1 /* 2 * linux/fs/namespace.c 3 * 4 * (C) Copyright Al Viro 2000, 2001 5 * Released under GPL v2. 6 * 7 * Based on code from fs/super.c, copyright Linus Torvalds and others. 8 * Heavily rewritten. 9 */ 10 11 #include <linux/syscalls.h> 12 #include <linux/export.h> 13 #include <linux/capability.h> 14 #include <linux/mnt_namespace.h> 15 #include <linux/user_namespace.h> 16 #include <linux/namei.h> 17 #include <linux/security.h> 18 #include <linux/idr.h> 19 #include <linux/acct.h> /* acct_auto_close_mnt */ 20 #include <linux/ramfs.h> /* init_rootfs */ 21 #include <linux/fs_struct.h> /* get_fs_root et.al. */ 22 #include <linux/fsnotify.h> /* fsnotify_vfsmount_delete */ 23 #include <linux/uaccess.h> 24 #include <linux/proc_fs.h> 25 #include "pnode.h" 26 #include "internal.h" 27 28 #define HASH_SHIFT ilog2(PAGE_SIZE / sizeof(struct list_head)) 29 #define HASH_SIZE (1UL << HASH_SHIFT) 30 31 static int event; 32 static DEFINE_IDA(mnt_id_ida); 33 static DEFINE_IDA(mnt_group_ida); 34 static DEFINE_SPINLOCK(mnt_id_lock); 35 static int mnt_id_start = 0; 36 static int mnt_group_start = 1; 37 38 static struct list_head *mount_hashtable __read_mostly; 39 static struct kmem_cache *mnt_cache __read_mostly; 40 static struct rw_semaphore namespace_sem; 41 42 /* /sys/fs */ 43 struct kobject *fs_kobj; 44 EXPORT_SYMBOL_GPL(fs_kobj); 45 46 /* 47 * vfsmount lock may be taken for read to prevent changes to the 48 * vfsmount hash, ie. during mountpoint lookups or walking back 49 * up the tree. 50 * 51 * It should be taken for write in all cases where the vfsmount 52 * tree or hash is modified or when a vfsmount structure is modified. 53 */ 54 DEFINE_BRLOCK(vfsmount_lock); 55 56 static inline unsigned long hash(struct vfsmount *mnt, struct dentry *dentry) 57 { 58 unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES); 59 tmp += ((unsigned long)dentry / L1_CACHE_BYTES); 60 tmp = tmp + (tmp >> HASH_SHIFT); 61 return tmp & (HASH_SIZE - 1); 62 } 63 64 #define MNT_WRITER_UNDERFLOW_LIMIT -(1<<16) 65 66 /* 67 * allocation is serialized by namespace_sem, but we need the spinlock to 68 * serialize with freeing. 69 */ 70 static int mnt_alloc_id(struct mount *mnt) 71 { 72 int res; 73 74 retry: 75 ida_pre_get(&mnt_id_ida, GFP_KERNEL); 76 spin_lock(&mnt_id_lock); 77 res = ida_get_new_above(&mnt_id_ida, mnt_id_start, &mnt->mnt_id); 78 if (!res) 79 mnt_id_start = mnt->mnt_id + 1; 80 spin_unlock(&mnt_id_lock); 81 if (res == -EAGAIN) 82 goto retry; 83 84 return res; 85 } 86 87 static void mnt_free_id(struct mount *mnt) 88 { 89 int id = mnt->mnt_id; 90 spin_lock(&mnt_id_lock); 91 ida_remove(&mnt_id_ida, id); 92 if (mnt_id_start > id) 93 mnt_id_start = id; 94 spin_unlock(&mnt_id_lock); 95 } 96 97 /* 98 * Allocate a new peer group ID 99 * 100 * mnt_group_ida is protected by namespace_sem 101 */ 102 static int mnt_alloc_group_id(struct mount *mnt) 103 { 104 int res; 105 106 if (!ida_pre_get(&mnt_group_ida, GFP_KERNEL)) 107 return -ENOMEM; 108 109 res = ida_get_new_above(&mnt_group_ida, 110 mnt_group_start, 111 &mnt->mnt_group_id); 112 if (!res) 113 mnt_group_start = mnt->mnt_group_id + 1; 114 115 return res; 116 } 117 118 /* 119 * Release a peer group ID 120 */ 121 void mnt_release_group_id(struct mount *mnt) 122 { 123 int id = mnt->mnt_group_id; 124 ida_remove(&mnt_group_ida, id); 125 if (mnt_group_start > id) 126 mnt_group_start = id; 127 mnt->mnt_group_id = 0; 128 } 129 130 /* 131 * vfsmount lock must be held for read 132 */ 133 static inline void mnt_add_count(struct mount *mnt, int n) 134 { 135 #ifdef CONFIG_SMP 136 this_cpu_add(mnt->mnt_pcp->mnt_count, n); 137 #else 138 preempt_disable(); 139 mnt->mnt_count += n; 140 preempt_enable(); 141 #endif 142 } 143 144 /* 145 * vfsmount lock must be held for write 146 */ 147 unsigned int mnt_get_count(struct mount *mnt) 148 { 149 #ifdef CONFIG_SMP 150 unsigned int count = 0; 151 int cpu; 152 153 for_each_possible_cpu(cpu) { 154 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count; 155 } 156 157 return count; 158 #else 159 return mnt->mnt_count; 160 #endif 161 } 162 163 static struct mount *alloc_vfsmnt(const char *name) 164 { 165 struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL); 166 if (mnt) { 167 int err; 168 169 err = mnt_alloc_id(mnt); 170 if (err) 171 goto out_free_cache; 172 173 if (name) { 174 mnt->mnt_devname = kstrdup(name, GFP_KERNEL); 175 if (!mnt->mnt_devname) 176 goto out_free_id; 177 } 178 179 #ifdef CONFIG_SMP 180 mnt->mnt_pcp = alloc_percpu(struct mnt_pcp); 181 if (!mnt->mnt_pcp) 182 goto out_free_devname; 183 184 this_cpu_add(mnt->mnt_pcp->mnt_count, 1); 185 #else 186 mnt->mnt_count = 1; 187 mnt->mnt_writers = 0; 188 #endif 189 190 INIT_LIST_HEAD(&mnt->mnt_hash); 191 INIT_LIST_HEAD(&mnt->mnt_child); 192 INIT_LIST_HEAD(&mnt->mnt_mounts); 193 INIT_LIST_HEAD(&mnt->mnt_list); 194 INIT_LIST_HEAD(&mnt->mnt_expire); 195 INIT_LIST_HEAD(&mnt->mnt_share); 196 INIT_LIST_HEAD(&mnt->mnt_slave_list); 197 INIT_LIST_HEAD(&mnt->mnt_slave); 198 #ifdef CONFIG_FSNOTIFY 199 INIT_HLIST_HEAD(&mnt->mnt_fsnotify_marks); 200 #endif 201 } 202 return mnt; 203 204 #ifdef CONFIG_SMP 205 out_free_devname: 206 kfree(mnt->mnt_devname); 207 #endif 208 out_free_id: 209 mnt_free_id(mnt); 210 out_free_cache: 211 kmem_cache_free(mnt_cache, mnt); 212 return NULL; 213 } 214 215 /* 216 * Most r/o checks on a fs are for operations that take 217 * discrete amounts of time, like a write() or unlink(). 218 * We must keep track of when those operations start 219 * (for permission checks) and when they end, so that 220 * we can determine when writes are able to occur to 221 * a filesystem. 222 */ 223 /* 224 * __mnt_is_readonly: check whether a mount is read-only 225 * @mnt: the mount to check for its write status 226 * 227 * This shouldn't be used directly ouside of the VFS. 228 * It does not guarantee that the filesystem will stay 229 * r/w, just that it is right *now*. This can not and 230 * should not be used in place of IS_RDONLY(inode). 231 * mnt_want/drop_write() will _keep_ the filesystem 232 * r/w. 233 */ 234 int __mnt_is_readonly(struct vfsmount *mnt) 235 { 236 if (mnt->mnt_flags & MNT_READONLY) 237 return 1; 238 if (mnt->mnt_sb->s_flags & MS_RDONLY) 239 return 1; 240 return 0; 241 } 242 EXPORT_SYMBOL_GPL(__mnt_is_readonly); 243 244 static inline void mnt_inc_writers(struct mount *mnt) 245 { 246 #ifdef CONFIG_SMP 247 this_cpu_inc(mnt->mnt_pcp->mnt_writers); 248 #else 249 mnt->mnt_writers++; 250 #endif 251 } 252 253 static inline void mnt_dec_writers(struct mount *mnt) 254 { 255 #ifdef CONFIG_SMP 256 this_cpu_dec(mnt->mnt_pcp->mnt_writers); 257 #else 258 mnt->mnt_writers--; 259 #endif 260 } 261 262 static unsigned int mnt_get_writers(struct mount *mnt) 263 { 264 #ifdef CONFIG_SMP 265 unsigned int count = 0; 266 int cpu; 267 268 for_each_possible_cpu(cpu) { 269 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers; 270 } 271 272 return count; 273 #else 274 return mnt->mnt_writers; 275 #endif 276 } 277 278 static int mnt_is_readonly(struct vfsmount *mnt) 279 { 280 if (mnt->mnt_sb->s_readonly_remount) 281 return 1; 282 /* Order wrt setting s_flags/s_readonly_remount in do_remount() */ 283 smp_rmb(); 284 return __mnt_is_readonly(mnt); 285 } 286 287 /* 288 * Most r/o & frozen checks on a fs are for operations that take discrete 289 * amounts of time, like a write() or unlink(). We must keep track of when 290 * those operations start (for permission checks) and when they end, so that we 291 * can determine when writes are able to occur to a filesystem. 292 */ 293 /** 294 * __mnt_want_write - get write access to a mount without freeze protection 295 * @m: the mount on which to take a write 296 * 297 * This tells the low-level filesystem that a write is about to be performed to 298 * it, and makes sure that writes are allowed (mnt it read-write) before 299 * returning success. This operation does not protect against filesystem being 300 * frozen. When the write operation is finished, __mnt_drop_write() must be 301 * called. This is effectively a refcount. 302 */ 303 int __mnt_want_write(struct vfsmount *m) 304 { 305 struct mount *mnt = real_mount(m); 306 int ret = 0; 307 308 preempt_disable(); 309 mnt_inc_writers(mnt); 310 /* 311 * The store to mnt_inc_writers must be visible before we pass 312 * MNT_WRITE_HOLD loop below, so that the slowpath can see our 313 * incremented count after it has set MNT_WRITE_HOLD. 314 */ 315 smp_mb(); 316 while (ACCESS_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD) 317 cpu_relax(); 318 /* 319 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will 320 * be set to match its requirements. So we must not load that until 321 * MNT_WRITE_HOLD is cleared. 322 */ 323 smp_rmb(); 324 if (mnt_is_readonly(m)) { 325 mnt_dec_writers(mnt); 326 ret = -EROFS; 327 } 328 preempt_enable(); 329 330 return ret; 331 } 332 333 /** 334 * mnt_want_write - get write access to a mount 335 * @m: the mount on which to take a write 336 * 337 * This tells the low-level filesystem that a write is about to be performed to 338 * it, and makes sure that writes are allowed (mount is read-write, filesystem 339 * is not frozen) before returning success. When the write operation is 340 * finished, mnt_drop_write() must be called. This is effectively a refcount. 341 */ 342 int mnt_want_write(struct vfsmount *m) 343 { 344 int ret; 345 346 sb_start_write(m->mnt_sb); 347 ret = __mnt_want_write(m); 348 if (ret) 349 sb_end_write(m->mnt_sb); 350 return ret; 351 } 352 EXPORT_SYMBOL_GPL(mnt_want_write); 353 354 /** 355 * mnt_clone_write - get write access to a mount 356 * @mnt: the mount on which to take a write 357 * 358 * This is effectively like mnt_want_write, except 359 * it must only be used to take an extra write reference 360 * on a mountpoint that we already know has a write reference 361 * on it. This allows some optimisation. 