xref: /openbmc/linux/fs/namespace.c (revision baa7eb025ab14f3cba2e35c0a8648f9c9f01d24f)
1 /*
2  *  linux/fs/namespace.c
3  *
4  * (C) Copyright Al Viro 2000, 2001
5  *	Released under GPL v2.
6  *
7  * Based on code from fs/super.c, copyright Linus Torvalds and others.
8  * Heavily rewritten.
9  */
10 
11 #include <linux/syscalls.h>
12 #include <linux/slab.h>
13 #include <linux/sched.h>
14 #include <linux/spinlock.h>
15 #include <linux/percpu.h>
16 #include <linux/init.h>
17 #include <linux/kernel.h>
18 #include <linux/acct.h>
19 #include <linux/capability.h>
20 #include <linux/cpumask.h>
21 #include <linux/module.h>
22 #include <linux/sysfs.h>
23 #include <linux/seq_file.h>
24 #include <linux/mnt_namespace.h>
25 #include <linux/namei.h>
26 #include <linux/nsproxy.h>
27 #include <linux/security.h>
28 #include <linux/mount.h>
29 #include <linux/ramfs.h>
30 #include <linux/log2.h>
31 #include <linux/idr.h>
32 #include <linux/fs_struct.h>
33 #include <linux/fsnotify.h>
34 #include <asm/uaccess.h>
35 #include <asm/unistd.h>
36 #include "pnode.h"
37 #include "internal.h"
38 
39 #define HASH_SHIFT ilog2(PAGE_SIZE / sizeof(struct list_head))
40 #define HASH_SIZE (1UL << HASH_SHIFT)
41 
42 static int event;
43 static DEFINE_IDA(mnt_id_ida);
44 static DEFINE_IDA(mnt_group_ida);
45 static DEFINE_SPINLOCK(mnt_id_lock);
46 static int mnt_id_start = 0;
47 static int mnt_group_start = 1;
48 
49 static struct list_head *mount_hashtable __read_mostly;
50 static struct kmem_cache *mnt_cache __read_mostly;
51 static struct rw_semaphore namespace_sem;
52 
53 /* /sys/fs */
54 struct kobject *fs_kobj;
55 EXPORT_SYMBOL_GPL(fs_kobj);
56 
57 /*
58  * vfsmount lock may be taken for read to prevent changes to the
59  * vfsmount hash, ie. during mountpoint lookups or walking back
60  * up the tree.
61  *
62  * It should be taken for write in all cases where the vfsmount
63  * tree or hash is modified or when a vfsmount structure is modified.
64  */
65 DEFINE_BRLOCK(vfsmount_lock);
66 
67 static inline unsigned long hash(struct vfsmount *mnt, struct dentry *dentry)
68 {
69 	unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
70 	tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
71 	tmp = tmp + (tmp >> HASH_SHIFT);
72 	return tmp & (HASH_SIZE - 1);
73 }
74 
75 #define MNT_WRITER_UNDERFLOW_LIMIT -(1<<16)
76 
77 /*
78  * allocation is serialized by namespace_sem, but we need the spinlock to
79  * serialize with freeing.
80  */
81 static int mnt_alloc_id(struct vfsmount *mnt)
82 {
83 	int res;
84 
85 retry:
86 	ida_pre_get(&mnt_id_ida, GFP_KERNEL);
87 	spin_lock(&mnt_id_lock);
88 	res = ida_get_new_above(&mnt_id_ida, mnt_id_start, &mnt->mnt_id);
89 	if (!res)
90 		mnt_id_start = mnt->mnt_id + 1;
91 	spin_unlock(&mnt_id_lock);
92 	if (res == -EAGAIN)
93 		goto retry;
94 
95 	return res;
96 }
97 
98 static void mnt_free_id(struct vfsmount *mnt)
99 {
100 	int id = mnt->mnt_id;
101 	spin_lock(&mnt_id_lock);
102 	ida_remove(&mnt_id_ida, id);
103 	if (mnt_id_start > id)
104 		mnt_id_start = id;
105 	spin_unlock(&mnt_id_lock);
106 }
107 
108 /*
109  * Allocate a new peer group ID
110  *
111  * mnt_group_ida is protected by namespace_sem
112  */
113 static int mnt_alloc_group_id(struct vfsmount *mnt)
114 {
115 	int res;
116 
117 	if (!ida_pre_get(&mnt_group_ida, GFP_KERNEL))
118 		return -ENOMEM;
119 
120 	res = ida_get_new_above(&mnt_group_ida,
121 				mnt_group_start,
122 				&mnt->mnt_group_id);
123 	if (!res)
124 		mnt_group_start = mnt->mnt_group_id + 1;
125 
126 	return res;
127 }
128 
129 /*
130  * Release a peer group ID
131  */
132 void mnt_release_group_id(struct vfsmount *mnt)
133 {
134 	int id = mnt->mnt_group_id;
135 	ida_remove(&mnt_group_ida, id);
136 	if (mnt_group_start > id)
137 		mnt_group_start = id;
138 	mnt->mnt_group_id = 0;
139 }
140 
141 struct vfsmount *alloc_vfsmnt(const char *name)
142 {
143 	struct vfsmount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
144 	if (mnt) {
145 		int err;
146 
147 		err = mnt_alloc_id(mnt);
148 		if (err)
149 			goto out_free_cache;
150 
151 		if (name) {
152 			mnt->mnt_devname = kstrdup(name, GFP_KERNEL);
153 			if (!mnt->mnt_devname)
154 				goto out_free_id;
155 		}
156 
157 		atomic_set(&mnt->mnt_count, 1);
158 		INIT_LIST_HEAD(&mnt->mnt_hash);
159 		INIT_LIST_HEAD(&mnt->mnt_child);
160 		INIT_LIST_HEAD(&mnt->mnt_mounts);
161 		INIT_LIST_HEAD(&mnt->mnt_list);
162 		INIT_LIST_HEAD(&mnt->mnt_expire);
163 		INIT_LIST_HEAD(&mnt->mnt_share);
164 		INIT_LIST_HEAD(&mnt->mnt_slave_list);
165 		INIT_LIST_HEAD(&mnt->mnt_slave);
166 #ifdef CONFIG_FSNOTIFY
167 		INIT_HLIST_HEAD(&mnt->mnt_fsnotify_marks);
168 #endif
169 #ifdef CONFIG_SMP
170 		mnt->mnt_writers = alloc_percpu(int);
171 		if (!mnt->mnt_writers)
172 			goto out_free_devname;
173 #else
174 		mnt->mnt_writers = 0;
175 #endif
176 	}
177 	return mnt;
178 
179 #ifdef CONFIG_SMP
180 out_free_devname:
181 	kfree(mnt->mnt_devname);
182 #endif
183 out_free_id:
184 	mnt_free_id(mnt);
185 out_free_cache:
186 	kmem_cache_free(mnt_cache, mnt);
187 	return NULL;
188 }
189 
190 /*
191  * Most r/o checks on a fs are for operations that take
192  * discrete amounts of time, like a write() or unlink().
193  * We must keep track of when those operations start
194  * (for permission checks) and when they end, so that
195  * we can determine when writes are able to occur to
196  * a filesystem.
197  */
198 /*
199  * __mnt_is_readonly: check whether a mount is read-only
200  * @mnt: the mount to check for its write status
201  *
202  * This shouldn't be used directly ouside of the VFS.
203  * It does not guarantee that the filesystem will stay
204  * r/w, just that it is right *now*.  This can not and
205  * should not be used in place of IS_RDONLY(inode).
206  * mnt_want/drop_write() will _keep_ the filesystem
207  * r/w.
208  */
209 int __mnt_is_readonly(struct vfsmount *mnt)
210 {
211 	if (mnt->mnt_flags & MNT_READONLY)
212 		return 1;
213 	if (mnt->mnt_sb->s_flags & MS_RDONLY)
214 		return 1;
215 	return 0;
216 }
217 EXPORT_SYMBOL_GPL(__mnt_is_readonly);
218 
219 static inline void inc_mnt_writers(struct vfsmount *mnt)
220 {
221 #ifdef CONFIG_SMP
222 	(*per_cpu_ptr(mnt->mnt_writers, smp_processor_id()))++;
223 #else
224 	mnt->mnt_writers++;
225 #endif
226 }
227 
228 static inline void dec_mnt_writers(struct vfsmount *mnt)
229 {
230 #ifdef CONFIG_SMP
231 	(*per_cpu_ptr(mnt->mnt_writers, smp_processor_id()))--;
232 #else
233 	mnt->mnt_writers--;
234 #endif
235 }
236 
237 static unsigned int count_mnt_writers(struct vfsmount *mnt)
238 {
239 #ifdef CONFIG_SMP
240 	unsigned int count = 0;
241 	int cpu;
242 
243 	for_each_possible_cpu(cpu) {
244 		count += *per_cpu_ptr(mnt->mnt_writers, cpu);
245 	}
246 
247 	return count;
248 #else
249 	return mnt->mnt_writers;
250 #endif
251 }
252 
253 /*
254  * Most r/o checks on a fs are for operations that take
255  * discrete amounts of time, like a write() or unlink().
256  * We must keep track of when those operations start
257  * (for permission checks) and when they end, so that
258  * we can determine when writes are able to occur to
259  * a filesystem.
260  */
261 /**
262  * mnt_want_write - get write access to a mount
263  * @mnt: the mount on which to take a write
264  *
265  * This tells the low-level filesystem that a write is
266  * about to be performed to it, and makes sure that
267  * writes are allowed before returning success.  When
268  * the write operation is finished, mnt_drop_write()
269  * must be called.  This is effectively a refcount.
270  */
271 int mnt_want_write(struct vfsmount *mnt)
272 {
273 	int ret = 0;
274 
275 	preempt_disable();
276 	inc_mnt_writers(mnt);
277 	/*
278 	 * The store to inc_mnt_writers must be visible before we pass
279 	 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
280 	 * incremented count after it has set MNT_WRITE_HOLD.
281 	 */
282 	smp_mb();
283 	while (mnt->mnt_flags & MNT_WRITE_HOLD)
284 		cpu_relax();
285 	/*
286 	 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
287 	 * be set to match its requirements. So we must not load that until
288 	 * MNT_WRITE_HOLD is cleared.
289 	 */
290 	smp_rmb();
291 	if (__mnt_is_readonly(mnt)) {
292 		dec_mnt_writers(mnt);
293 		ret = -EROFS;
294 		goto out;
295 	}
296 out:
297 	preempt_enable();
298 	return ret;
299 }
300 EXPORT_SYMBOL_GPL(mnt_want_write);
301 
302 /**
303  * mnt_clone_write - get write access to a mount
304  * @mnt: the mount on which to take a write
305  *
306  * This is effectively like mnt_want_write, except
307  * it must only be used to take an extra write reference
308  * on a mountpoint that we already know has a write reference
309  * on it. This allows some optimisation.
310  *
311  * After finished, mnt_drop_write must be called as usual to
312  * drop the reference.
