1 /* 2 * linux/fs/namespace.c 3 * 4 * (C) Copyright Al Viro 2000, 2001 5 * Released under GPL v2. 6 * 7 * Based on code from fs/super.c, copyright Linus Torvalds and others. 8 * Heavily rewritten. 9 */ 10 11 #include <linux/syscalls.h> 12 #include <linux/slab.h> 13 #include <linux/sched.h> 14 #include <linux/smp_lock.h> 15 #include <linux/init.h> 16 #include <linux/kernel.h> 17 #include <linux/acct.h> 18 #include <linux/capability.h> 19 #include <linux/cpumask.h> 20 #include <linux/module.h> 21 #include <linux/sysfs.h> 22 #include <linux/seq_file.h> 23 #include <linux/mnt_namespace.h> 24 #include <linux/namei.h> 25 #include <linux/security.h> 26 #include <linux/mount.h> 27 #include <linux/ramfs.h> 28 #include <linux/log2.h> 29 #include <linux/idr.h> 30 #include <asm/uaccess.h> 31 #include <asm/unistd.h> 32 #include "pnode.h" 33 #include "internal.h" 34 35 #define HASH_SHIFT ilog2(PAGE_SIZE / sizeof(struct list_head)) 36 #define HASH_SIZE (1UL << HASH_SHIFT) 37 38 /* spinlock for vfsmount related operations, inplace of dcache_lock */ 39 __cacheline_aligned_in_smp DEFINE_SPINLOCK(vfsmount_lock); 40 41 static int event; 42 static DEFINE_IDA(mnt_id_ida); 43 static DEFINE_IDA(mnt_group_ida); 44 45 static struct list_head *mount_hashtable __read_mostly; 46 static struct kmem_cache *mnt_cache __read_mostly; 47 static struct rw_semaphore namespace_sem; 48 49 /* /sys/fs */ 50 struct kobject *fs_kobj; 51 EXPORT_SYMBOL_GPL(fs_kobj); 52 53 static inline unsigned long hash(struct vfsmount *mnt, struct dentry *dentry) 54 { 55 unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES); 56 tmp += ((unsigned long)dentry / L1_CACHE_BYTES); 57 tmp = tmp + (tmp >> HASH_SHIFT); 58 return tmp & (HASH_SIZE - 1); 59 } 60 61 #define MNT_WRITER_UNDERFLOW_LIMIT -(1<<16) 62 63 /* allocation is serialized by namespace_sem */ 64 static int mnt_alloc_id(struct vfsmount *mnt) 65 { 66 int res; 67 68 retry: 69 ida_pre_get(&mnt_id_ida, GFP_KERNEL); 70 spin_lock(&vfsmount_lock); 71 res = ida_get_new(&mnt_id_ida, &mnt->mnt_id); 72 spin_unlock(&vfsmount_lock); 73 if (res == -EAGAIN) 74 goto retry; 75 76 return res; 77 } 78 79 static void mnt_free_id(struct vfsmount *mnt) 80 { 81 spin_lock(&vfsmount_lock); 82 ida_remove(&mnt_id_ida, mnt->mnt_id); 83 spin_unlock(&vfsmount_lock); 84 } 85 86 /* 87 * Allocate a new peer group ID 88 * 89 * mnt_group_ida is protected by namespace_sem 90 */ 91 static int mnt_alloc_group_id(struct vfsmount *mnt) 92 { 93 if (!ida_pre_get(&mnt_group_ida, GFP_KERNEL)) 94 return -ENOMEM; 95 96 return ida_get_new_above(&mnt_group_ida, 1, &mnt->mnt_group_id); 97 } 98 99 /* 100 * Release a peer group ID 101 */ 102 void mnt_release_group_id(struct vfsmount *mnt) 103 { 104 ida_remove(&mnt_group_ida, mnt->mnt_group_id); 105 mnt->mnt_group_id = 0; 106 } 107 108 struct vfsmount *alloc_vfsmnt(const char *name) 109 { 110 struct vfsmount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL); 111 if (mnt) { 112 int err; 113 114 err = mnt_alloc_id(mnt); 115 if (err) 116 goto out_free_cache; 117 118 if (name) { 119 mnt->mnt_devname = kstrdup(name, GFP_KERNEL); 120 if (!mnt->mnt_devname) 121 goto out_free_id; 122 } 123 124 atomic_set(&mnt->mnt_count, 1); 125 INIT_LIST_HEAD(&mnt->mnt_hash); 126 INIT_LIST_HEAD(&mnt->mnt_child); 127 INIT_LIST_HEAD(&mnt->mnt_mounts); 128 INIT_LIST_HEAD(&mnt->mnt_list); 129 INIT_LIST_HEAD(&mnt->mnt_expire); 130 INIT_LIST_HEAD(&mnt->mnt_share); 131 INIT_LIST_HEAD(&mnt->mnt_slave_list); 132 INIT_LIST_HEAD(&mnt->mnt_slave); 133 atomic_set(&mnt->__mnt_writers, 0); 134 } 135 return mnt; 136 137 out_free_id: 138 mnt_free_id(mnt); 139 out_free_cache: 140 kmem_cache_free(mnt_cache, mnt); 141 return NULL; 142 } 143 144 /* 145 * Most r/o checks on a fs are for operations that take 146 * discrete amounts of time, like a write() or unlink(). 147 * We must keep track of when those operations start 148 * (for permission checks) and when they end, so that 149 * we can determine when writes are able to occur to 150 * a filesystem. 151 */ 152 /* 153 * __mnt_is_readonly: check whether a mount is read-only 154 * @mnt: the mount to check for its write status 155 * 156 * This shouldn't be used directly ouside of the VFS. 157 * It does not guarantee that the filesystem will stay 158 * r/w, just that it is right *now*. This can not and 159 * should not be used in place of IS_RDONLY(inode). 160 * mnt_want/drop_write() will _keep_ the filesystem 161 * r/w. 162 */ 163 int __mnt_is_readonly(struct vfsmount *mnt) 164 { 165 if (mnt->mnt_flags & MNT_READONLY) 166 return 1; 167 if (mnt->mnt_sb->s_flags & MS_RDONLY) 168 return 1; 169 return 0; 170 } 171 EXPORT_SYMBOL_GPL(__mnt_is_readonly); 172 173 struct mnt_writer { 174 /* 175 * If holding multiple instances of this lock, they 176 * must be ordered by cpu number. 177 */ 178 spinlock_t lock; 179 struct lock_class_key lock_class; /* compiles out with !lockdep */ 180 unsigned long count; 181 struct vfsmount *mnt; 182 } ____cacheline_aligned_in_smp; 183 static DEFINE_PER_CPU(struct mnt_writer, mnt_writers); 184 185 static int __init init_mnt_writers(void) 186 { 187 int cpu; 188 for_each_possible_cpu(cpu) { 189 struct mnt_writer *writer = &per_cpu(mnt_writers, cpu); 190 spin_lock_init(&writer->lock); 191 lockdep_set_class(&writer->lock, &writer->lock_class); 192 writer->count = 0; 193 } 194 return 0; 195 } 196 fs_initcall(init_mnt_writers); 197 198 static void unlock_mnt_writers(void) 199 { 200 int cpu; 201 struct mnt_writer *cpu_writer; 202 203 for_each_possible_cpu(cpu) { 204 cpu_writer = &per_cpu(mnt_writers, cpu); 205 spin_unlock(&cpu_writer->lock); 206 } 207 } 208 209 static inline void __clear_mnt_count(struct mnt_writer *cpu_writer) 210 { 211 if (!cpu_writer->mnt) 212 return; 213 /* 214 * This is in case anyone ever leaves an invalid, 215 * old ->mnt and a count of 0. 216 */ 217 if (!cpu_writer->count) 218 return; 219 atomic_add(cpu_writer->count, &cpu_writer->mnt->__mnt_writers); 220 cpu_writer->count = 0; 221 } 222 /* 223 * must hold cpu_writer->lock 224 */ 225 static inline void use_cpu_writer_for_mount(struct mnt_writer *cpu_writer, 226 struct vfsmount *mnt) 227 { 228 if (cpu_writer->mnt == mnt) 229 return; 230 __clear_mnt_count(cpu_writer); 231 cpu_writer->mnt = mnt; 232 } 233 234 /* 235 * Most r/o checks on a fs are for operations that take 236 * discrete amounts of time, like a write() or unlink(). 237 * We must keep track of when those operations start 238 * (for permission checks) and when they end, so that 239 * we can determine when writes are able to occur to 240 * a filesystem. 241 */ 242 /** 243 * mnt_want_write - get write access to a mount 244 * @mnt: the mount on which to take a write 245 * 246 * This tells the low-level filesystem that a write is 247 * about to be performed to it, and makes sure that 248 * writes are allowed before returning success. When 249 * the write operation is finished, mnt_drop_write() 250 * must be called. This is effectively a refcount. 251 */ 252 int mnt_want_write(struct vfsmount *mnt) 253 { 254 int ret = 0; 255 struct mnt_writer *cpu_writer; 256 257 cpu_writer = &get_cpu_var(mnt_writers); 258 spin_lock(&cpu_writer->lock); 259 if (__mnt_is_readonly(mnt)) { 260 ret = -EROFS; 261 goto out; 262 } 263 use_cpu_writer_for_mount(cpu_writer, mnt); 264 cpu_writer->count++; 265 out: 266 spin_unlock(&cpu_writer->lock); 267 put_cpu_var(mnt_writers); 268 return ret; 269 } 270 EXPORT_SYMBOL_GPL(mnt_want_write); 271 272 static void lock_mnt_writers(void) 273 { 274 int cpu; 275 struct mnt_writer *cpu_writer; 276 277 for_each_possible_cpu(cpu) { 278 cpu_writer = &per_cpu(mnt_writers, cpu); 279 spin_lock(&cpu_writer->lock); 280 __clear_mnt_count(cpu_writer); 281 cpu_writer->mnt = NULL; 282 } 283 } 284 285 /* 286 * These per-cpu write counts are not guaranteed to have 287 * matched increments and decrements on any given cpu. 288 * A file open()ed for write on one cpu and close()d on 289 * another cpu will imbalance this count. Make sure it 290 * does not get too far out of whack. 291 */ 292 static void handle_write_count_underflow(struct vfsmount *mnt) 293 { 294 if (atomic_read(&mnt->__mnt_writers) >= 295 MNT_WRITER_UNDERFLOW_LIMIT) 296 return; 297 /* 298 * It isn't necessary to hold all of the locks 299 * at the same time, but doing it this way makes 300 * us share a lot more code. 301 */ 302 lock_mnt_writers(); 303 /* 304 * vfsmount_lock is for mnt_flags. 