lookups or walking back
51  * up the tree.
52  *
53  * It should be taken for write in all cases where the vfsmount
54  * tree or hash is modified or when a vfsmount structure is modified.
55  */
56 DEFINE_BRLOCK(vfsmount_lock);
57 
58 static inline unsigned long hash(struct vfsmount *mnt, struct dentry *dentry)
59 {
60 	unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
61 	tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
62 	tmp = tmp + (tmp >> HASH_SHIFT);
63 	return tmp & (HASH_SIZE - 1);
64 }
65 
66 #define MNT_WRITER_UNDERFLOW_LIMIT -(1<<16)
67 
68 /*
69  * allocation is serialized by namespace_sem, but we need the spinlock to
70  * serialize with freeing.
71  */
72 static int mnt_alloc_id(struct mount *mnt)
73 {
74 	int res;
75 
76 retry:
77 	ida_pre_get(&mnt_id_ida, GFP_KERNEL);
78 	spin_lock(&mnt_id_lock);
79 	res = ida_get_new_above(&mnt_id_ida, mnt_id_start, &mnt->mnt_id);
80 	if (!res)
81 		mnt_id_start = mnt->mnt_id + 1;
82 	spin_unlock(&mnt_id_lock);
83 	if (res == -EAGAIN)
84 		goto retry;
85 
86 	return res;
87 }
88 
89 static void mnt_free_id(struct mount *mnt)
90 {
91 	int id = mnt->mnt_id;
92 	spin_lock(&mnt_id_lock);
93 	ida_remove(&mnt_id_ida, id);
94 	if (mnt_id_start > id)
95 		mnt_id_start = id;
96 	spin_unlock(&mnt_id_lock);
97 }
98 
99 /*
100  * Allocate a new peer group ID
101  *
102  * mnt_group_ida is protected by namespace_sem
103  */
104 static int mnt_alloc_group_id(struct mount *mnt)
105 {
106 	int res;
107 
108 	if (!ida_pre_get(&mnt_group_ida, GFP_KERNEL))
109 		return -ENOMEM;
110 
111 	res = ida_get_new_above(&mnt_group_ida,
112 				mnt_group_start,
113 				&mnt->mnt_group_id);
114 	if (!res)
115 		mnt_group_start = mnt->mnt_group_id + 1;
116 
117 	return res;
118 }
119 
120 /*
121  * Release a peer group ID
122  */
123 void mnt_release_group_id(struct mount *mnt)
124 {
125 	int id = mnt->mnt_group_id;
126 	ida_remove(&mnt_group_ida, id);
127 	if (mnt_group_start > id)
128 		mnt_group_start = id;
129 	mnt->mnt_group_id = 0;
130 }
131 
132 /*
133  * vfsmount lock must be held for read
134  */
135 static inline void mnt_add_count(struct mount *mnt, int n)
136 {
137 #ifdef CONFIG_SMP
138 	this_cpu_add(mnt->mnt_pcp->mnt_count, n);
139 #else
140 	preempt_disable();
141 	mnt->mnt_count += n;
142 	preempt_enable();
143 #endif
144 }
145 
146 /*
147  * vfsmount lock must be held for write
148  */
149 unsigned int mnt_get_count(struct mount *mnt)
150 {
151 #ifdef CONFIG_SMP
152 	unsigned int count = 0;
153 	int cpu;
154 
155 	for_each_possible_cpu(cpu) {
156 		count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
157 	}
158 
159 	return count;
160 #else
161 	return mnt->mnt_count;
162 #endif
163 }
164 
165 static struct mount *alloc_vfsmnt(const char *name)
166 {
167 	struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
168 	if (mnt) {
169 		int err;
170 
171 		err = mnt_alloc_id(mnt);
172 		if (err)
173 			goto out_free_cache;
174 
175 		if (name) {
176 			mnt->mnt_devname = kstrdup(name, GFP_KERNEL);
177 			if (!mnt->mnt_devname)
178 				goto out_free_id;
179 		}
180 
181 #ifdef CONFIG_SMP
182 		mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
183 		if (!mnt->mnt_pcp)
184 			goto out_free_devname;
185 
186 		this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
187 #else
188 		mnt->mnt_count = 1;
189 		mnt->mnt_writers = 0;
190 #endif
191 
192 		INIT_LIST_HEAD(&mnt->mnt_hash);
193 		INIT_LIST_HEAD(&mnt->mnt_child);
194 		INIT_LIST_HEAD(&mnt->mnt_mounts);
195 		INIT_LIST_HEAD(&mnt->mnt_list);
196 		INIT_LIST_HEAD(&mnt->mnt_expire);
197 		INIT_LIST_HEAD(&mnt->mnt_share);
198 		INIT_LIST_HEAD(&mnt->mnt_slave_list);
199 		INIT_LIST_HEAD(&mnt->mnt_slave);
200 #ifdef CONFIG_FSNOTIFY
201 		INIT_HLIST_HEAD(&mnt->mnt_fsnotify_marks);
202 #endif
203 	}
204 	return mnt;
205 
206 #ifdef CONFIG_SMP
207 out_free_devname:
208 	kfree(mnt->mnt_devname);
209 #endif
210 out_free_id:
211 	mnt_free_id(mnt);
212 out_free_cache:
213 	kmem_cache_free(mnt_cache, mnt);
214 	return NULL;
215 }
216 
217 /*
218  * Most r/o checks on a fs are for operations that take
219  * discrete amounts of time, like a write() or unlink().
220  * We must keep track of when those operations start
221  * (for permission checks) and when they end, so that
222  * we can determine when writes are able to occur to
223  * a filesystem.
224  */
225 /*
226  * __mnt_is_readonly: check whether a mount is read-only
227  * @mnt: the mount to check for its write status
228  *
229  * This shouldn't be used directly ouside of the VFS.
230  * It does not guarantee that the filesystem will stay
231  * r/w, just that it is right *now*.  This can not and
232  * should not be used in place of IS_RDONLY(inode).
233  * mnt_want/drop_write() will _keep_ the filesystem
234  * r/w.
235  */
236 int __mnt_is_readonly(struct vfsmount *mnt)
237 {
238 	if (mnt->mnt_flags & MNT_READONLY)
239 		return 1;
240 	if (mnt->mnt_sb->s_flags & MS_RDONLY)
241 		return 1;
242 	return 0;
243 }
244 EXPORT_SYMBOL_GPL(__mnt_is_readonly);
245 
246 static inline void mnt_inc_writers(struct mount *mnt)
247 {
248 #ifdef CONFIG_SMP
249 	this_cpu_inc(mnt->mnt_pcp->mnt_writers);
250 #else
251 	mnt->mnt_writers++;
252 #endif
253 }
254 
255 static inline void mnt_dec_writers(struct mount *mnt)
256 {
257 #ifdef CONFIG_SMP
258 	this_cpu_dec(mnt->mnt_pcp->mnt_writers);
259 #else
260 	mnt->mnt_writers--;
261 #endif
262 }
263 
264 static unsigned int mnt_get_writers(struct mount *mnt)
265 {
266 #ifdef CONFIG_SMP
267 	unsigned int count = 0;
268 	int cpu;
269 
270 	for_each_possible_cpu(cpu) {
271 		count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
272 	}
273 
274 	return count;
275 #else
276 	return mnt->mnt_writers;
277 #endif
278 }
279 
280 static int mnt_is_readonly(struct vfsmount *mnt)
281 {
282 	if (mnt->mnt_sb->s_readonly_remount)
283 		return 1;
284 	/* Order wrt setting s_flags/s_readonly_remount in do_remount() */
285 	smp_rmb();
286 	return __mnt_is_readonly(mnt);
287 }
288 
289 /*
290  * Most r/o & frozen checks on a fs are for operations that take discrete
291  * amounts of time, like a write() or unlink().  We must keep track of when
292  * those operations start (for permission checks) and when they end, so that we
293  * can determine when writes are able to occur to a filesystem.
294  */
295 /**
296  * __mnt_want_write - get write access to a mount without freeze protection
297  * @m: the mount on which to take a write
298  *
299  * This tells the low-level filesystem that a write is about to be performed to
300  * it, and makes sure that writes are allowed (mnt it read-write) before
301  * returning success. This operation does not protect against filesystem being
302  * frozen. When the write operation is finished, __mnt_drop_write() must be
303  * called. This is effectively a refcount.
304  */
305 int __mnt_want_write(struct vfsmount *m)
306 {
307 	struct mount *mnt = real_mount(m);
308 	int ret = 0;
309 
310 	preempt_disable();
311 	mnt_inc_writers(mnt);
312 	/*
313 	 * The store to mnt_inc_writers must be visible before we pass
314 	 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
315 	 * incremented count after it has set MNT_WRITE_HOLD.
316 	 */
317 	smp_mb();
318 	while (ACCESS_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD)
319 		cpu_relax();
320 	/*
321 	 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
322 	 * be set to match its requirements. So we must not load that until
323 	 * MNT_WRITE_HOLD is cleared.
324 	 */
325 	smp_rmb();
326 	if (mnt_is_readonly(m)) {
327 		mnt_dec_writers(mnt);
328 		ret = -EROFS;
329 	}
330 	preempt_enable();
331 
332 	return ret;
333 }
334 
335 /**
336  * mnt_want_write - get write access to a mount
337  * @m: the mount on which to take a write
338  *
339  * This tells the low-level filesystem that a write is about to be performed to
340  * it, and makes sure that writes are allowed (mount is read-write, filesystem
341  * is not frozen) before returning success.  When the write operation is
342  * finished, mnt_drop_write() must be called.  This is effectively a refcount.
343  */
344 int mnt_want_write(struct vfsmount *m)
345 {
346 	int ret;
347 
348 	sb_start_write(m->mnt_sb);
349 	ret = __mnt_want_write(m);
350 	if (ret)
351 		sb_end_write(m->mnt_sb);
352 	return ret;
353 }
354 EXPORT_SYMBOL_GPL(mnt_want_write);
355 
356 /**
357  * mnt_clone_write - get write access to a mount
358  * @mnt: the mount on which to take a write
359  *
360  * This is effectively like mnt_want_write, except
361  * it must only be used to take an extra write reference
362  * on a mountpoint that we already know has a write reference
363  * on it. This allows some optimisation.
364  *
365  * After finished, mnt_drop_write must be called as usual to
366  * drop the reference.
367  */
368 int mnt_clone_write(struct vfsmount *mnt)
369 {
370 	/* superblock may be r/o */
371 	if (__mnt_is_readonly(mnt))
372 		return -EROFS;
373 	preempt_disable();
374 	mnt_inc_writers(real_mount(mnt));
375 	preempt_enable();
376 	return 0;
377 }
378 EXPORT_SYMBOL_GPL(mnt_clone_write);
379 
380 /**
381  * __mnt_want_write_file - get write access to a file's mount
382  * @file: the file who's mount on which to take a write
383  *
384  * This is like __mnt_want_write, but it takes a file and can
385  * do some optimisations if the file is open for write already
386  */
387 int __mnt_want_write_file(struct file *file)
388 {
389 	struct inode *inode = file_inode(file);
390 
391 	if (!(file->f_mode & FMODE_WRITE) || special_file(inode->i_mode))
392 		return __mnt_want_write(file->f_path.mnt);
393 	else
394 		return mnt_clone_write(file->f_path.mnt);
395 }
396 
397 /**
398  * mnt_want_write_file - get write access to a file's mount
399  * @file: the file who's mount on which to take a write
400  *
401  * This is like mnt_want_write, but it takes a file and can
402  * do some optimisations if the file is open for write already
403  */
404 int mnt_want_write_file(struct file *file)
405 {
406 	int ret;
407 
408 	sb_start_write(file->f_path.mnt->mnt_sb);
409 	ret = __mnt_want_write_file(file);
410 	if (ret)
411 		sb_end_write(file->f_path.mnt->mnt_sb);
412 	return ret;
413 }
414 EXPORT_SYMBOL_GPL(mnt_want_write_file);
415 
416 /**
417  * __mnt_drop_write - give up write access to a mount
418  * @mnt: the mount on which to give up write access
419  *
420  * Tells the low-level filesystem that we are done
421  * performing writes to it.  Must be matched with
422  * __mnt_want_write() call above.
423  */
424 void __mnt_drop_write(struct vfsmount *mnt)
425 {
426 	preempt_disable();
427 	mnt_dec_writers(real_mount(mnt));
428 	preempt_enable();
429 }
430 
431 /**
432  * mnt_drop_write - give up write access to a mount
433  * @mnt: the mount on which to give up write access
434  *
435  * Tells the low-level filesystem that we are done performing writes to it and
436  * also allows filesystem to be frozen again.  Must be matched with
437  * mnt_want_write() call above.
