xref: /openbmc/linux/fs/namespace.c (revision addee42a)
1 /*
2  *  linux/fs/namespace.c
3  *
4  * (C) Copyright Al Viro 2000, 2001
5  *	Released under GPL v2.
6  *
7  * Based on code from fs/super.c, copyright Linus Torvalds and others.
8  * Heavily rewritten.
9  */
10 
11 #include <linux/syscalls.h>
12 #include <linux/export.h>
13 #include <linux/capability.h>
14 #include <linux/mnt_namespace.h>
15 #include <linux/user_namespace.h>
16 #include <linux/namei.h>
17 #include <linux/security.h>
18 #include <linux/cred.h>
19 #include <linux/idr.h>
20 #include <linux/init.h>		/* init_rootfs */
21 #include <linux/fs_struct.h>	/* get_fs_root et.al. */
22 #include <linux/fsnotify.h>	/* fsnotify_vfsmount_delete */
23 #include <linux/uaccess.h>
24 #include <linux/proc_ns.h>
25 #include <linux/magic.h>
26 #include <linux/bootmem.h>
27 #include <linux/task_work.h>
28 #include <linux/sched/task.h>
29 
30 #include "pnode.h"
31 #include "internal.h"
32 
33 /* Maximum number of mounts in a mount namespace */
34 unsigned int sysctl_mount_max __read_mostly = 100000;
35 
36 static unsigned int m_hash_mask __read_mostly;
37 static unsigned int m_hash_shift __read_mostly;
38 static unsigned int mp_hash_mask __read_mostly;
39 static unsigned int mp_hash_shift __read_mostly;
40 
41 static __initdata unsigned long mhash_entries;
42 static int __init set_mhash_entries(char *str)
43 {
44 	if (!str)
45 		return 0;
46 	mhash_entries = simple_strtoul(str, &str, 0);
47 	return 1;
48 }
49 __setup("mhash_entries=", set_mhash_entries);
50 
51 static __initdata unsigned long mphash_entries;
52 static int __init set_mphash_entries(char *str)
53 {
54 	if (!str)
55 		return 0;
56 	mphash_entries = simple_strtoul(str, &str, 0);
57 	return 1;
58 }
59 __setup("mphash_entries=", set_mphash_entries);
60 
61 static u64 event;
62 static DEFINE_IDA(mnt_id_ida);
63 static DEFINE_IDA(mnt_group_ida);
64 static DEFINE_SPINLOCK(mnt_id_lock);
65 static int mnt_id_start = 0;
66 static int mnt_group_start = 1;
67 
68 static struct hlist_head *mount_hashtable __read_mostly;
69 static struct hlist_head *mountpoint_hashtable __read_mostly;
70 static struct kmem_cache *mnt_cache __read_mostly;
71 static DECLARE_RWSEM(namespace_sem);
72 
73 /* /sys/fs */
74 struct kobject *fs_kobj;
75 EXPORT_SYMBOL_GPL(fs_kobj);
76 
77 /*
78  * vfsmount lock may be taken for read to prevent changes to the
79  * vfsmount hash, ie. during mountpoint lookups or walking back
80  * up the tree.
81  *
82  * It should be taken for write in all cases where the vfsmount
83  * tree or hash is modified or when a vfsmount structure is modified.
84  */
85 __cacheline_aligned_in_smp DEFINE_SEQLOCK(mount_lock);
86 
87 static inline struct hlist_head *m_hash(struct vfsmount *mnt, struct dentry *dentry)
88 {
89 	unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
90 	tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
91 	tmp = tmp + (tmp >> m_hash_shift);
92 	return &mount_hashtable[tmp & m_hash_mask];
93 }
94 
95 static inline struct hlist_head *mp_hash(struct dentry *dentry)
96 {
97 	unsigned long tmp = ((unsigned long)dentry / L1_CACHE_BYTES);
98 	tmp = tmp + (tmp >> mp_hash_shift);
99 	return &mountpoint_hashtable[tmp & mp_hash_mask];
100 }
101 
102 static int mnt_alloc_id(struct mount *mnt)
103 {
104 	int res;
105 
106 retry:
107 	ida_pre_get(&mnt_id_ida, GFP_KERNEL);
108 	spin_lock(&mnt_id_lock);
109 	res = ida_get_new_above(&mnt_id_ida, mnt_id_start, &mnt->mnt_id);
110 	if (!res)
111 		mnt_id_start = mnt->mnt_id + 1;
112 	spin_unlock(&mnt_id_lock);
113 	if (res == -EAGAIN)
114 		goto retry;
115 
116 	return res;
117 }
118 
119 static void mnt_free_id(struct mount *mnt)
120 {
121 	int id = mnt->mnt_id;
122 	spin_lock(&mnt_id_lock);
123 	ida_remove(&mnt_id_ida, id);
124 	if (mnt_id_start > id)
125 		mnt_id_start = id;
126 	spin_unlock(&mnt_id_lock);
127 }
128 
129 /*
130  * Allocate a new peer group ID
131  *
132  * mnt_group_ida is protected by namespace_sem
133  */
134 static int mnt_alloc_group_id(struct mount *mnt)
135 {
136 	int res;
137 
138 	if (!ida_pre_get(&mnt_group_ida, GFP_KERNEL))
139 		return -ENOMEM;
140 
141 	res = ida_get_new_above(&mnt_group_ida,
142 				mnt_group_start,
143 				&mnt->mnt_group_id);
144 	if (!res)
145 		mnt_group_start = mnt->mnt_group_id + 1;
146 
147 	return res;
148 }
149 
150 /*
151  * Release a peer group ID
152  */
153 void mnt_release_group_id(struct mount *mnt)
154 {
155 	int id = mnt->mnt_group_id;
156 	ida_remove(&mnt_group_ida, id);
157 	if (mnt_group_start > id)
158 		mnt_group_start = id;
159 	mnt->mnt_group_id = 0;
160 }
161 
162 /*
163  * vfsmount lock must be held for read
164  */
165 static inline void mnt_add_count(struct mount *mnt, int n)
166 {
167 #ifdef CONFIG_SMP
168 	this_cpu_add(mnt->mnt_pcp->mnt_count, n);
169 #else
170 	preempt_disable();
171 	mnt->mnt_count += n;
172 	preempt_enable();
173 #endif
174 }
175 
176 /*
177  * vfsmount lock must be held for write
178  */
179 unsigned int mnt_get_count(struct mount *mnt)
180 {
181 #ifdef CONFIG_SMP
182 	unsigned int count = 0;
183 	int cpu;
184 
185 	for_each_possible_cpu(cpu) {
186 		count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
187 	}
188 
189 	return count;
190 #else
191 	return mnt->mnt_count;
192 #endif
193 }
194 
195 static void drop_mountpoint(struct fs_pin *p)
196 {
197 	struct mount *m = container_of(p, struct mount, mnt_umount);
198 	dput(m->mnt_ex_mountpoint);
199 	pin_remove(p);
200 	mntput(&m->mnt);
201 }
202 
203 static struct mount *alloc_vfsmnt(const char *name)
204 {
205 	struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
206 	if (mnt) {
207 		int err;
208 
209 		err = mnt_alloc_id(mnt);
210 		if (err)
211 			goto out_free_cache;
212 
213 		if (name) {
214 			mnt->mnt_devname = kstrdup_const(name, GFP_KERNEL);
215 			if (!mnt->mnt_devname)
216 				goto out_free_id;
217 		}
218 
219 #ifdef CONFIG_SMP
220 		mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
221 		if (!mnt->mnt_pcp)
222 			goto out_free_devname;
223 
224 		this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
225 #else
226 		mnt->mnt_count = 1;
227 		mnt->mnt_writers = 0;
228 #endif
229 
230 		INIT_HLIST_NODE(&mnt->mnt_hash);
231 		INIT_LIST_HEAD(&mnt->mnt_child);
232 		INIT_LIST_HEAD(&mnt->mnt_mounts);
233 		INIT_LIST_HEAD(&mnt->mnt_list);
234 		INIT_LIST_HEAD(&mnt->mnt_expire);
235 		INIT_LIST_HEAD(&mnt->mnt_share);
236 		INIT_LIST_HEAD(&mnt->mnt_slave_list);
237 		INIT_LIST_HEAD(&mnt->mnt_slave);
238 		INIT_HLIST_NODE(&mnt->mnt_mp_list);
239 		INIT_LIST_HEAD(&mnt->mnt_umounting);
240 		init_fs_pin(&mnt->mnt_umount, drop_mountpoint);
241 	}
242 	return mnt;
243 
244 #ifdef CONFIG_SMP
245 out_free_devname:
246 	kfree_const(mnt->mnt_devname);
247 #endif
248 out_free_id:
249 	mnt_free_id(mnt);
250 out_free_cache:
251 	kmem_cache_free(mnt_cache, mnt);
252 	return NULL;
253 }
254 
255 /*
256  * Most r/o checks on a fs are for operations that take
257  * discrete amounts of time, like a write() or unlink().
258  * We must keep track of when those operations start
259  * (for permission checks) and when they end, so that
260  * we can determine when writes are able to occur to
261  * a filesystem.
262  */
263 /*
264  * __mnt_is_readonly: check whether a mount is read-only
265  * @mnt: the mount to check for its write status
266  *
267  * This shouldn't be used directly ouside of the VFS.
268  * It does not guarantee that the filesystem will stay
269  * r/w, just that it is right *now*.  This can not and
270  * should not be used in place of IS_RDONLY(inode).
271  * mnt_want/drop_write() will _keep_ the filesystem
272  * r/w.
273  */
274 int __mnt_is_readonly(struct vfsmount *mnt)
275 {
276 	if (mnt->mnt_flags & MNT_READONLY)
277 		return 1;
278 	if (sb_rdonly(mnt->mnt_sb))
279 		return 1;
280 	return 0;
281 }
282 EXPORT_SYMBOL_GPL(__mnt_is_readonly);
283 
284 static inline void mnt_inc_writers(struct mount *mnt)
285 {
286 #ifdef CONFIG_SMP
287 	this_cpu_inc(mnt->mnt_pcp->mnt_writers);
288 #else
289 	mnt->mnt_writers++;
290 #endif
291 }
292 
293 static inline void mnt_dec_writers(struct mount *mnt)
294 {
295 #ifdef CONFIG_SMP
296 	this_cpu_dec(mnt->mnt_pcp->mnt_writers);
297 #else
298 	mnt->mnt_writers--;
299 #endif
300 }
301 
302 static unsigned int mnt_get_writers(struct mount *mnt)
303 {
304 #ifdef CONFIG_SMP
305 	unsigned int count = 0;
306 	int cpu;
307 
308 	for_each_possible_cpu(cpu) {
309 		count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
310 	}
311 
312 	return count;
313 #else
314 	return mnt->mnt_writers;
315 #endif
316 }
317 
318 static int mnt_is_readonly(struct vfsmount *mnt)
319 {
320 	if (mnt->mnt_sb->s_readonly_remount)
321 		return 1;
322 	/* Order wrt setting s_flags/s_readonly_remount in do_remount() */
323 	smp_rmb();
324 	return __mnt_is_readonly(mnt);
325 }
326 
327 /*
328  * Most r/o & frozen checks on a fs are for operations that take discrete
329  * amounts of time, like a write() or unlink().  We must keep track of when
330  * those operations start (for permission checks) and when they end, so that we
331  * can determine when writes are able to occur to a filesystem.
332  */
333 /**
334  * __mnt_want_write - get write access to a mount without freeze protection
335  * @m: the mount on which to take a write
336  *
337  * This tells the low-level filesystem that a write is about to be performed to
338  * it, and makes sure that writes are allowed (mnt it read-write) before
339  * returning success. This operation does not protect against filesystem being
340  * frozen. When the write operation is finished, __mnt_drop_write() must be
341  * called. This is effectively a refcount.
342  */
343 int __mnt_want_write(struct vfsmount *m)
344 {
345 	struct mount *mnt = real_mount(m);
346 	int ret = 0;
347 
348 	preempt_disable();
349 	mnt_inc_writers(mnt);
350 	/*
351 	 * The store to mnt_inc_writers must be visible before we pass
352 	 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
353 	 * incremented count after it has set MNT_WRITE_HOLD.
354 	 */
355 	smp_mb();
356 	while (READ_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD)
357 		cpu_relax();
358 	/*
359 	 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
360 	 * be set to match its requirements. So we must not load that until
361 	 * MNT_WRITE_HOLD is cleared.
362 	 */
363 	smp_rmb();
364 	if (mnt_is_readonly(m)) {
365 		mnt_dec_writers(mnt);
366 		ret = -EROFS;
367 	}
368 	preempt_enable();
369 
370 	return ret;
371 }
372 
373 /**
374  * mnt_want_write - get write access to a mount
375  * @m: the mount on which to take a write
376  *
377  * This tells the low-level filesystem that a write is about to be performed to
378  * it, and makes sure that writes are allowed (mount is read-write, filesystem
379  * is not frozen) before returning success.  When the write operation is
380  * finished, mnt_drop_write() must be called.  This is effectively a refcount.
381  */
382 int mnt_want_write(struct vfsmount *m)
383 {
384 	int ret;
385 
386 	sb_start_write(m->mnt_sb);
387 	ret = __mnt_want_write(m);
388 	if (ret)
389 		sb_end_write(m->mnt_sb);
390 	return ret;
391 }
392 EXPORT_SYMBOL_GPL(mnt_want_write);
393 
394 /**
395  * mnt_clone_write - get write access to a mount
396  * @mnt: the mount on which to take a write
397  *
398  * This is effectively like mnt_want_write, except
399  * it must only be used to take an extra write reference
400  * on a mountpoint that we already know has a write reference
401  * on it. This allows some optimisation.
402  *
403  * After finished, mnt_drop_write must be called as usual to
404  * drop the reference.
405  */
406 int mnt_clone_write(struct vfsmount *mnt)
407 {
408 	/* superblock may be r/o */
409 	if (__mnt_is_readonly(mnt))
410 		return -EROFS;
411 	preempt_disable();
412 	mnt_inc_writers(real_mount(mnt));
413 	preempt_enable();
414 	return 0;
415 }
416 EXPORT_SYMBOL_GPL(mnt_clone_write);
417 
418 /**
419  * __mnt_want_write_file - get write access to a file's mount
420  * @file: the file who's mount on which to take a write
421  *
422  * This is like __mnt_want_write, but it takes a file and can
423  * do some optimisations if the file is open for write already
424  */
425 int __mnt_want_write_file(struct file *file)
426 {
427 	if (!(file->f_mode & FMODE_WRITER))
428 		return __mnt_want_write(file->f_path.mnt);
429 	else
430 		return mnt_clone_write(file->f_path.mnt);
431 }
432 
433 /**
434  * mnt_want_write_file_path - get write access to a file's mount
435  * @file: the file who's mount on which to take a write
436  *
437  * This is like mnt_want_write, but it takes a file and can
438  * do some optimisations if the file is open for write already
439  *
440  * Called by the vfs for cases when we have an open file at hand, but will do an
441  * inode operation on it (important distinction for files opened on overlayfs,
442  * since the file operations will come from the real underlying file, while
443  * inode operations come from the overlay).