305 */ 306 spin_lock(&vfsmount_lock); 307 /* 308 * If coalescing the per-cpu writer counts did not 309 * get us back to a positive writer count, we have 310 * a bug. 311 */ 312 if ((atomic_read(&mnt->__mnt_writers) < 0) && 313 !(mnt->mnt_flags & MNT_IMBALANCED_WRITE_COUNT)) { 314 WARN(1, KERN_DEBUG "leak detected on mount(%p) writers " 315 "count: %d\n", 316 mnt, atomic_read(&mnt->__mnt_writers)); 317 /* use the flag to keep the dmesg spam down */ 318 mnt->mnt_flags |= MNT_IMBALANCED_WRITE_COUNT; 319 } 320 spin_unlock(&vfsmount_lock); 321 unlock_mnt_writers(); 322 } 323 324 /** 325 * mnt_drop_write - give up write access to a mount 326 * @mnt: the mount on which to give up write access 327 * 328 * Tells the low-level filesystem that we are done 329 * performing writes to it. Must be matched with 330 * mnt_want_write() call above. 331 */ 332 void mnt_drop_write(struct vfsmount *mnt) 333 { 334 int must_check_underflow = 0; 335 struct mnt_writer *cpu_writer; 336 337 cpu_writer = &get_cpu_var(mnt_writers); 338 spin_lock(&cpu_writer->lock); 339 340 use_cpu_writer_for_mount(cpu_writer, mnt); 341 if (cpu_writer->count > 0) { 342 cpu_writer->count--; 343 } else { 344 must_check_underflow = 1; 345 atomic_dec(&mnt->__mnt_writers); 346 } 347 348 spin_unlock(&cpu_writer->lock); 349 /* 350 * Logically, we could call this each time, 351 * but the __mnt_writers cacheline tends to 352 * be cold, and makes this expensive. 353 */ 354 if (must_check_underflow) 355 handle_write_count_underflow(mnt); 356 /* 357 * This could be done right after the spinlock 358 * is taken because the spinlock keeps us on 359 * the cpu, and disables preemption. However, 360 * putting it here bounds the amount that 361 * __mnt_writers can underflow. Without it, 362 * we could theoretically wrap __mnt_writers. 363 */ 364 put_cpu_var(mnt_writers); 365 } 366 EXPORT_SYMBOL_GPL(mnt_drop_write); 367 368 static int mnt_make_readonly(struct vfsmount *mnt) 369 { 370 int ret = 0; 371 372 lock_mnt_writers(); 373 /* 374 * With all the locks held, this value is stable 375 */ 376 if (atomic_read(&mnt->__mnt_writers) > 0) { 377 ret = -EBUSY; 378 goto out; 379 } 380 /* 381 * nobody can do a successful mnt_want_write() with all 382 * of the counts in MNT_DENIED_WRITE and the locks held. 383 */ 384 spin_lock(&vfsmount_lock); 385 if (!ret) 386 mnt->mnt_flags |= MNT_READONLY; 387 spin_unlock(&vfsmount_lock); 388 out: 389 unlock_mnt_writers(); 390 return ret; 391 } 392 393 static void __mnt_unmake_readonly(struct vfsmount *mnt) 394 { 395 spin_lock(&vfsmount_lock); 396 mnt->mnt_flags &= ~MNT_READONLY; 397 spin_unlock(&vfsmount_lock); 398 } 399 400 void simple_set_mnt(struct vfsmount *mnt, struct super_block *sb) 401 { 402 mnt->mnt_sb = sb; 403 mnt->mnt_root = dget(sb->s_root); 404 } 405 406 EXPORT_SYMBOL(simple_set_mnt); 407 408 void free_vfsmnt(struct vfsmount *mnt) 409 { 410 kfree(mnt->mnt_devname); 411 mnt_free_id(mnt); 412 kmem_cache_free(mnt_cache, mnt); 413 } 414 415 /* 416 * find the first or last mount at @dentry on vfsmount @mnt depending on 417 * @dir. If @dir is set return the first mount else return the last mount. 418 */ 419 struct vfsmount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry, 420 int dir) 421 { 422 struct list_head *head = mount_hashtable + hash(mnt, dentry); 423 struct list_head *tmp = head; 424 struct vfsmount *p, *found = NULL; 425 426 for (;;) { 427 tmp = dir ? tmp->next : tmp->prev; 428 p = NULL; 429 if (tmp == head) 430 break; 431 p = list_entry(tmp, struct vfsmount, mnt_hash); 432 if (p->mnt_parent == mnt && p->mnt_mountpoint == dentry) { 433 found = p; 434 break; 435 } 436 } 437 return found; 438 } 439 440 /* 441 * lookup_mnt increments the ref count before returning 442 * the vfsmount struct. 443 */ 444 struct vfsmount *lookup_mnt(struct vfsmount *mnt, struct dentry *dentry) 445 { 446 struct vfsmount *child_mnt; 447 spin_lock(&vfsmount_lock); 448 if ((child_mnt = __lookup_mnt(mnt, dentry, 1))) 449 mntget(child_mnt); 450 spin_unlock(&vfsmount_lock); 451 return child_mnt; 452 } 453 454 static inline int check_mnt(struct vfsmount *mnt) 455 { 456 return mnt->mnt_ns == current->nsproxy->mnt_ns; 457 } 458 459 static void touch_mnt_namespace(struct mnt_namespace *ns) 460 { 461 if (ns) { 462 ns->event = ++event; 463 wake_up_interruptible(&ns->poll); 464 } 465 } 466 467 static void __touch_mnt_namespace(struct mnt_namespace *ns) 468 { 469 if (ns && ns->event != event) { 470 ns->event = event; 471 wake_up_interruptible(&ns->poll); 472 } 473 } 474 475 static void detach_mnt(struct vfsmount *mnt, struct path *old_path) 476 { 477 old_path->dentry = mnt->mnt_mountpoint; 478 old_path->mnt = mnt->mnt_parent; 479 mnt->mnt_parent = mnt; 480 mnt->mnt_mountpoint = mnt->mnt_root; 481 list_del_init(&mnt->mnt_child); 482 list_del_init(&mnt->mnt_hash); 483 old_path->dentry->d_mounted--; 484 } 485 486 void mnt_set_mountpoint(struct vfsmount *mnt, struct dentry *dentry, 487 struct vfsmount *child_mnt) 488 { 489 child_mnt->mnt_parent = mntget(mnt); 490 child_mnt->mnt_mountpoint = dget(dentry); 491 dentry->d_mounted++; 492 } 493 494 static void attach_mnt(struct vfsmount *mnt, struct path *path) 495 { 496 mnt_set_mountpoint(path->mnt, path->dentry, mnt); 497 list_add_tail(&mnt->mnt_hash, mount_hashtable + 498 hash(path->mnt, path->dentry)); 499 list_add_tail(&mnt->mnt_child, &path->mnt->mnt_mounts); 500 } 501 502 /* 503 * the caller must hold vfsmount_lock 504 */ 505 static void commit_tree(struct vfsmount *mnt) 506 { 507 struct vfsmount *parent = mnt->mnt_parent; 508 struct vfsmount *m; 509 LIST_HEAD(head); 510 struct mnt_namespace *n = parent->mnt_ns; 511 512 BUG_ON(parent == mnt); 513 514 list_add_tail(&head, &mnt->mnt_list); 515 list_for_each_entry(m, &head, mnt_list) 516 m->mnt_ns = n; 517 list_splice(&head, n->list.prev); 518 519 list_add_tail(&mnt->mnt_hash, mount_hashtable + 520 hash(parent, mnt->mnt_mountpoint)); 521 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts); 522 touch_mnt_namespace(n); 523 } 524 525 static struct vfsmount *next_mnt(struct vfsmount *p, struct vfsmount *root) 526 { 527 struct list_head *next = p->mnt_mounts.next; 528 if (next == &p->mnt_mounts) { 529 while (1) { 530 if (p == root) 531 return NULL; 532 next = p->mnt_child.next; 533 if (next != &p->mnt_parent->mnt_mounts) 534 break; 535 p = p->mnt_parent; 536 } 537 } 538 return list_entry(next, struct vfsmount, mnt_child); 539 } 540 541 static struct vfsmount *skip_mnt_tree(struct vfsmount *p) 542 { 543 struct list_head *prev = p->mnt_mounts.prev; 544 while (prev != &p->mnt_mounts) { 545 p = list_entry(prev, struct vfsmount, mnt_child); 546 prev = p->mnt_mounts.prev; 547 } 548 return p; 549 } 550 551 static struct vfsmount *clone_mnt(struct vfsmount *old, struct dentry *root, 552 int flag) 553 { 554 struct super_block *sb = old->mnt_sb; 555 struct vfsmount *mnt = alloc_vfsmnt(old->mnt_devname); 556 557 if (mnt) { 558 if (flag & (CL_SLAVE | CL_PRIVATE)) 559 mnt->mnt_group_id = 0; /* not a peer of original */ 560 else 561 mnt->mnt_group_id = old->mnt_group_id; 562 563 if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) { 564 int err = mnt_alloc_group_id(mnt); 565 if (err) 566 goto out_free; 567 } 568 569 mnt->mnt_flags = old->mnt_flags; 570 atomic_inc(&sb->s_active); 571 mnt->mnt_sb = sb; 572 mnt->mnt_root = dget(root); 573 mnt->mnt_mountpoint = mnt->mnt_root; 574 mnt->mnt_parent = mnt; 575 576 if (flag & CL_SLAVE) { 577 list_add(&mnt->mnt_slave, &old->mnt_slave_list); 578 mnt->mnt_master = old; 579 CLEAR_MNT_SHARED(mnt); 580 } else if (!(flag & CL_PRIVATE)) { 581 if ((flag & CL_PROPAGATION) || IS_MNT_SHARED(old)) 582 list_add(&mnt->mnt_share, &old->mnt_share); 583 if (IS_MNT_SLAVE(old)) 584 list_add(&mnt->mnt_slave, &old->mnt_slave); 585 mnt->mnt_master = old->mnt_master; 586 } 587 if (flag & CL_MAKE_SHARED) 588 set_mnt_shared(mnt); 589 590 /* stick the duplicate mount on the same expiry list 591 * as the original if that was on one */ 592 if (flag & CL_EXPIRE) { 593 if (!list_empty(&old->mnt_expire)) 594 list_add(&mnt->mnt_expire, &old->mnt_expire); 595 } 596 } 597 return mnt; 598 599 out_free: 600 free_vfsmnt(mnt); 601 return NULL; 602 } 603 604 static inline void __mntput(struct vfsmount *mnt) 605 { 606 int cpu; 607 struct super_block *sb = mnt->mnt_sb; 608 /* 609 * We don't have to hold all of the locks at the 610 * same time here because we know that we're the 611 * last reference to mnt and that no new writers 612 * can come in. 613 */ 614 for_each_possible_cpu(cpu) { 615 struct mnt_writer *cpu_writer = &per_cpu(mnt_writers, cpu); 616 spin_lock(&cpu_writer->lock); 617 if (cpu_writer->mnt != mnt) { 618 spin_unlock(&cpu_writer->lock); 619 continue; 620 } 621 atomic_add(cpu_writer->count, &mnt->__mnt_writers); 622 cpu_writer->count = 0; 623 /* 624 * Might as well do this so that no one 625 * ever sees the pointer and expects 626 * it to be valid. 