438  */
439 void mnt_drop_write(struct vfsmount *mnt)
440 {
441 	__mnt_drop_write(mnt);
442 	sb_end_write(mnt->mnt_sb);
443 }
444 EXPORT_SYMBOL_GPL(mnt_drop_write);
445 
446 void __mnt_drop_write_file(struct file *file)
447 {
448 	__mnt_drop_write(file->f_path.mnt);
449 }
450 
451 void mnt_drop_write_file(struct file *file)
452 {
453 	mnt_drop_write(file->f_path.mnt);
454 }
455 EXPORT_SYMBOL(mnt_drop_write_file);
456 
457 static int mnt_make_readonly(struct mount *mnt)
458 {
459 	int ret = 0;
460 
461 	br_write_lock(&vfsmount_lock);
462 	mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
463 	/*
464 	 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
465 	 * should be visible before we do.
466 	 */
467 	smp_mb();
468 
469 	/*
470 	 * With writers on hold, if this value is zero, then there are
471 	 * definitely no active writers (although held writers may subsequently
472 	 * increment the count, they'll have to wait, and decrement it after
473 	 * seeing MNT_READONLY).
474 	 *
475 	 * It is OK to have counter incremented on one CPU and decremented on
476 	 * another: the sum will add up correctly. The danger would be when we
477 	 * sum up each counter, if we read a counter before it is incremented,
478 	 * but then read another CPU's count which it has been subsequently
479 	 * decremented from -- we would see more decrements than we should.
480 	 * MNT_WRITE_HOLD protects against this scenario, because
481 	 * mnt_want_write first increments count, then smp_mb, then spins on
482 	 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
483 	 * we're counting up here.
484 	 */
485 	if (mnt_get_writers(mnt) > 0)
486 		ret = -EBUSY;
487 	else
488 		mnt->mnt.mnt_flags |= MNT_READONLY;
489 	/*
490 	 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
491 	 * that become unheld will see MNT_READONLY.
492 	 */
493 	smp_wmb();
494 	mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
495 	br_write_unlock(&vfsmount_lock);
496 	return ret;
497 }
498 
499 static void __mnt_unmake_readonly(struct mount *mnt)
500 {
501 	br_write_lock(&vfsmount_lock);
502 	mnt->mnt.mnt_flags &= ~MNT_READONLY;
503 	br_write_unlock(&vfsmount_lock);
504 }
505 
506 int sb_prepare_remount_readonly(struct super_block *sb)
507 {
508 	struct mount *mnt;
509 	int err = 0;
510 
511 	/* Racy optimization.  Recheck the counter under MNT_WRITE_HOLD */
512 	if (atomic_long_read(&sb->s_remove_count))
513 		return -EBUSY;
514 
515 	br_write_lock(&vfsmount_lock);
516 	list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
517 		if (!(mnt->mnt.mnt_flags & MNT_READONLY)) {
518 			mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
519 			smp_mb();
520 			if (mnt_get_writers(mnt) > 0) {
521 				err = -EBUSY;
522 				break;
523 			}
524 		}
525 	}
526 	if (!err && atomic_long_read(&sb->s_remove_count))
527 		err = -EBUSY;
528 
529 	if (!err) {
530 		sb->s_readonly_remount = 1;
531 		smp_wmb();
532 	}
533 	list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
534 		if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
535 			mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
536 	}
537 	br_write_unlock(&vfsmount_lock);
538 
539 	return err;
540 }
541 
542 static void free_vfsmnt(struct mount *mnt)
543 {
544 	kfree(mnt->mnt_devname);
545 	mnt_free_id(mnt);
546 #ifdef CONFIG_SMP
547 	free_percpu(mnt->mnt_pcp);
548 #endif
549 	kmem_cache_free(mnt_cache, mnt);
550 }
551 
552 /*
553  * find the first or last mount at @dentry on vfsmount @mnt depending on
554  * @dir. If @dir is set return the first mount else return the last mount.
555  * vfsmount_lock must be held for read or write.
556  */
557 struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry,
558 			      int dir)
559 {
560 	struct list_head *head = mount_hashtable + hash(mnt, dentry);
561 	struct list_head *tmp = head;
562 	struct mount *p, *found = NULL;
563 
564 	for (;;) {
565 		tmp = dir ? tmp->next : tmp->prev;
566 		p = NULL;
567 		if (tmp == head)
568 			break;
569 		p = list_entry(tmp, struct mount, mnt_hash);
570 		if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry) {
571 			found = p;
572 			break;
573 		}
574 	}
575 	return found;
576 }
577 
578 /*
579  * lookup_mnt - Return the first child mount mounted at path
580  *
581  * "First" means first mounted chronologically.  If you create the
582  * following mounts:
583  *
584  * mount /dev/sda1 /mnt
585  * mount /dev/sda2 /mnt
586  * mount /dev/sda3 /mnt
587  *
588  * Then lookup_mnt() on the base /mnt dentry in the root mount will
589  * return successively the root dentry and vfsmount of /dev/sda1, then
590  * /dev/sda2, then /dev/sda3, then NULL.
591  *
592  * lookup_mnt takes a reference to the found vfsmount.
593  */
594 struct vfsmount *lookup_mnt(struct path *path)
595 {
596 	struct mount *child_mnt;
597 
598 	br_read_lock(&vfsmount_lock);
599 	child_mnt = __lookup_mnt(path->mnt, path->dentry, 1);
600 	if (child_mnt) {
601 		mnt_add_count(child_mnt, 1);
602 		br_read_unlock(&vfsmount_lock);
603 		return &child_mnt->mnt;
604 	} else {
605 		br_read_unlock(&vfsmount_lock);
606 		return NULL;
607 	}
608 }
609 
610 static struct mountpoint *new_mountpoint(struct dentry *dentry)
611 {
612 	struct list_head *chain = mountpoint_hashtable + hash(NULL, dentry);
613 	struct mountpoint *mp;
614 
615 	list_for_each_entry(mp, chain, m_hash) {
616 		if (mp->m_dentry == dentry) {
617 			/* might be worth a WARN_ON() */
618 			if (d_unlinked(dentry))
619 				return ERR_PTR(-ENOENT);
620 			mp->m_count++;
621 			return mp;
622 		}
623 	}
624 
625 	mp = kmalloc(sizeof(struct mountpoint), GFP_KERNEL);
626 	if (!mp)
627 		return ERR_PTR(-ENOMEM);
628 
629 	spin_lock(&dentry->d_lock);
630 	if (d_unlinked(dentry)) {
631 		spin_unlock(&dentry->d_lock);
632 		kfree(mp);
633 		return ERR_PTR(-ENOENT);
634 	}
635 	dentry->d_flags |= DCACHE_MOUNTED;
636 	spin_unlock(&dentry->d_lock);
637 	mp->m_dentry = dentry;
638 	mp->m_count = 1;
639 	list_add(&mp->m_hash, chain);
640 	return mp;
641 }
642 
643 static void put_mountpoint(struct mountpoint *mp)
644 {
645 	if (!--mp->m_count) {
646 		struct dentry *dentry = mp->m_dentry;
647 		spin_lock(&dentry->d_lock);
648 		dentry->d_flags &= ~DCACHE_MOUNTED;
649 		spin_unlock(&dentry->d_lock);
650 		list_del(&mp->m_hash);
651 		kfree(mp);
652 	}
653 }
654 
655 static inline int check_mnt(struct mount *mnt)
656 {
657 	return mnt->mnt_ns == current->nsproxy->mnt_ns;
658 }
659 
660 /*
661  * vfsmount lock must be held for write
662  */
663 static void touch_mnt_namespace(struct mnt_namespace *ns)
664 {
665 	if (ns) {
666 		ns->event = ++event;
667 		wake_up_interruptible(&ns->poll);
668 	}
669 }
670 
671 /*
672  * vfsmount lock must be held for write
673  */
674 static void __touch_mnt_namespace(struct mnt_namespace *ns)
675 {
676 	if (ns && ns->event != event) {
677 		ns->event = event;
678 		wake_up_interruptible(&ns->poll);
679 	}
680 }
681 
682 /*
683  * vfsmount lock must be held for write
684  */
685 static void detach_mnt(struct mount *mnt, struct path *old_path)
686 {
687 	old_path->dentry = mnt->mnt_mountpoint;
688 	old_path->mnt = &mnt->mnt_parent->mnt;
689 	mnt->mnt_parent = mnt;
690 	mnt->mnt_mountpoint = mnt->mnt.mnt_root;
691 	list_del_init(&mnt->mnt_child);
692 	list_del_init(&mnt->mnt_hash);
693 	put_mountpoint(mnt->mnt_mp);
694 	mnt->mnt_mp = NULL;
695 }
696 
697 /*
698  * vfsmount lock must be held for write
699  */
700 void mnt_set_mountpoint(struct mount *mnt,
701 			struct mountpoint *mp,
702 			struct mount *child_mnt)
703 {
704 	mp->m_count++;
705 	mnt_add_count(mnt, 1);	/* essentially, that's mntget */
706 	child_mnt->mnt_mountpoint = dget(mp->m_dentry);
707 	child_mnt->mnt_parent = mnt;
708 	child_mnt->mnt_mp = mp;
709 }
710 
711 /*
712  * vfsmount lock must be held for write
713  */
714 static void attach_mnt(struct mount *mnt,
715 			struct mount *parent,
716 			struct mountpoint *mp)
717 {
718 	mnt_set_mountpoint(parent, mp, mnt);
719 	list_add_tail(&mnt->mnt_hash, mount_hashtable +
720 			hash(&parent->mnt, mp->m_dentry));
721 	list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
722 }
723 
724 /*
725  * vfsmount lock must be held for write
726  */
727 static void commit_tree(struct mount *mnt)
728 {
729 	struct mount *parent = mnt->mnt_parent;
730 	struct mount *m;
731 	LIST_HEAD(head);
732 	struct mnt_namespace *n = parent->mnt_ns;
733 
734 	BUG_ON(parent == mnt);
735 
736 	list_add_tail(&head, &mnt->mnt_list);
737 	list_for_each_entry(m, &head, mnt_list)
738 		m->mnt_ns = n;
739 
740 	list_splice(&head, n->list.prev);
741 
742 	list_add_tail(&mnt->mnt_hash, mount_hashtable +
743 				hash(&parent->mnt, mnt->mnt_mountpoint));
744 	list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
745 	touch_mnt_namespace(n);
746 }
747 
748 static struct mount *next_mnt(struct mount *p, struct mount *root)
749 {
750 	struct list_head *next = p->mnt_mounts.next;
751 	if (next == &p->mnt_mounts) {
752 		while (1) {
753 			if (p == root)
754 				return NULL;
755 			next = p->mnt_child.next;
756 			if (next != &p->mnt_parent->mnt_mounts)
757 				break;
758 			p = p->mnt_parent;
759 		}
760 	}
761 	return list_entry(next, struct mount, mnt_child);
762 }
763 
764 static struct mount *skip_mnt_tree(struct mount *p)
765 {
766 	struct list_head *prev = p->mnt_mounts.prev;
767 	while (prev != &p->mnt_mounts) {
768 		p = list_entry(prev, struct mount, mnt_child);
769 		prev = p->mnt_mounts.prev;
770 	}
771 	return p;
772 }
773 
774 struct vfsmount *
775 vfs_kern_mount(struct file_system_type *type, int flags, const char *name, void *data)
776 {
777 	struct mount *mnt;
778 	struct dentry *root;
779 
780 	if (!type)
781 		return ERR_PTR(-ENODEV);
782 
783 	mnt = alloc_vfsmnt(name);
784 	if (!mnt)
785 		return ERR_PTR(-ENOMEM);
786 
787 	if (flags & MS_KERNMOUNT)
788 		mnt->mnt.mnt_flags = MNT_INTERNAL;
789 
790 	root = mount_fs(type, flags, name, data);
791 	if (IS_ERR(root)) {
792 		free_vfsmnt(mnt);
793 		return ERR_CAST(root);
794 	}
795 
796 	mnt->mnt.mnt_root = root;
797 	mnt->mnt.mnt_sb = root->d_sb;
798 	mnt->mnt_mountpoint = mnt->mnt.mnt_root;
799 	mnt->mnt_parent = mnt;
800 	br_write_lock(&vfsmount_lock);
801 	list_add_tail(&mnt->mnt_instance, &root->d_sb->s_mounts);
802 	br_write_unlock(&vfsmount_lock);
803 	return &mnt->mnt;
804 }
805 EXPORT_SYMBOL_GPL(vfs_kern_mount);
806 
807 static struct mount *clone_mnt(struct mount *old, struct dentry *root,
808 					int flag)
809 {
810 	struct super_block *sb = old->mnt.mnt_sb;
811 	struct mount *mnt;
812 	int err;
813 
814 	mnt = alloc_vfsmnt(old->mnt_devname);
815 	if (!mnt)
816 		return ERR_PTR(-ENOMEM);
817 
818 	if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE))
819 		mnt->mnt_group_id = 0; /* not a peer of original */
820 	else
821 		mnt->mnt_group_id = old->mnt_group_id;
822 
823 	if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
824 		err = mnt_alloc_group_id(mnt);
825 		if (err)
826 			goto out_free;
827 	}
828 
829 	mnt->mnt.mnt_flags = old->mnt.mnt_flags & ~MNT_WRITE_HOLD;
830 	/* Don't allow unprivileged users to change mount flags */
831 	if ((flag & CL_UNPRIVILEGED) && (mnt->mnt.mnt_flags & MNT_READONLY))
832 		mnt->mnt.mnt_flags |= MNT_LOCK_READONLY;
833 
834 	atomic_inc(&sb->s_active);
835 	mnt->mnt.mnt_sb = sb;
836 	mnt->mnt.mnt_root = dget(root);
837 	mnt->mnt_mountpoint = mnt->mnt.mnt_root;
838 	mnt->mnt_parent = mnt;
839 	br_write_lock(&vfsmount_lock);
840 	list_add_tail(&mnt->mnt_instance, &sb->s_mounts);
841 	br_write_unlock(&vfsmount_lock);
842 
843 	if ((flag & CL_SLAVE) ||
844 	    ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) {
845 		list_add(&mnt->mnt_slave, &old->mnt_slave_list);
846 		mnt->mnt_master = old;
847 		CLEAR_MNT_SHARED(mnt);
848 	} else if (!(flag & CL_PRIVATE)) {
849 		if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
850 			list_add(&mnt->mnt_share, &old->mnt_share);
851 		if (IS_MNT_SLAVE(old))
852 			list_add(&mnt->mnt_slave, &old->mnt_slave);
853 		mnt->mnt_master = old->mnt_master;
854 	}
855 	if (flag & CL_MAKE_SHARED)
856 		set_mnt_shared(mnt);
857 
858 	/* stick the duplicate mount on the same expiry list
859 	 * as the original if that was on one */
860 	if (flag & CL_EXPIRE) {
861 		if (!list_empty(&old->mnt_expire))
862 			list_add(&mnt->mnt_expire, &old->mnt_expire);
863 	}
864 
865 	return mnt;
866 
867  out_free:
868 	free_vfsmnt(mnt);
869 	return ERR_PTR(err);
870 }
871 
872 static inline void mntfree(struct mount *mnt)
873 {
874 	struct vfsmount *m = &mnt->mnt;
875 	struct super_block *sb = m->mnt_sb;
876 
877 	/*
878 	 * This probably indicates that somebody messed
879 	 * up a mnt_want/drop_write() pair.  If this
880 	 * happens, the filesystem was probably unable
881 	 * to make r/w->r/o transitions.