313  */
314 int mnt_clone_write(struct vfsmount *mnt)
315 {
316 	/* superblock may be r/o */
317 	if (__mnt_is_readonly(mnt))
318 		return -EROFS;
319 	preempt_disable();
320 	inc_mnt_writers(mnt);
321 	preempt_enable();
322 	return 0;
323 }
324 EXPORT_SYMBOL_GPL(mnt_clone_write);
325 
326 /**
327  * mnt_want_write_file - get write access to a file's mount
328  * @file: the file who's mount on which to take a write
329  *
330  * This is like mnt_want_write, but it takes a file and can
331  * do some optimisations if the file is open for write already
332  */
333 int mnt_want_write_file(struct file *file)
334 {
335 	struct inode *inode = file->f_dentry->d_inode;
336 	if (!(file->f_mode & FMODE_WRITE) || special_file(inode->i_mode))
337 		return mnt_want_write(file->f_path.mnt);
338 	else
339 		return mnt_clone_write(file->f_path.mnt);
340 }
341 EXPORT_SYMBOL_GPL(mnt_want_write_file);
342 
343 /**
344  * mnt_drop_write - give up write access to a mount
345  * @mnt: the mount on which to give up write access
346  *
347  * Tells the low-level filesystem that we are done
348  * performing writes to it.  Must be matched with
349  * mnt_want_write() call above.
350  */
351 void mnt_drop_write(struct vfsmount *mnt)
352 {
353 	preempt_disable();
354 	dec_mnt_writers(mnt);
355 	preempt_enable();
356 }
357 EXPORT_SYMBOL_GPL(mnt_drop_write);
358 
359 static int mnt_make_readonly(struct vfsmount *mnt)
360 {
361 	int ret = 0;
362 
363 	br_write_lock(vfsmount_lock);
364 	mnt->mnt_flags |= MNT_WRITE_HOLD;
365 	/*
366 	 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
367 	 * should be visible before we do.
368 	 */
369 	smp_mb();
370 
371 	/*
372 	 * With writers on hold, if this value is zero, then there are
373 	 * definitely no active writers (although held writers may subsequently
374 	 * increment the count, they'll have to wait, and decrement it after
375 	 * seeing MNT_READONLY).
376 	 *
377 	 * It is OK to have counter incremented on one CPU and decremented on
378 	 * another: the sum will add up correctly. The danger would be when we
379 	 * sum up each counter, if we read a counter before it is incremented,
380 	 * but then read another CPU's count which it has been subsequently
381 	 * decremented from -- we would see more decrements than we should.
382 	 * MNT_WRITE_HOLD protects against this scenario, because
383 	 * mnt_want_write first increments count, then smp_mb, then spins on
384 	 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
385 	 * we're counting up here.
386 	 */
387 	if (count_mnt_writers(mnt) > 0)
388 		ret = -EBUSY;
389 	else
390 		mnt->mnt_flags |= MNT_READONLY;
391 	/*
392 	 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
393 	 * that become unheld will see MNT_READONLY.
394 	 */
395 	smp_wmb();
396 	mnt->mnt_flags &= ~MNT_WRITE_HOLD;
397 	br_write_unlock(vfsmount_lock);
398 	return ret;
399 }
400 
401 static void __mnt_unmake_readonly(struct vfsmount *mnt)
402 {
403 	br_write_lock(vfsmount_lock);
404 	mnt->mnt_flags &= ~MNT_READONLY;
405 	br_write_unlock(vfsmount_lock);
406 }
407 
408 void simple_set_mnt(struct vfsmount *mnt, struct super_block *sb)
409 {
410 	mnt->mnt_sb = sb;
411 	mnt->mnt_root = dget(sb->s_root);
412 }
413 
414 EXPORT_SYMBOL(simple_set_mnt);
415 
416 void free_vfsmnt(struct vfsmount *mnt)
417 {
418 	kfree(mnt->mnt_devname);
419 	mnt_free_id(mnt);
420 #ifdef CONFIG_SMP
421 	free_percpu(mnt->mnt_writers);
422 #endif
423 	kmem_cache_free(mnt_cache, mnt);
424 }
425 
426 /*
427  * find the first or last mount at @dentry on vfsmount @mnt depending on
428  * @dir. If @dir is set return the first mount else return the last mount.
429  * vfsmount_lock must be held for read or write.
430  */
431 struct vfsmount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry,
432 			      int dir)
433 {
434 	struct list_head *head = mount_hashtable + hash(mnt, dentry);
435 	struct list_head *tmp = head;
436 	struct vfsmount *p, *found = NULL;
437 
438 	for (;;) {
439 		tmp = dir ? tmp->next : tmp->prev;
440 		p = NULL;
441 		if (tmp == head)
442 			break;
443 		p = list_entry(tmp, struct vfsmount, mnt_hash);
444 		if (p->mnt_parent == mnt && p->mnt_mountpoint == dentry) {
445 			found = p;
446 			break;
447 		}
448 	}
449 	return found;
450 }
451 
452 /*
453  * lookup_mnt increments the ref count before returning
454  * the vfsmount struct.
455  */
456 struct vfsmount *lookup_mnt(struct path *path)
457 {
458 	struct vfsmount *child_mnt;
459 
460 	br_read_lock(vfsmount_lock);
461 	if ((child_mnt = __lookup_mnt(path->mnt, path->dentry, 1)))
462 		mntget(child_mnt);
463 	br_read_unlock(vfsmount_lock);
464 	return child_mnt;
465 }
466 
467 static inline int check_mnt(struct vfsmount *mnt)
468 {
469 	return mnt->mnt_ns == current->nsproxy->mnt_ns;
470 }
471 
472 /*
473  * vfsmount lock must be held for write
474  */
475 static void touch_mnt_namespace(struct mnt_namespace *ns)
476 {
477 	if (ns) {
478 		ns->event = ++event;
479 		wake_up_interruptible(&ns->poll);
480 	}
481 }
482 
483 /*
484  * vfsmount lock must be held for write
485  */
486 static void __touch_mnt_namespace(struct mnt_namespace *ns)
487 {
488 	if (ns && ns->event != event) {
489 		ns->event = event;
490 		wake_up_interruptible(&ns->poll);
491 	}
492 }
493 
494 /*
495  * vfsmount lock must be held for write
496  */
497 static void detach_mnt(struct vfsmount *mnt, struct path *old_path)
498 {
499 	old_path->dentry = mnt->mnt_mountpoint;
500 	old_path->mnt = mnt->mnt_parent;
501 	mnt->mnt_parent = mnt;
502 	mnt->mnt_mountpoint = mnt->mnt_root;
503 	list_del_init(&mnt->mnt_child);
504 	list_del_init(&mnt->mnt_hash);
505 	old_path->dentry->d_mounted--;
506 }
507 
508 /*
509  * vfsmount lock must be held for write
510  */
511 void mnt_set_mountpoint(struct vfsmount *mnt, struct dentry *dentry,
512 			struct vfsmount *child_mnt)
513 {
514 	child_mnt->mnt_parent = mntget(mnt);
515 	child_mnt->mnt_mountpoint = dget(dentry);
516 	dentry->d_mounted++;
517 }
518 
519 /*
520  * vfsmount lock must be held for write
521  */
522 static void attach_mnt(struct vfsmount *mnt, struct path *path)
523 {
524 	mnt_set_mountpoint(path->mnt, path->dentry, mnt);
525 	list_add_tail(&mnt->mnt_hash, mount_hashtable +
526 			hash(path->mnt, path->dentry));
527 	list_add_tail(&mnt->mnt_child, &path->mnt->mnt_mounts);
528 }
529 
530 /*
531  * vfsmount lock must be held for write
532  */
533 static void commit_tree(struct vfsmount *mnt)
534 {
535 	struct vfsmount *parent = mnt->mnt_parent;
536 	struct vfsmount *m;
537 	LIST_HEAD(head);
538 	struct mnt_namespace *n = parent->mnt_ns;
539 
540 	BUG_ON(parent == mnt);
541 
542 	list_add_tail(&head, &mnt->mnt_list);
543 	list_for_each_entry(m, &head, mnt_list)
544 		m->mnt_ns = n;
545 	list_splice(&head, n->list.prev);
546 
547 	list_add_tail(&mnt->mnt_hash, mount_hashtable +
548 				hash(parent, mnt->mnt_mountpoint));
549 	list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
550 	touch_mnt_namespace(n);
551 }
552 
553 static struct vfsmount *next_mnt(struct vfsmount *p, struct vfsmount *root)
554 {
555 	struct list_head *next = p->mnt_mounts.next;
556 	if (next == &p->mnt_mounts) {
557 		while (1) {
558 			if (p == root)
559 				return NULL;
560 			next = p->mnt_child.next;
561 			if (next != &p->mnt_parent->mnt_mounts)
562 				break;
563 			p = p->mnt_parent;
564 		}
565 	}
566 	return list_entry(next, struct vfsmount, mnt_child);
567 }
568 
569 static struct vfsmount *skip_mnt_tree(struct vfsmount *p)
570 {
571 	struct list_head *prev = p->mnt_mounts.prev;
572 	while (prev != &p->mnt_mounts) {
573 		p = list_entry(prev, struct vfsmount, mnt_child);
574 		prev = p->mnt_mounts.prev;
575 	}
576 	return p;
577 }
578 
579 static struct vfsmount *clone_mnt(struct vfsmount *old, struct dentry *root,
580 					int flag)
581 {
582 	struct super_block *sb = old->mnt_sb;
583 	struct vfsmount *mnt = alloc_vfsmnt(old->mnt_devname);
584 
585 	if (mnt) {
586 		if (flag & (CL_SLAVE | CL_PRIVATE))
587 			mnt->mnt_group_id = 0; /* not a peer of original */
588 		else
589 			mnt->mnt_group_id = old->mnt_group_id;
590 
591 		if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
592 			int err = mnt_alloc_group_id(mnt);
593 			if (err)
594 				goto out_free;
595 		}
596 
597 		mnt->mnt_flags = old->mnt_flags & ~MNT_WRITE_HOLD;
598 		atomic_inc(&sb->s_active);
599 		mnt->mnt_sb = sb;
600 		mnt->mnt_root = dget(root);
601 		mnt->mnt_mountpoint = mnt->mnt_root;
602 		mnt->mnt_parent = mnt;
603 
604 		if (flag & CL_SLAVE) {
605 			list_add(&mnt->mnt_slave, &old->mnt_slave_list);
606 			mnt->mnt_master = old;
607 			CLEAR_MNT_SHARED(mnt);
608 		} else if (!(flag & CL_PRIVATE)) {
609 			if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
610 				list_add(&mnt->mnt_share, &old->mnt_share);
611 			if (IS_MNT_SLAVE(old))
612 				list_add(&mnt->mnt_slave, &old->mnt_slave);
613 			mnt->mnt_master = old->mnt_master;
614 		}
615 		if (flag & CL_MAKE_SHARED)
616 			set_mnt_shared(mnt);
617 
618 		/* stick the duplicate mount on the same expiry list
619 		 * as the original if that was on one */
620 		if (flag & CL_EXPIRE) {
621 			if (!list_empty(&old->mnt_expire))
622 				list_add(&mnt->mnt_expire, &old->mnt_expire);
623 		}
624 	}
625 	return mnt;
626 
627  out_free:
628 	free_vfsmnt(mnt);
629 	return NULL;
630 }
631 
632 static inline void __mntput(struct vfsmount *mnt)
633 {
634 	struct super_block *sb = mnt->mnt_sb;
635 	/*
636 	 * This probably indicates that somebody messed
637 	 * up a mnt_want/drop_write() pair.  If this
638 	 * happens, the filesystem was probably unable
639 	 * to make r/w->r/o transitions.