362 * 363 * After finished, mnt_drop_write must be called as usual to 364 * drop the reference. 365 */ 366 int mnt_clone_write(struct vfsmount *mnt) 367 { 368 /* superblock may be r/o */ 369 if (__mnt_is_readonly(mnt)) 370 return -EROFS; 371 preempt_disable(); 372 mnt_inc_writers(real_mount(mnt)); 373 preempt_enable(); 374 return 0; 375 } 376 EXPORT_SYMBOL_GPL(mnt_clone_write); 377 378 /** 379 * __mnt_want_write_file - get write access to a file's mount 380 * @file: the file who's mount on which to take a write 381 * 382 * This is like __mnt_want_write, but it takes a file and can 383 * do some optimisations if the file is open for write already 384 */ 385 int __mnt_want_write_file(struct file *file) 386 { 387 struct inode *inode = file->f_dentry->d_inode; 388 389 if (!(file->f_mode & FMODE_WRITE) || special_file(inode->i_mode)) 390 return __mnt_want_write(file->f_path.mnt); 391 else 392 return mnt_clone_write(file->f_path.mnt); 393 } 394 395 /** 396 * mnt_want_write_file - get write access to a file's mount 397 * @file: the file who's mount on which to take a write 398 * 399 * This is like mnt_want_write, but it takes a file and can 400 * do some optimisations if the file is open for write already 401 */ 402 int mnt_want_write_file(struct file *file) 403 { 404 int ret; 405 406 sb_start_write(file->f_path.mnt->mnt_sb); 407 ret = __mnt_want_write_file(file); 408 if (ret) 409 sb_end_write(file->f_path.mnt->mnt_sb); 410 return ret; 411 } 412 EXPORT_SYMBOL_GPL(mnt_want_write_file); 413 414 /** 415 * __mnt_drop_write - give up write access to a mount 416 * @mnt: the mount on which to give up write access 417 * 418 * Tells the low-level filesystem that we are done 419 * performing writes to it. Must be matched with 420 * __mnt_want_write() call above. 421 */ 422 void __mnt_drop_write(struct vfsmount *mnt) 423 { 424 preempt_disable(); 425 mnt_dec_writers(real_mount(mnt)); 426 preempt_enable(); 427 } 428 429 /** 430 * mnt_drop_write - give up write access to a mount 431 * @mnt: the mount on which to give up write access 432 * 433 * Tells the low-level filesystem that we are done performing writes to it and 434 * also allows filesystem to be frozen again. Must be matched with 435 * mnt_want_write() call above. 436 */ 437 void mnt_drop_write(struct vfsmount *mnt) 438 { 439 __mnt_drop_write(mnt); 440 sb_end_write(mnt->mnt_sb); 441 } 442 EXPORT_SYMBOL_GPL(mnt_drop_write); 443 444 void __mnt_drop_write_file(struct file *file) 445 { 446 __mnt_drop_write(file->f_path.mnt); 447 } 448 449 void mnt_drop_write_file(struct file *file) 450 { 451 mnt_drop_write(file->f_path.mnt); 452 } 453 EXPORT_SYMBOL(mnt_drop_write_file); 454 455 static int mnt_make_readonly(struct mount *mnt) 456 { 457 int ret = 0; 458 459 br_write_lock(&vfsmount_lock); 460 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD; 461 /* 462 * After storing MNT_WRITE_HOLD, we'll read the counters. This store 463 * should be visible before we do. 464 */ 465 smp_mb(); 466 467 /* 468 * With writers on hold, if this value is zero, then there are 469 * definitely no active writers (although held writers may subsequently 470 * increment the count, they'll have to wait, and decrement it after 471 * seeing MNT_READONLY). 472 * 473 * It is OK to have counter incremented on one CPU and decremented on 474 * another: the sum will add up correctly. The danger would be when we 475 * sum up each counter, if we read a counter before it is incremented, 476 * but then read another CPU's count which it has been subsequently 477 * decremented from -- we would see more decrements than we should. 478 * MNT_WRITE_HOLD protects against this scenario, because 479 * mnt_want_write first increments count, then smp_mb, then spins on 480 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while 481 * we're counting up here. 482 */ 483 if (mnt_get_writers(mnt) > 0) 484 ret = -EBUSY; 485 else 486 mnt->mnt.mnt_flags |= MNT_READONLY; 487 /* 488 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers 489 * that become unheld will see MNT_READONLY. 490 */ 491 smp_wmb(); 492 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD; 493 br_write_unlock(&vfsmount_lock); 494 return ret; 495 } 496 497 static void __mnt_unmake_readonly(struct mount *mnt) 498 { 499 br_write_lock(&vfsmount_lock); 500 mnt->mnt.mnt_flags &= ~MNT_READONLY; 501 br_write_unlock(&vfsmount_lock); 502 } 503 504 int sb_prepare_remount_readonly(struct super_block *sb) 505 { 506 struct mount *mnt; 507 int err = 0; 508 509 /* Racy optimization. Recheck the counter under MNT_WRITE_HOLD */ 510 if (atomic_long_read(&sb->s_remove_count)) 511 return -EBUSY; 512 513 br_write_lock(&vfsmount_lock); 514 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) { 515 if (!(mnt->mnt.mnt_flags & MNT_READONLY)) { 516 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD; 517 smp_mb(); 518 if (mnt_get_writers(mnt) > 0) { 519 err = -EBUSY; 520 break; 521 } 522 } 523 } 524 if (!err && atomic_long_read(&sb->s_remove_count)) 525 err = -EBUSY; 526 527 if (!err) { 528 sb->s_readonly_remount = 1; 529 smp_wmb(); 530 } 531 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) { 532 if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD) 533 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD; 534 } 535 br_write_unlock(&vfsmount_lock); 536 537 return err; 538 } 539 540 static void free_vfsmnt(struct mount *mnt) 541 { 542 kfree(mnt->mnt_devname); 543 mnt_free_id(mnt); 544 #ifdef CONFIG_SMP 545 free_percpu(mnt->mnt_pcp); 546 #endif 547 kmem_cache_free(mnt_cache, mnt); 548 } 549 550 /* 551 * find the first or last mount at @dentry on vfsmount @mnt depending on 552 * @dir. If @dir is set return the first mount else return the last mount. 553 * vfsmount_lock must be held for read or write. 554 */ 555 struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry, 556 int dir) 557 { 558 struct list_head *head = mount_hashtable + hash(mnt, dentry); 559 struct list_head *tmp = head; 560 struct mount *p, *found = NULL; 561 562 for (;;) { 563 tmp = dir ? tmp->next : tmp->prev; 564 p = NULL; 565 if (tmp == head) 566 break; 567 p = list_entry(tmp, struct mount, mnt_hash); 568 if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry) { 569 found = p; 570 break; 571 } 572 } 573 return found; 574 } 575 576 /* 577 * lookup_mnt - Return the first child mount mounted at path 578 * 579 * "First" means first mounted chronologically. If you create the 580 * following mounts: 581 * 582 * mount /dev/sda1 /mnt 583 * mount /dev/sda2 /mnt 584 * mount /dev/sda3 /mnt 585 * 586 * Then lookup_mnt() on the base /mnt dentry in the root mount will 587 * return successively the root dentry and vfsmount of /dev/sda1, then 588 * /dev/sda2, then /dev/sda3, then NULL. 589 * 590 * lookup_mnt takes a reference to the found vfsmount. 591 */ 592 struct vfsmount *lookup_mnt(struct path *path) 593 { 594 struct mount *child_mnt; 595 596 br_read_lock(&vfsmount_lock); 597 child_mnt = __lookup_mnt(path->mnt, path->dentry, 1); 598 if (child_mnt) { 599 mnt_add_count(child_mnt, 1); 600 br_read_unlock(&vfsmount_lock); 601 return &child_mnt->mnt; 602 } else { 603 br_read_unlock(&vfsmount_lock); 604 return NULL; 605 } 606 } 607 608 static inline int check_mnt(struct mount *mnt) 609 { 610 return mnt->mnt_ns == current->nsproxy->mnt_ns; 611 } 612 613 /* 614 * vfsmount lock must be held for write 615 */ 616 static void touch_mnt_namespace(struct mnt_namespace *ns) 617 { 618 if (ns) { 619 ns->event = ++event; 620 wake_up_interruptible(&ns->poll); 621 } 622 } 623 624 /* 625 * vfsmount lock must be held for write 626 */ 627 static void __touch_mnt_namespace(struct mnt_namespace *ns) 628 { 629 if (ns && ns->event != event) { 630 ns->event = event; 631 wake_up_interruptible(&ns->poll); 632 } 633 } 634 635 /* 636 * Clear dentry's mounted state if it has no remaining mounts. 637 * vfsmount_lock must be held for write. 638 */ 639 static void dentry_reset_mounted(struct dentry *dentry) 640 { 641 unsigned u; 642 643 for (u = 0; u < HASH_SIZE; u++) { 644 struct mount *p; 645 646 list_for_each_entry(p, &mount_hashtable[u], mnt_hash) { 647 if (p->mnt_mountpoint == dentry) 648 return; 649 } 650 } 651 spin_lock(&dentry->d_lock); 652 dentry->d_flags &= ~DCACHE_MOUNTED; 653 spin_unlock(&dentry->d_lock); 654 } 655 656 /* 657 * vfsmount lock must be held for write 658 */ 659 static void detach_mnt(struct mount *mnt, struct path *old_path) 660 { 661 old_path->dentry = mnt->mnt_mountpoint; 662 old_path->mnt = &mnt->mnt_parent->mnt; 663 mnt->mnt_parent = mnt; 664 mnt->mnt_mountpoint = mnt->mnt.mnt_root; 665 list_del_init(&mnt->mnt_child); 666 list_del_init(&mnt->mnt_hash); 667 dentry_reset_mounted(old_path->dentry); 668 } 669 670 /* 671 * vfsmount lock must be held for write 672 */ 673 void mnt_set_mountpoint(struct mount *mnt, struct dentry *dentry, 674 struct mount *child_mnt) 675 { 676 mnt_add_count(mnt, 1); /* essentially, that's mntget */ 677 child_mnt->mnt_mountpoint = dget(dentry); 678 child_mnt->mnt_parent = mnt; 679 spin_lock(&dentry->d_lock); 680 dentry->d_flags |= DCACHE_MOUNTED; 681 spin_unlock(&dentry->d_lock); 682 } 683 684 /* 685 * vfsmount lock must be held for write 686 */ 687 static void attach_mnt(struct mount *mnt, struct path *path) 688 { 689 mnt_set_mountpoint(real_mount(path->mnt), path->dentry, mnt); 690 list_add_tail(&mnt->mnt_hash, mount_hashtable + 691 hash(path->mnt, path->dentry)); 692 list_add_tail(&mnt->mnt_child, &real_mount(path->mnt)->mnt_mounts); 693 } 694 695 /* 696 * vfsmount lock must be held for write 697 */ 698 static void commit_tree(struct mount *mnt) 699 { 700 struct mount *parent = mnt->mnt_parent; 701 struct mount *m; 702 LIST_HEAD(head); 703 struct mnt_namespace *n = parent->mnt_ns; 704 705 BUG_ON(parent == mnt); 706 707 list_add_tail(&head, &mnt->mnt_list); 708 list_for_each_entry(m, &head, mnt_list) 709 m->mnt_ns = n; 710 711 list_splice(&head, n->list.prev); 712 713 