882 	 */
883 	/*
884 	 * The locking used to deal with mnt_count decrement provides barriers,
885 	 * so mnt_get_writers() below is safe.
886 	 */
887 	WARN_ON(mnt_get_writers(mnt));
888 	fsnotify_vfsmount_delete(m);
889 	dput(m->mnt_root);
890 	free_vfsmnt(mnt);
891 	deactivate_super(sb);
892 }
893 
894 static void mntput_no_expire(struct mount *mnt)
895 {
896 put_again:
897 #ifdef CONFIG_SMP
898 	br_read_lock(&vfsmount_lock);
899 	if (likely(mnt->mnt_ns)) {
900 		/* shouldn't be the last one */
901 		mnt_add_count(mnt, -1);
902 		br_read_unlock(&vfsmount_lock);
903 		return;
904 	}
905 	br_read_unlock(&vfsmount_lock);
906 
907 	br_write_lock(&vfsmount_lock);
908 	mnt_add_count(mnt, -1);
909 	if (mnt_get_count(mnt)) {
910 		br_write_unlock(&vfsmount_lock);
911 		return;
912 	}
913 #else
914 	mnt_add_count(mnt, -1);
915 	if (likely(mnt_get_count(mnt)))
916 		return;
917 	br_write_lock(&vfsmount_lock);
918 #endif
919 	if (unlikely(mnt->mnt_pinned)) {
920 		mnt_add_count(mnt, mnt->mnt_pinned + 1);
921 		mnt->mnt_pinned = 0;
922 		br_write_unlock(&vfsmount_lock);
923 		acct_auto_close_mnt(&mnt->mnt);
924 		goto put_again;
925 	}
926 
927 	list_del(&mnt->mnt_instance);
928 	br_write_unlock(&vfsmount_lock);
929 	mntfree(mnt);
930 }
931 
932 void mntput(struct vfsmount *mnt)
933 {
934 	if (mnt) {
935 		struct mount *m = real_mount(mnt);
936 		/* avoid cacheline pingpong, hope gcc doesn't get "smart" */
937 		if (unlikely(m->mnt_expiry_mark))
938 			m->mnt_expiry_mark = 0;
939 		mntput_no_expire(m);
940 	}
941 }
942 EXPORT_SYMBOL(mntput);
943 
944 struct vfsmount *mntget(struct vfsmount *mnt)
945 {
946 	if (mnt)
947 		mnt_add_count(real_mount(mnt), 1);
948 	return mnt;
949 }
950 EXPORT_SYMBOL(mntget);
951 
952 void mnt_pin(struct vfsmount *mnt)
953 {
954 	br_write_lock(&vfsmount_lock);
955 	real_mount(mnt)->mnt_pinned++;
956 	br_write_unlock(&vfsmount_lock);
957 }
958 EXPORT_SYMBOL(mnt_pin);
959 
960 void mnt_unpin(struct vfsmount *m)
961 {
962 	struct mount *mnt = real_mount(m);
963 	br_write_lock(&vfsmount_lock);
964 	if (mnt->mnt_pinned) {
965 		mnt_add_count(mnt, 1);
966 		mnt->mnt_pinned--;
967 	}
968 	br_write_unlock(&vfsmount_lock);
969 }
970 EXPORT_SYMBOL(mnt_unpin);
971 
972 static inline void mangle(struct seq_file *m, const char *s)
973 {
974 	seq_escape(m, s, " \t\n\\");
975 }
976 
977 /*
978  * Simple .show_options callback for filesystems which don't want to
979  * implement more complex mount option showing.
980  *
981  * See also save_mount_options().
982  */
983 int generic_show_options(struct seq_file *m, struct dentry *root)
984 {
985 	const char *options;
986 
987 	rcu_read_lock();
988 	options = rcu_dereference(root->d_sb->s_options);
989 
990 	if (options != NULL && options[0]) {
991 		seq_putc(m, ',');
992 		mangle(m, options);
993 	}
994 	rcu_read_unlock();
995 
996 	return 0;
997 }
998 EXPORT_SYMBOL(generic_show_options);
999 
1000 /*
1001  * If filesystem uses generic_show_options(), this function should be
1002  * called from the fill_super() callback.
1003  *
1004  * The .remount_fs callback usually needs to be handled in a special
1005  * way, to make sure, that previous options are not overwritten if the
1006  * remount fails.
1007  *
1008  * Also note, that if the filesystem's .remount_fs function doesn't
1009  * reset all options to their default value, but changes only newly
1010  * given options, then the displayed options will not reflect reality
1011  * any more.
1012  */
1013 void save_mount_options(struct super_block *sb, char *options)
1014 {
1015 	BUG_ON(sb->s_options);
1016 	rcu_assign_pointer(sb->s_options, kstrdup(options, GFP_KERNEL));
1017 }
1018 EXPORT_SYMBOL(save_mount_options);
1019 
1020 void replace_mount_options(struct super_block *sb, char *options)
1021 {
1022 	char *old = sb->s_options;
1023 	rcu_assign_pointer(sb->s_options, options);
1024 	if (old) {
1025 		synchronize_rcu();
1026 		kfree(old);
1027 	}
1028 }
1029 EXPORT_SYMBOL(replace_mount_options);
1030 
1031 #ifdef CONFIG_PROC_FS
1032 /* iterator; we want it to have access to namespace_sem, thus here... */
1033 static void *m_start(struct seq_file *m, loff_t *pos)
1034 {
1035 	struct proc_mounts *p = proc_mounts(m);
1036 
1037 	down_read(&namespace_sem);
1038 	return seq_list_start(&p->ns->list, *pos);
1039 }
1040 
1041 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
1042 {
1043 	struct proc_mounts *p = proc_mounts(m);
1044 
1045 	return seq_list_next(v, &p->ns->list, pos);
1046 }
1047 
1048 static void m_stop(struct seq_file *m, void *v)
1049 {
1050 	up_read(&namespace_sem);
1051 }
1052 
1053 static int m_show(struct seq_file *m, void *v)
1054 {
1055 	struct proc_mounts *p = proc_mounts(m);
1056 	struct mount *r = list_entry(v, struct mount, mnt_list);
1057 	return p->show(m, &r->mnt);
1058 }
1059 
1060 const struct seq_operations mounts_op = {
1061 	.start	= m_start,
1062 	.next	= m_next,
1063 	.stop	= m_stop,
1064 	.show	= m_show,
1065 };
1066 #endif  /* CONFIG_PROC_FS */
1067 
1068 /**
1069  * may_umount_tree - check if a mount tree is busy
1070  * @mnt: root of mount tree
1071  *
1072  * This is called to check if a tree of mounts has any
1073  * open files, pwds, chroots or sub mounts that are
1074  * busy.
1075  */
1076 int may_umount_tree(struct vfsmount *m)
1077 {
1078 	struct mount *mnt = real_mount(m);
1079 	int actual_refs = 0;
1080 	int minimum_refs = 0;
1081 	struct mount *p;
1082 	BUG_ON(!m);
1083 
1084 	/* write lock needed for mnt_get_count */
1085 	br_write_lock(&vfsmount_lock);
1086 	for (p = mnt; p; p = next_mnt(p, mnt)) {
1087 		actual_refs += mnt_get_count(p);
1088 		minimum_refs += 2;
1089 	}
1090 	br_write_unlock(&vfsmount_lock);
1091 
1092 	if (actual_refs > minimum_refs)
1093 		return 0;
1094 
1095 	return 1;
1096 }
1097 
1098 EXPORT_SYMBOL(may_umount_tree);
1099 
1100 /**
1101  * may_umount - check if a mount point is busy
1102  * @mnt: root of mount
1103  *
1104  * This is called to check if a mount point has any
1105  * open files, pwds, chroots or sub mounts. If the
1106  * mount has sub mounts this will return busy
1107  * regardless of whether the sub mounts are busy.
1108  *
1109  * Doesn't take quota and stuff into account. IOW, in some cases it will
1110  * give false negatives. The main reason why it's here is that we need
1111  * a non-destructive way to look for easily umountable filesystems.