444  */
445 int mnt_want_write_file_path(struct file *file)
446 {
447 	int ret;
448 
449 	sb_start_write(file->f_path.mnt->mnt_sb);
450 	ret = __mnt_want_write_file(file);
451 	if (ret)
452 		sb_end_write(file->f_path.mnt->mnt_sb);
453 	return ret;
454 }
455 
456 static inline int may_write_real(struct file *file)
457 {
458 	struct dentry *dentry = file->f_path.dentry;
459 	struct dentry *upperdentry;
460 
461 	/* Writable file? */
462 	if (file->f_mode & FMODE_WRITER)
463 		return 0;
464 
465 	/* Not overlayfs? */
466 	if (likely(!(dentry->d_flags & DCACHE_OP_REAL)))
467 		return 0;
468 
469 	/* File refers to upper, writable layer? */
470 	upperdentry = d_real(dentry, NULL, 0, D_REAL_UPPER);
471 	if (upperdentry &&
472 	    (file_inode(file) == d_inode(upperdentry) ||
473 	     file_inode(file) == d_inode(dentry)))
474 		return 0;
475 
476 	/* Lower layer: can't write to real file, sorry... */
477 	return -EPERM;
478 }
479 
480 /**
481  * mnt_want_write_file - get write access to a file's mount
482  * @file: the file who's mount on which to take a write
483  *
484  * This is like mnt_want_write, but it takes a file and can
485  * do some optimisations if the file is open for write already
486  *
487  * Mostly called by filesystems from their ioctl operation before performing
488  * modification.  On overlayfs this needs to check if the file is on a read-only
489  * lower layer and deny access in that case.
490  */
491 int mnt_want_write_file(struct file *file)
492 {
493 	int ret;
494 
495 	ret = may_write_real(file);
496 	if (!ret) {
497 		sb_start_write(file_inode(file)->i_sb);
498 		ret = __mnt_want_write_file(file);
499 		if (ret)
500 			sb_end_write(file_inode(file)->i_sb);
501 	}
502 	return ret;
503 }
504 EXPORT_SYMBOL_GPL(mnt_want_write_file);
505 
506 /**
507  * __mnt_drop_write - give up write access to a mount
508  * @mnt: the mount on which to give up write access
509  *
510  * Tells the low-level filesystem that we are done
511  * performing writes to it.  Must be matched with
512  * __mnt_want_write() call above.
513  */
514 void __mnt_drop_write(struct vfsmount *mnt)
515 {
516 	preempt_disable();
517 	mnt_dec_writers(real_mount(mnt));
518 	preempt_enable();
519 }
520 
521 /**
522  * mnt_drop_write - give up write access to a mount
523  * @mnt: the mount on which to give up write access
524  *
525  * Tells the low-level filesystem that we are done performing writes to it and
526  * also allows filesystem to be frozen again.  Must be matched with
527  * mnt_want_write() call above.
528  */
529 void mnt_drop_write(struct vfsmount *mnt)
530 {
531 	__mnt_drop_write(mnt);
532 	sb_end_write(mnt->mnt_sb);
533 }
534 EXPORT_SYMBOL_GPL(mnt_drop_write);
535 
536 void __mnt_drop_write_file(struct file *file)
537 {
538 	__mnt_drop_write(file->f_path.mnt);
539 }
540 
541 void mnt_drop_write_file_path(struct file *file)
542 {
543 	mnt_drop_write(file->f_path.mnt);
544 }
545 
546 void mnt_drop_write_file(struct file *file)
547 {
548 	__mnt_drop_write(file->f_path.mnt);
549 	sb_end_write(file_inode(file)->i_sb);
550 }
551 EXPORT_SYMBOL(mnt_drop_write_file);
552 
553 static int mnt_make_readonly(struct mount *mnt)
554 {
555 	int ret = 0;
556 
557 	lock_mount_hash();
558 	mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
559 	/*
560 	 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
561 	 * should be visible before we do.
562 	 */
563 	smp_mb();
564 
565 	/*
566 	 * With writers on hold, if this value is zero, then there are
567 	 * definitely no active writers (although held writers may subsequently
568 	 * increment the count, they'll have to wait, and decrement it after
569 	 * seeing MNT_READONLY).
570 	 *
571 	 * It is OK to have counter incremented on one CPU and decremented on
572 	 * another: the sum will add up correctly. The danger would be when we
573 	 * sum up each counter, if we read a counter before it is incremented,
574 	 * but then read another CPU's count which it has been subsequently
575 	 * decremented from -- we would see more decrements than we should.
576 	 * MNT_WRITE_HOLD protects against this scenario, because
577 	 * mnt_want_write first increments count, then smp_mb, then spins on
578 	 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
579 	 * we're counting up here.
580 	 */
581 	if (mnt_get_writers(mnt) > 0)
582 		ret = -EBUSY;
583 	else
584 		mnt->mnt.mnt_flags |= MNT_READONLY;
585 	/*
586 	 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
587 	 * that become unheld will see MNT_READONLY.
588 	 */
589 	smp_wmb();
590 	mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
591 	unlock_mount_hash();
592 	return ret;
593 }
594 
595 static void __mnt_unmake_readonly(struct mount *mnt)
596 {
597 	lock_mount_hash();
598 	mnt->mnt.mnt_flags &= ~MNT_READONLY;
599 	unlock_mount_hash();
600 }
601 
602 int sb_prepare_remount_readonly(struct super_block *sb)
603 {
604 	struct mount *mnt;
605 	int err = 0;
606 
607 	/* Racy optimization.  Recheck the counter under MNT_WRITE_HOLD */
608 	if (atomic_long_read(&sb->s_remove_count))
609 		return -EBUSY;
610 
611 	lock_mount_hash();
612 	list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
613 		if (!(mnt->mnt.mnt_flags & MNT_READONLY)) {
614 			mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
615 			smp_mb();
616 			if (mnt_get_writers(mnt) > 0) {
617 				err = -EBUSY;
618 				break;
619 			}
620 		}
621 	}
622 	if (!err && atomic_long_read(&sb->s_remove_count))
623 		err = -EBUSY;
624 
625 	if (!err) {
626 		sb->s_readonly_remount = 1;
627 		smp_wmb();
628 	}
629 	list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
630 		if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
631 			mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
632 	}
633 	unlock_mount_hash();
634 
635 	return err;
636 }
637 
638 static void free_vfsmnt(struct mount *mnt)
639 {
640 	kfree_const(mnt->mnt_devname);
641 #ifdef CONFIG_SMP
642 	free_percpu(mnt->mnt_pcp);
643 #endif
644 	kmem_cache_free(mnt_cache, mnt);
645 }
646 
647 static void delayed_free_vfsmnt(struct rcu_head *head)
648 {
649 	free_vfsmnt(container_of(head, struct mount, mnt_rcu));
650 }
651 
652 /* call under rcu_read_lock */
653 int __legitimize_mnt(struct vfsmount *bastard, unsigned seq)
654 {
655 	struct mount *mnt;
656 	if (read_seqretry(&mount_lock, seq))
657 		return 1;
658 	if (bastard == NULL)
659 		return 0;
660 	mnt = real_mount(bastard);
661 	mnt_add_count(mnt, 1);
662 	if (likely(!read_seqretry(&mount_lock, seq)))
663 		return 0;
664 	if (bastard->mnt_flags & MNT_SYNC_UMOUNT) {
665 		mnt_add_count(mnt, -1);
666 		return 1;
667 	}
668 	return -1;
669 }
670 
671 /* call under rcu_read_lock */
672 bool legitimize_mnt(struct vfsmount *bastard, unsigned seq)
673 {
674 	int res = __legitimize_mnt(bastard, seq);
675 	if (likely(!res))
676 		return true;
677 	if (unlikely(res < 0)) {
678 		rcu_read_unlock();
679 		mntput(bastard);
680 		rcu_read_lock();
681 	}
682 	return false;
683 }
684 
685 /*
686  * find the first mount at @dentry on vfsmount @mnt.
687  * call under rcu_read_lock()
688  */
689 struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry)
690 {
691 	struct hlist_head *head = m_hash(mnt, dentry);
692 	struct mount *p;
693 
694 	hlist_for_each_entry_rcu(p, head, mnt_hash)
695 		if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry)
696 			return p;
697 	return NULL;
698 }
699 
700 /*
701  * lookup_mnt - Return the first child mount mounted at path
702  *
703  * "First" means first mounted chronologically.  If you create the
704  * following mounts:
705  *
706  * mount /dev/sda1 /mnt
707  * mount /dev/sda2 /mnt
708  * mount /dev/sda3 /mnt
709  *
710  * Then lookup_mnt() on the base /mnt dentry in the root mount will
711  * return successively the root dentry and vfsmount of /dev/sda1, then
712  * /dev/sda2, then /dev/sda3, then NULL.
713  *
714  * lookup_mnt takes a reference to the found vfsmount.
715  */
716 struct vfsmount *lookup_mnt(const struct path *path)
717 {
718 	struct mount *child_mnt;
719 	struct vfsmount *m;
720 	unsigned seq;
721 
722 	rcu_read_lock();
723 	do {
724 		seq = read_seqbegin(&mount_lock);
725 		child_mnt = __lookup_mnt(path->mnt, path->dentry);
726 		m = child_mnt ? &child_mnt->mnt : NULL;
727 	} while (!legitimize_mnt(m, seq));
728 	rcu_read_unlock();
729 	return m;
730 }
731 
732 /*
733  * __is_local_mountpoint - Test to see if dentry is a mountpoint in the
734  *                         current mount namespace.
735  *
736  * The common case is dentries are not mountpoints at all and that
737  * test is handled inline.  For the slow case when we are actually
738  * dealing with a mountpoint of some kind, walk through all of the
739  * mounts in the current mount namespace and test to see if the dentry
740  * is a mountpoint.
741  *
742  * The mount_hashtable is not usable in the context because we
743  * need to identify all mounts that may be in the current mount
744  * namespace not just a mount that happens to have some specified
745  * parent mount.
746  */
747 bool __is_local_mountpoint(struct dentry *dentry)
748 {
749 	struct mnt_namespace *ns = current->nsproxy->mnt_ns;
750 	struct mount *mnt;
751 	bool is_covered = false;
752 
753 	if (!d_mountpoint(dentry))
754 		goto out;
755 
756 	down_read(&namespace_sem);
757 	list_for_each_entry(mnt, &ns->list, mnt_list) {
758 		is_covered = (mnt->mnt_mountpoint == dentry);
759 		if (is_covered)
760 			break;
761 	}
762 	up_read(&namespace_sem);
763 out:
764 	return is_covered;
765 }
766 
767 static struct mountpoint *lookup_mountpoint(struct dentry *dentry)
768 {
769 	struct hlist_head *chain = mp_hash(dentry);
770 	struct mountpoint *mp;
771 
772 	hlist_for_each_entry(mp, chain, m_hash) {
773 		if (mp->m_dentry == dentry) {
774 			/* might be worth a WARN_ON() */
775 			if (d_unlinked(dentry))
776 				return ERR_PTR(-ENOENT);
777 			mp->m_count++;
778 			return mp;
779 		}
780 	}
781 	return NULL;
782 }
783 
784 static struct mountpoint *get_mountpoint(struct dentry *dentry)
785 {
786 	struct mountpoint *mp, *new = NULL;
787 	int ret;
788 
789 	if (d_mountpoint(dentry)) {
790 mountpoint:
791 		read_seqlock_excl(&mount_lock);
792 		mp = lookup_mountpoint(dentry);
793 		read_sequnlock_excl(&mount_lock);
794 		if (mp)
795 			goto done;
796 	}
797 
798 	if (!new)
799 		new = kmalloc(sizeof(struct mountpoint), GFP_KERNEL);
800 	if (!new)
801 		return ERR_PTR(-ENOMEM);
802 
803 
804 	/* Exactly one processes may set d_mounted */
805 	ret = d_set_mounted(dentry);
806 
807 	/* Someone else set d_mounted? */
808 	if (ret == -EBUSY)
809 		goto mountpoint;
810 
811 	/* The dentry is not available as a mountpoint? */
812 	mp = ERR_PTR(ret);
813 	if (ret)
814 		goto done;
815 
816 	/* Add the new mountpoint to the hash table */
817 	read_seqlock_excl(&mount_lock);
818 	new->m_dentry = dentry;
819 	new->m_count = 1;
820 	hlist_add_head(&new->m_hash, mp_hash(dentry));
821 	INIT_HLIST_HEAD(&new->m_list);
822 	read_sequnlock_excl(&mount_lock);
823 
824 	mp = new;
825 	new = NULL;
826 done:
827 	kfree(new);
828 	return mp;
829 }
830 
831 static void put_mountpoint(struct mountpoint *mp)
832 {
833 	if (!--mp->m_count) {
834 		struct dentry *dentry = mp->m_dentry;
835 		BUG_ON(!hlist_empty(&mp->m_list));
836 		spin_lock(&dentry->d_lock);
837 		dentry->d_flags &= ~DCACHE_MOUNTED;
838 		spin_unlock(&dentry->d_lock);
839 		hlist_del(&mp->m_hash);
840 		kfree(mp);
841 	}
842 }
843 
844 static inline int check_mnt(struct mount *mnt)
845 {
846 	return mnt->mnt_ns == current->nsproxy->mnt_ns;
847 }
848 
849 /*
850  * vfsmount lock must be held for write
851  */
852 static void touch_mnt_namespace(struct mnt_namespace *ns)
853 {
854 	if (ns) {
855 		ns->event = ++event;
856 		wake_up_interruptible(&ns->poll);
857 	}
858 }
859 
860 /*
861  * vfsmount lock must be held for write
862  */
863 static void __touch_mnt_namespace(struct mnt_namespace *ns)
864 {
865 	if (ns && ns->event != event) {
866 		ns->event = event;
867 		wake_up_interruptible(&ns->poll);
868 	}
869 }
870 
871 /*
872  * vfsmount lock must be held for write
873  */
874 static void unhash_mnt(struct mount *mnt)
875 {
876 	mnt->mnt_parent = mnt;
877 	mnt->mnt_mountpoint = mnt->mnt.mnt_root;
878 	list_del_init(&mnt->mnt_child);
879 	hlist_del_init_rcu(&mnt->mnt_hash);
880 	hlist_del_init(&mnt->mnt_mp_list);
881 	put_mountpoint(mnt->mnt_mp);
882 	mnt->mnt_mp = NULL;
883 }
884 
885 /*
886  * vfsmount lock must be held for write
887  */
888 static void detach_mnt(struct mount *mnt, struct path *old_path)
889 {
890 	old_path->dentry = mnt->mnt_mountpoint;
891 	old_path->mnt = &mnt->mnt_parent->mnt;
892 	unhash_mnt(mnt);
893 }
894 
895 /*
896  * vfsmount lock must be held for write
897  */
898 static void umount_mnt(struct mount *mnt)
899 {
900 	/* old mountpoint will be dropped when we can do that */
901 	mnt->mnt_ex_mountpoint = mnt->mnt_mountpoint;
902 	unhash_mnt(mnt);
903 }
904 
905 /*
906  * vfsmount lock must be held for write
907  */
908 void mnt_set_mountpoint(struct mount *mnt,
909 			struct mountpoint *mp,
910 			struct mount *child_mnt)
911 {
912 	mp->m_count++;
913 	mnt_add_count(mnt, 1);	/* essentially, that's mntget */
914 	child_mnt->mnt_mountpoint = dget(mp->m_dentry);
915 	child_mnt->mnt_parent = mnt;
916 	child_mnt->mnt_mp = mp;
917 	hlist_add_head(&child_mnt->mnt_mp_list, &mp->m_list);
918 }
919 
920 static void __attach_mnt(struct mount *mnt, struct mount *parent)
921 {
922 	hlist_add_head_rcu(&mnt->mnt_hash,
923 			   m_hash(&parent->mnt, mnt->mnt_mountpoint));
924 	list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
925 }
926 
927 /*
928  * vfsmount lock must be held for write
929  */
930 static void attach_mnt(struct mount *mnt,
931 			struct mount *parent,
932 			struct mountpoint *mp)
933 {
934 	mnt_set_mountpoint(parent, mp, mnt);
935 	__attach_mnt(mnt, parent);
936 }
937 
938 void mnt_change_mountpoint(struct mount *parent, struct mountpoint *mp, struct mount *mnt)
939 {
940 	struct mountpoint *old_mp = mnt->mnt_mp;
941 	struct dentry *old_mountpoint = mnt->mnt_mountpoint;
942 	struct mount *old_parent = mnt->mnt_parent;
943 
944 	list_del_init(&mnt->mnt_child);
945 	hlist_del_init(&mnt->mnt_mp_list);
946 	hlist_del_init_rcu(&mnt->mnt_hash);
947 
948 	attach_mnt(mnt, parent, mp);
949 
950 	put_mountpoint(old_mp);
951 
952 	/*
953 	 * Safely avoid even the suggestion this code might sleep or
954 	 * lock the mount hash by taking advantage of the knowledge that
955 	 * mnt_change_mountpoint will not release the final reference
956 	 * to a mountpoint.