640 	 */
641 	/*
642 	 * atomic_dec_and_lock() used to deal with ->mnt_count decrements
643 	 * provides barriers, so count_mnt_writers() below is safe.  AV
644 	 */
645 	WARN_ON(count_mnt_writers(mnt));
646 	fsnotify_vfsmount_delete(mnt);
647 	dput(mnt->mnt_root);
648 	free_vfsmnt(mnt);
649 	deactivate_super(sb);
650 }
651 
652 void mntput_no_expire(struct vfsmount *mnt)
653 {
654 repeat:
655 	if (atomic_add_unless(&mnt->mnt_count, -1, 1))
656 		return;
657 	br_write_lock(vfsmount_lock);
658 	if (!atomic_dec_and_test(&mnt->mnt_count)) {
659 		br_write_unlock(vfsmount_lock);
660 		return;
661 	}
662 	if (likely(!mnt->mnt_pinned)) {
663 		br_write_unlock(vfsmount_lock);
664 		__mntput(mnt);
665 		return;
666 	}
667 	atomic_add(mnt->mnt_pinned + 1, &mnt->mnt_count);
668 	mnt->mnt_pinned = 0;
669 	br_write_unlock(vfsmount_lock);
670 	acct_auto_close_mnt(mnt);
671 	goto repeat;
672 }
673 EXPORT_SYMBOL(mntput_no_expire);
674 
675 void mnt_pin(struct vfsmount *mnt)
676 {
677 	br_write_lock(vfsmount_lock);
678 	mnt->mnt_pinned++;
679 	br_write_unlock(vfsmount_lock);
680 }
681 
682 EXPORT_SYMBOL(mnt_pin);
683 
684 void mnt_unpin(struct vfsmount *mnt)
685 {
686 	br_write_lock(vfsmount_lock);
687 	if (mnt->mnt_pinned) {
688 		atomic_inc(&mnt->mnt_count);
689 		mnt->mnt_pinned--;
690 	}
691 	br_write_unlock(vfsmount_lock);
692 }
693 
694 EXPORT_SYMBOL(mnt_unpin);
695 
696 static inline void mangle(struct seq_file *m, const char *s)
697 {
698 	seq_escape(m, s, " \t\n\\");
699 }
700 
701 /*
702  * Simple .show_options callback for filesystems which don't want to
703  * implement more complex mount option showing.
704  *
705  * See also save_mount_options().
706  */
707 int generic_show_options(struct seq_file *m, struct vfsmount *mnt)
708 {
709 	const char *options;
710 
711 	rcu_read_lock();
712 	options = rcu_dereference(mnt->mnt_sb->s_options);
713 
714 	if (options != NULL && options[0]) {
715 		seq_putc(m, ',');
716 		mangle(m, options);
717 	}
718 	rcu_read_unlock();
719 
720 	return 0;
721 }
722 EXPORT_SYMBOL(generic_show_options);
723 
724 /*
725  * If filesystem uses generic_show_options(), this function should be
726  * called from the fill_super() callback.
727  *
728  * The .remount_fs callback usually needs to be handled in a special
729  * way, to make sure, that previous options are not overwritten if the
730  * remount fails.
731  *
732  * Also note, that if the filesystem's .remount_fs function doesn't
733  * reset all options to their default value, but changes only newly
734  * given options, then the displayed options will not reflect reality
735  * any more.
736  */
737 void save_mount_options(struct super_block *sb, char *options)
738 {
739 	BUG_ON(sb->s_options);
740 	rcu_assign_pointer(sb->s_options, kstrdup(options, GFP_KERNEL));
741 }
742 EXPORT_SYMBOL(save_mount_options);
743 
744 void replace_mount_options(struct super_block *sb, char *options)
745 {
746 	char *old = sb->s_options;
747 	rcu_assign_pointer(sb->s_options, options);
748 	if (old) {
749 		synchronize_rcu();
750 		kfree(old);
751 	}
752 }
753 EXPORT_SYMBOL(replace_mount_options);
754 
755 #ifdef CONFIG_PROC_FS
756 /* iterator */
757 static void *m_start(struct seq_file *m, loff_t *pos)
758 {
759 	struct proc_mounts *p = m->private;
760 
761 	down_read(&namespace_sem);
762 	return seq_list_start(&p->ns->list, *pos);
763 }
764 
765 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
766 {
767 	struct proc_mounts *p = m->private;
768 
769 	return seq_list_next(v, &p->ns->list, pos);
770 }
771 
772 static void m_stop(struct seq_file *m, void *v)
773 {
774 	up_read(&namespace_sem);
775 }
776 
777 int mnt_had_events(struct proc_mounts *p)
778 {
779 	struct mnt_namespace *ns = p->ns;
780 	int res = 0;
781 
782 	br_read_lock(vfsmount_lock);
783 	if (p->event != ns->event) {
784 		p->event = ns->event;
785 		res = 1;
786 	}
787 	br_read_unlock(vfsmount_lock);
788 
789 	return res;
790 }
791 
792 struct proc_fs_info {
793 	int flag;
794 	const char *str;
795 };
796 
797 static int show_sb_opts(struct seq_file *m, struct super_block *sb)
798 {
799 	static const struct proc_fs_info fs_info[] = {
800 		{ MS_SYNCHRONOUS, ",sync" },
801 		{ MS_DIRSYNC, ",dirsync" },
802 		{ MS_MANDLOCK, ",mand" },
803 		{ 0, NULL }
804 	};
805 	const struct proc_fs_info *fs_infop;
806 
807 	for (fs_infop = fs_info; fs_infop->flag; fs_infop++) {
808 		if (sb->s_flags & fs_infop->flag)
809 			seq_puts(m, fs_infop->str);
810 	}
811 
812 	return security_sb_show_options(m, sb);
813 }
814 
815 static void show_mnt_opts(struct seq_file *m, struct vfsmount *mnt)
816 {
817 	static const struct proc_fs_info mnt_info[] = {
818 		{ MNT_NOSUID, ",nosuid" },
819 		{ MNT_NODEV, ",nodev" },
820 		{ MNT_NOEXEC, ",noexec" },
821 		{ MNT_NOATIME, ",noatime" },
822 		{ MNT_NODIRATIME, ",nodiratime" },
823 		{ MNT_RELATIME, ",relatime" },
824 		{ 0, NULL }
825 	};
826 	const struct proc_fs_info *fs_infop;
827 
828 	for (fs_infop = mnt_info; fs_infop->flag; fs_infop++) {
829 		if (mnt->mnt_flags & fs_infop->flag)
830 			seq_puts(m, fs_infop->str);
831 	}
832 }
833 
834 static void show_type(struct seq_file *m, struct super_block *sb)
835 {
836 	mangle(m, sb->s_type->name);
837 	if (sb->s_subtype && sb->s_subtype[0]) {
838 		seq_putc(m, '.');
839 		mangle(m, sb->s_subtype);
840 	}
841 }
842 
843 static int show_vfsmnt(struct seq_file *m, void *v)
844 {
845 	struct vfsmount *mnt = list_entry(v, struct vfsmount, mnt_list);
846 	int err = 0;
847 	struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt };
848 
849 	mangle(m, mnt->mnt_devname ? mnt->mnt_devname : "none");
850 	seq_putc(m, ' ');
851 	seq_path(m, &mnt_path, " \t\n\\");
852 	seq_putc(m, ' ');
853 	show_type(m, mnt->mnt_sb);
854 	seq_puts(m, __mnt_is_readonly(mnt) ? " ro" : " rw");
855 	err = show_sb_opts(m, mnt->mnt_sb);
856 	if (err)
857 		goto out;
858 	show_mnt_opts(m, mnt);
859 	if (mnt->mnt_sb->s_op->show_options)
860 		err = mnt->mnt_sb->s_op->show_options(m, mnt);
861 	seq_puts(m, " 0 0\n");
862 out:
863 	return err;
864 }
865 
866 const struct seq_operations mounts_op = {
867 	.start	= m_start,
868 	.next	= m_next,
869 	.stop	= m_stop,
870 	.show	= show_vfsmnt
871 };
872 
873 static int show_mountinfo(struct seq_file *m, void *v)
874 {
875 	struct proc_mounts *p = m->private;
876 	struct vfsmount *mnt = list_entry(v, struct vfsmount, mnt_list);
877 	struct super_block *sb = mnt->mnt_sb;
878 	struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt };
879 	struct path root = p->root;
880 	int err = 0;
881 
882 	seq_printf(m, "%i %i %u:%u ", mnt->mnt_id, mnt->mnt_parent->mnt_id,
883 		   MAJOR(sb->s_dev), MINOR(sb->s_dev));
884 	seq_dentry(m, mnt->mnt_root, " \t\n\\");
885 	seq_putc(m, ' ');
886 	seq_path_root(m, &mnt_path, &root, " \t\n\\");
887 	if (root.mnt != p->root.mnt || root.dentry != p->root.dentry) {
888 		/*
889 		 * Mountpoint is outside root, discard that one.  Ugly,
890 		 * but less so than trying to do that in iterator in a
891 		 * race-free way (due to renames).