list_add_tail(&mnt->mnt_hash, mount_hashtable + 714 hash(&parent->mnt, mnt->mnt_mountpoint)); 715 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts); 716 touch_mnt_namespace(n); 717 } 718 719 static struct mount *next_mnt(struct mount *p, struct mount *root) 720 { 721 struct list_head *next = p->mnt_mounts.next; 722 if (next == &p->mnt_mounts) { 723 while (1) { 724 if (p == root) 725 return NULL; 726 next = p->mnt_child.next; 727 if (next != &p->mnt_parent->mnt_mounts) 728 break; 729 p = p->mnt_parent; 730 } 731 } 732 return list_entry(next, struct mount, mnt_child); 733 } 734 735 static struct mount *skip_mnt_tree(struct mount *p) 736 { 737 struct list_head *prev = p->mnt_mounts.prev; 738 while (prev != &p->mnt_mounts) { 739 p = list_entry(prev, struct mount, mnt_child); 740 prev = p->mnt_mounts.prev; 741 } 742 return p; 743 } 744 745 struct vfsmount * 746 vfs_kern_mount(struct file_system_type *type, int flags, const char *name, void *data) 747 { 748 struct mount *mnt; 749 struct dentry *root; 750 751 if (!type) 752 return ERR_PTR(-ENODEV); 753 754 mnt = alloc_vfsmnt(name); 755 if (!mnt) 756 return ERR_PTR(-ENOMEM); 757 758 if (flags & MS_KERNMOUNT) 759 mnt->mnt.mnt_flags = MNT_INTERNAL; 760 761 root = mount_fs(type, flags, name, data); 762 if (IS_ERR(root)) { 763 free_vfsmnt(mnt); 764 return ERR_CAST(root); 765 } 766 767 mnt->mnt.mnt_root = root; 768 mnt->mnt.mnt_sb = root->d_sb; 769 mnt->mnt_mountpoint = mnt->mnt.mnt_root; 770 mnt->mnt_parent = mnt; 771 br_write_lock(&vfsmount_lock); 772 list_add_tail(&mnt->mnt_instance, &root->d_sb->s_mounts); 773 br_write_unlock(&vfsmount_lock); 774 return &mnt->mnt; 775 } 776 EXPORT_SYMBOL_GPL(vfs_kern_mount); 777 778 static struct mount *clone_mnt(struct mount *old, struct dentry *root, 779 int flag) 780 { 781 struct super_block *sb = old->mnt.mnt_sb; 782 struct mount *mnt; 783 int err; 784 785 mnt = alloc_vfsmnt(old->mnt_devname); 786 if (!mnt) 787 return ERR_PTR(-ENOMEM); 788 789 if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE)) 790 mnt->mnt_group_id = 0; /* not a peer of original */ 791 else 792 mnt->mnt_group_id = old->mnt_group_id; 793 794 if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) { 795 err = mnt_alloc_group_id(mnt); 796 if (err) 797 goto out_free; 798 } 799 800 mnt->mnt.mnt_flags = old->mnt.mnt_flags & ~MNT_WRITE_HOLD; 801 atomic_inc(&sb->s_active); 802 mnt->mnt.mnt_sb = sb; 803 mnt->mnt.mnt_root = dget(root); 804 mnt->mnt_mountpoint = mnt->mnt.mnt_root; 805 mnt->mnt_parent = mnt; 806 br_write_lock(&vfsmount_lock); 807 list_add_tail(&mnt->mnt_instance, &sb->s_mounts); 808 br_write_unlock(&vfsmount_lock); 809 810 if ((flag & CL_SLAVE) || 811 ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) { 812 list_add(&mnt->mnt_slave, &old->mnt_slave_list); 813 mnt->mnt_master = old; 814 CLEAR_MNT_SHARED(mnt); 815 } else if (!(flag & CL_PRIVATE)) { 816 if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old)) 817 list_add(&mnt->mnt_share, &old->mnt_share); 818 if (IS_MNT_SLAVE(old)) 819 list_add(&mnt->mnt_slave, &old->mnt_slave); 820 mnt->mnt_master = old->mnt_master; 821 } 822 if (flag & CL_MAKE_SHARED) 823 set_mnt_shared(mnt); 824 825 /* stick the duplicate mount on the same expiry list 826 * as the original if that was on one */ 827 if (flag & CL_EXPIRE) { 828 if (!list_empty(&old->mnt_expire)) 829 list_add(&mnt->mnt_expire, &old->mnt_expire); 830 } 831 832 return mnt; 833 834 out_free: 835 free_vfsmnt(mnt); 836 return ERR_PTR(err); 837 } 838 839 static inline void mntfree(struct mount *mnt) 840 { 841 struct vfsmount *m = &mnt->mnt; 842 struct super_block *sb = m->mnt_sb; 843 844 /* 845 * This probably indicates that somebody messed 846 * up a mnt_want/drop_write() pair. If this 847 * happens, the filesystem was probably unable 848 * to make r/w->r/o transitions. 849 */ 850 /* 851 * The locking used to deal with mnt_count decrement provides barriers, 852 * so mnt_get_writers() below is safe. 853 */ 854 WARN_ON(mnt_get_writers(mnt)); 855 fsnotify_vfsmount_delete(m); 856 dput(m->mnt_root); 857 free_vfsmnt(mnt); 858 deactivate_super(sb); 859 } 860 861 static void mntput_no_expire(struct mount *mnt) 862 { 863 put_again: 864 #ifdef CONFIG_SMP 865 br_read_lock(&vfsmount_lock); 866 if (likely(mnt->mnt_ns)) { 867 /* shouldn't be the last one */ 868 mnt_add_count(mnt, -1); 869 br_read_unlock(&vfsmount_lock); 870 return; 871 } 872 br_read_unlock(&vfsmount_lock); 873 874 br_write_lock(&vfsmount_lock); 875 mnt_add_count(mnt, -1); 876 if (mnt_get_count(mnt)) { 877 br_write_unlock(&vfsmount_lock); 878 return; 879 } 880 #else 881 mnt_add_count(mnt, -1); 882 if (likely(mnt_get_count(mnt))) 883 return; 884 br_write_lock(&vfsmount_lock); 885 #endif 886 if (unlikely(mnt->mnt_pinned)) { 887 mnt_add_count(mnt, mnt->mnt_pinned + 1); 888 mnt->mnt_pinned = 0; 889 br_write_unlock(&vfsmount_lock); 890 acct_auto_close_mnt(&mnt->mnt); 891 goto put_again; 892 } 893 894 list_del(&mnt->mnt_instance); 895 br_write_unlock(&vfsmount_lock); 896 mntfree(mnt); 897 } 898 899 void mntput(struct vfsmount *mnt) 900 { 901 if (mnt) { 902 struct mount *m = real_mount(mnt); 903 /* avoid cacheline pingpong, hope gcc doesn't get "smart" */ 904 if (unlikely(m->mnt_expiry_mark)) 905 m->mnt_expiry_mark = 0; 906 mntput_no_expire(m); 907 } 908 } 909 EXPORT_SYMBOL(mntput); 910 911 struct vfsmount *mntget(struct vfsmount *mnt) 912 { 913 if (mnt) 914 mnt_add_count(real_mount(mnt), 1); 915 return mnt; 916 } 917 EXPORT_SYMBOL(mntget); 918 919 void mnt_pin(struct vfsmount *mnt) 920 { 921 br_write_lock(&vfsmount_lock); 922 real_mount(mnt)->mnt_pinned++; 923 br_write_unlock(&vfsmount_lock); 924 } 925 EXPORT_SYMBOL(mnt_pin); 926 927 void mnt_unpin(struct vfsmount *m) 928 { 929 struct mount *mnt = real_mount(m); 930 br_write_lock(&vfsmount_lock); 931 if (mnt->mnt_pinned) { 932 mnt_add_count(mnt, 1); 933 mnt->mnt_pinned--; 934 } 935 br_write_unlock(&vfsmount_lock); 936 } 937 EXPORT_SYMBOL(mnt_unpin); 938 939 static inline void mangle(struct seq_file *m, const char *s) 940 { 941 seq_escape(m, s, " \t\n\\"); 942 } 943 944 /* 945 * Simple .show_options callback for filesystems which don't want to 946 * implement more complex mount option showing. 947 * 948 * See also save_mount_options(). 949 */ 950 int generic_show_options(struct seq_file *m, struct dentry *root) 951 { 952 const char *options; 953 954 rcu_read_lock(); 955 options = rcu_dereference(root->d_sb->s_options); 956 957 if (options != NULL && options[0]) { 958 seq_putc(m, ','); 959 mangle(m, options); 960 } 961 rcu_read_unlock(); 962 963 return 0; 964 } 965 EXPORT_SYMBOL(generic_show_options); 966 967 /* 968 * If filesystem uses generic_show_options(), this function should be 969 * called from the fill_super() callback. 970 * 971 * The .remount_fs callback usually needs to be handled in a special 972 * way, to make sure, that previous options are not overwritten if the 973 * remount fails. 974 * 975 * Also note, that if the filesystem's .remount_fs function doesn't 976 * reset all options to their default value, but changes only newly 977 * given options, then the displayed options will not reflect reality 978 * any more. 979 */ 980 void save_mount_options(struct super_block *sb, char *options) 981 { 982 BUG_ON(sb->s_options); 983 rcu_assign_pointer(sb->s_options, kstrdup(options, GFP_KERNEL)); 984 } 985 EXPORT_SYMBOL(save_mount_options); 986 987 void replace_mount_options(struct super_block *sb, char *options) 988 { 989 char *old = sb->s_options; 990 rcu_assign_pointer(sb->s_options, options); 991 if (old) { 992 synchronize_rcu(); 993 kfree(old); 994 } 995 } 996 EXPORT_SYMBOL(replace_mount_options); 997 998 #ifdef CONFIG_PROC_FS 999 /* iterator; we want it to have access to namespace_sem, thus here... */ 1000 static void *m_start(struct seq_file *m, loff_t *pos) 1001 { 1002 struct proc_mounts *p = proc_mounts(m); 1003 1004 down_read(&namespace_sem); 1005 return seq_list_start(&p->ns->list, *pos); 1006 } 1007 1008 static void *m_next(struct seq_file *m, void *v, loff_t *pos) 1009 { 1010 struct proc_mounts *p = proc_mounts(m); 1011 1012 return seq_list_next(v, &p->ns->list, pos); 1013 } 1014 1015 static void m_stop(struct seq_file *m, void *v) 1016 { 1017 up_read(&namespace_sem); 1018 } 1019 1020 static int m_show(struct seq_file *m, void *v) 1021 { 1022 struct proc_mounts *p = proc_mounts(m); 1023 struct mount *r = list_entry(v, struct mount, mnt_list); 1024 return p->show(m, &r->mnt); 1025 } 1026 1027 const struct seq_operations mounts_op = { 1028 .start = m_start, 1029 .next = m_next, 1030 .stop = m_stop, 1031 .show = m_show, 1032 }; 1033 #endif /* CONFIG_PROC_FS */ 1034 1035 /** 1036 * may_umount_tree - check if a mount tree is busy 1037 * @mnt: root of mount tree 1038 * 1039 * This is called to check if a tree of mounts has any 1040 * open files, pwds, chroots or sub mounts that are 1041 * busy. 1042 */ 1043 int may_umount_tree(struct vfsmount *m) 1044 { 1045 struct mount *mnt = real_mount(m); 1046 int actual_refs = 0; 1047 int minimum_refs = 0; 1048 struct mount *p; 1049 BUG_ON(!m); 1050 1051 /* write lock needed for mnt_get_count */ 1052 br_write_lock(&vfsmount_lock); 1053 for (p = mnt; p; p = next_mnt(p, mnt)) { 1054 actual_refs += mnt_get_count(p); 1055 minimum_refs += 2; 1056 } 1057 br_write_unlock(&vfsmount_lock); 1058 1059 if (actual_refs > minimum_refs) 1060 return 0; 1061 1062 return 1; 1063 } 1064 1065 EXPORT_SYMBOL(may_umount_tree); 1066 1067 /** 1068 * may_umount - check if a mount point is busy 1069 * @mnt: root of mount 1070 * 1071 * This is called to check if a mount point has any 1072 * open files, pwds, chroots or sub mounts. If the 1073 * mount has sub mounts this will return busy 1074 * regardless of whether the sub mounts are busy. 1075 * 1076 * Doesn't take quota and stuff into account. IOW, in some cases it will 1077 * give false negatives. The main reason why it's here is that we need 1078 * a non-destructive way to look for easily umountable filesystems. 