957 	 *
958 	 * During mounting, the mount passed in as the parent mount will
959 	 * continue to use the old mountpoint and during unmounting, the
960 	 * old mountpoint will continue to exist until namespace_unlock,
961 	 * which happens well after mnt_change_mountpoint.
962 	 */
963 	spin_lock(&old_mountpoint->d_lock);
964 	old_mountpoint->d_lockref.count--;
965 	spin_unlock(&old_mountpoint->d_lock);
966 
967 	mnt_add_count(old_parent, -1);
968 }
969 
970 /*
971  * vfsmount lock must be held for write
972  */
973 static void commit_tree(struct mount *mnt)
974 {
975 	struct mount *parent = mnt->mnt_parent;
976 	struct mount *m;
977 	LIST_HEAD(head);
978 	struct mnt_namespace *n = parent->mnt_ns;
979 
980 	BUG_ON(parent == mnt);
981 
982 	list_add_tail(&head, &mnt->mnt_list);
983 	list_for_each_entry(m, &head, mnt_list)
984 		m->mnt_ns = n;
985 
986 	list_splice(&head, n->list.prev);
987 
988 	n->mounts += n->pending_mounts;
989 	n->pending_mounts = 0;
990 
991 	__attach_mnt(mnt, parent);
992 	touch_mnt_namespace(n);
993 }
994 
995 static struct mount *next_mnt(struct mount *p, struct mount *root)
996 {
997 	struct list_head *next = p->mnt_mounts.next;
998 	if (next == &p->mnt_mounts) {
999 		while (1) {
1000 			if (p == root)
1001 				return NULL;
1002 			next = p->mnt_child.next;
1003 			if (next != &p->mnt_parent->mnt_mounts)
1004 				break;
1005 			p = p->mnt_parent;
1006 		}
1007 	}
1008 	return list_entry(next, struct mount, mnt_child);
1009 }
1010 
1011 static struct mount *skip_mnt_tree(struct mount *p)
1012 {
1013 	struct list_head *prev = p->mnt_mounts.prev;
1014 	while (prev != &p->mnt_mounts) {
1015 		p = list_entry(prev, struct mount, mnt_child);
1016 		prev = p->mnt_mounts.prev;
1017 	}
1018 	return p;
1019 }
1020 
1021 struct vfsmount *
1022 vfs_kern_mount(struct file_system_type *type, int flags, const char *name, void *data)
1023 {
1024 	struct mount *mnt;
1025 	struct dentry *root;
1026 
1027 	if (!type)
1028 		return ERR_PTR(-ENODEV);
1029 
1030 	mnt = alloc_vfsmnt(name);
1031 	if (!mnt)
1032 		return ERR_PTR(-ENOMEM);
1033 
1034 	if (flags & SB_KERNMOUNT)
1035 		mnt->mnt.mnt_flags = MNT_INTERNAL;
1036 
1037 	root = mount_fs(type, flags, name, data);
1038 	if (IS_ERR(root)) {
1039 		mnt_free_id(mnt);
1040 		free_vfsmnt(mnt);
1041 		return ERR_CAST(root);
1042 	}
1043 
1044 	mnt->mnt.mnt_root = root;
1045 	mnt->mnt.mnt_sb = root->d_sb;
1046 	mnt->mnt_mountpoint = mnt->mnt.mnt_root;
1047 	mnt->mnt_parent = mnt;
1048 	lock_mount_hash();
1049 	list_add_tail(&mnt->mnt_instance, &root->d_sb->s_mounts);
1050 	unlock_mount_hash();
1051 	return &mnt->mnt;
1052 }
1053 EXPORT_SYMBOL_GPL(vfs_kern_mount);
1054 
1055 struct vfsmount *
1056 vfs_submount(const struct dentry *mountpoint, struct file_system_type *type,
1057 	     const char *name, void *data)
1058 {
1059 	/* Until it is worked out how to pass the user namespace
1060 	 * through from the parent mount to the submount don't support
1061 	 * unprivileged mounts with submounts.
1062 	 */
1063 	if (mountpoint->d_sb->s_user_ns != &init_user_ns)
1064 		return ERR_PTR(-EPERM);
1065 
1066 	return vfs_kern_mount(type, SB_SUBMOUNT, name, data);
1067 }
1068 EXPORT_SYMBOL_GPL(vfs_submount);
1069 
1070 static struct mount *clone_mnt(struct mount *old, struct dentry *root,
1071 					int flag)
1072 {
1073 	struct super_block *sb = old->mnt.mnt_sb;
1074 	struct mount *mnt;
1075 	int err;
1076 
1077 	mnt = alloc_vfsmnt(old->mnt_devname);
1078 	if (!mnt)
1079 		return ERR_PTR(-ENOMEM);
1080 
1081 	if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE))
1082 		mnt->mnt_group_id = 0; /* not a peer of original */
1083 	else
1084 		mnt->mnt_group_id = old->mnt_group_id;
1085 
1086 	if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
1087 		err = mnt_alloc_group_id(mnt);
1088 		if (err)
1089 			goto out_free;
1090 	}
1091 
1092 	mnt->mnt.mnt_flags = old->mnt.mnt_flags;
1093 	mnt->mnt.mnt_flags &= ~(MNT_WRITE_HOLD|MNT_MARKED|MNT_INTERNAL);
1094 	/* Don't allow unprivileged users to change mount flags */
1095 	if (flag & CL_UNPRIVILEGED) {
1096 		mnt->mnt.mnt_flags |= MNT_LOCK_ATIME;
1097 
1098 		if (mnt->mnt.mnt_flags & MNT_READONLY)
1099 			mnt->mnt.mnt_flags |= MNT_LOCK_READONLY;
1100 
1101 		if (mnt->mnt.mnt_flags & MNT_NODEV)
1102 			mnt->mnt.mnt_flags |= MNT_LOCK_NODEV;
1103 
1104 		if (mnt->mnt.mnt_flags & MNT_NOSUID)
1105 			mnt->mnt.mnt_flags |= MNT_LOCK_NOSUID;
1106 
1107 		if (mnt->mnt.mnt_flags & MNT_NOEXEC)
1108 			mnt->mnt.mnt_flags |= MNT_LOCK_NOEXEC;
1109 	}
1110 
1111 	/* Don't allow unprivileged users to reveal what is under a mount */
1112 	if ((flag & CL_UNPRIVILEGED) &&
1113 	    (!(flag & CL_EXPIRE) || list_empty(&old->mnt_expire)))
1114 		mnt->mnt.mnt_flags |= MNT_LOCKED;
1115 
1116 	atomic_inc(&sb->s_active);
1117 	mnt->mnt.mnt_sb = sb;
1118 	mnt->mnt.mnt_root = dget(root);
1119 	mnt->mnt_mountpoint = mnt->mnt.mnt_root;
1120 	mnt->mnt_parent = mnt;
1121 	lock_mount_hash();
1122 	list_add_tail(&mnt->mnt_instance, &sb->s_mounts);
1123 	unlock_mount_hash();
1124 
1125 	if ((flag & CL_SLAVE) ||
1126 	    ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) {
1127 		list_add(&mnt->mnt_slave, &old->mnt_slave_list);
1128 		mnt->mnt_master = old;
1129 		CLEAR_MNT_SHARED(mnt);
1130 	} else if (!(flag & CL_PRIVATE)) {
1131 		if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
1132 			list_add(&mnt->mnt_share, &old->mnt_share);
1133 		if (IS_MNT_SLAVE(old))
1134 			list_add(&mnt->mnt_slave, &old->mnt_slave);
1135 		mnt->mnt_master = old->mnt_master;
1136 	} else {
1137 		CLEAR_MNT_SHARED(mnt);
1138 	}
1139 	if (flag & CL_MAKE_SHARED)
1140 		set_mnt_shared(mnt);
1141 
1142 	/* stick the duplicate mount on the same expiry list
1143 	 * as the original if that was on one */
1144 	if (flag & CL_EXPIRE) {
1145 		if (!list_empty(&old->mnt_expire))
1146 			list_add(&mnt->mnt_expire, &old->mnt_expire);
1147 	}
1148 
1149 	return mnt;
1150 
1151  out_free:
1152 	mnt_free_id(mnt);
1153 	free_vfsmnt(mnt);
1154 	return ERR_PTR(err);
1155 }
1156 
1157 static void cleanup_mnt(struct mount *mnt)
1158 {
1159 	/*
1160 	 * This probably indicates that somebody messed
1161 	 * up a mnt_want/drop_write() pair.  If this
1162 	 * happens, the filesystem was probably unable
1163 	 * to make r/w->r/o transitions.
1164 	 */
1165 	/*
1166 	 * The locking used to deal with mnt_count decrement provides barriers,
1167 	 * so mnt_get_writers() below is safe.
1168 	 */
1169 	WARN_ON(mnt_get_writers(mnt));
1170 	if (unlikely(mnt->mnt_pins.first))
1171 		mnt_pin_kill(mnt);
1172 	fsnotify_vfsmount_delete(&mnt->mnt);
1173 	dput(mnt->mnt.mnt_root);
1174 	deactivate_super(mnt->mnt.mnt_sb);
1175 	mnt_free_id(mnt);
1176 	call_rcu(&mnt->mnt_rcu, delayed_free_vfsmnt);
1177 }
1178 
1179 static void __cleanup_mnt(struct rcu_head *head)
1180 {
1181 	cleanup_mnt(container_of(head, struct mount, mnt_rcu));
1182 }
1183 
1184 static LLIST_HEAD(delayed_mntput_list);
1185 static void delayed_mntput(struct work_struct *unused)
1186 {
1187 	struct llist_node *node = llist_del_all(&delayed_mntput_list);
1188 	struct mount *m, *t;
1189 
1190 	llist_for_each_entry_safe(m, t, node, mnt_llist)
1191 		cleanup_mnt(m);
1192 }
1193 static DECLARE_DELAYED_WORK(delayed_mntput_work, delayed_mntput);
1194 
1195 static void mntput_no_expire(struct mount *mnt)
1196 {
1197 	rcu_read_lock();
1198 	mnt_add_count(mnt, -1);
1199 	if (likely(mnt->mnt_ns)) { /* shouldn't be the last one */
1200 		rcu_read_unlock();
1201 		return;
1202 	}
1203 	lock_mount_hash();
1204 	if (mnt_get_count(mnt)) {
1205 		rcu_read_unlock();
1206 		unlock_mount_hash();
1207 		return;
1208 	}
1209 	if (unlikely(mnt->mnt.mnt_flags & MNT_DOOMED)) {
1210 		rcu_read_unlock();
1211 		unlock_mount_hash();
1212 		return;
1213 	}
1214 	mnt->mnt.mnt_flags |= MNT_DOOMED;
1215 	rcu_read_unlock();
1216 
1217 	list_del(&mnt->mnt_instance);
1218 
1219 	if (unlikely(!list_empty(&mnt->mnt_mounts))) {
1220 		struct mount *p, *tmp;
1221 		list_for_each_entry_safe(p, tmp, &mnt->mnt_mounts,  mnt_child) {
1222 			umount_mnt(p);
1223 		}
1224 	}
1225 	unlock_mount_hash();
1226 
1227 	if (likely(!(mnt->mnt.mnt_flags & MNT_INTERNAL))) {
1228 		struct task_struct *task = current;
1229 		if (likely(!(task->flags & PF_KTHREAD))) {
1230 			init_task_work(&mnt->mnt_rcu, __cleanup_mnt);
1231 			if (!task_work_add(task, &mnt->mnt_rcu, true))
1232 				return;
1233 		}
1234 		if (llist_add(&mnt->mnt_llist, &delayed_mntput_list))
1235 			schedule_delayed_work(&delayed_mntput_work, 1);
1236 		return;
1237 	}
1238 	cleanup_mnt(mnt);
1239 }
1240 
1241 void mntput(struct vfsmount *mnt)
1242 {
1243 	if (mnt) {
1244 		struct mount *m = real_mount(mnt);
1245 		/* avoid cacheline pingpong, hope gcc doesn't get "smart" */
1246 		if (unlikely(m->mnt_expiry_mark))
1247 			m->mnt_expiry_mark = 0;
1248 		mntput_no_expire(m);
1249 	}
1250 }
1251 EXPORT_SYMBOL(mntput);
1252 
1253 struct vfsmount *mntget(struct vfsmount *mnt)
1254 {
1255 	if (mnt)
1256 		mnt_add_count(real_mount(mnt), 1);
1257 	return mnt;
1258 }
1259 EXPORT_SYMBOL(mntget);
1260 
1261 /* path_is_mountpoint() - Check if path is a mount in the current
1262  *                          namespace.
1263  *
1264  *  d_mountpoint() can only be used reliably to establish if a dentry is
1265  *  not mounted in any namespace and that common case is handled inline.
1266  *  d_mountpoint() isn't aware of the possibility there may be multiple
1267  *  mounts using a given dentry in a different namespace. This function
1268  *  checks if the passed in path is a mountpoint rather than the dentry
1269  *  alone.
1270  */
1271 bool path_is_mountpoint(const struct path *path)
1272 {
1273 	unsigned seq;
1274 	bool res;
1275 
1276 	if (!d_mountpoint(path->dentry))
1277 		return false;
1278 
1279 	rcu_read_lock();
1280 	do {
1281 		seq = read_seqbegin(&mount_lock);
1282 		res = __path_is_mountpoint(path);
1283 	} while (read_seqretry(&mount_lock, seq));
1284 	rcu_read_unlock();
1285 
1286 	return res;
1287 }
1288 EXPORT_SYMBOL(path_is_mountpoint);
1289 
1290 struct vfsmount *mnt_clone_internal(const struct path *path)
1291 {
1292 	struct mount *p;
1293 	p = clone_mnt(real_mount(path->mnt), path->dentry, CL_PRIVATE);
1294 	if (IS_ERR(p))
1295 		return ERR_CAST(p);
1296 	p->mnt.mnt_flags |= MNT_INTERNAL;
1297 	return &p->mnt;
1298 }
1299 
1300 #ifdef CONFIG_PROC_FS
1301 /* iterator; we want it to have access to namespace_sem, thus here... */
1302 static void *m_start(struct seq_file *m, loff_t *pos)
1303 {
1304 	struct proc_mounts *p = m->private;
1305 
1306 	down_read(&namespace_sem);
1307 	if (p->cached_event == p->ns->event) {
1308 		void *v = p->cached_mount;
1309 		if (*pos == p->cached_index)
1310 			return v;
1311 		if (*pos == p->cached_index + 1) {
1312 			v = seq_list_next(v, &p->ns->list, &p->cached_index);
1313 			return p->cached_mount = v;
1314 		}
1315 	}
1316 
1317 	p->cached_event = p->ns->event;
1318 	p->cached_mount = seq_list_start(&p->ns->list, *pos);
1319 	p->cached_index = *pos;
1320 	return p->cached_mount;
1321 }
1322 
1323 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
1324 {
1325 	struct proc_mounts *p = m->private;
1326 
1327 	p->cached_mount = seq_list_next(v, &p->ns->list, pos);
1328 	p->cached_index = *pos;
1329 	return p->cached_mount;
1330 }
1331 
1332 static void m_stop(struct seq_file *m, void *v)
1333 {
1334 	up_read(&namespace_sem);
1335 }
1336 
1337 static int m_show(struct seq_file *m, void *v)
1338 {
1339 	struct proc_mounts *p = m->private;
1340 	struct mount *r = list_entry(v, struct mount, mnt_list);
1341 	return p->show(m, &r->mnt);
1342 }
1343 
1344 const struct seq_operations mounts_op = {
1345 	.start	= m_start,
1346 	.next	= m_next,
1347 	.stop	= m_stop,
1348 	.show	= m_show,
1349 };
1350 #endif  /* CONFIG_PROC_FS */
1351 
1352 /**
1353  * may_umount_tree - check if a mount tree is busy
1354  * @mnt: root of mount tree
1355  *
1356  * This is called to check if a tree of mounts has any
1357  * open files, pwds, chroots or sub mounts that are
1358  * busy.
