1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/fs/namespace.c 4 * 5 * (C) Copyright Al Viro 2000, 2001 6 * 7 * Based on code from fs/super.c, copyright Linus Torvalds and others. 8 * Heavily rewritten. 9 */ 10 11 #include <linux/syscalls.h> 12 #include <linux/export.h> 13 #include <linux/capability.h> 14 #include <linux/mnt_namespace.h> 15 #include <linux/user_namespace.h> 16 #include <linux/namei.h> 17 #include <linux/security.h> 18 #include <linux/cred.h> 19 #include <linux/idr.h> 20 #include <linux/init.h> /* init_rootfs */ 21 #include <linux/fs_struct.h> /* get_fs_root et.al. */ 22 #include <linux/fsnotify.h> /* fsnotify_vfsmount_delete */ 23 #include <linux/file.h> 24 #include <linux/uaccess.h> 25 #include <linux/proc_ns.h> 26 #include <linux/magic.h> 27 #include <linux/memblock.h> 28 #include <linux/task_work.h> 29 #include <linux/sched/task.h> 30 #include <uapi/linux/mount.h> 31 #include <linux/fs_context.h> 32 #include <linux/shmem_fs.h> 33 34 #include "pnode.h" 35 #include "internal.h" 36 37 /* Maximum number of mounts in a mount namespace */ 38 unsigned int sysctl_mount_max __read_mostly = 100000; 39 40 static unsigned int m_hash_mask __read_mostly; 41 static unsigned int m_hash_shift __read_mostly; 42 static unsigned int mp_hash_mask __read_mostly; 43 static unsigned int mp_hash_shift __read_mostly; 44 45 static __initdata unsigned long mhash_entries; 46 static int __init set_mhash_entries(char *str) 47 { 48 if (!str) 49 return 0; 50 mhash_entries = simple_strtoul(str, &str, 0); 51 return 1; 52 } 53 __setup("mhash_entries=", set_mhash_entries); 54 55 static __initdata unsigned long mphash_entries; 56 static int __init set_mphash_entries(char *str) 57 { 58 if (!str) 59 return 0; 60 mphash_entries = simple_strtoul(str, &str, 0); 61 return 1; 62 } 63 __setup("mphash_entries=", set_mphash_entries); 64 65 static u64 event; 66 static DEFINE_IDA(mnt_id_ida); 67 static DEFINE_IDA(mnt_group_ida); 68 69 static struct hlist_head *mount_hashtable __read_mostly; 70 static struct hlist_head *mountpoint_hashtable __read_mostly; 71 static struct kmem_cache *mnt_cache __read_mostly; 72 static DECLARE_RWSEM(namespace_sem); 73 static HLIST_HEAD(unmounted); /* protected by namespace_sem */ 74 static LIST_HEAD(ex_mountpoints); /* protected by namespace_sem */ 75 76 /* /sys/fs */ 77 struct kobject *fs_kobj; 78 EXPORT_SYMBOL_GPL(fs_kobj); 79 80 /* 81 * vfsmount lock may be taken for read to prevent changes to the 82 * vfsmount hash, ie. during mountpoint lookups or walking back 83 * up the tree. 84 * 85 * It should be taken for write in all cases where the vfsmount 86 * tree or hash is modified or when a vfsmount structure is modified. 87 */ 88 __cacheline_aligned_in_smp DEFINE_SEQLOCK(mount_lock); 89 90 static inline struct hlist_head *m_hash(struct vfsmount *mnt, struct dentry *dentry) 91 { 92 unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES); 93 tmp += ((unsigned long)dentry / L1_CACHE_BYTES); 94 tmp = tmp + (tmp >> m_hash_shift); 95 return &mount_hashtable[tmp & m_hash_mask]; 96 } 97 98 static inline struct hlist_head *mp_hash(struct dentry *dentry) 99 { 100 unsigned long tmp = ((unsigned long)dentry / L1_CACHE_BYTES); 101 tmp = tmp + (tmp >> mp_hash_shift); 102 return &mountpoint_hashtable[tmp & mp_hash_mask]; 103 } 104 105 static int mnt_alloc_id(struct mount *mnt) 106 { 107 int res = ida_alloc(&mnt_id_ida, GFP_KERNEL); 108 109 if (res < 0) 110 return res; 111 mnt->mnt_id = res; 112 return 0; 113 } 114 115 static void mnt_free_id(struct mount *mnt) 116 { 117 ida_free(&mnt_id_ida, mnt->mnt_id); 118 } 119 120 /* 121 * Allocate a new peer group ID 122 */ 123 static int mnt_alloc_group_id(struct mount *mnt) 124 { 125 int res = ida_alloc_min(&mnt_group_ida, 1, GFP_KERNEL); 126 127 if (res < 0) 128 return res; 129 mnt->mnt_group_id = res; 130 return 0; 131 } 132 133 /* 134 * Release a peer group ID 135 */ 136 void mnt_release_group_id(struct mount *mnt) 137 { 138 ida_free(&mnt_group_ida, mnt->mnt_group_id); 139 mnt->mnt_group_id = 0; 140 } 141 142 /* 143 * vfsmount lock must be held for read 144 */ 145 static inline void mnt_add_count(struct mount *mnt, int n) 146 { 147 #ifdef CONFIG_SMP 148 this_cpu_add(mnt->mnt_pcp->mnt_count, n); 149 #else 150 preempt_disable(); 151 mnt->mnt_count += n; 152 preempt_enable(); 153 #endif 154 } 155 156 /* 157 * vfsmount lock must be held for write 158 */ 159 unsigned int mnt_get_count(struct mount *mnt) 160 { 161 #ifdef CONFIG_SMP 162 unsigned int count = 0; 163 int cpu; 164 165 for_each_possible_cpu(cpu) { 166 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count; 167 } 168 169 return count; 170 #else 171 return mnt->mnt_count; 172 #endif 173 } 174 175 static struct mount *alloc_vfsmnt(const char *name) 176 { 177 struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL); 178 if (mnt) { 179 int err; 180 181 err = mnt_alloc_id(mnt); 182 if (err) 183 goto out_free_cache; 184 185 if (name) { 186 mnt->mnt_devname = kstrdup_const(name, GFP_KERNEL); 187 if (!mnt->mnt_devname) 188 goto out_free_id; 189 } 190 191 #ifdef CONFIG_SMP 192 mnt->mnt_pcp = alloc_percpu(struct mnt_pcp); 193 if (!mnt->mnt_pcp) 194 goto out_free_devname; 195 196 this_cpu_add(mnt->mnt_pcp->mnt_count, 1); 197 #else 198 mnt->mnt_count = 1; 199 mnt->mnt_writers = 0; 200 #endif 201 202 INIT_HLIST_NODE(&mnt->mnt_hash); 203 INIT_LIST_HEAD(&mnt->mnt_child); 204 INIT_LIST_HEAD(&mnt->mnt_mounts); 205 INIT_LIST_HEAD(&mnt->mnt_list); 206 INIT_LIST_HEAD(&mnt->mnt_expire); 207 INIT_LIST_HEAD(&mnt->mnt_share); 208 INIT_LIST_HEAD(&mnt->mnt_slave_list); 209 INIT_LIST_HEAD(&mnt->mnt_slave); 210 INIT_HLIST_NODE(&mnt->mnt_mp_list); 211 INIT_LIST_HEAD(&mnt->mnt_umounting); 212 INIT_HLIST_HEAD(&mnt->mnt_stuck_children); 213 } 214 return mnt; 215 216 #ifdef CONFIG_SMP 217 out_free_devname: 218 kfree_const(mnt->mnt_devname); 219 #endif 220 out_free_id: 221 mnt_free_id(mnt); 222 out_free_cache: 223 kmem_cache_free(mnt_cache, mnt); 224 return NULL; 225 } 226 227 /* 228 * Most r/o checks on a fs are for operations that take 229 * discrete amounts of time, like a write() or unlink(). 230 * We must keep track of when those operations start 231 * (for permission checks) and when they end, so that 232 * we can determine when writes are able to occur to 233 * a filesystem. 234 */ 235 /* 236 * __mnt_is_readonly: check whether a mount is read-only 237 * @mnt: the mount to check for its write status 238 * 239 * This shouldn't be used directly ouside of the VFS. 240 * It does not guarantee that the filesystem will stay 241 * r/w, just that it is right *now*. This can not and 242 * should not be used in place of IS_RDONLY(inode). 243 * mnt_want/drop_write() will _keep_ the filesystem 244 * r/w. 245 */ 246 bool __mnt_is_readonly(struct vfsmount *mnt) 247 { 248 return (mnt->mnt_flags & MNT_READONLY) || sb_rdonly(mnt->mnt_sb); 249 } 250 EXPORT_SYMBOL_GPL(__mnt_is_readonly); 251 252 static inline void mnt_inc_writers(struct mount *mnt) 253 { 254 #ifdef CONFIG_SMP 255 this_cpu_inc(mnt->mnt_pcp->mnt_writers); 256 #else 257 mnt->mnt_writers++; 258 #endif 259 } 260 261 static inline void mnt_dec_writers(struct mount *mnt) 262 { 263 #ifdef CONFIG_SMP 264 this_cpu_dec(mnt->mnt_pcp->mnt_writers); 265 #else 266 mnt->mnt_writers--; 267 #endif 268 } 269 270 static unsigned int mnt_get_writers(struct mount *mnt) 271 { 272 #ifdef CONFIG_SMP 273 unsigned int count = 0; 274 int cpu; 275 276 for_each_possible_cpu(cpu) { 277 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers; 278 } 279 280 return count; 281 #else 282 return mnt->mnt_writers; 283 #endif 284 } 285 286 static int mnt_is_readonly(struct vfsmount *mnt) 287 { 288 if (mnt->mnt_sb->s_readonly_remount) 289 return 1; 290 /* Order wrt setting s_flags/s_readonly_remount in do_remount() */ 291 smp_rmb(); 292 return __mnt_is_readonly(mnt); 293 } 294 295 /* 296 * Most r/o & frozen checks on a fs are for operations that take discrete 297 * amounts of time, like a write() or unlink(). We must keep track of when 298 * those operations start (for permission checks) and when they end, so that we 299 * can determine when writes are able to occur to a filesystem. 300 */ 301 /** 302 * __mnt_want_write - get write access to a mount without freeze protection 303 * @m: the mount on which to take a write 304 * 305 * This tells the low-level filesystem that a write is about to be performed to 306 * it, and makes sure that writes are allowed (mnt it read-write) before 307 * returning success. This operation does not protect against filesystem being 308 * frozen. When the write operation is finished, __mnt_drop_write() must be 309 * called. This is effectively a refcount. 310 */ 311 int __mnt_want_write(struct vfsmount *m) 312 { 313 struct mount *mnt = real_mount(m); 314 int ret = 0; 315 316 preempt_disable(); 317 mnt_inc_writers(mnt); 318 /* 319 * The store to mnt_inc_writers must be visible before we pass 320 * MNT_WRITE_HOLD loop below, so that the slowpath can see our 321 * incremented count after it has set MNT_WRITE_HOLD. 322 */ 323 smp_mb(); 324 while (READ_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD) 325 cpu_relax(); 326 /* 327 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will 328 * be set to match its requirements. So we must not load that until 329 * MNT_WRITE_HOLD is cleared. 330 */ 331 smp_rmb(); 332 if (mnt_is_readonly(m)) { 333 mnt_dec_writers(mnt); 334 ret = -EROFS; 335 } 336 preempt_enable(); 337 338 return ret; 339 } 340 341 /** 342 * mnt_want_write - get write access to a mount 343 * @m: the mount on which to take a write 344 * 345 * This tells the low-level filesystem that a write is about to be performed to 346 * it, and makes sure that writes are allowed (mount is read-write, filesystem 347 * is not frozen) before returning success. When the write operation is 348 * finished, mnt_drop_write() must be called. This is effectively a refcount. 349 */ 350 int mnt_want_write(struct vfsmount *m) 351 { 352 int ret; 353 354 sb_start_write(m->mnt_sb); 355 ret = __mnt_want_write(m); 356 if (ret) 357 sb_end_write(m->mnt_sb); 358 return ret; 359 } 360 EXPORT_SYMBOL_GPL(mnt_want_write); 361 362 /** 363 * mnt_clone_write - get write access to a mount 364 * @mnt: the mount on which to take a write 365 * 366 * This is effectively like mnt_want_write, except 367 * it must only be used to take an extra write reference 368 * on a mountpoint that we already know has a write reference 369 * on it. This allows some optimisation. 370 * 371 * After finished, mnt_drop_write must be called as usual to 372 * drop the reference. 373 */ 374 int mnt_clone_write(struct vfsmount *mnt) 375 { 376 /* superblock may be r/o */ 377 if (__mnt_is_readonly(mnt)) 378 return -EROFS; 379 preempt_disable(); 380 mnt_inc_writers(real_mount(mnt)); 381 preempt_enable(); 382 return 0; 383 } 384 EXPORT_SYMBOL_GPL(mnt_clone_write); 385 386 /** 387 * __mnt_want_write_file - get write access to a file's mount 388 * @file: the file who's mount on which to take a write 389 * 390 * This is like __mnt_want_write, but it takes a file and can 391 * do some optimisations if the file is open for write already 392 */ 393 int __mnt_want_write_file(struct file *file) 394 { 395 if (!(file->f_mode & FMODE_WRITER)) 396 return __mnt_want_write(file->f_path.mnt); 397 else 398 return mnt_clone_write(file->f_path.mnt); 399 } 400 401 /** 402 * mnt_want_write_file - get write access to a file's mount 403 * @file: the file who's mount on which to take a write 404 * 405 * This is like mnt_want_write, but it takes a file and can 406 * do some optimisations if the file is open for write already 407 */ 408 int mnt_want_write_file(struct file *file) 409 { 410 int ret; 411 412 sb_start_write(file_inode(file)->i_sb); 413 ret = __mnt_want_write_file(file); 414 if (ret) 415 sb_end_write(file_inode(file)->i_sb); 416 return ret; 417 } 418 EXPORT_SYMBOL_GPL(mnt_want_write_file); 419 420 /** 421 * __mnt_drop_write - give up write access to a mount 422 * @mnt: the mount on which to give up write access 423 * 424 * Tells the low-level filesystem that we are done 425 * performing writes to it. Must be matched with 426 * __mnt_want_write() call above. 427 */ 428 void __mnt_drop_write(struct vfsmount *mnt) 429 { 430 preempt_disable(); 431 mnt_dec_writers(real_mount(mnt)); 432 preempt_enable(); 433 } 434 435 /** 436 * mnt_drop_write - give up write access to a mount 437 * @mnt: the mount on which to give up write access 438 * 439 * Tells the low-level filesystem that we are done performing writes to it and 440 * also allows filesystem to be frozen again. Must be matched with 441 * mnt_want_write() call above. 442 */ 443 void mnt_drop_write(struct vfsmount *mnt) 444 { 445 __mnt_drop_write(mnt); 446 sb_end_write(mnt->mnt_sb); 447 } 448 EXPORT_SYMBOL_GPL(mnt_drop_write); 449 450 void __mnt_drop_write_file(struct file *file) 451 { 452 __mnt_drop_write(file->f_path.mnt); 453 } 454 455 void mnt_drop_write_file(struct file *file) 456 { 457 __mnt_drop_write_file(file); 458 sb_end_write(file_inode(file)->i_sb); 459 } 460 EXPORT_SYMBOL(mnt_drop_write_file); 461 462 static int mnt_make_readonly(struct mount *mnt) 463 { 464 int ret = 0; 465 466 lock_mount_hash(); 467 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD; 468 /* 469 * After storing MNT_WRITE_HOLD, we'll read the counters. This store 470 * should be visible before we do. 471 */ 472 smp_mb(); 473 474 /* 475 * With writers on hold, if this value is zero, then there are 476 * definitely no active writers (although held writers may subsequently 477 * increment the count, they'll have to wait, and decrement it after 478 * seeing MNT_READONLY). 479 * 480 * It is OK to have counter incremented on one CPU and decremented on 481 * another: the sum will add up correctly. The danger would be when we 482 * sum up each counter, if we read a counter before it is incremented, 483 * but then read another CPU's count which it has been subsequently 484 * decremented from -- we would see more decrements than we should. 