1079 */ 1080 int may_umount(struct vfsmount *mnt) 1081 { 1082 int ret = 1; 1083 down_read(&namespace_sem); 1084 br_write_lock(&vfsmount_lock); 1085 if (propagate_mount_busy(real_mount(mnt), 2)) 1086 ret = 0; 1087 br_write_unlock(&vfsmount_lock); 1088 up_read(&namespace_sem); 1089 return ret; 1090 } 1091 1092 EXPORT_SYMBOL(may_umount); 1093 1094 void release_mounts(struct list_head *head) 1095 { 1096 struct mount *mnt; 1097 while (!list_empty(head)) { 1098 mnt = list_first_entry(head, struct mount, mnt_hash); 1099 list_del_init(&mnt->mnt_hash); 1100 if (mnt_has_parent(mnt)) { 1101 struct dentry *dentry; 1102 struct mount *m; 1103 1104 br_write_lock(&vfsmount_lock); 1105 dentry = mnt->mnt_mountpoint; 1106 m = mnt->mnt_parent; 1107 mnt->mnt_mountpoint = mnt->mnt.mnt_root; 1108 mnt->mnt_parent = mnt; 1109 m->mnt_ghosts--; 1110 br_write_unlock(&vfsmount_lock); 1111 dput(dentry); 1112 mntput(&m->mnt); 1113 } 1114 mntput(&mnt->mnt); 1115 } 1116 } 1117 1118 /* 1119 * vfsmount lock must be held for write 1120 * namespace_sem must be held for write 1121 */ 1122 void umount_tree(struct mount *mnt, int propagate, struct list_head *kill) 1123 { 1124 LIST_HEAD(tmp_list); 1125 struct mount *p; 1126 1127 for (p = mnt; p; p = next_mnt(p, mnt)) 1128 list_move(&p->mnt_hash, &tmp_list); 1129 1130 if (propagate) 1131 propagate_umount(&tmp_list); 1132 1133 list_for_each_entry(p, &tmp_list, mnt_hash) { 1134 list_del_init(&p->mnt_expire); 1135 list_del_init(&p->mnt_list); 1136 __touch_mnt_namespace(p->mnt_ns); 1137 p->mnt_ns = NULL; 1138 list_del_init(&p->mnt_child); 1139 if (mnt_has_parent(p)) { 1140 p->mnt_parent->mnt_ghosts++; 1141 dentry_reset_mounted(p->mnt_mountpoint); 1142 } 1143 change_mnt_propagation(p, MS_PRIVATE); 1144 } 1145 list_splice(&tmp_list, kill); 1146 } 1147 1148 static void shrink_submounts(struct mount *mnt, struct list_head *umounts); 1149 1150 static int do_umount(struct mount *mnt, int flags) 1151 { 1152 struct super_block *sb = mnt->mnt.mnt_sb; 1153 int retval; 1154 LIST_HEAD(umount_list); 1155 1156 retval = security_sb_umount(&mnt->mnt, flags); 1157 if (retval) 1158 return retval; 1159 1160 /* 1161 * Allow userspace to request a mountpoint be expired rather than 1162 * unmounting unconditionally. Unmount only happens if: 1163 * (1) the mark is already set (the mark is cleared by mntput()) 1164 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount] 1165 */ 1166 if (flags & MNT_EXPIRE) { 1167 if (&mnt->mnt == current->fs->root.mnt || 1168 flags & (MNT_FORCE | MNT_DETACH)) 1169 return -EINVAL; 1170 1171 /* 1172 * probably don't strictly need the lock here if we examined 1173 * all race cases, but it's a slowpath. 1174 */ 1175 br_write_lock(&vfsmount_lock); 1176 if (mnt_get_count(mnt) != 2) { 1177 br_write_unlock(&vfsmount_lock); 1178 return -EBUSY; 1179 } 1180 br_write_unlock(&vfsmount_lock); 1181 1182 if (!xchg(&mnt->mnt_expiry_mark, 1)) 1183 return -EAGAIN; 1184 } 1185 1186 /* 1187 * If we may have to abort operations to get out of this 1188 * mount, and they will themselves hold resources we must 1189 * allow the fs to do things. In the Unix tradition of 1190 * 'Gee thats tricky lets do it in userspace' the umount_begin 1191 * might fail to complete on the first run through as other tasks 1192 * must return, and the like. Thats for the mount program to worry 1193 * about for the moment. 1194 */ 1195 1196 if (flags & MNT_FORCE && sb->s_op->umount_begin) { 1197 sb->s_op->umount_begin(sb); 1198 } 1199 1200 /* 1201 * No sense to grab the lock for this test, but test itself looks 1202 * somewhat bogus. Suggestions for better replacement? 1203 * Ho-hum... In principle, we might treat that as umount + switch 1204 * to rootfs. GC would eventually take care of the old vfsmount. 1205 * Actually it makes sense, especially if rootfs would contain a 1206 * /reboot - static binary that would close all descriptors and 1207 * call reboot(9). Then init(8) could umount root and exec /reboot. 1208 */ 1209 if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) { 1210 /* 1211 * Special case for "unmounting" root ... 1212 * we just try to remount it readonly. 1213 */ 1214 down_write(&sb->s_umount); 1215 if (!(sb->s_flags & MS_RDONLY)) 1216 retval = do_remount_sb(sb, MS_RDONLY, NULL, 0); 1217 up_write(&sb->s_umount); 1218 return retval; 1219 } 1220 1221 down_write(&namespace_sem); 1222 br_write_lock(&vfsmount_lock); 1223 event++; 1224 1225 if (!(flags & MNT_DETACH)) 1226 shrink_submounts(mnt, &umount_list); 1227 1228 retval = -EBUSY; 1229 if (flags & MNT_DETACH || !propagate_mount_busy(mnt, 2)) { 1230 if (!list_empty(&mnt->mnt_list)) 1231 umount_tree(mnt, 1, &umount_list); 1232 retval = 0; 1233 } 1234 br_write_unlock(&vfsmount_lock); 1235 up_write(&namespace_sem); 1236 release_mounts(&umount_list); 1237 return retval; 1238 } 1239 1240 /* 1241 * Now umount can handle mount points as well as block devices. 1242 * This is important for filesystems which use unnamed block devices. 1243 * 1244 * We now support a flag for forced unmount like the other 'big iron' 1245 * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD 1246 */ 1247 1248 SYSCALL_DEFINE2(umount, char __user *, name, int, flags) 1249 { 1250 struct path path; 1251 struct mount *mnt; 1252 int retval; 1253 int lookup_flags = 0; 1254 1255 if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW)) 1256 return -EINVAL; 1257 1258 if (!(flags & UMOUNT_NOFOLLOW)) 1259 lookup_flags |= LOOKUP_FOLLOW; 1260 1261 retval = user_path_at(AT_FDCWD, name, lookup_flags, &path); 1262 if (retval) 1263 goto out; 1264 mnt = real_mount(path.mnt); 1265 retval = -EINVAL; 1266 if (path.dentry != path.mnt->mnt_root) 1267 goto dput_and_out; 1268 if (!check_mnt(mnt)) 1269 goto dput_and_out; 1270 1271 retval = -EPERM; 1272 if (!ns_capable(mnt->mnt_ns->user_ns, CAP_SYS_ADMIN)) 1273 goto dput_and_out; 1274 1275 retval = do_umount(mnt, flags); 1276 dput_and_out: 1277 /* we mustn't call path_put() as that would clear mnt_expiry_mark */ 1278 dput(path.dentry); 1279 mntput_no_expire(mnt); 1280 out: 1281 return retval; 1282 } 1283 1284 #ifdef __ARCH_WANT_SYS_OLDUMOUNT 1285 1286 /* 1287 * The 2.0 compatible umount. No flags. 1288 */ 1289 SYSCALL_DEFINE1(oldumount, char __user *, name) 1290 { 1291 return sys_umount(name, 0); 1292 } 1293 1294 #endif 1295 1296 static int mount_is_safe(struct path *path) 1297 { 1298 if (ns_capable(real_mount(path->mnt)->mnt_ns->user_ns, CAP_SYS_ADMIN)) 1299 return 0; 1300 return -EPERM; 1301 #ifdef notyet 1302 if (S_ISLNK(path->dentry->d_inode->i_mode)) 1303 return -EPERM; 1304 if (path->dentry->d_inode->i_mode & S_ISVTX) { 1305 if (current_uid() != path->dentry->d_inode->i_uid) 1306 return -EPERM; 1307 } 1308 if (inode_permission(path->dentry->d_inode, MAY_WRITE)) 1309 return -EPERM; 1310 return 0; 1311 #endif 1312 } 1313 1314 static bool mnt_ns_loop(struct path *path) 1315 { 1316 /* Could bind mounting the mount namespace inode cause a 1317 * mount namespace loop? 1318 */ 1319 struct inode *inode = path->dentry->d_inode; 1320 struct proc_inode *ei; 1321 struct mnt_namespace *mnt_ns; 1322 1323 if (!proc_ns_inode(inode)) 1324 return false; 1325 1326 ei = PROC_I(inode); 1327 if (ei->ns_ops != &mntns_operations) 1328 return false; 1329 1330 mnt_ns = ei->ns; 1331 return current->nsproxy->mnt_ns->seq >= mnt_ns->seq; 1332 } 1333 1334 struct mount *copy_tree(struct mount *mnt, struct dentry *dentry, 1335 int flag) 1336 { 1337 struct mount *res, *p, *q, *r; 1338 struct path path; 1339 1340 if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(mnt)) 1341 return ERR_PTR(-EINVAL); 1342 1343 res = q = clone_mnt(mnt, dentry, flag); 1344 if (IS_ERR(q)) 1345 return q; 1346 1347 q->mnt_mountpoint = mnt->mnt_mountpoint; 1348 1349 p = mnt; 1350 list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) { 1351 struct mount *s; 1352 if (!is_subdir(r->mnt_mountpoint, dentry)) 1353 continue; 1354 1355 for (s = r; s; s = next_mnt(s, r)) { 1356 if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(s)) { 1357 s = skip_mnt_tree(s); 1358 continue; 1359 } 1360 while (p != s->mnt_parent) { 1361 p = p->mnt_parent; 1362 q = q->mnt_parent; 1363 } 1364 p = s; 1365 path.mnt = &q->mnt; 1366 path.dentry = p->mnt_mountpoint; 1367 q = clone_mnt(p, p->mnt.mnt_root, flag); 1368 if (IS_ERR(q)) 1369 goto out; 1370 br_write_lock(&vfsmount_lock); 1371 list_add_tail(&q->mnt_list, &res->mnt_list); 1372 attach_mnt(q, &path); 1373 br_write_unlock(&vfsmount_lock); 1374 } 1375 } 1376 return res; 1377 out: 1378 if (res) { 1379 LIST_HEAD(umount_list); 1380 br_write_lock(&vfsmount_lock); 1381 umount_tree(res, 0, &umount_list); 1382 br_write_unlock(&vfsmount_lock); 1383 release_mounts(&umount_list); 1384 } 1385 return q; 1386 } 1387 1388 /* Caller should check returned pointer for errors */ 1389 1390 struct vfsmount *collect_mounts(struct path *path) 1391 { 1392 struct mount *tree; 1393 down_write(&namespace_sem); 1394 tree = copy_tree(real_mount(path->mnt), path->dentry, 1395 CL_COPY_ALL | CL_PRIVATE); 1396 up_write(&namespace_sem); 1397 if (IS_ERR(tree)) 1398 return NULL; 1399 return &tree->mnt; 1400 } 1401 1402 void drop_collected_mounts(struct vfsmount *mnt) 1403 { 1404 LIST_HEAD(umount_list); 1405 down_write(&namespace_sem); 1406 br_write_lock(&vfsmount_lock); 1407 umount_tree(real_mount(mnt), 0, &umount_list); 1408 br_write_unlock(&vfsmount_lock); 1409 up_write(&namespace_sem); 1410 release_mounts(&umount_list); 1411 } 1412 1413 int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg, 1414 struct vfsmount *root) 1415 { 1416 struct mount *mnt; 1417 int res = f(root, arg); 1418 if (res) 1419 return res; 1420 list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) { 1421 res = f(&mnt->mnt, arg); 1422 if (res) 1423 return res; 1424 } 1425 return 0; 1426 } 1427 1428 static void cleanup_group_ids(struct mount *mnt, struct mount *end) 1429 { 1430 struct mount *p; 1431 1432 for (p = mnt; p != end; p = next_mnt(p, mnt)) { 1433 if (p->mnt_group_id && !IS_MNT_SHARED(p)) 1434 mnt_release_group_id(p); 1435 } 1436 } 1437 1438 static int invent_group_ids(struct mount *mnt, bool recurse) 1439 { 1440 struct mount *p; 1441 1442 for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) { 1443 if (!p->mnt_group_id && !IS_MNT_SHARED(p)) { 1444 int err = mnt_alloc_group_id(p); 1445 if (err) { 1446 cleanup_group_ids(mnt, p); 1447 return err; 1448 } 1449 } 1450 } 1451 1452 return 0; 1453 } 1454 1455 /* 1456 * @source_mnt : mount tree to be attached 1457 * @nd : place the mount tree @source_mnt is attached 1458 * @parent_nd : if non-null, detach the source_mnt from its parent and 1459 * store the parent mount and mountpoint dentry. 