1 /* 2 * linux/fs/namespace.c 3 * 4 * (C) Copyright Al Viro 2000, 2001 5 * Released under GPL v2. 6 * 7 * Based on code from fs/super.c, copyright Linus Torvalds and others. 8 * Heavily rewritten. 9 */ 10 11 #include <linux/syscalls.h> 12 #include <linux/slab.h> 13 #include <linux/sched.h> 14 #include <linux/spinlock.h> 15 #include <linux/percpu.h> 16 #include <linux/init.h> 17 #include <linux/kernel.h> 18 #include <linux/acct.h> 19 #include <linux/capability.h> 20 #include <linux/cpumask.h> 21 #include <linux/module.h> 22 #include <linux/sysfs.h> 23 #include <linux/seq_file.h> 24 #include <linux/mnt_namespace.h> 25 #include <linux/namei.h> 26 #include <linux/nsproxy.h> 27 #include <linux/security.h> 28 #include <linux/mount.h> 29 #include <linux/ramfs.h> 30 #include <linux/log2.h> 31 #include <linux/idr.h> 32 #include <linux/fs_struct.h> 33 #include <linux/fsnotify.h> 34 #include <asm/uaccess.h> 35 #include <asm/unistd.h> 36 #include "pnode.h" 37 #include "internal.h" 38 39 #define HASH_SHIFT ilog2(PAGE_SIZE / sizeof(struct list_head)) 40 #define HASH_SIZE (1UL << HASH_SHIFT) 41 42 static int event; 43 static DEFINE_IDA(mnt_id_ida); 44 static DEFINE_IDA(mnt_group_ida); 45 static DEFINE_SPINLOCK(mnt_id_lock); 46 static int mnt_id_start = 0; 47 static int mnt_group_start = 1; 48 49 static struct list_head *mount_hashtable __read_mostly; 50 static struct kmem_cache *mnt_cache __read_mostly; 51 static struct rw_semaphore namespace_sem; 52 53 /* /sys/fs */ 54 struct kobject *fs_kobj; 55 EXPORT_SYMBOL_GPL(fs_kobj); 56 57 /* 58 * vfsmount lock may be taken for read to prevent changes to the 59 * vfsmount hash, ie. during mountpoint lookups or walking back 60 * up the tree. 61 * 62 * It should be taken for write in all cases where the vfsmount 63 * tree or hash is modified or when a vfsmount structure is modified. 64 */ 65 DEFINE_BRLOCK(vfsmount_lock); 66 67 static inline unsigned long hash(struct vfsmount *mnt, struct dentry *dentry) 68 { 69 unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES); 70 tmp += ((unsigned long)dentry / L1_CACHE_BYTES); 71 tmp = tmp + (tmp >> HASH_SHIFT); 72 return tmp & (HASH_SIZE - 1); 73 } 74 75 #define MNT_WRITER_UNDERFLOW_LIMIT -(1<<16) 76 77 /* 78 * allocation is serialized by namespace_sem, but we need the spinlock to 79 * serialize with freeing. 80 */ 81 static int mnt_alloc_id(struct vfsmount *mnt) 82 { 83 int res; 84 85 retry: 86 ida_pre_get(&mnt_id_ida, GFP_KERNEL); 87 spin_lock(&mnt_id_lock); 88 res = ida_get_new_above(&mnt_id_ida, mnt_id_start, &mnt->mnt_id); 89 if (!res) 90 mnt_id_start = mnt->mnt_id + 1; 91 spin_unlock(&mnt_id_lock); 92 if (res == -EAGAIN) 93 goto retry; 94 95 return res; 96 } 97 98 static void mnt_free_id(struct vfsmount *mnt) 99 { 100 int id = mnt->mnt_id; 101 spin_lock(&mnt_id_lock); 102 ida_remove(&mnt_id_ida, id); 103 if (mnt_id_start > id) 104 mnt_id_start = id; 105 spin_unlock(&mnt_id_lock); 106 } 107 108 /* 109 * Allocate a new peer group ID 110 * 111 * mnt_group_ida is protected by namespace_sem 112 */ 113 static int mnt_alloc_group_id(struct vfsmount *mnt) 114 { 115 int res; 116 117 if (!ida_pre_get(&mnt_group_ida, GFP_KERNEL)) 118 return -ENOMEM; 119 120 res = ida_get_new_above(&mnt_group_ida, 121 mnt_group_start, 122 &mnt->mnt_group_id); 123 if (!res) 124 mnt_group_start = mnt->mnt_group_id + 1; 125 126 return res; 127 } 128 129 /* 130 * Release a peer group ID 131 */ 132 void mnt_release_group_id(struct vfsmount *mnt) 133 { 134 int id = mnt->mnt_group_id; 135 ida_remove(&mnt_group_ida, id); 136 if (mnt_group_start > id) 137 mnt_group_start = id; 138 mnt->mnt_group_id = 0; 139 } 140 141 struct vfsmount *alloc_vfsmnt(const char *name) 142 { 143 struct vfsmount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL); 144 if (mnt) { 145 int err; 146 147 err = mnt_alloc_id(mnt); 148 if (err) 149 goto out_free_cache; 150 151 if (name) { 152 mnt->mnt_devname = kstrdup(name, GFP_KERNEL); 153 if (!mnt->mnt_devname) 154 goto out_free_id; 155 } 156 157 atomic_set(&mnt->mnt_count, 1); 158 INIT_LIST_HEAD(&mnt->mnt_hash); 159 INIT_LIST_HEAD(&mnt->mnt_child); 160 INIT_LIST_HEAD(&mnt->mnt_mounts); 161 INIT_LIST_HEAD(&mnt->mnt_list); 162 INIT_LIST_HEAD(&mnt->mnt_expire); 163 INIT_LIST_HEAD(&mnt->mnt_share); 164 INIT_LIST_HEAD(&mnt->mnt_slave_list); 165 INIT_LIST_HEAD(&mnt->mnt_slave); 166 #ifdef CONFIG_FSNOTIFY 167 INIT_HLIST_HEAD(&mnt->mnt_fsnotify_marks); 168 #endif 169 #ifdef CONFIG_SMP 170 mnt->mnt_writers = alloc_percpu(int); 171 if (!mnt->mnt_writers) 172 goto out_free_devname; 173 #else 174 mnt->mnt_writers = 0; 175 #endif 176 } 177 return mnt; 178 179 #ifdef CONFIG_SMP 180 out_free_devname: 181 kfree(mnt->mnt_devname); 182 #endif 183 out_free_id: 184 mnt_free_id(mnt); 185 out_free_cache: 186 kmem_cache_free(mnt_cache, mnt); 187 return NULL; 188 } 189 190 /* 191 * Most r/o checks on a fs are for operations that take 192 * discrete amounts of time, like a write() or unlink(). 193 * We must keep track of when those operations start 194 * (for permission checks) and when they end, so that 195 * we can determine when writes are able to occur to 196 * a filesystem. 197 */ 198 /* 199 * __mnt_is_readonly: check whether a mount is read-only 200 * @mnt: the mount to check for its write status 201 * 202 * This shouldn't be used directly ouside of the VFS. 203 * It does not guarantee that the filesystem will stay 204 * r/w, just that it is right *now*. This can not and 205 * should not be used in place of IS_RDONLY(inode). 206 * mnt_want/drop_write() will _keep_ the filesystem 207 * r/w. 208 */ 209 int __mnt_is_readonly(struct vfsmount *mnt) 210 { 211 if (mnt->mnt_flags & MNT_READONLY) 212 return 1; 213 if (mnt->mnt_sb->s_flags & MS_RDONLY) 214 return 1; 215 return 0; 216 } 217 EXPORT_SYMBOL_GPL(__mnt_is_readonly); 218 219 static inline void inc_mnt_writers(struct vfsmount *mnt) 220 { 221 #ifdef CONFIG_SMP 222 (*per_cpu_ptr(mnt->mnt_writers, smp_processor_id()))++; 223 #else 224 mnt->mnt_writers++; 225 #endif 226 } 227 228 static inline void dec_mnt_writers(struct vfsmount *mnt) 229 { 230 #ifdef CONFIG_SMP 231 (*per_cpu_ptr(mnt->mnt_writers, smp_processor_id()))--; 232 #else 233 mnt->mnt_writers--; 234 #endif 235 } 236 237 static unsigned int count_mnt_writers(struct vfsmount *mnt) 238 { 239 #ifdef CONFIG_SMP 240 unsigned int count = 0; 241 int cpu; 242 243 for_each_possible_cpu(cpu) { 244 count += *per_cpu_ptr(mnt->mnt_writers, cpu); 245 } 246 247 return count; 248 #else 249 return mnt->mnt_writers; 250 #endif 251 } 252 253 /* 254 * Most r/o checks on a fs are for operations that take 255 * discrete amounts of time, like a write() or unlink(). 256 * We must keep track of when those operations start 257 * (for permission checks) and when they end, so that 258 * we can determine when writes are able to occur to 259 * a filesystem. 260 */ 261 /** 262 * mnt_want_write - get write access to a mount 263 * @mnt: the mount on which to take a write 264 * 265 * This tells the low-level filesystem that a write is 266 * about to be performed to it, and makes sure that 267 * writes are allowed before returning success. When 268 * the write operation is finished, mnt_drop_write() 269 * must be called. This is effectively a refcount. 270 */ 271 int mnt_want_write(struct vfsmount *mnt) 272 { 273 int ret = 0; 274 275 preempt_disable(); 276 inc_mnt_writers(mnt); 277 /* 278 * The store to inc_mnt_writers must be visible before we pass 279 * MNT_WRITE_HOLD loop below, so that the slowpath can see our 280 * incremented count after it has set MNT_WRITE_HOLD. 281 */ 282 smp_mb(); 283 while (mnt->mnt_flags & MNT_WRITE_HOLD) 284 cpu_relax(); 285 /* 286 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will 287 * be set to match its requirements. So we must not load that until 288 * MNT_WRITE_HOLD is cleared. 289 */ 290 smp_rmb(); 291 if (__mnt_is_readonly(mnt)) { 292 dec_mnt_writers(mnt); 293 ret = -EROFS; 294 goto out; 295 } 296 out: 297 preempt_enable(); 298 return ret; 299 } 300 EXPORT_SYMBOL_GPL(mnt_want_write); 301 302 /** 303 * mnt_clone_write - get write access to a mount 304 * @mnt: the mount on which to take a write 305 * 306 * This is effectively like mnt_want_write, except 307 * it must only be used to take an extra write reference 308 * on a mountpoint that we already know has a write reference 309 * on it. This allows some optimisation. 310 * 311 * After finished, mnt_drop_write must be called as usual to 312 * drop the reference. 