1359  */
1360 int may_umount_tree(struct vfsmount *m)
1361 {
1362 	struct mount *mnt = real_mount(m);
1363 	int actual_refs = 0;
1364 	int minimum_refs = 0;
1365 	struct mount *p;
1366 	BUG_ON(!m);
1367 
1368 	/* write lock needed for mnt_get_count */
1369 	lock_mount_hash();
1370 	for (p = mnt; p; p = next_mnt(p, mnt)) {
1371 		actual_refs += mnt_get_count(p);
1372 		minimum_refs += 2;
1373 	}
1374 	unlock_mount_hash();
1375 
1376 	if (actual_refs > minimum_refs)
1377 		return 0;
1378 
1379 	return 1;
1380 }
1381 
1382 EXPORT_SYMBOL(may_umount_tree);
1383 
1384 /**
1385  * may_umount - check if a mount point is busy
1386  * @mnt: root of mount
1387  *
1388  * This is called to check if a mount point has any
1389  * open files, pwds, chroots or sub mounts. If the
1390  * mount has sub mounts this will return busy
1391  * regardless of whether the sub mounts are busy.
1392  *
1393  * Doesn't take quota and stuff into account. IOW, in some cases it will
1394  * give false negatives. The main reason why it's here is that we need
1395  * a non-destructive way to look for easily umountable filesystems.
1396  */
1397 int may_umount(struct vfsmount *mnt)
1398 {
1399 	int ret = 1;
1400 	down_read(&namespace_sem);
1401 	lock_mount_hash();
1402 	if (propagate_mount_busy(real_mount(mnt), 2))
1403 		ret = 0;
1404 	unlock_mount_hash();
1405 	up_read(&namespace_sem);
1406 	return ret;
1407 }
1408 
1409 EXPORT_SYMBOL(may_umount);
1410 
1411 static HLIST_HEAD(unmounted);	/* protected by namespace_sem */
1412 
1413 static void namespace_unlock(void)
1414 {
1415 	struct hlist_head head;
1416 
1417 	hlist_move_list(&unmounted, &head);
1418 
1419 	up_write(&namespace_sem);
1420 
1421 	if (likely(hlist_empty(&head)))
1422 		return;
1423 
1424 	synchronize_rcu();
1425 
1426 	group_pin_kill(&head);
1427 }
1428 
1429 static inline void namespace_lock(void)
1430 {
1431 	down_write(&namespace_sem);
1432 }
1433 
1434 enum umount_tree_flags {
1435 	UMOUNT_SYNC = 1,
1436 	UMOUNT_PROPAGATE = 2,
1437 	UMOUNT_CONNECTED = 4,
1438 };
1439 
1440 static bool disconnect_mount(struct mount *mnt, enum umount_tree_flags how)
1441 {
1442 	/* Leaving mounts connected is only valid for lazy umounts */
1443 	if (how & UMOUNT_SYNC)
1444 		return true;
1445 
1446 	/* A mount without a parent has nothing to be connected to */
1447 	if (!mnt_has_parent(mnt))
1448 		return true;
1449 
1450 	/* Because the reference counting rules change when mounts are
1451 	 * unmounted and connected, umounted mounts may not be
1452 	 * connected to mounted mounts.
1453 	 */
1454 	if (!(mnt->mnt_parent->mnt.mnt_flags & MNT_UMOUNT))
1455 		return true;
1456 
1457 	/* Has it been requested that the mount remain connected? */
1458 	if (how & UMOUNT_CONNECTED)
1459 		return false;
1460 
1461 	/* Is the mount locked such that it needs to remain connected? */
1462 	if (IS_MNT_LOCKED(mnt))
1463 		return false;
1464 
1465 	/* By default disconnect the mount */
1466 	return true;
1467 }
1468 
1469 /*
1470  * mount_lock must be held
1471  * namespace_sem must be held for write
1472  */
1473 static void umount_tree(struct mount *mnt, enum umount_tree_flags how)
1474 {
1475 	LIST_HEAD(tmp_list);
1476 	struct mount *p;
1477 
1478 	if (how & UMOUNT_PROPAGATE)
1479 		propagate_mount_unlock(mnt);
1480 
1481 	/* Gather the mounts to umount */
1482 	for (p = mnt; p; p = next_mnt(p, mnt)) {
1483 		p->mnt.mnt_flags |= MNT_UMOUNT;
1484 		list_move(&p->mnt_list, &tmp_list);
1485 	}
1486 
1487 	/* Hide the mounts from mnt_mounts */
1488 	list_for_each_entry(p, &tmp_list, mnt_list) {
1489 		list_del_init(&p->mnt_child);
1490 	}
1491 
1492 	/* Add propogated mounts to the tmp_list */
1493 	if (how & UMOUNT_PROPAGATE)
1494 		propagate_umount(&tmp_list);
1495 
1496 	while (!list_empty(&tmp_list)) {
1497 		struct mnt_namespace *ns;
1498 		bool disconnect;
1499 		p = list_first_entry(&tmp_list, struct mount, mnt_list);
1500 		list_del_init(&p->mnt_expire);
1501 		list_del_init(&p->mnt_list);
1502 		ns = p->mnt_ns;
1503 		if (ns) {
1504 			ns->mounts--;
1505 			__touch_mnt_namespace(ns);
1506 		}
1507 		p->mnt_ns = NULL;
1508 		if (how & UMOUNT_SYNC)
1509 			p->mnt.mnt_flags |= MNT_SYNC_UMOUNT;
1510 
1511 		disconnect = disconnect_mount(p, how);
1512 
1513 		pin_insert_group(&p->mnt_umount, &p->mnt_parent->mnt,
1514 				 disconnect ? &unmounted : NULL);
1515 		if (mnt_has_parent(p)) {
1516 			mnt_add_count(p->mnt_parent, -1);
1517 			if (!disconnect) {
1518 				/* Don't forget about p */
1519 				list_add_tail(&p->mnt_child, &p->mnt_parent->mnt_mounts);
1520 			} else {
1521 				umount_mnt(p);
1522 			}
1523 		}
1524 		change_mnt_propagation(p, MS_PRIVATE);
1525 	}
1526 }
1527 
1528 static void shrink_submounts(struct mount *mnt);
1529 
1530 static int do_umount(struct mount *mnt, int flags)
1531 {
1532 	struct super_block *sb = mnt->mnt.mnt_sb;
1533 	int retval;
1534 
1535 	retval = security_sb_umount(&mnt->mnt, flags);
1536 	if (retval)
1537 		return retval;
1538 
1539 	/*
1540 	 * Allow userspace to request a mountpoint be expired rather than
1541 	 * unmounting unconditionally. Unmount only happens if:
1542 	 *  (1) the mark is already set (the mark is cleared by mntput())
1543 	 *  (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1544 	 */
1545 	if (flags & MNT_EXPIRE) {
1546 		if (&mnt->mnt == current->fs->root.mnt ||
1547 		    flags & (MNT_FORCE | MNT_DETACH))
1548 			return -EINVAL;
1549 
1550 		/*
1551 		 * probably don't strictly need the lock here if we examined
1552 		 * all race cases, but it's a slowpath.
1553 		 */
1554 		lock_mount_hash();
1555 		if (mnt_get_count(mnt) != 2) {
1556 			unlock_mount_hash();
1557 			return -EBUSY;
1558 		}
1559 		unlock_mount_hash();
1560 
1561 		if (!xchg(&mnt->mnt_expiry_mark, 1))
1562 			return -EAGAIN;
1563 	}
1564 
1565 	/*
1566 	 * If we may have to abort operations to get out of this
1567 	 * mount, and they will themselves hold resources we must
1568 	 * allow the fs to do things. In the Unix tradition of
1569 	 * 'Gee thats tricky lets do it in userspace' the umount_begin
1570 	 * might fail to complete on the first run through as other tasks
1571 	 * must return, and the like. Thats for the mount program to worry
1572 	 * about for the moment.
1573 	 */
1574 
1575 	if (flags & MNT_FORCE && sb->s_op->umount_begin) {
1576 		sb->s_op->umount_begin(sb);
1577 	}
1578 
1579 	/*
1580 	 * No sense to grab the lock for this test, but test itself looks
1581 	 * somewhat bogus. Suggestions for better replacement?
1582 	 * Ho-hum... In principle, we might treat that as umount + switch
1583 	 * to rootfs. GC would eventually take care of the old vfsmount.
1584 	 * Actually it makes sense, especially if rootfs would contain a
1585 	 * /reboot - static binary that would close all descriptors and
1586 	 * call reboot(9). Then init(8) could umount root and exec /reboot.
1587 	 */
1588 	if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1589 		/*
1590 		 * Special case for "unmounting" root ...
1591 		 * we just try to remount it readonly.
1592 		 */
1593 		if (!capable(CAP_SYS_ADMIN))
1594 			return -EPERM;
1595 		down_write(&sb->s_umount);
1596 		if (!sb_rdonly(sb))
1597 			retval = do_remount_sb(sb, SB_RDONLY, NULL, 0);
1598 		up_write(&sb->s_umount);
1599 		return retval;
1600 	}
1601 
1602 	namespace_lock();
1603 	lock_mount_hash();
1604 	event++;
1605 
1606 	if (flags & MNT_DETACH) {
1607 		if (!list_empty(&mnt->mnt_list))
1608 			umount_tree(mnt, UMOUNT_PROPAGATE);
1609 		retval = 0;
1610 	} else {
1611 		shrink_submounts(mnt);
1612 		retval = -EBUSY;
1613 		if (!propagate_mount_busy(mnt, 2)) {
1614 			if (!list_empty(&mnt->mnt_list))
1615 				umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
1616 			retval = 0;
1617 		}
1618 	}
1619 	unlock_mount_hash();
1620 	namespace_unlock();
1621 	return retval;
1622 }
1623 
1624 /*
1625  * __detach_mounts - lazily unmount all mounts on the specified dentry
1626  *
1627  * During unlink, rmdir, and d_drop it is possible to loose the path
1628  * to an existing mountpoint, and wind up leaking the mount.
1629  * detach_mounts allows lazily unmounting those mounts instead of
1630  * leaking them.
1631  *
1632  * The caller may hold dentry->d_inode->i_mutex.
1633  */
1634 void __detach_mounts(struct dentry *dentry)
1635 {
1636 	struct mountpoint *mp;
1637 	struct mount *mnt;
1638 
1639 	namespace_lock();
1640 	lock_mount_hash();
1641 	mp = lookup_mountpoint(dentry);
1642 	if (IS_ERR_OR_NULL(mp))
1643 		goto out_unlock;
1644 
1645 	event++;
1646 	while (!hlist_empty(&mp->m_list)) {
1647 		mnt = hlist_entry(mp->m_list.first, struct mount, mnt_mp_list);
1648 		if (mnt->mnt.mnt_flags & MNT_UMOUNT) {
1649 			hlist_add_head(&mnt->mnt_umount.s_list, &unmounted);
1650 			umount_mnt(mnt);
1651 		}
1652 		else umount_tree(mnt, UMOUNT_CONNECTED);
1653 	}
1654 	put_mountpoint(mp);
1655 out_unlock:
1656 	unlock_mount_hash();
1657 	namespace_unlock();
1658 }
1659 
1660 /*
1661  * Is the caller allowed to modify his namespace?
1662  */
1663 static inline bool may_mount(void)
1664 {
1665 	return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN);
1666 }
1667 
1668 static inline bool may_mandlock(void)
1669 {
1670 #ifndef	CONFIG_MANDATORY_FILE_LOCKING
1671 	return false;
1672 #endif
1673 	return capable(CAP_SYS_ADMIN);
1674 }
1675 
1676 /*
1677  * Now umount can handle mount points as well as block devices.
1678  * This is important for filesystems which use unnamed block devices.
1679  *
1680  * We now support a flag for forced unmount like the other 'big iron'
1681  * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
1682  */
1683 
1684 int ksys_umount(char __user *name, int flags)
1685 {
1686 	struct path path;
1687 	struct mount *mnt;
1688 	int retval;
1689 	int lookup_flags = 0;
1690 
1691 	if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
1692 		return -EINVAL;
1693 
1694 	if (!may_mount())
1695 		return -EPERM;
1696 
1697 	if (!(flags & UMOUNT_NOFOLLOW))
1698 		lookup_flags |= LOOKUP_FOLLOW;
1699 
1700 	retval = user_path_mountpoint_at(AT_FDCWD, name, lookup_flags, &path);
1701 	if (retval)
1702 		goto out;
1703 	mnt = real_mount(path.mnt);
1704 	retval = -EINVAL;
1705 	if (path.dentry != path.mnt->mnt_root)
1706 		goto dput_and_out;
1707 	if (!check_mnt(mnt))
1708 		goto dput_and_out;
1709 	if (mnt->mnt.mnt_flags & MNT_LOCKED)
1710 		goto dput_and_out;
1711 	retval = -EPERM;
1712 	if (flags & MNT_FORCE && !capable(CAP_SYS_ADMIN))
1713 		goto dput_and_out;
1714 
1715 	retval = do_umount(mnt, flags);
1716 dput_and_out:
1717 	/* we mustn't call path_put() as that would clear mnt_expiry_mark */
1718 	dput(path.dentry);
1719 	mntput_no_expire(mnt);
1720 out:
1721 	return retval;
1722 }
1723 
1724 SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
1725 {
1726 	return ksys_umount(name, flags);
1727 }
1728 
1729 #ifdef __ARCH_WANT_SYS_OLDUMOUNT
1730 
1731 /*
1732  *	The 2.0 compatible umount. No flags.
1733  */
1734 SYSCALL_DEFINE1(oldumount, char __user *, name)
1735 {
1736 	return ksys_umount(name, 0);
1737 }
1738 
1739 #endif
1740 
1741 static bool is_mnt_ns_file(struct dentry *dentry)
1742 {
1743 	/* Is this a proxy for a mount namespace? */
1744 	return dentry->d_op == &ns_dentry_operations &&
1745 	       dentry->d_fsdata == &mntns_operations;
1746 }
1747 
1748 struct mnt_namespace *to_mnt_ns(struct ns_common *ns)
1749 {
1750 	return container_of(ns, struct mnt_namespace, ns);
1751 }
1752 
1753 static bool mnt_ns_loop(struct dentry *dentry)
1754 {
1755 	/* Could bind mounting the mount namespace inode cause a
1756 	 * mount namespace loop?