1460 * (done when source_mnt is moved) 1461 * 1462 * NOTE: in the table below explains the semantics when a source mount 1463 * of a given type is attached to a destination mount of a given type. 1464 * --------------------------------------------------------------------------- 1465 * | BIND MOUNT OPERATION | 1466 * |************************************************************************** 1467 * | source-->| shared | private | slave | unbindable | 1468 * | dest | | | | | 1469 * | | | | | | | 1470 * | v | | | | | 1471 * |************************************************************************** 1472 * | shared | shared (++) | shared (+) | shared(+++)| invalid | 1473 * | | | | | | 1474 * |non-shared| shared (+) | private | slave (*) | invalid | 1475 * *************************************************************************** 1476 * A bind operation clones the source mount and mounts the clone on the 1477 * destination mount. 1478 * 1479 * (++) the cloned mount is propagated to all the mounts in the propagation 1480 * tree of the destination mount and the cloned mount is added to 1481 * the peer group of the source mount. 1482 * (+) the cloned mount is created under the destination mount and is marked 1483 * as shared. The cloned mount is added to the peer group of the source 1484 * mount. 1485 * (+++) the mount is propagated to all the mounts in the propagation tree 1486 * of the destination mount and the cloned mount is made slave 1487 * of the same master as that of the source mount. The cloned mount 1488 * is marked as 'shared and slave'. 1489 * (*) the cloned mount is made a slave of the same master as that of the 1490 * source mount. 1491 * 1492 * --------------------------------------------------------------------------- 1493 * | MOVE MOUNT OPERATION | 1494 * |************************************************************************** 1495 * | source-->| shared | private | slave | unbindable | 1496 * | dest | | | | | 1497 * | | | | | | | 1498 * | v | | | | | 1499 * |************************************************************************** 1500 * | shared | shared (+) | shared (+) | shared(+++) | invalid | 1501 * | | | | | | 1502 * |non-shared| shared (+*) | private | slave (*) | unbindable | 1503 * *************************************************************************** 1504 * 1505 * (+) the mount is moved to the destination. And is then propagated to 1506 * all the mounts in the propagation tree of the destination mount. 1507 * (+*) the mount is moved to the destination. 1508 * (+++) the mount is moved to the destination and is then propagated to 1509 * all the mounts belonging to the destination mount's propagation tree. 1510 * the mount is marked as 'shared and slave'. 1511 * (*) the mount continues to be a slave at the new location. 1512 * 1513 * if the source mount is a tree, the operations explained above is 1514 * applied to each mount in the tree. 1515 * Must be called without spinlocks held, since this function can sleep 1516 * in allocations. 1517 */ 1518 static int attach_recursive_mnt(struct mount *source_mnt, 1519 struct path *path, struct path *parent_path) 1520 { 1521 LIST_HEAD(tree_list); 1522 struct mount *dest_mnt = real_mount(path->mnt); 1523 struct dentry *dest_dentry = path->dentry; 1524 struct mount *child, *p; 1525 int err; 1526 1527 if (IS_MNT_SHARED(dest_mnt)) { 1528 err = invent_group_ids(source_mnt, true); 1529 if (err) 1530 goto out; 1531 } 1532 err = propagate_mnt(dest_mnt, dest_dentry, source_mnt, &tree_list); 1533 if (err) 1534 goto out_cleanup_ids; 1535 1536 br_write_lock(&vfsmount_lock); 1537 1538 if (IS_MNT_SHARED(dest_mnt)) { 1539 for (p = source_mnt; p; p = next_mnt(p, source_mnt)) 1540 set_mnt_shared(p); 1541 } 1542 if (parent_path) { 1543 detach_mnt(source_mnt, parent_path); 1544 attach_mnt(source_mnt, path); 1545 touch_mnt_namespace(source_mnt->mnt_ns); 1546 } else { 1547 mnt_set_mountpoint(dest_mnt, dest_dentry, source_mnt); 1548 commit_tree(source_mnt); 1549 } 1550 1551 list_for_each_entry_safe(child, p, &tree_list, mnt_hash) { 1552 list_del_init(&child->mnt_hash); 1553 commit_tree(child); 1554 } 1555 br_write_unlock(&vfsmount_lock); 1556 1557 return 0; 1558 1559 out_cleanup_ids: 1560 if (IS_MNT_SHARED(dest_mnt)) 1561 cleanup_group_ids(source_mnt, NULL); 1562 out: 1563 return err; 1564 } 1565 1566 static int lock_mount(struct path *path) 1567 { 1568 struct vfsmount *mnt; 1569 retry: 1570 mutex_lock(&path->dentry->d_inode->i_mutex); 1571 if (unlikely(cant_mount(path->dentry))) { 1572 mutex_unlock(&path->dentry->d_inode->i_mutex); 1573 return -ENOENT; 1574 } 1575 down_write(&namespace_sem); 1576 mnt = lookup_mnt(path); 1577 if (likely(!mnt)) 1578 return 0; 1579 up_write(&namespace_sem); 1580 mutex_unlock(&path->dentry->d_inode->i_mutex); 1581 path_put(path); 1582 path->mnt = mnt; 1583 path->dentry = dget(mnt->mnt_root); 1584 goto retry; 1585 } 1586 1587 static void unlock_mount(struct path *path) 1588 { 1589 up_write(&namespace_sem); 1590 mutex_unlock(&path->dentry->d_inode->i_mutex); 1591 } 1592 1593 static int graft_tree(struct mount *mnt, struct path *path) 1594 { 1595 if (mnt->mnt.mnt_sb->s_flags & MS_NOUSER) 1596 return -EINVAL; 1597 1598 if (S_ISDIR(path->dentry->d_inode->i_mode) != 1599 S_ISDIR(mnt->mnt.mnt_root->d_inode->i_mode)) 1600 return -ENOTDIR; 1601 1602 if (d_unlinked(path->dentry)) 1603 return -ENOENT; 1604 1605 return attach_recursive_mnt(mnt, path, NULL); 1606 } 1607 1608 /* 1609 * Sanity check the flags to change_mnt_propagation. 1610 */ 1611 1612 static int flags_to_propagation_type(int flags) 1613 { 1614 int type = flags & ~(MS_REC | MS_SILENT); 1615 1616 /* Fail if any non-propagation flags are set */ 1617 if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE)) 1618 return 0; 1619 /* Only one propagation flag should be set */ 1620 if (!is_power_of_2(type)) 1621 return 0; 1622 return type; 1623 } 1624 1625 /* 1626 * recursively change the type of the mountpoint. 1627 */ 1628 static int do_change_type(struct path *path, int flag) 1629 { 1630 struct mount *m; 1631 struct mount *mnt = real_mount(path->mnt); 1632 int recurse = flag & MS_REC; 1633 int type; 1634 int err = 0; 1635 1636 if (!ns_capable(mnt->mnt_ns->user_ns, CAP_SYS_ADMIN)) 1637 return -EPERM; 1638 1639 if (path->dentry != path->mnt->mnt_root) 1640 return -EINVAL; 1641 1642 type = flags_to_propagation_type(flag); 1643 if (!type) 1644 return -EINVAL; 1645 1646 down_write(&namespace_sem); 1647 if (type == MS_SHARED) { 1648 err = invent_group_ids(mnt, recurse); 1649 if (err) 1650 goto out_unlock; 1651 } 1652 1653 br_write_lock(&vfsmount_lock); 1654 for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL)) 1655 change_mnt_propagation(m, type); 1656 br_write_unlock(&vfsmount_lock); 1657 1658 out_unlock: 1659 up_write(&namespace_sem); 1660 return err; 1661 } 1662 1663 /* 1664 * do loopback mount. 1665 */ 1666 static int do_loopback(struct path *path, const char *old_name, 1667 int recurse) 1668 { 1669 LIST_HEAD(umount_list); 1670 struct path old_path; 1671 struct mount *mnt = NULL, *old; 1672 int err = mount_is_safe(path); 1673 if (err) 1674 return err; 1675 if (!old_name || !*old_name) 1676 return -EINVAL; 1677 err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path); 1678 if (err) 1679 return err; 1680 1681 err = -EINVAL; 1682 if (mnt_ns_loop(&old_path)) 1683 goto out; 1684 1685 err = lock_mount(path); 1686 if (err) 1687 goto out; 1688 1689 old = real_mount(old_path.mnt); 1690 1691 err = -EINVAL; 1692 if (IS_MNT_UNBINDABLE(old)) 1693 goto out2; 1694 1695 if (!check_mnt(real_mount(path->mnt)) || !check_mnt(old)) 1696 goto out2; 1697 1698 if (recurse) 1699 mnt = copy_tree(old, old_path.dentry, 0); 1700 else 1701 mnt = clone_mnt(old, old_path.dentry, 0); 1702 1703 if (IS_ERR(mnt)) { 1704 err = PTR_ERR(mnt); 1705 goto out; 1706 } 1707 1708 err = graft_tree(mnt, path); 1709 if (err) { 1710 br_write_lock(&vfsmount_lock); 1711 umount_tree(mnt, 0, &umount_list); 1712 br_write_unlock(&vfsmount_lock); 1713 } 1714 out2: 1715 unlock_mount(path); 1716 release_mounts(&umount_list); 1717 out: 1718 path_put(&old_path); 1719 return err; 1720 } 1721 1722 static int change_mount_flags(struct vfsmount *mnt, int ms_flags) 1723 { 1724 int error = 0; 1725 int readonly_request = 0; 1726 1727 if (ms_flags & MS_RDONLY) 1728 readonly_request = 1; 1729 if (readonly_request == __mnt_is_readonly(mnt)) 1730 return 0; 1731 1732 if (readonly_request) 1733 error = mnt_make_readonly(real_mount(mnt)); 1734 else 1735 __mnt_unmake_readonly(real_mount(mnt)); 1736 return error; 1737 } 1738 1739 /* 1740 * change filesystem flags. dir should be a physical root of filesystem. 