485 * MNT_WRITE_HOLD protects against this scenario, because 486 * mnt_want_write first increments count, then smp_mb, then spins on 487 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while 488 * we're counting up here. 489 */ 490 if (mnt_get_writers(mnt) > 0) 491 ret = -EBUSY; 492 else 493 mnt->mnt.mnt_flags |= MNT_READONLY; 494 /* 495 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers 496 * that become unheld will see MNT_READONLY. 497 */ 498 smp_wmb(); 499 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD; 500 unlock_mount_hash(); 501 return ret; 502 } 503 504 static int __mnt_unmake_readonly(struct mount *mnt) 505 { 506 lock_mount_hash(); 507 mnt->mnt.mnt_flags &= ~MNT_READONLY; 508 unlock_mount_hash(); 509 return 0; 510 } 511 512 int sb_prepare_remount_readonly(struct super_block *sb) 513 { 514 struct mount *mnt; 515 int err = 0; 516 517 /* Racy optimization. Recheck the counter under MNT_WRITE_HOLD */ 518 if (atomic_long_read(&sb->s_remove_count)) 519 return -EBUSY; 520 521 lock_mount_hash(); 522 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) { 523 if (!(mnt->mnt.mnt_flags & MNT_READONLY)) { 524 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD; 525 smp_mb(); 526 if (mnt_get_writers(mnt) > 0) { 527 err = -EBUSY; 528 break; 529 } 530 } 531 } 532 if (!err && atomic_long_read(&sb->s_remove_count)) 533 err = -EBUSY; 534 535 if (!err) { 536 sb->s_readonly_remount = 1; 537 smp_wmb(); 538 } 539 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) { 540 if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD) 541 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD; 542 } 543 unlock_mount_hash(); 544 545 return err; 546 } 547 548 static void free_vfsmnt(struct mount *mnt) 549 { 550 kfree_const(mnt->mnt_devname); 551 #ifdef CONFIG_SMP 552 free_percpu(mnt->mnt_pcp); 553 #endif 554 kmem_cache_free(mnt_cache, mnt); 555 } 556 557 static void delayed_free_vfsmnt(struct rcu_head *head) 558 { 559 free_vfsmnt(container_of(head, struct mount, mnt_rcu)); 560 } 561 562 /* call under rcu_read_lock */ 563 int __legitimize_mnt(struct vfsmount *bastard, unsigned seq) 564 { 565 struct mount *mnt; 566 if (read_seqretry(&mount_lock, seq)) 567 return 1; 568 if (bastard == NULL) 569 return 0; 570 mnt = real_mount(bastard); 571 mnt_add_count(mnt, 1); 572 smp_mb(); // see mntput_no_expire() 573 if (likely(!read_seqretry(&mount_lock, seq))) 574 return 0; 575 if (bastard->mnt_flags & MNT_SYNC_UMOUNT) { 576 mnt_add_count(mnt, -1); 577 return 1; 578 } 579 lock_mount_hash(); 580 if (unlikely(bastard->mnt_flags & MNT_DOOMED)) { 581 mnt_add_count(mnt, -1); 582 unlock_mount_hash(); 583 return 1; 584 } 585 unlock_mount_hash(); 586 /* caller will mntput() */ 587 return -1; 588 } 589 590 /* call under rcu_read_lock */ 591 bool legitimize_mnt(struct vfsmount *bastard, unsigned seq) 592 { 593 int res = __legitimize_mnt(bastard, seq); 594 if (likely(!res)) 595 return true; 596 if (unlikely(res < 0)) { 597 rcu_read_unlock(); 598 mntput(bastard); 599 rcu_read_lock(); 600 } 601 return false; 602 } 603 604 /* 605 * find the first mount at @dentry on vfsmount @mnt. 606 * call under rcu_read_lock() 607 */ 608 struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry) 609 { 610 struct hlist_head *head = m_hash(mnt, dentry); 611 struct mount *p; 612 613 hlist_for_each_entry_rcu(p, head, mnt_hash) 614 if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry) 615 return p; 616 return NULL; 617 } 618 619 /* 620 * lookup_mnt - Return the first child mount mounted at path 621 * 622 * "First" means first mounted chronologically. If you create the 623 * following mounts: 624 * 625 * mount /dev/sda1 /mnt 626 * mount /dev/sda2 /mnt 627 * mount /dev/sda3 /mnt 628 * 629 * Then lookup_mnt() on the base /mnt dentry in the root mount will 630 * return successively the root dentry and vfsmount of /dev/sda1, then 631 * /dev/sda2, then /dev/sda3, then NULL. 632 * 633 * lookup_mnt takes a reference to the found vfsmount. 634 */ 635 struct vfsmount *lookup_mnt(const struct path *path) 636 { 637 struct mount *child_mnt; 638 struct vfsmount *m; 639 unsigned seq; 640 641 rcu_read_lock(); 642 do { 643 seq = read_seqbegin(&mount_lock); 644 child_mnt = __lookup_mnt(path->mnt, path->dentry); 645 m = child_mnt ? &child_mnt->mnt : NULL; 646 } while (!legitimize_mnt(m, seq)); 647 rcu_read_unlock(); 648 return m; 649 } 650 651 /* 652 * __is_local_mountpoint - Test to see if dentry is a mountpoint in the 653 * current mount namespace. 654 * 655 * The common case is dentries are not mountpoints at all and that 656 * test is handled inline. For the slow case when we are actually 657 * dealing with a mountpoint of some kind, walk through all of the 658 * mounts in the current mount namespace and test to see if the dentry 659 * is a mountpoint. 660 * 661 * The mount_hashtable is not usable in the context because we 662 * need to identify all mounts that may be in the current mount 663 * namespace not just a mount that happens to have some specified 664 * parent mount. 665 */ 666 bool __is_local_mountpoint(struct dentry *dentry) 667 { 668 struct mnt_namespace *ns = current->nsproxy->mnt_ns; 669 struct mount *mnt; 670 bool is_covered = false; 671 672 if (!d_mountpoint(dentry)) 673 goto out; 674 675 down_read(&namespace_sem); 676 list_for_each_entry(mnt, &ns->list, mnt_list) { 677 is_covered = (mnt->mnt_mountpoint == dentry); 678 if (is_covered) 679 break; 680 } 681 up_read(&namespace_sem); 682 out: 683 return is_covered; 684 } 685 686 static struct mountpoint *lookup_mountpoint(struct dentry *dentry) 687 { 688 struct hlist_head *chain = mp_hash(dentry); 689 struct mountpoint *mp; 690 691 hlist_for_each_entry(mp, chain, m_hash) { 692 if (mp->m_dentry == dentry) { 693 mp->m_count++; 694 return mp; 695 } 696 } 697 return NULL; 698 } 699 700 static struct mountpoint *get_mountpoint(struct dentry *dentry) 701 { 702 struct mountpoint *mp, *new = NULL; 703 int ret; 704 705 if (d_mountpoint(dentry)) { 706 /* might be worth a WARN_ON() */ 707 if (d_unlinked(dentry)) 708 return ERR_PTR(-ENOENT); 709 mountpoint: 710 read_seqlock_excl(&mount_lock); 711 mp = lookup_mountpoint(dentry); 712 read_sequnlock_excl(&mount_lock); 713 if (mp) 714 goto done; 715 } 716 717 if (!new) 718 new = kmalloc(sizeof(struct mountpoint), GFP_KERNEL); 719 if (!new) 720 return ERR_PTR(-ENOMEM); 721 722 723 /* Exactly one processes may set d_mounted */ 724 ret = d_set_mounted(dentry); 725 726 /* Someone else set d_mounted? */ 727 if (ret == -EBUSY) 728 goto mountpoint; 729 730 /* The dentry is not available as a mountpoint? */ 731 mp = ERR_PTR(ret); 732 if (ret) 733 goto done; 734 735 /* Add the new mountpoint to the hash table */ 736 read_seqlock_excl(&mount_lock); 737 new->m_dentry = dget(dentry); 738 new->m_count = 1; 739 hlist_add_head(&new->m_hash, mp_hash(dentry)); 740 INIT_HLIST_HEAD(&new->m_list); 741 read_sequnlock_excl(&mount_lock); 742 743 mp = new; 744 new = NULL; 745 done: 746 kfree(new); 747 return mp; 748 } 749 750 /* 751 * vfsmount lock must be held. Additionally, the caller is responsible 752 * for serializing calls for given disposal list. 753 */ 754 static void __put_mountpoint(struct mountpoint *mp, struct list_head *list) 755 { 756 if (!--mp->m_count) { 757 struct dentry *dentry = mp->m_dentry; 758 BUG_ON(!hlist_empty(&mp->m_list)); 759 spin_lock(&dentry->d_lock); 760 dentry->d_flags &= ~DCACHE_MOUNTED; 761 spin_unlock(&dentry->d_lock); 762 dput_to_list(dentry, list); 763 hlist_del(&mp->m_hash); 764 kfree(mp); 765 } 766 } 767 768 /* called with namespace_lock and vfsmount lock */ 769 static void put_mountpoint(struct mountpoint *mp) 770 { 771 __put_mountpoint(mp, &ex_mountpoints); 772 } 773 774 static inline int check_mnt(struct mount *mnt) 775 { 776 return mnt->mnt_ns == current->nsproxy->mnt_ns; 777 } 778 779 /* 780 * vfsmount lock must be held for write 781 */ 782 static void touch_mnt_namespace(struct mnt_namespace *ns) 783 { 784 if (ns) { 785 ns->event = ++event; 786 wake_up_interruptible(&ns->poll); 787 } 788 } 789 790 /* 791 * vfsmount lock must be held for write 792 */ 793 static void __touch_mnt_namespace(struct mnt_namespace *ns) 794 { 795 if (ns && ns->event != event) { 796 ns->event = event; 797 wake_up_interruptible(&ns->poll); 798 } 799 } 800 801 /* 802 * vfsmount lock must be held for write 803 */ 804 static struct mountpoint *unhash_mnt(struct mount *mnt) 805 { 806 struct mountpoint *mp; 807 mnt->mnt_parent = mnt; 808 mnt->mnt_mountpoint = mnt->mnt.mnt_root; 809 list_del_init(&mnt->mnt_child); 810 hlist_del_init_rcu(&mnt->mnt_hash); 811 hlist_del_init(&mnt->mnt_mp_list); 812 mp = mnt->mnt_mp; 813 mnt->mnt_mp = NULL; 814 return mp; 815 } 816 817 /* 818 * vfsmount lock must be held for write 819 */ 820 static void umount_mnt(struct mount *mnt) 821 { 822 put_mountpoint(unhash_mnt(mnt)); 823 } 824 825 /* 826 * vfsmount lock must be held for write 827 */ 828 void mnt_set_mountpoint(struct mount *mnt, 829 struct mountpoint *mp, 830 struct mount *child_mnt) 831 { 832 mp->m_count++; 833 mnt_add_count(mnt, 1); /* essentially, that's mntget */ 834 child_mnt->mnt_mountpoint = mp->m_dentry; 835 child_mnt->mnt_parent = mnt; 836 child_mnt->mnt_mp = mp; 837 hlist_add_head(&child_mnt->mnt_mp_list, &mp->m_list); 838 } 839 840 static void __attach_mnt(struct mount *mnt, struct mount *parent) 841 { 842 hlist_add_head_rcu(&mnt->mnt_hash, 843 m_hash(&parent->mnt, mnt->mnt_mountpoint)); 844 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts); 845 } 846 847 /* 848 * vfsmount lock must be held for write 849 */ 850 static void attach_mnt(struct mount *mnt, 851 struct mount *parent, 852 struct mountpoint *mp) 853 { 854 mnt_set_mountpoint(parent, mp, mnt); 855 __attach_mnt(mnt, parent); 856 } 857 858 void mnt_change_mountpoint(struct mount *parent, struct mountpoint *mp, struct mount *mnt) 859 { 860 struct mountpoint *old_mp = mnt->mnt_mp; 861 struct mount *old_parent = mnt->mnt_parent; 862 863 list_del_init(&mnt->mnt_child); 864 hlist_del_init(&mnt->mnt_mp_list); 865 hlist_del_init_rcu(&mnt->mnt_hash); 866 867 attach_mnt(mnt, parent, mp); 868 869 put_mountpoint(old_mp); 870 mnt_add_count(old_parent, -1); 871 } 872 873 /* 874 * vfsmount lock must be held for write 875 */ 876 static void commit_tree(struct mount *mnt) 877 { 878 struct mount *parent = mnt->mnt_parent; 879 struct mount *m; 880 LIST_HEAD(head); 881 struct mnt_namespace *n = parent->mnt_ns; 882 883 BUG_ON(parent == mnt); 884 885 list_add_tail(&head, &mnt->mnt_list); 886 list_for_each_entry(m, &head, mnt_list) 887 m->mnt_ns = n; 888 889 list_splice(&head, n->list.prev); 890 891 n->mounts += n->pending_mounts; 892 n->pending_mounts = 0; 893 894 __attach_mnt(mnt, parent); 895 touch_mnt_namespace(n); 896 } 897 898 static struct mount *next_mnt(struct mount *p, struct mount *root) 899 { 900 struct list_head *next = p->mnt_mounts.next; 901 if (next == &p->mnt_mounts) { 902 while (1) { 903 if (p == root) 904 return NULL; 905 next = p->mnt_child.next; 906 if (next != &p->mnt_parent->mnt_mounts) 907 break; 908 p = p->mnt_parent; 909 } 910 } 911 return list_entry(next, struct mount, mnt_child); 912 } 913 914 static struct mount *skip_mnt_tree(struct mount *p) 915 { 916 struct list_head *prev = p->mnt_mounts.prev; 917 while (prev != &p->mnt_mounts) { 918 p = list_entry(prev, struct mount, mnt_child); 919 prev = p->mnt_mounts.prev; 920 } 921 return p; 922 } 923 924 /** 925 * vfs_create_mount - Create a mount for a configured superblock 926 * @fc: The configuration context with the superblock attached 927 * 928 * Create a mount to an already configured superblock. If necessary, the 929 * caller should invoke vfs_get_tree() before calling this. 930 * 931 * Note that this does not attach the mount to anything. 932 */ 933 struct vfsmount *vfs_create_mount(struct fs_context *fc) 934 { 935 struct mount *mnt; 936 937 if (!fc->root) 938 return ERR_PTR(-EINVAL); 939 940 mnt = alloc_vfsmnt(fc->source ?: "none"); 941 if (!mnt) 942 return ERR_PTR(-ENOMEM); 943 944 if (fc->sb_flags & SB_KERNMOUNT) 945 mnt->mnt.mnt_flags = MNT_INTERNAL; 946 947 atomic_inc(&fc->root->d_sb->s_active); 948 mnt->mnt.mnt_sb = fc->root->d_sb; 949 mnt->mnt.mnt_root = dget(fc->root); 950 mnt->mnt_mountpoint = mnt->mnt.mnt_root; 951 mnt->mnt_parent = mnt; 952 953 lock_mount_hash(); 954 list_add_tail(&mnt->mnt_instance, &mnt->mnt.mnt_sb->s_mounts); 955 unlock_mount_hash(); 956 return &mnt->mnt; 957 } 958 EXPORT_SYMBOL(vfs_create_mount); 959 960 struct vfsmount *fc_mount(struct fs_context *fc) 961 { 962 int err = vfs_get_tree(fc); 963 if (!err) { 964 up_write(&fc->root->d_sb->s_umount); 965 return vfs_create_mount(fc); 966 } 967 return ERR_PTR(err); 968 } 969 EXPORT_SYMBOL(fc_mount); 970 971 struct vfsmount *vfs_kern_mount(struct file_system_type *type, 972 int flags, const char *name, 973 void *data) 974 { 975 struct fs_context *fc; 976 struct vfsmount *mnt; 977 int ret = 0; 978 979 if (!type) 980 return ERR_PTR(-EINVAL); 981 982 fc = fs_context_for_mount(type, flags); 983 if (IS_ERR(fc)) 984 return ERR_CAST(fc); 985 986 if (name) 987 ret = vfs_parse_fs_string(fc, "source", 988 name, strlen(name)); 989 if (!ret) 990 ret = parse_monolithic_mount_data(fc, data); 991 if (!ret) 992 mnt = fc_mount(fc); 993 else 994 mnt = ERR_PTR(ret); 995 996 put_fs_context(fc); 997 return mnt; 998 } 999 EXPORT_SYMBOL_GPL(vfs_kern_mount); 1000 1001 struct vfsmount * 1002 vfs_submount(const struct dentry *mountpoint, struct file_system_type *type, 1003 const char *name, void *data) 1004 { 1005 /* Until it is worked out how to pass the user namespace 1006 * through from the parent mount to the submount don't support 1007 * unprivileged mounts with submounts. 