1112  */
1113 int may_umount(struct vfsmount *mnt)
1114 {
1115 	int ret = 1;
1116 	down_read(&namespace_sem);
1117 	br_write_lock(&vfsmount_lock);
1118 	if (propagate_mount_busy(real_mount(mnt), 2))
1119 		ret = 0;
1120 	br_write_unlock(&vfsmount_lock);
1121 	up_read(&namespace_sem);
1122 	return ret;
1123 }
1124 
1125 EXPORT_SYMBOL(may_umount);
1126 
1127 static LIST_HEAD(unmounted);	/* protected by namespace_sem */
1128 
1129 static void namespace_unlock(void)
1130 {
1131 	struct mount *mnt;
1132 	LIST_HEAD(head);
1133 
1134 	if (likely(list_empty(&unmounted))) {
1135 		up_write(&namespace_sem);
1136 		return;
1137 	}
1138 
1139 	list_splice_init(&unmounted, &head);
1140 	up_write(&namespace_sem);
1141 
1142 	while (!list_empty(&head)) {
1143 		mnt = list_first_entry(&head, struct mount, mnt_hash);
1144 		list_del_init(&mnt->mnt_hash);
1145 		if (mnt_has_parent(mnt)) {
1146 			struct dentry *dentry;
1147 			struct mount *m;
1148 
1149 			br_write_lock(&vfsmount_lock);
1150 			dentry = mnt->mnt_mountpoint;
1151 			m = mnt->mnt_parent;
1152 			mnt->mnt_mountpoint = mnt->mnt.mnt_root;
1153 			mnt->mnt_parent = mnt;
1154 			m->mnt_ghosts--;
1155 			br_write_unlock(&vfsmount_lock);
1156 			dput(dentry);
1157 			mntput(&m->mnt);
1158 		}
1159 		mntput(&mnt->mnt);
1160 	}
1161 }
1162 
1163 static inline void namespace_lock(void)
1164 {
1165 	down_write(&namespace_sem);
1166 }
1167 
1168 /*
1169  * vfsmount lock must be held for write
1170  * namespace_sem must be held for write
1171  */
1172 void umount_tree(struct mount *mnt, int propagate)
1173 {
1174 	LIST_HEAD(tmp_list);
1175 	struct mount *p;
1176 
1177 	for (p = mnt; p; p = next_mnt(p, mnt))
1178 		list_move(&p->mnt_hash, &tmp_list);
1179 
1180 	if (propagate)
1181 		propagate_umount(&tmp_list);
1182 
1183 	list_for_each_entry(p, &tmp_list, mnt_hash) {
1184 		list_del_init(&p->mnt_expire);
1185 		list_del_init(&p->mnt_list);
1186 		__touch_mnt_namespace(p->mnt_ns);
1187 		p->mnt_ns = NULL;
1188 		list_del_init(&p->mnt_child);
1189 		if (mnt_has_parent(p)) {
1190 			p->mnt_parent->mnt_ghosts++;
1191 			put_mountpoint(p->mnt_mp);
1192 			p->mnt_mp = NULL;
1193 		}
1194 		change_mnt_propagation(p, MS_PRIVATE);
1195 	}
1196 	list_splice(&tmp_list, &unmounted);
1197 }
1198 
1199 static void shrink_submounts(struct mount *mnt);
1200 
1201 static int do_umount(struct mount *mnt, int flags)
1202 {
1203 	struct super_block *sb = mnt->mnt.mnt_sb;
1204 	int retval;
1205 
1206 	retval = security_sb_umount(&mnt->mnt, flags);
1207 	if (retval)
1208 		return retval;
1209 
1210 	/*
1211 	 * Allow userspace to request a mountpoint be expired rather than
1212 	 * unmounting unconditionally. Unmount only happens if:
1213 	 *  (1) the mark is already set (the mark is cleared by mntput())
1214 	 *  (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1215 	 */
1216 	if (flags & MNT_EXPIRE) {
1217 		if (&mnt->mnt == current->fs->root.mnt ||
1218 		    flags & (MNT_FORCE | MNT_DETACH))
1219 			return -EINVAL;
1220 
1221 		/*
1222 		 * probably don't strictly need the lock here if we examined
1223 		 * all race cases, but it's a slowpath.
1224 		 */
1225 		br_write_lock(&vfsmount_lock);
1226 		if (mnt_get_count(mnt) != 2) {
1227 			br_write_unlock(&vfsmount_lock);
1228 			return -EBUSY;
1229 		}
1230 		br_write_unlock(&vfsmount_lock);
1231 
1232 		if (!xchg(&mnt->mnt_expiry_mark, 1))
1233 			return -EAGAIN;
1234 	}
1235 
1236 	/*
1237 	 * If we may have to abort operations to get out of this
1238 	 * mount, and they will themselves hold resources we must
1239 	 * allow the fs to do things. In the Unix tradition of
1240 	 * 'Gee thats tricky lets do it in userspace' the umount_begin
1241 	 * might fail to complete on the first run through as other tasks
1242 	 * must return, and the like. Thats for the mount program to worry
1243 	 * about for the moment.
1244 	 */
1245 
1246 	if (flags & MNT_FORCE && sb->s_op->umount_begin) {
1247 		sb->s_op->umount_begin(sb);
1248 	}
1249 
1250 	/*
1251 	 * No sense to grab the lock for this test, but test itself looks
1252 	 * somewhat bogus. Suggestions for better replacement?
1253 	 * Ho-hum... In principle, we might treat that as umount + switch
1254 	 * to rootfs. GC would eventually take care of the old vfsmount.
1255 	 * Actually it makes sense, especially if rootfs would contain a
1256 	 * /reboot - static binary that would close all descriptors and
1257 	 * call reboot(9). Then init(8) could umount root and exec /reboot.
1258 	 */
1259 	if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1260 		/*
1261 		 * Special case for "unmounting" root ...
1262 		 * we just try to remount it readonly.
1263 		 */
1264 		down_write(&sb->s_umount);
1265 		if (!(sb->s_flags & MS_RDONLY))
1266 			retval = do_remount_sb(sb, MS_RDONLY, NULL, 0);
1267 		up_write(&sb->s_umount);
1268 		return retval;
1269 	}
1270 
1271 	namespace_lock();
1272 	br_write_lock(&vfsmount_lock);
1273 	event++;
1274 
1275 	if (!(flags & MNT_DETACH))
1276 		shrink_submounts(mnt);
1277 
1278 	retval = -EBUSY;
1279 	if (flags & MNT_DETACH || !propagate_mount_busy(mnt, 2)) {
1280 		if (!list_empty(&mnt->mnt_list))
1281 			umount_tree(mnt, 1);
1282 		retval = 0;
1283 	}
1284 	br_write_unlock(&vfsmount_lock);
1285 	namespace_unlock();
1286 	return retval;
1287 }
1288 
1289 /*
1290  * Is the caller allowed to modify his namespace?
1291  */
1292 static inline bool may_mount(void)
1293 {
1294 	return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN);
1295 }
1296 
1297 /*
1298  * Now umount can handle mount points as well as block devices.
1299  * This is important for filesystems which use unnamed block devices.
1300  *
1301  * We now support a flag for forced unmount like the other 'big iron'
1302  * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
1303  */
1304 
1305 SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
1306 {
1307 	struct path path;
1308 	struct mount *mnt;
1309 	int retval;
1310 	int lookup_flags = 0;
1311 
1312 	if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
1313 		return -EINVAL;
1314 
1315 	if (!may_mount())
1316 		return -EPERM;
1317 
1318 	if (!(flags & UMOUNT_NOFOLLOW))
1319 		lookup_flags |= LOOKUP_FOLLOW;
1320 
1321 	retval = user_path_at(AT_FDCWD, name, lookup_flags, &path);
1322 	if (retval)
1323 		goto out;
1324 	mnt = real_mount(path.mnt);
1325 	retval = -EINVAL;
1326 	if (path.dentry != path.mnt->mnt_root)
1327 		goto dput_and_out;
1328 	if (!check_mnt(mnt))
1329 		goto dput_and_out;
1330 
1331 	retval = do_umount(mnt, flags);
1332 dput_and_out:
1333 	/* we mustn't call path_put() as that would clear mnt_expiry_mark */
1334 	dput(path.dentry);
1335 	mntput_no_expire(mnt);
1336 out:
1337 	return retval;
1338 }
1339 
1340 #ifdef __ARCH_WANT_SYS_OLDUMOUNT
1341 
1342 /*
1343  *	The 2.0 compatible umount. No flags.
1344  */
1345 SYSCALL_DEFINE1(oldumount, char __user *, name)
1346 {
1347 	return sys_umount(name, 0);
1348 }
1349 
1350 #endif
1351 
1352 static bool mnt_ns_loop(struct path *path)
1353 {
1354 	/* Could bind mounting the mount namespace inode cause a
1355 	 * mount namespace loop?
1356 	 */
1357 	struct inode *inode = path->dentry->d_inode;
1358 	struct proc_ns *ei;
1359 	struct mnt_namespace *mnt_ns;
1360 
1361 	if (!proc_ns_inode(inode))
1362 		return false;
1363 
1364 	ei = get_proc_ns(inode);
1365 	if (ei->ns_ops != &mntns_operations)
1366 		return false;
1367 
1368 	mnt_ns = ei->ns;
1369 	return current->nsproxy->mnt_ns->seq >= mnt_ns->seq;
1370 }
1371 
1372 struct mount *copy_tree(struct mount *mnt, struct dentry *dentry,
1373 					int flag)
1374 {
1375 	struct mount *res, *p, *q, *r, *parent;
1376 
1377 	if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(mnt))
1378 		return ERR_PTR(-EINVAL);
1379 
1380 	res = q = clone_mnt(mnt, dentry, flag);
1381 	if (IS_ERR(q))
1382 		return q;
1383 
1384 	q->mnt_mountpoint = mnt->mnt_mountpoint;
1385 
1386 	p = mnt;
1387 	list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
1388 		struct mount *s;
1389 		if (!is_subdir(r->mnt_mountpoint, dentry))
1390 			continue;
1391 
1392 		for (s = r; s; s = next_mnt(s, r)) {
1393 			if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(s)) {
1394 				s = skip_mnt_tree(s);
1395 				continue;
1396 			}
1397 			while (p != s->mnt_parent) {
1398 				p = p->mnt_parent;
1399 				q = q->mnt_parent;
1400 			}
1401 			p = s;
1402 			parent = q;
1403 			q = clone_mnt(p, p->mnt.mnt_root, flag);
1404 			if (IS_ERR(q))
1405 				goto out;
1406 			br_write_lock(&vfsmount_lock);
1407 			list_add_tail(&q->mnt_list, &res->mnt_list);
1408 			attach_mnt(q, parent, p->mnt_mp);
1409 			br_write_unlock(&vfsmount_lock);
1410 		}
1411 	}
1412 	return res;
1413 out:
1414 	if (res) {
1415 		br_write_lock(&vfsmount_lock);
1416 		umount_tree(res, 0);
1417 		br_write_unlock(&vfsmount_lock);
1418 	}
1419 	return q;
1420 }
1421 
1422 /* Caller should check returned pointer for errors */
1423 
1424 struct vfsmount *collect_mounts(struct path *path)
1425 {
1426 	struct mount *tree;
1427 	namespace_lock();
1428 	tree = copy_tree(real_mount(path->mnt), path->dentry,
1429 			 CL_COPY_ALL | CL_PRIVATE);
1430 	namespace_unlock();
1431 	if (IS_ERR(tree))
1432 		return NULL;
1433 	return &tree->mnt;
1434 }
1435 
1436 void drop_collected_mounts(struct vfsmount *mnt)
1437 {
1438 	namespace_lock();
1439 	br_write_lock(&vfsmount_lock);
1440 	umount_tree(real_mount(mnt), 0);
1441 	br_write_unlock(&vfsmount_lock);
1442 	namespace_unlock();
1443 }
1444 
1445 int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
1446 		   struct vfsmount *root)
1447 {
1448 	struct mount *mnt;
1449 	int res = f(root, arg);
1450 	if (res)
1451 		return res;
1452 	list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) {
1453 		res = f(&mnt->mnt, arg);
1454 		if (res)
1455 			return res;
1456 	}
1457 	return 0;
1458 }
1459 
1460 static void cleanup_group_ids(struct mount *mnt, struct mount *end)
1461 {
1462 	struct mount *p;
1463 
1464 	for (p = mnt; p != end; p = next_mnt(p, mnt)) {
1465 		if (p->mnt_group_id && !IS_MNT_SHARED(p))
1466 			mnt_release_group_id(p);
1467 	}
1468 }
1469 
1470 static int invent_group_ids(struct mount *mnt, bool recurse)
1471 {
1472 	struct mount *p;
1473 
1474 	for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
1475 		if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
1476 			int err = mnt_alloc_group_id(p);
1477 			if (err) {
1478 				cleanup_group_ids(mnt, p);
1479 				return err;
1480 			}
1481 		}
1482 	}
1483 
1484 	return 0;
1485 }
1486 
1487 /*
1488  *  @source_mnt : mount tree to be attached
1489  *  @nd         : place the mount tree @source_mnt is attached
1490  *  @parent_nd  : if non-null, detach the source_mnt from its parent and
1491  *  		   store the parent mount and mountpoint dentry.
1492  *  		   (done when source_mnt is moved)
1493  *
1494  *  NOTE: in the table below explains the semantics when a source mount
1495  *  of a given type is attached to a destination mount of a given type.
1496  * ---------------------------------------------------------------------------
1497  * |         BIND MOUNT OPERATION                                            |
1498  * |**************************************************************************
1499  * | source-->| shared        |       private  |       slave    | unbindable |
1500  * | dest     |               |                |                |            |
1501  * |   |      |               |                |                |            |
1502  * |   v      |               |                |                |            |
1503  * |**************************************************************************
1504  * |  shared  | shared (++)   |     shared (+) |     shared(+++)|  invalid   |
1505  * |          |               |                |                |            |
1506  * |non-shared| shared (+)    |      private   |      slave (*) |  invalid   |
1507  * ***************************************************************************
1508  * A bind operation clones the source mount and mounts the clone on the
1509  * destination mount.