627 */ 628 cpu_writer->mnt = NULL; 629 spin_unlock(&cpu_writer->lock); 630 } 631 /* 632 * This probably indicates that somebody messed 633 * up a mnt_want/drop_write() pair. If this 634 * happens, the filesystem was probably unable 635 * to make r/w->r/o transitions. 636 */ 637 WARN_ON(atomic_read(&mnt->__mnt_writers)); 638 dput(mnt->mnt_root); 639 free_vfsmnt(mnt); 640 deactivate_super(sb); 641 } 642 643 void mntput_no_expire(struct vfsmount *mnt) 644 { 645 repeat: 646 if (atomic_dec_and_lock(&mnt->mnt_count, &vfsmount_lock)) { 647 if (likely(!mnt->mnt_pinned)) { 648 spin_unlock(&vfsmount_lock); 649 __mntput(mnt); 650 return; 651 } 652 atomic_add(mnt->mnt_pinned + 1, &mnt->mnt_count); 653 mnt->mnt_pinned = 0; 654 spin_unlock(&vfsmount_lock); 655 acct_auto_close_mnt(mnt); 656 security_sb_umount_close(mnt); 657 goto repeat; 658 } 659 } 660 661 EXPORT_SYMBOL(mntput_no_expire); 662 663 void mnt_pin(struct vfsmount *mnt) 664 { 665 spin_lock(&vfsmount_lock); 666 mnt->mnt_pinned++; 667 spin_unlock(&vfsmount_lock); 668 } 669 670 EXPORT_SYMBOL(mnt_pin); 671 672 void mnt_unpin(struct vfsmount *mnt) 673 { 674 spin_lock(&vfsmount_lock); 675 if (mnt->mnt_pinned) { 676 atomic_inc(&mnt->mnt_count); 677 mnt->mnt_pinned--; 678 } 679 spin_unlock(&vfsmount_lock); 680 } 681 682 EXPORT_SYMBOL(mnt_unpin); 683 684 static inline void mangle(struct seq_file *m, const char *s) 685 { 686 seq_escape(m, s, " \t\n\\"); 687 } 688 689 /* 690 * Simple .show_options callback for filesystems which don't want to 691 * implement more complex mount option showing. 692 * 693 * See also save_mount_options(). 694 */ 695 int generic_show_options(struct seq_file *m, struct vfsmount *mnt) 696 { 697 const char *options = mnt->mnt_sb->s_options; 698 699 if (options != NULL && options[0]) { 700 seq_putc(m, ','); 701 mangle(m, options); 702 } 703 704 return 0; 705 } 706 EXPORT_SYMBOL(generic_show_options); 707 708 /* 709 * If filesystem uses generic_show_options(), this function should be 710 * called from the fill_super() callback. 711 * 712 * The .remount_fs callback usually needs to be handled in a special 713 * way, to make sure, that previous options are not overwritten if the 714 * remount fails. 715 * 716 * Also note, that if the filesystem's .remount_fs function doesn't 717 * reset all options to their default value, but changes only newly 718 * given options, then the displayed options will not reflect reality 719 * any more. 720 */ 721 void save_mount_options(struct super_block *sb, char *options) 722 { 723 kfree(sb->s_options); 724 sb->s_options = kstrdup(options, GFP_KERNEL); 725 } 726 EXPORT_SYMBOL(save_mount_options); 727 728 #ifdef CONFIG_PROC_FS 729 /* iterator */ 730 static void *m_start(struct seq_file *m, loff_t *pos) 731 { 732 struct proc_mounts *p = m->private; 733 734 down_read(&namespace_sem); 735 return seq_list_start(&p->ns->list, *pos); 736 } 737 738 static void *m_next(struct seq_file *m, void *v, loff_t *pos) 739 { 740 struct proc_mounts *p = m->private; 741 742 return seq_list_next(v, &p->ns->list, pos); 743 } 744 745 static void m_stop(struct seq_file *m, void *v) 746 { 747 up_read(&namespace_sem); 748 } 749 750 struct proc_fs_info { 751 int flag; 752 const char *str; 753 }; 754 755 static int show_sb_opts(struct seq_file *m, struct super_block *sb) 756 { 757 static const struct proc_fs_info fs_info[] = { 758 { MS_SYNCHRONOUS, ",sync" }, 759 { MS_DIRSYNC, ",dirsync" }, 760 { MS_MANDLOCK, ",mand" }, 761 { 0, NULL } 762 }; 763 const struct proc_fs_info *fs_infop; 764 765 for (fs_infop = fs_info; fs_infop->flag; fs_infop++) { 766 if (sb->s_flags & fs_infop->flag) 767 seq_puts(m, fs_infop->str); 768 } 769 770 return security_sb_show_options(m, sb); 771 } 772 773 static void show_mnt_opts(struct seq_file *m, struct vfsmount *mnt) 774 { 775 static const struct proc_fs_info mnt_info[] = { 776 { MNT_NOSUID, ",nosuid" }, 777 { MNT_NODEV, ",nodev" }, 778 { MNT_NOEXEC, ",noexec" }, 779 { MNT_NOATIME, ",noatime" }, 780 { MNT_NODIRATIME, ",nodiratime" }, 781 { MNT_RELATIME, ",relatime" }, 782 { MNT_STRICTATIME, ",strictatime" }, 783 { 0, NULL } 784 }; 785 const struct proc_fs_info *fs_infop; 786 787 for (fs_infop = mnt_info; fs_infop->flag; fs_infop++) { 788 if (mnt->mnt_flags & fs_infop->flag) 789 seq_puts(m, fs_infop->str); 790 } 791 } 792 793 static void show_type(struct seq_file *m, struct super_block *sb) 794 { 795 mangle(m, sb->s_type->name); 796 if (sb->s_subtype && sb->s_subtype[0]) { 797 seq_putc(m, '.'); 798 mangle(m, sb->s_subtype); 799 } 800 } 801 802 static int show_vfsmnt(struct seq_file *m, void *v) 803 { 804 struct vfsmount *mnt = list_entry(v, struct vfsmount, mnt_list); 805 int err = 0; 806 struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt }; 807 808 mangle(m, mnt->mnt_devname ? mnt->mnt_devname : "none"); 809 seq_putc(m, ' '); 810 seq_path(m, &mnt_path, " \t\n\\"); 811 seq_putc(m, ' '); 812 show_type(m, mnt->mnt_sb); 813 seq_puts(m, __mnt_is_readonly(mnt) ? " ro" : " rw"); 814 err = show_sb_opts(m, mnt->mnt_sb); 815 if (err) 816 goto out; 817 show_mnt_opts(m, mnt); 818 if (mnt->mnt_sb->s_op->show_options) 819 err = mnt->mnt_sb->s_op->show_options(m, mnt); 820 seq_puts(m, " 0 0\n"); 821 out: 822 return err; 823 } 824 825 const struct seq_operations mounts_op = { 826 .start = m_start, 827 .next = m_next, 828 .stop = m_stop, 829 .show = show_vfsmnt 830 }; 831 832 static int show_mountinfo(struct seq_file *m, void *v) 833 { 834 struct proc_mounts *p = m->private; 835 struct vfsmount *mnt = list_entry(v, struct vfsmount, mnt_list); 836 struct super_block *sb = mnt->mnt_sb; 837 struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt }; 838 struct path root = p->root; 839 int err = 0; 840 841 seq_printf(m, "%i %i %u:%u ", mnt->mnt_id, mnt->mnt_parent->mnt_id, 842 MAJOR(sb->s_dev), MINOR(sb->s_dev)); 843 seq_dentry(m, mnt->mnt_root, " \t\n\\"); 844 seq_putc(m, ' '); 845 seq_path_root(m, &mnt_path, &root, " \t\n\\"); 846 if (root.mnt != p->root.mnt || root.dentry != p->root.dentry) { 847 /* 848 * Mountpoint is outside root, discard that one. Ugly, 849 * but less so than trying to do that in iterator in a 850 * race-free way (due to renames). 851 */ 852 return SEQ_SKIP; 853 } 854 seq_puts(m, mnt->mnt_flags & MNT_READONLY ? " ro" : " rw"); 855 show_mnt_opts(m, mnt); 856 857 /* Tagged fields ("foo:X" or "bar") */ 858 if (IS_MNT_SHARED(mnt)) 859 seq_printf(m, " shared:%i", mnt->mnt_group_id); 860 if (IS_MNT_SLAVE(mnt)) { 861 int master = mnt->mnt_master->mnt_group_id; 862 int dom = get_dominating_id(mnt, &p->root); 863 seq_printf(m, " master:%i", master); 864 if (dom && dom != master) 865 seq_printf(m, " propagate_from:%i", dom); 866 } 867 if (IS_MNT_UNBINDABLE(mnt)) 868 seq_puts(m, " unbindable"); 869 870 /* Filesystem specific data */ 871 seq_puts(m, " - "); 872 show_type(m, sb); 873 seq_putc(m, ' '); 874 mangle(m, mnt->mnt_devname ? mnt->mnt_devname : "none"); 875 seq_puts(m, sb->s_flags & MS_RDONLY ? " ro" : " rw"); 876 err = show_sb_opts(m, sb); 877 if (err) 878 goto out; 879 if (sb->s_op->show_options) 880 err = sb->s_op->show_options(m, mnt); 881 seq_putc(m, '\n'); 882 out: 883 return err; 884 } 885 886 const struct seq_operations mountinfo_op = { 887 .start = m_start, 888 .next = m_next, 889 .stop = m_stop, 890 .show = show_mountinfo, 891 }; 892 893 static int show_vfsstat(struct seq_file *m, void *v) 894 { 895 struct vfsmount *mnt = list_entry(v, struct vfsmount, mnt_list); 896 struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt }; 897 int err = 0; 898 899 /* device */ 900 if (mnt->mnt_devname) { 901 seq_puts(m, "device "); 902 mangle(m, mnt->mnt_devname); 903 } else 904 seq_puts(m, "no device"); 905 906 /* mount point */ 907 seq_puts(m, " mounted