1008 */ 1009 if (mountpoint->d_sb->s_user_ns != &init_user_ns) 1010 return ERR_PTR(-EPERM); 1011 1012 return vfs_kern_mount(type, SB_SUBMOUNT, name, data); 1013 } 1014 EXPORT_SYMBOL_GPL(vfs_submount); 1015 1016 static struct mount *clone_mnt(struct mount *old, struct dentry *root, 1017 int flag) 1018 { 1019 struct super_block *sb = old->mnt.mnt_sb; 1020 struct mount *mnt; 1021 int err; 1022 1023 mnt = alloc_vfsmnt(old->mnt_devname); 1024 if (!mnt) 1025 return ERR_PTR(-ENOMEM); 1026 1027 if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE)) 1028 mnt->mnt_group_id = 0; /* not a peer of original */ 1029 else 1030 mnt->mnt_group_id = old->mnt_group_id; 1031 1032 if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) { 1033 err = mnt_alloc_group_id(mnt); 1034 if (err) 1035 goto out_free; 1036 } 1037 1038 mnt->mnt.mnt_flags = old->mnt.mnt_flags; 1039 mnt->mnt.mnt_flags &= ~(MNT_WRITE_HOLD|MNT_MARKED|MNT_INTERNAL); 1040 1041 atomic_inc(&sb->s_active); 1042 mnt->mnt.mnt_sb = sb; 1043 mnt->mnt.mnt_root = dget(root); 1044 mnt->mnt_mountpoint = mnt->mnt.mnt_root; 1045 mnt->mnt_parent = mnt; 1046 lock_mount_hash(); 1047 list_add_tail(&mnt->mnt_instance, &sb->s_mounts); 1048 unlock_mount_hash(); 1049 1050 if ((flag & CL_SLAVE) || 1051 ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) { 1052 list_add(&mnt->mnt_slave, &old->mnt_slave_list); 1053 mnt->mnt_master = old; 1054 CLEAR_MNT_SHARED(mnt); 1055 } else if (!(flag & CL_PRIVATE)) { 1056 if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old)) 1057 list_add(&mnt->mnt_share, &old->mnt_share); 1058 if (IS_MNT_SLAVE(old)) 1059 list_add(&mnt->mnt_slave, &old->mnt_slave); 1060 mnt->mnt_master = old->mnt_master; 1061 } else { 1062 CLEAR_MNT_SHARED(mnt); 1063 } 1064 if (flag & CL_MAKE_SHARED) 1065 set_mnt_shared(mnt); 1066 1067 /* stick the duplicate mount on the same expiry list 1068 * as the original if that was on one */ 1069 if (flag & CL_EXPIRE) { 1070 if (!list_empty(&old->mnt_expire)) 1071 list_add(&mnt->mnt_expire, &old->mnt_expire); 1072 } 1073 1074 return mnt; 1075 1076 out_free: 1077 mnt_free_id(mnt); 1078 free_vfsmnt(mnt); 1079 return ERR_PTR(err); 1080 } 1081 1082 static void cleanup_mnt(struct mount *mnt) 1083 { 1084 struct hlist_node *p; 1085 struct mount *m; 1086 /* 1087 * The warning here probably indicates that somebody messed 1088 * up a mnt_want/drop_write() pair. If this happens, the 1089 * filesystem was probably unable to make r/w->r/o transitions. 1090 * The locking used to deal with mnt_count decrement provides barriers, 1091 * so mnt_get_writers() below is safe. 1092 */ 1093 WARN_ON(mnt_get_writers(mnt)); 1094 if (unlikely(mnt->mnt_pins.first)) 1095 mnt_pin_kill(mnt); 1096 hlist_for_each_entry_safe(m, p, &mnt->mnt_stuck_children, mnt_umount) { 1097 hlist_del(&m->mnt_umount); 1098 mntput(&m->mnt); 1099 } 1100 fsnotify_vfsmount_delete(&mnt->mnt); 1101 dput(mnt->mnt.mnt_root); 1102 deactivate_super(mnt->mnt.mnt_sb); 1103 mnt_free_id(mnt); 1104 call_rcu(&mnt->mnt_rcu, delayed_free_vfsmnt); 1105 } 1106 1107 static void __cleanup_mnt(struct rcu_head *head) 1108 { 1109 cleanup_mnt(container_of(head, struct mount, mnt_rcu)); 1110 } 1111 1112 static LLIST_HEAD(delayed_mntput_list); 1113 static void delayed_mntput(struct work_struct *unused) 1114 { 1115 struct llist_node *node = llist_del_all(&delayed_mntput_list); 1116 struct mount *m, *t; 1117 1118 llist_for_each_entry_safe(m, t, node, mnt_llist) 1119 cleanup_mnt(m); 1120 } 1121 static DECLARE_DELAYED_WORK(delayed_mntput_work, delayed_mntput); 1122 1123 static void mntput_no_expire(struct mount *mnt) 1124 { 1125 LIST_HEAD(list); 1126 1127 rcu_read_lock(); 1128 if (likely(READ_ONCE(mnt->mnt_ns))) { 1129 /* 1130 * Since we don't do lock_mount_hash() here, 1131 * ->mnt_ns can change under us. However, if it's 1132 * non-NULL, then there's a reference that won't 1133 * be dropped until after an RCU delay done after 1134 * turning ->mnt_ns NULL. So if we observe it 1135 * non-NULL under rcu_read_lock(), the reference 1136 * we are dropping is not the final one. 1137 */ 1138 mnt_add_count(mnt, -1); 1139 rcu_read_unlock(); 1140 return; 1141 } 1142 lock_mount_hash(); 1143 /* 1144 * make sure that if __legitimize_mnt() has not seen us grab 1145 * mount_lock, we'll see their refcount increment here. 1146 */ 1147 smp_mb(); 1148 mnt_add_count(mnt, -1); 1149 if (mnt_get_count(mnt)) { 1150 rcu_read_unlock(); 1151 unlock_mount_hash(); 1152 return; 1153 } 1154 if (unlikely(mnt->mnt.mnt_flags & MNT_DOOMED)) { 1155 rcu_read_unlock(); 1156 unlock_mount_hash(); 1157 return; 1158 } 1159 mnt->mnt.mnt_flags |= MNT_DOOMED; 1160 rcu_read_unlock(); 1161 1162 list_del(&mnt->mnt_instance); 1163 1164 if (unlikely(!list_empty(&mnt->mnt_mounts))) { 1165 struct mount *p, *tmp; 1166 list_for_each_entry_safe(p, tmp, &mnt->mnt_mounts, mnt_child) { 1167 __put_mountpoint(unhash_mnt(p), &list); 1168 hlist_add_head(&p->mnt_umount, &mnt->mnt_stuck_children); 1169 } 1170 } 1171 unlock_mount_hash(); 1172 shrink_dentry_list(&list); 1173 1174 if (likely(!(mnt->mnt.mnt_flags & MNT_INTERNAL))) { 1175 struct task_struct *task = current; 1176 if (likely(!(task->flags & PF_KTHREAD))) { 1177 init_task_work(&mnt->mnt_rcu, __cleanup_mnt); 1178 if (!task_work_add(task, &mnt->mnt_rcu, true)) 1179 return; 1180 } 1181 if (llist_add(&mnt->mnt_llist, &delayed_mntput_list)) 1182 schedule_delayed_work(&delayed_mntput_work, 1); 1183 return; 1184 } 1185 cleanup_mnt(mnt); 1186 } 1187 1188 void mntput(struct vfsmount *mnt) 1189 { 1190 if (mnt) { 1191 struct mount *m = real_mount(mnt); 1192 /* avoid cacheline pingpong, hope gcc doesn't get "smart" */ 1193 if (unlikely(m->mnt_expiry_mark)) 1194 m->mnt_expiry_mark = 0; 1195 mntput_no_expire(m); 1196 } 1197 } 1198 EXPORT_SYMBOL(mntput); 1199 1200 struct vfsmount *mntget(struct vfsmount *mnt) 1201 { 1202 if (mnt) 1203 mnt_add_count(real_mount(mnt), 1); 1204 return mnt; 1205 } 1206 EXPORT_SYMBOL(mntget); 1207 1208 /* path_is_mountpoint() - Check if path is a mount in the current 1209 * namespace. 1210 * 1211 * d_mountpoint() can only be used reliably to establish if a dentry is 1212 * not mounted in any namespace and that common case is handled inline. 1213 * d_mountpoint() isn't aware of the possibility there may be multiple 1214 * mounts using a given dentry in a different namespace. This function 1215 * checks if the passed in path is a mountpoint rather than the dentry 1216 * alone. 1217 */ 1218 bool path_is_mountpoint(const struct path *path) 1219 { 1220 unsigned seq; 1221 bool res; 1222 1223 if (!d_mountpoint(path->dentry)) 1224 return false; 1225 1226 rcu_read_lock(); 1227 do { 1228 seq = read_seqbegin(&mount_lock); 1229 res = __path_is_mountpoint(path); 1230 } while (read_seqretry(&mount_lock, seq)); 1231 rcu_read_unlock(); 1232 1233 return res; 1234 } 1235 EXPORT_SYMBOL(path_is_mountpoint); 1236 1237 struct vfsmount *mnt_clone_internal(const struct path *path) 1238 { 1239 struct mount *p; 1240 p = clone_mnt(real_mount(path->mnt), path->dentry, CL_PRIVATE); 1241 if (IS_ERR(p)) 1242 return ERR_CAST(p); 1243 p->mnt.mnt_flags |= MNT_INTERNAL; 1244 return &p->mnt; 1245 } 1246 1247 #ifdef CONFIG_PROC_FS 1248 /* iterator; we want it to have access to namespace_sem, thus here... */ 1249 static void *m_start(struct seq_file *m, loff_t *pos) 1250 { 1251 struct proc_mounts *p = m->private; 1252 1253 down_read(&namespace_sem); 1254 if (p->cached_event == p->ns->event) { 1255 void *v = p->cached_mount; 1256 if (*pos == p->cached_index) 1257 return v; 1258 if (*pos == p->cached_index + 1) { 1259 v = seq_list_next(v, &p->ns->list, &p->cached_index); 1260 return p->cached_mount = v; 1261 } 1262 } 1263 1264 p->cached_event = p->ns->event; 1265 p->cached_mount = seq_list_start(&p->ns->list, *pos); 1266 p->cached_index = *pos; 1267 return p->cached_mount; 1268 } 1269 1270 static void *m_next(struct seq_file *m, void *v, loff_t *pos) 1271 { 1272 struct proc_mounts *p = m->private; 1273 1274 p->cached_mount = seq_list_next(v, &p->ns->list, pos); 1275 p->cached_index = *pos; 1276 return p->cached_mount; 1277 } 1278 1279 static void m_stop(struct seq_file *m, void *v) 1280 { 1281 up_read(&namespace_sem); 1282 } 1283 1284 static int m_show(struct seq_file *m, void *v) 1285 { 1286 struct proc_mounts *p = m->private; 1287 struct mount *r = list_entry(v, struct mount, mnt_list); 1288 return p->show(m, &r->mnt); 1289 } 1290 1291 const struct seq_operations mounts_op = { 1292 .start = m_start, 1293 .next = m_next, 1294 .stop = m_stop, 1295 .show = m_show, 1296 }; 1297 #endif /* CONFIG_PROC_FS */ 1298 1299 /** 1300 * may_umount_tree - check if a mount tree is busy 1301 * @mnt: root of mount tree 1302 * 1303 * This is called to check if a tree of mounts has any 1304 * open files, pwds, chroots or sub mounts that are 1305 * busy. 1306 */ 1307 int may_umount_tree(struct vfsmount *m) 1308 { 1309 struct mount *mnt = real_mount(m); 1310 int actual_refs = 0; 1311 int minimum_refs = 0; 1312 struct mount *p; 1313 BUG_ON(!m); 1314 1315 /* write lock needed for mnt_get_count */ 1316 lock_mount_hash(); 1317 for (p = mnt; p; p = next_mnt(p, mnt)) { 1318 actual_refs += mnt_get_count(p); 1319 minimum_refs += 2; 1320 } 1321 unlock_mount_hash(); 1322 1323 if (actual_refs > minimum_refs) 1324 return 0; 1325 1326 return 1; 1327 } 1328 1329 EXPORT_SYMBOL(may_umount_tree); 1330 1331 /** 1332 * may_umount - check if a mount point is busy 1333 * @mnt: root of mount 1334 * 1335 * This is called to check if a mount point has any 1336 * open files, pwds, chroots or sub mounts. If the 1337 * mount has sub mounts this will return busy 1338 * regardless of whether the sub mounts are busy. 1339 * 1340 * Doesn't take quota and stuff into account. IOW, in some cases it will 1341 * give false negatives. The main reason why it's here is that we need 1342 * a non-destructive way to look for easily umountable filesystems. 1343 */ 1344 int may_umount(struct vfsmount *mnt) 1345 { 1346 int ret = 1; 1347 down_read(&namespace_sem); 1348 lock_mount_hash(); 1349 if (propagate_mount_busy(real_mount(mnt), 2)) 1350 ret = 0; 1351 unlock_mount_hash(); 1352 up_read(&namespace_sem); 1353 return ret; 1354 } 1355 1356 EXPORT_SYMBOL(may_umount); 1357 1358 static void namespace_unlock(void) 1359 { 1360 struct hlist_head head; 1361 struct hlist_node *p; 1362 struct mount *m; 1363 LIST_HEAD(list); 1364 1365 hlist_move_list(&unmounted, &head); 1366 list_splice_init(&ex_mountpoints, &list); 1367 1368 up_write(&namespace_sem); 1369 1370 shrink_dentry_list(&list); 1371 1372 if (likely(hlist_empty(&head))) 1373 return; 1374 1375 synchronize_rcu_expedited(); 1376 1377 hlist_for_each_entry_safe(m, p, &head, mnt_umount) { 1378 hlist_del(&m->mnt_umount); 1379 mntput(&m->mnt); 1380 } 1381 } 1382 1383 static inline void namespace_lock(void) 1384 { 1385 down_write(&namespace_sem); 1386 } 1387 1388 enum umount_tree_flags { 1389 UMOUNT_SYNC = 1, 1390 UMOUNT_PROPAGATE = 2, 1391 UMOUNT_CONNECTED = 4, 1392 }; 1393 1394 static bool disconnect_mount(struct mount *mnt, enum umount_tree_flags how) 1395 { 1396 /* Leaving mounts connected is only valid for lazy umounts */ 1397 if (how & UMOUNT_SYNC) 1398 return true; 1399 1400 /* A mount without a parent has nothing to be connected to */ 1401 if (!mnt_has_parent(mnt)) 1402 return true; 1403 1404 /* Because the reference counting rules change when mounts are 1405 * unmounted and connected, umounted mounts may not be 1406 * connected to mounted mounts. 1407 */ 1408 if (!(mnt->mnt_parent->mnt.mnt_flags & MNT_UMOUNT)) 1409 return true; 1410 1411 /* Has it been requested that the mount remain connected? */ 1412 if (how & UMOUNT_CONNECTED) 1413 return false; 1414 1415 /* Is the mount locked such that it needs to remain connected? */ 1416 if (IS_MNT_LOCKED(mnt)) 1417 return false; 1418 1419 /* By default disconnect the mount */ 1420 return true; 1421 } 1422 1423 /* 1424 * mount_lock must be held 1425 * namespace_sem must be held for write 1426 */ 1427 static void umount_tree(struct mount *mnt, enum umount_tree_flags how) 1428 { 1429 LIST_HEAD(tmp_list); 1430 struct mount *p; 1431 1432 if (how & UMOUNT_PROPAGATE) 1433 propagate_mount_unlock(mnt); 1434 1435 /* Gather the mounts to umount */ 1436 for (p = mnt; p; p = next_mnt(p, mnt)) { 1437 p->mnt.mnt_flags |= MNT_UMOUNT; 1438 list_move(&p->mnt_list, &tmp_list); 1439 } 1440 1441 /* Hide the mounts from mnt_mounts */ 1442 list_for_each_entry(p, &tmp_list, mnt_list) { 1443 list_del_init(&p->mnt_child); 1444 } 1445 1446 /* Add propogated mounts to the tmp_list */ 1447 if (how & UMOUNT_PROPAGATE) 1448 propagate_umount(&tmp_list); 1449 1450 while (!list_empty(&tmp_list)) { 1451 struct mnt_namespace *ns; 1452 bool disconnect; 1453 p = list_first_entry(&tmp_list, struct mount, mnt_list); 1454 list_del_init(&p->mnt_expire); 1455 list_del_init(&p->mnt_list); 1456 ns = p->mnt_ns; 1457 if (ns) { 1458 ns->mounts--; 1459 __touch_mnt_namespace(ns); 1460 } 1461 p->mnt_ns = NULL; 1462 if (how & UMOUNT_SYNC) 1463 p->mnt.mnt_flags |= MNT_SYNC_UMOUNT; 1464 1465 disconnect = disconnect_mount(p, how); 1466 if (mnt_has_parent(p)) { 1467 mnt_add_count(p->mnt_parent, -1); 1468 if (!disconnect) { 1469 /* Don't forget about p */ 1470 list_add_tail(&p->mnt_child, &p->mnt_parent->mnt_mounts); 1471 } else { 1472 umount_mnt(p); 1473 } 1474 } 1475 change_mnt_propagation(p, MS_PRIVATE); 1476 if (disconnect) 1477 hlist_add_head(&p->mnt_umount, &unmounted); 1478 } 1479 } 1480 1481 static void shrink_submounts(struct mount *mnt); 1482 1483 static int do_umount_root(struct super_block *sb) 1484 { 1485 int ret = 0; 1486 1487 down_write(&sb->s_umount); 1488 if (!sb_rdonly(sb)) { 1489 struct fs_context *fc; 1490 1491 fc = fs_context_for_reconfigure(sb->s_root, SB_RDONLY, 1492 SB_RDONLY); 1493 if (IS_ERR(fc)) { 1494 ret = PTR_ERR(fc); 1495 } else { 1496 ret = parse_monolithic_mount_data(fc, NULL); 1497 if (!ret) 1498 ret = reconfigure_super(fc); 1499 put_fs_context(fc); 1500 } 1501 } 1502 up_write(&sb->s_umount); 1503 return ret; 1504 } 1505 1506 static int do_umount(struct mount *mnt, int flags) 1507 { 1508 struct super_block *sb = mnt->mnt.mnt_sb; 1509 int retval; 1510 1511 retval = security_sb_umount(&mnt->mnt, flags); 1512 if (retval) 1513 return retval; 1514 1515 /* 1516 * Allow userspace to request a mountpoint be expired rather than 1517 * unmounting unconditionally. Unmount only happens if: 1518 * (1) the mark is already set (the mark is cleared by mntput()) 1519 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount] 1520 */ 1521 if (flags & MNT_EXPIRE) { 1522 if (&mnt->mnt == current->fs->root.mnt || 1523 flags & (MNT_FORCE | MNT_DETACH)) 1524 return -EINVAL; 1525 1526 /* 1527 * probably don't strictly need the lock here if we examined 1528 * all race cases, but it's a slowpath. 