892 		 */
893 		return SEQ_SKIP;
894 	}
895 	seq_puts(m, mnt->mnt_flags & MNT_READONLY ? " ro" : " rw");
896 	show_mnt_opts(m, mnt);
897 
898 	/* Tagged fields ("foo:X" or "bar") */
899 	if (IS_MNT_SHARED(mnt))
900 		seq_printf(m, " shared:%i", mnt->mnt_group_id);
901 	if (IS_MNT_SLAVE(mnt)) {
902 		int master = mnt->mnt_master->mnt_group_id;
903 		int dom = get_dominating_id(mnt, &p->root);
904 		seq_printf(m, " master:%i", master);
905 		if (dom && dom != master)
906 			seq_printf(m, " propagate_from:%i", dom);
907 	}
908 	if (IS_MNT_UNBINDABLE(mnt))
909 		seq_puts(m, " unbindable");
910 
911 	/* Filesystem specific data */
912 	seq_puts(m, " - ");
913 	show_type(m, sb);
914 	seq_putc(m, ' ');
915 	mangle(m, mnt->mnt_devname ? mnt->mnt_devname : "none");
916 	seq_puts(m, sb->s_flags & MS_RDONLY ? " ro" : " rw");
917 	err = show_sb_opts(m, sb);
918 	if (err)
919 		goto out;
920 	if (sb->s_op->show_options)
921 		err = sb->s_op->show_options(m, mnt);
922 	seq_putc(m, '\n');
923 out:
924 	return err;
925 }
926 
927 const struct seq_operations mountinfo_op = {
928 	.start	= m_start,
929 	.next	= m_next,
930 	.stop	= m_stop,
931 	.show	= show_mountinfo,
932 };
933 
934 static int show_vfsstat(struct seq_file *m, void *v)
935 {
936 	struct vfsmount *mnt = list_entry(v, struct vfsmount, mnt_list);
937 	struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt };
938 	int err = 0;
939 
940 	/* device */
941 	if (mnt->mnt_devname) {
942 		seq_puts(m, "device ");
943 		mangle(m, mnt->mnt_devname);
944 	} else
945 		seq_puts(m, "no device");
946 
947 	/* mount point */
948 	seq_puts(m, " mounted on ");
949 	seq_path(m, &mnt_path, " \t\n\\");
950 	seq_putc(m, ' ');
951 
952 	/* file system type */
953 	seq_puts(m, "with fstype ");
954 	show_type(m, mnt->mnt_sb);
955 
956 	/* optional statistics */
957 	if (mnt->mnt_sb->s_op->show_stats) {
958 		seq_putc(m, ' ');
959 		err = mnt->mnt_sb->s_op->show_stats(m, mnt);
960 	}
961 
962 	seq_putc(m, '\n');
963 	return err;
964 }
965 
966 const struct seq_operations mountstats_op = {
967 	.start	= m_start,
968 	.next	= m_next,
969 	.stop	= m_stop,
970 	.show	= show_vfsstat,
971 };
972 #endif  /* CONFIG_PROC_FS */
973 
974 /**
975  * may_umount_tree - check if a mount tree is busy
976  * @mnt: root of mount tree
977  *
978  * This is called to check if a tree of mounts has any
979  * open files, pwds, chroots or sub mounts that are
980  * busy.
981  */
982 int may_umount_tree(struct vfsmount *mnt)
983 {
984 	int actual_refs = 0;
985 	int minimum_refs = 0;
986 	struct vfsmount *p;
987 
988 	br_read_lock(vfsmount_lock);
989 	for (p = mnt; p; p = next_mnt(p, mnt)) {
990 		actual_refs += atomic_read(&p->mnt_count);
991 		minimum_refs += 2;
992 	}
993 	br_read_unlock(vfsmount_lock);
994 
995 	if (actual_refs > minimum_refs)
996 		return 0;
997 
998 	return 1;
999 }
1000 
1001 EXPORT_SYMBOL(may_umount_tree);
1002 
1003 /**
1004  * may_umount - check if a mount point is busy
1005  * @mnt: root of mount
1006  *
1007  * This is called to check if a mount point has any
1008  * open files, pwds, chroots or sub mounts. If the
1009  * mount has sub mounts this will return busy
1010  * regardless of whether the sub mounts are busy.
1011  *
1012  * Doesn't take quota and stuff into account. IOW, in some cases it will
1013  * give false negatives. The main reason why it's here is that we need
1014  * a non-destructive way to look for easily umountable filesystems.
1015  */
1016 int may_umount(struct vfsmount *mnt)
1017 {
1018 	int ret = 1;
1019 	down_read(&namespace_sem);
1020 	br_read_lock(vfsmount_lock);
1021 	if (propagate_mount_busy(mnt, 2))
1022 		ret = 0;
1023 	br_read_unlock(vfsmount_lock);
1024 	up_read(&namespace_sem);
1025 	return ret;
1026 }
1027 
1028 EXPORT_SYMBOL(may_umount);
1029 
1030 void release_mounts(struct list_head *head)
1031 {
1032 	struct vfsmount *mnt;
1033 	while (!list_empty(head)) {
1034 		mnt = list_first_entry(head, struct vfsmount, mnt_hash);
1035 		list_del_init(&mnt->mnt_hash);
1036 		if (mnt->mnt_parent != mnt) {
1037 			struct dentry *dentry;
1038 			struct vfsmount *m;
1039 
1040 			br_write_lock(vfsmount_lock);
1041 			dentry = mnt->mnt_mountpoint;
1042 			m = mnt->mnt_parent;
1043 			mnt->mnt_mountpoint = mnt->mnt_root;
1044 			mnt->mnt_parent = mnt;
1045 			m->mnt_ghosts--;
1046 			br_write_unlock(vfsmount_lock);
1047 			dput(dentry);
1048 			mntput(m);
1049 		}
1050 		mntput(mnt);
1051 	}
1052 }
1053 
1054 /*
1055  * vfsmount lock must be held for write
1056  * namespace_sem must be held for write
1057  */
1058 void umount_tree(struct vfsmount *mnt, int propagate, struct list_head *kill)
1059 {
1060 	struct vfsmount *p;
1061 
1062 	for (p = mnt; p; p = next_mnt(p, mnt))
1063 		list_move(&p->mnt_hash, kill);
1064 
1065 	if (propagate)
1066 		propagate_umount(kill);
1067 
1068 	list_for_each_entry(p, kill, mnt_hash) {
1069 		list_del_init(&p->mnt_expire);
1070 		list_del_init(&p->mnt_list);
1071 		__touch_mnt_namespace(p->mnt_ns);
1072 		p->mnt_ns = NULL;
1073 		list_del_init(&p->mnt_child);
1074 		if (p->mnt_parent != p) {
1075 			p->mnt_parent->mnt_ghosts++;
1076 			p->mnt_mountpoint->d_mounted--;
1077 		}
1078 		change_mnt_propagation(p, MS_PRIVATE);
1079 	}
1080 }
1081 
1082 static void shrink_submounts(struct vfsmount *mnt, struct list_head *umounts);
1083 
1084 static int do_umount(struct vfsmount *mnt, int flags)
1085 {
1086 	struct super_block *sb = mnt->mnt_sb;
1087 	int retval;
1088 	LIST_HEAD(umount_list);
1089 
1090 	retval = security_sb_umount(mnt, flags);
1091 	if (retval)
1092 		return retval;
1093 
1094 	/*
1095 	 * Allow userspace to request a mountpoint be expired rather than
1096 	 * unmounting unconditionally. Unmount only happens if:
1097 	 *  (1) the mark is already set (the mark is cleared by mntput())
1098 	 *  (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1099 	 */
1100 	if (flags & MNT_EXPIRE) {
1101 		if (mnt == current->fs->root.mnt ||
1102 		    flags & (MNT_FORCE | MNT_DETACH))
1103 			return -EINVAL;
1104 
1105 		if (atomic_read(&mnt->mnt_count) != 2)
1106 			return -EBUSY;
1107 
1108 		if (!xchg(&mnt->mnt_expiry_mark, 1))
1109 			return -EAGAIN;
1110 	}
1111 
1112 	/*
1113 	 * If we may have to abort operations to get out of this
1114 	 * mount, and they will themselves hold resources we must
1115 	 * allow the fs to do things. In the Unix tradition of
1116 	 * 'Gee thats tricky lets do it in userspace' the umount_begin
1117 	 * might fail to complete on the first run through as other tasks
1118 	 * must return, and the like. Thats for the mount program to worry
1119 	 * about for the moment.
1120 	 */
1121 
1122 	if (flags & MNT_FORCE && sb->s_op->umount_begin) {
1123 		sb->s_op->umount_begin(sb);
1124 	}
1125 
1126 	/*
1127 	 * No sense to grab the lock for this test, but test itself looks
1128 	 * somewhat bogus. Suggestions for better replacement?
1129 	 * Ho-hum... In principle, we might treat that as umount + switch
1130 	 * to rootfs. GC would eventually take care of the old vfsmount.
1131 	 * Actually it makes sense, especially if rootfs would contain a
1132 	 * /reboot - static binary that would close all descriptors and
1133 	 * call reboot(9). Then init(8) could umount root and exec /reboot.
1134 	 */
1135 	if (mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1136 		/*
1137 		 * Special case for "unmounting" root ...
1138 		 * we just try to remount it readonly.
1139 		 */
1140 		down_write(&sb->s_umount);
1141 		if (!(sb->s_flags & MS_RDONLY))
1142 			retval = do_remount_sb(sb, MS_RDONLY, NULL, 0);
1143 		up_write(&sb->s_umount);
1144 		return retval;
1145 	}
1146 
1147 	down_write(&namespace_sem);
1148 	br_write_lock(vfsmount_lock);
1149 	event++;
1150 
1151 	if (!(flags & MNT_DETACH))
1152 		shrink_submounts(mnt, &umount_list);
1153 
1154 	retval = -EBUSY;
1155 	if (flags & MNT_DETACH || !propagate_mount_busy(mnt, 2)) {
1156 		if (!list_empty(&mnt->mnt_list))
1157 			umount_tree(mnt, 1, &umount_list);
1158 		retval = 0;
1159 	}
1160 	br_write_unlock(vfsmount_lock);
1161 	up_write(&namespace_sem);
1162 	release_mounts(&umount_list);
1163 	return retval;
1164 }
1165 
1166 /*
1167  * Now umount can handle mount points as well as block devices.
1168  * This is important for filesystems which use unnamed block devices.
1169  *
1170  * We now support a flag for forced unmount like the other 'big iron'
1171  * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
1172  */
1173 
1174 SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
1175 {
1176 	struct path path;
1177 	int retval;
1178 	int lookup_flags = 0;
1179 
1180 	if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
1181 		return -EINVAL;
1182 
1183 	if (!(flags & UMOUNT_NOFOLLOW))
1184 		lookup_flags |= LOOKUP_FOLLOW;
1185 
1186 	retval = user_path_at(AT_FDCWD, name, lookup_flags, &path);
1187 	if (retval)
1188 		goto out;
1189 	retval = -EINVAL;
1190 	if (path.dentry != path.mnt->mnt_root)
1191 		goto dput_and_out;
1192 	if (!check_mnt(path.mnt))
1193 		goto dput_and_out;
1194 
1195 	retval = -EPERM;
1196 	if (!capable(CAP_SYS_ADMIN))
1197 		goto dput_and_out;
1198 
1199 	retval = do_umount(path.mnt, flags);
1200 dput_and_out:
1201 	/* we mustn't call path_put() as that would clear mnt_expiry_mark */
1202 	dput(path.dentry);
1203 	mntput_no_expire(path.mnt);
1204 out:
1205 	return retval;
1206 }
1207 
1208 #ifdef __ARCH_WANT_SYS_OLDUMOUNT
1209 
1210 /*
1211  *	The 2.0 compatible umount. No flags.