1510  *
1511  * (++)  the cloned mount is propagated to all the mounts in the propagation
1512  * 	 tree of the destination mount and the cloned mount is added to
1513  * 	 the peer group of the source mount.
1514  * (+)   the cloned mount is created under the destination mount and is marked
1515  *       as shared. The cloned mount is added to the peer group of the source
1516  *       mount.
1517  * (+++) the mount is propagated to all the mounts in the propagation tree
1518  *       of the destination mount and the cloned mount is made slave
1519  *       of the same master as that of the source mount. The cloned mount
1520  *       is marked as 'shared and slave'.
1521  * (*)   the cloned mount is made a slave of the same master as that of the
1522  * 	 source mount.
1523  *
1524  * ---------------------------------------------------------------------------
1525  * |         		MOVE MOUNT OPERATION                                 |
1526  * |**************************************************************************
1527  * | source-->| shared        |       private  |       slave    | unbindable |
1528  * | dest     |               |                |                |            |
1529  * |   |      |               |                |                |            |
1530  * |   v      |               |                |                |            |
1531  * |**************************************************************************
1532  * |  shared  | shared (+)    |     shared (+) |    shared(+++) |  invalid   |
1533  * |          |               |                |                |            |
1534  * |non-shared| shared (+*)   |      private   |    slave (*)   | unbindable |
1535  * ***************************************************************************
1536  *
1537  * (+)  the mount is moved to the destination. And is then propagated to
1538  * 	all the mounts in the propagation tree of the destination mount.
1539  * (+*)  the mount is moved to the destination.
1540  * (+++)  the mount is moved to the destination and is then propagated to
1541  * 	all the mounts belonging to the destination mount's propagation tree.
1542  * 	the mount is marked as 'shared and slave'.
1543  * (*)	the mount continues to be a slave at the new location.
1544  *
1545  * if the source mount is a tree, the operations explained above is
1546  * applied to each mount in the tree.
1547  * Must be called without spinlocks held, since this function can sleep
1548  * in allocations.
1549  */
1550 static int attach_recursive_mnt(struct mount *source_mnt,
1551 			struct mount *dest_mnt,
1552 			struct mountpoint *dest_mp,
1553 			struct path *parent_path)
1554 {
1555 	LIST_HEAD(tree_list);
1556 	struct mount *child, *p;
1557 	int err;
1558 
1559 	if (IS_MNT_SHARED(dest_mnt)) {
1560 		err = invent_group_ids(source_mnt, true);
1561 		if (err)
1562 			goto out;
1563 	}
1564 	err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list);
1565 	if (err)
1566 		goto out_cleanup_ids;
1567 
1568 	br_write_lock(&vfsmount_lock);
1569 
1570 	if (IS_MNT_SHARED(dest_mnt)) {
1571 		for (p = source_mnt; p; p = next_mnt(p, source_mnt))
1572 			set_mnt_shared(p);
1573 	}
1574 	if (parent_path) {
1575 		detach_mnt(source_mnt, parent_path);
1576 		attach_mnt(source_mnt, dest_mnt, dest_mp);
1577 		touch_mnt_namespace(source_mnt->mnt_ns);
1578 	} else {
1579 		mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt);
1580 		commit_tree(source_mnt);
1581 	}
1582 
1583 	list_for_each_entry_safe(child, p, &tree_list, mnt_hash) {
1584 		list_del_init(&child->mnt_hash);
1585 		commit_tree(child);
1586 	}
1587 	br_write_unlock(&vfsmount_lock);
1588 
1589 	return 0;
1590 
1591  out_cleanup_ids:
1592 	if (IS_MNT_SHARED(dest_mnt))
1593 		cleanup_group_ids(source_mnt, NULL);
1594  out:
1595 	return err;
1596 }
1597 
1598 static struct mountpoint *lock_mount(struct path *path)
1599 {
1600 	struct vfsmount *mnt;
1601 	struct dentry *dentry = path->dentry;
1602 retry:
1603 	mutex_lock(&dentry->d_inode->i_mutex);
1604 	if (unlikely(cant_mount(dentry))) {
1605 		mutex_unlock(&dentry->d_inode->i_mutex);
1606 		return ERR_PTR(-ENOENT);
1607 	}
1608 	namespace_lock();
1609 	mnt = lookup_mnt(path);
1610 	if (likely(!mnt)) {
1611 		struct mountpoint *mp = new_mountpoint(dentry);
1612 		if (IS_ERR(mp)) {
1613 			namespace_unlock();
1614 			mutex_unlock(&dentry->d_inode->i_mutex);
1615 			return mp;
1616 		}
1617 		return mp;
1618 	}
1619 	namespace_unlock();
1620 	mutex_unlock(&path->dentry->d_inode->i_mutex);
1621 	path_put(path);
1622 	path->mnt = mnt;
1623 	dentry = path->dentry = dget(mnt->mnt_root);
1624 	goto retry;
1625 }
1626 
1627 static void unlock_mount(struct mountpoint *where)
1628 {
1629 	struct dentry *dentry = where->m_dentry;
1630 	put_mountpoint(where);
1631 	namespace_unlock();
1632 	mutex_unlock(&dentry->d_inode->i_mutex);
1633 }
1634 
1635 static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp)
1636 {
1637 	if (mnt->mnt.mnt_sb->s_flags & MS_NOUSER)
1638 		return -EINVAL;
1639 
1640 	if (S_ISDIR(mp->m_dentry->d_inode->i_mode) !=
1641 	      S_ISDIR(mnt->mnt.mnt_root->d_inode->i_mode))
1642 		return -ENOTDIR;
1643 
1644 	return attach_recursive_mnt(mnt, p, mp, NULL);
1645 }
1646 
1647 /*
1648  * Sanity check the flags to change_mnt_propagation.
1649  */
1650 
1651 static int flags_to_propagation_type(int flags)
1652 {
1653 	int type = flags & ~(MS_REC | MS_SILENT);
1654 
1655 	/* Fail if any non-propagation flags are set */
1656 	if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
1657 		return 0;
1658 	/* Only one propagation flag should be set */
1659 	if (!is_power_of_2(type))
1660 		return 0;
1661 	return type;
1662 }
1663 
1664 /*
1665  * recursively change the type of the mountpoint.
1666  */
1667 static int do_change_type(struct path *path, int flag)
1668 {
1669 	struct mount *m;
1670 	struct mount *mnt = real_mount(path->mnt);
1671 	int recurse = flag & MS_REC;
1672 	int type;
1673 	int err = 0;
1674 
1675 	if (path->dentry != path->mnt->mnt_root)
1676 		return -EINVAL;
1677 
1678 	type = flags_to_propagation_type(flag);
1679 	if (!type)
1680 		return -EINVAL;
1681 
1682 	namespace_lock();
1683 	if (type == MS_SHARED) {
1684 		err = invent_group_ids(mnt, recurse);
1685 		if (err)
1686 			goto out_unlock;
1687 	}
1688 
1689 	br_write_lock(&vfsmount_lock);
1690 	for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
1691 		change_mnt_propagation(m, type);
1692 	br_write_unlock(&vfsmount_lock);
1693 
1694  out_unlock:
1695 	namespace_unlock();
1696 	return err;
1697 }
1698 
1699 /*
1700  * do loopback mount.
1701  */
1702 static int do_loopback(struct path *path, const char *old_name,
1703 				int recurse)
1704 {
1705 	struct path old_path;
1706 	struct mount *mnt = NULL, *old, *parent;
1707 	struct mountpoint *mp;
1708 	int err;
1709 	if (!old_name || !*old_name)
1710 		return -EINVAL;
1711 	err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
1712 	if (err)
1713 		return err;
1714 
1715 	err = -EINVAL;
1716 	if (mnt_ns_loop(&old_path))
1717 		goto out;
1718 
1719 	mp = lock_mount(path);
1720 	err = PTR_ERR(mp);
1721 	if (IS_ERR(mp))
1722 		goto out;
1723 
1724 	old = real_mount(old_path.mnt);
1725 	parent = real_mount(path->mnt);
1726 
1727 	err = -EINVAL;
1728 	if (IS_MNT_UNBINDABLE(old))
1729 		goto out2;
1730 
1731 	if (!check_mnt(parent) || !check_mnt(old))
1732 		goto out2;
1733 
1734 	if (recurse)
1735 		mnt = copy_tree(old, old_path.dentry, 0);
1736 	else
1737 		mnt = clone_mnt(old, old_path.dentry, 0);
1738 
1739 	if (IS_ERR(mnt)) {
1740 		err = PTR_ERR(mnt);
1741 		goto out2;
1742 	}
1743 
1744 	err = graft_tree(mnt, parent, mp);
1745 	if (err) {
1746 		br_write_lock(&vfsmount_lock);
1747 		umount_tree(mnt, 0);
1748 		br_write_unlock(&vfsmount_lock);
1749 	}
1750 out2:
1751 	unlock_mount(mp);
1752 out:
1753 	path_put(&old_path);
1754 	return err;
1755 }
1756 
1757 static int change_mount_flags(struct vfsmount *mnt, int ms_flags)
1758 {
1759 	int error = 0;
1760 	int readonly_request = 0;
1761 
1762 	if (ms_flags & MS_RDONLY)
1763 		readonly_request = 1;
1764 	if (readonly_request == __mnt_is_readonly(mnt))
1765 		return 0;
1766 
1767 	if (mnt->mnt_flags & MNT_LOCK_READONLY)
1768 		return -EPERM;
1769 
1770 	if (readonly_request)
1771 		error = mnt_make_readonly(real_mount(mnt));
1772 	else
1773 		__mnt_unmake_readonly(real_mount(mnt));
1774 	return error;
1775 }
1776 
1777 /*
1778  * change filesystem flags. dir should be a physical root of filesystem.
1779  * If you've mounted a non-root directory somewhere and want to do remount
1780  * on it - tough luck.
1781  */
1782 static int do_remount(struct path *path, int flags, int mnt_flags,
1783 		      void *data)
1784 {
1785 	int err;
1786 	struct super_block *sb = path->mnt->mnt_sb;
1787 	struct mount *mnt = real_mount(path->mnt);
1788 
1789 	if (!check_mnt(mnt))
1790 		return -EINVAL;
1791 
1792 	if (path->dentry != path->mnt->mnt_root)
1793 		return -EINVAL;
1794 
1795 	err = security_sb_remount(sb, data);
1796 	if (err)
1797 		return err;
1798 
1799 	down_write(&sb->s_umount);
1800 	if (flags & MS_BIND)
1801 		err = change_mount_flags(path->mnt, flags);
1802 	else if (!capable(CAP_SYS_ADMIN))
1803 		err = -EPERM;
1804 	else
1805 		err = do_remount_sb(sb, flags, data, 0);
1806 	if (!err) {
1807 		br_write_lock(&vfsmount_lock);
1808 		mnt_flags |= mnt->mnt.mnt_flags & MNT_PROPAGATION_MASK;
1809 		mnt->mnt.mnt_flags = mnt_flags;
1810 		br_write_unlock(&vfsmount_lock);
1811 	}
1812 	up_write(&sb->s_umount);
1813 	if (!err) {
1814 		br_write_lock(&vfsmount_lock);
1815 		touch_mnt_namespace(mnt->mnt_ns);
1816 		br_write_unlock(&vfsmount_lock);
1817 	}
1818 	return err;
1819 }
1820 
1821 static inline int tree_contains_unbindable(struct mount *mnt)
1822 {
1823 	struct mount *p;
1824 	for (p = mnt; p; p = next_mnt(p, mnt)) {
1825 		if (IS_MNT_UNBINDABLE(p))
1826 			return 1;
1827 	}
1828 	return 0;
1829 }
1830 
1831 static int do_move_mount(struct path *path, const char *old_name)
1832 {
1833 	struct path old_path, parent_path;
1834 	struct mount *p;
1835 	struct mount *old;
1836 	struct mountpoint *mp;
1837 	int err;
1838 	if (!old_name || !*old_name)
1839 		return -EINVAL;
1840 	err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
1841 	if (err)
1842 		return err;
1843 
1844 	mp = lock_mount(path);
1845 	err = PTR_ERR(mp);
1846 	if (IS_ERR(mp))
1847 		goto out;
1848 
1849 	old = real_mount(old_path.mnt);
1850 	p = real_mount(path->mnt);
1851 
1852 	err = -EINVAL;
1853 	if (!check_mnt(p) || !check_mnt(old))
1854 		goto out1;
1855 
1856 	err = -EINVAL;
1857 	if (old_path.dentry != old_path.mnt->mnt_root)
1858 		goto out1;
1859 
1860 	if (!mnt_has_parent(old))
1861 		goto out1;
1862 
1863 	if (S_ISDIR(path->dentry->d_inode->i_mode) !=
1864 	      S_ISDIR(old_path.dentry->d_inode->i_mode))
1865 		goto out1;
1866 	/*
1867 	 * Don't move a mount residing in a shared parent.