1529 */ 1530 lock_mount_hash(); 1531 if (mnt_get_count(mnt) != 2) { 1532 unlock_mount_hash(); 1533 return -EBUSY; 1534 } 1535 unlock_mount_hash(); 1536 1537 if (!xchg(&mnt->mnt_expiry_mark, 1)) 1538 return -EAGAIN; 1539 } 1540 1541 /* 1542 * If we may have to abort operations to get out of this 1543 * mount, and they will themselves hold resources we must 1544 * allow the fs to do things. In the Unix tradition of 1545 * 'Gee thats tricky lets do it in userspace' the umount_begin 1546 * might fail to complete on the first run through as other tasks 1547 * must return, and the like. Thats for the mount program to worry 1548 * about for the moment. 1549 */ 1550 1551 if (flags & MNT_FORCE && sb->s_op->umount_begin) { 1552 sb->s_op->umount_begin(sb); 1553 } 1554 1555 /* 1556 * No sense to grab the lock for this test, but test itself looks 1557 * somewhat bogus. Suggestions for better replacement? 1558 * Ho-hum... In principle, we might treat that as umount + switch 1559 * to rootfs. GC would eventually take care of the old vfsmount. 1560 * Actually it makes sense, especially if rootfs would contain a 1561 * /reboot - static binary that would close all descriptors and 1562 * call reboot(9). Then init(8) could umount root and exec /reboot. 1563 */ 1564 if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) { 1565 /* 1566 * Special case for "unmounting" root ... 1567 * we just try to remount it readonly. 1568 */ 1569 if (!ns_capable(sb->s_user_ns, CAP_SYS_ADMIN)) 1570 return -EPERM; 1571 return do_umount_root(sb); 1572 } 1573 1574 namespace_lock(); 1575 lock_mount_hash(); 1576 1577 /* Recheck MNT_LOCKED with the locks held */ 1578 retval = -EINVAL; 1579 if (mnt->mnt.mnt_flags & MNT_LOCKED) 1580 goto out; 1581 1582 event++; 1583 if (flags & MNT_DETACH) { 1584 if (!list_empty(&mnt->mnt_list)) 1585 umount_tree(mnt, UMOUNT_PROPAGATE); 1586 retval = 0; 1587 } else { 1588 shrink_submounts(mnt); 1589 retval = -EBUSY; 1590 if (!propagate_mount_busy(mnt, 2)) { 1591 if (!list_empty(&mnt->mnt_list)) 1592 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC); 1593 retval = 0; 1594 } 1595 } 1596 out: 1597 unlock_mount_hash(); 1598 namespace_unlock(); 1599 return retval; 1600 } 1601 1602 /* 1603 * __detach_mounts - lazily unmount all mounts on the specified dentry 1604 * 1605 * During unlink, rmdir, and d_drop it is possible to loose the path 1606 * to an existing mountpoint, and wind up leaking the mount. 1607 * detach_mounts allows lazily unmounting those mounts instead of 1608 * leaking them. 1609 * 1610 * The caller may hold dentry->d_inode->i_mutex. 1611 */ 1612 void __detach_mounts(struct dentry *dentry) 1613 { 1614 struct mountpoint *mp; 1615 struct mount *mnt; 1616 1617 namespace_lock(); 1618 lock_mount_hash(); 1619 mp = lookup_mountpoint(dentry); 1620 if (!mp) 1621 goto out_unlock; 1622 1623 event++; 1624 while (!hlist_empty(&mp->m_list)) { 1625 mnt = hlist_entry(mp->m_list.first, struct mount, mnt_mp_list); 1626 if (mnt->mnt.mnt_flags & MNT_UMOUNT) { 1627 umount_mnt(mnt); 1628 hlist_add_head(&mnt->mnt_umount, &unmounted); 1629 } 1630 else umount_tree(mnt, UMOUNT_CONNECTED); 1631 } 1632 put_mountpoint(mp); 1633 out_unlock: 1634 unlock_mount_hash(); 1635 namespace_unlock(); 1636 } 1637 1638 /* 1639 * Is the caller allowed to modify his namespace? 1640 */ 1641 static inline bool may_mount(void) 1642 { 1643 return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN); 1644 } 1645 1646 static inline bool may_mandlock(void) 1647 { 1648 #ifndef CONFIG_MANDATORY_FILE_LOCKING 1649 return false; 1650 #endif 1651 return capable(CAP_SYS_ADMIN); 1652 } 1653 1654 /* 1655 * Now umount can handle mount points as well as block devices. 1656 * This is important for filesystems which use unnamed block devices. 1657 * 1658 * We now support a flag for forced unmount like the other 'big iron' 1659 * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD 1660 */ 1661 1662 int ksys_umount(char __user *name, int flags) 1663 { 1664 struct path path; 1665 struct mount *mnt; 1666 int retval; 1667 int lookup_flags = 0; 1668 1669 if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW)) 1670 return -EINVAL; 1671 1672 if (!may_mount()) 1673 return -EPERM; 1674 1675 if (!(flags & UMOUNT_NOFOLLOW)) 1676 lookup_flags |= LOOKUP_FOLLOW; 1677 1678 lookup_flags |= LOOKUP_NO_EVAL; 1679 1680 retval = user_path_mountpoint_at(AT_FDCWD, name, lookup_flags, &path); 1681 if (retval) 1682 goto out; 1683 mnt = real_mount(path.mnt); 1684 retval = -EINVAL; 1685 if (path.dentry != path.mnt->mnt_root) 1686 goto dput_and_out; 1687 if (!check_mnt(mnt)) 1688 goto dput_and_out; 1689 if (mnt->mnt.mnt_flags & MNT_LOCKED) /* Check optimistically */ 1690 goto dput_and_out; 1691 retval = -EPERM; 1692 if (flags & MNT_FORCE && !capable(CAP_SYS_ADMIN)) 1693 goto dput_and_out; 1694 1695 retval = do_umount(mnt, flags); 1696 dput_and_out: 1697 /* we mustn't call path_put() as that would clear mnt_expiry_mark */ 1698 dput(path.dentry); 1699 mntput_no_expire(mnt); 1700 out: 1701 return retval; 1702 } 1703 1704 SYSCALL_DEFINE2(umount, char __user *, name, int, flags) 1705 { 1706 return ksys_umount(name, flags); 1707 } 1708 1709 #ifdef __ARCH_WANT_SYS_OLDUMOUNT 1710 1711 /* 1712 * The 2.0 compatible umount. No flags. 1713 */ 1714 SYSCALL_DEFINE1(oldumount, char __user *, name) 1715 { 1716 return ksys_umount(name, 0); 1717 } 1718 1719 #endif 1720 1721 static bool is_mnt_ns_file(struct dentry *dentry) 1722 { 1723 /* Is this a proxy for a mount namespace? */ 1724 return dentry->d_op == &ns_dentry_operations && 1725 dentry->d_fsdata == &mntns_operations; 1726 } 1727 1728 struct mnt_namespace *to_mnt_ns(struct ns_common *ns) 1729 { 1730 return container_of(ns, struct mnt_namespace, ns); 1731 } 1732 1733 static bool mnt_ns_loop(struct dentry *dentry) 1734 { 1735 /* Could bind mounting the mount namespace inode cause a 1736 * mount namespace loop? 1737 */ 1738 struct mnt_namespace *mnt_ns; 1739 if (!is_mnt_ns_file(dentry)) 1740 return false; 1741 1742 mnt_ns = to_mnt_ns(get_proc_ns(dentry->d_inode)); 1743 return current->nsproxy->mnt_ns->seq >= mnt_ns->seq; 1744 } 1745 1746 struct mount *copy_tree(struct mount *mnt, struct dentry *dentry, 1747 int flag) 1748 { 1749 struct mount *res, *p, *q, *r, *parent; 1750 1751 if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(mnt)) 1752 return ERR_PTR(-EINVAL); 1753 1754 if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry)) 1755 return ERR_PTR(-EINVAL); 1756 1757 res = q = clone_mnt(mnt, dentry, flag); 1758 if (IS_ERR(q)) 1759 return q; 1760 1761 q->mnt_mountpoint = mnt->mnt_mountpoint; 1762 1763 p = mnt; 1764 list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) { 1765 struct mount *s; 1766 if (!is_subdir(r->mnt_mountpoint, dentry)) 1767 continue; 1768 1769 for (s = r; s; s = next_mnt(s, r)) { 1770 if (!(flag & CL_COPY_UNBINDABLE) && 1771 IS_MNT_UNBINDABLE(s)) { 1772 if (s->mnt.mnt_flags & MNT_LOCKED) { 1773 /* Both unbindable and locked. */ 1774 q = ERR_PTR(-EPERM); 1775 goto out; 1776 } else { 1777 s = skip_mnt_tree(s); 1778 continue; 1779 } 1780 } 1781 if (!(flag & CL_COPY_MNT_NS_FILE) && 1782 is_mnt_ns_file(s->mnt.mnt_root)) { 1783 s = skip_mnt_tree(s); 1784 continue; 1785 } 1786 while (p != s->mnt_parent) { 1787 p = p->mnt_parent; 1788 q = q->mnt_parent; 1789 } 1790 p = s; 1791 parent = q; 1792 q = clone_mnt(p, p->mnt.mnt_root, flag); 1793 if (IS_ERR(q)) 1794 goto out; 1795 lock_mount_hash(); 1796 list_add_tail(&q->mnt_list, &res->mnt_list); 1797 attach_mnt(q, parent, p->mnt_mp); 1798 unlock_mount_hash(); 1799 } 1800 } 1801 return res; 1802 out: 1803 if (res) { 1804 lock_mount_hash(); 1805 umount_tree(res, UMOUNT_SYNC); 1806 unlock_mount_hash(); 1807 } 1808 return q; 1809 } 1810 1811 /* Caller should check returned pointer for errors */ 1812 1813 struct vfsmount *collect_mounts(const struct path *path) 1814 { 1815 struct mount *tree; 1816 namespace_lock(); 1817 if (!check_mnt(real_mount(path->mnt))) 1818 tree = ERR_PTR(-EINVAL); 1819 else 1820 tree = copy_tree(real_mount(path->mnt), path->dentry, 1821 CL_COPY_ALL | CL_PRIVATE); 1822 namespace_unlock(); 1823 if (IS_ERR(tree)) 1824 return ERR_CAST(tree); 1825 return &tree->mnt; 1826 } 1827 1828 static void free_mnt_ns(struct mnt_namespace *); 1829 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *, bool); 1830 1831 void dissolve_on_fput(struct vfsmount *mnt) 1832 { 1833 struct mnt_namespace *ns; 1834 namespace_lock(); 1835 lock_mount_hash(); 1836 ns = real_mount(mnt)->mnt_ns; 1837 if (ns) { 1838 if (is_anon_ns(ns)) 1839 umount_tree(real_mount(mnt), UMOUNT_CONNECTED); 1840 else 1841 ns = NULL; 1842 } 1843 unlock_mount_hash(); 1844 namespace_unlock(); 1845 if (ns) 1846 free_mnt_ns(ns); 1847 } 1848 1849 void drop_collected_mounts(struct vfsmount *mnt) 1850 { 1851 namespace_lock(); 1852 lock_mount_hash(); 1853 umount_tree(real_mount(mnt), 0); 1854 unlock_mount_hash(); 1855 namespace_unlock(); 1856 } 1857 1858 /** 1859 * clone_private_mount - create a private clone of a path 1860 * 1861 * This creates a new vfsmount, which will be the clone of @path. The new will 1862 * not be attached anywhere in the namespace and will be private (i.e. changes 1863 * to the originating mount won't be propagated into this). 1864 * 1865 * Release with mntput(). 1866 */ 1867 struct vfsmount *clone_private_mount(const struct path *path) 1868 { 1869 struct mount *old_mnt = real_mount(path->mnt); 1870 struct mount *new_mnt; 1871 1872 if (IS_MNT_UNBINDABLE(old_mnt)) 1873 return ERR_PTR(-EINVAL); 1874 1875 new_mnt = clone_mnt(old_mnt, path->dentry, CL_PRIVATE); 1876 if (IS_ERR(new_mnt)) 1877 return ERR_CAST(new_mnt); 1878 1879 return &new_mnt->mnt; 1880 } 1881 EXPORT_SYMBOL_GPL(clone_private_mount); 1882 1883 int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg, 1884 struct vfsmount *root) 1885 { 1886 struct mount *mnt; 1887 int res = f(root, arg); 1888 if (res) 1889 return res; 1890 list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) { 1891 res = f(&mnt->mnt, arg); 1892 if (res) 1893 return res; 1894 } 1895 return 0; 1896 } 1897 1898 static void lock_mnt_tree(struct mount *mnt) 1899 { 1900 struct mount *p; 1901 1902 for (p = mnt; p; p = next_mnt(p, mnt)) { 1903 int flags = p->mnt.mnt_flags; 1904 /* Don't allow unprivileged users to change mount flags */ 1905 flags |= MNT_LOCK_ATIME; 1906 1907 if (flags & MNT_READONLY) 1908 flags |= MNT_LOCK_READONLY; 1909 1910 if (flags & MNT_NODEV) 1911 flags |= MNT_LOCK_NODEV; 1912 1913 if (flags & MNT_NOSUID) 1914 flags |= MNT_LOCK_NOSUID; 1915 1916 if (flags & MNT_NOEXEC) 1917 flags |= MNT_LOCK_NOEXEC; 1918 /* Don't allow unprivileged users to reveal what is under a mount */ 1919 if (list_empty(&p->mnt_expire)) 1920 flags |= MNT_LOCKED; 1921 p->mnt.mnt_flags = flags; 1922 } 1923 } 1924 1925 static void cleanup_group_ids(struct mount *mnt, struct mount *end) 1926 { 1927 struct mount *p; 1928 1929 for (p = mnt; p != end; p = next_mnt(p, mnt)) { 1930 if (p->mnt_group_id && !IS_MNT_SHARED(p)) 1931 mnt_release_group_id(p); 1932 } 1933 } 1934 1935 static int invent_group_ids(struct mount *mnt, bool recurse) 1936 { 1937 struct mount *p; 1938 1939 for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) { 1940 if (!p->mnt_group_id && !IS_MNT_SHARED(p)) { 1941 int err = mnt_alloc_group_id(p); 1942 if (err) { 1943 cleanup_group_ids(mnt, p); 1944 return err; 1945 } 1946 } 1947 } 1948 1949 return 0; 1950 } 1951 1952 int count_mounts(struct mnt_namespace *ns, struct mount *mnt) 1953 { 1954 unsigned int max = READ_ONCE(sysctl_mount_max); 1955 unsigned int mounts = 0, old, pending, sum; 1956 struct mount *p; 1957 1958 for (p = mnt; p; p = next_mnt(p, mnt)) 1959 mounts++; 1960 1961 old = ns->mounts; 1962 pending = ns->pending_mounts; 1963 sum = old + pending; 1964 if ((old > sum) || 1965 (pending > sum) || 1966 (max < sum) || 1967 (mounts > (max - sum))) 1968 return -ENOSPC; 1969 1970 ns->pending_mounts = pending + mounts; 1971 return 0; 1972 } 1973 1974 /* 1975 * @source_mnt : mount tree to be attached 1976 * @nd : place the mount tree @source_mnt is attached 1977 * @parent_nd : if non-null, detach the source_mnt from its parent and 1978 * store the parent mount and mountpoint dentry. 1979 * (done when source_mnt is moved) 1980 * 1981 * NOTE: in the table below explains the semantics when a source mount 1982 * of a given type is attached to a destination mount of a given type. 1983 * --------------------------------------------------------------------------- 1984 * | BIND MOUNT OPERATION | 1985 * |************************************************************************** 1986 * | source-->| shared | private | slave | unbindable | 1987 * | dest | | | | | 1988 * | | | | | | | 1989 * | v | | | | | 1990 * |************************************************************************** 1991 * | shared | shared (++) | shared (+) | shared(+++)| invalid | 1992 * | | | | | | 1993 * |non-shared| shared (+) | private | slave (*) | invalid | 1994 * *************************************************************************** 1995 * A bind operation clones the source mount and mounts the clone on the 1996 * destination mount. 1997 * 1998 * (++) the cloned mount is propagated to all the mounts in the propagation 1999 * tree of the destination mount and the cloned mount is added to 2000 * the peer group of the source mount. 