1757 	 */
1758 	struct mnt_namespace *mnt_ns;
1759 	if (!is_mnt_ns_file(dentry))
1760 		return false;
1761 
1762 	mnt_ns = to_mnt_ns(get_proc_ns(dentry->d_inode));
1763 	return current->nsproxy->mnt_ns->seq >= mnt_ns->seq;
1764 }
1765 
1766 struct mount *copy_tree(struct mount *mnt, struct dentry *dentry,
1767 					int flag)
1768 {
1769 	struct mount *res, *p, *q, *r, *parent;
1770 
1771 	if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(mnt))
1772 		return ERR_PTR(-EINVAL);
1773 
1774 	if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry))
1775 		return ERR_PTR(-EINVAL);
1776 
1777 	res = q = clone_mnt(mnt, dentry, flag);
1778 	if (IS_ERR(q))
1779 		return q;
1780 
1781 	q->mnt_mountpoint = mnt->mnt_mountpoint;
1782 
1783 	p = mnt;
1784 	list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
1785 		struct mount *s;
1786 		if (!is_subdir(r->mnt_mountpoint, dentry))
1787 			continue;
1788 
1789 		for (s = r; s; s = next_mnt(s, r)) {
1790 			if (!(flag & CL_COPY_UNBINDABLE) &&
1791 			    IS_MNT_UNBINDABLE(s)) {
1792 				s = skip_mnt_tree(s);
1793 				continue;
1794 			}
1795 			if (!(flag & CL_COPY_MNT_NS_FILE) &&
1796 			    is_mnt_ns_file(s->mnt.mnt_root)) {
1797 				s = skip_mnt_tree(s);
1798 				continue;
1799 			}
1800 			while (p != s->mnt_parent) {
1801 				p = p->mnt_parent;
1802 				q = q->mnt_parent;
1803 			}
1804 			p = s;
1805 			parent = q;
1806 			q = clone_mnt(p, p->mnt.mnt_root, flag);
1807 			if (IS_ERR(q))
1808 				goto out;
1809 			lock_mount_hash();
1810 			list_add_tail(&q->mnt_list, &res->mnt_list);
1811 			attach_mnt(q, parent, p->mnt_mp);
1812 			unlock_mount_hash();
1813 		}
1814 	}
1815 	return res;
1816 out:
1817 	if (res) {
1818 		lock_mount_hash();
1819 		umount_tree(res, UMOUNT_SYNC);
1820 		unlock_mount_hash();
1821 	}
1822 	return q;
1823 }
1824 
1825 /* Caller should check returned pointer for errors */
1826 
1827 struct vfsmount *collect_mounts(const struct path *path)
1828 {
1829 	struct mount *tree;
1830 	namespace_lock();
1831 	if (!check_mnt(real_mount(path->mnt)))
1832 		tree = ERR_PTR(-EINVAL);
1833 	else
1834 		tree = copy_tree(real_mount(path->mnt), path->dentry,
1835 				 CL_COPY_ALL | CL_PRIVATE);
1836 	namespace_unlock();
1837 	if (IS_ERR(tree))
1838 		return ERR_CAST(tree);
1839 	return &tree->mnt;
1840 }
1841 
1842 void drop_collected_mounts(struct vfsmount *mnt)
1843 {
1844 	namespace_lock();
1845 	lock_mount_hash();
1846 	umount_tree(real_mount(mnt), UMOUNT_SYNC);
1847 	unlock_mount_hash();
1848 	namespace_unlock();
1849 }
1850 
1851 /**
1852  * clone_private_mount - create a private clone of a path
1853  *
1854  * This creates a new vfsmount, which will be the clone of @path.  The new will
1855  * not be attached anywhere in the namespace and will be private (i.e. changes
1856  * to the originating mount won't be propagated into this).
1857  *
1858  * Release with mntput().
1859  */
1860 struct vfsmount *clone_private_mount(const struct path *path)
1861 {
1862 	struct mount *old_mnt = real_mount(path->mnt);
1863 	struct mount *new_mnt;
1864 
1865 	if (IS_MNT_UNBINDABLE(old_mnt))
1866 		return ERR_PTR(-EINVAL);
1867 
1868 	new_mnt = clone_mnt(old_mnt, path->dentry, CL_PRIVATE);
1869 	if (IS_ERR(new_mnt))
1870 		return ERR_CAST(new_mnt);
1871 
1872 	return &new_mnt->mnt;
1873 }
1874 EXPORT_SYMBOL_GPL(clone_private_mount);
1875 
1876 int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
1877 		   struct vfsmount *root)
1878 {
1879 	struct mount *mnt;
1880 	int res = f(root, arg);
1881 	if (res)
1882 		return res;
1883 	list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) {
1884 		res = f(&mnt->mnt, arg);
1885 		if (res)
1886 			return res;
1887 	}
1888 	return 0;
1889 }
1890 
1891 static void cleanup_group_ids(struct mount *mnt, struct mount *end)
1892 {
1893 	struct mount *p;
1894 
1895 	for (p = mnt; p != end; p = next_mnt(p, mnt)) {
1896 		if (p->mnt_group_id && !IS_MNT_SHARED(p))
1897 			mnt_release_group_id(p);
1898 	}
1899 }
1900 
1901 static int invent_group_ids(struct mount *mnt, bool recurse)
1902 {
1903 	struct mount *p;
1904 
1905 	for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
1906 		if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
1907 			int err = mnt_alloc_group_id(p);
1908 			if (err) {
1909 				cleanup_group_ids(mnt, p);
1910 				return err;
1911 			}
1912 		}
1913 	}
1914 
1915 	return 0;
1916 }
1917 
1918 int count_mounts(struct mnt_namespace *ns, struct mount *mnt)
1919 {
1920 	unsigned int max = READ_ONCE(sysctl_mount_max);
1921 	unsigned int mounts = 0, old, pending, sum;
1922 	struct mount *p;
1923 
1924 	for (p = mnt; p; p = next_mnt(p, mnt))
1925 		mounts++;
1926 
1927 	old = ns->mounts;
1928 	pending = ns->pending_mounts;
1929 	sum = old + pending;
1930 	if ((old > sum) ||
1931 	    (pending > sum) ||
1932 	    (max < sum) ||
1933 	    (mounts > (max - sum)))
1934 		return -ENOSPC;
1935 
1936 	ns->pending_mounts = pending + mounts;
1937 	return 0;
1938 }
1939 
1940 /*
1941  *  @source_mnt : mount tree to be attached
1942  *  @nd         : place the mount tree @source_mnt is attached
1943  *  @parent_nd  : if non-null, detach the source_mnt from its parent and
1944  *  		   store the parent mount and mountpoint dentry.
1945  *  		   (done when source_mnt is moved)
1946  *
1947  *  NOTE: in the table below explains the semantics when a source mount
1948  *  of a given type is attached to a destination mount of a given type.
1949  * ---------------------------------------------------------------------------
1950  * |         BIND MOUNT OPERATION                                            |
1951  * |**************************************************************************
1952  * | source-->| shared        |       private  |       slave    | unbindable |
1953  * | dest     |               |                |                |            |
1954  * |   |      |               |                |                |            |
1955  * |   v      |               |                |                |            |
1956  * |**************************************************************************
1957  * |  shared  | shared (++)   |     shared (+) |     shared(+++)|  invalid   |
1958  * |          |               |                |                |            |
1959  * |non-shared| shared (+)    |      private   |      slave (*) |  invalid   |
1960  * ***************************************************************************
1961  * A bind operation clones the source mount and mounts the clone on the
1962  * destination mount.
1963  *
1964  * (++)  the cloned mount is propagated to all the mounts in the propagation
1965  * 	 tree of the destination mount and the cloned mount is added to
1966  * 	 the peer group of the source mount.
1967  * (+)   the cloned mount is created under the destination mount and is marked
1968  *       as shared. The cloned mount is added to the peer group of the source
1969  *       mount.
1970  * (+++) the mount is propagated to all the mounts in the propagation tree
1971  *       of the destination mount and the cloned mount is made slave
1972  *       of the same master as that of the source mount. The cloned mount
1973  *       is marked as 'shared and slave'.
1974  * (*)   the cloned mount is made a slave of the same master as that of the
1975  * 	 source mount.
1976  *
1977  * ---------------------------------------------------------------------------
1978  * |         		MOVE MOUNT OPERATION                                 |
1979  * |**************************************************************************
1980  * | source-->| shared        |       private  |       slave    | unbindable |
1981  * | dest     |               |                |                |            |
1982  * |   |      |               |                |                |            |
1983  * |   v      |               |                |                |            |
1984  * |**************************************************************************
1985  * |  shared  | shared (+)    |     shared (+) |    shared(+++) |  invalid   |
1986  * |          |               |                |                |            |
1987  * |non-shared| shared (+*)   |      private   |    slave (*)   | unbindable |
1988  * ***************************************************************************
1989  *
1990  * (+)  the mount is moved to the destination. And is then propagated to
1991  * 	all the mounts in the propagation tree of the destination mount.
1992  * (+*)  the mount is moved to the destination.
1993  * (+++)  the mount is moved to the destination and is then propagated to
1994  * 	all the mounts belonging to the destination mount's propagation tree.
1995  * 	the mount is marked as 'shared and slave'.
1996  * (*)	the mount continues to be a slave at the new location.
1997  *
1998  * if the source mount is a tree, the operations explained above is
1999  * applied to each mount in the tree.
2000  * Must be called without spinlocks held, since this function can sleep
2001  * in allocations.
2002  */
2003 static int attach_recursive_mnt(struct mount *source_mnt,
2004 			struct mount *dest_mnt,
2005 			struct mountpoint *dest_mp,
2006 			struct path *parent_path)
2007 {
2008 	HLIST_HEAD(tree_list);
2009 	struct mnt_namespace *ns = dest_mnt->mnt_ns;
2010 	struct mountpoint *smp;
2011 	struct mount *child, *p;
2012 	struct hlist_node *n;
2013 	int err;
2014 
2015 	/* Preallocate a mountpoint in case the new mounts need
2016 	 * to be tucked under other mounts.
2017 	 */
2018 	smp = get_mountpoint(source_mnt->mnt.mnt_root);
2019 	if (IS_ERR(smp))
2020 		return PTR_ERR(smp);
2021 
2022 	/* Is there space to add these mounts to the mount namespace? */
2023 	if (!parent_path) {
2024 		err = count_mounts(ns, source_mnt);
2025 		if (err)
2026 			goto out;
2027 	}
2028 
2029 	if (IS_MNT_SHARED(dest_mnt)) {
2030 		err = invent_group_ids(source_mnt, true);
2031 		if (err)
2032 			goto out;
2033 		err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list);
2034 		lock_mount_hash();
2035 		if (err)
2036 			goto out_cleanup_ids;
2037 		for (p = source_mnt; p; p = next_mnt(p, source_mnt))
2038 			set_mnt_shared(p);
2039 	} else {
2040 		lock_mount_hash();
2041 	}
2042 	if (parent_path) {
2043 		detach_mnt(source_mnt, parent_path);
2044 		attach_mnt(source_mnt, dest_mnt, dest_mp);
2045 		touch_mnt_namespace(source_mnt->mnt_ns);
2046 	} else {
2047 		mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt);
2048 		commit_tree(source_mnt);
2049 	}
2050 
2051 	hlist_for_each_entry_safe(child, n, &tree_list, mnt_hash) {
2052 		struct mount *q;
2053 		hlist_del_init(&child->mnt_hash);
2054 		q = __lookup_mnt(&child->mnt_parent->mnt,
2055 				 child->mnt_mountpoint);
2056 		if (q)
2057 			mnt_change_mountpoint(child, smp, q);
2058 		commit_tree(child);
2059 	}
2060 	put_mountpoint(smp);
2061 	unlock_mount_hash();
2062 
2063 	return 0;
2064 
2065  out_cleanup_ids:
2066 	while (!hlist_empty(&tree_list)) {
2067 		child = hlist_entry(tree_list.first, struct mount, mnt_hash);
2068 		child->mnt_parent->mnt_ns->pending_mounts = 0;
2069 		umount_tree(child, UMOUNT_SYNC);
2070 	}
2071 	unlock_mount_hash();
2072 	cleanup_group_ids(source_mnt, NULL);
2073  out:
2074 	ns->pending_mounts = 0;
2075 
2076 	read_seqlock_excl(&mount_lock);
2077 	put_mountpoint(smp);
2078 	read_sequnlock_excl(&mount_lock);
2079 
2080 	return err;
2081 }
2082 
2083 static struct mountpoint *lock_mount(struct path *path)
2084 {
2085 	struct vfsmount *mnt;
2086 	struct dentry *dentry = path->dentry;
2087 retry:
2088 	inode_lock(dentry->d_inode);
2089 	if (unlikely(cant_mount(dentry))) {
2090 		inode_unlock(dentry->d_inode);
2091 		return ERR_PTR(-ENOENT);
2092 	}
2093 	namespace_lock();
2094 	mnt = lookup_mnt(path);
2095 	if (likely(!mnt)) {
2096 		struct mountpoint *mp = get_mountpoint(dentry);
2097 		if (IS_ERR(mp)) {
2098 			namespace_unlock();
2099 			inode_unlock(dentry->d_inode);
2100 			return mp;
2101 		}
2102 		return mp;
2103 	}
2104 	namespace_unlock();
2105 	inode_unlock(path->dentry->d_inode);
2106 	path_put(path);
2107 	path->mnt = mnt;
2108 	dentry = path->dentry = dget(mnt->mnt_root);
2109 	goto retry;
2110 }
2111 
2112 static void unlock_mount(struct mountpoint *where)
2113 {
2114 	struct dentry *dentry = where->m_dentry;
2115 
2116 	read_seqlock_excl(&mount_lock);
2117 	put_mountpoint(where);
2118 	read_sequnlock_excl(&mount_lock);
2119 
2120 	namespace_unlock();
2121 	inode_unlock(dentry->d_inode);
2122 }
2123 
2124 static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp)
2125 {
2126 	if (mnt->mnt.mnt_sb->s_flags & SB_NOUSER)
2127 		return -EINVAL;
2128 
2129 	if (d_is_dir(mp->m_dentry) !=
2130 	      d_is_dir(mnt->mnt.mnt_root))
2131 		return -ENOTDIR;
2132 
2133 	return attach_recursive_mnt(mnt, p, mp, NULL);
2134 }
2135 
2136 /*
2137  * Sanity check the flags to change_mnt_propagation.
2138  */
2139 
2140 static int flags_to_propagation_type(int ms_flags)
2141 {
2142 	int type = ms_flags & ~(MS_REC | MS_SILENT);
2143 
2144 	/* Fail if any non-propagation flags are set */
2145 	if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2146 		return 0;
2147 	/* Only one propagation flag should be set */
2148 	if (!is_power_of_2(type))
2149 		return 0;
2150 	return type;
2151 }
2152 
2153 /*
2154  * recursively change the type of the mountpoint.
2155  */
2156 static int do_change_type(struct path *path, int ms_flags)
2157 {
2158 	struct mount *m;
2159 	struct mount *mnt = real_mount(path->mnt);
2160 	int recurse = ms_flags & MS_REC;
2161 	int type;
2162 	int err = 0;
2163 
2164 	if (path->dentry != path->mnt->mnt_root)
2165 		return -EINVAL;
2166 
2167 	type = flags_to_propagation_type(ms_flags);
2168 	if (!type)
2169 		return -EINVAL;
2170 
2171 	namespace_lock();
2172 	if (type == MS_SHARED) {
2173 		err = invent_group_ids(mnt, recurse);
2174 		if (err)
2175 			goto out_unlock;
2176 	}
2177 
2178 	lock_mount_hash();
2179 	for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
2180 		change_mnt_propagation(m, type);
2181 	unlock_mount_hash();
2182 
2183  out_unlock:
2184 	namespace_unlock();
2185 	return err;
2186 }
2187 
2188 static bool has_locked_children(struct mount *mnt, struct dentry *dentry)
2189 {
2190 	struct mount *child;
2191 	list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
2192 		if (!is_subdir(child->mnt_mountpoint, dentry))
2193 			continue;
2194 
2195 		if (child->mnt.mnt_flags & MNT_LOCKED)
2196 			return true;
2197 	}
2198 	return false;
2199 }
2200 
2201 /*
2202  * do loopback mount.