313 */ 314 int mnt_clone_write(struct vfsmount *mnt) 315 { 316 /* superblock may be r/o */ 317 if (__mnt_is_readonly(mnt)) 318 return -EROFS; 319 preempt_disable(); 320 inc_mnt_writers(mnt); 321 preempt_enable(); 322 return 0; 323 } 324 EXPORT_SYMBOL_GPL(mnt_clone_write); 325 326 /** 327 * mnt_want_write_file - get write access to a file's mount 328 * @file: the file who's mount on which to take a write 329 * 330 * This is like mnt_want_write, but it takes a file and can 331 * do some optimisations if the file is open for write already 332 */ 333 int mnt_want_write_file(struct file *file) 334 { 335 struct inode *inode = file->f_dentry->d_inode; 336 if (!(file->f_mode & FMODE_WRITE) || special_file(inode->i_mode)) 337 return mnt_want_write(file->f_path.mnt); 338 else 339 return mnt_clone_write(file->f_path.mnt); 340 } 341 EXPORT_SYMBOL_GPL(mnt_want_write_file); 342 343 /** 344 * mnt_drop_write - give up write access to a mount 345 * @mnt: the mount on which to give up write access 346 * 347 * Tells the low-level filesystem that we are done 348 * performing writes to it. Must be matched with 349 * mnt_want_write() call above. 350 */ 351 void mnt_drop_write(struct vfsmount *mnt) 352 { 353 preempt_disable(); 354 dec_mnt_writers(mnt); 355 preempt_enable(); 356 } 357 EXPORT_SYMBOL_GPL(mnt_drop_write); 358 359 static int mnt_make_readonly(struct vfsmount *mnt) 360 { 361 int ret = 0; 362 363 br_write_lock(vfsmount_lock); 364 mnt->mnt_flags |= MNT_WRITE_HOLD; 365 /* 366 * After storing MNT_WRITE_HOLD, we'll read the counters. This store 367 * should be visible before we do. 368 */ 369 smp_mb(); 370 371 /* 372 * With writers on hold, if this value is zero, then there are 373 * definitely no active writers (although held writers may subsequently 374 * increment the count, they'll have to wait, and decrement it after 375 * seeing MNT_READONLY). 376 * 377 * It is OK to have counter incremented on one CPU and decremented on 378 * another: the sum will add up correctly. The danger would be when we 379 * sum up each counter, if we read a counter before it is incremented, 380 * but then read another CPU's count which it has been subsequently 381 * decremented from -- we would see more decrements than we should. 382 * MNT_WRITE_HOLD protects against this scenario, because 383 * mnt_want_write first increments count, then smp_mb, then spins on 384 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while 385 * we're counting up here. 386 */ 387 if (count_mnt_writers(mnt) > 0) 388 ret = -EBUSY; 389 else 390 mnt->mnt_flags |= MNT_READONLY; 391 /* 392 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers 393 * that become unheld will see MNT_READONLY. 394 */ 395 smp_wmb(); 396 mnt->mnt_flags &= ~MNT_WRITE_HOLD; 397 br_write_unlock(vfsmount_lock); 398 return ret; 399 } 400 401 static void __mnt_unmake_readonly(struct vfsmount *mnt) 402 { 403 br_write_lock(vfsmount_lock); 404 mnt->mnt_flags &= ~MNT_READONLY; 405 br_write_unlock(vfsmount_lock); 406 } 407 408 void simple_set_mnt(struct vfsmount *mnt, struct super_block *sb) 409 { 410 mnt->mnt_sb = sb; 411 mnt->mnt_root = dget(sb->s_root); 412 } 413 414 EXPORT_SYMBOL(simple_set_mnt); 415 416 void free_vfsmnt(struct vfsmount *mnt) 417 { 418 kfree(mnt->mnt_devname); 419 mnt_free_id(mnt); 420 #ifdef CONFIG_SMP 421 free_percpu(mnt->mnt_writers); 422 #endif 423 kmem_cache_free(mnt_cache, mnt); 424 } 425 426 /* 427 * find the first or last mount at @dentry on vfsmount @mnt depending on 428 * @dir. If @dir is set return the first mount else return the last mount. 429 * vfsmount_lock must be held for read or write. 430 */ 431 struct vfsmount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry, 432 int dir) 433 { 434 struct list_head *head = mount_hashtable + hash(mnt, dentry); 435 struct list_head *tmp = head; 436 struct vfsmount *p, *found = NULL; 437 438 for (;;) { 439 tmp = dir ? tmp->next : tmp->prev; 440 p = NULL; 441 if (tmp == head) 442 break; 443 p = list_entry(tmp, struct vfsmount, mnt_hash); 444 if (p->mnt_parent == mnt && p->mnt_mountpoint == dentry) { 445 found = p; 446 break; 447 } 448 } 449 return found; 450 } 451 452 /* 453 * lookup_mnt increments the ref count before returning 454 * the vfsmount struct. 455 */ 456 struct vfsmount *lookup_mnt(struct path *path) 457 { 458 struct vfsmount *child_mnt; 459 460 br_read_lock(vfsmount_lock); 461 if ((child_mnt = __lookup_mnt(path->mnt, path->dentry, 1))) 462 mntget(child_mnt); 463 br_read_unlock(vfsmount_lock); 464 return child_mnt; 465 } 466 467 static inline int check_mnt(struct vfsmount *mnt) 468 { 469 return mnt->mnt_ns == current->nsproxy->mnt_ns; 470 } 471 472 /* 473 * vfsmount lock must be held for write 474 */ 475 static void touch_mnt_namespace(struct mnt_namespace *ns) 476 { 477 if (ns) { 478 ns->event = ++event; 479 wake_up_interruptible(&ns->poll); 480 } 481 } 482 483 /* 484 * vfsmount lock must be held for write 485 */ 486 static void __touch_mnt_namespace(struct mnt_namespace *ns) 487 { 488 if (ns && ns->event != event) { 489 ns->event = event; 490 wake_up_interruptible(&ns->poll); 491 } 492 } 493 494 /* 495 * vfsmount lock must be held for write 496 */ 497 static void detach_mnt(struct vfsmount *mnt, struct path *old_path) 498 { 499 old_path->dentry = mnt->mnt_mountpoint; 500 old_path->mnt = mnt->mnt_parent; 501 mnt->mnt_parent = mnt; 502 mnt->mnt_mountpoint = mnt->mnt_root; 503 list_del_init(&mnt->mnt_child); 504 list_del_init(&mnt->mnt_hash); 505 old_path->dentry->d_mounted--; 506 } 507 508 /* 509 * vfsmount lock must be held for write 510 */ 511 void mnt_set_mountpoint(struct vfsmount *mnt, struct dentry *dentry, 512 struct vfsmount *child_mnt) 513 { 514 child_mnt->mnt_parent = mntget(mnt); 515 child_mnt->mnt_mountpoint = dget(dentry); 516 dentry->d_mounted++; 517 } 518 519 /* 520 * vfsmount lock must be held for write 521 */ 522 static void attach_mnt(struct vfsmount *mnt, struct path *path) 523 { 524 mnt_set_mountpoint(path->mnt, path->dentry, mnt); 525 list_add_tail(&mnt->mnt_hash, mount_hashtable + 526 hash(path->mnt, path->dentry)); 527 list_add_tail(&mnt->mnt_child, &path->mnt->mnt_mounts); 528 } 529 530 /* 531 * vfsmount lock must be held for write 532 */ 533 static void commit_tree(struct vfsmount *mnt) 534 { 535 struct vfsmount *parent = mnt->mnt_parent; 536 struct vfsmount *m; 537 LIST_HEAD(head); 538 struct mnt_namespace *n = parent->mnt_ns; 539 540 BUG_ON(parent == mnt); 541 542 list_add_tail(&head, &mnt->mnt_list); 543 list_for_each_entry(m, &head, mnt_list) 544 m->mnt_ns = n; 545 list_splice(&head, n->list.prev); 546 547 list_add_tail(&mnt->mnt_hash, mount_hashtable + 548 hash(parent, mnt->mnt_mountpoint)); 549 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts); 550 touch_mnt_namespace(n); 551 } 552 553 static struct vfsmount *next_mnt(struct vfsmount *p, struct vfsmount *root) 554 { 555 struct list_head *next = p->mnt_mounts.next; 556 if (next == &p->mnt_mounts) { 557 while (1) { 558 if (p == root) 559 return NULL; 560 next = p->mnt_child.next; 561 if (next != &p->mnt_parent->mnt_mounts) 562 break; 563 p = p->mnt_parent; 564 } 565 } 566 return list_entry(next, struct vfsmount, mnt_child); 567 } 568 569 static struct vfsmount *skip_mnt_tree(struct vfsmount *p) 570 { 571 struct list_head *prev = p->mnt_mounts.prev; 572 while (prev != &p->mnt_mounts) { 573 p = list_entry(prev, struct vfsmount, mnt_child); 574 prev = p->mnt_mounts.prev; 575 } 576 return p; 577 } 578 579 static struct vfsmount *clone_mnt(struct vfsmount *old, struct dentry *root, 580 int flag) 581 { 582 struct super_block *sb = old->mnt_sb; 583 struct vfsmount *mnt = alloc_vfsmnt(old->mnt_devname); 584 585 if (mnt) { 586 if (flag & (CL_SLAVE | CL_PRIVATE)) 587 mnt->mnt_group_id = 0; /* not a peer of original */ 588 else 589 mnt->mnt_group_id = old->mnt_group_id; 590 591 if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) { 592 int err = mnt_alloc_group_id(mnt); 593 if (err) 594 goto out_free; 595 } 596 597 mnt->mnt_flags = old->mnt_flags & ~MNT_WRITE_HOLD; 598 atomic_inc(&sb->s_active); 599 mnt->mnt_sb = sb; 600 mnt->mnt_root = dget(root); 601 mnt->mnt_mountpoint = mnt->mnt_root; 602 mnt->mnt_parent = mnt; 603 604 if (flag & CL_SLAVE) { 605 list_add(&mnt->mnt_slave, &old->mnt_slave_list); 606 mnt->mnt_master = old; 607 CLEAR_MNT_SHARED(mnt); 608 } else if (!