1212  */
1213 SYSCALL_DEFINE1(oldumount, char __user *, name)
1214 {
1215 	return sys_umount(name, 0);
1216 }
1217 
1218 #endif
1219 
1220 static int mount_is_safe(struct path *path)
1221 {
1222 	if (capable(CAP_SYS_ADMIN))
1223 		return 0;
1224 	return -EPERM;
1225 #ifdef notyet
1226 	if (S_ISLNK(path->dentry->d_inode->i_mode))
1227 		return -EPERM;
1228 	if (path->dentry->d_inode->i_mode & S_ISVTX) {
1229 		if (current_uid() != path->dentry->d_inode->i_uid)
1230 			return -EPERM;
1231 	}
1232 	if (inode_permission(path->dentry->d_inode, MAY_WRITE))
1233 		return -EPERM;
1234 	return 0;
1235 #endif
1236 }
1237 
1238 struct vfsmount *copy_tree(struct vfsmount *mnt, struct dentry *dentry,
1239 					int flag)
1240 {
1241 	struct vfsmount *res, *p, *q, *r, *s;
1242 	struct path path;
1243 
1244 	if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(mnt))
1245 		return NULL;
1246 
1247 	res = q = clone_mnt(mnt, dentry, flag);
1248 	if (!q)
1249 		goto Enomem;
1250 	q->mnt_mountpoint = mnt->mnt_mountpoint;
1251 
1252 	p = mnt;
1253 	list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
1254 		if (!is_subdir(r->mnt_mountpoint, dentry))
1255 			continue;
1256 
1257 		for (s = r; s; s = next_mnt(s, r)) {
1258 			if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(s)) {
1259 				s = skip_mnt_tree(s);
1260 				continue;
1261 			}
1262 			while (p != s->mnt_parent) {
1263 				p = p->mnt_parent;
1264 				q = q->mnt_parent;
1265 			}
1266 			p = s;
1267 			path.mnt = q;
1268 			path.dentry = p->mnt_mountpoint;
1269 			q = clone_mnt(p, p->mnt_root, flag);
1270 			if (!q)
1271 				goto Enomem;
1272 			br_write_lock(vfsmount_lock);
1273 			list_add_tail(&q->mnt_list, &res->mnt_list);
1274 			attach_mnt(q, &path);
1275 			br_write_unlock(vfsmount_lock);
1276 		}
1277 	}
1278 	return res;
1279 Enomem:
1280 	if (res) {
1281 		LIST_HEAD(umount_list);
1282 		br_write_lock(vfsmount_lock);
1283 		umount_tree(res, 0, &umount_list);
1284 		br_write_unlock(vfsmount_lock);
1285 		release_mounts(&umount_list);
1286 	}
1287 	return NULL;
1288 }
1289 
1290 struct vfsmount *collect_mounts(struct path *path)
1291 {
1292 	struct vfsmount *tree;
1293 	down_write(&namespace_sem);
1294 	tree = copy_tree(path->mnt, path->dentry, CL_COPY_ALL | CL_PRIVATE);
1295 	up_write(&namespace_sem);
1296 	return tree;
1297 }
1298 
1299 void drop_collected_mounts(struct vfsmount *mnt)
1300 {
1301 	LIST_HEAD(umount_list);
1302 	down_write(&namespace_sem);
1303 	br_write_lock(vfsmount_lock);
1304 	umount_tree(mnt, 0, &umount_list);
1305 	br_write_unlock(vfsmount_lock);
1306 	up_write(&namespace_sem);
1307 	release_mounts(&umount_list);
1308 }
1309 
1310 int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
1311 		   struct vfsmount *root)
1312 {
1313 	struct vfsmount *mnt;
1314 	int res = f(root, arg);
1315 	if (res)
1316 		return res;
1317 	list_for_each_entry(mnt, &root->mnt_list, mnt_list) {
1318 		res = f(mnt, arg);
1319 		if (res)
1320 			return res;
1321 	}
1322 	return 0;
1323 }
1324 
1325 static void cleanup_group_ids(struct vfsmount *mnt, struct vfsmount *end)
1326 {
1327 	struct vfsmount *p;
1328 
1329 	for (p = mnt; p != end; p = next_mnt(p, mnt)) {
1330 		if (p->mnt_group_id && !IS_MNT_SHARED(p))
1331 			mnt_release_group_id(p);
1332 	}
1333 }
1334 
1335 static int invent_group_ids(struct vfsmount *mnt, bool recurse)
1336 {
1337 	struct vfsmount *p;
1338 
1339 	for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
1340 		if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
1341 			int err = mnt_alloc_group_id(p);
1342 			if (err) {
1343 				cleanup_group_ids(mnt, p);
1344 				return err;
1345 			}
1346 		}
1347 	}
1348 
1349 	return 0;
1350 }
1351 
1352 /*
1353  *  @source_mnt : mount tree to be attached
1354  *  @nd         : place the mount tree @source_mnt is attached
1355  *  @parent_nd  : if non-null, detach the source_mnt from its parent and
1356  *  		   store the parent mount and mountpoint dentry.
1357  *  		   (done when source_mnt is moved)
1358  *
1359  *  NOTE: in the table below explains the semantics when a source mount
1360  *  of a given type is attached to a destination mount of a given type.
1361  * ---------------------------------------------------------------------------
1362  * |         BIND MOUNT OPERATION                                            |
1363  * |**************************************************************************
1364  * | source-->| shared        |       private  |       slave    | unbindable |
1365  * | dest     |               |                |                |            |
1366  * |   |      |               |                |                |            |
1367  * |   v      |               |                |                |            |
1368  * |**************************************************************************
1369  * |  shared  | shared (++)   |     shared (+) |     shared(+++)|  invalid   |
1370  * |          |               |                |                |            |
1371  * |non-shared| shared (+)    |      private   |      slave (*) |  invalid   |
1372  * ***************************************************************************
1373  * A bind operation clones the source mount and mounts the clone on the
1374  * destination mount.
1375  *
1376  * (++)  the cloned mount is propagated to all the mounts in the propagation
1377  * 	 tree of the destination mount and the cloned mount is added to
1378  * 	 the peer group of the source mount.
1379  * (+)   the cloned mount is created under the destination mount and is marked
1380  *       as shared. The cloned mount is added to the peer group of the source
1381  *       mount.
1382  * (+++) the mount is propagated to all the mounts in the propagation tree
1383  *       of the destination mount and the cloned mount is made slave
1384  *       of the same master as that of the source mount. The cloned mount
1385  *       is marked as 'shared and slave'.
1386  * (*)   the cloned mount is made a slave of the same master as that of the
1387  * 	 source mount.
1388  *
1389  * ---------------------------------------------------------------------------
1390  * |         		MOVE MOUNT OPERATION                                 |
1391  * |**************************************************************************
1392  * | source-->| shared        |       private  |       slave    | unbindable |
1393  * | dest     |               |                |                |            |
1394  * |   |      |               |                |                |            |
1395  * |   v      |               |                |                |            |
1396  * |**************************************************************************
1397  * |  shared  | shared (+)    |     shared (+) |    shared(+++) |  invalid   |
1398  * |          |               |                |                |            |
1399  * |non-shared| shared (+*)   |      private   |    slave (*)   | unbindable |
1400  * ***************************************************************************
1401  *
1402  * (+)  the mount is moved to the destination. And is then propagated to
1403  * 	all the mounts in the propagation tree of the destination mount.
1404  * (+*)  the mount is moved to the destination.
1405  * (+++)  the mount is moved to the destination and is then propagated to
1406  * 	all the mounts belonging to the destination mount's propagation tree.
1407  * 	the mount is marked as 'shared and slave'.
1408  * (*)	the mount continues to be a slave at the new location.
1409  *
1410  * if the source mount is a tree, the operations explained above is
1411  * applied to each mount in the tree.
1412  * Must be called without spinlocks held, since this function can sleep
1413  * in allocations.
1414  */
1415 static int attach_recursive_mnt(struct vfsmount *source_mnt,
1416 			struct path *path, struct path *parent_path)
1417 {
1418 	LIST_HEAD(tree_list);
1419 	struct vfsmount *dest_mnt = path->mnt;
1420 	struct dentry *dest_dentry = path->dentry;
1421 	struct vfsmount *child, *p;
1422 	int err;
1423 
1424 	if (IS_MNT_SHARED(dest_mnt)) {
1425 		err = invent_group_ids(source_mnt, true);
1426 		if (err)
1427 			goto out;
1428 	}
1429 	err = propagate_mnt(dest_mnt, dest_dentry, source_mnt, &tree_list);
1430 	if (err)
1431 		goto out_cleanup_ids;
1432 
1433 	br_write_lock(vfsmount_lock);
1434 
1435 	if (IS_MNT_SHARED(dest_mnt)) {
1436 		for (p = source_mnt; p; p = next_mnt(p, source_mnt))
1437 			set_mnt_shared(p);
1438 	}
1439 	if (parent_path) {
1440 		detach_mnt(source_mnt, parent_path);
1441 		attach_mnt(source_mnt, path);
1442 		touch_mnt_namespace(parent_path->mnt->mnt_ns);
1443 	} else {
1444 		mnt_set_mountpoint(dest_mnt, dest_dentry, source_mnt);
1445 		commit_tree(source_mnt);
1446 	}
1447 
1448 	list_for_each_entry_safe(child, p, &tree_list, mnt_hash) {
1449 		list_del_init(&child->mnt_hash);
1450 		commit_tree(child);
1451 	}
1452 	br_write_unlock(vfsmount_lock);
1453 
1454 	return 0;
1455 
1456  out_cleanup_ids:
1457 	if (IS_MNT_SHARED(dest_mnt))
1458 		cleanup_group_ids(source_mnt, NULL);
1459  out:
1460 	return err;
1461 }
1462 
1463 static int graft_tree(struct vfsmount *mnt, struct path *path)
1464 {
1465 	int err;
1466 	if (mnt->mnt_sb->s_flags & MS_NOUSER)
1467 		return -EINVAL;
1468 
1469 	if (S_ISDIR(path->dentry->d_inode->i_mode) !=
1470 	      S_ISDIR(mnt->mnt_root->d_inode->i_mode))
1471 		return -ENOTDIR;
1472 
1473 	err = -ENOENT;
1474 	mutex_lock(&path->dentry->d_inode->i_mutex);
1475 	if (cant_mount(path->dentry))
1476 		goto out_unlock;
1477 
1478 	if (!d_unlinked(path->dentry))
1479 		err = attach_recursive_mnt(mnt, path, NULL);
1480 out_unlock:
1481 	mutex_unlock(&path->dentry->d_inode->i_mutex);
1482 	return err;
1483 }
1484 
1485 /*
1486  * Sanity check the flags to change_mnt_propagation.
1487  */
1488 
1489 static int flags_to_propagation_type(int flags)
1490 {
1491 	int type = flags & ~MS_REC;
1492 
1493 	/* Fail if any non-propagation flags are set */
1494 	if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
1495 		return 0;
1496 	/* Only one propagation flag should be set */
1497 	if (!is_power_of_2(type))
1498 		return 0;
1499 	return type;
1500 }
1501 
1502 /*
1503  * recursively change the type of the mountpoint.