2203  */
2204 static int do_loopback(struct path *path, const char *old_name,
2205 				int recurse)
2206 {
2207 	struct path old_path;
2208 	struct mount *mnt = NULL, *old, *parent;
2209 	struct mountpoint *mp;
2210 	int err;
2211 	if (!old_name || !*old_name)
2212 		return -EINVAL;
2213 	err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
2214 	if (err)
2215 		return err;
2216 
2217 	err = -EINVAL;
2218 	if (mnt_ns_loop(old_path.dentry))
2219 		goto out;
2220 
2221 	mp = lock_mount(path);
2222 	err = PTR_ERR(mp);
2223 	if (IS_ERR(mp))
2224 		goto out;
2225 
2226 	old = real_mount(old_path.mnt);
2227 	parent = real_mount(path->mnt);
2228 
2229 	err = -EINVAL;
2230 	if (IS_MNT_UNBINDABLE(old))
2231 		goto out2;
2232 
2233 	if (!check_mnt(parent))
2234 		goto out2;
2235 
2236 	if (!check_mnt(old) && old_path.dentry->d_op != &ns_dentry_operations)
2237 		goto out2;
2238 
2239 	if (!recurse && has_locked_children(old, old_path.dentry))
2240 		goto out2;
2241 
2242 	if (recurse)
2243 		mnt = copy_tree(old, old_path.dentry, CL_COPY_MNT_NS_FILE);
2244 	else
2245 		mnt = clone_mnt(old, old_path.dentry, 0);
2246 
2247 	if (IS_ERR(mnt)) {
2248 		err = PTR_ERR(mnt);
2249 		goto out2;
2250 	}
2251 
2252 	mnt->mnt.mnt_flags &= ~MNT_LOCKED;
2253 
2254 	err = graft_tree(mnt, parent, mp);
2255 	if (err) {
2256 		lock_mount_hash();
2257 		umount_tree(mnt, UMOUNT_SYNC);
2258 		unlock_mount_hash();
2259 	}
2260 out2:
2261 	unlock_mount(mp);
2262 out:
2263 	path_put(&old_path);
2264 	return err;
2265 }
2266 
2267 static int change_mount_flags(struct vfsmount *mnt, int ms_flags)
2268 {
2269 	int error = 0;
2270 	int readonly_request = 0;
2271 
2272 	if (ms_flags & MS_RDONLY)
2273 		readonly_request = 1;
2274 	if (readonly_request == __mnt_is_readonly(mnt))
2275 		return 0;
2276 
2277 	if (readonly_request)
2278 		error = mnt_make_readonly(real_mount(mnt));
2279 	else
2280 		__mnt_unmake_readonly(real_mount(mnt));
2281 	return error;
2282 }
2283 
2284 /*
2285  * change filesystem flags. dir should be a physical root of filesystem.
2286  * If you've mounted a non-root directory somewhere and want to do remount
2287  * on it - tough luck.
2288  */
2289 static int do_remount(struct path *path, int ms_flags, int sb_flags,
2290 		      int mnt_flags, void *data)
2291 {
2292 	int err;
2293 	struct super_block *sb = path->mnt->mnt_sb;
2294 	struct mount *mnt = real_mount(path->mnt);
2295 
2296 	if (!check_mnt(mnt))
2297 		return -EINVAL;
2298 
2299 	if (path->dentry != path->mnt->mnt_root)
2300 		return -EINVAL;
2301 
2302 	/* Don't allow changing of locked mnt flags.
2303 	 *
2304 	 * No locks need to be held here while testing the various
2305 	 * MNT_LOCK flags because those flags can never be cleared
2306 	 * once they are set.
2307 	 */
2308 	if ((mnt->mnt.mnt_flags & MNT_LOCK_READONLY) &&
2309 	    !(mnt_flags & MNT_READONLY)) {
2310 		return -EPERM;
2311 	}
2312 	if ((mnt->mnt.mnt_flags & MNT_LOCK_NODEV) &&
2313 	    !(mnt_flags & MNT_NODEV)) {
2314 		return -EPERM;
2315 	}
2316 	if ((mnt->mnt.mnt_flags & MNT_LOCK_NOSUID) &&
2317 	    !(mnt_flags & MNT_NOSUID)) {
2318 		return -EPERM;
2319 	}
2320 	if ((mnt->mnt.mnt_flags & MNT_LOCK_NOEXEC) &&
2321 	    !(mnt_flags & MNT_NOEXEC)) {
2322 		return -EPERM;
2323 	}
2324 	if ((mnt->mnt.mnt_flags & MNT_LOCK_ATIME) &&
2325 	    ((mnt->mnt.mnt_flags & MNT_ATIME_MASK) != (mnt_flags & MNT_ATIME_MASK))) {
2326 		return -EPERM;
2327 	}
2328 
2329 	err = security_sb_remount(sb, data);
2330 	if (err)
2331 		return err;
2332 
2333 	down_write(&sb->s_umount);
2334 	if (ms_flags & MS_BIND)
2335 		err = change_mount_flags(path->mnt, ms_flags);
2336 	else if (!capable(CAP_SYS_ADMIN))
2337 		err = -EPERM;
2338 	else
2339 		err = do_remount_sb(sb, sb_flags, data, 0);
2340 	if (!err) {
2341 		lock_mount_hash();
2342 		mnt_flags |= mnt->mnt.mnt_flags & ~MNT_USER_SETTABLE_MASK;
2343 		mnt->mnt.mnt_flags = mnt_flags;
2344 		touch_mnt_namespace(mnt->mnt_ns);
2345 		unlock_mount_hash();
2346 	}
2347 	up_write(&sb->s_umount);
2348 	return err;
2349 }
2350 
2351 static inline int tree_contains_unbindable(struct mount *mnt)
2352 {
2353 	struct mount *p;
2354 	for (p = mnt; p; p = next_mnt(p, mnt)) {
2355 		if (IS_MNT_UNBINDABLE(p))
2356 			return 1;
2357 	}
2358 	return 0;
2359 }
2360 
2361 static int do_move_mount(struct path *path, const char *old_name)
2362 {
2363 	struct path old_path, parent_path;
2364 	struct mount *p;
2365 	struct mount *old;
2366 	struct mountpoint *mp;
2367 	int err;
2368 	if (!old_name || !*old_name)
2369 		return -EINVAL;
2370 	err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
2371 	if (err)
2372 		return err;
2373 
2374 	mp = lock_mount(path);
2375 	err = PTR_ERR(mp);
2376 	if (IS_ERR(mp))
2377 		goto out;
2378 
2379 	old = real_mount(old_path.mnt);
2380 	p = real_mount(path->mnt);
2381 
2382 	err = -EINVAL;
2383 	if (!check_mnt(p) || !check_mnt(old))
2384 		goto out1;
2385 
2386 	if (old->mnt.mnt_flags & MNT_LOCKED)
2387 		goto out1;
2388 
2389 	err = -EINVAL;
2390 	if (old_path.dentry != old_path.mnt->mnt_root)
2391 		goto out1;
2392 
2393 	if (!mnt_has_parent(old))
2394 		goto out1;
2395 
2396 	if (d_is_dir(path->dentry) !=
2397 	      d_is_dir(old_path.dentry))
2398 		goto out1;
2399 	/*
2400 	 * Don't move a mount residing in a shared parent.
2401 	 */
2402 	if (IS_MNT_SHARED(old->mnt_parent))
2403 		goto out1;
2404 	/*
2405 	 * Don't move a mount tree containing unbindable mounts to a destination
2406 	 * mount which is shared.
2407 	 */
2408 	if (IS_MNT_SHARED(p) && tree_contains_unbindable(old))
2409 		goto out1;
2410 	err = -ELOOP;
2411 	for (; mnt_has_parent(p); p = p->mnt_parent)
2412 		if (p == old)
2413 			goto out1;
2414 
2415 	err = attach_recursive_mnt(old, real_mount(path->mnt), mp, &parent_path);
2416 	if (err)
2417 		goto out1;
2418 
2419 	/* if the mount is moved, it should no longer be expire
2420 	 * automatically */
2421 	list_del_init(&old->mnt_expire);
2422 out1:
2423 	unlock_mount(mp);
2424 out:
2425 	if (!err)
2426 		path_put(&parent_path);
2427 	path_put(&old_path);
2428 	return err;
2429 }
2430 
2431 static struct vfsmount *fs_set_subtype(struct vfsmount *mnt, const char *fstype)
2432 {
2433 	int err;
2434 	const char *subtype = strchr(fstype, '.');
2435 	if (subtype) {
2436 		subtype++;
2437 		err = -EINVAL;
2438 		if (!subtype[0])
2439 			goto err;
2440 	} else
2441 		subtype = "";
2442 
2443 	mnt->mnt_sb->s_subtype = kstrdup(subtype, GFP_KERNEL);
2444 	err = -ENOMEM;
2445 	if (!mnt->mnt_sb->s_subtype)
2446 		goto err;
2447 	return mnt;
2448 
2449  err:
2450 	mntput(mnt);
2451 	return ERR_PTR(err);
2452 }
2453 
2454 /*
2455  * add a mount into a namespace's mount tree
2456  */
2457 static int do_add_mount(struct mount *newmnt, struct path *path, int mnt_flags)
2458 {
2459 	struct mountpoint *mp;
2460 	struct mount *parent;
2461 	int err;
2462 
2463 	mnt_flags &= ~MNT_INTERNAL_FLAGS;
2464 
2465 	mp = lock_mount(path);
2466 	if (IS_ERR(mp))
2467 		return PTR_ERR(mp);
2468 
2469 	parent = real_mount(path->mnt);
2470 	err = -EINVAL;
2471 	if (unlikely(!check_mnt(parent))) {
2472 		/* that's acceptable only for automounts done in private ns */
2473 		if (!(mnt_flags & MNT_SHRINKABLE))
2474 			goto unlock;
2475 		/* ... and for those we'd better have mountpoint still alive */
2476 		if (!parent->mnt_ns)
2477 			goto unlock;
2478 	}
2479 
2480 	/* Refuse the same filesystem on the same mount point */
2481 	err = -EBUSY;
2482 	if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb &&
2483 	    path->mnt->mnt_root == path->dentry)
2484 		goto unlock;
2485 
2486 	err = -EINVAL;
2487 	if (d_is_symlink(newmnt->mnt.mnt_root))
2488 		goto unlock;
2489 
2490 	newmnt->mnt.mnt_flags = mnt_flags;
2491 	err = graft_tree(newmnt, parent, mp);
2492 
2493 unlock:
2494 	unlock_mount(mp);
2495 	return err;
2496 }
2497 
2498 static bool mount_too_revealing(struct vfsmount *mnt, int *new_mnt_flags);
2499 
2500 /*
2501  * create a new mount for userspace and request it to be added into the
2502  * namespace's tree
2503  */
2504 static int do_new_mount(struct path *path, const char *fstype, int sb_flags,
2505 			int mnt_flags, const char *name, void *data)
2506 {
2507 	struct file_system_type *type;
2508 	struct vfsmount *mnt;
2509 	int err;
2510 
2511 	if (!fstype)
2512 		return -EINVAL;
2513 
2514 	type = get_fs_type(fstype);
2515 	if (!type)
2516 		return -ENODEV;
2517 
2518 	mnt = vfs_kern_mount(type, sb_flags, name, data);
2519 	if (!IS_ERR(mnt) && (type->fs_flags & FS_HAS_SUBTYPE) &&
2520 	    !mnt->mnt_sb->s_subtype)
2521 		mnt = fs_set_subtype(mnt, fstype);
2522 
2523 	put_filesystem(type);
2524 	if (IS_ERR(mnt))
2525 		return PTR_ERR(mnt);
2526 
2527 	if (mount_too_revealing(mnt, &mnt_flags)) {
2528 		mntput(mnt);
2529 		return -EPERM;
2530 	}
2531 
2532 	err = do_add_mount(real_mount(mnt), path, mnt_flags);
2533 	if (err)
2534 		mntput(mnt);
2535 	return err;
2536 }
2537 
2538 int finish_automount(struct vfsmount *m, struct path *path)
2539 {
2540 	struct mount *mnt = real_mount(m);
2541 	int err;
2542 	/* The new mount record should have at least 2 refs to prevent it being
2543 	 * expired before we get a chance to add it
2544 	 */
2545 	BUG_ON(mnt_get_count(mnt) < 2);
2546 
2547 	if (m->mnt_sb == path->mnt->mnt_sb &&
2548 	    m->mnt_root == path->dentry) {
2549 		err = -ELOOP;
2550 		goto fail;
2551 	}
2552 
2553 	err = do_add_mount(mnt, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
2554 	if (!err)
2555 		return 0;
2556 fail:
2557 	/* remove m from any expiration list it may be on */
2558 	if (!list_empty(&mnt->mnt_expire)) {
2559 		namespace_lock();
2560 		list_del_init(&mnt->mnt_expire);
2561 		namespace_unlock();
2562 	}
2563 	mntput(m);
2564 	mntput(m);
2565 	return err;
2566 }
2567 
2568 /**
2569  * mnt_set_expiry - Put a mount on an expiration list
2570  * @mnt: The mount to list.
2571  * @expiry_list: The list to add the mount to.
2572  */
2573 void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
2574 {
2575 	namespace_lock();
2576 
2577 	list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
2578 
2579 	namespace_unlock();
2580 }
2581 EXPORT_SYMBOL(mnt_set_expiry);
2582 
2583 /*
2584  * process a list of expirable mountpoints with the intent of discarding any
2585  * mountpoints that aren't in use and haven't been touched since last we came
2586  * here
2587  */
2588 void mark_mounts_for_expiry(struct list_head *mounts)
2589 {
2590 	struct mount *mnt, *next;
2591 	LIST_HEAD(graveyard);
2592 
2593 	if (list_empty(mounts))
2594 		return;
2595 
2596 	namespace_lock();
2597 	lock_mount_hash();
2598 
2599 	/* extract from the expiration list every vfsmount that matches the
2600 	 * following criteria:
2601 	 * - only referenced by its parent vfsmount
2602 	 * - still marked for expiry (marked on the last call here; marks are
2603 	 *   cleared by mntput())
2604 	 */
2605 	list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
2606 		if (!xchg(&mnt->mnt_expiry_mark, 1) ||
2607 			propagate_mount_busy(mnt, 1))
2608 			continue;
2609 		list_move(&mnt->mnt_expire, &graveyard);
2610 	}
2611 	while (!list_empty(&graveyard)) {
2612 		mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
2613 		touch_mnt_namespace(mnt->mnt_ns);
2614 		umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
2615 	}
2616 	unlock_mount_hash();
2617 	namespace_unlock();
2618 }
2619 
2620 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
2621 
2622 /*
2623  * Ripoff of 'select_parent()'
2624  *
2625  * search the list of submounts for a given mountpoint, and move any
2626  * shrinkable submounts to the 'graveyard' list.
2627  */
2628 static int select_submounts(struct mount *parent, struct list_head *graveyard)
2629 {
2630 	struct mount *this_parent = parent;
2631 	struct list_head *next;
2632 	int found = 0;
2633 
2634 repeat:
2635 	next = this_parent->mnt_mounts.next;
2636 resume:
2637 	while (next != &this_parent->mnt_mounts) {
2638 		struct list_head *tmp = next;
2639 		struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
2640 
2641 		next = tmp->next;
2642 		if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
2643 			continue;
2644 		/*
2645 		 * Descend a level if the d_mounts list is non-empty.