1868 	 */
1869 	if (IS_MNT_SHARED(old->mnt_parent))
1870 		goto out1;
1871 	/*
1872 	 * Don't move a mount tree containing unbindable mounts to a destination
1873 	 * mount which is shared.
1874 	 */
1875 	if (IS_MNT_SHARED(p) && tree_contains_unbindable(old))
1876 		goto out1;
1877 	err = -ELOOP;
1878 	for (; mnt_has_parent(p); p = p->mnt_parent)
1879 		if (p == old)
1880 			goto out1;
1881 
1882 	err = attach_recursive_mnt(old, real_mount(path->mnt), mp, &parent_path);
1883 	if (err)
1884 		goto out1;
1885 
1886 	/* if the mount is moved, it should no longer be expire
1887 	 * automatically */
1888 	list_del_init(&old->mnt_expire);
1889 out1:
1890 	unlock_mount(mp);
1891 out:
1892 	if (!err)
1893 		path_put(&parent_path);
1894 	path_put(&old_path);
1895 	return err;
1896 }
1897 
1898 static struct vfsmount *fs_set_subtype(struct vfsmount *mnt, const char *fstype)
1899 {
1900 	int err;
1901 	const char *subtype = strchr(fstype, '.');
1902 	if (subtype) {
1903 		subtype++;
1904 		err = -EINVAL;
1905 		if (!subtype[0])
1906 			goto err;
1907 	} else
1908 		subtype = "";
1909 
1910 	mnt->mnt_sb->s_subtype = kstrdup(subtype, GFP_KERNEL);
1911 	err = -ENOMEM;
1912 	if (!mnt->mnt_sb->s_subtype)
1913 		goto err;
1914 	return mnt;
1915 
1916  err:
1917 	mntput(mnt);
1918 	return ERR_PTR(err);
1919 }
1920 
1921 /*
1922  * add a mount into a namespace's mount tree
1923  */
1924 static int do_add_mount(struct mount *newmnt, struct path *path, int mnt_flags)
1925 {
1926 	struct mountpoint *mp;
1927 	struct mount *parent;
1928 	int err;
1929 
1930 	mnt_flags &= ~(MNT_SHARED | MNT_WRITE_HOLD | MNT_INTERNAL);
1931 
1932 	mp = lock_mount(path);
1933 	if (IS_ERR(mp))
1934 		return PTR_ERR(mp);
1935 
1936 	parent = real_mount(path->mnt);
1937 	err = -EINVAL;
1938 	if (unlikely(!check_mnt(parent))) {
1939 		/* that's acceptable only for automounts done in private ns */
1940 		if (!(mnt_flags & MNT_SHRINKABLE))
1941 			goto unlock;
1942 		/* ... and for those we'd better have mountpoint still alive */
1943 		if (!parent->mnt_ns)
1944 			goto unlock;
1945 	}
1946 
1947 	/* Refuse the same filesystem on the same mount point */
1948 	err = -EBUSY;
1949 	if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb &&
1950 	    path->mnt->mnt_root == path->dentry)
1951 		goto unlock;
1952 
1953 	err = -EINVAL;
1954 	if (S_ISLNK(newmnt->mnt.mnt_root->d_inode->i_mode))
1955 		goto unlock;
1956 
1957 	newmnt->mnt.mnt_flags = mnt_flags;
1958 	err = graft_tree(newmnt, parent, mp);
1959 
1960 unlock:
1961 	unlock_mount(mp);
1962 	return err;
1963 }
1964 
1965 /*
1966  * create a new mount for userspace and request it to be added into the
1967  * namespace's tree
1968  */
1969 static int do_new_mount(struct path *path, const char *fstype, int flags,
1970 			int mnt_flags, const char *name, void *data)
1971 {
1972 	struct file_system_type *type;
1973 	struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns;
1974 	struct vfsmount *mnt;
1975 	int err;
1976 
1977 	if (!fstype)
1978 		return -EINVAL;
1979 
1980 	type = get_fs_type(fstype);
1981 	if (!type)
1982 		return -ENODEV;
1983 
1984 	if (user_ns != &init_user_ns) {
1985 		if (!(type->fs_flags & FS_USERNS_MOUNT)) {
1986 			put_filesystem(type);
1987 			return -EPERM;
1988 		}
1989 		/* Only in special cases allow devices from mounts
1990 		 * created outside the initial user namespace.
1991 		 */
1992 		if (!(type->fs_flags & FS_USERNS_DEV_MOUNT)) {
1993 			flags |= MS_NODEV;
1994 			mnt_flags |= MNT_NODEV;
1995 		}
1996 	}
1997 
1998 	mnt = vfs_kern_mount(type, flags, name, data);
1999 	if (!IS_ERR(mnt) && (type->fs_flags & FS_HAS_SUBTYPE) &&
2000 	    !mnt->mnt_sb->s_subtype)
2001 		mnt = fs_set_subtype(mnt, fstype);
2002 
2003 	put_filesystem(type);
2004 	if (IS_ERR(mnt))
2005 		return PTR_ERR(mnt);
2006 
2007 	err = do_add_mount(real_mount(mnt), path, mnt_flags);
2008 	if (err)
2009 		mntput(mnt);
2010 	return err;
2011 }
2012 
2013 int finish_automount(struct vfsmount *m, struct path *path)
2014 {
2015 	struct mount *mnt = real_mount(m);
2016 	int err;
2017 	/* The new mount record should have at least 2 refs to prevent it being
2018 	 * expired before we get a chance to add it
2019 	 */
2020 	BUG_ON(mnt_get_count(mnt) < 2);
2021 
2022 	if (m->mnt_sb == path->mnt->mnt_sb &&
2023 	    m->mnt_root == path->dentry) {
2024 		err = -ELOOP;
2025 		goto fail;
2026 	}
2027 
2028 	err = do_add_mount(mnt, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
2029 	if (!err)
2030 		return 0;
2031 fail:
2032 	/* remove m from any expiration list it may be on */
2033 	if (!list_empty(&mnt->mnt_expire)) {
2034 		namespace_lock();
2035 		br_write_lock(&vfsmount_lock);
2036 		list_del_init(&mnt->mnt_expire);
2037 		br_write_unlock(&vfsmount_lock);
2038 		namespace_unlock();
2039 	}
2040 	mntput(m);
2041 	mntput(m);
2042 	return err;
2043 }
2044 
2045 /**
2046  * mnt_set_expiry - Put a mount on an expiration list
2047  * @mnt: The mount to list.
2048  * @expiry_list: The list to add the mount to.
2049  */
2050 void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
2051 {
2052 	namespace_lock();
2053 	br_write_lock(&vfsmount_lock);
2054 
2055 	list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
2056 
2057 	br_write_unlock(&vfsmount_lock);
2058 	namespace_unlock();
2059 }
2060 EXPORT_SYMBOL(mnt_set_expiry);
2061 
2062 /*
2063  * process a list of expirable mountpoints with the intent of discarding any
2064  * mountpoints that aren't in use and haven't been touched since last we came
2065  * here
2066  */
2067 void mark_mounts_for_expiry(struct list_head *mounts)
2068 {
2069 	struct mount *mnt, *next;
2070 	LIST_HEAD(graveyard);
2071 
2072 	if (list_empty(mounts))
2073 		return;
2074 
2075 	namespace_lock();
2076 	br_write_lock(&vfsmount_lock);
2077 
2078 	/* extract from the expiration list every vfsmount that matches the
2079 	 * following criteria:
2080 	 * - only referenced by its parent vfsmount
2081 	 * - still marked for expiry (marked on the last call here; marks are
2082 	 *   cleared by mntput())
2083 	 */
2084 	list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
2085 		if (!xchg(&mnt->mnt_expiry_mark, 1) ||
2086 			propagate_mount_busy(mnt, 1))
2087 			continue;
2088 		list_move(&mnt->mnt_expire, &graveyard);
2089 	}
2090 	while (!list_empty(&graveyard)) {
2091 		mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
2092 		touch_mnt_namespace(mnt->mnt_ns);
2093 		umount_tree(mnt, 1);
2094 	}
2095 	br_write_unlock(&vfsmount_lock);
2096 	namespace_unlock();
2097 }
2098 
2099 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
2100 
2101 /*
2102  * Ripoff of 'select_parent()'
2103  *
2104  * search the list of submounts for a given mountpoint, and move any
2105  * shrinkable submounts to the 'graveyard' list.
2106  */
2107 static int select_submounts(struct mount *parent, struct list_head *graveyard)
2108 {
2109 	struct mount *this_parent = parent;
2110 	struct list_head *next;
2111 	int found = 0;
2112 
2113 repeat:
2114 	next = this_parent->mnt_mounts.next;
2115 resume:
2116 	while (next != &this_parent->mnt_mounts) {
2117 		struct list_head *tmp = next;
2118 		struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
2119 
2120 		next = tmp->next;
2121 		if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
2122 			continue;
2123 		/*
2124 		 * Descend a level if the d_mounts list is non-empty.
2125 		 */
2126 		if (!list_empty(&mnt->mnt_mounts)) {
2127 			this_parent = mnt;
2128 			goto repeat;
2129 		}
2130 
2131 		if (!propagate_mount_busy(mnt, 1)) {
2132 			list_move_tail(&mnt->mnt_expire, graveyard);
2133 			found++;
2134 		}
2135 	}
2136 	/*
2137 	 * All done at this level ... ascend and resume the search
2138 	 */
2139 	if (this_parent != parent) {
2140 		next = this_parent->mnt_child.next;
2141 		this_parent = this_parent->mnt_parent;
2142 		goto resume;
2143 	}
2144 	return found;
2145 }
2146 
2147 /*
2148  * process a list of expirable mountpoints with the intent of discarding any
2149  * submounts of a specific parent mountpoint
2150  *
2151  * vfsmount_lock must be held for write
2152  */
2153 static void shrink_submounts(struct mount *mnt)
2154 {
2155 	LIST_HEAD(graveyard);
2156 	struct mount *m;
2157 
2158 	/* extract submounts of 'mountpoint' from the expiration list */
2159 	while (select_submounts(mnt, &graveyard)) {
2160 		while (!list_empty(&graveyard)) {
2161 			m = list_first_entry(&graveyard, struct mount,
2162 						mnt_expire);
2163 			touch_mnt_namespace(m->mnt_ns);
2164 			umount_tree(m, 1);
2165 		}
2166 	}
2167 }
2168 
2169 /*
2170  * Some copy_from_user() implementations do not return the exact number of
2171  * bytes remaining to copy on a fault.  But copy_mount_options() requires that.
2172  * Note that this function differs from copy_from_user() in that it will oops
2173  * on bad values of `to', rather than returning a short copy.
2174  */
2175 static long exact_copy_from_user(void *to, const void __user * from,
2176 				 unsigned long n)
2177 {
2178 	char *t = to;
2179 	const char __user *f = from;
2180 	char c;
2181 
2182 	if (!access_ok(VERIFY_READ, from, n))
2183 		return n;
2184 
2185 	while (n) {
2186 		if (__get_user(c, f)) {
2187 			memset(t, 0, n);
2188 			break;
2189 		}
2190 		*t++ = c;
2191 		f++;
2192 		n--;
2193 	}
2194 	return n;
2195 }
2196 
2197 int copy_mount_options(const void __user * data, unsigned long *where)
2198 {
2199 	int i;
2200 	unsigned long page;
2201 	unsigned long size;
2202 
2203 	*where = 0;
2204 	if (!data)
2205 		return 0;
2206 
2207 	if (!(page = __get_free_page(GFP_KERNEL)))
2208 		return -ENOMEM;
2209 
2210 	/* We only care that *some* data at the address the user
2211 	 * gave us is valid.  Just in case, we'll zero
2212 	 * the remainder of the page.