on "); 908 seq_path(m, &mnt_path, " \t\n\\"); 909 seq_putc(m, ' '); 910 911 /* file system type */ 912 seq_puts(m, "with fstype "); 913 show_type(m, mnt->mnt_sb); 914 915 /* optional statistics */ 916 if (mnt->mnt_sb->s_op->show_stats) { 917 seq_putc(m, ' '); 918 err = mnt->mnt_sb->s_op->show_stats(m, mnt); 919 } 920 921 seq_putc(m, '\n'); 922 return err; 923 } 924 925 const struct seq_operations mountstats_op = { 926 .start = m_start, 927 .next = m_next, 928 .stop = m_stop, 929 .show = show_vfsstat, 930 }; 931 #endif /* CONFIG_PROC_FS */ 932 933 /** 934 * may_umount_tree - check if a mount tree is busy 935 * @mnt: root of mount tree 936 * 937 * This is called to check if a tree of mounts has any 938 * open files, pwds, chroots or sub mounts that are 939 * busy. 940 */ 941 int may_umount_tree(struct vfsmount *mnt) 942 { 943 int actual_refs = 0; 944 int minimum_refs = 0; 945 struct vfsmount *p; 946 947 spin_lock(&vfsmount_lock); 948 for (p = mnt; p; p = next_mnt(p, mnt)) { 949 actual_refs += atomic_read(&p->mnt_count); 950 minimum_refs += 2; 951 } 952 spin_unlock(&vfsmount_lock); 953 954 if (actual_refs > minimum_refs) 955 return 0; 956 957 return 1; 958 } 959 960 EXPORT_SYMBOL(may_umount_tree); 961 962 /** 963 * may_umount - check if a mount point is busy 964 * @mnt: root of mount 965 * 966 * This is called to check if a mount point has any 967 * open files, pwds, chroots or sub mounts. If the 968 * mount has sub mounts this will return busy 969 * regardless of whether the sub mounts are busy. 970 * 971 * Doesn't take quota and stuff into account. IOW, in some cases it will 972 * give false negatives. The main reason why it's here is that we need 973 * a non-destructive way to look for easily umountable filesystems. 974 */ 975 int may_umount(struct vfsmount *mnt) 976 { 977 int ret = 1; 978 spin_lock(&vfsmount_lock); 979 if (propagate_mount_busy(mnt, 2)) 980 ret = 0; 981 spin_unlock(&vfsmount_lock); 982 return ret; 983 } 984 985 EXPORT_SYMBOL(may_umount); 986 987 void release_mounts(struct list_head *head) 988 { 989 struct vfsmount *mnt; 990 while (!list_empty(head)) { 991 mnt = list_first_entry(head, struct vfsmount, mnt_hash); 992 list_del_init(&mnt->mnt_hash); 993 if (mnt->mnt_parent != mnt) { 994 struct dentry *dentry; 995 struct vfsmount *m; 996 spin_lock(&vfsmount_lock); 997 dentry = mnt->mnt_mountpoint; 998 m = mnt->mnt_parent; 999 mnt->mnt_mountpoint = mnt->mnt_root; 1000 mnt->mnt_parent = mnt; 1001 m->mnt_ghosts--; 1002 spin_unlock(&vfsmount_lock); 1003 dput(dentry); 1004 mntput(m); 1005 } 1006 mntput(mnt); 1007 } 1008 } 1009 1010 void umount_tree(struct vfsmount *mnt, int propagate, struct list_head *kill) 1011 { 1012 struct vfsmount *p; 1013 1014 for (p = mnt; p; p = next_mnt(p, mnt)) 1015 list_move(&p->mnt_hash, kill); 1016 1017 if (propagate) 1018 propagate_umount(kill); 1019 1020 list_for_each_entry(p, kill, mnt_hash) { 1021 list_del_init(&p->mnt_expire); 1022 list_del_init(&p->mnt_list); 1023 __touch_mnt_namespace(p->mnt_ns); 1024 p->mnt_ns = NULL; 1025 list_del_init(&p->mnt_child); 1026 if (p->mnt_parent != p) { 1027 p->mnt_parent->mnt_ghosts++; 1028 p->mnt_mountpoint->d_mounted--; 1029 } 1030 change_mnt_propagation(p, MS_PRIVATE); 1031 } 1032 } 1033 1034 static void shrink_submounts(struct vfsmount *mnt, struct list_head *umounts); 1035 1036 static int do_umount(struct vfsmount *mnt, int flags) 1037 { 1038 struct super_block *sb = mnt->mnt_sb; 1039 int retval; 1040 LIST_HEAD(umount_list); 1041 1042 retval = security_sb_umount(mnt, flags); 1043 if (retval) 1044 return retval; 1045 1046 /* 1047 * Allow userspace to request a mountpoint be expired rather than 1048 * unmounting unconditionally. Unmount only happens if: 1049 * (1) the mark is already set (the mark is cleared by mntput()) 1050 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount] 1051 */ 1052 if (flags & MNT_EXPIRE) { 1053 if (mnt == current->fs->root.mnt || 1054 flags & (MNT_FORCE | MNT_DETACH)) 1055 return -EINVAL; 1056 1057 if (atomic_read(&mnt->mnt_count) != 2) 1058 return -EBUSY; 1059 1060 if (!xchg(&mnt->mnt_expiry_mark, 1)) 1061 return -EAGAIN; 1062 } 1063 1064 /* 1065 * If we may have to abort operations to get out of this 1066 * mount, and they will themselves hold resources we must 1067 * allow the fs to do things. In the Unix tradition of 1068 * 'Gee thats tricky lets do it in userspace' the umount_begin 1069 * might fail to complete on the first run through as other tasks 1070 * must return, and the like. Thats for the mount program to worry 1071 * about for the moment. 1072 */ 1073 1074 if (flags & MNT_FORCE && sb->s_op->umount_begin) { 1075 lock_kernel(); 1076 sb->s_op->umount_begin(sb); 1077 unlock_kernel(); 1078 } 1079 1080 /* 1081 * No sense to grab the lock for this test, but test itself looks 1082 * somewhat bogus. Suggestions for better replacement? 1083 * Ho-hum... In principle, we might treat that as umount + switch 1084 * to rootfs. GC would eventually take care of the old vfsmount. 1085 * Actually it makes sense, especially if rootfs would contain a 1086 * /reboot - static binary that would close all descriptors and 1087 * call reboot(9). Then init(8) could umount root and exec /reboot. 1088 */ 1089 if (mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) { 1090 /* 1091 * Special case for "unmounting" root ... 1092 * we just try to remount it readonly. 1093 */ 1094 down_write(&sb->s_umount); 1095 if (!(sb->s_flags & MS_RDONLY)) { 1096 lock_kernel(); 1097 retval = do_remount_sb(sb, MS_RDONLY, NULL, 0); 1098 unlock_kernel(); 1099 } 1100 up_write(&sb->s_umount); 1101 return retval; 1102 } 1103 1104 down_write(&namespace_sem); 1105 spin_lock(&vfsmount_lock); 1106 event++; 1107 1108 if (!(flags & MNT_DETACH)) 1109 shrink_submounts(mnt, &umount_list); 1110 1111 retval = -EBUSY; 1112 if (flags & MNT_DETACH || !propagate_mount_busy(mnt, 2)) { 1113 if (!list_empty(&mnt->mnt_list)) 1114 umount_tree(mnt, 1, &umount_list); 1115 retval = 0; 1116 } 1117 spin_unlock(&vfsmount_lock); 1118 if (retval) 1119 security_sb_umount_busy(mnt); 1120 up_write(&namespace_sem); 1121 release_mounts(&umount_list); 1122 return retval; 1123 } 1124 1125 /* 1126 * Now umount can handle mount points as well as block devices. 1127 * This is important for filesystems which use unnamed block devices. 1128 * 1129 * We now support a flag for forced unmount like the other 'big iron' 1130 * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD 1131 */ 1132 1133 SYSCALL_DEFINE2(umount, char __user *, name, int, flags) 1134 { 1135 struct path path; 1136 int retval; 1137 1138 retval = user_path(name, &path); 1139 if (retval) 1140 goto out; 1141 retval = -EINVAL; 1142 if (path.dentry != path.mnt->mnt_root) 1143 goto dput_and_out; 1144 if (!check_mnt(path.mnt)) 1145 goto dput_and_out; 1146 1147 retval = -EPERM; 1148 if (!capable(CAP_SYS_ADMIN)) 1149 goto dput_and_out; 1150 1151 retval = do_umount(path.mnt, flags); 1152 dput_and_out: 1153 /* we mustn't call path_put() as that would clear mnt_expiry_mark */ 1154 dput(path.dentry); 1155 mntput_no_expire(path.mnt); 1156 out: 1157 return retval; 1158 } 1159 1160 #ifdef __ARCH_WANT_SYS_OLDUMOUNT 1161 1162 /* 1163 * The 2.0 compatible umount. No flags. 