1504  */
1505 static int do_change_type(struct path *path, int flag)
1506 {
1507 	struct vfsmount *m, *mnt = path->mnt;
1508 	int recurse = flag & MS_REC;
1509 	int type;
1510 	int err = 0;
1511 
1512 	if (!capable(CAP_SYS_ADMIN))
1513 		return -EPERM;
1514 
1515 	if (path->dentry != path->mnt->mnt_root)
1516 		return -EINVAL;
1517 
1518 	type = flags_to_propagation_type(flag);
1519 	if (!type)
1520 		return -EINVAL;
1521 
1522 	down_write(&namespace_sem);
1523 	if (type == MS_SHARED) {
1524 		err = invent_group_ids(mnt, recurse);
1525 		if (err)
1526 			goto out_unlock;
1527 	}
1528 
1529 	br_write_lock(vfsmount_lock);
1530 	for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
1531 		change_mnt_propagation(m, type);
1532 	br_write_unlock(vfsmount_lock);
1533 
1534  out_unlock:
1535 	up_write(&namespace_sem);
1536 	return err;
1537 }
1538 
1539 /*
1540  * do loopback mount.
1541  */
1542 static int do_loopback(struct path *path, char *old_name,
1543 				int recurse)
1544 {
1545 	struct path old_path;
1546 	struct vfsmount *mnt = NULL;
1547 	int err = mount_is_safe(path);
1548 	if (err)
1549 		return err;
1550 	if (!old_name || !*old_name)
1551 		return -EINVAL;
1552 	err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
1553 	if (err)
1554 		return err;
1555 
1556 	down_write(&namespace_sem);
1557 	err = -EINVAL;
1558 	if (IS_MNT_UNBINDABLE(old_path.mnt))
1559 		goto out;
1560 
1561 	if (!check_mnt(path->mnt) || !check_mnt(old_path.mnt))
1562 		goto out;
1563 
1564 	err = -ENOMEM;
1565 	if (recurse)
1566 		mnt = copy_tree(old_path.mnt, old_path.dentry, 0);
1567 	else
1568 		mnt = clone_mnt(old_path.mnt, old_path.dentry, 0);
1569 
1570 	if (!mnt)
1571 		goto out;
1572 
1573 	err = graft_tree(mnt, path);
1574 	if (err) {
1575 		LIST_HEAD(umount_list);
1576 
1577 		br_write_lock(vfsmount_lock);
1578 		umount_tree(mnt, 0, &umount_list);
1579 		br_write_unlock(vfsmount_lock);
1580 		release_mounts(&umount_list);
1581 	}
1582 
1583 out:
1584 	up_write(&namespace_sem);
1585 	path_put(&old_path);
1586 	return err;
1587 }
1588 
1589 static int change_mount_flags(struct vfsmount *mnt, int ms_flags)
1590 {
1591 	int error = 0;
1592 	int readonly_request = 0;
1593 
1594 	if (ms_flags & MS_RDONLY)
1595 		readonly_request = 1;
1596 	if (readonly_request == __mnt_is_readonly(mnt))
1597 		return 0;
1598 
1599 	if (readonly_request)
1600 		error = mnt_make_readonly(mnt);
1601 	else
1602 		__mnt_unmake_readonly(mnt);
1603 	return error;
1604 }
1605 
1606 /*
1607  * change filesystem flags. dir should be a physical root of filesystem.
1608  * If you've mounted a non-root directory somewhere and want to do remount
1609  * on it - tough luck.
1610  */
1611 static int do_remount(struct path *path, int flags, int mnt_flags,
1612 		      void *data)
1613 {
1614 	int err;
1615 	struct super_block *sb = path->mnt->mnt_sb;
1616 
1617 	if (!capable(CAP_SYS_ADMIN))
1618 		return -EPERM;
1619 
1620 	if (!check_mnt(path->mnt))
1621 		return -EINVAL;
1622 
1623 	if (path->dentry != path->mnt->mnt_root)
1624 		return -EINVAL;
1625 
1626 	down_write(&sb->s_umount);
1627 	if (flags & MS_BIND)
1628 		err = change_mount_flags(path->mnt, flags);
1629 	else
1630 		err = do_remount_sb(sb, flags, data, 0);
1631 	if (!err) {
1632 		br_write_lock(vfsmount_lock);
1633 		mnt_flags |= path->mnt->mnt_flags & MNT_PROPAGATION_MASK;
1634 		path->mnt->mnt_flags = mnt_flags;
1635 		br_write_unlock(vfsmount_lock);
1636 	}
1637 	up_write(&sb->s_umount);
1638 	if (!err) {
1639 		br_write_lock(vfsmount_lock);
1640 		touch_mnt_namespace(path->mnt->mnt_ns);
1641 		br_write_unlock(vfsmount_lock);
1642 	}
1643 	return err;
1644 }
1645 
1646 static inline int tree_contains_unbindable(struct vfsmount *mnt)
1647 {
1648 	struct vfsmount *p;
1649 	for (p = mnt; p; p = next_mnt(p, mnt)) {
1650 		if (IS_MNT_UNBINDABLE(p))
1651 			return 1;
1652 	}
1653 	return 0;
1654 }
1655 
1656 static int do_move_mount(struct path *path, char *old_name)
1657 {
1658 	struct path old_path, parent_path;
1659 	struct vfsmount *p;
1660 	int err = 0;
1661 	if (!capable(CAP_SYS_ADMIN))
1662 		return -EPERM;
1663 	if (!old_name || !*old_name)
1664 		return -EINVAL;
1665 	err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
1666 	if (err)
1667 		return err;
1668 
1669 	down_write(&namespace_sem);
1670 	while (d_mountpoint(path->dentry) &&
1671 	       follow_down(path))
1672 		;
1673 	err = -EINVAL;
1674 	if (!check_mnt(path->mnt) || !check_mnt(old_path.mnt))
1675 		goto out;
1676 
1677 	err = -ENOENT;
1678 	mutex_lock(&path->dentry->d_inode->i_mutex);
1679 	if (cant_mount(path->dentry))
1680 		goto out1;
1681 
1682 	if (d_unlinked(path->dentry))
1683 		goto out1;
1684 
1685 	err = -EINVAL;
1686 	if (old_path.dentry != old_path.mnt->mnt_root)
1687 		goto out1;
1688 
1689 	if (old_path.mnt == old_path.mnt->mnt_parent)
1690 		goto out1;
1691 
1692 	if (S_ISDIR(path->dentry->d_inode->i_mode) !=
1693 	      S_ISDIR(old_path.dentry->d_inode->i_mode))
1694 		goto out1;
1695 	/*
1696 	 * Don't move a mount residing in a shared parent.
1697 	 */
1698 	if (old_path.mnt->mnt_parent &&
1699 	    IS_MNT_SHARED(old_path.mnt->mnt_parent))
1700 		goto out1;
1701 	/*
1702 	 * Don't move a mount tree containing unbindable mounts to a destination
1703 	 * mount which is shared.
1704 	 */
1705 	if (IS_MNT_SHARED(path->mnt) &&
1706 	    tree_contains_unbindable(old_path.mnt))
1707 		goto out1;
1708 	err = -ELOOP;
1709 	for (p = path->mnt; p->mnt_parent != p; p = p->mnt_parent)
1710 		if (p == old_path.mnt)
1711 			goto out1;
1712 
1713 	err = attach_recursive_mnt(old_path.mnt, path, &parent_path);
1714 	if (err)
1715 		goto out1;
1716 
1717 	/* if the mount is moved, it should no longer be expire
1718 	 * automatically */
1719 	list_del_init(&old_path.mnt->mnt_expire);
1720 out1:
1721 	mutex_unlock(&path->dentry->d_inode->i_mutex);
1722 out:
1723 	up_write(&namespace_sem);
1724 	if (!err)
1725 		path_put(&parent_path);
1726 	path_put(&old_path);
1727 	return err;
1728 }
1729 
1730 /*
1731  * create a new mount for userspace and request it to be added into the
1732  * namespace's tree
1733  */
1734 static int do_new_mount(struct path *path, char *type, int flags,
1735 			int mnt_flags, char *name, void *data)
1736 {
1737 	struct vfsmount *mnt;
1738 
1739 	if (!type)
1740 		return -EINVAL;
1741 
1742 	/* we need capabilities... */
1743 	if (!capable(CAP_SYS_ADMIN))
1744 		return -EPERM;
1745 
1746 	mnt = do_kern_mount(type, flags, name, data);
1747 	if (IS_ERR(mnt))
1748 		return PTR_ERR(mnt);
1749 
1750 	return do_add_mount(mnt, path, mnt_flags, NULL);
1751 }
1752 
1753 /*
1754  * add a mount into a namespace's mount tree
1755  * - provide the option of adding the new mount to an expiration list
1756  */
1757 int do_add_mount(struct vfsmount *newmnt, struct path *path,
1758 		 int mnt_flags, struct list_head *fslist)
1759 {
1760 	int err;
1761 
1762 	mnt_flags &= ~(MNT_SHARED | MNT_WRITE_HOLD | MNT_INTERNAL);
1763 
1764 	down_write(&namespace_sem);
1765 	/* Something was mounted here while we slept */
1766 	while (d_mountpoint(path->dentry) &&
1767 	       follow_down(path))
1768 		;
1769 	err = -EINVAL;
1770 	if (!(mnt_flags & MNT_SHRINKABLE) && !check_mnt(path->mnt))
1771 		goto unlock;
1772 
1773 	/* Refuse the same filesystem on the same mount point */
1774 	err = -EBUSY;
1775 	if (path->mnt->mnt_sb == newmnt->mnt_sb &&
1776 	    path->mnt->mnt_root == path->dentry)
1777 		goto unlock;
1778 
1779 	err = -EINVAL;
1780 	if (S_ISLNK(newmnt->mnt_root->d_inode->i_mode))
1781 		goto unlock;
1782 
1783 	newmnt->mnt_flags = mnt_flags;
1784 	if ((err = graft_tree(newmnt, path)))
1785 		goto unlock;
1786 
1787 	if (fslist) /* add to the specified expiration list */
1788 		list_add_tail(&newmnt->mnt_expire, fslist);
1789 
1790 	up_write(&namespace_sem);
1791 	return 0;
1792 
1793 unlock:
1794 	up_write(&namespace_sem);
1795 	mntput(newmnt);
1796 	return err;
1797 }
1798 
1799 EXPORT_SYMBOL_GPL(do_add_mount);
1800 
1801 /*
1802  * process a list of expirable mountpoints with the intent of discarding any
1803  * mountpoints that aren't in use and haven't been touched since last we came
1804  * here
1805  */
1806 void mark_mounts_for_expiry(struct list_head *mounts)
1807 {
1808 	struct vfsmount *mnt, *next;
1809 	LIST_HEAD(graveyard);
1810 	LIST_HEAD(umounts);
1811 
1812 	if (list_empty(mounts))
1813 		return;
1814 
1815 	down_write(&namespace_sem);
1816 	br_write_lock(vfsmount_lock);
1817 
1818 	/* extract from the expiration list every vfsmount that matches the
1819 	 * following criteria:
1820 	 * - only referenced by its parent vfsmount
1821 	 * - still marked for expiry (marked on the last call here; marks are
1822 	 *   cleared by mntput())
1823 	 */
1824 	list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
1825 		if (!xchg(&mnt->mnt_expiry_mark, 1) ||
1826 			propagate_mount_busy(mnt, 1))
1827 			continue;
1828 		list_move(&mnt->mnt_expire, &graveyard);
1829 	}
1830 	while (!list_empty(&graveyard)) {
1831 		mnt = list_first_entry(&graveyard, struct vfsmount, mnt_expire);
1832 		touch_mnt_namespace(mnt->mnt_ns);
1833 		umount_tree(mnt, 1, &umounts);
1834 	}
1835 	br_write_unlock(vfsmount_lock);
1836 	up_write(&namespace_sem);
1837 
1838 	release_mounts(&umounts);
1839 }
1840 
1841 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
1842 
1843 /*
1844  * Ripoff of 'select_parent()'
1845  *
1846  * search the list of submounts for a given mountpoint, and move any
1847  * shrinkable submounts to the 'graveyard' list.