1741 * If you've mounted a non-root directory somewhere and want to do remount 1742 * on it - tough luck. 1743 */ 1744 static int do_remount(struct path *path, int flags, int mnt_flags, 1745 void *data) 1746 { 1747 int err; 1748 struct super_block *sb = path->mnt->mnt_sb; 1749 struct mount *mnt = real_mount(path->mnt); 1750 1751 if (!capable(CAP_SYS_ADMIN)) 1752 return -EPERM; 1753 1754 if (!check_mnt(mnt)) 1755 return -EINVAL; 1756 1757 if (path->dentry != path->mnt->mnt_root) 1758 return -EINVAL; 1759 1760 err = security_sb_remount(sb, data); 1761 if (err) 1762 return err; 1763 1764 down_write(&sb->s_umount); 1765 if (flags & MS_BIND) 1766 err = change_mount_flags(path->mnt, flags); 1767 else 1768 err = do_remount_sb(sb, flags, data, 0); 1769 if (!err) { 1770 br_write_lock(&vfsmount_lock); 1771 mnt_flags |= mnt->mnt.mnt_flags & MNT_PROPAGATION_MASK; 1772 mnt->mnt.mnt_flags = mnt_flags; 1773 br_write_unlock(&vfsmount_lock); 1774 } 1775 up_write(&sb->s_umount); 1776 if (!err) { 1777 br_write_lock(&vfsmount_lock); 1778 touch_mnt_namespace(mnt->mnt_ns); 1779 br_write_unlock(&vfsmount_lock); 1780 } 1781 return err; 1782 } 1783 1784 static inline int tree_contains_unbindable(struct mount *mnt) 1785 { 1786 struct mount *p; 1787 for (p = mnt; p; p = next_mnt(p, mnt)) { 1788 if (IS_MNT_UNBINDABLE(p)) 1789 return 1; 1790 } 1791 return 0; 1792 } 1793 1794 static int do_move_mount(struct path *path, const char *old_name) 1795 { 1796 struct path old_path, parent_path; 1797 struct mount *p; 1798 struct mount *old; 1799 int err = 0; 1800 if (!ns_capable(real_mount(path->mnt)->mnt_ns->user_ns, CAP_SYS_ADMIN)) 1801 return -EPERM; 1802 if (!old_name || !*old_name) 1803 return -EINVAL; 1804 err = kern_path(old_name, LOOKUP_FOLLOW, &old_path); 1805 if (err) 1806 return err; 1807 1808 err = lock_mount(path); 1809 if (err < 0) 1810 goto out; 1811 1812 old = real_mount(old_path.mnt); 1813 p = real_mount(path->mnt); 1814 1815 err = -EINVAL; 1816 if (!check_mnt(p) || !check_mnt(old)) 1817 goto out1; 1818 1819 if (d_unlinked(path->dentry)) 1820 goto out1; 1821 1822 err = -EINVAL; 1823 if (old_path.dentry != old_path.mnt->mnt_root) 1824 goto out1; 1825 1826 if (!mnt_has_parent(old)) 1827 goto out1; 1828 1829 if (S_ISDIR(path->dentry->d_inode->i_mode) != 1830 S_ISDIR(old_path.dentry->d_inode->i_mode)) 1831 goto out1; 1832 /* 1833 * Don't move a mount residing in a shared parent. 1834 */ 1835 if (IS_MNT_SHARED(old->mnt_parent)) 1836 goto out1; 1837 /* 1838 * Don't move a mount tree containing unbindable mounts to a destination 1839 * mount which is shared. 1840 */ 1841 if (IS_MNT_SHARED(p) && tree_contains_unbindable(old)) 1842 goto out1; 1843 err = -ELOOP; 1844 for (; mnt_has_parent(p); p = p->mnt_parent) 1845 if (p == old) 1846 goto out1; 1847 1848 err = attach_recursive_mnt(old, path, &parent_path); 1849 if (err) 1850 goto out1; 1851 1852 /* if the mount is moved, it should no longer be expire 1853 * automatically */ 1854 list_del_init(&old->mnt_expire); 1855 out1: 1856 unlock_mount(path); 1857 out: 1858 if (!err) 1859 path_put(&parent_path); 1860 path_put(&old_path); 1861 return err; 1862 } 1863 1864 static struct vfsmount *fs_set_subtype(struct vfsmount *mnt, const char *fstype) 1865 { 1866 int err; 1867 const char *subtype = strchr(fstype, '.'); 1868 if (subtype) { 1869 subtype++; 1870 err = -EINVAL; 1871 if (!subtype[0]) 1872 goto err; 1873 } else 1874 subtype = ""; 1875 1876 mnt->mnt_sb->s_subtype = kstrdup(subtype, GFP_KERNEL); 1877 err = -ENOMEM; 1878 if (!mnt->mnt_sb->s_subtype) 1879 goto err; 1880 return mnt; 1881 1882 err: 1883 mntput(mnt); 1884 return ERR_PTR(err); 1885 } 1886 1887 /* 1888 * add a mount into a namespace's mount tree 1889 */ 1890 static int do_add_mount(struct mount *newmnt, struct path *path, int mnt_flags) 1891 { 1892 int err; 1893 1894 mnt_flags &= ~(MNT_SHARED | MNT_WRITE_HOLD | MNT_INTERNAL); 1895 1896 err = lock_mount(path); 1897 if (err) 1898 return err; 1899 1900 err = -EINVAL; 1901 if (unlikely(!check_mnt(real_mount(path->mnt)))) { 1902 /* that's acceptable only for automounts done in private ns */ 1903 if (!(mnt_flags & MNT_SHRINKABLE)) 1904 goto unlock; 1905 /* ... and for those we'd better have mountpoint still alive */ 1906 if (!real_mount(path->mnt)->mnt_ns) 1907 goto unlock; 1908 } 1909 1910 /* Refuse the same filesystem on the same mount point */ 1911 err = -EBUSY; 1912 if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb && 1913 path->mnt->mnt_root == path->dentry) 1914 goto unlock; 1915 1916 err = -EINVAL; 1917 if (S_ISLNK(newmnt->mnt.mnt_root->d_inode->i_mode)) 1918 goto unlock; 1919 1920 newmnt->mnt.mnt_flags = mnt_flags; 1921 err = graft_tree(newmnt, path); 1922 1923 unlock: 1924 unlock_mount(path); 1925 return err; 1926 } 1927 1928 /* 1929 * create a new mount for userspace and request it to be added into the 1930 * namespace's tree 1931 */ 1932 static int do_new_mount(struct path *path, const char *fstype, int flags, 1933 int mnt_flags, const char *name, void *data) 1934 { 1935 struct file_system_type *type; 1936 struct user_namespace *user_ns; 1937 struct vfsmount *mnt; 1938 int err; 1939 1940 if (!fstype) 1941 return -EINVAL; 1942 1943 /* we need capabilities... */ 1944 user_ns = real_mount(path->mnt)->mnt_ns->user_ns; 1945 if (!ns_capable(user_ns, CAP_SYS_ADMIN)) 1946 return -EPERM; 1947 1948 type = get_fs_type(fstype); 1949 if (!type) 1950 return -ENODEV; 1951 1952 if (user_ns != &init_user_ns) { 1953 if (!(type->fs_flags & FS_USERNS_MOUNT)) { 1954 put_filesystem(type); 1955 return -EPERM; 1956 } 1957 /* Only in special cases allow devices from mounts 1958 * created outside the initial user namespace. 1959 */ 1960 if (!(type->fs_flags & FS_USERNS_DEV_MOUNT)) { 1961 flags |= MS_NODEV; 1962 mnt_flags |= MNT_NODEV; 1963 } 1964 } 1965 1966 mnt = vfs_kern_mount(type, flags, name, data); 1967 if (!IS_ERR(mnt) && (type->fs_flags & FS_HAS_SUBTYPE) && 1968 !mnt->mnt_sb->s_subtype) 1969 mnt = fs_set_subtype(mnt, fstype); 1970 1971 put_filesystem(type); 1972 if (IS_ERR(mnt)) 1973 return PTR_ERR(mnt); 1974 1975 err = do_add_mount(real_mount(mnt), path, mnt_flags); 1976 if (err) 1977 mntput(mnt); 1978 return err; 1979 } 1980 1981 int finish_automount(struct vfsmount *m, struct path *path) 1982 { 1983 struct mount *mnt = real_mount(m); 1984 int err; 1985 /* The new mount record should have at least 2 refs to prevent it being 1986 * expired before we get a chance to add it 1987 */ 1988 BUG_ON(mnt_get_count(mnt) < 2); 1989 1990 if (m->mnt_sb == path->mnt->mnt_sb && 1991 m->mnt_root == path->dentry) { 1992 err = -ELOOP; 1993 goto fail; 1994 } 1995 1996 err = do_add_mount(mnt, path, path->mnt->mnt_flags | MNT_SHRINKABLE); 1997 if (!err) 1998 return 0; 1999 fail: 2000 /* remove m from any expiration list it may be on */ 2001 if (!list_empty(&mnt->mnt_expire)) { 2002 down_write(&namespace_sem); 2003 br_write_lock(&vfsmount_lock); 2004 list_del_init(&mnt->mnt_expire); 2005 br_write_unlock(&vfsmount_lock); 2006 up_write(&namespace_sem); 2007 } 2008 mntput(m); 2009 mntput(m); 2010 return err; 2011 } 2012 2013 /** 2014 * mnt_set_expiry - Put a mount on an expiration list 2015 * @mnt: The mount to list. 2016 * @expiry_list: The list to add the mount to. 2017 */ 2018 void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list) 2019 { 2020 down_write(&namespace_sem); 2021 br_write_lock(&vfsmount_lock); 2022 2023 list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list); 2024 2025 br_write_unlock(&vfsmount_lock); 2026 up_write(&namespace_sem); 2027 } 2028 EXPORT_SYMBOL(mnt_set_expiry); 2029 2030 /* 2031 * process a list of expirable mountpoints with the intent of discarding any 2032 * mountpoints that aren't in use and haven't been touched since last we came 2033 * here 2034 */ 2035 void mark_mounts_for_expiry(struct list_head *mounts) 2036 { 2037 struct mount *mnt, *next; 2038 LIST_HEAD(graveyard); 2039 LIST_HEAD(umounts); 2040 2041 if (list_empty(mounts)) 2042 return; 2043 2044 down_write(&namespace_sem); 2045 br_write_lock(&vfsmount_lock); 2046 2047 /* extract from the expiration list every vfsmount that matches the 2048 * following criteria: 2049 * - only referenced by its parent vfsmount 2050 * - still marked for expiry (marked on the last call here; marks are 2051 * cleared by mntput()) 2052 */ 2053 list_for_each_entry_safe(mnt, next, mounts, mnt_expire) { 2054 if (!xchg(&mnt->mnt_expiry_mark, 1) || 2055 propagate_mount_busy(mnt, 1)) 2056 continue; 2057 list_move(&mnt->mnt_expire, &graveyard); 2058 } 2059 while (!list_empty(&graveyard)) { 2060 mnt = list_first_entry(&graveyard, struct mount, mnt_expire); 2061 touch_mnt_namespace(mnt->mnt_ns); 2062 umount_tree(mnt, 1, &umounts); 2063 } 2064 br_write_unlock(&vfsmount_lock); 2065 up_write(&namespace_sem); 2066 2067 release_mounts(&umounts); 2068 } 2069 2070 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry); 2071 2072 /* 2073 * Ripoff of 'select_parent()' 2074 * 2075 * search the list of submounts for a given mountpoint, and move any 2076 * shrinkable submounts to the 'graveyard' list. 2077 */ 2078 static int select_submounts(struct mount *parent, struct list_head *graveyard) 2079 { 2080 struct mount *this_parent = parent; 2081 struct list_head *next; 2082 int found = 0; 2083 2084 repeat: 2085 next = this_parent->mnt_mounts.next; 2086 resume: 2087 while (next != &this_parent->mnt_mounts) { 2088 struct list_head *tmp = next; 2089 struct mount *mnt = list_entry(tmp, struct mount, mnt_child); 2090 2091 next = tmp->next; 2092 if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE)) 2093 continue; 2094 /* 2095 * Descend a level if the d_mounts list is non-empty. 