1164 */ 1165 SYSCALL_DEFINE1(oldumount, char __user *, name) 1166 { 1167 return sys_umount(name, 0); 1168 } 1169 1170 #endif 1171 1172 static int mount_is_safe(struct path *path) 1173 { 1174 if (capable(CAP_SYS_ADMIN)) 1175 return 0; 1176 return -EPERM; 1177 #ifdef notyet 1178 if (S_ISLNK(path->dentry->d_inode->i_mode)) 1179 return -EPERM; 1180 if (path->dentry->d_inode->i_mode & S_ISVTX) { 1181 if (current_uid() != path->dentry->d_inode->i_uid) 1182 return -EPERM; 1183 } 1184 if (inode_permission(path->dentry->d_inode, MAY_WRITE)) 1185 return -EPERM; 1186 return 0; 1187 #endif 1188 } 1189 1190 struct vfsmount *copy_tree(struct vfsmount *mnt, struct dentry *dentry, 1191 int flag) 1192 { 1193 struct vfsmount *res, *p, *q, *r, *s; 1194 struct path path; 1195 1196 if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(mnt)) 1197 return NULL; 1198 1199 res = q = clone_mnt(mnt, dentry, flag); 1200 if (!q) 1201 goto Enomem; 1202 q->mnt_mountpoint = mnt->mnt_mountpoint; 1203 1204 p = mnt; 1205 list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) { 1206 if (!is_subdir(r->mnt_mountpoint, dentry)) 1207 continue; 1208 1209 for (s = r; s; s = next_mnt(s, r)) { 1210 if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(s)) { 1211 s = skip_mnt_tree(s); 1212 continue; 1213 } 1214 while (p != s->mnt_parent) { 1215 p = p->mnt_parent; 1216 q = q->mnt_parent; 1217 } 1218 p = s; 1219 path.mnt = q; 1220 path.dentry = p->mnt_mountpoint; 1221 q = clone_mnt(p, p->mnt_root, flag); 1222 if (!q) 1223 goto Enomem; 1224 spin_lock(&vfsmount_lock); 1225 list_add_tail(&q->mnt_list, &res->mnt_list); 1226 attach_mnt(q, &path); 1227 spin_unlock(&vfsmount_lock); 1228 } 1229 } 1230 return res; 1231 Enomem: 1232 if (res) { 1233 LIST_HEAD(umount_list); 1234 spin_lock(&vfsmount_lock); 1235 umount_tree(res, 0, &umount_list); 1236 spin_unlock(&vfsmount_lock); 1237 release_mounts(&umount_list); 1238 } 1239 return NULL; 1240 } 1241 1242 struct vfsmount *collect_mounts(struct vfsmount *mnt, struct dentry *dentry) 1243 { 1244 struct vfsmount *tree; 1245 down_write(&namespace_sem); 1246 tree = copy_tree(mnt, dentry, CL_COPY_ALL | CL_PRIVATE); 1247 up_write(&namespace_sem); 1248 return tree; 1249 } 1250 1251 void drop_collected_mounts(struct vfsmount *mnt) 1252 { 1253 LIST_HEAD(umount_list); 1254 down_write(&namespace_sem); 1255 spin_lock(&vfsmount_lock); 1256 umount_tree(mnt, 0, &umount_list); 1257 spin_unlock(&vfsmount_lock); 1258 up_write(&namespace_sem); 1259 release_mounts(&umount_list); 1260 } 1261 1262 static void cleanup_group_ids(struct vfsmount *mnt, struct vfsmount *end) 1263 { 1264 struct vfsmount *p; 1265 1266 for (p = mnt; p != end; p = next_mnt(p, mnt)) { 1267 if (p->mnt_group_id && !IS_MNT_SHARED(p)) 1268 mnt_release_group_id(p); 1269 } 1270 } 1271 1272 static int invent_group_ids(struct vfsmount *mnt, bool recurse) 1273 { 1274 struct vfsmount *p; 1275 1276 for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) { 1277 if (!p->mnt_group_id && !IS_MNT_SHARED(p)) { 1278 int err = mnt_alloc_group_id(p); 1279 if (err) { 1280 cleanup_group_ids(mnt, p); 1281 return err; 1282 } 1283 } 1284 } 1285 1286 return 0; 1287 } 1288 1289 /* 1290 * @source_mnt : mount tree to be attached 1291 * @nd : place the mount tree @source_mnt is attached 1292 * @parent_nd : if non-null, detach the source_mnt from its parent and 1293 * store the parent mount and mountpoint dentry. 1294 * (done when source_mnt is moved) 1295 * 1296 * NOTE: in the table below explains the semantics when a source mount 1297 * of a given type is attached to a destination mount of a given type. 1298 * --------------------------------------------------------------------------- 1299 * | BIND MOUNT OPERATION | 1300 * |************************************************************************** 1301 * | source-->| shared | private | slave | unbindable | 1302 * | dest | | | | | 1303 * | | | | | | | 1304 * | v | | | | | 1305 * |************************************************************************** 1306 * | shared | shared (++) | shared (+) | shared(+++)| invalid | 1307 * | | | | | | 1308 * |non-shared| shared (+) | private | slave (*) | invalid | 1309 * *************************************************************************** 1310 * A bind operation clones the source mount and mounts the clone on the 1311 * destination mount. 1312 * 1313 * (++) the cloned mount is propagated to all the mounts in the propagation 1314 * tree of the destination mount and the cloned mount is added to 1315 * the peer group of the source mount. 1316 * (+) the cloned mount is created under the destination mount and is marked 1317 * as shared. The cloned mount is added to the peer group of the source 1318 * mount. 1319 * (+++) the mount is propagated to all the mounts in the propagation tree 1320 * of the destination mount and the cloned mount is made slave 1321 * of the same master as that of the source mount. The cloned mount 1322 * is marked as 'shared and slave'. 1323 * (*) the cloned mount is made a slave of the same master as that of the 1324 * source mount. 1325 * 1326 * --------------------------------------------------------------------------- 1327 * | MOVE MOUNT OPERATION | 1328 * |************************************************************************** 1329 * | source-->| shared | private | slave | unbindable | 1330 * | dest | | | | | 1331 * | | | | | | | 1332 * | v | | | | | 1333 * |************************************************************************** 1334 * | shared | shared (+) | shared (+) | shared(+++) | invalid | 1335 * | | | | | | 1336 * |non-shared| shared (+*) | private | slave (*) | unbindable | 1337 * *************************************************************************** 1338 * 1339 * (+) the mount is moved to the destination. And is then propagated to 1340 * all the mounts in the propagation tree of the destination mount. 1341 * (+*) the mount is moved to the destination. 1342 * (+++) the mount is moved to the destination and is then propagated to 1343 * all the mounts belonging to the destination mount's propagation tree. 1344 * the mount is marked as 'shared and slave'. 1345 * (*) the mount continues to be a slave at the new location. 1346 * 1347 * if the source mount is a tree, the operations explained above is 1348 * applied to each mount in the tree. 1349 * Must be called without spinlocks held, since this function can sleep 1350 * in allocations. 1351 */ 1352 static int attach_recursive_mnt(struct vfsmount *source_mnt, 1353 struct path *path, struct path *parent_path) 1354 { 1355 LIST_HEAD(tree_list); 1356 struct vfsmount *dest_mnt = path->mnt; 1357 struct dentry *dest_dentry = path->dentry; 1358 struct vfsmount *child, *p; 1359 int err; 1360 1361 if (IS_MNT_SHARED(dest_mnt)) { 1362 err = invent_group_ids(source_mnt, true); 1363 if (err) 1364 goto out; 1365 } 1366 err = propagate_mnt(dest_mnt, dest_dentry, source_mnt, &tree_list); 1367 if (err) 1368 goto out_cleanup_ids; 1369 1370 if (IS_MNT_SHARED(dest_mnt)) { 1371 for (p = source_mnt; p; p = next_mnt(p, source_mnt)) 1372 set_mnt_shared(p); 1373 } 1374 1375 spin_lock(&vfsmount_lock); 1376 if (parent_path) { 1377 detach_mnt(source_mnt, parent_path); 1378 attach_mnt(source_mnt, path); 1379 touch_mnt_namespace(current->nsproxy->mnt_ns); 1380 } else { 1381 mnt_set_mountpoint(dest_mnt, dest_dentry, source_mnt); 1382 commit_tree(source_mnt); 1383 } 1384 1385 list_for_each_entry_safe(child, p, &tree_list, mnt_hash) { 1386 list_del_init(&child->mnt_hash); 1387 commit_tree(child); 1388 } 1389 spin_unlock(&vfsmount_lock); 1390 return 0; 1391 1392 out_cleanup_ids: 1393 if (IS_MNT_SHARED(dest_mnt)) 1394 cleanup_group_ids(source_mnt, NULL); 1395 out: 1396 return err; 1397 } 1398 1399 static int graft_tree(struct vfsmount *mnt, struct path *path) 1400 { 1401 int err; 1402 if (mnt->mnt_sb->s_flags & MS_NOUSER) 1403 return -EINVAL; 1404 1405 if (S_ISDIR(path->dentry->d_inode->i_mode) != 1406 S_ISDIR(mnt->mnt_root->d_inode->i_mode)) 1407 return -ENOTDIR; 1408 1409 err = -ENOENT; 1410 mutex_lock(&path->dentry->d_inode->i_mutex); 1411 if (IS_DEADDIR(path->dentry->d_inode)) 1412 goto out_unlock; 1413 1414 err = security_sb_check_sb(mnt, path); 1415 if (err) 1416 goto out_unlock; 1417 1418 err = -ENOENT; 1419 if (IS_ROOT(path->dentry) || !d_unhashed(path->dentry)) 1420 err = attach_recursive_mnt(mnt, path, NULL); 1421 out_unlock: 1422 mutex_unlock(&path->dentry->d_inode->i_mutex); 1423 if (!err) 1424 security_sb_post_addmount(mnt, path); 1425 return err; 1426 } 1427 1428 /* 1429 * recursively change the type of the mountpoint. 1430 */ 1431 static int do_change_type(struct path *path, int flag) 1432 { 1433 struct vfsmount *m, *mnt = path->mnt; 1434 int recurse = flag & MS_REC; 1435 int type = flag & ~MS_REC; 1436 int err = 0; 1437 1438 if (!capable(CAP_SYS_ADMIN)) 1439 return -EPERM; 1440 1441 if (path->dentry != path->mnt->mnt_root) 1442 return -EINVAL; 1443 1444 down_write(&namespace_sem); 1445 if (type == MS_SHARED) { 1446 err = invent_group_ids(mnt, recurse); 1447 if (err) 1448 goto out_unlock; 1449 } 1450 1451 spin_lock(&vfsmount_lock); 1452 for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL)) 1453 change_mnt_propagation(m, type); 1454 spin_unlock(&vfsmount_lock); 1455 1456 out_unlock: 1457 up_write(&namespace_sem); 1458 return err; 1459 } 1460 1461 /* 1462 * do loopback mount. 