(flag & CL_PRIVATE)) { 609 if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old)) 610 list_add(&mnt->mnt_share, &old->mnt_share); 611 if (IS_MNT_SLAVE(old)) 612 list_add(&mnt->mnt_slave, &old->mnt_slave); 613 mnt->mnt_master = old->mnt_master; 614 } 615 if (flag & CL_MAKE_SHARED) 616 set_mnt_shared(mnt); 617 618 /* stick the duplicate mount on the same expiry list 619 * as the original if that was on one */ 620 if (flag & CL_EXPIRE) { 621 if (!list_empty(&old->mnt_expire)) 622 list_add(&mnt->mnt_expire, &old->mnt_expire); 623 } 624 } 625 return mnt; 626 627 out_free: 628 free_vfsmnt(mnt); 629 return NULL; 630 } 631 632 static inline void __mntput(struct vfsmount *mnt) 633 { 634 struct super_block *sb = mnt->mnt_sb; 635 /* 636 * This probably indicates that somebody messed 637 * up a mnt_want/drop_write() pair. If this 638 * happens, the filesystem was probably unable 639 * to make r/w->r/o transitions. 640 */ 641 /* 642 * atomic_dec_and_lock() used to deal with ->mnt_count decrements 643 * provides barriers, so count_mnt_writers() below is safe. AV 644 */ 645 WARN_ON(count_mnt_writers(mnt)); 646 fsnotify_vfsmount_delete(mnt); 647 dput(mnt->mnt_root); 648 free_vfsmnt(mnt); 649 deactivate_super(sb); 650 } 651 652 void mntput_no_expire(struct vfsmount *mnt) 653 { 654 repeat: 655 if (atomic_add_unless(&mnt->mnt_count, -1, 1)) 656 return; 657 br_write_lock(vfsmount_lock); 658 if (!atomic_dec_and_test(&mnt->mnt_count)) { 659 br_write_unlock(vfsmount_lock); 660 return; 661 } 662 if (likely(!mnt->mnt_pinned)) { 663 br_write_unlock(vfsmount_lock); 664 __mntput(mnt); 665 return; 666 } 667 atomic_add(mnt->mnt_pinned + 1, &mnt->mnt_count); 668 mnt->mnt_pinned = 0; 669 br_write_unlock(vfsmount_lock); 670 acct_auto_close_mnt(mnt); 671 goto repeat; 672 } 673 EXPORT_SYMBOL(mntput_no_expire); 674 675 void mnt_pin(struct vfsmount *mnt) 676 { 677 br_write_lock(vfsmount_lock); 678 mnt->mnt_pinned++; 679 br_write_unlock(vfsmount_lock); 680 } 681 682 EXPORT_SYMBOL(mnt_pin); 683 684 void mnt_unpin(struct vfsmount *mnt) 685 { 686 br_write_lock(vfsmount_lock); 687 if (mnt->mnt_pinned) { 688 atomic_inc(&mnt->mnt_count); 689 mnt->mnt_pinned--; 690 } 691 br_write_unlock(vfsmount_lock); 692 } 693 694 EXPORT_SYMBOL(mnt_unpin); 695 696 static inline void mangle(struct seq_file *m, const char *s) 697 { 698 seq_escape(m, s, " \t\n\\"); 699 } 700 701 /* 702 * Simple .show_options callback for filesystems which don't want to 703 * implement more complex mount option showing. 704 * 705 * See also save_mount_options(). 706 */ 707 int generic_show_options(struct seq_file *m, struct vfsmount *mnt) 708 { 709 const char *options; 710 711 rcu_read_lock(); 712 options = rcu_dereference(mnt->mnt_sb->s_options); 713 714 if (options != NULL && options[0]) { 715 seq_putc(m, ','); 716 mangle(m, options); 717 } 718 rcu_read_unlock(); 719 720 return 0; 721 } 722 EXPORT_SYMBOL(generic_show_options); 723 724 /* 725 * If filesystem uses generic_show_options(), this function should be 726 * called from the fill_super() callback. 727 * 728 * The .remount_fs callback usually needs to be handled in a special 729 * way, to make sure, that previous options are not overwritten if the 730 * remount fails. 731 * 732 * Also note, that if the filesystem's .remount_fs function doesn't 733 * reset all options to their default value, but changes only newly 734 * given options, then the displayed options will not reflect reality 735 * any more. 736 */ 737 void save_mount_options(struct super_block *sb, char *options) 738 { 739 BUG_ON(sb->s_options); 740 rcu_assign_pointer(sb->s_options, kstrdup(options, GFP_KERNEL)); 741 } 742 EXPORT_SYMBOL(save_mount_options); 743 744 void replace_mount_options(struct super_block *sb, char *options) 745 { 746 char *old = sb->s_options; 747 rcu_assign_pointer(sb->s_options, options); 748 if (old) { 749 synchronize_rcu(); 750 kfree(old); 751 } 752 } 753 EXPORT_SYMBOL(replace_mount_options); 754 755 #ifdef CONFIG_PROC_FS 756 /* iterator */ 757 static void *m_start(struct seq_file *m, loff_t *pos) 758 { 759 struct proc_mounts *p = m->private; 760 761 down_read(&namespace_sem); 762 return seq_list_start(&p->ns->list, *pos); 763 } 764 765 static void *m_next(struct seq_file *m, void *v, loff_t *pos) 766 { 767 struct proc_mounts *p = m->private; 768 769 return seq_list_next(v, &p->ns->list, pos); 770 } 771 772 static void m_stop(struct seq_file *m, void *v) 773 { 774 up_read(&namespace_sem); 775 } 776 777 int mnt_had_events(struct proc_mounts *p) 778 { 779 struct mnt_namespace *ns = p->ns; 780 int res = 0; 781 782 br_read_lock(vfsmount_lock); 783 if (p->event != ns->event) { 784 p->event = ns->event; 785 res = 1; 786 } 787 br_read_unlock(vfsmount_lock); 788 789 return res; 790 } 791 792 struct proc_fs_info { 793 int flag; 794 const char *str; 795 }; 796 797 static int show_sb_opts(struct seq_file *m, struct super_block *sb) 798 { 799 static const struct proc_fs_info fs_info[] = { 800 { MS_SYNCHRONOUS, ",sync" }, 801 { MS_DIRSYNC, ",dirsync" }, 802 { MS_MANDLOCK, ",mand" }, 803 { 0, NULL } 804 }; 805 const struct proc_fs_info *fs_infop; 806 807 for (fs_infop = fs_info; fs_infop->flag; fs_infop++) { 808 if (sb->s_flags & fs_infop->flag) 809 seq_puts(m, fs_infop->str); 810 } 811 812 return security_sb_show_options(m, sb); 813 } 814 815 static void show_mnt_opts(struct seq_file *m, struct vfsmount *mnt) 816 { 817 static const struct proc_fs_info mnt_info[] = { 818 { MNT_NOSUID, ",nosuid" }, 819 { MNT_NODEV, ",nodev" }, 820 { MNT_NOEXEC, ",noexec" }, 821 { MNT_NOATIME, ",noatime" }, 822 { MNT_NODIRATIME, ",nodiratime" }, 823 { MNT_RELATIME, ",relatime" }, 824 { 0, NULL } 825 }; 826 const struct proc_fs_info *fs_infop; 827 828 for (fs_infop = mnt_info; fs_infop->flag; fs_infop++) { 829 if (mnt->mnt_flags & fs_infop->flag) 830 seq_puts(m, fs_infop->str); 831 } 832 } 833 834 static void show_type(struct seq_file *m, struct super_block *sb) 835 { 836 mangle(m, sb->s_type->name); 837 if (sb->s_subtype && sb->s_subtype[0]) { 838 seq_putc(m, '.'); 839 mangle(m, sb->s_subtype); 840 } 841 } 842 843 static int show_vfsmnt(struct seq_file *m, void *v) 844 { 845 struct vfsmount *mnt = list_entry(v, struct vfsmount, mnt_list); 846 int err = 0; 847 struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt }; 848 849 mangle(m, mnt->mnt_devname ? mnt->mnt_devname : "none"); 850 seq_putc(m, ' '); 851 seq_path(m, &mnt_path, " \t\n\\"); 852 seq_putc(m, ' '); 853 show_type(m, mnt->mnt_sb); 854 seq_puts(m, __mnt_is_readonly(mnt) ? " ro" : " rw"); 855 err = show_sb_opts(m, mnt->mnt_sb); 856 if (err) 857 goto out; 858 show_mnt_opts(m, mnt); 859 if (mnt->mnt_sb->s_op->show_options) 860 err = mnt->mnt_sb->s_op->show_options(m, mnt); 861 seq_puts(m, " 0 0\n"); 862 out: 863 return err; 864 } 865 866 const struct seq_operations mounts_op = { 867 .start = m_start, 868 .next = m_next, 869 .stop = m_stop, 870 .show = show_vfsmnt 871 }; 872 873 static int show_mountinfo(struct seq_file *m, void *v) 874 { 875 struct proc_mounts *p = m->private; 876 struct vfsmount *mnt = list_entry(v, struct vfsmount, mnt_list); 877 struct super_block *sb = mnt->mnt_sb; 878 struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt }; 879 struct path root = p->root; 880 int err = 0; 881 882 seq_printf(m, "%i %i %u:%u ", mnt->mnt_id, mnt->mnt_parent->mnt_id, 883 MAJOR(sb->s_dev), MINOR(sb->s_dev)); 884 seq_dentry(m, mnt->mnt_root, " \t\n\\"); 885 seq_putc(m, ' '); 886 seq_path_root(m, &mnt_path, &root, " \t\n\\"); 887 if (root.mnt != p->root.mnt || root.dentry != p->root.dentry) { 888 /* 889 * Mountpoint is outside root, discard that one. Ugly, 890 * but less so than trying to do that in iterator in a 891 * race-free way (due to renames). 