2001 * (+) the cloned mount is created under the destination mount and is marked 2002 * as shared. The cloned mount is added to the peer group of the source 2003 * mount. 2004 * (+++) the mount is propagated to all the mounts in the propagation tree 2005 * of the destination mount and the cloned mount is made slave 2006 * of the same master as that of the source mount. The cloned mount 2007 * is marked as 'shared and slave'. 2008 * (*) the cloned mount is made a slave of the same master as that of the 2009 * source mount. 2010 * 2011 * --------------------------------------------------------------------------- 2012 * | MOVE MOUNT OPERATION | 2013 * |************************************************************************** 2014 * | source-->| shared | private | slave | unbindable | 2015 * | dest | | | | | 2016 * | | | | | | | 2017 * | v | | | | | 2018 * |************************************************************************** 2019 * | shared | shared (+) | shared (+) | shared(+++) | invalid | 2020 * | | | | | | 2021 * |non-shared| shared (+*) | private | slave (*) | unbindable | 2022 * *************************************************************************** 2023 * 2024 * (+) the mount is moved to the destination. And is then propagated to 2025 * all the mounts in the propagation tree of the destination mount. 2026 * (+*) the mount is moved to the destination. 2027 * (+++) the mount is moved to the destination and is then propagated to 2028 * all the mounts belonging to the destination mount's propagation tree. 2029 * the mount is marked as 'shared and slave'. 2030 * (*) the mount continues to be a slave at the new location. 2031 * 2032 * if the source mount is a tree, the operations explained above is 2033 * applied to each mount in the tree. 2034 * Must be called without spinlocks held, since this function can sleep 2035 * in allocations. 2036 */ 2037 static int attach_recursive_mnt(struct mount *source_mnt, 2038 struct mount *dest_mnt, 2039 struct mountpoint *dest_mp, 2040 bool moving) 2041 { 2042 struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns; 2043 HLIST_HEAD(tree_list); 2044 struct mnt_namespace *ns = dest_mnt->mnt_ns; 2045 struct mountpoint *smp; 2046 struct mount *child, *p; 2047 struct hlist_node *n; 2048 int err; 2049 2050 /* Preallocate a mountpoint in case the new mounts need 2051 * to be tucked under other mounts. 2052 */ 2053 smp = get_mountpoint(source_mnt->mnt.mnt_root); 2054 if (IS_ERR(smp)) 2055 return PTR_ERR(smp); 2056 2057 /* Is there space to add these mounts to the mount namespace? */ 2058 if (!moving) { 2059 err = count_mounts(ns, source_mnt); 2060 if (err) 2061 goto out; 2062 } 2063 2064 if (IS_MNT_SHARED(dest_mnt)) { 2065 err = invent_group_ids(source_mnt, true); 2066 if (err) 2067 goto out; 2068 err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list); 2069 lock_mount_hash(); 2070 if (err) 2071 goto out_cleanup_ids; 2072 for (p = source_mnt; p; p = next_mnt(p, source_mnt)) 2073 set_mnt_shared(p); 2074 } else { 2075 lock_mount_hash(); 2076 } 2077 if (moving) { 2078 unhash_mnt(source_mnt); 2079 attach_mnt(source_mnt, dest_mnt, dest_mp); 2080 touch_mnt_namespace(source_mnt->mnt_ns); 2081 } else { 2082 if (source_mnt->mnt_ns) { 2083 /* move from anon - the caller will destroy */ 2084 list_del_init(&source_mnt->mnt_ns->list); 2085 } 2086 mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt); 2087 commit_tree(source_mnt); 2088 } 2089 2090 hlist_for_each_entry_safe(child, n, &tree_list, mnt_hash) { 2091 struct mount *q; 2092 hlist_del_init(&child->mnt_hash); 2093 q = __lookup_mnt(&child->mnt_parent->mnt, 2094 child->mnt_mountpoint); 2095 if (q) 2096 mnt_change_mountpoint(child, smp, q); 2097 /* Notice when we are propagating across user namespaces */ 2098 if (child->mnt_parent->mnt_ns->user_ns != user_ns) 2099 lock_mnt_tree(child); 2100 child->mnt.mnt_flags &= ~MNT_LOCKED; 2101 commit_tree(child); 2102 } 2103 put_mountpoint(smp); 2104 unlock_mount_hash(); 2105 2106 return 0; 2107 2108 out_cleanup_ids: 2109 while (!hlist_empty(&tree_list)) { 2110 child = hlist_entry(tree_list.first, struct mount, mnt_hash); 2111 child->mnt_parent->mnt_ns->pending_mounts = 0; 2112 umount_tree(child, UMOUNT_SYNC); 2113 } 2114 unlock_mount_hash(); 2115 cleanup_group_ids(source_mnt, NULL); 2116 out: 2117 ns->pending_mounts = 0; 2118 2119 read_seqlock_excl(&mount_lock); 2120 put_mountpoint(smp); 2121 read_sequnlock_excl(&mount_lock); 2122 2123 return err; 2124 } 2125 2126 static struct mountpoint *lock_mount(struct path *path) 2127 { 2128 struct vfsmount *mnt; 2129 struct dentry *dentry = path->dentry; 2130 retry: 2131 inode_lock(dentry->d_inode); 2132 if (unlikely(cant_mount(dentry))) { 2133 inode_unlock(dentry->d_inode); 2134 return ERR_PTR(-ENOENT); 2135 } 2136 namespace_lock(); 2137 mnt = lookup_mnt(path); 2138 if (likely(!mnt)) { 2139 struct mountpoint *mp = get_mountpoint(dentry); 2140 if (IS_ERR(mp)) { 2141 namespace_unlock(); 2142 inode_unlock(dentry->d_inode); 2143 return mp; 2144 } 2145 return mp; 2146 } 2147 namespace_unlock(); 2148 inode_unlock(path->dentry->d_inode); 2149 path_put(path); 2150 path->mnt = mnt; 2151 dentry = path->dentry = dget(mnt->mnt_root); 2152 goto retry; 2153 } 2154 2155 static void unlock_mount(struct mountpoint *where) 2156 { 2157 struct dentry *dentry = where->m_dentry; 2158 2159 read_seqlock_excl(&mount_lock); 2160 put_mountpoint(where); 2161 read_sequnlock_excl(&mount_lock); 2162 2163 namespace_unlock(); 2164 inode_unlock(dentry->d_inode); 2165 } 2166 2167 static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp) 2168 { 2169 if (mnt->mnt.mnt_sb->s_flags & SB_NOUSER) 2170 return -EINVAL; 2171 2172 if (d_is_dir(mp->m_dentry) != 2173 d_is_dir(mnt->mnt.mnt_root)) 2174 return -ENOTDIR; 2175 2176 return attach_recursive_mnt(mnt, p, mp, false); 2177 } 2178 2179 /* 2180 * Sanity check the flags to change_mnt_propagation. 2181 */ 2182 2183 static int flags_to_propagation_type(int ms_flags) 2184 { 2185 int type = ms_flags & ~(MS_REC | MS_SILENT); 2186 2187 /* Fail if any non-propagation flags are set */ 2188 if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE)) 2189 return 0; 2190 /* Only one propagation flag should be set */ 2191 if (!is_power_of_2(type)) 2192 return 0; 2193 return type; 2194 } 2195 2196 /* 2197 * recursively change the type of the mountpoint. 2198 */ 2199 static int do_change_type(struct path *path, int ms_flags) 2200 { 2201 struct mount *m; 2202 struct mount *mnt = real_mount(path->mnt); 2203 int recurse = ms_flags & MS_REC; 2204 int type; 2205 int err = 0; 2206 2207 if (path->dentry != path->mnt->mnt_root) 2208 return -EINVAL; 2209 2210 type = flags_to_propagation_type(ms_flags); 2211 if (!type) 2212 return -EINVAL; 2213 2214 namespace_lock(); 2215 if (type == MS_SHARED) { 2216 err = invent_group_ids(mnt, recurse); 2217 if (err) 2218 goto out_unlock; 2219 } 2220 2221 lock_mount_hash(); 2222 for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL)) 2223 change_mnt_propagation(m, type); 2224 unlock_mount_hash(); 2225 2226 out_unlock: 2227 namespace_unlock(); 2228 return err; 2229 } 2230 2231 static bool has_locked_children(struct mount *mnt, struct dentry *dentry) 2232 { 2233 struct mount *child; 2234 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) { 2235 if (!is_subdir(child->mnt_mountpoint, dentry)) 2236 continue; 2237 2238 if (child->mnt.mnt_flags & MNT_LOCKED) 2239 return true; 2240 } 2241 return false; 2242 } 2243 2244 static struct mount *__do_loopback(struct path *old_path, int recurse) 2245 { 2246 struct mount *mnt = ERR_PTR(-EINVAL), *old = real_mount(old_path->mnt); 2247 2248 if (IS_MNT_UNBINDABLE(old)) 2249 return mnt; 2250 2251 if (!check_mnt(old) && old_path->dentry->d_op != &ns_dentry_operations) 2252 return mnt; 2253 2254 if (!recurse && has_locked_children(old, old_path->dentry)) 2255 return mnt; 2256 2257 if (recurse) 2258 mnt = copy_tree(old, old_path->dentry, CL_COPY_MNT_NS_FILE); 2259 else 2260 mnt = clone_mnt(old, old_path->dentry, 0); 2261 2262 if (!IS_ERR(mnt)) 2263 mnt->mnt.mnt_flags &= ~MNT_LOCKED; 2264 2265 return mnt; 2266 } 2267 2268 /* 2269 * do loopback mount. 2270 */ 2271 static int do_loopback(struct path *path, const char *old_name, 2272 int recurse) 2273 { 2274 struct path old_path; 2275 struct mount *mnt = NULL, *parent; 2276 struct mountpoint *mp; 2277 int err; 2278 if (!old_name || !*old_name) 2279 return -EINVAL; 2280 err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path); 2281 if (err) 2282 return err; 2283 2284 err = -EINVAL; 2285 if (mnt_ns_loop(old_path.dentry)) 2286 goto out; 2287 2288 mp = lock_mount(path); 2289 if (IS_ERR(mp)) { 2290 err = PTR_ERR(mp); 2291 goto out; 2292 } 2293 2294 parent = real_mount(path->mnt); 2295 if (!check_mnt(parent)) 2296 goto out2; 2297 2298 mnt = __do_loopback(&old_path, recurse); 2299 if (IS_ERR(mnt)) { 2300 err = PTR_ERR(mnt); 2301 goto out2; 2302 } 2303 2304 err = graft_tree(mnt, parent, mp); 2305 if (err) { 2306 lock_mount_hash(); 2307 umount_tree(mnt, UMOUNT_SYNC); 2308 unlock_mount_hash(); 2309 } 2310 out2: 2311 unlock_mount(mp); 2312 out: 2313 path_put(&old_path); 2314 return err; 2315 } 2316 2317 static struct file *open_detached_copy(struct path *path, bool recursive) 2318 { 2319 struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns; 2320 struct mnt_namespace *ns = alloc_mnt_ns(user_ns, true); 2321 struct mount *mnt, *p; 2322 struct file *file; 2323 2324 if (IS_ERR(ns)) 2325 return ERR_CAST(ns); 2326 2327 namespace_lock(); 2328 mnt = __do_loopback(path, recursive); 2329 if (IS_ERR(mnt)) { 2330 namespace_unlock(); 2331 free_mnt_ns(ns); 2332 return ERR_CAST(mnt); 2333 } 2334 2335 lock_mount_hash(); 2336 for (p = mnt; p; p = next_mnt(p, mnt)) { 2337 p->mnt_ns = ns; 2338 ns->mounts++; 2339 } 2340 ns->root = mnt; 2341 list_add_tail(&ns->list, &mnt->mnt_list); 2342 mntget(&mnt->mnt); 2343 unlock_mount_hash(); 2344 namespace_unlock(); 2345 2346 mntput(path->mnt); 2347 path->mnt = &mnt->mnt; 2348 file = dentry_open(path, O_PATH, current_cred()); 2349 if (IS_ERR(file)) 2350 dissolve_on_fput(path->mnt); 2351 else 2352 file->f_mode |= FMODE_NEED_UNMOUNT; 2353 return file; 2354 } 2355 2356 SYSCALL_DEFINE3(open_tree, int, dfd, const char *, filename, unsigned, flags) 2357 { 2358 struct file *file; 2359 struct path path; 2360 int lookup_flags = LOOKUP_AUTOMOUNT | LOOKUP_FOLLOW; 2361 bool detached = flags & OPEN_TREE_CLONE; 2362 int error; 2363 int fd; 2364 2365 BUILD_BUG_ON(OPEN_TREE_CLOEXEC != O_CLOEXEC); 2366 2367 if (flags & ~(AT_EMPTY_PATH | AT_NO_AUTOMOUNT | AT_RECURSIVE | 2368 AT_SYMLINK_NOFOLLOW | OPEN_TREE_CLONE | 2369 OPEN_TREE_CLOEXEC)) 2370 return -EINVAL; 2371 2372 if ((flags & (AT_RECURSIVE | OPEN_TREE_CLONE)) == AT_RECURSIVE) 2373 return -EINVAL; 2374 2375 if (flags & AT_NO_AUTOMOUNT) 2376 lookup_flags &= ~LOOKUP_AUTOMOUNT; 2377 if (flags & AT_SYMLINK_NOFOLLOW) 2378 lookup_flags &= ~LOOKUP_FOLLOW; 2379 if (flags & AT_EMPTY_PATH) 2380 lookup_flags |= LOOKUP_EMPTY; 2381 2382 if (detached && !may_mount()) 2383 return -EPERM; 2384 2385 fd = get_unused_fd_flags(flags & O_CLOEXEC); 2386 if (fd < 0) 2387 return fd; 2388 2389 error = user_path_at(dfd, filename, lookup_flags, &path); 2390 if (unlikely(error)) { 2391 file = ERR_PTR(error); 2392 } else { 2393 if (detached) 2394 file = open_detached_copy(&path, flags & AT_RECURSIVE); 2395 else 2396 file = dentry_open(&path, O_PATH, current_cred()); 2397 path_put(&path); 2398 } 2399 if (IS_ERR(file)) { 2400 put_unused_fd(fd); 2401 return PTR_ERR(file); 2402 } 2403 fd_install(fd, file); 2404 return fd; 2405 } 2406 2407 /* 2408 * Don't allow locked mount flags to be cleared. 2409 * 2410 * No locks need to be held here while testing the various MNT_LOCK 2411 * flags because those flags can never be cleared once they are set. 2412 */ 2413 static bool can_change_locked_flags(struct mount *mnt, unsigned int mnt_flags) 2414 { 2415 unsigned int fl = mnt->mnt.mnt_flags; 2416 2417 if ((fl & MNT_LOCK_READONLY) && 2418 !(mnt_flags & MNT_READONLY)) 2419 return false; 2420 2421 if ((fl & MNT_LOCK_NODEV) && 2422 !(mnt_flags & MNT_NODEV)) 2423 return false; 2424 2425 if ((fl & MNT_LOCK_NOSUID) && 2426 !(mnt_flags & MNT_NOSUID)) 2427 return false; 2428 2429 if ((fl & MNT_LOCK_NOEXEC) && 2430 !(mnt_flags & MNT_NOEXEC)) 2431 return false; 2432 2433 if ((fl & MNT_LOCK_ATIME) && 2434 ((fl & MNT_ATIME_MASK) != (mnt_flags & MNT_ATIME_MASK))) 2435 return false; 2436 2437 return true; 2438 } 2439 2440 static int change_mount_ro_state(struct mount *mnt, unsigned int mnt_flags) 2441 { 2442 bool readonly_request = (mnt_flags & MNT_READONLY); 2443 2444 if (readonly_request == __mnt_is_readonly(&mnt->mnt)) 2445 return 0; 2446 2447 if (readonly_request) 2448 return mnt_make_readonly(mnt); 2449 2450 return __mnt_unmake_readonly(mnt); 2451 } 2452 2453 /* 2454 * Update the user-settable attributes on a mount. The caller must hold 2455 * sb->s_umount for writing. 2456 */ 2457 static void set_mount_attributes(struct mount *mnt, unsigned int mnt_flags) 2458 { 2459 lock_mount_hash(); 2460 mnt_flags |= mnt->mnt.mnt_flags & ~MNT_USER_SETTABLE_MASK; 2461 mnt->mnt.mnt_flags = mnt_flags; 2462 touch_mnt_namespace(mnt->mnt_ns); 2463 unlock_mount_hash(); 2464 } 2465 2466 /* 2467 * Handle reconfiguration of the mountpoint only without alteration of the 2468 * superblock it refers to. This is triggered by specifying MS_REMOUNT|MS_BIND 2469 * to mount(2). 2470 */ 2471 static int do_reconfigure_mnt(struct path *path, unsigned int mnt_flags) 2472 { 2473 struct super_block *sb = path->mnt->mnt_sb; 2474 struct mount *mnt = real_mount(path->mnt); 2475 int ret; 2476 2477 if (!check_mnt(mnt)) 2478 return -EINVAL; 2479 2480 if (path->dentry != mnt->mnt.mnt_root) 2481 return -EINVAL; 2482 2483 if (!can_change_locked_flags(mnt, mnt_flags)) 2484 return -EPERM; 2485 2486 down_write(&sb->s_umount); 2487 ret = change_mount_ro_state(mnt, mnt_flags); 2488 if (ret == 0) 2489 set_mount_attributes(mnt, mnt_flags); 2490 up_write(&sb->s_umount); 2491 return ret; 2492 } 2493 2494 /* 2495 * change filesystem flags. dir should be a physical root of filesystem. 