1463 */ 1464 static int do_loopback(struct path *path, char *old_name, 1465 int recurse) 1466 { 1467 struct path old_path; 1468 struct vfsmount *mnt = NULL; 1469 int err = mount_is_safe(path); 1470 if (err) 1471 return err; 1472 if (!old_name || !*old_name) 1473 return -EINVAL; 1474 err = kern_path(old_name, LOOKUP_FOLLOW, &old_path); 1475 if (err) 1476 return err; 1477 1478 down_write(&namespace_sem); 1479 err = -EINVAL; 1480 if (IS_MNT_UNBINDABLE(old_path.mnt)) 1481 goto out; 1482 1483 if (!check_mnt(path->mnt) || !check_mnt(old_path.mnt)) 1484 goto out; 1485 1486 err = -ENOMEM; 1487 if (recurse) 1488 mnt = copy_tree(old_path.mnt, old_path.dentry, 0); 1489 else 1490 mnt = clone_mnt(old_path.mnt, old_path.dentry, 0); 1491 1492 if (!mnt) 1493 goto out; 1494 1495 err = graft_tree(mnt, path); 1496 if (err) { 1497 LIST_HEAD(umount_list); 1498 spin_lock(&vfsmount_lock); 1499 umount_tree(mnt, 0, &umount_list); 1500 spin_unlock(&vfsmount_lock); 1501 release_mounts(&umount_list); 1502 } 1503 1504 out: 1505 up_write(&namespace_sem); 1506 path_put(&old_path); 1507 return err; 1508 } 1509 1510 static int change_mount_flags(struct vfsmount *mnt, int ms_flags) 1511 { 1512 int error = 0; 1513 int readonly_request = 0; 1514 1515 if (ms_flags & MS_RDONLY) 1516 readonly_request = 1; 1517 if (readonly_request == __mnt_is_readonly(mnt)) 1518 return 0; 1519 1520 if (readonly_request) 1521 error = mnt_make_readonly(mnt); 1522 else 1523 __mnt_unmake_readonly(mnt); 1524 return error; 1525 } 1526 1527 /* 1528 * change filesystem flags. dir should be a physical root of filesystem. 1529 * If you've mounted a non-root directory somewhere and want to do remount 1530 * on it - tough luck. 1531 */ 1532 static int do_remount(struct path *path, int flags, int mnt_flags, 1533 void *data) 1534 { 1535 int err; 1536 struct super_block *sb = path->mnt->mnt_sb; 1537 1538 if (!capable(CAP_SYS_ADMIN)) 1539 return -EPERM; 1540 1541 if (!check_mnt(path->mnt)) 1542 return -EINVAL; 1543 1544 if (path->dentry != path->mnt->mnt_root) 1545 return -EINVAL; 1546 1547 down_write(&sb->s_umount); 1548 if (flags & MS_BIND) 1549 err = change_mount_flags(path->mnt, flags); 1550 else 1551 err = do_remount_sb(sb, flags, data, 0); 1552 if (!err) 1553 path->mnt->mnt_flags = mnt_flags; 1554 up_write(&sb->s_umount); 1555 if (!err) { 1556 security_sb_post_remount(path->mnt, flags, data); 1557 1558 spin_lock(&vfsmount_lock); 1559 touch_mnt_namespace(path->mnt->mnt_ns); 1560 spin_unlock(&vfsmount_lock); 1561 } 1562 return err; 1563 } 1564 1565 static inline int tree_contains_unbindable(struct vfsmount *mnt) 1566 { 1567 struct vfsmount *p; 1568 for (p = mnt; p; p = next_mnt(p, mnt)) { 1569 if (IS_MNT_UNBINDABLE(p)) 1570 return 1; 1571 } 1572 return 0; 1573 } 1574 1575 static int do_move_mount(struct path *path, char *old_name) 1576 { 1577 struct path old_path, parent_path; 1578 struct vfsmount *p; 1579 int err = 0; 1580 if (!capable(CAP_SYS_ADMIN)) 1581 return -EPERM; 1582 if (!old_name || !*old_name) 1583 return -EINVAL; 1584 err = kern_path(old_name, LOOKUP_FOLLOW, &old_path); 1585 if (err) 1586 return err; 1587 1588 down_write(&namespace_sem); 1589 while (d_mountpoint(path->dentry) && 1590 follow_down(&path->mnt, &path->dentry)) 1591 ; 1592 err = -EINVAL; 1593 if (!check_mnt(path->mnt) || !check_mnt(old_path.mnt)) 1594 goto out; 1595 1596 err = -ENOENT; 1597 mutex_lock(&path->dentry->d_inode->i_mutex); 1598 if (IS_DEADDIR(path->dentry->d_inode)) 1599 goto out1; 1600 1601 if (!IS_ROOT(path->dentry) && d_unhashed(path->dentry)) 1602 goto out1; 1603 1604 err = -EINVAL; 1605 if (old_path.dentry != old_path.mnt->mnt_root) 1606 goto out1; 1607 1608 if (old_path.mnt == old_path.mnt->mnt_parent) 1609 goto out1; 1610 1611 if (S_ISDIR(path->dentry->d_inode->i_mode) != 1612 S_ISDIR(old_path.dentry->d_inode->i_mode)) 1613 goto out1; 1614 /* 1615 * Don't move a mount residing in a shared parent. 1616 */ 1617 if (old_path.mnt->mnt_parent && 1618 IS_MNT_SHARED(old_path.mnt->mnt_parent)) 1619 goto out1; 1620 /* 1621 * Don't move a mount tree containing unbindable mounts to a destination 1622 * mount which is shared. 1623 */ 1624 if (IS_MNT_SHARED(path->mnt) && 1625 tree_contains_unbindable(old_path.mnt)) 1626 goto out1; 1627 err = -ELOOP; 1628 for (p = path->mnt; p->mnt_parent != p; p = p->mnt_parent) 1629 if (p == old_path.mnt) 1630 goto out1; 1631 1632 err = attach_recursive_mnt(old_path.mnt, path, &parent_path); 1633 if (err) 1634 goto out1; 1635 1636 /* if the mount is moved, it should no longer be expire 1637 * automatically */ 1638 list_del_init(&old_path.mnt->mnt_expire); 1639 out1: 1640 mutex_unlock(&path->dentry->d_inode->i_mutex); 1641 out: 1642 up_write(&namespace_sem); 1643 if (!err) 1644 path_put(&parent_path); 1645 path_put(&old_path); 1646 return err; 1647 } 1648 1649 /* 1650 * create a new mount for userspace and request it to be added into the 1651 * namespace's tree 1652 */ 1653 static int do_new_mount(struct path *path, char *type, int flags, 1654 int mnt_flags, char *name, void *data) 1655 { 1656 struct vfsmount *mnt; 1657 1658 if (!type || !memchr(type, 0, PAGE_SIZE)) 1659 return -EINVAL; 1660 1661 /* we need capabilities... */ 1662 if (!capable(CAP_SYS_ADMIN)) 1663 return -EPERM; 1664 1665 mnt = do_kern_mount(type, flags, name, data); 1666 if (IS_ERR(mnt)) 1667 return PTR_ERR(mnt); 1668 1669 return do_add_mount(mnt, path, mnt_flags, NULL); 1670 } 1671 1672 /* 1673 * add a mount into a namespace's mount tree 1674 * - provide the option of adding the new mount to an expiration list 1675 */ 1676 int do_add_mount(struct vfsmount *newmnt, struct path *path, 1677 int mnt_flags, struct list_head *fslist) 1678 { 1679 int err; 1680 1681 down_write(&namespace_sem); 1682 /* Something was mounted here while we slept */ 1683 while (d_mountpoint(path->dentry) && 1684 follow_down(&path->mnt, &path->dentry)) 1685 ; 1686 err = -EINVAL; 1687 if (!check_mnt(path->mnt)) 1688 goto unlock; 1689 1690 /* Refuse the same filesystem on the same mount point */ 1691 err = -EBUSY; 1692 if (path->mnt->mnt_sb == newmnt->mnt_sb && 1693 path->mnt->mnt_root == path->dentry) 1694 goto unlock; 1695 1696 err = -EINVAL; 1697 if (S_ISLNK(newmnt->mnt_root->d_inode->i_mode)) 1698 goto unlock; 1699 1700 newmnt->mnt_flags = mnt_flags; 1701 if ((err = graft_tree(newmnt, path))) 1702 goto unlock; 1703 1704 if (fslist) /* add to the specified expiration list */ 1705 list_add_tail(&newmnt->mnt_expire, fslist); 1706 1707 up_write(&namespace_sem); 1708 return 0; 1709 1710 unlock: 1711 up_write(&namespace_sem); 1712 mntput(newmnt); 1713 return err; 1714 } 1715 1716 EXPORT_SYMBOL_GPL(do_add_mount); 1717 1718 /* 1719 * process a list of expirable mountpoints with the intent of discarding any 1720 * mountpoints that aren't in use and haven't been touched since last we came 1721 * here 1722 */ 1723 void mark_mounts_for_expiry(struct list_head *mounts) 1724 { 1725 struct vfsmount *mnt, *next; 1726 LIST_HEAD(graveyard); 1727 LIST_HEAD(umounts); 1728 1729 if (list_empty(mounts)) 1730 return; 1731 1732 down_write(&namespace_sem); 1733 spin_lock(&vfsmount_lock); 1734 1735 /* extract from the expiration list every vfsmount that matches the 1736 * following criteria: 1737 * - only referenced by its parent vfsmount 1738 * - still marked for expiry (marked on the last call here; marks are 1739 * cleared by mntput()) 1740 */ 1741 list_for_each_entry_safe(mnt, next, mounts, mnt_expire) { 1742 if (!xchg(&mnt->mnt_expiry_mark, 1) || 1743 propagate_mount_busy(mnt, 1)) 1744 continue; 1745 list_move(&mnt->mnt_expire, &graveyard); 1746 } 1747 while (!list_empty(&graveyard)) { 1748 mnt = list_first_entry(&graveyard, struct vfsmount, mnt_expire); 1749 touch_mnt_namespace(mnt->mnt_ns); 1750 umount_tree(mnt, 1, &umounts); 1751 } 1752 spin_unlock(&vfsmount_lock); 1753 up_write(&namespace_sem); 1754 1755 release_mounts(&umounts); 1756 } 1757 1758 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry); 1759 1760 /* 1761 * Ripoff of 'select_parent()' 1762 * 1763 * search the list of submounts for a given mountpoint, and move any 1764 * shrinkable submounts to the 'graveyard' list. 1765 */ 1766 static int select_submounts(struct vfsmount *parent, struct list_head *graveyard) 1767 { 1768 struct vfsmount *this_parent = parent; 1769 struct list_head *next; 1770 int found = 0; 1771 1772 repeat: 1773 next = this_parent->mnt_mounts.next; 1774 resume: 1775 while (next != &this_parent->mnt_mounts) { 1776 struct list_head *tmp = next; 1777 struct vfsmount *mnt = list_entry(tmp, struct vfsmount, mnt_child); 1778 1779 next = tmp->next; 1780 if (!