2213 	 */
2214 	/* copy_from_user cannot cross TASK_SIZE ! */
2215 	size = TASK_SIZE - (unsigned long)data;
2216 	if (size > PAGE_SIZE)
2217 		size = PAGE_SIZE;
2218 
2219 	i = size - exact_copy_from_user((void *)page, data, size);
2220 	if (!i) {
2221 		free_page(page);
2222 		return -EFAULT;
2223 	}
2224 	if (i != PAGE_SIZE)
2225 		memset((char *)page + i, 0, PAGE_SIZE - i);
2226 	*where = page;
2227 	return 0;
2228 }
2229 
2230 int copy_mount_string(const void __user *data, char **where)
2231 {
2232 	char *tmp;
2233 
2234 	if (!data) {
2235 		*where = NULL;
2236 		return 0;
2237 	}
2238 
2239 	tmp = strndup_user(data, PAGE_SIZE);
2240 	if (IS_ERR(tmp))
2241 		return PTR_ERR(tmp);
2242 
2243 	*where = tmp;
2244 	return 0;
2245 }
2246 
2247 /*
2248  * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
2249  * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
2250  *
2251  * data is a (void *) that can point to any structure up to
2252  * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
2253  * information (or be NULL).
2254  *
2255  * Pre-0.97 versions of mount() didn't have a flags word.
2256  * When the flags word was introduced its top half was required
2257  * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
2258  * Therefore, if this magic number is present, it carries no information
2259  * and must be discarded.
2260  */
2261 long do_mount(const char *dev_name, const char *dir_name,
2262 		const char *type_page, unsigned long flags, void *data_page)
2263 {
2264 	struct path path;
2265 	int retval = 0;
2266 	int mnt_flags = 0;
2267 
2268 	/* Discard magic */
2269 	if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
2270 		flags &= ~MS_MGC_MSK;
2271 
2272 	/* Basic sanity checks */
2273 
2274 	if (!dir_name || !*dir_name || !memchr(dir_name, 0, PAGE_SIZE))
2275 		return -EINVAL;
2276 
2277 	if (data_page)
2278 		((char *)data_page)[PAGE_SIZE - 1] = 0;
2279 
2280 	/* ... and get the mountpoint */
2281 	retval = kern_path(dir_name, LOOKUP_FOLLOW, &path);
2282 	if (retval)
2283 		return retval;
2284 
2285 	retval = security_sb_mount(dev_name, &path,
2286 				   type_page, flags, data_page);
2287 	if (!retval && !may_mount())
2288 		retval = -EPERM;
2289 	if (retval)
2290 		goto dput_out;
2291 
2292 	/* Default to relatime unless overriden */
2293 	if (!(flags & MS_NOATIME))
2294 		mnt_flags |= MNT_RELATIME;
2295 
2296 	/* Separate the per-mountpoint flags */
2297 	if (flags & MS_NOSUID)
2298 		mnt_flags |= MNT_NOSUID;
2299 	if (flags & MS_NODEV)
2300 		mnt_flags |= MNT_NODEV;
2301 	if (flags & MS_NOEXEC)
2302 		mnt_flags |= MNT_NOEXEC;
2303 	if (flags & MS_NOATIME)
2304 		mnt_flags |= MNT_NOATIME;
2305 	if (flags & MS_NODIRATIME)
2306 		mnt_flags |= MNT_NODIRATIME;
2307 	if (flags & MS_STRICTATIME)
2308 		mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
2309 	if (flags & MS_RDONLY)
2310 		mnt_flags |= MNT_READONLY;
2311 
2312 	flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE | MS_BORN |
2313 		   MS_NOATIME | MS_NODIRATIME | MS_RELATIME| MS_KERNMOUNT |
2314 		   MS_STRICTATIME);
2315 
2316 	if (flags & MS_REMOUNT)
2317 		retval = do_remount(&path, flags & ~MS_REMOUNT, mnt_flags,
2318 				    data_page);
2319 	else if (flags & MS_BIND)
2320 		retval = do_loopback(&path, dev_name, flags & MS_REC);
2321 	else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2322 		retval = do_change_type(&path, flags);
2323 	else if (flags & MS_MOVE)
2324 		retval = do_move_mount(&path, dev_name);
2325 	else
2326 		retval = do_new_mount(&path, type_page, flags, mnt_flags,
2327 				      dev_name, data_page);
2328 dput_out:
2329 	path_put(&path);
2330 	return retval;
2331 }
2332 
2333 static void free_mnt_ns(struct mnt_namespace *ns)
2334 {
2335 	proc_free_inum(ns->proc_inum);
2336 	put_user_ns(ns->user_ns);
2337 	kfree(ns);
2338 }
2339 
2340 /*
2341  * Assign a sequence number so we can detect when we attempt to bind
2342  * mount a reference to an older mount namespace into the current
2343  * mount namespace, preventing reference counting loops.  A 64bit
2344  * number incrementing at 10Ghz will take 12,427 years to wrap which
2345  * is effectively never, so we can ignore the possibility.
2346  */
2347 static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1);
2348 
2349 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns)
2350 {
2351 	struct mnt_namespace *new_ns;
2352 	int ret;
2353 
2354 	new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
2355 	if (!new_ns)
2356 		return ERR_PTR(-ENOMEM);
2357 	ret = proc_alloc_inum(&new_ns->proc_inum);
2358 	if (ret) {
2359 		kfree(new_ns);
2360 		return ERR_PTR(ret);
2361 	}
2362 	new_ns->seq = atomic64_add_return(1, &mnt_ns_seq);
2363 	atomic_set(&new_ns->count, 1);
2364 	new_ns->root = NULL;
2365 	INIT_LIST_HEAD(&new_ns->list);
2366 	init_waitqueue_head(&new_ns->poll);
2367 	new_ns->event = 0;
2368 	new_ns->user_ns = get_user_ns(user_ns);
2369 	return new_ns;
2370 }
2371 
2372 /*
2373  * Allocate a new namespace structure and populate it with contents
2374  * copied from the namespace of the passed in task structure.
2375  */
2376 static struct mnt_namespace *dup_mnt_ns(struct mnt_namespace *mnt_ns,
2377 		struct user_namespace *user_ns, struct fs_struct *fs)
2378 {
2379 	struct mnt_namespace *new_ns;
2380 	struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
2381 	struct mount *p, *q;
2382 	struct mount *old = mnt_ns->root;
2383 	struct mount *new;
2384 	int copy_flags;
2385 
2386 	new_ns = alloc_mnt_ns(user_ns);
2387 	if (IS_ERR(new_ns))
2388 		return new_ns;
2389 
2390 	namespace_lock();
2391 	/* First pass: copy the tree topology */
2392 	copy_flags = CL_COPY_ALL | CL_EXPIRE;
2393 	if (user_ns != mnt_ns->user_ns)
2394 		copy_flags |= CL_SHARED_TO_SLAVE | CL_UNPRIVILEGED;
2395 	new = copy_tree(old, old->mnt.mnt_root, copy_flags);
2396 	if (IS_ERR(new)) {
2397 		namespace_unlock();
2398 		free_mnt_ns(new_ns);
2399 		return ERR_CAST(new);
2400 	}
2401 	new_ns->root = new;
2402 	br_write_lock(&vfsmount_lock);
2403 	list_add_tail(&new_ns->list, &new->mnt_list);
2404 	br_write_unlock(&vfsmount_lock);
2405 
2406 	/*
2407 	 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
2408 	 * as belonging to new namespace.  We have already acquired a private
2409 	 * fs_struct, so tsk->fs->lock is not needed.
2410 	 */
2411 	p = old;
2412 	q = new;
2413 	while (p) {
2414 		q->mnt_ns = new_ns;
2415 		if (fs) {
2416 			if (&p->mnt == fs->root.mnt) {
2417 				fs->root.mnt = mntget(&q->mnt);
2418 				rootmnt = &p->mnt;
2419 			}
2420 			if (&p->mnt == fs->pwd.mnt) {
2421 				fs->pwd.mnt = mntget(&q->mnt);
2422 				pwdmnt = &p->mnt;
2423 			}
2424 		}
2425 		p = next_mnt(p, old);
2426 		q = next_mnt(q, new);
2427 	}
2428 	namespace_unlock();
2429 
2430 	if (rootmnt)
2431 		mntput(rootmnt);
2432 	if (pwdmnt)
2433 		mntput(pwdmnt);
2434 
2435 	return new_ns;
2436 }
2437 
2438 struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
2439 		struct user_namespace *user_ns, struct fs_struct *new_fs)
2440 {
2441 	struct mnt_namespace *new_ns;
2442 
2443 	BUG_ON(!ns);
2444 	get_mnt_ns(ns);
2445 
2446 	if (!(flags & CLONE_NEWNS))
2447 		return ns;
2448 
2449 	new_ns = dup_mnt_ns(ns, user_ns, new_fs);
2450 
2451 	put_mnt_ns(ns);
2452 	return new_ns;
2453 }
2454 
2455 /**
2456  * create_mnt_ns - creates a private namespace and adds a root filesystem
2457  * @mnt: pointer to the new root filesystem mountpoint
2458  */
2459 static struct mnt_namespace *create_mnt_ns(struct vfsmount *m)
2460 {
2461 	struct mnt_namespace *new_ns = alloc_mnt_ns(&init_user_ns);
2462 	if (!IS_ERR(new_ns)) {
2463 		struct mount *mnt = real_mount(m);
2464 		mnt->mnt_ns = new_ns;
2465 		new_ns->root = mnt;
2466 		list_add(&mnt->mnt_list, &new_ns->list);
2467 	} else {
2468 		mntput(m);
2469 	}
2470 	return new_ns;
2471 }
2472 
2473 struct dentry *mount_subtree(struct vfsmount *mnt, const char *name)
2474 {
2475 	struct mnt_namespace *ns;
2476 	struct super_block *s;
2477 	struct path path;
2478 	int err;
2479 
2480 	ns = create_mnt_ns(mnt);
2481 	if (IS_ERR(ns))
2482 		return ERR_CAST(ns);
2483 
2484 	err = vfs_path_lookup(mnt->mnt_root, mnt,
2485 			name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
2486 
2487 	put_mnt_ns(ns);
2488 
2489 	if (err)
2490 		return ERR_PTR(err);
2491 
2492 	/* trade a vfsmount reference for active sb one */
2493 	s = path.mnt->mnt_sb;
2494 	atomic_inc(&s->s_active);
2495 	mntput(path.mnt);
2496 	/* lock the sucker */
2497 	down_write(&s->s_umount);
2498 	/* ... and return the root of (sub)tree on it */
2499 	return path.dentry;
2500 }
2501 EXPORT_SYMBOL(mount_subtree);
2502 
2503 SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
2504 		char __user *, type, unsigned long, flags, void __user *, data)
2505 {
2506 	int ret;
2507 	char *kernel_type;
2508 	struct filename *kernel_dir;
2509 	char *kernel_dev;
2510 	unsigned long data_page;
2511 
2512 	ret = copy_mount_string(type, &kernel_type);
2513 	if (ret < 0)
2514 		goto out_type;
2515 
2516 	kernel_dir = getname(dir_name);
2517 	if (IS_ERR(kernel_dir)) {
2518 		ret = PTR_ERR(kernel_dir);
2519 		goto out_dir;
2520 	}
2521 
2522 	ret = copy_mount_string(dev_name, &kernel_dev);
2523 	if (ret < 0)
2524 		goto out_dev;
2525 
2526 	ret = copy_mount_options(data, &data_page);
2527 	if (ret < 0)
2528 		goto out_data;
2529 
2530 	ret = do_mount(kernel_dev, kernel_dir->name, kernel_type, flags,
2531 		(void *) data_page);
2532 
2533 	free_page(data_page);
2534 out_data:
2535 	kfree(kernel_dev);
2536 out_dev:
2537 	putname(kernel_dir);
2538 out_dir:
2539 	kfree(kernel_type);
2540 out_type:
2541 	return ret;
2542 }
2543 
2544 /*
2545  * Return true if path is reachable from root
2546  *
2547  * namespace_sem or vfsmount_lock is held
2548  */
2549 bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
2550 			 const struct path *root)
2551 {
2552 	while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
2553 		dentry = mnt->mnt_mountpoint;
2554 		mnt = mnt->mnt_parent;
2555 	}
2556 	return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
2557 }
2558 
2559 int path_is_under(struct path *path1, struct path *path2)
2560 {
2561 	int res;
2562 	br_read_lock(&vfsmount_lock);
2563 	res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
2564 	br_read_unlock(&vfsmount_lock);
2565 	return res;
2566 }
2567 EXPORT_SYMBOL(path_is_under);
2568 
2569 /*
2570  * pivot_root Semantics:
2571  * Moves the root file system of the current process to the directory put_old,
2572  * makes new_root as the new root file system of the current process, and sets
2573  * root/cwd of all processes which had them on the current root to new_root.