2496 * If you've mounted a non-root directory somewhere and want to do remount 2497 * on it - tough luck. 2498 */ 2499 static int do_remount(struct path *path, int ms_flags, int sb_flags, 2500 int mnt_flags, void *data) 2501 { 2502 int err; 2503 struct super_block *sb = path->mnt->mnt_sb; 2504 struct mount *mnt = real_mount(path->mnt); 2505 struct fs_context *fc; 2506 2507 if (!check_mnt(mnt)) 2508 return -EINVAL; 2509 2510 if (path->dentry != path->mnt->mnt_root) 2511 return -EINVAL; 2512 2513 if (!can_change_locked_flags(mnt, mnt_flags)) 2514 return -EPERM; 2515 2516 fc = fs_context_for_reconfigure(path->dentry, sb_flags, MS_RMT_MASK); 2517 if (IS_ERR(fc)) 2518 return PTR_ERR(fc); 2519 2520 err = parse_monolithic_mount_data(fc, data); 2521 if (!err) { 2522 down_write(&sb->s_umount); 2523 err = -EPERM; 2524 if (ns_capable(sb->s_user_ns, CAP_SYS_ADMIN)) { 2525 err = reconfigure_super(fc); 2526 if (!err) 2527 set_mount_attributes(mnt, mnt_flags); 2528 } 2529 up_write(&sb->s_umount); 2530 } 2531 put_fs_context(fc); 2532 return err; 2533 } 2534 2535 static inline int tree_contains_unbindable(struct mount *mnt) 2536 { 2537 struct mount *p; 2538 for (p = mnt; p; p = next_mnt(p, mnt)) { 2539 if (IS_MNT_UNBINDABLE(p)) 2540 return 1; 2541 } 2542 return 0; 2543 } 2544 2545 /* 2546 * Check that there aren't references to earlier/same mount namespaces in the 2547 * specified subtree. Such references can act as pins for mount namespaces 2548 * that aren't checked by the mount-cycle checking code, thereby allowing 2549 * cycles to be made. 2550 */ 2551 static bool check_for_nsfs_mounts(struct mount *subtree) 2552 { 2553 struct mount *p; 2554 bool ret = false; 2555 2556 lock_mount_hash(); 2557 for (p = subtree; p; p = next_mnt(p, subtree)) 2558 if (mnt_ns_loop(p->mnt.mnt_root)) 2559 goto out; 2560 2561 ret = true; 2562 out: 2563 unlock_mount_hash(); 2564 return ret; 2565 } 2566 2567 static int do_move_mount(struct path *old_path, struct path *new_path) 2568 { 2569 struct mnt_namespace *ns; 2570 struct mount *p; 2571 struct mount *old; 2572 struct mount *parent; 2573 struct mountpoint *mp, *old_mp; 2574 int err; 2575 bool attached; 2576 2577 mp = lock_mount(new_path); 2578 if (IS_ERR(mp)) 2579 return PTR_ERR(mp); 2580 2581 old = real_mount(old_path->mnt); 2582 p = real_mount(new_path->mnt); 2583 parent = old->mnt_parent; 2584 attached = mnt_has_parent(old); 2585 old_mp = old->mnt_mp; 2586 ns = old->mnt_ns; 2587 2588 err = -EINVAL; 2589 /* The mountpoint must be in our namespace. */ 2590 if (!check_mnt(p)) 2591 goto out; 2592 2593 /* The thing moved must be mounted... */ 2594 if (!is_mounted(&old->mnt)) 2595 goto out; 2596 2597 /* ... and either ours or the root of anon namespace */ 2598 if (!(attached ? check_mnt(old) : is_anon_ns(ns))) 2599 goto out; 2600 2601 if (old->mnt.mnt_flags & MNT_LOCKED) 2602 goto out; 2603 2604 if (old_path->dentry != old_path->mnt->mnt_root) 2605 goto out; 2606 2607 if (d_is_dir(new_path->dentry) != 2608 d_is_dir(old_path->dentry)) 2609 goto out; 2610 /* 2611 * Don't move a mount residing in a shared parent. 2612 */ 2613 if (attached && IS_MNT_SHARED(parent)) 2614 goto out; 2615 /* 2616 * Don't move a mount tree containing unbindable mounts to a destination 2617 * mount which is shared. 2618 */ 2619 if (IS_MNT_SHARED(p) && tree_contains_unbindable(old)) 2620 goto out; 2621 err = -ELOOP; 2622 if (!check_for_nsfs_mounts(old)) 2623 goto out; 2624 for (; mnt_has_parent(p); p = p->mnt_parent) 2625 if (p == old) 2626 goto out; 2627 2628 err = attach_recursive_mnt(old, real_mount(new_path->mnt), mp, 2629 attached); 2630 if (err) 2631 goto out; 2632 2633 /* if the mount is moved, it should no longer be expire 2634 * automatically */ 2635 list_del_init(&old->mnt_expire); 2636 if (attached) 2637 put_mountpoint(old_mp); 2638 out: 2639 unlock_mount(mp); 2640 if (!err) { 2641 if (attached) 2642 mntput_no_expire(parent); 2643 else 2644 free_mnt_ns(ns); 2645 } 2646 return err; 2647 } 2648 2649 static int do_move_mount_old(struct path *path, const char *old_name) 2650 { 2651 struct path old_path; 2652 int err; 2653 2654 if (!old_name || !*old_name) 2655 return -EINVAL; 2656 2657 err = kern_path(old_name, LOOKUP_FOLLOW, &old_path); 2658 if (err) 2659 return err; 2660 2661 err = do_move_mount(&old_path, path); 2662 path_put(&old_path); 2663 return err; 2664 } 2665 2666 /* 2667 * add a mount into a namespace's mount tree 2668 */ 2669 static int do_add_mount(struct mount *newmnt, struct path *path, int mnt_flags) 2670 { 2671 struct mountpoint *mp; 2672 struct mount *parent; 2673 int err; 2674 2675 mnt_flags &= ~MNT_INTERNAL_FLAGS; 2676 2677 mp = lock_mount(path); 2678 if (IS_ERR(mp)) 2679 return PTR_ERR(mp); 2680 2681 parent = real_mount(path->mnt); 2682 err = -EINVAL; 2683 if (unlikely(!check_mnt(parent))) { 2684 /* that's acceptable only for automounts done in private ns */ 2685 if (!(mnt_flags & MNT_SHRINKABLE)) 2686 goto unlock; 2687 /* ... and for those we'd better have mountpoint still alive */ 2688 if (!parent->mnt_ns) 2689 goto unlock; 2690 } 2691 2692 /* Refuse the same filesystem on the same mount point */ 2693 err = -EBUSY; 2694 if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb && 2695 path->mnt->mnt_root == path->dentry) 2696 goto unlock; 2697 2698 err = -EINVAL; 2699 if (d_is_symlink(newmnt->mnt.mnt_root)) 2700 goto unlock; 2701 2702 newmnt->mnt.mnt_flags = mnt_flags; 2703 err = graft_tree(newmnt, parent, mp); 2704 2705 unlock: 2706 unlock_mount(mp); 2707 return err; 2708 } 2709 2710 static bool mount_too_revealing(const struct super_block *sb, int *new_mnt_flags); 2711 2712 /* 2713 * Create a new mount using a superblock configuration and request it 2714 * be added to the namespace tree. 2715 */ 2716 static int do_new_mount_fc(struct fs_context *fc, struct path *mountpoint, 2717 unsigned int mnt_flags) 2718 { 2719 struct vfsmount *mnt; 2720 struct super_block *sb = fc->root->d_sb; 2721 int error; 2722 2723 error = security_sb_kern_mount(sb); 2724 if (!error && mount_too_revealing(sb, &mnt_flags)) 2725 error = -EPERM; 2726 2727 if (unlikely(error)) { 2728 fc_drop_locked(fc); 2729 return error; 2730 } 2731 2732 up_write(&sb->s_umount); 2733 2734 mnt = vfs_create_mount(fc); 2735 if (IS_ERR(mnt)) 2736 return PTR_ERR(mnt); 2737 2738 error = do_add_mount(real_mount(mnt), mountpoint, mnt_flags); 2739 if (error < 0) 2740 mntput(mnt); 2741 return error; 2742 } 2743 2744 /* 2745 * create a new mount for userspace and request it to be added into the 2746 * namespace's tree 2747 */ 2748 static int do_new_mount(struct path *path, const char *fstype, int sb_flags, 2749 int mnt_flags, const char *name, void *data) 2750 { 2751 struct file_system_type *type; 2752 struct fs_context *fc; 2753 const char *subtype = NULL; 2754 int err = 0; 2755 2756 if (!fstype) 2757 return -EINVAL; 2758 2759 type = get_fs_type(fstype); 2760 if (!type) 2761 return -ENODEV; 2762 2763 if (type->fs_flags & FS_HAS_SUBTYPE) { 2764 subtype = strchr(fstype, '.'); 2765 if (subtype) { 2766 subtype++; 2767 if (!*subtype) { 2768 put_filesystem(type); 2769 return -EINVAL; 2770 } 2771 } else { 2772 subtype = ""; 2773 } 2774 } 2775 2776 fc = fs_context_for_mount(type, sb_flags); 2777 put_filesystem(type); 2778 if (IS_ERR(fc)) 2779 return PTR_ERR(fc); 2780 2781 if (subtype) 2782 err = vfs_parse_fs_string(fc, "subtype", 2783 subtype, strlen(subtype)); 2784 if (!err && name) 2785 err = vfs_parse_fs_string(fc, "source", name, strlen(name)); 2786 if (!err) 2787 err = parse_monolithic_mount_data(fc, data); 2788 if (!err && !mount_capable(fc)) 2789 err = -EPERM; 2790 if (!err) 2791 err = vfs_get_tree(fc); 2792 if (!err) 2793 err = do_new_mount_fc(fc, path, mnt_flags); 2794 2795 put_fs_context(fc); 2796 return err; 2797 } 2798 2799 int finish_automount(struct vfsmount *m, struct path *path) 2800 { 2801 struct mount *mnt = real_mount(m); 2802 int err; 2803 /* The new mount record should have at least 2 refs to prevent it being 2804 * expired before we get a chance to add it 2805 */ 2806 BUG_ON(mnt_get_count(mnt) < 2); 2807 2808 if (m->mnt_sb == path->mnt->mnt_sb && 2809 m->mnt_root == path->dentry) { 2810 err = -ELOOP; 2811 goto fail; 2812 } 2813 2814 err = do_add_mount(mnt, path, path->mnt->mnt_flags | MNT_SHRINKABLE); 2815 if (!err) 2816 return 0; 2817 fail: 2818 /* remove m from any expiration list it may be on */ 2819 if (!list_empty(&mnt->mnt_expire)) { 2820 namespace_lock(); 2821 list_del_init(&mnt->mnt_expire); 2822 namespace_unlock(); 2823 } 2824 mntput(m); 2825 mntput(m); 2826 return err; 2827 } 2828 2829 /** 2830 * mnt_set_expiry - Put a mount on an expiration list 2831 * @mnt: The mount to list. 2832 * @expiry_list: The list to add the mount to. 2833 */ 2834 void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list) 2835 { 2836 namespace_lock(); 2837 2838 list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list); 2839 2840 namespace_unlock(); 2841 } 2842 EXPORT_SYMBOL(mnt_set_expiry); 2843 2844 /* 2845 * process a list of expirable mountpoints with the intent of discarding any 2846 * mountpoints that aren't in use and haven't been touched since last we came 2847 * here 2848 */ 2849 void mark_mounts_for_expiry(struct list_head *mounts) 2850 { 2851 struct mount *mnt, *next; 2852 LIST_HEAD(graveyard); 2853 2854 if (list_empty(mounts)) 2855 return; 2856 2857 namespace_lock(); 2858 lock_mount_hash(); 2859 2860 /* extract from the expiration list every vfsmount that matches the 2861 * following criteria: 2862 * - only referenced by its parent vfsmount 2863 * - still marked for expiry (marked on the last call here; marks are 2864 * cleared by mntput()) 2865 */ 2866 list_for_each_entry_safe(mnt, next, mounts, mnt_expire) { 2867 if (!xchg(&mnt->mnt_expiry_mark, 1) || 2868 propagate_mount_busy(mnt, 1)) 2869 continue; 2870 list_move(&mnt->mnt_expire, &graveyard); 2871 } 2872 while (!list_empty(&graveyard)) { 2873 mnt = list_first_entry(&graveyard, struct mount, mnt_expire); 2874 touch_mnt_namespace(mnt->mnt_ns); 2875 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC); 2876 } 2877 unlock_mount_hash(); 2878 namespace_unlock(); 2879 } 2880 2881 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry); 2882 2883 /* 2884 * Ripoff of 'select_parent()' 2885 * 2886 * search the list of submounts for a given mountpoint, and move any 2887 * shrinkable submounts to the 'graveyard' list. 2888 */ 2889 static int select_submounts(struct mount *parent, struct list_head *graveyard) 2890 { 2891 struct mount *this_parent = parent; 2892 struct list_head *next; 2893 int found = 0; 2894 2895 repeat: 2896 next = this_parent->mnt_mounts.next; 2897 resume: 2898 while (next != &this_parent->mnt_mounts) { 2899 struct list_head *tmp = next; 2900 struct mount *mnt = list_entry(tmp, struct mount, mnt_child); 2901 2902 next = tmp->next; 2903 if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE)) 2904 continue; 2905 /* 2906 * Descend a level if the d_mounts list is non-empty. 2907 */ 2908 if (!list_empty(&mnt->mnt_mounts)) { 2909 this_parent = mnt; 2910 goto repeat; 2911 } 2912 2913 if (!propagate_mount_busy(mnt, 1)) { 2914 list_move_tail(&mnt->mnt_expire, graveyard); 2915 found++; 2916 } 2917 } 2918 /* 2919 * All done at this level ... ascend and resume the search 2920 */ 2921 if (this_parent != parent) { 2922 next = this_parent->mnt_child.next; 2923 this_parent = this_parent->mnt_parent; 2924 goto resume; 2925 } 2926 return found; 2927 } 2928 2929 /* 2930 * process a list of expirable mountpoints with the intent of discarding any 2931 * submounts of a specific parent mountpoint 2932 * 2933 * mount_lock must be held for write 2934 */ 2935 static void shrink_submounts(struct mount *mnt) 2936 { 2937 LIST_HEAD(graveyard); 2938 struct mount *m; 2939 2940 /* extract submounts of 'mountpoint' from the expiration list */ 2941 while (select_submounts(mnt, &graveyard)) { 2942 while (!list_empty(&graveyard)) { 2943 m = list_first_entry(&graveyard, struct mount, 2944 mnt_expire); 2945 touch_mnt_namespace(m->mnt_ns); 2946 umount_tree(m, UMOUNT_PROPAGATE|UMOUNT_SYNC); 2947 } 2948 } 2949 } 2950 2951 /* 2952 * Some copy_from_user() implementations do not return the exact number of 2953 * bytes remaining to copy on a fault. But copy_mount_options() requires that. 2954 * Note that this function differs from copy_from_user() in that it will oops 2955 * on bad values of `to', rather than returning a short copy. 2956 */ 2957 static long exact_copy_from_user(void *to, const void __user * from, 2958 unsigned long n) 2959 { 2960 char *t = to; 2961 const char __user *f = from; 2962 char c; 2963 2964 if (!access_ok(from, n)) 2965 return n; 2966 2967 while (n) { 2968 if (__get_user(c, f)) { 2969 memset(t, 0, n); 2970 break; 2971 } 2972 *t++ = c; 2973 f++; 2974 n--; 2975 } 2976 return n; 2977 } 2978 2979 void *copy_mount_options(const void __user * data) 2980 { 2981 int i; 2982 unsigned long size; 2983 char *copy; 2984 2985 if (!data) 2986 return NULL; 2987 2988 copy = kmalloc(PAGE_SIZE, GFP_KERNEL); 2989 if (!copy) 2990 return ERR_PTR(-ENOMEM); 2991 2992 /* We only care that *some* data at the address the user 2993 * gave us is valid. Just in case, we'll zero 2994 * the remainder of the page. 2995 */ 2996 /* copy_from_user cannot cross TASK_SIZE ! */ 2997 size = TASK_SIZE - (unsigned long)data; 2998 if (size > PAGE_SIZE) 2999 size = PAGE_SIZE; 3000 3001 i = size - exact_copy_from_user(copy, data, size); 3002 if (!i) { 3003 kfree(copy); 3004 return ERR_PTR(-EFAULT); 3005 } 3006 if (i != PAGE_SIZE) 3007 memset(copy + i, 0, PAGE_SIZE - i); 3008 return copy; 3009 } 3010 3011 char *copy_mount_string(const void __user *data) 3012 { 3013 return data ? strndup_user(data, PATH_MAX) : NULL; 3014 } 3015 3016 /* 3017 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to 3018 * be given to the mount() call (ie: read-only, no-dev, no-suid etc). 