892 */ 893 return SEQ_SKIP; 894 } 895 seq_puts(m, mnt->mnt_flags & MNT_READONLY ? " ro" : " rw"); 896 show_mnt_opts(m, mnt); 897 898 /* Tagged fields ("foo:X" or "bar") */ 899 if (IS_MNT_SHARED(mnt)) 900 seq_printf(m, " shared:%i", mnt->mnt_group_id); 901 if (IS_MNT_SLAVE(mnt)) { 902 int master = mnt->mnt_master->mnt_group_id; 903 int dom = get_dominating_id(mnt, &p->root); 904 seq_printf(m, " master:%i", master); 905 if (dom && dom != master) 906 seq_printf(m, " propagate_from:%i", dom); 907 } 908 if (IS_MNT_UNBINDABLE(mnt)) 909 seq_puts(m, " unbindable"); 910 911 /* Filesystem specific data */ 912 seq_puts(m, " - "); 913 show_type(m, sb); 914 seq_putc(m, ' '); 915 mangle(m, mnt->mnt_devname ? mnt->mnt_devname : "none"); 916 seq_puts(m, sb->s_flags & MS_RDONLY ? " ro" : " rw"); 917 err = show_sb_opts(m, sb); 918 if (err) 919 goto out; 920 if (sb->s_op->show_options) 921 err = sb->s_op->show_options(m, mnt); 922 seq_putc(m, '\n'); 923 out: 924 return err; 925 } 926 927 const struct seq_operations mountinfo_op = { 928 .start = m_start, 929 .next = m_next, 930 .stop = m_stop, 931 .show = show_mountinfo, 932 }; 933 934 static int show_vfsstat(struct seq_file *m, void *v) 935 { 936 struct vfsmount *mnt = list_entry(v, struct vfsmount, mnt_list); 937 struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt }; 938 int err = 0; 939 940 /* device */ 941 if (mnt->mnt_devname) { 942 seq_puts(m, "device "); 943 mangle(m, mnt->mnt_devname); 944 } else 945 seq_puts(m, "no device"); 946 947 /* mount point */ 948 seq_puts(m, " mounted on "); 949 seq_path(m, &mnt_path, " \t\n\\"); 950 seq_putc(m, ' '); 951 952 /* file system type */ 953 seq_puts(m, "with fstype "); 954 show_type(m, mnt->mnt_sb); 955 956 /* optional statistics */ 957 if (mnt->mnt_sb->s_op->show_stats) { 958 seq_putc(m, ' '); 959 err = mnt->mnt_sb->s_op->show_stats(m, mnt); 960 } 961 962 seq_putc(m, '\n'); 963 return err; 964 } 965 966 const struct seq_operations mountstats_op = { 967 .start = m_start, 968 .next = m_next, 969 .stop = m_stop, 970 .show = show_vfsstat, 971 }; 972 #endif /* CONFIG_PROC_FS */ 973 974 /** 975 * may_umount_tree - check if a mount tree is busy 976 * @mnt: root of mount tree 977 * 978 * This is called to check if a tree of mounts has any 979 * open files, pwds, chroots or sub mounts that are 980 * busy. 981 */ 982 int may_umount_tree(struct vfsmount *mnt) 983 { 984 int actual_refs = 0; 985 int minimum_refs = 0; 986 struct vfsmount *p; 987 988 br_read_lock(vfsmount_lock); 989 for (p = mnt; p; p = next_mnt(p, mnt)) { 990 actual_refs += atomic_read(&p->mnt_count); 991 minimum_refs += 2; 992 } 993 br_read_unlock(vfsmount_lock); 994 995 if (actual_refs > minimum_refs) 996 return 0; 997 998 return 1; 999 } 1000 1001 EXPORT_SYMBOL(may_umount_tree); 1002 1003 /** 1004 * may_umount - check if a mount point is busy 1005 * @mnt: root of mount 1006 * 1007 * This is called to check if a mount point has any 1008 * open files, pwds, chroots or sub mounts. If the 1009 * mount has sub mounts this will return busy 1010 * regardless of whether the sub mounts are busy. 1011 * 1012 * Doesn't take quota and stuff into account. IOW, in some cases it will 1013 * give false negatives. The main reason why it's here is that we need 1014 * a non-destructive way to look for easily umountable filesystems. 1015 */ 1016 int may_umount(struct vfsmount *mnt) 1017 { 1018 int ret = 1; 1019 down_read(&namespace_sem); 1020 br_read_lock(vfsmount_lock); 1021 if (propagate_mount_busy(mnt, 2)) 1022 ret = 0; 1023 br_read_unlock(vfsmount_lock); 1024 up_read(&namespace_sem); 1025 return ret; 1026 } 1027 1028 EXPORT_SYMBOL(may_umount); 1029 1030 void release_mounts(struct list_head *head) 1031 { 1032 struct vfsmount *mnt; 1033 while (!list_empty(head)) { 1034 mnt = list_first_entry(head, struct vfsmount, mnt_hash); 1035 list_del_init(&mnt->mnt_hash); 1036 if (mnt->mnt_parent != mnt) { 1037 struct dentry *dentry; 1038 struct vfsmount *m; 1039 1040 br_write_lock(vfsmount_lock); 1041 dentry = mnt->mnt_mountpoint; 1042 m = mnt->mnt_parent; 1043 mnt->mnt_mountpoint = mnt->mnt_root; 1044 mnt->mnt_parent = mnt; 1045 m->mnt_ghosts--; 1046 br_write_unlock(vfsmount_lock); 1047 dput(dentry); 1048 mntput(m); 1049 } 1050 mntput(mnt); 1051 } 1052 } 1053 1054 /* 1055 * vfsmount lock must be held for write 1056 * namespace_sem must be held for write 1057 */ 1058 void umount_tree(struct vfsmount *mnt, int propagate, struct list_head *kill) 1059 { 1060 struct vfsmount *p; 1061 1062 for (p = mnt; p; p = next_mnt(p, mnt)) 1063 list_move(&p->mnt_hash, kill); 1064 1065 if (propagate) 1066 propagate_umount(kill); 1067 1068 list_for_each_entry(p, kill, mnt_hash) { 1069 list_del_init(&p->mnt_expire); 1070 list_del_init(&p->mnt_list); 1071 __touch_mnt_namespace(p->mnt_ns); 1072 p->mnt_ns = NULL; 1073 list_del_init(&p->mnt_child); 1074 if (p->mnt_parent != p) { 1075 p->mnt_parent->mnt_ghosts++; 1076 p->mnt_mountpoint->d_mounted--; 1077 } 1078 change_mnt_propagation(p, MS_PRIVATE); 1079 } 1080 } 1081 1082 static void shrink_submounts(struct vfsmount *mnt, struct list_head *umounts); 1083 1084 static int do_umount(struct vfsmount *mnt, int flags) 1085 { 1086 struct super_block *sb = mnt->mnt_sb; 1087 int retval; 1088 LIST_HEAD(umount_list); 1089 1090 retval = security_sb_umount(mnt, flags); 1091 if (retval) 1092 return retval; 1093 1094 /* 1095 * Allow userspace to request a mountpoint be expired rather than 1096 * unmounting unconditionally. Unmount only happens if: 1097 * (1) the mark is already set (the mark is cleared by mntput()) 1098 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount] 1099 */ 1100 if (flags & MNT_EXPIRE) { 1101 if (mnt == current->fs->root.mnt || 1102 flags & (MNT_FORCE | MNT_DETACH)) 1103 return -EINVAL; 1104 1105 if (atomic_read(&mnt->mnt_count) != 2) 1106 return -EBUSY; 1107 1108 if (!xchg(&mnt->mnt_expiry_mark, 1)) 1109 return -EAGAIN; 1110 } 1111 1112 /* 1113 * If we may have to abort operations to get out of this 1114 * mount, and they will themselves hold resources we must 1115 * allow the fs to do things. In the Unix tradition of 1116 * 'Gee thats tricky lets do it in userspace' the umount_begin 1117 * might fail to complete on the first run through as other tasks 1118 * must return, and the like. Thats for the mount program to worry 1119 * about for the moment. 1120 */ 1121 1122 if (flags & MNT_FORCE && sb->s_op->umount_begin) { 1123 sb->s_op->umount_begin(sb); 1124 } 1125 1126 /* 1127 * No sense to grab the lock for this test, but test itself looks 1128 * somewhat bogus. Suggestions for better replacement? 1129 * Ho-hum... In principle, we might treat that as umount + switch 1130 * to rootfs. GC would eventually take care of the old vfsmount. 1131 * Actually it makes sense, especially if rootfs would contain a 1132 * /reboot - static binary that would close all descriptors and 1133 * call reboot(9). Then init(8) could umount root and exec /reboot. 1134 */ 1135 if (mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) { 1136 /* 1137 * Special case for "unmounting" root ... 1138 * we just try to remount it readonly. 1139 */ 1140 down_write(&sb->s_umount); 1141 if (!(sb->s_flags & MS_RDONLY)) 1142 retval = do_remount_sb(sb, MS_RDONLY, NULL, 0); 1143 up_write(&sb->s_umount); 1144 return retval; 1145 } 1146 1147 down_write(&namespace_sem); 1148 br_write_lock(vfsmount_lock); 1149 event++; 1150 1151 if (!(flags & MNT_DETACH)) 1152 shrink_submounts(mnt, &umount_list); 1153 1154 retval = -EBUSY; 1155 if (flags & MNT_DETACH || !propagate_mount_busy(mnt, 2)) { 1156 if (!list_empty(&mnt->mnt_list)) 1157 umount_tree(mnt, 1, &umount_list); 1158 retval = 0; 1159 } 1160 br_write_unlock(vfsmount_lock); 1161 up_write(&namespace_sem); 1162 release_mounts(&umount_list); 1163 return retval; 1164 } 1165 1166 /* 1167 * Now umount can handle mount points as well as block devices. 1168 * This is important for filesystems which use unnamed block devices. 1169 * 1170 * We now support a flag for forced unmount like the other 'big iron' 1171 * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD 1172 */ 1173 1174 SYSCALL_DEFINE2(umount, char __user *, name, int, flags) 1175 { 1176 struct path path; 1177 int retval; 1178 int lookup_flags = 0; 1179 1180 if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW)) 1181 return -EINVAL; 1182 1183 if (!(flags & UMOUNT_NOFOLLOW)) 1184 lookup_flags |= LOOKUP_FOLLOW; 1185 1186 retval = user_path_at(AT_FDCWD, name, lookup_flags, &path); 1187 if (retval) 1188 goto out; 1189 retval = -EINVAL; 1190 if (path.dentry != path.mnt->mnt_root) 1191 goto dput_and_out; 1192 if (!check_mnt(path.mnt)) 1193 goto dput_and_out; 1194 1195 retval = -EPERM; 1196 if (!capable(CAP_SYS_ADMIN)) 1197 goto dput_and_out; 1198 1199 retval = do_umount(path.mnt, flags); 1200 dput_and_out: 1201 /* we mustn't call path_put() as that would clear mnt_expiry_mark */ 1202 dput(path.dentry); 1203 mntput_no_expire(path.mnt); 1204 out: 1205 return retval; 1206 } 1207 1208 #ifdef __ARCH_WANT_SYS_OLDUMOUNT 1209 1210 /* 1211 * The 2.0 compatible umount. No flags. 