(mnt->mnt_flags & MNT_SHRINKABLE)) 1781 continue; 1782 /* 1783 * Descend a level if the d_mounts list is non-empty. 1784 */ 1785 if (!list_empty(&mnt->mnt_mounts)) { 1786 this_parent = mnt; 1787 goto repeat; 1788 } 1789 1790 if (!propagate_mount_busy(mnt, 1)) { 1791 list_move_tail(&mnt->mnt_expire, graveyard); 1792 found++; 1793 } 1794 } 1795 /* 1796 * All done at this level ... ascend and resume the search 1797 */ 1798 if (this_parent != parent) { 1799 next = this_parent->mnt_child.next; 1800 this_parent = this_parent->mnt_parent; 1801 goto resume; 1802 } 1803 return found; 1804 } 1805 1806 /* 1807 * process a list of expirable mountpoints with the intent of discarding any 1808 * submounts of a specific parent mountpoint 1809 */ 1810 static void shrink_submounts(struct vfsmount *mnt, struct list_head *umounts) 1811 { 1812 LIST_HEAD(graveyard); 1813 struct vfsmount *m; 1814 1815 /* extract submounts of 'mountpoint' from the expiration list */ 1816 while (select_submounts(mnt, &graveyard)) { 1817 while (!list_empty(&graveyard)) { 1818 m = list_first_entry(&graveyard, struct vfsmount, 1819 mnt_expire); 1820 touch_mnt_namespace(m->mnt_ns); 1821 umount_tree(m, 1, umounts); 1822 } 1823 } 1824 } 1825 1826 /* 1827 * Some copy_from_user() implementations do not return the exact number of 1828 * bytes remaining to copy on a fault. But copy_mount_options() requires that. 1829 * Note that this function differs from copy_from_user() in that it will oops 1830 * on bad values of `to', rather than returning a short copy. 1831 */ 1832 static long exact_copy_from_user(void *to, const void __user * from, 1833 unsigned long n) 1834 { 1835 char *t = to; 1836 const char __user *f = from; 1837 char c; 1838 1839 if (!access_ok(VERIFY_READ, from, n)) 1840 return n; 1841 1842 while (n) { 1843 if (__get_user(c, f)) { 1844 memset(t, 0, n); 1845 break; 1846 } 1847 *t++ = c; 1848 f++; 1849 n--; 1850 } 1851 return n; 1852 } 1853 1854 int copy_mount_options(const void __user * data, unsigned long *where) 1855 { 1856 int i; 1857 unsigned long page; 1858 unsigned long size; 1859 1860 *where = 0; 1861 if (!data) 1862 return 0; 1863 1864 if (!(page = __get_free_page(GFP_KERNEL))) 1865 return -ENOMEM; 1866 1867 /* We only care that *some* data at the address the user 1868 * gave us is valid. Just in case, we'll zero 1869 * the remainder of the page. 1870 */ 1871 /* copy_from_user cannot cross TASK_SIZE ! */ 1872 size = TASK_SIZE - (unsigned long)data; 1873 if (size > PAGE_SIZE) 1874 size = PAGE_SIZE; 1875 1876 i = size - exact_copy_from_user((void *)page, data, size); 1877 if (!i) { 1878 free_page(page); 1879 return -EFAULT; 1880 } 1881 if (i != PAGE_SIZE) 1882 memset((char *)page + i, 0, PAGE_SIZE - i); 1883 *where = page; 1884 return 0; 1885 } 1886 1887 /* 1888 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to 1889 * be given to the mount() call (ie: read-only, no-dev, no-suid etc). 1890 * 1891 * data is a (void *) that can point to any structure up to 1892 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent 1893 * information (or be NULL). 1894 * 1895 * Pre-0.97 versions of mount() didn't have a flags word. 1896 * When the flags word was introduced its top half was required 1897 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9. 1898 * Therefore, if this magic number is present, it carries no information 1899 * and must be discarded. 1900 */ 1901 long do_mount(char *dev_name, char *dir_name, char *type_page, 1902 unsigned long flags, void *data_page) 1903 { 1904 struct path path; 1905 int retval = 0; 1906 int mnt_flags = 0; 1907 1908 /* Discard magic */ 1909 if ((flags & MS_MGC_MSK) == MS_MGC_VAL) 1910 flags &= ~MS_MGC_MSK; 1911 1912 /* Basic sanity checks */ 1913 1914 if (!dir_name || !*dir_name || !memchr(dir_name, 0, PAGE_SIZE)) 1915 return -EINVAL; 1916 if (dev_name && !memchr(dev_name, 0, PAGE_SIZE)) 1917 return -EINVAL; 1918 1919 if (data_page) 1920 ((char *)data_page)[PAGE_SIZE - 1] = 0; 1921 1922 /* Default to relatime */ 1923 mnt_flags |= MNT_RELATIME; 1924 1925 /* Separate the per-mountpoint flags */ 1926 if (flags & MS_NOSUID) 1927 mnt_flags |= MNT_NOSUID; 1928 if (flags & MS_NODEV) 1929 mnt_flags |= MNT_NODEV; 1930 if (flags & MS_NOEXEC) 1931 mnt_flags |= MNT_NOEXEC; 1932 if (flags & MS_NOATIME) 1933 mnt_flags |= MNT_NOATIME; 1934 if (flags & MS_NODIRATIME) 1935 mnt_flags |= MNT_NODIRATIME; 1936 if (flags & MS_STRICTATIME) 1937 mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME); 1938 if (flags & MS_RDONLY) 1939 mnt_flags |= MNT_READONLY; 1940 1941 flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE | 1942 MS_NOATIME | MS_NODIRATIME | MS_RELATIME| MS_KERNMOUNT | 1943 MS_STRICTATIME); 1944 1945 /* ... and get the mountpoint */ 1946 retval = kern_path(dir_name, LOOKUP_FOLLOW, &path); 1947 if (retval) 1948 return retval; 1949 1950 retval = security_sb_mount(dev_name, &path, 1951 type_page, flags, data_page); 1952 if (retval) 1953 goto dput_out; 1954 1955 if (flags & MS_REMOUNT) 1956 retval = do_remount(&path, flags & ~MS_REMOUNT, mnt_flags, 1957 data_page); 1958 else if (flags & MS_BIND) 1959 retval = do_loopback(&path, dev_name, flags & MS_REC); 1960 else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE)) 1961 retval = do_change_type(&path, flags); 1962 else if (flags & MS_MOVE) 1963 retval = do_move_mount(&path, dev_name); 1964 else 1965 retval = do_new_mount(&path, type_page, flags, mnt_flags, 1966 dev_name, data_page); 1967 dput_out: 1968 path_put(&path); 1969 return retval; 1970 } 1971 1972 /* 1973 * Allocate a new namespace structure and populate it with contents 1974 * copied from the namespace of the passed in task structure. 1975 */ 1976 static struct mnt_namespace *dup_mnt_ns(struct mnt_namespace *mnt_ns, 1977 struct fs_struct *fs) 1978 { 1979 struct mnt_namespace *new_ns; 1980 struct vfsmount *rootmnt = NULL, *pwdmnt = NULL; 1981 struct vfsmount *p, *q; 1982 1983 new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL); 1984 if (!new_ns) 1985 return ERR_PTR(-ENOMEM); 1986 1987 atomic_set(&new_ns->count, 1); 1988 INIT_LIST_HEAD(&new_ns->list); 1989 init_waitqueue_head(&new_ns->poll); 1990 new_ns->event = 0; 1991 1992 down_write(&namespace_sem); 1993 /* First pass: copy the tree topology */ 1994 new_ns->root = copy_tree(mnt_ns->root, mnt_ns->root->mnt_root, 1995 CL_COPY_ALL | CL_EXPIRE); 1996 if (!new_ns->root) { 1997 up_write(&namespace_sem); 1998 kfree(new_ns); 1999 return ERR_PTR(-ENOMEM); 2000 } 2001 spin_lock(&vfsmount_lock); 2002 list_add_tail(&new_ns->list, &new_ns->root->mnt_list); 2003 spin_unlock(&vfsmount_lock); 2004 2005 /* 2006 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts 2007 * as belonging to new namespace. We have already acquired a private 2008 * fs_struct, so tsk->fs->lock is not needed. 2009 */ 2010 p = mnt_ns->root; 2011 q = new_ns->root; 2012 while (p) { 2013 q->mnt_ns = new_ns; 2014 if (fs) { 2015 if (p == fs->root.mnt) { 2016 rootmnt = p; 2017 fs->root.mnt = mntget(q); 2018 } 2019 if (p == fs->pwd.mnt) { 2020 pwdmnt = p; 2021 fs->pwd.mnt = mntget(q); 2022 } 2023 } 2024 p = next_mnt(p, mnt_ns->root); 2025 q = next_mnt(q, new_ns->root); 2026 } 2027 up_write(&namespace_sem); 2028 2029 if (rootmnt) 2030 mntput(rootmnt); 2031 if (pwdmnt) 2032 mntput(pwdmnt); 2033 2034 return new_ns; 2035 } 2036 2037 struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns, 2038 struct fs_struct *new_fs) 2039 { 2040 struct mnt_namespace *new_ns; 2041 2042 BUG_ON(!ns); 2043 get_mnt_ns(ns); 2044 2045 if (!(flags & CLONE_NEWNS)) 2046 return ns; 2047 2048 new_ns = dup_mnt_ns(ns, new_fs); 2049 2050 put_mnt_ns(ns); 2051 return new_ns; 2052 } 2053 2054 SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name, 2055 char __user *, type, unsigned long, flags, void __user *, data) 2056 { 2057 int retval; 2058 unsigned long data_page; 2059 unsigned long type_page; 2060 unsigned long dev_page; 2061 char *dir_page; 2062 2063 retval = copy_mount_options(type, &type_page); 2064 if (retval < 0) 2065 return retval; 2066 2067 dir_page = getname(dir_name); 2068 retval = PTR_ERR(dir_page); 2069 if (IS_ERR(dir_page)) 2070 goto out1; 2071 2072 retval = copy_mount_options(dev_name, &dev_page); 2073 if (retval < 0) 2074 goto out2; 2075 2076 retval = copy_mount_options(data, &data_page); 2077 if (retval < 0) 2078 goto out3; 2079 2080 lock_kernel(); 2081 retval = do_mount((char *)dev_page, dir_page, (char *)type_page, 2082 flags, (void *)data_page); 2083 unlock_kernel(); 2084 free_page(data_page); 2085 2086 out3: 2087 free_page(dev_page); 2088 out2: 2089 putname(dir_page); 2090 out1: 2091 free_page(type_page); 2092 return retval; 2093 } 2094 2095 /* 2096 * Replace the fs->{rootmnt,root} with {mnt,dentry}. Put the old values. 