1848  */
1849 static int select_submounts(struct vfsmount *parent, struct list_head *graveyard)
1850 {
1851 	struct vfsmount *this_parent = parent;
1852 	struct list_head *next;
1853 	int found = 0;
1854 
1855 repeat:
1856 	next = this_parent->mnt_mounts.next;
1857 resume:
1858 	while (next != &this_parent->mnt_mounts) {
1859 		struct list_head *tmp = next;
1860 		struct vfsmount *mnt = list_entry(tmp, struct vfsmount, mnt_child);
1861 
1862 		next = tmp->next;
1863 		if (!(mnt->mnt_flags & MNT_SHRINKABLE))
1864 			continue;
1865 		/*
1866 		 * Descend a level if the d_mounts list is non-empty.
1867 		 */
1868 		if (!list_empty(&mnt->mnt_mounts)) {
1869 			this_parent = mnt;
1870 			goto repeat;
1871 		}
1872 
1873 		if (!propagate_mount_busy(mnt, 1)) {
1874 			list_move_tail(&mnt->mnt_expire, graveyard);
1875 			found++;
1876 		}
1877 	}
1878 	/*
1879 	 * All done at this level ... ascend and resume the search
1880 	 */
1881 	if (this_parent != parent) {
1882 		next = this_parent->mnt_child.next;
1883 		this_parent = this_parent->mnt_parent;
1884 		goto resume;
1885 	}
1886 	return found;
1887 }
1888 
1889 /*
1890  * process a list of expirable mountpoints with the intent of discarding any
1891  * submounts of a specific parent mountpoint
1892  *
1893  * vfsmount_lock must be held for write
1894  */
1895 static void shrink_submounts(struct vfsmount *mnt, struct list_head *umounts)
1896 {
1897 	LIST_HEAD(graveyard);
1898 	struct vfsmount *m;
1899 
1900 	/* extract submounts of 'mountpoint' from the expiration list */
1901 	while (select_submounts(mnt, &graveyard)) {
1902 		while (!list_empty(&graveyard)) {
1903 			m = list_first_entry(&graveyard, struct vfsmount,
1904 						mnt_expire);
1905 			touch_mnt_namespace(m->mnt_ns);
1906 			umount_tree(m, 1, umounts);
1907 		}
1908 	}
1909 }
1910 
1911 /*
1912  * Some copy_from_user() implementations do not return the exact number of
1913  * bytes remaining to copy on a fault.  But copy_mount_options() requires that.
1914  * Note that this function differs from copy_from_user() in that it will oops
1915  * on bad values of `to', rather than returning a short copy.
1916  */
1917 static long exact_copy_from_user(void *to, const void __user * from,
1918 				 unsigned long n)
1919 {
1920 	char *t = to;
1921 	const char __user *f = from;
1922 	char c;
1923 
1924 	if (!access_ok(VERIFY_READ, from, n))
1925 		return n;
1926 
1927 	while (n) {
1928 		if (__get_user(c, f)) {
1929 			memset(t, 0, n);
1930 			break;
1931 		}
1932 		*t++ = c;
1933 		f++;
1934 		n--;
1935 	}
1936 	return n;
1937 }
1938 
1939 int copy_mount_options(const void __user * data, unsigned long *where)
1940 {
1941 	int i;
1942 	unsigned long page;
1943 	unsigned long size;
1944 
1945 	*where = 0;
1946 	if (!data)
1947 		return 0;
1948 
1949 	if (!(page = __get_free_page(GFP_KERNEL)))
1950 		return -ENOMEM;
1951 
1952 	/* We only care that *some* data at the address the user
1953 	 * gave us is valid.  Just in case, we'll zero
1954 	 * the remainder of the page.
1955 	 */
1956 	/* copy_from_user cannot cross TASK_SIZE ! */
1957 	size = TASK_SIZE - (unsigned long)data;
1958 	if (size > PAGE_SIZE)
1959 		size = PAGE_SIZE;
1960 
1961 	i = size - exact_copy_from_user((void *)page, data, size);
1962 	if (!i) {
1963 		free_page(page);
1964 		return -EFAULT;
1965 	}
1966 	if (i != PAGE_SIZE)
1967 		memset((char *)page + i, 0, PAGE_SIZE - i);
1968 	*where = page;
1969 	return 0;
1970 }
1971 
1972 int copy_mount_string(const void __user *data, char **where)
1973 {
1974 	char *tmp;
1975 
1976 	if (!data) {
1977 		*where = NULL;
1978 		return 0;
1979 	}
1980 
1981 	tmp = strndup_user(data, PAGE_SIZE);
1982 	if (IS_ERR(tmp))
1983 		return PTR_ERR(tmp);
1984 
1985 	*where = tmp;
1986 	return 0;
1987 }
1988 
1989 /*
1990  * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
1991  * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
1992  *
1993  * data is a (void *) that can point to any structure up to
1994  * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
1995  * information (or be NULL).
1996  *
1997  * Pre-0.97 versions of mount() didn't have a flags word.
1998  * When the flags word was introduced its top half was required
1999  * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
2000  * Therefore, if this magic number is present, it carries no information
2001  * and must be discarded.
2002  */
2003 long do_mount(char *dev_name, char *dir_name, char *type_page,
2004 		  unsigned long flags, void *data_page)
2005 {
2006 	struct path path;
2007 	int retval = 0;
2008 	int mnt_flags = 0;
2009 
2010 	/* Discard magic */
2011 	if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
2012 		flags &= ~MS_MGC_MSK;
2013 
2014 	/* Basic sanity checks */
2015 
2016 	if (!dir_name || !*dir_name || !memchr(dir_name, 0, PAGE_SIZE))
2017 		return -EINVAL;
2018 
2019 	if (data_page)
2020 		((char *)data_page)[PAGE_SIZE - 1] = 0;
2021 
2022 	/* ... and get the mountpoint */
2023 	retval = kern_path(dir_name, LOOKUP_FOLLOW, &path);
2024 	if (retval)
2025 		return retval;
2026 
2027 	retval = security_sb_mount(dev_name, &path,
2028 				   type_page, flags, data_page);
2029 	if (retval)
2030 		goto dput_out;
2031 
2032 	/* Default to relatime unless overriden */
2033 	if (!(flags & MS_NOATIME))
2034 		mnt_flags |= MNT_RELATIME;
2035 
2036 	/* Separate the per-mountpoint flags */
2037 	if (flags & MS_NOSUID)
2038 		mnt_flags |= MNT_NOSUID;
2039 	if (flags & MS_NODEV)
2040 		mnt_flags |= MNT_NODEV;
2041 	if (flags & MS_NOEXEC)
2042 		mnt_flags |= MNT_NOEXEC;
2043 	if (flags & MS_NOATIME)
2044 		mnt_flags |= MNT_NOATIME;
2045 	if (flags & MS_NODIRATIME)
2046 		mnt_flags |= MNT_NODIRATIME;
2047 	if (flags & MS_STRICTATIME)
2048 		mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
2049 	if (flags & MS_RDONLY)
2050 		mnt_flags |= MNT_READONLY;
2051 
2052 	flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE | MS_BORN |
2053 		   MS_NOATIME | MS_NODIRATIME | MS_RELATIME| MS_KERNMOUNT |
2054 		   MS_STRICTATIME);
2055 
2056 	if (flags & MS_REMOUNT)
2057 		retval = do_remount(&path, flags & ~MS_REMOUNT, mnt_flags,
2058 				    data_page);
2059 	else if (flags & MS_BIND)
2060 		retval = do_loopback(&path, dev_name, flags & MS_REC);
2061 	else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2062 		retval = do_change_type(&path, flags);
2063 	else if (flags & MS_MOVE)
2064 		retval = do_move_mount(&path, dev_name);
2065 	else
2066 		retval = do_new_mount(&path, type_page, flags, mnt_flags,
2067 				      dev_name, data_page);
2068 dput_out:
2069 	path_put(&path);
2070 	return retval;
2071 }
2072 
2073 static struct mnt_namespace *alloc_mnt_ns(void)
2074 {
2075 	struct mnt_namespace *new_ns;
2076 
2077 	new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
2078 	if (!new_ns)
2079 		return ERR_PTR(-ENOMEM);
2080 	atomic_set(&new_ns->count, 1);
2081 	new_ns->root = NULL;
2082 	INIT_LIST_HEAD(&new_ns->list);
2083 	init_waitqueue_head(&new_ns->poll);
2084 	new_ns->event = 0;
2085 	return new_ns;
2086 }
2087 
2088 /*
2089  * Allocate a new namespace structure and populate it with contents
2090  * copied from the namespace of the passed in task structure.
2091  */
2092 static struct mnt_namespace *dup_mnt_ns(struct mnt_namespace *mnt_ns,
2093 		struct fs_struct *fs)
2094 {
2095 	struct mnt_namespace *new_ns;
2096 	struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
2097 	struct vfsmount *p, *q;
2098 
2099 	new_ns = alloc_mnt_ns();
2100 	if (IS_ERR(new_ns))
2101 		return new_ns;
2102 
2103 	down_write(&namespace_sem);
2104 	/* First pass: copy the tree topology */
2105 	new_ns->root = copy_tree(mnt_ns->root, mnt_ns->root->mnt_root,
2106 					CL_COPY_ALL | CL_EXPIRE);
2107 	if (!new_ns->root) {
2108 		up_write(&namespace_sem);
2109 		kfree(new_ns);
2110 		return ERR_PTR(-ENOMEM);
2111 	}
2112 	br_write_lock(vfsmount_lock);
2113 	list_add_tail(&new_ns->list, &new_ns->root->mnt_list);
2114 	br_write_unlock(vfsmount_lock);
2115 
2116 	/*
2117 	 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
2118 	 * as belonging to new namespace.  We have already acquired a private
2119 	 * fs_struct, so tsk->fs->lock is not needed.