3019 * 3020 * data is a (void *) that can point to any structure up to 3021 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent 3022 * information (or be NULL). 3023 * 3024 * Pre-0.97 versions of mount() didn't have a flags word. 3025 * When the flags word was introduced its top half was required 3026 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9. 3027 * Therefore, if this magic number is present, it carries no information 3028 * and must be discarded. 3029 */ 3030 long do_mount(const char *dev_name, const char __user *dir_name, 3031 const char *type_page, unsigned long flags, void *data_page) 3032 { 3033 struct path path; 3034 unsigned int mnt_flags = 0, sb_flags; 3035 int retval = 0; 3036 3037 /* Discard magic */ 3038 if ((flags & MS_MGC_MSK) == MS_MGC_VAL) 3039 flags &= ~MS_MGC_MSK; 3040 3041 /* Basic sanity checks */ 3042 if (data_page) 3043 ((char *)data_page)[PAGE_SIZE - 1] = 0; 3044 3045 if (flags & MS_NOUSER) 3046 return -EINVAL; 3047 3048 /* ... and get the mountpoint */ 3049 retval = user_path(dir_name, &path); 3050 if (retval) 3051 return retval; 3052 3053 retval = security_sb_mount(dev_name, &path, 3054 type_page, flags, data_page); 3055 if (!retval && !may_mount()) 3056 retval = -EPERM; 3057 if (!retval && (flags & SB_MANDLOCK) && !may_mandlock()) 3058 retval = -EPERM; 3059 if (retval) 3060 goto dput_out; 3061 3062 /* Default to relatime unless overriden */ 3063 if (!(flags & MS_NOATIME)) 3064 mnt_flags |= MNT_RELATIME; 3065 3066 /* Separate the per-mountpoint flags */ 3067 if (flags & MS_NOSUID) 3068 mnt_flags |= MNT_NOSUID; 3069 if (flags & MS_NODEV) 3070 mnt_flags |= MNT_NODEV; 3071 if (flags & MS_NOEXEC) 3072 mnt_flags |= MNT_NOEXEC; 3073 if (flags & MS_NOATIME) 3074 mnt_flags |= MNT_NOATIME; 3075 if (flags & MS_NODIRATIME) 3076 mnt_flags |= MNT_NODIRATIME; 3077 if (flags & MS_STRICTATIME) 3078 mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME); 3079 if (flags & MS_RDONLY) 3080 mnt_flags |= MNT_READONLY; 3081 3082 /* The default atime for remount is preservation */ 3083 if ((flags & MS_REMOUNT) && 3084 ((flags & (MS_NOATIME | MS_NODIRATIME | MS_RELATIME | 3085 MS_STRICTATIME)) == 0)) { 3086 mnt_flags &= ~MNT_ATIME_MASK; 3087 mnt_flags |= path.mnt->mnt_flags & MNT_ATIME_MASK; 3088 } 3089 3090 sb_flags = flags & (SB_RDONLY | 3091 SB_SYNCHRONOUS | 3092 SB_MANDLOCK | 3093 SB_DIRSYNC | 3094 SB_SILENT | 3095 SB_POSIXACL | 3096 SB_LAZYTIME | 3097 SB_I_VERSION); 3098 3099 if ((flags & (MS_REMOUNT | MS_BIND)) == (MS_REMOUNT | MS_BIND)) 3100 retval = do_reconfigure_mnt(&path, mnt_flags); 3101 else if (flags & MS_REMOUNT) 3102 retval = do_remount(&path, flags, sb_flags, mnt_flags, 3103 data_page); 3104 else if (flags & MS_BIND) 3105 retval = do_loopback(&path, dev_name, flags & MS_REC); 3106 else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE)) 3107 retval = do_change_type(&path, flags); 3108 else if (flags & MS_MOVE) 3109 retval = do_move_mount_old(&path, dev_name); 3110 else 3111 retval = do_new_mount(&path, type_page, sb_flags, mnt_flags, 3112 dev_name, data_page); 3113 dput_out: 3114 path_put(&path); 3115 return retval; 3116 } 3117 3118 static struct ucounts *inc_mnt_namespaces(struct user_namespace *ns) 3119 { 3120 return inc_ucount(ns, current_euid(), UCOUNT_MNT_NAMESPACES); 3121 } 3122 3123 static void dec_mnt_namespaces(struct ucounts *ucounts) 3124 { 3125 dec_ucount(ucounts, UCOUNT_MNT_NAMESPACES); 3126 } 3127 3128 static void free_mnt_ns(struct mnt_namespace *ns) 3129 { 3130 if (!is_anon_ns(ns)) 3131 ns_free_inum(&ns->ns); 3132 dec_mnt_namespaces(ns->ucounts); 3133 put_user_ns(ns->user_ns); 3134 kfree(ns); 3135 } 3136 3137 /* 3138 * Assign a sequence number so we can detect when we attempt to bind 3139 * mount a reference to an older mount namespace into the current 3140 * mount namespace, preventing reference counting loops. A 64bit 3141 * number incrementing at 10Ghz will take 12,427 years to wrap which 3142 * is effectively never, so we can ignore the possibility. 3143 */ 3144 static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1); 3145 3146 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns, bool anon) 3147 { 3148 struct mnt_namespace *new_ns; 3149 struct ucounts *ucounts; 3150 int ret; 3151 3152 ucounts = inc_mnt_namespaces(user_ns); 3153 if (!ucounts) 3154 return ERR_PTR(-ENOSPC); 3155 3156 new_ns = kzalloc(sizeof(struct mnt_namespace), GFP_KERNEL); 3157 if (!new_ns) { 3158 dec_mnt_namespaces(ucounts); 3159 return ERR_PTR(-ENOMEM); 3160 } 3161 if (!anon) { 3162 ret = ns_alloc_inum(&new_ns->ns); 3163 if (ret) { 3164 kfree(new_ns); 3165 dec_mnt_namespaces(ucounts); 3166 return ERR_PTR(ret); 3167 } 3168 } 3169 new_ns->ns.ops = &mntns_operations; 3170 if (!anon) 3171 new_ns->seq = atomic64_add_return(1, &mnt_ns_seq); 3172 atomic_set(&new_ns->count, 1); 3173 INIT_LIST_HEAD(&new_ns->list); 3174 init_waitqueue_head(&new_ns->poll); 3175 new_ns->user_ns = get_user_ns(user_ns); 3176 new_ns->ucounts = ucounts; 3177 return new_ns; 3178 } 3179 3180 __latent_entropy 3181 struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns, 3182 struct user_namespace *user_ns, struct fs_struct *new_fs) 3183 { 3184 struct mnt_namespace *new_ns; 3185 struct vfsmount *rootmnt = NULL, *pwdmnt = NULL; 3186 struct mount *p, *q; 3187 struct mount *old; 3188 struct mount *new; 3189 int copy_flags; 3190 3191 BUG_ON(!ns); 3192 3193 if (likely(!(flags & CLONE_NEWNS))) { 3194 get_mnt_ns(ns); 3195 return ns; 3196 } 3197 3198 old = ns->root; 3199 3200 new_ns = alloc_mnt_ns(user_ns, false); 3201 if (IS_ERR(new_ns)) 3202 return new_ns; 3203 3204 namespace_lock(); 3205 /* First pass: copy the tree topology */ 3206 copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE; 3207 if (user_ns != ns->user_ns) 3208 copy_flags |= CL_SHARED_TO_SLAVE; 3209 new = copy_tree(old, old->mnt.mnt_root, copy_flags); 3210 if (IS_ERR(new)) { 3211 namespace_unlock(); 3212 free_mnt_ns(new_ns); 3213 return ERR_CAST(new); 3214 } 3215 if (user_ns != ns->user_ns) { 3216 lock_mount_hash(); 3217 lock_mnt_tree(new); 3218 unlock_mount_hash(); 3219 } 3220 new_ns->root = new; 3221 list_add_tail(&new_ns->list, &new->mnt_list); 3222 3223 /* 3224 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts 3225 * as belonging to new namespace. We have already acquired a private 3226 * fs_struct, so tsk->fs->lock is not needed. 3227 */ 3228 p = old; 3229 q = new; 3230 while (p) { 3231 q->mnt_ns = new_ns; 3232 new_ns->mounts++; 3233 if (new_fs) { 3234 if (&p->mnt == new_fs->root.mnt) { 3235 new_fs->root.mnt = mntget(&q->mnt); 3236 rootmnt = &p->mnt; 3237 } 3238 if (&p->mnt == new_fs->pwd.mnt) { 3239 new_fs->pwd.mnt = mntget(&q->mnt); 3240 pwdmnt = &p->mnt; 3241 } 3242 } 3243 p = next_mnt(p, old); 3244 q = next_mnt(q, new); 3245 if (!q) 3246 break; 3247 while (p->mnt.mnt_root != q->mnt.mnt_root) 3248 p = next_mnt(p, old); 3249 } 3250 namespace_unlock(); 3251 3252 if (rootmnt) 3253 mntput(rootmnt); 3254 if (pwdmnt) 3255 mntput(pwdmnt); 3256 3257 return new_ns; 3258 } 3259 3260 struct dentry *mount_subtree(struct vfsmount *m, const char *name) 3261 { 3262 struct mount *mnt = real_mount(m); 3263 struct mnt_namespace *ns; 3264 struct super_block *s; 3265 struct path path; 3266 int err; 3267 3268 ns = alloc_mnt_ns(&init_user_ns, true); 3269 if (IS_ERR(ns)) { 3270 mntput(m); 3271 return ERR_CAST(ns); 3272 } 3273 mnt->mnt_ns = ns; 3274 ns->root = mnt; 3275 ns->mounts++; 3276 list_add(&mnt->mnt_list, &ns->list); 3277 3278 err = vfs_path_lookup(m->mnt_root, m, 3279 name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path); 3280 3281 put_mnt_ns(ns); 3282 3283 if (err) 3284 return ERR_PTR(err); 3285 3286 /* trade a vfsmount reference for active sb one */ 3287 s = path.mnt->mnt_sb; 3288 atomic_inc(&s->s_active); 3289 mntput(path.mnt); 3290 /* lock the sucker */ 3291 down_write(&s->s_umount); 3292 /* ... and return the root of (sub)tree on it */ 3293 return path.dentry; 3294 } 3295 EXPORT_SYMBOL(mount_subtree); 3296 3297 int ksys_mount(const char __user *dev_name, const char __user *dir_name, 3298 const char __user *type, unsigned long flags, void __user *data) 3299 { 3300 int ret; 3301 char *kernel_type; 3302 char *kernel_dev; 3303 void *options; 3304 3305 kernel_type = copy_mount_string(type); 3306 ret = PTR_ERR(kernel_type); 3307 if (IS_ERR(kernel_type)) 3308 goto out_type; 3309 3310 kernel_dev = copy_mount_string(dev_name); 3311 ret = PTR_ERR(kernel_dev); 3312 if (IS_ERR(kernel_dev)) 3313 goto out_dev; 3314 3315 options = copy_mount_options(data); 3316 ret = PTR_ERR(options); 3317 if (IS_ERR(options)) 3318 goto out_data; 3319 3320 ret = do_mount(kernel_dev, dir_name, kernel_type, flags, options); 3321 3322 kfree(options); 3323 out_data: 3324 kfree(kernel_dev); 3325 out_dev: 3326 kfree(kernel_type); 3327 out_type: 3328 return ret; 3329 } 3330 3331 SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name, 3332 char __user *, type, unsigned long, flags, void __user *, data) 3333 { 3334 return ksys_mount(dev_name, dir_name, type, flags, data); 3335 } 3336 3337 /* 3338 * Create a kernel mount representation for a new, prepared superblock 3339 * (specified by fs_fd) and attach to an open_tree-like file descriptor. 3340 */ 3341 SYSCALL_DEFINE3(fsmount, int, fs_fd, unsigned int, flags, 3342 unsigned int, attr_flags) 3343 { 3344 struct mnt_namespace *ns; 3345 struct fs_context *fc; 3346 struct file *file; 3347 struct path newmount; 3348 struct mount *mnt; 3349 struct fd f; 3350 unsigned int mnt_flags = 0; 3351 long ret; 3352 3353 if (!may_mount()) 3354 return -EPERM; 3355 3356 if ((flags & ~(FSMOUNT_CLOEXEC)) != 0) 3357 return -EINVAL; 3358 3359 if (attr_flags & ~(MOUNT_ATTR_RDONLY | 3360 MOUNT_ATTR_NOSUID | 3361 MOUNT_ATTR_NODEV | 3362 MOUNT_ATTR_NOEXEC | 3363 MOUNT_ATTR__ATIME | 3364 MOUNT_ATTR_NODIRATIME)) 3365 return -EINVAL; 3366 3367 if (attr_flags & MOUNT_ATTR_RDONLY) 3368 mnt_flags |= MNT_READONLY; 3369 if (attr_flags & MOUNT_ATTR_NOSUID) 3370 mnt_flags |= MNT_NOSUID; 3371 if (attr_flags & MOUNT_ATTR_NODEV) 3372 mnt_flags |= MNT_NODEV; 3373 if (attr_flags & MOUNT_ATTR_NOEXEC) 3374 mnt_flags |= MNT_NOEXEC; 3375 if (attr_flags & MOUNT_ATTR_NODIRATIME) 3376 mnt_flags |= MNT_NODIRATIME; 3377 3378 switch (attr_flags & MOUNT_ATTR__ATIME) { 3379 case MOUNT_ATTR_STRICTATIME: 3380 break; 3381 case MOUNT_ATTR_NOATIME: 3382 mnt_flags |= MNT_NOATIME; 3383 break; 3384 case MOUNT_ATTR_RELATIME: 3385 mnt_flags |= MNT_RELATIME; 3386 break; 3387 default: 3388 return -EINVAL; 3389 } 3390 3391 f = fdget(fs_fd); 3392 if (!f.file) 3393 return -EBADF; 3394 3395 ret = -EINVAL; 3396 if (f.file->f_op != &fscontext_fops) 3397 goto err_fsfd; 3398 3399 fc = f.file->private_data; 3400 3401 ret = mutex_lock_interruptible(&fc->uapi_mutex); 3402 if (ret < 0) 3403 goto err_fsfd; 3404 3405 /* There must be a valid superblock or we can't mount it */ 3406 ret = -EINVAL; 3407 if (!fc->root) 3408 goto err_unlock; 3409 3410 ret = -EPERM; 3411 if (mount_too_revealing(fc->root->d_sb, &mnt_flags)) { 3412 pr_warn("VFS: Mount too revealing\n"); 3413 goto err_unlock; 3414 } 3415 3416 ret = -EBUSY; 3417 if (fc->phase != FS_CONTEXT_AWAITING_MOUNT) 3418 goto err_unlock; 3419 3420 ret = -EPERM; 3421 if ((fc->sb_flags & SB_MANDLOCK) && !may_mandlock()) 3422 goto err_unlock; 3423 3424 newmount.mnt = vfs_create_mount(fc); 3425 if (IS_ERR(newmount.mnt)) { 3426 ret = PTR_ERR(newmount.mnt); 3427 goto err_unlock; 3428 } 3429 newmount.dentry = dget(fc->root); 3430 newmount.mnt->mnt_flags = mnt_flags; 3431 3432 /* We've done the mount bit - now move the file context into more or 3433 * less the same state as if we'd done an fspick(). We don't want to 3434 * do any memory allocation or anything like that at this point as we 3435 * don't want to have to handle any errors incurred. 3436 */ 3437 vfs_clean_context(fc); 3438 3439 ns = alloc_mnt_ns(current->nsproxy->mnt_ns->user_ns, true); 3440 if (IS_ERR(ns)) { 3441 ret = PTR_ERR(ns); 3442 goto err_path; 3443 } 3444 mnt = real_mount(newmount.mnt); 3445 mnt->mnt_ns = ns; 3446 ns->root = mnt; 3447 ns->mounts = 1; 3448 list_add(&mnt->mnt_list, &ns->list); 3449 mntget(newmount.mnt); 3450 3451 /* Attach to an apparent O_PATH fd with a note that we need to unmount 3452 * it, not just simply put it. 3453 */ 3454 file = dentry_open(&newmount, O_PATH, fc->cred); 3455 if (IS_ERR(file)) { 3456 dissolve_on_fput(newmount.mnt); 3457 ret = PTR_ERR(file); 3458 goto err_path; 3459 } 3460 file->f_mode |= FMODE_NEED_UNMOUNT; 3461 3462 ret = get_unused_fd_flags((flags & FSMOUNT_CLOEXEC) ? O_CLOEXEC : 0); 3463 if (ret >= 0) 3464 fd_install(ret, file); 3465 else 3466 fput(file); 3467 3468 err_path: 3469 path_put(&newmount); 3470 err_unlock: 3471 mutex_unlock(&fc->uapi_mutex); 3472 err_fsfd: 3473 fdput(f); 3474 return ret; 3475 } 3476 3477 /* 3478 * Move a mount from one place to another. In combination with 3479 * fsopen()/fsmount() this is used to install a new mount and in combination 3480 * with open_tree(OPEN_TREE_CLONE [| AT_RECURSIVE]) it can be used to copy 3481 * a mount subtree. 3482 * 3483 * Note the flags value is a combination of MOVE_MOUNT_* flags. 3484 */ 3485 SYSCALL_DEFINE5(move_mount, 3486 int, from_dfd, const char *, from_pathname, 3487 int, to_dfd, const char *, to_pathname, 3488 unsigned int, flags) 3489 { 3490 struct path from_path, to_path; 3491 unsigned int lflags; 3492 int ret = 0; 3493 3494 if (!may_mount()) 3495 return -EPERM; 3496 3497 if (flags & ~MOVE_MOUNT__MASK) 3498 return -EINVAL; 3499 3500 /* If someone gives a pathname, they aren't permitted to move 3501 * from an fd that requires unmount as we can't get at the flag 3502 * to clear it afterwards. 