2646 		 */
2647 		if (!list_empty(&mnt->mnt_mounts)) {
2648 			this_parent = mnt;
2649 			goto repeat;
2650 		}
2651 
2652 		if (!propagate_mount_busy(mnt, 1)) {
2653 			list_move_tail(&mnt->mnt_expire, graveyard);
2654 			found++;
2655 		}
2656 	}
2657 	/*
2658 	 * All done at this level ... ascend and resume the search
2659 	 */
2660 	if (this_parent != parent) {
2661 		next = this_parent->mnt_child.next;
2662 		this_parent = this_parent->mnt_parent;
2663 		goto resume;
2664 	}
2665 	return found;
2666 }
2667 
2668 /*
2669  * process a list of expirable mountpoints with the intent of discarding any
2670  * submounts of a specific parent mountpoint
2671  *
2672  * mount_lock must be held for write
2673  */
2674 static void shrink_submounts(struct mount *mnt)
2675 {
2676 	LIST_HEAD(graveyard);
2677 	struct mount *m;
2678 
2679 	/* extract submounts of 'mountpoint' from the expiration list */
2680 	while (select_submounts(mnt, &graveyard)) {
2681 		while (!list_empty(&graveyard)) {
2682 			m = list_first_entry(&graveyard, struct mount,
2683 						mnt_expire);
2684 			touch_mnt_namespace(m->mnt_ns);
2685 			umount_tree(m, UMOUNT_PROPAGATE|UMOUNT_SYNC);
2686 		}
2687 	}
2688 }
2689 
2690 /*
2691  * Some copy_from_user() implementations do not return the exact number of
2692  * bytes remaining to copy on a fault.  But copy_mount_options() requires that.
2693  * Note that this function differs from copy_from_user() in that it will oops
2694  * on bad values of `to', rather than returning a short copy.
2695  */
2696 static long exact_copy_from_user(void *to, const void __user * from,
2697 				 unsigned long n)
2698 {
2699 	char *t = to;
2700 	const char __user *f = from;
2701 	char c;
2702 
2703 	if (!access_ok(VERIFY_READ, from, n))
2704 		return n;
2705 
2706 	while (n) {
2707 		if (__get_user(c, f)) {
2708 			memset(t, 0, n);
2709 			break;
2710 		}
2711 		*t++ = c;
2712 		f++;
2713 		n--;
2714 	}
2715 	return n;
2716 }
2717 
2718 void *copy_mount_options(const void __user * data)
2719 {
2720 	int i;
2721 	unsigned long size;
2722 	char *copy;
2723 
2724 	if (!data)
2725 		return NULL;
2726 
2727 	copy = kmalloc(PAGE_SIZE, GFP_KERNEL);
2728 	if (!copy)
2729 		return ERR_PTR(-ENOMEM);
2730 
2731 	/* We only care that *some* data at the address the user
2732 	 * gave us is valid.  Just in case, we'll zero
2733 	 * the remainder of the page.
2734 	 */
2735 	/* copy_from_user cannot cross TASK_SIZE ! */
2736 	size = TASK_SIZE - (unsigned long)data;
2737 	if (size > PAGE_SIZE)
2738 		size = PAGE_SIZE;
2739 
2740 	i = size - exact_copy_from_user(copy, data, size);
2741 	if (!i) {
2742 		kfree(copy);
2743 		return ERR_PTR(-EFAULT);
2744 	}
2745 	if (i != PAGE_SIZE)
2746 		memset(copy + i, 0, PAGE_SIZE - i);
2747 	return copy;
2748 }
2749 
2750 char *copy_mount_string(const void __user *data)
2751 {
2752 	return data ? strndup_user(data, PAGE_SIZE) : NULL;
2753 }
2754 
2755 /*
2756  * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
2757  * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
2758  *
2759  * data is a (void *) that can point to any structure up to
2760  * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
2761  * information (or be NULL).
2762  *
2763  * Pre-0.97 versions of mount() didn't have a flags word.
2764  * When the flags word was introduced its top half was required
2765  * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
2766  * Therefore, if this magic number is present, it carries no information
2767  * and must be discarded.
2768  */
2769 long do_mount(const char *dev_name, const char __user *dir_name,
2770 		const char *type_page, unsigned long flags, void *data_page)
2771 {
2772 	struct path path;
2773 	unsigned int mnt_flags = 0, sb_flags;
2774 	int retval = 0;
2775 
2776 	/* Discard magic */
2777 	if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
2778 		flags &= ~MS_MGC_MSK;
2779 
2780 	/* Basic sanity checks */
2781 	if (data_page)
2782 		((char *)data_page)[PAGE_SIZE - 1] = 0;
2783 
2784 	if (flags & MS_NOUSER)
2785 		return -EINVAL;
2786 
2787 	/* ... and get the mountpoint */
2788 	retval = user_path(dir_name, &path);
2789 	if (retval)
2790 		return retval;
2791 
2792 	retval = security_sb_mount(dev_name, &path,
2793 				   type_page, flags, data_page);
2794 	if (!retval && !may_mount())
2795 		retval = -EPERM;
2796 	if (!retval && (flags & SB_MANDLOCK) && !may_mandlock())
2797 		retval = -EPERM;
2798 	if (retval)
2799 		goto dput_out;
2800 
2801 	/* Default to relatime unless overriden */
2802 	if (!(flags & MS_NOATIME))
2803 		mnt_flags |= MNT_RELATIME;
2804 
2805 	/* Separate the per-mountpoint flags */
2806 	if (flags & MS_NOSUID)
2807 		mnt_flags |= MNT_NOSUID;
2808 	if (flags & MS_NODEV)
2809 		mnt_flags |= MNT_NODEV;
2810 	if (flags & MS_NOEXEC)
2811 		mnt_flags |= MNT_NOEXEC;
2812 	if (flags & MS_NOATIME)
2813 		mnt_flags |= MNT_NOATIME;
2814 	if (flags & MS_NODIRATIME)
2815 		mnt_flags |= MNT_NODIRATIME;
2816 	if (flags & MS_STRICTATIME)
2817 		mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
2818 	if (flags & MS_RDONLY)
2819 		mnt_flags |= MNT_READONLY;
2820 
2821 	/* The default atime for remount is preservation */
2822 	if ((flags & MS_REMOUNT) &&
2823 	    ((flags & (MS_NOATIME | MS_NODIRATIME | MS_RELATIME |
2824 		       MS_STRICTATIME)) == 0)) {
2825 		mnt_flags &= ~MNT_ATIME_MASK;
2826 		mnt_flags |= path.mnt->mnt_flags & MNT_ATIME_MASK;
2827 	}
2828 
2829 	sb_flags = flags & (SB_RDONLY |
2830 			    SB_SYNCHRONOUS |
2831 			    SB_MANDLOCK |
2832 			    SB_DIRSYNC |
2833 			    SB_SILENT |
2834 			    SB_POSIXACL |
2835 			    SB_LAZYTIME |
2836 			    SB_I_VERSION);
2837 
2838 	if (flags & MS_REMOUNT)
2839 		retval = do_remount(&path, flags, sb_flags, mnt_flags,
2840 				    data_page);
2841 	else if (flags & MS_BIND)
2842 		retval = do_loopback(&path, dev_name, flags & MS_REC);
2843 	else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2844 		retval = do_change_type(&path, flags);
2845 	else if (flags & MS_MOVE)
2846 		retval = do_move_mount(&path, dev_name);
2847 	else
2848 		retval = do_new_mount(&path, type_page, sb_flags, mnt_flags,
2849 				      dev_name, data_page);
2850 dput_out:
2851 	path_put(&path);
2852 	return retval;
2853 }
2854 
2855 static struct ucounts *inc_mnt_namespaces(struct user_namespace *ns)
2856 {
2857 	return inc_ucount(ns, current_euid(), UCOUNT_MNT_NAMESPACES);
2858 }
2859 
2860 static void dec_mnt_namespaces(struct ucounts *ucounts)
2861 {
2862 	dec_ucount(ucounts, UCOUNT_MNT_NAMESPACES);
2863 }
2864 
2865 static void free_mnt_ns(struct mnt_namespace *ns)
2866 {
2867 	ns_free_inum(&ns->ns);
2868 	dec_mnt_namespaces(ns->ucounts);
2869 	put_user_ns(ns->user_ns);
2870 	kfree(ns);
2871 }
2872 
2873 /*
2874  * Assign a sequence number so we can detect when we attempt to bind
2875  * mount a reference to an older mount namespace into the current
2876  * mount namespace, preventing reference counting loops.  A 64bit
2877  * number incrementing at 10Ghz will take 12,427 years to wrap which
2878  * is effectively never, so we can ignore the possibility.
2879  */
2880 static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1);
2881 
2882 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns)
2883 {
2884 	struct mnt_namespace *new_ns;
2885 	struct ucounts *ucounts;
2886 	int ret;
2887 
2888 	ucounts = inc_mnt_namespaces(user_ns);
2889 	if (!ucounts)
2890 		return ERR_PTR(-ENOSPC);
2891 
2892 	new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
2893 	if (!new_ns) {
2894 		dec_mnt_namespaces(ucounts);
2895 		return ERR_PTR(-ENOMEM);
2896 	}
2897 	ret = ns_alloc_inum(&new_ns->ns);
2898 	if (ret) {
2899 		kfree(new_ns);
2900 		dec_mnt_namespaces(ucounts);
2901 		return ERR_PTR(ret);
2902 	}
2903 	new_ns->ns.ops = &mntns_operations;
2904 	new_ns->seq = atomic64_add_return(1, &mnt_ns_seq);
2905 	atomic_set(&new_ns->count, 1);
2906 	new_ns->root = NULL;
2907 	INIT_LIST_HEAD(&new_ns->list);
2908 	init_waitqueue_head(&new_ns->poll);
2909 	new_ns->event = 0;
2910 	new_ns->user_ns = get_user_ns(user_ns);
2911 	new_ns->ucounts = ucounts;
2912 	new_ns->mounts = 0;
2913 	new_ns->pending_mounts = 0;
2914 	return new_ns;
2915 }
2916 
2917 __latent_entropy
2918 struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
2919 		struct user_namespace *user_ns, struct fs_struct *new_fs)
2920 {
2921 	struct mnt_namespace *new_ns;
2922 	struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
2923 	struct mount *p, *q;
2924 	struct mount *old;
2925 	struct mount *new;
2926 	int copy_flags;
2927 
2928 	BUG_ON(!ns);
2929 
2930 	if (likely(!(flags & CLONE_NEWNS))) {
2931 		get_mnt_ns(ns);
2932 		return ns;
2933 	}
2934 
2935 	old = ns->root;
2936 
2937 	new_ns = alloc_mnt_ns(user_ns);
2938 	if (IS_ERR(new_ns))
2939 		return new_ns;
2940 
2941 	namespace_lock();
2942 	/* First pass: copy the tree topology */
2943 	copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE;
2944 	if (user_ns != ns->user_ns)
2945 		copy_flags |= CL_SHARED_TO_SLAVE | CL_UNPRIVILEGED;
2946 	new = copy_tree(old, old->mnt.mnt_root, copy_flags);
2947 	if (IS_ERR(new)) {
2948 		namespace_unlock();
2949 		free_mnt_ns(new_ns);
2950 		return ERR_CAST(new);
2951 	}
2952 	new_ns->root = new;
2953 	list_add_tail(&new_ns->list, &new->mnt_list);
2954 
2955 	/*
2956 	 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
2957 	 * as belonging to new namespace.  We have already acquired a private
2958 	 * fs_struct, so tsk->fs->lock is not needed.
2959 	 */
2960 	p = old;
2961 	q = new;
2962 	while (p) {
2963 		q->mnt_ns = new_ns;
2964 		new_ns->mounts++;
2965 		if (new_fs) {
2966 			if (&p->mnt == new_fs->root.mnt) {
2967 				new_fs->root.mnt = mntget(&q->mnt);
2968 				rootmnt = &p->mnt;
2969 			}
2970 			if (&p->mnt == new_fs->pwd.mnt) {
2971 				new_fs->pwd.mnt = mntget(&q->mnt);
2972 				pwdmnt = &p->mnt;
2973 			}
2974 		}
2975 		p = next_mnt(p, old);
2976 		q = next_mnt(q, new);
2977 		if (!q)
2978 			break;
2979 		while (p->mnt.mnt_root != q->mnt.mnt_root)
2980 			p = next_mnt(p, old);
2981 	}
2982 	namespace_unlock();
2983 
2984 	if (rootmnt)
2985 		mntput(rootmnt);
2986 	if (pwdmnt)
2987 		mntput(pwdmnt);
2988 
2989 	return new_ns;
2990 }
2991 
2992 /**
2993  * create_mnt_ns - creates a private namespace and adds a root filesystem
2994  * @mnt: pointer to the new root filesystem mountpoint
2995  */
2996 static struct mnt_namespace *create_mnt_ns(struct vfsmount *m)
2997 {
2998 	struct mnt_namespace *new_ns = alloc_mnt_ns(&init_user_ns);
2999 	if (!IS_ERR(new_ns)) {
3000 		struct mount *mnt = real_mount(m);
3001 		mnt->mnt_ns = new_ns;
3002 		new_ns->root = mnt;
3003 		new_ns->mounts++;
3004 		list_add(&mnt->mnt_list, &new_ns->list);
3005 	} else {
3006 		mntput(m);
3007 	}
3008 	return new_ns;
3009 }
3010 
3011 struct dentry *mount_subtree(struct vfsmount *mnt, const char *name)
3012 {
3013 	struct mnt_namespace *ns;
3014 	struct super_block *s;
3015 	struct path path;
3016 	int err;
3017 
3018 	ns = create_mnt_ns(mnt);
3019 	if (IS_ERR(ns))
3020 		return ERR_CAST(ns);
3021 
3022 	err = vfs_path_lookup(mnt->mnt_root, mnt,
3023 			name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
3024 
3025 	put_mnt_ns(ns);
3026 
3027 	if (err)
3028 		return ERR_PTR(err);
3029 
3030 	/* trade a vfsmount reference for active sb one */
3031 	s = path.mnt->mnt_sb;
3032 	atomic_inc(&s->s_active);
3033 	mntput(path.mnt);
3034 	/* lock the sucker */
3035 	down_write(&s->s_umount);
3036 	/* ... and return the root of (sub)tree on it */
3037 	return path.dentry;
3038 }
3039 EXPORT_SYMBOL(mount_subtree);
3040 
3041 int ksys_mount(char __user *dev_name, char __user *dir_name, char __user *type,
3042 	       unsigned long flags, void __user *data)
3043 {
3044 	int ret;
3045 	char *kernel_type;
3046 	char *kernel_dev;
3047 	void *options;
3048 
3049 	kernel_type = copy_mount_string(type);
3050 	ret = PTR_ERR(kernel_type);
3051 	if (IS_ERR(kernel_type))
3052 		goto out_type;
3053 
3054 	kernel_dev = copy_mount_string(dev_name);
3055 	ret = PTR_ERR(kernel_dev);
3056 	if (IS_ERR(kernel_dev))
3057 		goto out_dev;
3058 
3059 	options = copy_mount_options(data);
3060 	ret = PTR_ERR(options);
3061 	if (IS_ERR(options))
3062 		goto out_data;
3063 
3064 	ret = do_mount(kernel_dev, dir_name, kernel_type, flags, options);
3065 
3066 	kfree(options);
3067 out_data:
3068 	kfree(kernel_dev);
3069 out_dev:
3070 	kfree(kernel_type);
3071 out_type:
3072 	return ret;
3073 }
3074 
3075 SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
3076 		char __user *, type, unsigned long, flags, void __user *, data)
3077 {
3078 	return ksys_mount(dev_name, dir_name, type, flags, data);
3079 }
3080 
3081 /*
3082  * Return true if path is reachable from root
3083  *
3084  * namespace_sem or mount_lock is held
3085  */
3086 bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
3087 			 const struct path *root)
3088 {
3089 	while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
3090 		dentry = mnt->mnt_mountpoint;
3091 		mnt = mnt->mnt_parent;
3092 	}
3093 	return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
3094 }
3095 
3096 bool path_is_under(const struct path *path1, const struct path *path2)
3097 {
3098 	bool res;
3099 	read_seqlock_excl(&mount_lock);
3100 	res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
3101 	read_sequnlock_excl(&mount_lock);
3102 	return res;
3103 }
3104 EXPORT_SYMBOL(path_is_under);
3105 
3106 /*
3107  * pivot_root Semantics:
3108  * Moves the root file system of the current process to the directory put_old,
3109  * makes new_root as the new root file system of the current process, and sets
3110  * root/cwd of all processes which had them on the current root to new_root.