1212 */ 1213 SYSCALL_DEFINE1(oldumount, char __user *, name) 1214 { 1215 return sys_umount(name, 0); 1216 } 1217 1218 #endif 1219 1220 static int mount_is_safe(struct path *path) 1221 { 1222 if (capable(CAP_SYS_ADMIN)) 1223 return 0; 1224 return -EPERM; 1225 #ifdef notyet 1226 if (S_ISLNK(path->dentry->d_inode->i_mode)) 1227 return -EPERM; 1228 if (path->dentry->d_inode->i_mode & S_ISVTX) { 1229 if (current_uid() != path->dentry->d_inode->i_uid) 1230 return -EPERM; 1231 } 1232 if (inode_permission(path->dentry->d_inode, MAY_WRITE)) 1233 return -EPERM; 1234 return 0; 1235 #endif 1236 } 1237 1238 struct vfsmount *copy_tree(struct vfsmount *mnt, struct dentry *dentry, 1239 int flag) 1240 { 1241 struct vfsmount *res, *p, *q, *r, *s; 1242 struct path path; 1243 1244 if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(mnt)) 1245 return NULL; 1246 1247 res = q = clone_mnt(mnt, dentry, flag); 1248 if (!q) 1249 goto Enomem; 1250 q->mnt_mountpoint = mnt->mnt_mountpoint; 1251 1252 p = mnt; 1253 list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) { 1254 if (!is_subdir(r->mnt_mountpoint, dentry)) 1255 continue; 1256 1257 for (s = r; s; s = next_mnt(s, r)) { 1258 if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(s)) { 1259 s = skip_mnt_tree(s); 1260 continue; 1261 } 1262 while (p != s->mnt_parent) { 1263 p = p->mnt_parent; 1264 q = q->mnt_parent; 1265 } 1266 p = s; 1267 path.mnt = q; 1268 path.dentry = p->mnt_mountpoint; 1269 q = clone_mnt(p, p->mnt_root, flag); 1270 if (!q) 1271 goto Enomem; 1272 br_write_lock(vfsmount_lock); 1273 list_add_tail(&q->mnt_list, &res->mnt_list); 1274 attach_mnt(q, &path); 1275 br_write_unlock(vfsmount_lock); 1276 } 1277 } 1278 return res; 1279 Enomem: 1280 if (res) { 1281 LIST_HEAD(umount_list); 1282 br_write_lock(vfsmount_lock); 1283 umount_tree(res, 0, &umount_list); 1284 br_write_unlock(vfsmount_lock); 1285 release_mounts(&umount_list); 1286 } 1287 return NULL; 1288 } 1289 1290 struct vfsmount *collect_mounts(struct path *path) 1291 { 1292 struct vfsmount *tree; 1293 down_write(&namespace_sem); 1294 tree = copy_tree(path->mnt, path->dentry, CL_COPY_ALL | CL_PRIVATE); 1295 up_write(&namespace_sem); 1296 return tree; 1297 } 1298 1299 void drop_collected_mounts(struct vfsmount *mnt) 1300 { 1301 LIST_HEAD(umount_list); 1302 down_write(&namespace_sem); 1303 br_write_lock(vfsmount_lock); 1304 umount_tree(mnt, 0, &umount_list); 1305 br_write_unlock(vfsmount_lock); 1306 up_write(&namespace_sem); 1307 release_mounts(&umount_list); 1308 } 1309 1310 int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg, 1311 struct vfsmount *root) 1312 { 1313 struct vfsmount *mnt; 1314 int res = f(root, arg); 1315 if (res) 1316 return res; 1317 list_for_each_entry(mnt, &root->mnt_list, mnt_list) { 1318 res = f(mnt, arg); 1319 if (res) 1320 return res; 1321 } 1322 return 0; 1323 } 1324 1325 static void cleanup_group_ids(struct vfsmount *mnt, struct vfsmount *end) 1326 { 1327 struct vfsmount *p; 1328 1329 for (p = mnt; p != end; p = next_mnt(p, mnt)) { 1330 if (p->mnt_group_id && !IS_MNT_SHARED(p)) 1331 mnt_release_group_id(p); 1332 } 1333 } 1334 1335 static int invent_group_ids(struct vfsmount *mnt, bool recurse) 1336 { 1337 struct vfsmount *p; 1338 1339 for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) { 1340 if (!p->mnt_group_id && !IS_MNT_SHARED(p)) { 1341 int err = mnt_alloc_group_id(p); 1342 if (err) { 1343 cleanup_group_ids(mnt, p); 1344 return err; 1345 } 1346 } 1347 } 1348 1349 return 0; 1350 } 1351 1352 /* 1353 * @source_mnt : mount tree to be attached 1354 * @nd : place the mount tree @source_mnt is attached 1355 * @parent_nd : if non-null, detach the source_mnt from its parent and 1356 * store the parent mount and mountpoint dentry. 1357 * (done when source_mnt is moved) 1358 * 1359 * NOTE: in the table below explains the semantics when a source mount 1360 * of a given type is attached to a destination mount of a given type. 1361 * --------------------------------------------------------------------------- 1362 * | BIND MOUNT OPERATION | 1363 * |************************************************************************** 1364 * | source-->| shared | private | slave | unbindable | 1365 * | dest | | | | | 1366 * | | | | | | | 1367 * | v | | | | | 1368 * |************************************************************************** 1369 * | shared | shared (++) | shared (+) | shared(+++)| invalid | 1370 * | | | | | | 1371 * |non-shared| shared (+) | private | slave (*) | invalid | 1372 * *************************************************************************** 1373 * A bind operation clones the source mount and mounts the clone on the 1374 * destination mount. 1375 * 1376 * (++) the cloned mount is propagated to all the mounts in the propagation 1377 * tree of the destination mount and the cloned mount is added to 1378 * the peer group of the source mount. 1379 * (+) the cloned mount is created under the destination mount and is marked 1380 * as shared. The cloned mount is added to the peer group of the source 1381 * mount. 1382 * (+++) the mount is propagated to all the mounts in the propagation tree 1383 * of the destination mount and the cloned mount is made slave 1384 * of the same master as that of the source mount. The cloned mount 1385 * is marked as 'shared and slave'. 1386 * (*) the cloned mount is made a slave of the same master as that of the 1387 * source mount. 1388 * 1389 * --------------------------------------------------------------------------- 1390 * | MOVE MOUNT OPERATION | 1391 * |************************************************************************** 1392 * | source-->| shared | private | slave | unbindable | 1393 * | dest | | | | | 1394 * | | | | | | | 1395 * | v | | | | | 1396 * |************************************************************************** 1397 * | shared | shared (+) | shared (+) | shared(+++) | invalid | 1398 * | | | | | | 1399 * |non-shared| shared (+*) | private | slave (*) | unbindable | 1400 * *************************************************************************** 1401 * 1402 * (+) the mount is moved to the destination. And is then propagated to 1403 * all the mounts in the propagation tree of the destination mount. 1404 * (+*) the mount is moved to the destination. 1405 * (+++) the mount is moved to the destination and is then propagated to 1406 * all the mounts belonging to the destination mount's propagation tree. 1407 * the mount is marked as 'shared and slave'. 1408 * (*) the mount continues to be a slave at the new location. 1409 * 1410 * if the source mount is a tree, the operations explained above is 1411 * applied to each mount in the tree. 1412 * Must be called without spinlocks held, since this function can sleep 1413 * in allocations. 1414 */ 1415 static int attach_recursive_mnt(struct vfsmount *source_mnt, 1416 struct path *path, struct path *parent_path) 1417 { 1418 LIST_HEAD(tree_list); 1419 struct vfsmount *dest_mnt = path->mnt; 1420 struct dentry *dest_dentry = path->dentry; 1421 struct vfsmount *child, *p; 1422 int err; 1423 1424 if (IS_MNT_SHARED(dest_mnt)) { 1425 err = invent_group_ids(source_mnt, true); 1426 if (err) 1427 goto out; 1428 } 1429 err = propagate_mnt(dest_mnt, dest_dentry, source_mnt, &tree_list); 1430 if (err) 1431 goto out_cleanup_ids; 1432 1433 br_write_lock(vfsmount_lock); 1434 1435 if (IS_MNT_SHARED(dest_mnt)) { 1436 for (p = source_mnt; p; p = next_mnt(p, source_mnt)) 1437 set_mnt_shared(p); 1438 } 1439 if (parent_path) { 1440 detach_mnt(source_mnt, parent_path); 1441 attach_mnt(source_mnt, path); 1442 touch_mnt_namespace(parent_path->mnt->mnt_ns); 1443 } else { 1444 mnt_set_mountpoint(dest_mnt, dest_dentry, source_mnt); 1445 commit_tree(source_mnt); 1446 } 1447 1448 list_for_each_entry_safe(child, p, &tree_list, mnt_hash) { 1449 list_del_init(&child->mnt_hash); 1450 commit_tree(child); 1451 } 1452 br_write_unlock(vfsmount_lock); 1453 1454 return 0; 1455 1456 out_cleanup_ids: 1457 if (IS_MNT_SHARED(dest_mnt)) 1458 cleanup_group_ids(source_mnt, NULL); 1459 out: 1460 return err; 1461 } 1462 1463 static int graft_tree(struct vfsmount *mnt, struct path *path) 1464 { 1465 int err; 1466 if (mnt->mnt_sb->s_flags & MS_NOUSER) 1467 return -EINVAL; 1468 1469 if (S_ISDIR(path->dentry->d_inode->i_mode) != 1470 S_ISDIR(mnt->mnt_root->d_inode->i_mode)) 1471 return -ENOTDIR; 1472 1473 err = -ENOENT; 1474 mutex_lock(&path->dentry->d_inode->i_mutex); 1475 if (cant_mount(path->dentry)) 1476 goto out_unlock; 1477 1478 if (!d_unlinked(path->dentry)) 1479 err = attach_recursive_mnt(mnt, path, NULL); 1480 out_unlock: 1481 mutex_unlock(&path->dentry->d_inode->i_mutex); 1482 return err; 1483 } 1484 1485 /* 1486 * Sanity check the flags to change_mnt_propagation. 