2096 */ 2097 if (!list_empty(&mnt->mnt_mounts)) { 2098 this_parent = mnt; 2099 goto repeat; 2100 } 2101 2102 if (!propagate_mount_busy(mnt, 1)) { 2103 list_move_tail(&mnt->mnt_expire, graveyard); 2104 found++; 2105 } 2106 } 2107 /* 2108 * All done at this level ... ascend and resume the search 2109 */ 2110 if (this_parent != parent) { 2111 next = this_parent->mnt_child.next; 2112 this_parent = this_parent->mnt_parent; 2113 goto resume; 2114 } 2115 return found; 2116 } 2117 2118 /* 2119 * process a list of expirable mountpoints with the intent of discarding any 2120 * submounts of a specific parent mountpoint 2121 * 2122 * vfsmount_lock must be held for write 2123 */ 2124 static void shrink_submounts(struct mount *mnt, struct list_head *umounts) 2125 { 2126 LIST_HEAD(graveyard); 2127 struct mount *m; 2128 2129 /* extract submounts of 'mountpoint' from the expiration list */ 2130 while (select_submounts(mnt, &graveyard)) { 2131 while (!list_empty(&graveyard)) { 2132 m = list_first_entry(&graveyard, struct mount, 2133 mnt_expire); 2134 touch_mnt_namespace(m->mnt_ns); 2135 umount_tree(m, 1, umounts); 2136 } 2137 } 2138 } 2139 2140 /* 2141 * Some copy_from_user() implementations do not return the exact number of 2142 * bytes remaining to copy on a fault. But copy_mount_options() requires that. 2143 * Note that this function differs from copy_from_user() in that it will oops 2144 * on bad values of `to', rather than returning a short copy. 2145 */ 2146 static long exact_copy_from_user(void *to, const void __user * from, 2147 unsigned long n) 2148 { 2149 char *t = to; 2150 const char __user *f = from; 2151 char c; 2152 2153 if (!access_ok(VERIFY_READ, from, n)) 2154 return n; 2155 2156 while (n) { 2157 if (__get_user(c, f)) { 2158 memset(t, 0, n); 2159 break; 2160 } 2161 *t++ = c; 2162 f++; 2163 n--; 2164 } 2165 return n; 2166 } 2167 2168 int copy_mount_options(const void __user * data, unsigned long *where) 2169 { 2170 int i; 2171 unsigned long page; 2172 unsigned long size; 2173 2174 *where = 0; 2175 if (!data) 2176 return 0; 2177 2178 if (!(page = __get_free_page(GFP_KERNEL))) 2179 return -ENOMEM; 2180 2181 /* We only care that *some* data at the address the user 2182 * gave us is valid. Just in case, we'll zero 2183 * the remainder of the page. 2184 */ 2185 /* copy_from_user cannot cross TASK_SIZE ! */ 2186 size = TASK_SIZE - (unsigned long)data; 2187 if (size > PAGE_SIZE) 2188 size = PAGE_SIZE; 2189 2190 i = size - exact_copy_from_user((void *)page, data, size); 2191 if (!i) { 2192 free_page(page); 2193 return -EFAULT; 2194 } 2195 if (i != PAGE_SIZE) 2196 memset((char *)page + i, 0, PAGE_SIZE - i); 2197 *where = page; 2198 return 0; 2199 } 2200 2201 int copy_mount_string(const void __user *data, char **where) 2202 { 2203 char *tmp; 2204 2205 if (!data) { 2206 *where = NULL; 2207 return 0; 2208 } 2209 2210 tmp = strndup_user(data, PAGE_SIZE); 2211 if (IS_ERR(tmp)) 2212 return PTR_ERR(tmp); 2213 2214 *where = tmp; 2215 return 0; 2216 } 2217 2218 /* 2219 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to 2220 * be given to the mount() call (ie: read-only, no-dev, no-suid etc). 2221 * 2222 * data is a (void *) that can point to any structure up to 2223 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent 2224 * information (or be NULL). 2225 * 2226 * Pre-0.97 versions of mount() didn't have a flags word. 2227 * When the flags word was introduced its top half was required 2228 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9. 2229 * Therefore, if this magic number is present, it carries no information 2230 * and must be discarded. 2231 */ 2232 long do_mount(const char *dev_name, const char *dir_name, 2233 const char *type_page, unsigned long flags, void *data_page) 2234 { 2235 struct path path; 2236 int retval = 0; 2237 int mnt_flags = 0; 2238 2239 /* Discard magic */ 2240 if ((flags & MS_MGC_MSK) == MS_MGC_VAL) 2241 flags &= ~MS_MGC_MSK; 2242 2243 /* Basic sanity checks */ 2244 2245 if (!dir_name || !*dir_name || !memchr(dir_name, 0, PAGE_SIZE)) 2246 return -EINVAL; 2247 2248 if (data_page) 2249 ((char *)data_page)[PAGE_SIZE - 1] = 0; 2250 2251 /* ... and get the mountpoint */ 2252 retval = kern_path(dir_name, LOOKUP_FOLLOW, &path); 2253 if (retval) 2254 return retval; 2255 2256 retval = security_sb_mount(dev_name, &path, 2257 type_page, flags, data_page); 2258 if (retval) 2259 goto dput_out; 2260 2261 /* Default to relatime unless overriden */ 2262 if (!(flags & MS_NOATIME)) 2263 mnt_flags |= MNT_RELATIME; 2264 2265 /* Separate the per-mountpoint flags */ 2266 if (flags & MS_NOSUID) 2267 mnt_flags |= MNT_NOSUID; 2268 if (flags & MS_NODEV) 2269 mnt_flags |= MNT_NODEV; 2270 if (flags & MS_NOEXEC) 2271 mnt_flags |= MNT_NOEXEC; 2272 if (flags & MS_NOATIME) 2273 mnt_flags |= MNT_NOATIME; 2274 if (flags & MS_NODIRATIME) 2275 mnt_flags |= MNT_NODIRATIME; 2276 if (flags & MS_STRICTATIME) 2277 mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME); 2278 if (flags & MS_RDONLY) 2279 mnt_flags |= MNT_READONLY; 2280 2281 flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE | MS_BORN | 2282 MS_NOATIME | MS_NODIRATIME | MS_RELATIME| MS_KERNMOUNT | 2283 MS_STRICTATIME); 2284 2285 if (flags & MS_REMOUNT) 2286 retval = do_remount(&path, flags & ~MS_REMOUNT, mnt_flags, 2287 data_page); 2288 else if (flags & MS_BIND) 2289 retval = do_loopback(&path, dev_name, flags & MS_REC); 2290 else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE)) 2291 retval = do_change_type(&path, flags); 2292 else if (flags & MS_MOVE) 2293 retval = do_move_mount(&path, dev_name); 2294 else 2295 retval = do_new_mount(&path, type_page, flags, mnt_flags, 2296 dev_name, data_page); 2297 dput_out: 2298 path_put(&path); 2299 return retval; 2300 } 2301 2302 static void free_mnt_ns(struct mnt_namespace *ns) 2303 { 2304 proc_free_inum(ns->proc_inum); 2305 put_user_ns(ns->user_ns); 2306 kfree(ns); 2307 } 2308 2309 /* 2310 * Assign a sequence number so we can detect when we attempt to bind 2311 * mount a reference to an older mount namespace into the current 2312 * mount namespace, preventing reference counting loops. A 64bit 2313 * number incrementing at 10Ghz will take 12,427 years to wrap which 2314 * is effectively never, so we can ignore the possibility. 2315 */ 2316 static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1); 2317 2318 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns) 2319 { 2320 struct mnt_namespace *new_ns; 2321 int ret; 2322 2323 new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL); 2324 if (!new_ns) 2325 return ERR_PTR(-ENOMEM); 2326 ret = proc_alloc_inum(&new_ns->proc_inum); 2327 if (ret) { 2328 kfree(new_ns); 2329 return ERR_PTR(ret); 2330 } 2331 new_ns->seq = atomic64_add_return(1, &mnt_ns_seq); 2332 atomic_set(&new_ns->count, 1); 2333 new_ns->root = NULL; 2334 INIT_LIST_HEAD(&new_ns->list); 2335 init_waitqueue_head(&new_ns->poll); 2336 new_ns->event = 0; 2337 new_ns->user_ns = get_user_ns(user_ns); 2338 return new_ns; 2339 } 2340 2341 /* 2342 * Allocate a new namespace structure and populate it with contents 2343 * copied from the namespace of the passed in task structure. 2344 */ 2345 static struct mnt_namespace *dup_mnt_ns(struct mnt_namespace *mnt_ns, 2346 struct user_namespace *user_ns, struct fs_struct *fs) 2347 { 2348 struct mnt_namespace *new_ns; 2349 struct vfsmount *rootmnt = NULL, *pwdmnt = NULL; 2350 struct mount *p, *q; 2351 struct mount *old = mnt_ns->root; 2352 struct mount *new; 2353 int copy_flags; 2354 2355 new_ns = alloc_mnt_ns(user_ns); 2356 if (IS_ERR(new_ns)) 2357 return new_ns; 2358 2359 down_write(&namespace_sem); 2360 /* First pass: copy the tree topology */ 2361 copy_flags = CL_COPY_ALL | CL_EXPIRE; 2362 if (user_ns != mnt_ns->user_ns) 2363 copy_flags |= CL_SHARED_TO_SLAVE; 2364 new = copy_tree(old, old->mnt.mnt_root, copy_flags); 2365 if (IS_ERR(new)) { 2366 up_write(&namespace_sem); 2367 free_mnt_ns(new_ns); 2368 return ERR_CAST(new); 2369 } 2370 new_ns->root = new; 2371 br_write_lock(&vfsmount_lock); 2372 list_add_tail(&new_ns->list, &new->mnt_list); 2373 br_write_unlock(&vfsmount_lock); 2374 2375 /* 2376 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts 2377 * as belonging to new namespace. We have already acquired a private 2378 * fs_struct, so tsk->fs->lock is not needed. 2379 */ 2380 p = old; 2381 q = new; 2382 while (p) { 2383 q->mnt_ns = new_ns; 2384 if (fs) { 2385 if (&p->mnt == fs->root.mnt) { 2386 fs->root.mnt = mntget(&q->mnt); 2387 rootmnt = &p->mnt; 2388 } 2389 if (&p->mnt == fs->pwd.mnt) { 2390 fs->pwd.mnt = mntget(&q->mnt); 2391 pwdmnt = &p->mnt; 2392 } 2393 } 2394 p = next_mnt(p, old); 2395 q = next_mnt(q, new); 2396 } 2397 up_write(&namespace_sem); 2398 2399 if (rootmnt) 2400 mntput(rootmnt); 2401 if (pwdmnt) 2402 mntput(pwdmnt); 2403 2404 return new_ns; 2405 } 2406 2407 struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns, 2408 struct user_namespace *user_ns, struct fs_struct *new_fs) 2409 { 2410 struct mnt_namespace *new_ns; 2411 2412 BUG_ON(!ns); 2413 get_mnt_ns(ns); 2414 2415 if (!