3503 */ 3504 lflags = 0; 3505 if (flags & MOVE_MOUNT_F_SYMLINKS) lflags |= LOOKUP_FOLLOW; 3506 if (flags & MOVE_MOUNT_F_AUTOMOUNTS) lflags |= LOOKUP_AUTOMOUNT; 3507 if (flags & MOVE_MOUNT_F_EMPTY_PATH) lflags |= LOOKUP_EMPTY; 3508 3509 ret = user_path_at(from_dfd, from_pathname, lflags, &from_path); 3510 if (ret < 0) 3511 return ret; 3512 3513 lflags = 0; 3514 if (flags & MOVE_MOUNT_T_SYMLINKS) lflags |= LOOKUP_FOLLOW; 3515 if (flags & MOVE_MOUNT_T_AUTOMOUNTS) lflags |= LOOKUP_AUTOMOUNT; 3516 if (flags & MOVE_MOUNT_T_EMPTY_PATH) lflags |= LOOKUP_EMPTY; 3517 3518 ret = user_path_at(to_dfd, to_pathname, lflags, &to_path); 3519 if (ret < 0) 3520 goto out_from; 3521 3522 ret = security_move_mount(&from_path, &to_path); 3523 if (ret < 0) 3524 goto out_to; 3525 3526 ret = do_move_mount(&from_path, &to_path); 3527 3528 out_to: 3529 path_put(&to_path); 3530 out_from: 3531 path_put(&from_path); 3532 return ret; 3533 } 3534 3535 /* 3536 * Return true if path is reachable from root 3537 * 3538 * namespace_sem or mount_lock is held 3539 */ 3540 bool is_path_reachable(struct mount *mnt, struct dentry *dentry, 3541 const struct path *root) 3542 { 3543 while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) { 3544 dentry = mnt->mnt_mountpoint; 3545 mnt = mnt->mnt_parent; 3546 } 3547 return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry); 3548 } 3549 3550 bool path_is_under(const struct path *path1, const struct path *path2) 3551 { 3552 bool res; 3553 read_seqlock_excl(&mount_lock); 3554 res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2); 3555 read_sequnlock_excl(&mount_lock); 3556 return res; 3557 } 3558 EXPORT_SYMBOL(path_is_under); 3559 3560 /* 3561 * pivot_root Semantics: 3562 * Moves the root file system of the current process to the directory put_old, 3563 * makes new_root as the new root file system of the current process, and sets 3564 * root/cwd of all processes which had them on the current root to new_root. 3565 * 3566 * Restrictions: 3567 * The new_root and put_old must be directories, and must not be on the 3568 * same file system as the current process root. The put_old must be 3569 * underneath new_root, i.e. adding a non-zero number of /.. to the string 3570 * pointed to by put_old must yield the same directory as new_root. No other 3571 * file system may be mounted on put_old. After all, new_root is a mountpoint. 3572 * 3573 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem. 3574 * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives 3575 * in this situation. 3576 * 3577 * Notes: 3578 * - we don't move root/cwd if they are not at the root (reason: if something 3579 * cared enough to change them, it's probably wrong to force them elsewhere) 3580 * - it's okay to pick a root that isn't the root of a file system, e.g. 3581 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint, 3582 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root 3583 * first. 3584 */ 3585 SYSCALL_DEFINE2(pivot_root, const char __user *, new_root, 3586 const char __user *, put_old) 3587 { 3588 struct path new, old, root; 3589 struct mount *new_mnt, *root_mnt, *old_mnt, *root_parent, *ex_parent; 3590 struct mountpoint *old_mp, *root_mp; 3591 int error; 3592 3593 if (!may_mount()) 3594 return -EPERM; 3595 3596 error = user_path_dir(new_root, &new); 3597 if (error) 3598 goto out0; 3599 3600 error = user_path_dir(put_old, &old); 3601 if (error) 3602 goto out1; 3603 3604 error = security_sb_pivotroot(&old, &new); 3605 if (error) 3606 goto out2; 3607 3608 get_fs_root(current->fs, &root); 3609 old_mp = lock_mount(&old); 3610 error = PTR_ERR(old_mp); 3611 if (IS_ERR(old_mp)) 3612 goto out3; 3613 3614 error = -EINVAL; 3615 new_mnt = real_mount(new.mnt); 3616 root_mnt = real_mount(root.mnt); 3617 old_mnt = real_mount(old.mnt); 3618 ex_parent = new_mnt->mnt_parent; 3619 root_parent = root_mnt->mnt_parent; 3620 if (IS_MNT_SHARED(old_mnt) || 3621 IS_MNT_SHARED(ex_parent) || 3622 IS_MNT_SHARED(root_parent)) 3623 goto out4; 3624 if (!check_mnt(root_mnt) || !check_mnt(new_mnt)) 3625 goto out4; 3626 if (new_mnt->mnt.mnt_flags & MNT_LOCKED) 3627 goto out4; 3628 error = -ENOENT; 3629 if (d_unlinked(new.dentry)) 3630 goto out4; 3631 error = -EBUSY; 3632 if (new_mnt == root_mnt || old_mnt == root_mnt) 3633 goto out4; /* loop, on the same file system */ 3634 error = -EINVAL; 3635 if (root.mnt->mnt_root != root.dentry) 3636 goto out4; /* not a mountpoint */ 3637 if (!mnt_has_parent(root_mnt)) 3638 goto out4; /* not attached */ 3639 if (new.mnt->mnt_root != new.dentry) 3640 goto out4; /* not a mountpoint */ 3641 if (!mnt_has_parent(new_mnt)) 3642 goto out4; /* not attached */ 3643 /* make sure we can reach put_old from new_root */ 3644 if (!is_path_reachable(old_mnt, old.dentry, &new)) 3645 goto out4; 3646 /* make certain new is below the root */ 3647 if (!is_path_reachable(new_mnt, new.dentry, &root)) 3648 goto out4; 3649 lock_mount_hash(); 3650 umount_mnt(new_mnt); 3651 root_mp = unhash_mnt(root_mnt); /* we'll need its mountpoint */ 3652 if (root_mnt->mnt.mnt_flags & MNT_LOCKED) { 3653 new_mnt->mnt.mnt_flags |= MNT_LOCKED; 3654 root_mnt->mnt.mnt_flags &= ~MNT_LOCKED; 3655 } 3656 /* mount old root on put_old */ 3657 attach_mnt(root_mnt, old_mnt, old_mp); 3658 /* mount new_root on / */ 3659 attach_mnt(new_mnt, root_parent, root_mp); 3660 mnt_add_count(root_parent, -1); 3661 touch_mnt_namespace(current->nsproxy->mnt_ns); 3662 /* A moved mount should not expire automatically */ 3663 list_del_init(&new_mnt->mnt_expire); 3664 put_mountpoint(root_mp); 3665 unlock_mount_hash(); 3666 chroot_fs_refs(&root, &new); 3667 error = 0; 3668 out4: 3669 unlock_mount(old_mp); 3670 if (!error) 3671 mntput_no_expire(ex_parent); 3672 out3: 3673 path_put(&root); 3674 out2: 3675 path_put(&old); 3676 out1: 3677 path_put(&new); 3678 out0: 3679 return error; 3680 } 3681 3682 static void __init init_mount_tree(void) 3683 { 3684 struct vfsmount *mnt; 3685 struct mount *m; 3686 struct mnt_namespace *ns; 3687 struct path root; 3688 3689 mnt = vfs_kern_mount(&rootfs_fs_type, 0, "rootfs", NULL); 3690 if (IS_ERR(mnt)) 3691 panic("Can't create rootfs"); 3692 3693 ns = alloc_mnt_ns(&init_user_ns, false); 3694 if (IS_ERR(ns)) 3695 panic("Can't allocate initial namespace"); 3696 m = real_mount(mnt); 3697 m->mnt_ns = ns; 3698 ns->root = m; 3699 ns->mounts = 1; 3700 list_add(&m->mnt_list, &ns->list); 3701 init_task.nsproxy->mnt_ns = ns; 3702 get_mnt_ns(ns); 3703 3704 root.mnt = mnt; 3705 root.dentry = mnt->mnt_root; 3706 mnt->mnt_flags |= MNT_LOCKED; 3707 3708 set_fs_pwd(current->fs, &root); 3709 set_fs_root(current->fs, &root); 3710 } 3711 3712 void __init mnt_init(void) 3713 { 3714 int err; 3715 3716 mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount), 3717 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL); 3718 3719 mount_hashtable = alloc_large_system_hash("Mount-cache", 3720 sizeof(struct hlist_head), 3721 mhash_entries, 19, 3722 HASH_ZERO, 3723 &m_hash_shift, &m_hash_mask, 0, 0); 3724 mountpoint_hashtable = alloc_large_system_hash("Mountpoint-cache", 3725 sizeof(struct hlist_head), 3726 mphash_entries, 19, 3727 HASH_ZERO, 3728 &mp_hash_shift, &mp_hash_mask, 0, 0); 3729 3730 if (!mount_hashtable || !mountpoint_hashtable) 3731 panic("Failed to allocate mount hash table\n"); 3732 3733 kernfs_init(); 3734 3735 err = sysfs_init(); 3736 if (err) 3737 printk(KERN_WARNING "%s: sysfs_init error: %d\n", 3738 __func__, err); 3739 fs_kobj = kobject_create_and_add("fs", NULL); 3740 if (!fs_kobj) 3741 printk(KERN_WARNING "%s: kobj create error\n", __func__); 3742 shmem_init(); 3743 init_rootfs(); 3744 init_mount_tree(); 3745 } 3746 3747 void put_mnt_ns(struct mnt_namespace *ns) 3748 { 3749 if (!atomic_dec_and_test(&ns->count)) 3750 return; 3751 drop_collected_mounts(&ns->root->mnt); 3752 free_mnt_ns(ns); 3753 } 3754 3755 struct vfsmount *kern_mount(struct file_system_type *type) 3756 { 3757 struct vfsmount *mnt; 3758 mnt = vfs_kern_mount(type, SB_KERNMOUNT, type->name, NULL); 3759 if (!IS_ERR(mnt)) { 3760 /* 3761 * it is a longterm mount, don't release mnt until 3762 * we unmount before file sys is unregistered 3763 */ 3764 real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL; 3765 } 3766 return mnt; 3767 } 3768 EXPORT_SYMBOL_GPL(kern_mount); 3769 3770 void kern_unmount(struct vfsmount *mnt) 3771 { 3772 /* release long term mount so mount point can be released */ 3773 if (!IS_ERR_OR_NULL(mnt)) { 3774 real_mount(mnt)->mnt_ns = NULL; 3775 synchronize_rcu(); /* yecchhh... */ 3776 mntput(mnt); 3777 } 3778 } 3779 EXPORT_SYMBOL(kern_unmount); 3780 3781 bool our_mnt(struct vfsmount *mnt) 3782 { 3783 return check_mnt(real_mount(mnt)); 3784 } 3785 3786 bool current_chrooted(void) 3787 { 3788 /* Does the current process have a non-standard root */ 3789 struct path ns_root; 3790 struct path fs_root; 3791 bool chrooted; 3792 3793 /* Find the namespace root */ 3794 ns_root.mnt = ¤t->nsproxy->mnt_ns->root->mnt; 3795 ns_root.dentry = ns_root.mnt->mnt_root; 3796 path_get(&ns_root); 3797 while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root)) 3798 ; 3799 3800 get_fs_root(current->fs, &fs_root); 3801 3802 chrooted = !path_equal(&fs_root, &ns_root); 3803 3804 path_put(&fs_root); 3805 path_put(&ns_root); 3806 3807 return chrooted; 3808 } 3809 3810 static bool mnt_already_visible(struct mnt_namespace *ns, 3811 const struct super_block *sb, 3812 int *new_mnt_flags) 3813 { 3814 int new_flags = *new_mnt_flags; 3815 struct mount *mnt; 3816 bool visible = false; 3817 3818 down_read(&namespace_sem); 3819 list_for_each_entry(mnt, &ns->list, mnt_list) { 3820 struct mount *child; 3821 int mnt_flags; 3822 3823 if (mnt->mnt.mnt_sb->s_type != sb->s_type) 3824 continue; 3825 3826 /* This mount is not fully visible if it's root directory 3827 * is not the root directory of the filesystem. 3828 */ 3829 if (mnt->mnt.mnt_root != mnt->mnt.mnt_sb->s_root) 3830 continue; 3831 3832 /* A local view of the mount flags */ 3833 mnt_flags = mnt->mnt.mnt_flags; 3834 3835 /* Don't miss readonly hidden in the superblock flags */ 3836 if (sb_rdonly(mnt->mnt.mnt_sb)) 3837 mnt_flags |= MNT_LOCK_READONLY; 3838 3839 /* Verify the mount flags are equal to or more permissive 3840 * than the proposed new mount. 3841 */ 3842 if ((mnt_flags & MNT_LOCK_READONLY) && 3843 !(new_flags & MNT_READONLY)) 3844 continue; 3845 if ((mnt_flags & MNT_LOCK_ATIME) && 3846 ((mnt_flags & MNT_ATIME_MASK) != (new_flags & MNT_ATIME_MASK))) 3847 continue; 3848 3849 /* This mount is not fully visible if there are any 3850 * locked child mounts that cover anything except for 3851 * empty directories. 3852 */ 3853 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) { 3854 struct inode *inode = child->mnt_mountpoint->d_inode; 3855 /* Only worry about locked mounts */ 3856 if (!(child->mnt.mnt_flags & MNT_LOCKED)) 3857 continue; 3858 /* Is the directory permanetly empty? */ 3859 if (!is_empty_dir_inode(inode)) 3860 goto next; 3861 } 3862 /* Preserve the locked attributes */ 3863 *new_mnt_flags |= mnt_flags & (MNT_LOCK_READONLY | \ 3864 MNT_LOCK_ATIME); 3865 visible = true; 3866 goto found; 3867 next: ; 3868 } 3869 found: 3870 up_read(&namespace_sem); 3871 return visible; 3872 } 3873 3874 static bool mount_too_revealing(const struct super_block *sb, int *new_mnt_flags) 3875 { 3876 const unsigned long required_iflags = SB_I_NOEXEC | SB_I_NODEV; 3877 struct mnt_namespace *ns = current->nsproxy->mnt_ns; 3878 unsigned long s_iflags; 3879 3880 if (ns->user_ns == &init_user_ns) 3881 return false; 3882 3883 /* Can this filesystem be too revealing? */ 3884 s_iflags = sb->s_iflags; 3885 if (!(s_iflags & SB_I_USERNS_VISIBLE)) 3886 return false; 3887 3888 if ((s_iflags & required_iflags) != required_iflags) { 3889 WARN_ONCE(1, "Expected s_iflags to contain 0x%lx\n", 3890 required_iflags); 3891 return true; 3892 } 3893 3894 return !mnt_already_visible(ns, sb, new_mnt_flags); 3895 } 3896 3897 bool mnt_may_suid(struct vfsmount *mnt) 3898 { 3899 /* 3900 * Foreign mounts (accessed via fchdir or through /proc 3901 * symlinks) are always treated as if they are nosuid. This 3902 * prevents namespaces from trusting potentially unsafe 3903 * suid/sgid bits, file caps, or security labels that originate 3904 * in other namespaces. 3905 */ 3906 return !(mnt->mnt_flags & MNT_NOSUID) && check_mnt(real_mount(mnt)) && 3907 current_in_userns(mnt->mnt_sb->s_user_ns); 3908 } 3909 3910 static struct ns_common *mntns_get(struct task_struct *task) 3911 { 3912 struct ns_common *ns = NULL; 3913 struct nsproxy *nsproxy; 3914 3915 task_lock(task); 3916 nsproxy = task->nsproxy; 3917 if (nsproxy) { 3918 ns = &nsproxy->mnt_ns->ns; 3919 get_mnt_ns(to_mnt_ns(ns)); 3920 } 3921 task_unlock(task); 3922 3923 return ns; 3924 } 3925 3926 static void mntns_put(struct ns_common *ns) 3927 { 3928 put_mnt_ns(to_mnt_ns(ns)); 3929 } 3930 3931 static int mntns_install(struct nsproxy *nsproxy, struct ns_common *ns) 3932 { 3933 struct fs_struct *fs = current->fs; 3934 struct mnt_namespace *mnt_ns = to_mnt_ns(ns), *old_mnt_ns; 3935 struct path root; 3936 int err; 3937 3938 if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) || 3939 !ns_capable(current_user_ns(), CAP_SYS_CHROOT) || 3940 !ns_capable(current_user_ns(), CAP_SYS_ADMIN)) 3941 return -EPERM; 3942 3943 if (is_anon_ns(mnt_ns)) 3944 return -EINVAL; 3945 3946 if (fs->users != 1) 3947 return -EINVAL; 3948 3949 get_mnt_ns(mnt_ns); 3950 old_mnt_ns = nsproxy->mnt_ns; 3951 nsproxy->mnt_ns = mnt_ns; 3952 3953 /* Find the root */ 3954 err = vfs_path_lookup(mnt_ns->root->mnt.mnt_root, &mnt_ns->root->mnt, 3955 "/", LOOKUP_DOWN, &root); 3956 if (err) { 3957 /* revert to old namespace */ 3958 nsproxy->mnt_ns = old_mnt_ns; 3959 put_mnt_ns(mnt_ns); 3960 return err; 3961 } 3962 3963 put_mnt_ns(old_mnt_ns); 3964 3965 /* Update the pwd and root */ 3966 set_fs_pwd(fs, &root); 3967 set_fs_root(fs, &root); 3968 3969 path_put(&root); 3970 return 0; 3971 } 3972 3973 static struct user_namespace *mntns_owner(struct ns_common *ns) 3974 { 3975 return to_mnt_ns(ns)->user_ns; 3976 } 3977 3978 const struct proc_ns_operations mntns_operations = { 3979 .name = "mnt", 3980 .type = CLONE_NEWNS, 3981 .get = mntns_get, 3982 .put = mntns_put, 3983 .install = mntns_install, 3984 .owner = mntns_owner, 3985 }; 3986