2574  *
2575  * Restrictions:
2576  * The new_root and put_old must be directories, and  must not be on the
2577  * same file  system as the current process root. The put_old  must  be
2578  * underneath new_root,  i.e. adding a non-zero number of /.. to the string
2579  * pointed to by put_old must yield the same directory as new_root. No other
2580  * file system may be mounted on put_old. After all, new_root is a mountpoint.
2581  *
2582  * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
2583  * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
2584  * in this situation.
2585  *
2586  * Notes:
2587  *  - we don't move root/cwd if they are not at the root (reason: if something
2588  *    cared enough to change them, it's probably wrong to force them elsewhere)
2589  *  - it's okay to pick a root that isn't the root of a file system, e.g.
2590  *    /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
2591  *    though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
2592  *    first.
2593  */
2594 SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
2595 		const char __user *, put_old)
2596 {
2597 	struct path new, old, parent_path, root_parent, root;
2598 	struct mount *new_mnt, *root_mnt, *old_mnt;
2599 	struct mountpoint *old_mp, *root_mp;
2600 	int error;
2601 
2602 	if (!may_mount())
2603 		return -EPERM;
2604 
2605 	error = user_path_dir(new_root, &new);
2606 	if (error)
2607 		goto out0;
2608 
2609 	error = user_path_dir(put_old, &old);
2610 	if (error)
2611 		goto out1;
2612 
2613 	error = security_sb_pivotroot(&old, &new);
2614 	if (error)
2615 		goto out2;
2616 
2617 	get_fs_root(current->fs, &root);
2618 	old_mp = lock_mount(&old);
2619 	error = PTR_ERR(old_mp);
2620 	if (IS_ERR(old_mp))
2621 		goto out3;
2622 
2623 	error = -EINVAL;
2624 	new_mnt = real_mount(new.mnt);
2625 	root_mnt = real_mount(root.mnt);
2626 	old_mnt = real_mount(old.mnt);
2627 	if (IS_MNT_SHARED(old_mnt) ||
2628 		IS_MNT_SHARED(new_mnt->mnt_parent) ||
2629 		IS_MNT_SHARED(root_mnt->mnt_parent))
2630 		goto out4;
2631 	if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
2632 		goto out4;
2633 	error = -ENOENT;
2634 	if (d_unlinked(new.dentry))
2635 		goto out4;
2636 	error = -EBUSY;
2637 	if (new_mnt == root_mnt || old_mnt == root_mnt)
2638 		goto out4; /* loop, on the same file system  */
2639 	error = -EINVAL;
2640 	if (root.mnt->mnt_root != root.dentry)
2641 		goto out4; /* not a mountpoint */
2642 	if (!mnt_has_parent(root_mnt))
2643 		goto out4; /* not attached */
2644 	root_mp = root_mnt->mnt_mp;
2645 	if (new.mnt->mnt_root != new.dentry)
2646 		goto out4; /* not a mountpoint */
2647 	if (!mnt_has_parent(new_mnt))
2648 		goto out4; /* not attached */
2649 	/* make sure we can reach put_old from new_root */
2650 	if (!is_path_reachable(old_mnt, old.dentry, &new))
2651 		goto out4;
2652 	root_mp->m_count++; /* pin it so it won't go away */
2653 	br_write_lock(&vfsmount_lock);
2654 	detach_mnt(new_mnt, &parent_path);
2655 	detach_mnt(root_mnt, &root_parent);
2656 	/* mount old root on put_old */
2657 	attach_mnt(root_mnt, old_mnt, old_mp);
2658 	/* mount new_root on / */
2659 	attach_mnt(new_mnt, real_mount(root_parent.mnt), root_mp);
2660 	touch_mnt_namespace(current->nsproxy->mnt_ns);
2661 	br_write_unlock(&vfsmount_lock);
2662 	chroot_fs_refs(&root, &new);
2663 	put_mountpoint(root_mp);
2664 	error = 0;
2665 out4:
2666 	unlock_mount(old_mp);
2667 	if (!error) {
2668 		path_put(&root_parent);
2669 		path_put(&parent_path);
2670 	}
2671 out3:
2672 	path_put(&root);
2673 out2:
2674 	path_put(&old);
2675 out1:
2676 	path_put(&new);
2677 out0:
2678 	return error;
2679 }
2680 
2681 static void __init init_mount_tree(void)
2682 {
2683 	struct vfsmount *mnt;
2684 	struct mnt_namespace *ns;
2685 	struct path root;
2686 	struct file_system_type *type;
2687 
2688 	type = get_fs_type("rootfs");
2689 	if (!type)
2690 		panic("Can't find rootfs type");
2691 	mnt = vfs_kern_mount(type, 0, "rootfs", NULL);
2692 	put_filesystem(type);
2693 	if (IS_ERR(mnt))
2694 		panic("Can't create rootfs");
2695 
2696 	ns = create_mnt_ns(mnt);
2697 	if (IS_ERR(ns))
2698 		panic("Can't allocate initial namespace");
2699 
2700 	init_task.nsproxy->mnt_ns = ns;
2701 	get_mnt_ns(ns);
2702 
2703 	root.mnt = mnt;
2704 	root.dentry = mnt->mnt_root;
2705 
2706 	set_fs_pwd(current->fs, &root);
2707 	set_fs_root(current->fs, &root);
2708 }
2709 
2710 void __init mnt_init(void)
2711 {
2712 	unsigned u;
2713 	int err;
2714 
2715 	init_rwsem(&namespace_sem);
2716 
2717 	mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
2718 			0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
2719 
2720 	mount_hashtable = (struct list_head *)__get_free_page(GFP_ATOMIC);
2721 	mountpoint_hashtable = (struct list_head *)__get_free_page(GFP_ATOMIC);
2722 
2723 	if (!mount_hashtable || !mountpoint_hashtable)
2724 		panic("Failed to allocate mount hash table\n");
2725 
2726 	printk(KERN_INFO "Mount-cache hash table entries: %lu\n", HASH_SIZE);
2727 
2728 	for (u = 0; u < HASH_SIZE; u++)
2729 		INIT_LIST_HEAD(&mount_hashtable[u]);
2730 	for (u = 0; u < HASH_SIZE; u++)
2731 		INIT_LIST_HEAD(&mountpoint_hashtable[u]);
2732 
2733 	br_lock_init(&vfsmount_lock);
2734 
2735 	err = sysfs_init();
2736 	if (err)
2737 		printk(KERN_WARNING "%s: sysfs_init error: %d\n",
2738 			__func__, err);
2739 	fs_kobj = kobject_create_and_add("fs", NULL);
2740 	if (!fs_kobj)
2741 		printk(KERN_WARNING "%s: kobj create error\n", __func__);
2742 	init_rootfs();
2743 	init_mount_tree();
2744 }
2745 
2746 void put_mnt_ns(struct mnt_namespace *ns)
2747 {
2748 	if (!atomic_dec_and_test(&ns->count))
2749 		return;
2750 	namespace_lock();
2751 	br_write_lock(&vfsmount_lock);
2752 	umount_tree(ns->root, 0);
2753 	br_write_unlock(&vfsmount_lock);
2754 	namespace_unlock();
2755 	free_mnt_ns(ns);
2756 }
2757 
2758 struct vfsmount *kern_mount_data(struct file_system_type *type, void *data)
2759 {
2760 	struct vfsmount *mnt;
2761 	mnt = vfs_kern_mount(type, MS_KERNMOUNT, type->name, data);
2762 	if (!IS_ERR(mnt)) {
2763 		/*
2764 		 * it is a longterm mount, don't release mnt until
2765 		 * we unmount before file sys is unregistered
2766 		*/
2767 		real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
2768 	}
2769 	return mnt;
2770 }
2771 EXPORT_SYMBOL_GPL(kern_mount_data);
2772 
2773 void kern_unmount(struct vfsmount *mnt)
2774 {
2775 	/* release long term mount so mount point can be released */
2776 	if (!IS_ERR_OR_NULL(mnt)) {
2777 		br_write_lock(&vfsmount_lock);
2778 		real_mount(mnt)->mnt_ns = NULL;
2779 		br_write_unlock(&vfsmount_lock);
2780 		mntput(mnt);
2781 	}
2782 }
2783 EXPORT_SYMBOL(kern_unmount);
2784 
2785 bool our_mnt(struct vfsmount *mnt)
2786 {
2787 	return check_mnt(real_mount(mnt));
2788 }
2789 
2790 bool current_chrooted(void)
2791 {
2792 	/* Does the current process have a non-standard root */
2793 	struct path ns_root;
2794 	struct path fs_root;
2795 	bool chrooted;
2796 
2797 	/* Find the namespace root */
2798 	ns_root.mnt = &current->nsproxy->mnt_ns->root->mnt;
2799 	ns_root.dentry = ns_root.mnt->mnt_root;
2800 	path_get(&ns_root);
2801 	while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root))
2802 		;
2803 
2804 	get_fs_root(current->fs, &fs_root);
2805 
2806 	chrooted = !path_equal(&fs_root, &ns_root);
2807 
2808 	path_put(&fs_root);
2809 	path_put(&ns_root);
2810 
2811 	return chrooted;
2812 }
2813 
2814 void update_mnt_policy(struct user_namespace *userns)
2815 {
2816 	struct mnt_namespace *ns = current->nsproxy->mnt_ns;
2817 	struct mount *mnt;
2818 
2819 	down_read(&namespace_sem);
2820 	list_for_each_entry(mnt, &ns->list, mnt_list) {
2821 		switch (mnt->mnt.mnt_sb->s_magic) {
2822 		case SYSFS_MAGIC:
2823 			userns->may_mount_sysfs = true;
2824 			break;
2825 		case PROC_SUPER_MAGIC:
2826 			userns->may_mount_proc = true;
2827 			break;
2828 		}
2829 		if (userns->may_mount_sysfs && userns->may_mount_proc)
2830 			break;
2831 	}
2832 	up_read(&namespace_sem);
2833 }
2834 
2835 static void *mntns_get(struct task_struct *task)
2836 {
2837 	struct mnt_namespace *ns = NULL;
2838 	struct nsproxy *nsproxy;
2839 
2840 	rcu_read_lock();
2841 	nsproxy = task_nsproxy(task);
2842 	if (nsproxy) {
2843 		ns = nsproxy->mnt_ns;
2844 		get_mnt_ns(ns);
2845 	}
2846 	rcu_read_unlock();
2847 
2848 	return ns;
2849 }
2850 
2851 static void mntns_put(void *ns)
2852 {
2853 	put_mnt_ns(ns);
2854 }
2855 
2856 static int mntns_install(struct nsproxy *nsproxy, void *ns)
2857 {
2858 	struct fs_struct *fs = current->fs;
2859 	struct mnt_namespace *mnt_ns = ns;
2860 	struct path root;
2861 
2862 	if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) ||
2863 	    !nsown_capable(CAP_SYS_CHROOT) ||
2864 	    !nsown_capable(CAP_SYS_ADMIN))
2865 		return -EPERM;
2866 
2867 	if (fs->users != 1)
2868 		return -EINVAL;
2869 
2870 	get_mnt_ns(mnt_ns);
2871 	put_mnt_ns(nsproxy->mnt_ns);
2872 	nsproxy->mnt_ns = mnt_ns;
2873 
2874 	/* Find the root */
2875 	root.mnt    = &mnt_ns->root->mnt;
2876 	root.dentry = mnt_ns->root->mnt.mnt_root;
2877 	path_get(&root);
2878 	while(d_mountpoint(root.dentry) && follow_down_one(&root))
2879 		;
2880 
2881 	/* Update the pwd and root */
2882 	set_fs_pwd(fs, &root);
2883 	set_fs_root(fs, &root);
2884 
2885 	path_put(&root);
2886 	return 0;
2887 }
2888 
2889 static unsigned int mntns_inum(void *ns)
2890 {
2891 	struct mnt_namespace *mnt_ns = ns;
2892 	return mnt_ns->proc_inum;
2893 }
2894 
2895 const struct proc_ns_operations mntns_operations = {
2896 	.name		= "mnt",
2897 	.type		= CLONE_NEWNS,
2898 	.get		= mntns_get,
2899 	.put		= mntns_put,
2900 	.install	= mntns_install,
2901 	.inum		= mntns_inum,
2902 };
2903