1487 */ 1488 1489 static int flags_to_propagation_type(int flags) 1490 { 1491 int type = flags & ~MS_REC; 1492 1493 /* Fail if any non-propagation flags are set */ 1494 if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE)) 1495 return 0; 1496 /* Only one propagation flag should be set */ 1497 if (!is_power_of_2(type)) 1498 return 0; 1499 return type; 1500 } 1501 1502 /* 1503 * recursively change the type of the mountpoint. 1504 */ 1505 static int do_change_type(struct path *path, int flag) 1506 { 1507 struct vfsmount *m, *mnt = path->mnt; 1508 int recurse = flag & MS_REC; 1509 int type; 1510 int err = 0; 1511 1512 if (!capable(CAP_SYS_ADMIN)) 1513 return -EPERM; 1514 1515 if (path->dentry != path->mnt->mnt_root) 1516 return -EINVAL; 1517 1518 type = flags_to_propagation_type(flag); 1519 if (!type) 1520 return -EINVAL; 1521 1522 down_write(&namespace_sem); 1523 if (type == MS_SHARED) { 1524 err = invent_group_ids(mnt, recurse); 1525 if (err) 1526 goto out_unlock; 1527 } 1528 1529 br_write_lock(vfsmount_lock); 1530 for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL)) 1531 change_mnt_propagation(m, type); 1532 br_write_unlock(vfsmount_lock); 1533 1534 out_unlock: 1535 up_write(&namespace_sem); 1536 return err; 1537 } 1538 1539 /* 1540 * do loopback mount. 1541 */ 1542 static int do_loopback(struct path *path, char *old_name, 1543 int recurse) 1544 { 1545 struct path old_path; 1546 struct vfsmount *mnt = NULL; 1547 int err = mount_is_safe(path); 1548 if (err) 1549 return err; 1550 if (!old_name || !*old_name) 1551 return -EINVAL; 1552 err = kern_path(old_name, LOOKUP_FOLLOW, &old_path); 1553 if (err) 1554 return err; 1555 1556 down_write(&namespace_sem); 1557 err = -EINVAL; 1558 if (IS_MNT_UNBINDABLE(old_path.mnt)) 1559 goto out; 1560 1561 if (!check_mnt(path->mnt) || !check_mnt(old_path.mnt)) 1562 goto out; 1563 1564 err = -ENOMEM; 1565 if (recurse) 1566 mnt = copy_tree(old_path.mnt, old_path.dentry, 0); 1567 else 1568 mnt = clone_mnt(old_path.mnt, old_path.dentry, 0); 1569 1570 if (!mnt) 1571 goto out; 1572 1573 err = graft_tree(mnt, path); 1574 if (err) { 1575 LIST_HEAD(umount_list); 1576 1577 br_write_lock(vfsmount_lock); 1578 umount_tree(mnt, 0, &umount_list); 1579 br_write_unlock(vfsmount_lock); 1580 release_mounts(&umount_list); 1581 } 1582 1583 out: 1584 up_write(&namespace_sem); 1585 path_put(&old_path); 1586 return err; 1587 } 1588 1589 static int change_mount_flags(struct vfsmount *mnt, int ms_flags) 1590 { 1591 int error = 0; 1592 int readonly_request = 0; 1593 1594 if (ms_flags & MS_RDONLY) 1595 readonly_request = 1; 1596 if (readonly_request == __mnt_is_readonly(mnt)) 1597 return 0; 1598 1599 if (readonly_request) 1600 error = mnt_make_readonly(mnt); 1601 else 1602 __mnt_unmake_readonly(mnt); 1603 return error; 1604 } 1605 1606 /* 1607 * change filesystem flags. dir should be a physical root of filesystem. 1608 * If you've mounted a non-root directory somewhere and want to do remount 1609 * on it - tough luck. 1610 */ 1611 static int do_remount(struct path *path, int flags, int mnt_flags, 1612 void *data) 1613 { 1614 int err; 1615 struct super_block *sb = path->mnt->mnt_sb; 1616 1617 if (!capable(CAP_SYS_ADMIN)) 1618 return -EPERM; 1619 1620 if (!check_mnt(path->mnt)) 1621 return -EINVAL; 1622 1623 if (path->dentry != path->mnt->mnt_root) 1624 return -EINVAL; 1625 1626 down_write(&sb->s_umount); 1627 if (flags & MS_BIND) 1628 err = change_mount_flags(path->mnt, flags); 1629 else 1630 err = do_remount_sb(sb, flags, data, 0); 1631 if (!err) { 1632 br_write_lock(vfsmount_lock); 1633 mnt_flags |= path->mnt->mnt_flags & MNT_PROPAGATION_MASK; 1634 path->mnt->mnt_flags = mnt_flags; 1635 br_write_unlock(vfsmount_lock); 1636 } 1637 up_write(&sb->s_umount); 1638 if (!err) { 1639 br_write_lock(vfsmount_lock); 1640 touch_mnt_namespace(path->mnt->mnt_ns); 1641 br_write_unlock(vfsmount_lock); 1642 } 1643 return err; 1644 } 1645 1646 static inline int tree_contains_unbindable(struct vfsmount *mnt) 1647 { 1648 struct vfsmount *p; 1649 for (p = mnt; p; p = next_mnt(p, mnt)) { 1650 if (IS_MNT_UNBINDABLE(p)) 1651 return 1; 1652 } 1653 return 0; 1654 } 1655 1656 static int do_move_mount(struct path *path, char *old_name) 1657 { 1658 struct path old_path, parent_path; 1659 struct vfsmount *p; 1660 int err = 0; 1661 if (!capable(CAP_SYS_ADMIN)) 1662 return -EPERM; 1663 if (!old_name || !*old_name) 1664 return -EINVAL; 1665 err = kern_path(old_name, LOOKUP_FOLLOW, &old_path); 1666 if (err) 1667 return err; 1668 1669 down_write(&namespace_sem); 1670 while (d_mountpoint(path->dentry) && 1671 follow_down(path)) 1672 ; 1673 err = -EINVAL; 1674 if (!check_mnt(path->mnt) || !check_mnt(old_path.mnt)) 1675 goto out; 1676 1677 err = -ENOENT; 1678 mutex_lock(&path->dentry->d_inode->i_mutex); 1679 if (cant_mount(path->dentry)) 1680 goto out1; 1681 1682 if (d_unlinked(path->dentry)) 1683 goto out1; 1684 1685 err = -EINVAL; 1686 if (old_path.dentry != old_path.mnt->mnt_root) 1687 goto out1; 1688 1689 if (old_path.mnt == old_path.mnt->mnt_parent) 1690 goto out1; 1691 1692 if (S_ISDIR(path->dentry->d_inode->i_mode) != 1693 S_ISDIR(old_path.dentry->d_inode->i_mode)) 1694 goto out1; 1695 /* 1696 * Don't move a mount residing in a shared parent. 1697 */ 1698 if (old_path.mnt->mnt_parent && 1699 IS_MNT_SHARED(old_path.mnt->mnt_parent)) 1700 goto out1; 1701 /* 1702 * Don't move a mount tree containing unbindable mounts to a destination 1703 * mount which is shared. 1704 */ 1705 if (IS_MNT_SHARED(path->mnt) && 1706 tree_contains_unbindable(old_path.mnt)) 1707 goto out1; 1708 err = -ELOOP; 1709 for (p = path->mnt; p->mnt_parent != p; p = p->mnt_parent) 1710 if (p == old_path.mnt) 1711 goto out1; 1712 1713 err = attach_recursive_mnt(old_path.mnt, path, &parent_path); 1714 if (err) 1715 goto out1; 1716 1717 /* if the mount is moved, it should no longer be expire 1718 * automatically */ 1719 list_del_init(&old_path.mnt->mnt_expire); 1720 out1: 1721 mutex_unlock(&path->dentry->d_inode->i_mutex); 1722 out: 1723 up_write(&namespace_sem); 1724 if (!err) 1725 path_put(&parent_path); 1726 path_put(&old_path); 1727 return err; 1728 } 1729 1730 /* 1731 * create a new mount for userspace and request it to be added into the 1732 * namespace's tree 1733 */ 1734 static int do_new_mount(struct path *path, char *type, int flags, 1735 int mnt_flags, char *name, void *data) 1736 { 1737 struct vfsmount *mnt; 1738 1739 if (!type) 1740 return -EINVAL; 1741 1742 /* we need capabilities... */ 1743 if (!capable(CAP_SYS_ADMIN)) 1744 return -EPERM; 1745 1746 mnt = do_kern_mount(type, flags, name, data); 1747 if (IS_ERR(mnt)) 1748 return PTR_ERR(mnt); 1749 1750 return do_add_mount(mnt, path, mnt_flags, NULL); 1751 } 1752 1753 /* 1754 * add a mount into a namespace's mount tree 1755 * - provide the option of adding the new mount to an expiration list 1756 */ 1757 int do_add_mount(struct vfsmount *newmnt, struct path *path, 1758 int mnt_flags, struct list_head *fslist) 1759 { 1760 int err; 1761 1762 mnt_flags &= ~(MNT_SHARED | MNT_WRITE_HOLD | MNT_INTERNAL); 1763 1764 down_write(&namespace_sem); 1765 /* Something was mounted here while we slept */ 1766 while (d_mountpoint(path->dentry) && 1767 follow_down(path)) 1768 ; 1769 err = -EINVAL; 1770 if (!(mnt_flags & MNT_SHRINKABLE) && !check_mnt(path->mnt)) 1771 goto unlock; 1772 1773 /* Refuse the same filesystem on the same mount point */ 1774 err = -EBUSY; 1775 if (path->mnt->mnt_sb == newmnt->mnt_sb && 1776 path->mnt->mnt_root == path->dentry) 1777 goto unlock; 1778 1779 err = -EINVAL; 1780 if (S_ISLNK(newmnt->mnt_root->d_inode->i_mode)) 1781 goto unlock; 1782 1783 newmnt->mnt_flags = mnt_flags; 1784 if ((err = graft_tree(newmnt, path))) 1785 goto unlock; 1786 1787 if (fslist) /* add to the specified expiration list */ 1788 list_add_tail(&newmnt->mnt_expire, fslist); 1789 1790 up_write(&namespace_sem); 1791 return 0; 1792 1793 unlock: 1794 up_write(&namespace_sem); 1795 mntput(newmnt); 1796 return err; 1797 } 1798 1799 EXPORT_SYMBOL_GPL(do_add_mount); 1800 1801 /* 1802 * process a list of expirable mountpoints with the intent of discarding any 1803 * mountpoints that aren't in use and haven't been touched since last we came 1804 * here 1805 */ 1806 void mark_mounts_for_expiry(struct list_head *mounts) 1807 { 1808 struct vfsmount *mnt, *next; 1809 LIST_HEAD(graveyard); 1810 LIST_HEAD(umounts); 1811 1812 if (list_empty(mounts)) 1813 return; 1814 1815 down_write(&namespace_sem); 1816 br_write_lock(vfsmount_lock); 1817 1818 /* extract from the expiration list every vfsmount that matches the 1819 * following criteria: 1820 * - only referenced by its parent vfsmount 1821 * - still marked for expiry (marked on the last call here; marks are 1822 * cleared by mntput()) 1823 */ 1824 list_for_each_entry_safe(mnt, next, mounts, mnt_expire) { 1825 if (!xchg(&mnt->mnt_expiry_mark, 1) || 1826 propagate_mount_busy(mnt, 1)) 1827 continue; 1828 list_move(&mnt->mnt_expire, &graveyard); 1829 } 1830 while (!list_empty(&graveyard)) { 1831 mnt = list_first_entry(&graveyard, struct vfsmount, mnt_expire); 1832 touch_mnt_namespace(mnt->mnt_ns); 1833 umount_tree(mnt, 1, &umounts); 1834 } 1835 br_write_unlock(vfsmount_lock); 1836 up_write(&namespace_sem); 1837 1838 release_mounts(&umounts); 1839 } 1840 1841 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry); 1842 1843 /* 1844 * Ripoff of 'select_parent()' 1845 * 1846 * search the list of submounts for a given mountpoint, and move any 1847 * shrinkable submounts to the 'graveyard' list. 1848 */ 1849 static int select_submounts(struct vfsmount *parent, struct list_head *graveyard) 1850 { 1851 struct vfsmount *this_parent = parent; 1852 struct list_head *next; 1853 int found = 0; 1854 1855 repeat: 1856 next = this_parent->mnt_mounts.next; 1857 resume: 1858 while (next != &this_parent->mnt_mounts) { 1859 struct list_head *tmp = next; 1860 struct vfsmount *mnt = list_entry(tmp, struct vfsmount, mnt_child); 1861 1862 next = tmp->next; 1863 if (!(mnt->mnt_flags & MNT_SHRINKABLE)) 1864 continue; 1865 /* 1866 * Descend a level if the d_mounts list is non-empty. 1867 */ 1868 if (!list_empty(&mnt->mnt_mounts)) { 1869 this_parent = mnt; 1870 goto repeat; 1871 } 1872 1873 if (!propagate_mount_busy(mnt, 1)) { 1874 list_move_tail(&mnt->mnt_expire, graveyard); 1875 found++; 1876 } 1877 } 1878 /* 1879 * All done at this level ... ascend and resume the search 1880 */ 1881 if (this_parent != parent) { 1882 next = this_parent->mnt_child.next; 1883 this_parent = this_parent->mnt_parent; 1884 goto resume; 1885 } 1886 return found; 1887 } 1888 1889 /* 1890 * process a list of expirable mountpoints with the intent of discarding any 1891 * submounts of a specific parent mountpoint 1892 * 1893 * vfsmount_lock must be held for write 1894 */ 1895 static void shrink_submounts(struct vfsmount *mnt, struct list_head *umounts) 1896 { 1897 LIST_HEAD(graveyard); 1898 struct vfsmount *m; 1899 1900 /* extract submounts of 'mountpoint' from the expiration list */ 1901 while (select_submounts(mnt, &graveyard)) { 1902 while (!list_empty(&graveyard)) { 1903 m = list_first_entry(&graveyard, struct vfsmount, 1904 mnt_expire); 1905 touch_mnt_namespace(m->mnt_ns); 1906 umount_tree(m, 1, umounts); 1907 } 1908 } 1909 } 1910 1911 /* 1912 * Some copy_from_user() implementations do not return the exact number of 1913 * bytes remaining to copy on a fault. But copy_mount_options() requires that. 1914 * Note that this function differs from copy_from_user() in that it will oops 1915 * on bad values of `to', rather than returning a short copy. 1916 */ 1917 static long exact_copy_from_user(void *to, const void __user * from, 1918 unsigned long n) 1919 { 1920 char *t = to; 1921 const char __user *f = from; 1922 char c; 1923 1924 if (!access_ok(VERIFY_READ, from, n)) 1925 return n; 1926 1927 while (n) { 1928 if (__get_user(c, f)) { 1929 memset(t, 0, n); 1930 break; 1931 } 1932 *t++ = c; 1933 f++; 1934 n--; 1935 } 1936 return n; 1937 } 1938 1939 int copy_mount_options(const void __user * data, unsigned long *where) 1940 { 1941 int i; 1942 unsigned long page; 1943 unsigned long size; 1944 1945 *where = 0; 1946 if (!data) 1947 return 0; 1948 1949 if (!(page = __get_free_page(GFP_KERNEL))) 1950 return -ENOMEM; 1951 1952 /* We only care that *some* data at the address the user 1953 * gave us is valid. Just in case, we'll zero 1954 * the remainder of the page. 1955 */ 1956 /* copy_from_user cannot cross TASK_SIZE ! */ 1957 size = TASK_SIZE - (unsigned long)data; 1958 if (size > PAGE_SIZE) 1959 size = PAGE_SIZE; 1960 1961 i = size - exact_copy_from_user((void *)page, data, size); 1962 if (!i) { 1963 free_page(page); 1964 return -EFAULT; 1965 } 1966 if (i != PAGE_SIZE) 1967 memset((char *)page + i, 0, PAGE_SIZE - i); 1968 *where = page; 1969 return 0; 1970 } 1971 1972 int copy_mount_string(const void __user *data, char **where) 1973 { 1974 char *tmp; 1975 1976 if (!data) { 1977 *where = NULL; 1978 return 0; 1979 } 1980 1981 tmp = strndup_user(data, PAGE_SIZE); 1982 if (IS_ERR(tmp)) 1983 return PTR_ERR(tmp); 1984 1985 *where = tmp; 1986 return 0; 1987 } 1988 1989 /* 1990 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to 1991 * be given to the mount() call (ie: read-only, no-dev, no-suid etc). 1992 * 1993 * data is a (void *) that can point to any structure up to 1994 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent 1995 * information (or be NULL). 1996 * 1997 * Pre-0.97 versions of mount() didn't have a flags word. 1998 * When the flags word was introduced its top half was required 1999 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9. 2000 * Therefore, if this magic number is present, it carries no information 2001 * and must be discarded. 2002 */ 2003 long do_mount(char *dev_name, char *dir_name, char *type_page, 2004 unsigned long flags, void *data_page) 2005 { 2006 struct path path; 2007 int retval = 0; 2008 int mnt_flags = 0; 2009 2010 /* Discard magic */ 2011 if ((flags & MS_MGC_MSK) == MS_MGC_VAL) 2012 flags &= ~MS_MGC_MSK; 2013 2014 /* Basic sanity checks */ 2015 2016 if (!dir_name || !*dir_name || !memchr(dir_name, 0, PAGE_SIZE)) 2017 return -EINVAL; 2018 2019 if (data_page) 2020 ((char *)data_page)[PAGE_SIZE - 1] = 0; 2021 2022 /* ... and get the mountpoint */ 2023 retval = kern_path(dir_name, LOOKUP_FOLLOW, &path); 2024 if (retval) 2025 return retval; 2026 2027 retval = security_sb_mount(dev_name, &path, 2028 type_page, flags, data_page); 2029 if (retval) 2030 goto dput_out; 2031 2032 /* Default to relatime unless overriden */ 2033 if (!(flags & MS_NOATIME)) 2034 mnt_flags |= MNT_RELATIME; 2035 2036 /* Separate the per-mountpoint flags */ 2037 if (flags & MS_NOSUID) 2038 mnt_flags |= MNT_NOSUID; 2039 if (flags & MS_NODEV) 2040 mnt_flags |= MNT_NODEV; 2041 if (flags & MS_NOEXEC) 2042 mnt_flags |= MNT_NOEXEC; 2043 if (flags & MS_NOATIME) 2044 mnt_flags |= MNT_NOATIME; 2045 if (flags & MS_NODIRATIME) 2046 mnt_flags |= MNT_NODIRATIME; 2047 if (flags & MS_STRICTATIME) 2048 mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME); 2049 if (flags & MS_RDONLY) 2050 mnt_flags |= MNT_READONLY; 2051 2052 flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE | MS_BORN | 2053 MS_NOATIME | MS_NODIRATIME | MS_RELATIME| MS_KERNMOUNT | 2054 MS_STRICTATIME); 2055 2056 if (flags & MS_REMOUNT) 2057 retval = do_remount(&path, flags & ~MS_REMOUNT, mnt_flags, 2058 data_page); 2059 else if (flags & MS_BIND) 2060 retval = do_loopback(&path, dev_name, flags & MS_REC); 2061 else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE)) 2062 retval = do_change_type(&path, flags); 2063 else if (flags & MS_MOVE) 2064 retval = do_move_mount(&path, dev_name); 2065 else 2066 retval = do_new_mount(&path, type_page, flags, mnt_flags, 2067 dev_name, data_page); 2068 dput_out: 2069 path_put(&path); 2070 return retval; 2071 } 2072 2073 static struct mnt_namespace *alloc_mnt_ns(void) 2074 { 2075 struct mnt_namespace *new_ns; 2076 2077 new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL); 2078 if (!new_ns) 2079 return ERR_PTR(-ENOMEM); 2080 atomic_set(&new_ns->count, 1); 2081 new_ns->root = NULL; 2082 INIT_LIST_HEAD(&new_ns->list); 2083 init_waitqueue_head(&new_ns->poll); 2084 new_ns->event = 0; 2085 return new_ns; 2086 } 2087 2088 /* 2089 * Allocate a new namespace structure and populate it with contents 2090 * copied from the namespace of the passed in task structure. 2091 */ 2092 static struct mnt_namespace *dup_mnt_ns(struct mnt_namespace *mnt_ns, 2093 struct fs_struct *fs) 2094 { 2095 struct mnt_namespace *new_ns; 2096 struct vfsmount *rootmnt = NULL, *pwdmnt = NULL; 2097 struct vfsmount *p, *q; 2098 2099 new_ns = alloc_mnt_ns(); 2100 if (IS_ERR(new_ns)) 2101 return new_ns; 2102 2103 down_write(&namespace_sem); 2104 /* First pass: copy the tree topology */ 2105 new_ns->root = copy_tree(mnt_ns->root, mnt_ns->root->mnt_root, 2106 CL_COPY_ALL | CL_EXPIRE); 2107 if (!new_ns->root) { 2108 up_write(&namespace_sem); 2109 kfree(new_ns); 2110 return ERR_PTR(-ENOMEM); 2111 } 2112 br_write_lock(vfsmount_lock); 2113 list_add_tail(&new_ns->list, &new_ns->root->mnt_list); 2114 br_write_unlock(vfsmount_lock); 2115 2116 /* 2117 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts 2118 * as belonging to new namespace. We have already acquired a private 2119 * fs_struct, so tsk->fs->lock is not needed. 