2120 	 */
2121 	p = mnt_ns->root;
2122 	q = new_ns->root;
2123 	while (p) {
2124 		q->mnt_ns = new_ns;
2125 		if (fs) {
2126 			if (p == fs->root.mnt) {
2127 				rootmnt = p;
2128 				fs->root.mnt = mntget(q);
2129 			}
2130 			if (p == fs->pwd.mnt) {
2131 				pwdmnt = p;
2132 				fs->pwd.mnt = mntget(q);
2133 			}
2134 		}
2135 		p = next_mnt(p, mnt_ns->root);
2136 		q = next_mnt(q, new_ns->root);
2137 	}
2138 	up_write(&namespace_sem);
2139 
2140 	if (rootmnt)
2141 		mntput(rootmnt);
2142 	if (pwdmnt)
2143 		mntput(pwdmnt);
2144 
2145 	return new_ns;
2146 }
2147 
2148 struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
2149 		struct fs_struct *new_fs)
2150 {
2151 	struct mnt_namespace *new_ns;
2152 
2153 	BUG_ON(!ns);
2154 	get_mnt_ns(ns);
2155 
2156 	if (!(flags & CLONE_NEWNS))
2157 		return ns;
2158 
2159 	new_ns = dup_mnt_ns(ns, new_fs);
2160 
2161 	put_mnt_ns(ns);
2162 	return new_ns;
2163 }
2164 
2165 /**
2166  * create_mnt_ns - creates a private namespace and adds a root filesystem
2167  * @mnt: pointer to the new root filesystem mountpoint
2168  */
2169 struct mnt_namespace *create_mnt_ns(struct vfsmount *mnt)
2170 {
2171 	struct mnt_namespace *new_ns;
2172 
2173 	new_ns = alloc_mnt_ns();
2174 	if (!IS_ERR(new_ns)) {
2175 		mnt->mnt_ns = new_ns;
2176 		new_ns->root = mnt;
2177 		list_add(&new_ns->list, &new_ns->root->mnt_list);
2178 	}
2179 	return new_ns;
2180 }
2181 EXPORT_SYMBOL(create_mnt_ns);
2182 
2183 SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
2184 		char __user *, type, unsigned long, flags, void __user *, data)
2185 {
2186 	int ret;
2187 	char *kernel_type;
2188 	char *kernel_dir;
2189 	char *kernel_dev;
2190 	unsigned long data_page;
2191 
2192 	ret = copy_mount_string(type, &kernel_type);
2193 	if (ret < 0)
2194 		goto out_type;
2195 
2196 	kernel_dir = getname(dir_name);
2197 	if (IS_ERR(kernel_dir)) {
2198 		ret = PTR_ERR(kernel_dir);
2199 		goto out_dir;
2200 	}
2201 
2202 	ret = copy_mount_string(dev_name, &kernel_dev);
2203 	if (ret < 0)
2204 		goto out_dev;
2205 
2206 	ret = copy_mount_options(data, &data_page);
2207 	if (ret < 0)
2208 		goto out_data;
2209 
2210 	ret = do_mount(kernel_dev, kernel_dir, kernel_type, flags,
2211 		(void *) data_page);
2212 
2213 	free_page(data_page);
2214 out_data:
2215 	kfree(kernel_dev);
2216 out_dev:
2217 	putname(kernel_dir);
2218 out_dir:
2219 	kfree(kernel_type);
2220 out_type:
2221 	return ret;
2222 }
2223 
2224 /*
2225  * pivot_root Semantics:
2226  * Moves the root file system of the current process to the directory put_old,
2227  * makes new_root as the new root file system of the current process, and sets
2228  * root/cwd of all processes which had them on the current root to new_root.
2229  *
2230  * Restrictions:
2231  * The new_root and put_old must be directories, and  must not be on the
2232  * same file  system as the current process root. The put_old  must  be
2233  * underneath new_root,  i.e. adding a non-zero number of /.. to the string
2234  * pointed to by put_old must yield the same directory as new_root. No other
2235  * file system may be mounted on put_old. After all, new_root is a mountpoint.
2236  *
2237  * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
2238  * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
2239  * in this situation.
2240  *
2241  * Notes:
2242  *  - we don't move root/cwd if they are not at the root (reason: if something
2243  *    cared enough to change them, it's probably wrong to force them elsewhere)
2244  *  - it's okay to pick a root that isn't the root of a file system, e.g.
2245  *    /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
2246  *    though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
2247  *    first.
2248  */
2249 SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
2250 		const char __user *, put_old)
2251 {
2252 	struct vfsmount *tmp;
2253 	struct path new, old, parent_path, root_parent, root;
2254 	int error;
2255 
2256 	if (!capable(CAP_SYS_ADMIN))
2257 		return -EPERM;
2258 
2259 	error = user_path_dir(new_root, &new);
2260 	if (error)
2261 		goto out0;
2262 	error = -EINVAL;
2263 	if (!check_mnt(new.mnt))
2264 		goto out1;
2265 
2266 	error = user_path_dir(put_old, &old);
2267 	if (error)
2268 		goto out1;
2269 
2270 	error = security_sb_pivotroot(&old, &new);
2271 	if (error) {
2272 		path_put(&old);
2273 		goto out1;
2274 	}
2275 
2276 	get_fs_root(current->fs, &root);
2277 	down_write(&namespace_sem);
2278 	mutex_lock(&old.dentry->d_inode->i_mutex);
2279 	error = -EINVAL;
2280 	if (IS_MNT_SHARED(old.mnt) ||
2281 		IS_MNT_SHARED(new.mnt->mnt_parent) ||
2282 		IS_MNT_SHARED(root.mnt->mnt_parent))
2283 		goto out2;
2284 	if (!check_mnt(root.mnt))
2285 		goto out2;
2286 	error = -ENOENT;
2287 	if (cant_mount(old.dentry))
2288 		goto out2;
2289 	if (d_unlinked(new.dentry))
2290 		goto out2;
2291 	if (d_unlinked(old.dentry))
2292 		goto out2;
2293 	error = -EBUSY;
2294 	if (new.mnt == root.mnt ||
2295 	    old.mnt == root.mnt)
2296 		goto out2; /* loop, on the same file system  */
2297 	error = -EINVAL;
2298 	if (root.mnt->mnt_root != root.dentry)
2299 		goto out2; /* not a mountpoint */
2300 	if (root.mnt->mnt_parent == root.mnt)
2301 		goto out2; /* not attached */
2302 	if (new.mnt->mnt_root != new.dentry)
2303 		goto out2; /* not a mountpoint */
2304 	if (new.mnt->mnt_parent == new.mnt)
2305 		goto out2; /* not attached */
2306 	/* make sure we can reach put_old from new_root */
2307 	tmp = old.mnt;
2308 	br_write_lock(vfsmount_lock);
2309 	if (tmp != new.mnt) {
2310 		for (;;) {
2311 			if (tmp->mnt_parent == tmp)
2312 				goto out3; /* already mounted on put_old */
2313 			if (tmp->mnt_parent == new.mnt)
2314 				break;
2315 			tmp = tmp->mnt_parent;
2316 		}
2317 		if (!is_subdir(tmp->mnt_mountpoint, new.dentry))
2318 			goto out3;
2319 	} else if (!is_subdir(old.dentry, new.dentry))
2320 		goto out3;
2321 	detach_mnt(new.mnt, &parent_path);
2322 	detach_mnt(root.mnt, &root_parent);
2323 	/* mount old root on put_old */
2324 	attach_mnt(root.mnt, &old);
2325 	/* mount new_root on / */
2326 	attach_mnt(new.mnt, &root_parent);
2327 	touch_mnt_namespace(current->nsproxy->mnt_ns);
2328 	br_write_unlock(vfsmount_lock);
2329 	chroot_fs_refs(&root, &new);
2330 	error = 0;
2331 	path_put(&root_parent);
2332 	path_put(&parent_path);
2333 out2:
2334 	mutex_unlock(&old.dentry->d_inode->i_mutex);
2335 	up_write(&namespace_sem);
2336 	path_put(&root);
2337 	path_put(&old);
2338 out1:
2339 	path_put(&new);
2340 out0:
2341 	return error;
2342 out3:
2343 	br_write_unlock(vfsmount_lock);
2344 	goto out2;
2345 }
2346 
2347 static void __init init_mount_tree(void)
2348 {
2349 	struct vfsmount *mnt;
2350 	struct mnt_namespace *ns;
2351 	struct path root;
2352 
2353 	mnt = do_kern_mount("rootfs", 0, "rootfs", NULL);
2354 	if (IS_ERR(mnt))
2355 		panic("Can't create rootfs");
2356 	ns = create_mnt_ns(mnt);
2357 	if (IS_ERR(ns))
2358 		panic("Can't allocate initial namespace");
2359 
2360 	init_task.nsproxy->mnt_ns = ns;
2361 	get_mnt_ns(ns);
2362 
2363 	root.mnt = ns->root;
2364 	root.dentry = ns->root->mnt_root;
2365 
2366 	set_fs_pwd(current->fs, &root);
2367 	set_fs_root(current->fs, &root);
2368 }
2369 
2370 void __init mnt_init(void)
2371 {
2372 	unsigned u;
2373 	int err;
2374 
2375 	init_rwsem(&namespace_sem);
2376 
2377 	mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct vfsmount),
2378 			0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
2379 
2380 	mount_hashtable = (struct list_head *)__get_free_page(GFP_ATOMIC);
2381 
2382 	if (!mount_hashtable)
2383 		panic("Failed to allocate mount hash table\n");
2384 
2385 	printk("Mount-cache hash table entries: %lu\n", HASH_SIZE);
2386 
2387 	for (u = 0; u < HASH_SIZE; u++)
2388 		INIT_LIST_HEAD(&mount_hashtable[u]);
2389 
2390 	br_lock_init(vfsmount_lock);
2391 
2392 	err = sysfs_init();
2393 	if (err)
2394 		printk(KERN_WARNING "%s: sysfs_init error: %d\n",
2395 			__func__, err);
2396 	fs_kobj = kobject_create_and_add("fs", NULL);
2397 	if (!fs_kobj)
2398 		printk(KERN_WARNING "%s: kobj create error\n", __func__);
2399 	init_rootfs();
2400 	init_mount_tree();
2401 }
2402 
2403 void put_mnt_ns(struct mnt_namespace *ns)
2404 {
2405 	LIST_HEAD(umount_list);
2406 
2407 	if (!atomic_dec_and_test(&ns->count))
2408 		return;
2409 	down_write(&namespace_sem);
2410 	br_write_lock(vfsmount_lock);
2411 	umount_tree(ns->root, 0, &umount_list);
2412 	br_write_unlock(vfsmount_lock);
2413 	up_write(&namespace_sem);
2414 	release_mounts(&umount_list);
2415 	kfree(ns);
2416 }
2417 EXPORT_SYMBOL(put_mnt_ns);
2418