(flags & CLONE_NEWNS)) 2416 return ns; 2417 2418 new_ns = dup_mnt_ns(ns, user_ns, new_fs); 2419 2420 put_mnt_ns(ns); 2421 return new_ns; 2422 } 2423 2424 /** 2425 * create_mnt_ns - creates a private namespace and adds a root filesystem 2426 * @mnt: pointer to the new root filesystem mountpoint 2427 */ 2428 static struct mnt_namespace *create_mnt_ns(struct vfsmount *m) 2429 { 2430 struct mnt_namespace *new_ns = alloc_mnt_ns(&init_user_ns); 2431 if (!IS_ERR(new_ns)) { 2432 struct mount *mnt = real_mount(m); 2433 mnt->mnt_ns = new_ns; 2434 new_ns->root = mnt; 2435 list_add(&new_ns->list, &mnt->mnt_list); 2436 } else { 2437 mntput(m); 2438 } 2439 return new_ns; 2440 } 2441 2442 struct dentry *mount_subtree(struct vfsmount *mnt, const char *name) 2443 { 2444 struct mnt_namespace *ns; 2445 struct super_block *s; 2446 struct path path; 2447 int err; 2448 2449 ns = create_mnt_ns(mnt); 2450 if (IS_ERR(ns)) 2451 return ERR_CAST(ns); 2452 2453 err = vfs_path_lookup(mnt->mnt_root, mnt, 2454 name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path); 2455 2456 put_mnt_ns(ns); 2457 2458 if (err) 2459 return ERR_PTR(err); 2460 2461 /* trade a vfsmount reference for active sb one */ 2462 s = path.mnt->mnt_sb; 2463 atomic_inc(&s->s_active); 2464 mntput(path.mnt); 2465 /* lock the sucker */ 2466 down_write(&s->s_umount); 2467 /* ... and return the root of (sub)tree on it */ 2468 return path.dentry; 2469 } 2470 EXPORT_SYMBOL(mount_subtree); 2471 2472 SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name, 2473 char __user *, type, unsigned long, flags, void __user *, data) 2474 { 2475 int ret; 2476 char *kernel_type; 2477 struct filename *kernel_dir; 2478 char *kernel_dev; 2479 unsigned long data_page; 2480 2481 ret = copy_mount_string(type, &kernel_type); 2482 if (ret < 0) 2483 goto out_type; 2484 2485 kernel_dir = getname(dir_name); 2486 if (IS_ERR(kernel_dir)) { 2487 ret = PTR_ERR(kernel_dir); 2488 goto out_dir; 2489 } 2490 2491 ret = copy_mount_string(dev_name, &kernel_dev); 2492 if (ret < 0) 2493 goto out_dev; 2494 2495 ret = copy_mount_options(data, &data_page); 2496 if (ret < 0) 2497 goto out_data; 2498 2499 ret = do_mount(kernel_dev, kernel_dir->name, kernel_type, flags, 2500 (void *) data_page); 2501 2502 free_page(data_page); 2503 out_data: 2504 kfree(kernel_dev); 2505 out_dev: 2506 putname(kernel_dir); 2507 out_dir: 2508 kfree(kernel_type); 2509 out_type: 2510 return ret; 2511 } 2512 2513 /* 2514 * Return true if path is reachable from root 2515 * 2516 * namespace_sem or vfsmount_lock is held 2517 */ 2518 bool is_path_reachable(struct mount *mnt, struct dentry *dentry, 2519 const struct path *root) 2520 { 2521 while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) { 2522 dentry = mnt->mnt_mountpoint; 2523 mnt = mnt->mnt_parent; 2524 } 2525 return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry); 2526 } 2527 2528 int path_is_under(struct path *path1, struct path *path2) 2529 { 2530 int res; 2531 br_read_lock(&vfsmount_lock); 2532 res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2); 2533 br_read_unlock(&vfsmount_lock); 2534 return res; 2535 } 2536 EXPORT_SYMBOL(path_is_under); 2537 2538 /* 2539 * pivot_root Semantics: 2540 * Moves the root file system of the current process to the directory put_old, 2541 * makes new_root as the new root file system of the current process, and sets 2542 * root/cwd of all processes which had them on the current root to new_root. 2543 * 2544 * Restrictions: 2545 * The new_root and put_old must be directories, and must not be on the 2546 * same file system as the current process root. The put_old must be 2547 * underneath new_root, i.e. adding a non-zero number of /.. to the string 2548 * pointed to by put_old must yield the same directory as new_root. No other 2549 * file system may be mounted on put_old. After all, new_root is a mountpoint. 2550 * 2551 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem. 2552 * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives 2553 * in this situation. 2554 * 2555 * Notes: 2556 * - we don't move root/cwd if they are not at the root (reason: if something 2557 * cared enough to change them, it's probably wrong to force them elsewhere) 2558 * - it's okay to pick a root that isn't the root of a file system, e.g. 2559 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint, 2560 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root 2561 * first. 2562 */ 2563 SYSCALL_DEFINE2(pivot_root, const char __user *, new_root, 2564 const char __user *, put_old) 2565 { 2566 struct path new, old, parent_path, root_parent, root; 2567 struct mount *new_mnt, *root_mnt; 2568 int error; 2569 2570 if (!ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN)) 2571 return -EPERM; 2572 2573 error = user_path_dir(new_root, &new); 2574 if (error) 2575 goto out0; 2576 2577 error = user_path_dir(put_old, &old); 2578 if (error) 2579 goto out1; 2580 2581 error = security_sb_pivotroot(&old, &new); 2582 if (error) 2583 goto out2; 2584 2585 get_fs_root(current->fs, &root); 2586 error = lock_mount(&old); 2587 if (error) 2588 goto out3; 2589 2590 error = -EINVAL; 2591 new_mnt = real_mount(new.mnt); 2592 root_mnt = real_mount(root.mnt); 2593 if (IS_MNT_SHARED(real_mount(old.mnt)) || 2594 IS_MNT_SHARED(new_mnt->mnt_parent) || 2595 IS_MNT_SHARED(root_mnt->mnt_parent)) 2596 goto out4; 2597 if (!check_mnt(root_mnt) || !check_mnt(new_mnt)) 2598 goto out4; 2599 error = -ENOENT; 2600 if (d_unlinked(new.dentry)) 2601 goto out4; 2602 if (d_unlinked(old.dentry)) 2603 goto out4; 2604 error = -EBUSY; 2605 if (new.mnt == root.mnt || 2606 old.mnt == root.mnt) 2607 goto out4; /* loop, on the same file system */ 2608 error = -EINVAL; 2609 if (root.mnt->mnt_root != root.dentry) 2610 goto out4; /* not a mountpoint */ 2611 if (!mnt_has_parent(root_mnt)) 2612 goto out4; /* not attached */ 2613 if (new.mnt->mnt_root != new.dentry) 2614 goto out4; /* not a mountpoint */ 2615 if (!mnt_has_parent(new_mnt)) 2616 goto out4; /* not attached */ 2617 /* make sure we can reach put_old from new_root */ 2618 if (!is_path_reachable(real_mount(old.mnt), old.dentry, &new)) 2619 goto out4; 2620 br_write_lock(&vfsmount_lock); 2621 detach_mnt(new_mnt, &parent_path); 2622 detach_mnt(root_mnt, &root_parent); 2623 /* mount old root on put_old */ 2624 attach_mnt(root_mnt, &old); 2625 /* mount new_root on / */ 2626 attach_mnt(new_mnt, &root_parent); 2627 touch_mnt_namespace(current->nsproxy->mnt_ns); 2628 br_write_unlock(&vfsmount_lock); 2629 chroot_fs_refs(&root, &new); 2630 error = 0; 2631 out4: 2632 unlock_mount(&old); 2633 if (!error) { 2634 path_put(&root_parent); 2635 path_put(&parent_path); 2636 } 2637 out3: 2638 path_put(&root); 2639 out2: 2640 path_put(&old); 2641 out1: 2642 path_put(&new); 2643 out0: 2644 return error; 2645 } 2646 2647 static void __init init_mount_tree(void) 2648 { 2649 struct vfsmount *mnt; 2650 struct mnt_namespace *ns; 2651 struct path root; 2652 struct file_system_type *type; 2653 2654 type = get_fs_type("rootfs"); 2655 if (!type) 2656 panic("Can't find rootfs type"); 2657 mnt = vfs_kern_mount(type, 0, "rootfs", NULL); 2658 put_filesystem(type); 2659 if (IS_ERR(mnt)) 2660 panic("Can't create rootfs"); 2661 2662 ns = create_mnt_ns(mnt); 2663 if (IS_ERR(ns)) 2664 panic("Can't allocate initial namespace"); 2665 2666 init_task.nsproxy->mnt_ns = ns; 2667 get_mnt_ns(ns); 2668 2669 root.mnt = mnt; 2670 root.dentry = mnt->mnt_root; 2671 2672 set_fs_pwd(current->fs, &root); 2673 set_fs_root(current->fs, &root); 2674 } 2675 2676 void __init mnt_init(void) 2677 { 2678 unsigned u; 2679 int err; 2680 2681 init_rwsem(&namespace_sem); 2682 2683 mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount), 2684 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL); 2685 2686 mount_hashtable = (struct list_head *)__get_free_page(GFP_ATOMIC); 2687 2688 if (!mount_hashtable) 2689 panic("Failed to allocate mount hash table\n"); 2690 2691 printk(KERN_INFO "Mount-cache hash table entries: %lu\n", HASH_SIZE); 2692 2693 for (u = 0; u < HASH_SIZE; u++) 2694 INIT_LIST_HEAD(&mount_hashtable[u]); 2695 2696 br_lock_init(&vfsmount_lock); 2697 2698 err = sysfs_init(); 2699 if (err) 2700 printk(KERN_WARNING "%s: sysfs_init error: %d\n", 2701 __func__, err); 2702 fs_kobj = kobject_create_and_add("fs", NULL); 2703 if (!fs_kobj) 2704 printk(KERN_WARNING "%s: kobj create error\n", __func__); 2705 init_rootfs(); 2706 init_mount_tree(); 2707 } 2708 2709 void put_mnt_ns(struct mnt_namespace *ns) 2710 { 2711 LIST_HEAD(umount_list); 2712 2713 if (!atomic_dec_and_test(&ns->count)) 2714 return; 2715 down_write(&namespace_sem); 2716 br_write_lock(&vfsmount_lock); 2717 umount_tree(ns->root, 0, &umount_list); 2718 br_write_unlock(&vfsmount_lock); 2719 up_write(&namespace_sem); 2720 release_mounts(&umount_list); 2721 free_mnt_ns(ns); 2722 } 2723 2724 struct vfsmount *kern_mount_data(struct file_system_type *type, void *data) 2725 { 2726 struct vfsmount *mnt; 2727 mnt = vfs_kern_mount(type, MS_KERNMOUNT, type->name, data); 2728 if (!IS_ERR(mnt)) { 2729 /* 2730 * it is a longterm mount, don't release mnt until 2731 * we unmount before file sys is unregistered 2732 */ 2733 real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL; 2734 } 2735 return mnt; 2736 } 2737 EXPORT_SYMBOL_GPL(kern_mount_data); 2738 2739 void kern_unmount(struct vfsmount *mnt) 2740 { 2741 /* release long term mount so mount point can be released */ 2742 if (!IS_ERR_OR_NULL(mnt)) { 2743 br_write_lock(&vfsmount_lock); 2744 real_mount(mnt)->mnt_ns = NULL; 2745 br_write_unlock(&vfsmount_lock); 2746 mntput(mnt); 2747 } 2748 } 2749 EXPORT_SYMBOL(kern_unmount); 2750 2751 bool our_mnt(struct vfsmount *mnt) 2752 { 2753 return check_mnt(real_mount(mnt)); 2754 } 2755 2756 static void *mntns_get(struct task_struct *task) 2757 { 2758 struct mnt_namespace *ns = NULL; 2759 struct nsproxy *nsproxy; 2760 2761 rcu_read_lock(); 2762 nsproxy = task_nsproxy(task); 2763 if (nsproxy) { 2764 ns = nsproxy->mnt_ns; 2765 get_mnt_ns(ns); 2766 } 2767 rcu_read_unlock(); 2768 2769 return ns; 2770 } 2771 2772 static void mntns_put(void *ns) 2773 { 2774 put_mnt_ns(ns); 2775 } 2776 2777 static int mntns_install(struct nsproxy *nsproxy, void *ns) 2778 { 2779 struct fs_struct *fs = current->fs; 2780 struct mnt_namespace *mnt_ns = ns; 2781 struct path root; 2782 2783 if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) || 2784 !nsown_capable(CAP_SYS_CHROOT) || 2785 !nsown_capable(CAP_SYS_ADMIN)) 2786 return -EPERM; 2787 2788 if (fs->users != 1) 2789 return -EINVAL; 2790 2791 get_mnt_ns(mnt_ns); 2792 put_mnt_ns(nsproxy->mnt_ns); 2793 nsproxy->mnt_ns = mnt_ns; 2794 2795 /* Find the root */ 2796 root.mnt = &mnt_ns->root->mnt; 2797 root.dentry = mnt_ns->root->mnt.mnt_root; 2798 path_get(&root); 2799 while(d_mountpoint(root.dentry) && follow_down_one(&root)) 2800 ; 2801 2802 /* Update the pwd and root */ 2803 set_fs_pwd(fs, &root); 2804 set_fs_root(fs, &root); 2805 2806 path_put(&root); 2807 return 0; 2808 } 2809 2810 static unsigned int mntns_inum(void *ns) 2811 { 2812 struct mnt_namespace *mnt_ns = ns; 2813 return mnt_ns->proc_inum; 2814 } 2815 2816 const struct proc_ns_operations mntns_operations = { 2817 .name = "mnt", 2818 .type = CLONE_NEWNS, 2819 .get = mntns_get, 2820 .put = mntns_put, 2821 .install = mntns_install, 2822 .inum = mntns_inum, 2823 }; 2824