2120 */ 2121 p = mnt_ns->root; 2122 q = new_ns->root; 2123 while (p) { 2124 q->mnt_ns = new_ns; 2125 if (fs) { 2126 if (p == fs->root.mnt) { 2127 rootmnt = p; 2128 fs->root.mnt = mntget(q); 2129 } 2130 if (p == fs->pwd.mnt) { 2131 pwdmnt = p; 2132 fs->pwd.mnt = mntget(q); 2133 } 2134 } 2135 p = next_mnt(p, mnt_ns->root); 2136 q = next_mnt(q, new_ns->root); 2137 } 2138 up_write(&namespace_sem); 2139 2140 if (rootmnt) 2141 mntput(rootmnt); 2142 if (pwdmnt) 2143 mntput(pwdmnt); 2144 2145 return new_ns; 2146 } 2147 2148 struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns, 2149 struct fs_struct *new_fs) 2150 { 2151 struct mnt_namespace *new_ns; 2152 2153 BUG_ON(!ns); 2154 get_mnt_ns(ns); 2155 2156 if (!(flags & CLONE_NEWNS)) 2157 return ns; 2158 2159 new_ns = dup_mnt_ns(ns, new_fs); 2160 2161 put_mnt_ns(ns); 2162 return new_ns; 2163 } 2164 2165 /** 2166 * create_mnt_ns - creates a private namespace and adds a root filesystem 2167 * @mnt: pointer to the new root filesystem mountpoint 2168 */ 2169 struct mnt_namespace *create_mnt_ns(struct vfsmount *mnt) 2170 { 2171 struct mnt_namespace *new_ns; 2172 2173 new_ns = alloc_mnt_ns(); 2174 if (!IS_ERR(new_ns)) { 2175 mnt->mnt_ns = new_ns; 2176 new_ns->root = mnt; 2177 list_add(&new_ns->list, &new_ns->root->mnt_list); 2178 } 2179 return new_ns; 2180 } 2181 EXPORT_SYMBOL(create_mnt_ns); 2182 2183 SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name, 2184 char __user *, type, unsigned long, flags, void __user *, data) 2185 { 2186 int ret; 2187 char *kernel_type; 2188 char *kernel_dir; 2189 char *kernel_dev; 2190 unsigned long data_page; 2191 2192 ret = copy_mount_string(type, &kernel_type); 2193 if (ret < 0) 2194 goto out_type; 2195 2196 kernel_dir = getname(dir_name); 2197 if (IS_ERR(kernel_dir)) { 2198 ret = PTR_ERR(kernel_dir); 2199 goto out_dir; 2200 } 2201 2202 ret = copy_mount_string(dev_name, &kernel_dev); 2203 if (ret < 0) 2204 goto out_dev; 2205 2206 ret = copy_mount_options(data, &data_page); 2207 if (ret < 0) 2208 goto out_data; 2209 2210 ret = do_mount(kernel_dev, kernel_dir, kernel_type, flags, 2211 (void *) data_page); 2212 2213 free_page(data_page); 2214 out_data: 2215 kfree(kernel_dev); 2216 out_dev: 2217 putname(kernel_dir); 2218 out_dir: 2219 kfree(kernel_type); 2220 out_type: 2221 return ret; 2222 } 2223 2224 /* 2225 * pivot_root Semantics: 2226 * Moves the root file system of the current process to the directory put_old, 2227 * makes new_root as the new root file system of the current process, and sets 2228 * root/cwd of all processes which had them on the current root to new_root. 2229 * 2230 * Restrictions: 2231 * The new_root and put_old must be directories, and must not be on the 2232 * same file system as the current process root. The put_old must be 2233 * underneath new_root, i.e. adding a non-zero number of /.. to the string 2234 * pointed to by put_old must yield the same directory as new_root. No other 2235 * file system may be mounted on put_old. After all, new_root is a mountpoint. 2236 * 2237 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem. 2238 * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives 2239 * in this situation. 2240 * 2241 * Notes: 2242 * - we don't move root/cwd if they are not at the root (reason: if something 2243 * cared enough to change them, it's probably wrong to force them elsewhere) 2244 * - it's okay to pick a root that isn't the root of a file system, e.g. 2245 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint, 2246 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root 2247 * first. 2248 */ 2249 SYSCALL_DEFINE2(pivot_root, const char __user *, new_root, 2250 const char __user *, put_old) 2251 { 2252 struct vfsmount *tmp; 2253 struct path new, old, parent_path, root_parent, root; 2254 int error; 2255 2256 if (!capable(CAP_SYS_ADMIN)) 2257 return -EPERM; 2258 2259 error = user_path_dir(new_root, &new); 2260 if (error) 2261 goto out0; 2262 error = -EINVAL; 2263 if (!check_mnt(new.mnt)) 2264 goto out1; 2265 2266 error = user_path_dir(put_old, &old); 2267 if (error) 2268 goto out1; 2269 2270 error = security_sb_pivotroot(&old, &new); 2271 if (error) { 2272 path_put(&old); 2273 goto out1; 2274 } 2275 2276 get_fs_root(current->fs, &root); 2277 down_write(&namespace_sem); 2278 mutex_lock(&old.dentry->d_inode->i_mutex); 2279 error = -EINVAL; 2280 if (IS_MNT_SHARED(old.mnt) || 2281 IS_MNT_SHARED(new.mnt->mnt_parent) || 2282 IS_MNT_SHARED(root.mnt->mnt_parent)) 2283 goto out2; 2284 if (!check_mnt(root.mnt)) 2285 goto out2; 2286 error = -ENOENT; 2287 if (cant_mount(old.dentry)) 2288 goto out2; 2289 if (d_unlinked(new.dentry)) 2290 goto out2; 2291 if (d_unlinked(old.dentry)) 2292 goto out2; 2293 error = -EBUSY; 2294 if (new.mnt == root.mnt || 2295 old.mnt == root.mnt) 2296 goto out2; /* loop, on the same file system */ 2297 error = -EINVAL; 2298 if (root.mnt->mnt_root != root.dentry) 2299 goto out2; /* not a mountpoint */ 2300 if (root.mnt->mnt_parent == root.mnt) 2301 goto out2; /* not attached */ 2302 if (new.mnt->mnt_root != new.dentry) 2303 goto out2; /* not a mountpoint */ 2304 if (new.mnt->mnt_parent == new.mnt) 2305 goto out2; /* not attached */ 2306 /* make sure we can reach put_old from new_root */ 2307 tmp = old.mnt; 2308 br_write_lock(vfsmount_lock); 2309 if (tmp != new.mnt) { 2310 for (;;) { 2311 if (tmp->mnt_parent == tmp) 2312 goto out3; /* already mounted on put_old */ 2313 if (tmp->mnt_parent == new.mnt) 2314 break; 2315 tmp = tmp->mnt_parent; 2316 } 2317 if (!is_subdir(tmp->mnt_mountpoint, new.dentry)) 2318 goto out3; 2319 } else if (!is_subdir(old.dentry, new.dentry)) 2320 goto out3; 2321 detach_mnt(new.mnt, &parent_path); 2322 detach_mnt(root.mnt, &root_parent); 2323 /* mount old root on put_old */ 2324 attach_mnt(root.mnt, &old); 2325 /* mount new_root on / */ 2326 attach_mnt(new.mnt, &root_parent); 2327 touch_mnt_namespace(current->nsproxy->mnt_ns); 2328 br_write_unlock(vfsmount_lock); 2329 chroot_fs_refs(&root, &new); 2330 error = 0; 2331 path_put(&root_parent); 2332 path_put(&parent_path); 2333 out2: 2334 mutex_unlock(&old.dentry->d_inode->i_mutex); 2335 up_write(&namespace_sem); 2336 path_put(&root); 2337 path_put(&old); 2338 out1: 2339 path_put(&new); 2340 out0: 2341 return error; 2342 out3: 2343 br_write_unlock(vfsmount_lock); 2344 goto out2; 2345 } 2346 2347 static void __init init_mount_tree(void) 2348 { 2349 struct vfsmount *mnt; 2350 struct mnt_namespace *ns; 2351 struct path root; 2352 2353 mnt = do_kern_mount("rootfs", 0, "rootfs", NULL); 2354 if (IS_ERR(mnt)) 2355 panic("Can't create rootfs"); 2356 ns = create_mnt_ns(mnt); 2357 if (IS_ERR(ns)) 2358 panic("Can't allocate initial namespace"); 2359 2360 init_task.nsproxy->mnt_ns = ns; 2361 get_mnt_ns(ns); 2362 2363 root.mnt = ns->root; 2364 root.dentry = ns->root->mnt_root; 2365 2366 set_fs_pwd(current->fs, &root); 2367 set_fs_root(current->fs, &root); 2368 } 2369 2370 void __init mnt_init(void) 2371 { 2372 unsigned u; 2373 int err; 2374 2375 init_rwsem(&namespace_sem); 2376 2377 mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct vfsmount), 2378 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL); 2379 2380 mount_hashtable = (struct list_head *)__get_free_page(GFP_ATOMIC); 2381 2382 if (!mount_hashtable) 2383 panic("Failed to allocate mount hash table\n"); 2384 2385 printk("Mount-cache hash table entries: %lu\n", HASH_SIZE); 2386 2387 for (u = 0; u < HASH_SIZE; u++) 2388 INIT_LIST_HEAD(&mount_hashtable[u]); 2389 2390 br_lock_init(vfsmount_lock); 2391 2392 err = sysfs_init(); 2393 if (err) 2394 printk(KERN_WARNING "%s: sysfs_init error: %d\n", 2395 __func__, err); 2396 fs_kobj = kobject_create_and_add("fs", NULL); 2397 if (!fs_kobj) 2398 printk(KERN_WARNING "%s: kobj create error\n", __func__); 2399 init_rootfs(); 2400 init_mount_tree(); 2401 } 2402 2403 void put_mnt_ns(struct mnt_namespace *ns) 2404 { 2405 LIST_HEAD(umount_list); 2406 2407 if (!atomic_dec_and_test(&ns->count)) 2408 return; 2409 down_write(&namespace_sem); 2410 br_write_lock(vfsmount_lock); 2411 umount_tree(ns->root, 0, &umount_list); 2412 br_write_unlock(vfsmount_lock); 2413 up_write(&namespace_sem); 2414 release_mounts(&umount_list); 2415 kfree(ns); 2416 } 2417 EXPORT_SYMBOL(put_mnt_ns); 2418