2097 * It can block. Requires the big lock held. 2098 */ 2099 void set_fs_root(struct fs_struct *fs, struct path *path) 2100 { 2101 struct path old_root; 2102 2103 write_lock(&fs->lock); 2104 old_root = fs->root; 2105 fs->root = *path; 2106 path_get(path); 2107 write_unlock(&fs->lock); 2108 if (old_root.dentry) 2109 path_put(&old_root); 2110 } 2111 2112 /* 2113 * Replace the fs->{pwdmnt,pwd} with {mnt,dentry}. Put the old values. 2114 * It can block. Requires the big lock held. 2115 */ 2116 void set_fs_pwd(struct fs_struct *fs, struct path *path) 2117 { 2118 struct path old_pwd; 2119 2120 write_lock(&fs->lock); 2121 old_pwd = fs->pwd; 2122 fs->pwd = *path; 2123 path_get(path); 2124 write_unlock(&fs->lock); 2125 2126 if (old_pwd.dentry) 2127 path_put(&old_pwd); 2128 } 2129 2130 static void chroot_fs_refs(struct path *old_root, struct path *new_root) 2131 { 2132 struct task_struct *g, *p; 2133 struct fs_struct *fs; 2134 2135 read_lock(&tasklist_lock); 2136 do_each_thread(g, p) { 2137 task_lock(p); 2138 fs = p->fs; 2139 if (fs) { 2140 atomic_inc(&fs->count); 2141 task_unlock(p); 2142 if (fs->root.dentry == old_root->dentry 2143 && fs->root.mnt == old_root->mnt) 2144 set_fs_root(fs, new_root); 2145 if (fs->pwd.dentry == old_root->dentry 2146 && fs->pwd.mnt == old_root->mnt) 2147 set_fs_pwd(fs, new_root); 2148 put_fs_struct(fs); 2149 } else 2150 task_unlock(p); 2151 } while_each_thread(g, p); 2152 read_unlock(&tasklist_lock); 2153 } 2154 2155 /* 2156 * pivot_root Semantics: 2157 * Moves the root file system of the current process to the directory put_old, 2158 * makes new_root as the new root file system of the current process, and sets 2159 * root/cwd of all processes which had them on the current root to new_root. 2160 * 2161 * Restrictions: 2162 * The new_root and put_old must be directories, and must not be on the 2163 * same file system as the current process root. The put_old must be 2164 * underneath new_root, i.e. adding a non-zero number of /.. to the string 2165 * pointed to by put_old must yield the same directory as new_root. No other 2166 * file system may be mounted on put_old. After all, new_root is a mountpoint. 2167 * 2168 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem. 2169 * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives 2170 * in this situation. 2171 * 2172 * Notes: 2173 * - we don't move root/cwd if they are not at the root (reason: if something 2174 * cared enough to change them, it's probably wrong to force them elsewhere) 2175 * - it's okay to pick a root that isn't the root of a file system, e.g. 2176 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint, 2177 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root 2178 * first. 2179 */ 2180 SYSCALL_DEFINE2(pivot_root, const char __user *, new_root, 2181 const char __user *, put_old) 2182 { 2183 struct vfsmount *tmp; 2184 struct path new, old, parent_path, root_parent, root; 2185 int error; 2186 2187 if (!capable(CAP_SYS_ADMIN)) 2188 return -EPERM; 2189 2190 error = user_path_dir(new_root, &new); 2191 if (error) 2192 goto out0; 2193 error = -EINVAL; 2194 if (!check_mnt(new.mnt)) 2195 goto out1; 2196 2197 error = user_path_dir(put_old, &old); 2198 if (error) 2199 goto out1; 2200 2201 error = security_sb_pivotroot(&old, &new); 2202 if (error) { 2203 path_put(&old); 2204 goto out1; 2205 } 2206 2207 read_lock(¤t->fs->lock); 2208 root = current->fs->root; 2209 path_get(¤t->fs->root); 2210 read_unlock(¤t->fs->lock); 2211 down_write(&namespace_sem); 2212 mutex_lock(&old.dentry->d_inode->i_mutex); 2213 error = -EINVAL; 2214 if (IS_MNT_SHARED(old.mnt) || 2215 IS_MNT_SHARED(new.mnt->mnt_parent) || 2216 IS_MNT_SHARED(root.mnt->mnt_parent)) 2217 goto out2; 2218 if (!check_mnt(root.mnt)) 2219 goto out2; 2220 error = -ENOENT; 2221 if (IS_DEADDIR(new.dentry->d_inode)) 2222 goto out2; 2223 if (d_unhashed(new.dentry) && !IS_ROOT(new.dentry)) 2224 goto out2; 2225 if (d_unhashed(old.dentry) && !IS_ROOT(old.dentry)) 2226 goto out2; 2227 error = -EBUSY; 2228 if (new.mnt == root.mnt || 2229 old.mnt == root.mnt) 2230 goto out2; /* loop, on the same file system */ 2231 error = -EINVAL; 2232 if (root.mnt->mnt_root != root.dentry) 2233 goto out2; /* not a mountpoint */ 2234 if (root.mnt->mnt_parent == root.mnt) 2235 goto out2; /* not attached */ 2236 if (new.mnt->mnt_root != new.dentry) 2237 goto out2; /* not a mountpoint */ 2238 if (new.mnt->mnt_parent == new.mnt) 2239 goto out2; /* not attached */ 2240 /* make sure we can reach put_old from new_root */ 2241 tmp = old.mnt; 2242 spin_lock(&vfsmount_lock); 2243 if (tmp != new.mnt) { 2244 for (;;) { 2245 if (tmp->mnt_parent == tmp) 2246 goto out3; /* already mounted on put_old */ 2247 if (tmp->mnt_parent == new.mnt) 2248 break; 2249 tmp = tmp->mnt_parent; 2250 } 2251 if (!is_subdir(tmp->mnt_mountpoint, new.dentry)) 2252 goto out3; 2253 } else if (!is_subdir(old.dentry, new.dentry)) 2254 goto out3; 2255 detach_mnt(new.mnt, &parent_path); 2256 detach_mnt(root.mnt, &root_parent); 2257 /* mount old root on put_old */ 2258 attach_mnt(root.mnt, &old); 2259 /* mount new_root on / */ 2260 attach_mnt(new.mnt, &root_parent); 2261 touch_mnt_namespace(current->nsproxy->mnt_ns); 2262 spin_unlock(&vfsmount_lock); 2263 chroot_fs_refs(&root, &new); 2264 security_sb_post_pivotroot(&root, &new); 2265 error = 0; 2266 path_put(&root_parent); 2267 path_put(&parent_path); 2268 out2: 2269 mutex_unlock(&old.dentry->d_inode->i_mutex); 2270 up_write(&namespace_sem); 2271 path_put(&root); 2272 path_put(&old); 2273 out1: 2274 path_put(&new); 2275 out0: 2276 return error; 2277 out3: 2278 spin_unlock(&vfsmount_lock); 2279 goto out2; 2280 } 2281 2282 static void __init init_mount_tree(void) 2283 { 2284 struct vfsmount *mnt; 2285 struct mnt_namespace *ns; 2286 struct path root; 2287 2288 mnt = do_kern_mount("rootfs", 0, "rootfs", NULL); 2289 if (IS_ERR(mnt)) 2290 panic("Can't create rootfs"); 2291 ns = kmalloc(sizeof(*ns), GFP_KERNEL); 2292 if (!ns) 2293 panic("Can't allocate initial namespace"); 2294 atomic_set(&ns->count, 1); 2295 INIT_LIST_HEAD(&ns->list); 2296 init_waitqueue_head(&ns->poll); 2297 ns->event = 0; 2298 list_add(&mnt->mnt_list, &ns->list); 2299 ns->root = mnt; 2300 mnt->mnt_ns = ns; 2301 2302 init_task.nsproxy->mnt_ns = ns; 2303 get_mnt_ns(ns); 2304 2305 root.mnt = ns->root; 2306 root.dentry = ns->root->mnt_root; 2307 2308 set_fs_pwd(current->fs, &root); 2309 set_fs_root(current->fs, &root); 2310 } 2311 2312 void __init mnt_init(void) 2313 { 2314 unsigned u; 2315 int err; 2316 2317 init_rwsem(&namespace_sem); 2318 2319 mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct vfsmount), 2320 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL); 2321 2322 mount_hashtable = (struct list_head *)__get_free_page(GFP_ATOMIC); 2323 2324 if (!mount_hashtable) 2325 panic("Failed to allocate mount hash table\n"); 2326 2327 printk("Mount-cache hash table entries: %lu\n", HASH_SIZE); 2328 2329 for (u = 0; u < HASH_SIZE; u++) 2330 INIT_LIST_HEAD(&mount_hashtable[u]); 2331 2332 err = sysfs_init(); 2333 if (err) 2334 printk(KERN_WARNING "%s: sysfs_init error: %d\n", 2335 __func__, err); 2336 fs_kobj = kobject_create_and_add("fs", NULL); 2337 if (!fs_kobj) 2338 printk(KERN_WARNING "%s: kobj create error\n", __func__); 2339 init_rootfs(); 2340 init_mount_tree(); 2341 } 2342 2343 void __put_mnt_ns(struct mnt_namespace *ns) 2344 { 2345 struct vfsmount *root = ns->root; 2346 LIST_HEAD(umount_list); 2347 ns->root = NULL; 2348 spin_unlock(&vfsmount_lock); 2349 down_write(&namespace_sem); 2350 spin_lock(&vfsmount_lock); 2351 umount_tree(root, 0, &umount_list); 2352 spin_unlock(&vfsmount_lock); 2353 up_write(&namespace_sem); 2354 release_mounts(&umount_list); 2355 kfree(ns); 2356 } 2357