3111  *
3112  * Restrictions:
3113  * The new_root and put_old must be directories, and  must not be on the
3114  * same file  system as the current process root. The put_old  must  be
3115  * underneath new_root,  i.e. adding a non-zero number of /.. to the string
3116  * pointed to by put_old must yield the same directory as new_root. No other
3117  * file system may be mounted on put_old. After all, new_root is a mountpoint.
3118  *
3119  * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
3120  * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
3121  * in this situation.
3122  *
3123  * Notes:
3124  *  - we don't move root/cwd if they are not at the root (reason: if something
3125  *    cared enough to change them, it's probably wrong to force them elsewhere)
3126  *  - it's okay to pick a root that isn't the root of a file system, e.g.
3127  *    /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
3128  *    though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
3129  *    first.
3130  */
3131 SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
3132 		const char __user *, put_old)
3133 {
3134 	struct path new, old, parent_path, root_parent, root;
3135 	struct mount *new_mnt, *root_mnt, *old_mnt;
3136 	struct mountpoint *old_mp, *root_mp;
3137 	int error;
3138 
3139 	if (!may_mount())
3140 		return -EPERM;
3141 
3142 	error = user_path_dir(new_root, &new);
3143 	if (error)
3144 		goto out0;
3145 
3146 	error = user_path_dir(put_old, &old);
3147 	if (error)
3148 		goto out1;
3149 
3150 	error = security_sb_pivotroot(&old, &new);
3151 	if (error)
3152 		goto out2;
3153 
3154 	get_fs_root(current->fs, &root);
3155 	old_mp = lock_mount(&old);
3156 	error = PTR_ERR(old_mp);
3157 	if (IS_ERR(old_mp))
3158 		goto out3;
3159 
3160 	error = -EINVAL;
3161 	new_mnt = real_mount(new.mnt);
3162 	root_mnt = real_mount(root.mnt);
3163 	old_mnt = real_mount(old.mnt);
3164 	if (IS_MNT_SHARED(old_mnt) ||
3165 		IS_MNT_SHARED(new_mnt->mnt_parent) ||
3166 		IS_MNT_SHARED(root_mnt->mnt_parent))
3167 		goto out4;
3168 	if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
3169 		goto out4;
3170 	if (new_mnt->mnt.mnt_flags & MNT_LOCKED)
3171 		goto out4;
3172 	error = -ENOENT;
3173 	if (d_unlinked(new.dentry))
3174 		goto out4;
3175 	error = -EBUSY;
3176 	if (new_mnt == root_mnt || old_mnt == root_mnt)
3177 		goto out4; /* loop, on the same file system  */
3178 	error = -EINVAL;
3179 	if (root.mnt->mnt_root != root.dentry)
3180 		goto out4; /* not a mountpoint */
3181 	if (!mnt_has_parent(root_mnt))
3182 		goto out4; /* not attached */
3183 	root_mp = root_mnt->mnt_mp;
3184 	if (new.mnt->mnt_root != new.dentry)
3185 		goto out4; /* not a mountpoint */
3186 	if (!mnt_has_parent(new_mnt))
3187 		goto out4; /* not attached */
3188 	/* make sure we can reach put_old from new_root */
3189 	if (!is_path_reachable(old_mnt, old.dentry, &new))
3190 		goto out4;
3191 	/* make certain new is below the root */
3192 	if (!is_path_reachable(new_mnt, new.dentry, &root))
3193 		goto out4;
3194 	root_mp->m_count++; /* pin it so it won't go away */
3195 	lock_mount_hash();
3196 	detach_mnt(new_mnt, &parent_path);
3197 	detach_mnt(root_mnt, &root_parent);
3198 	if (root_mnt->mnt.mnt_flags & MNT_LOCKED) {
3199 		new_mnt->mnt.mnt_flags |= MNT_LOCKED;
3200 		root_mnt->mnt.mnt_flags &= ~MNT_LOCKED;
3201 	}
3202 	/* mount old root on put_old */
3203 	attach_mnt(root_mnt, old_mnt, old_mp);
3204 	/* mount new_root on / */
3205 	attach_mnt(new_mnt, real_mount(root_parent.mnt), root_mp);
3206 	touch_mnt_namespace(current->nsproxy->mnt_ns);
3207 	/* A moved mount should not expire automatically */
3208 	list_del_init(&new_mnt->mnt_expire);
3209 	put_mountpoint(root_mp);
3210 	unlock_mount_hash();
3211 	chroot_fs_refs(&root, &new);
3212 	error = 0;
3213 out4:
3214 	unlock_mount(old_mp);
3215 	if (!error) {
3216 		path_put(&root_parent);
3217 		path_put(&parent_path);
3218 	}
3219 out3:
3220 	path_put(&root);
3221 out2:
3222 	path_put(&old);
3223 out1:
3224 	path_put(&new);
3225 out0:
3226 	return error;
3227 }
3228 
3229 static void __init init_mount_tree(void)
3230 {
3231 	struct vfsmount *mnt;
3232 	struct mnt_namespace *ns;
3233 	struct path root;
3234 	struct file_system_type *type;
3235 
3236 	type = get_fs_type("rootfs");
3237 	if (!type)
3238 		panic("Can't find rootfs type");
3239 	mnt = vfs_kern_mount(type, 0, "rootfs", NULL);
3240 	put_filesystem(type);
3241 	if (IS_ERR(mnt))
3242 		panic("Can't create rootfs");
3243 
3244 	ns = create_mnt_ns(mnt);
3245 	if (IS_ERR(ns))
3246 		panic("Can't allocate initial namespace");
3247 
3248 	init_task.nsproxy->mnt_ns = ns;
3249 	get_mnt_ns(ns);
3250 
3251 	root.mnt = mnt;
3252 	root.dentry = mnt->mnt_root;
3253 	mnt->mnt_flags |= MNT_LOCKED;
3254 
3255 	set_fs_pwd(current->fs, &root);
3256 	set_fs_root(current->fs, &root);
3257 }
3258 
3259 void __init mnt_init(void)
3260 {
3261 	int err;
3262 
3263 	mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
3264 			0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
3265 
3266 	mount_hashtable = alloc_large_system_hash("Mount-cache",
3267 				sizeof(struct hlist_head),
3268 				mhash_entries, 19,
3269 				HASH_ZERO,
3270 				&m_hash_shift, &m_hash_mask, 0, 0);
3271 	mountpoint_hashtable = alloc_large_system_hash("Mountpoint-cache",
3272 				sizeof(struct hlist_head),
3273 				mphash_entries, 19,
3274 				HASH_ZERO,
3275 				&mp_hash_shift, &mp_hash_mask, 0, 0);
3276 
3277 	if (!mount_hashtable || !mountpoint_hashtable)
3278 		panic("Failed to allocate mount hash table\n");
3279 
3280 	kernfs_init();
3281 
3282 	err = sysfs_init();
3283 	if (err)
3284 		printk(KERN_WARNING "%s: sysfs_init error: %d\n",
3285 			__func__, err);
3286 	fs_kobj = kobject_create_and_add("fs", NULL);
3287 	if (!fs_kobj)
3288 		printk(KERN_WARNING "%s: kobj create error\n", __func__);
3289 	init_rootfs();
3290 	init_mount_tree();
3291 }
3292 
3293 void put_mnt_ns(struct mnt_namespace *ns)
3294 {
3295 	if (!atomic_dec_and_test(&ns->count))
3296 		return;
3297 	drop_collected_mounts(&ns->root->mnt);
3298 	free_mnt_ns(ns);
3299 }
3300 
3301 struct vfsmount *kern_mount_data(struct file_system_type *type, void *data)
3302 {
3303 	struct vfsmount *mnt;
3304 	mnt = vfs_kern_mount(type, SB_KERNMOUNT, type->name, data);
3305 	if (!IS_ERR(mnt)) {
3306 		/*
3307 		 * it is a longterm mount, don't release mnt until
3308 		 * we unmount before file sys is unregistered
3309 		*/
3310 		real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
3311 	}
3312 	return mnt;
3313 }
3314 EXPORT_SYMBOL_GPL(kern_mount_data);
3315 
3316 void kern_unmount(struct vfsmount *mnt)
3317 {
3318 	/* release long term mount so mount point can be released */
3319 	if (!IS_ERR_OR_NULL(mnt)) {
3320 		real_mount(mnt)->mnt_ns = NULL;
3321 		synchronize_rcu();	/* yecchhh... */
3322 		mntput(mnt);
3323 	}
3324 }
3325 EXPORT_SYMBOL(kern_unmount);
3326 
3327 bool our_mnt(struct vfsmount *mnt)
3328 {
3329 	return check_mnt(real_mount(mnt));
3330 }
3331 
3332 bool current_chrooted(void)
3333 {
3334 	/* Does the current process have a non-standard root */
3335 	struct path ns_root;
3336 	struct path fs_root;
3337 	bool chrooted;
3338 
3339 	/* Find the namespace root */
3340 	ns_root.mnt = &current->nsproxy->mnt_ns->root->mnt;
3341 	ns_root.dentry = ns_root.mnt->mnt_root;
3342 	path_get(&ns_root);
3343 	while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root))
3344 		;
3345 
3346 	get_fs_root(current->fs, &fs_root);
3347 
3348 	chrooted = !path_equal(&fs_root, &ns_root);
3349 
3350 	path_put(&fs_root);
3351 	path_put(&ns_root);
3352 
3353 	return chrooted;
3354 }
3355 
3356 static bool mnt_already_visible(struct mnt_namespace *ns, struct vfsmount *new,
3357 				int *new_mnt_flags)
3358 {
3359 	int new_flags = *new_mnt_flags;
3360 	struct mount *mnt;
3361 	bool visible = false;
3362 
3363 	down_read(&namespace_sem);
3364 	list_for_each_entry(mnt, &ns->list, mnt_list) {
3365 		struct mount *child;
3366 		int mnt_flags;
3367 
3368 		if (mnt->mnt.mnt_sb->s_type != new->mnt_sb->s_type)
3369 			continue;
3370 
3371 		/* This mount is not fully visible if it's root directory
3372 		 * is not the root directory of the filesystem.
3373 		 */
3374 		if (mnt->mnt.mnt_root != mnt->mnt.mnt_sb->s_root)
3375 			continue;
3376 
3377 		/* A local view of the mount flags */
3378 		mnt_flags = mnt->mnt.mnt_flags;
3379 
3380 		/* Don't miss readonly hidden in the superblock flags */
3381 		if (sb_rdonly(mnt->mnt.mnt_sb))
3382 			mnt_flags |= MNT_LOCK_READONLY;
3383 
3384 		/* Verify the mount flags are equal to or more permissive
3385 		 * than the proposed new mount.
3386 		 */
3387 		if ((mnt_flags & MNT_LOCK_READONLY) &&
3388 		    !(new_flags & MNT_READONLY))
3389 			continue;
3390 		if ((mnt_flags & MNT_LOCK_ATIME) &&
3391 		    ((mnt_flags & MNT_ATIME_MASK) != (new_flags & MNT_ATIME_MASK)))
3392 			continue;
3393 
3394 		/* This mount is not fully visible if there are any
3395 		 * locked child mounts that cover anything except for
3396 		 * empty directories.
3397 		 */
3398 		list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
3399 			struct inode *inode = child->mnt_mountpoint->d_inode;
3400 			/* Only worry about locked mounts */
3401 			if (!(child->mnt.mnt_flags & MNT_LOCKED))
3402 				continue;
3403 			/* Is the directory permanetly empty? */
3404 			if (!is_empty_dir_inode(inode))
3405 				goto next;
3406 		}
3407 		/* Preserve the locked attributes */
3408 		*new_mnt_flags |= mnt_flags & (MNT_LOCK_READONLY | \
3409 					       MNT_LOCK_ATIME);
3410 		visible = true;
3411 		goto found;
3412 	next:	;
3413 	}
3414 found:
3415 	up_read(&namespace_sem);
3416 	return visible;
3417 }
3418 
3419 static bool mount_too_revealing(struct vfsmount *mnt, int *new_mnt_flags)
3420 {
3421 	const unsigned long required_iflags = SB_I_NOEXEC | SB_I_NODEV;
3422 	struct mnt_namespace *ns = current->nsproxy->mnt_ns;
3423 	unsigned long s_iflags;
3424 
3425 	if (ns->user_ns == &init_user_ns)
3426 		return false;
3427 
3428 	/* Can this filesystem be too revealing? */
3429 	s_iflags = mnt->mnt_sb->s_iflags;
3430 	if (!(s_iflags & SB_I_USERNS_VISIBLE))
3431 		return false;
3432 
3433 	if ((s_iflags & required_iflags) != required_iflags) {
3434 		WARN_ONCE(1, "Expected s_iflags to contain 0x%lx\n",
3435 			  required_iflags);
3436 		return true;
3437 	}
3438 
3439 	return !mnt_already_visible(ns, mnt, new_mnt_flags);
3440 }
3441 
3442 bool mnt_may_suid(struct vfsmount *mnt)
3443 {
3444 	/*
3445 	 * Foreign mounts (accessed via fchdir or through /proc
3446 	 * symlinks) are always treated as if they are nosuid.  This
3447 	 * prevents namespaces from trusting potentially unsafe
3448 	 * suid/sgid bits, file caps, or security labels that originate
3449 	 * in other namespaces.
3450 	 */
3451 	return !(mnt->mnt_flags & MNT_NOSUID) && check_mnt(real_mount(mnt)) &&
3452 	       current_in_userns(mnt->mnt_sb->s_user_ns);
3453 }
3454 
3455 static struct ns_common *mntns_get(struct task_struct *task)
3456 {
3457 	struct ns_common *ns = NULL;
3458 	struct nsproxy *nsproxy;
3459 
3460 	task_lock(task);
3461 	nsproxy = task->nsproxy;
3462 	if (nsproxy) {
3463 		ns = &nsproxy->mnt_ns->ns;
3464 		get_mnt_ns(to_mnt_ns(ns));
3465 	}
3466 	task_unlock(task);
3467 
3468 	return ns;
3469 }
3470 
3471 static void mntns_put(struct ns_common *ns)
3472 {
3473 	put_mnt_ns(to_mnt_ns(ns));
3474 }
3475 
3476 static int mntns_install(struct nsproxy *nsproxy, struct ns_common *ns)
3477 {
3478 	struct fs_struct *fs = current->fs;
3479 	struct mnt_namespace *mnt_ns = to_mnt_ns(ns), *old_mnt_ns;
3480 	struct path root;
3481 	int err;
3482 
3483 	if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) ||
3484 	    !ns_capable(current_user_ns(), CAP_SYS_CHROOT) ||
3485 	    !ns_capable(current_user_ns(), CAP_SYS_ADMIN))
3486 		return -EPERM;
3487 
3488 	if (fs->users != 1)
3489 		return -EINVAL;
3490 
3491 	get_mnt_ns(mnt_ns);
3492 	old_mnt_ns = nsproxy->mnt_ns;
3493 	nsproxy->mnt_ns = mnt_ns;
3494 
3495 	/* Find the root */
3496 	err = vfs_path_lookup(mnt_ns->root->mnt.mnt_root, &mnt_ns->root->mnt,
3497 				"/", LOOKUP_DOWN, &root);
3498 	if (err) {
3499 		/* revert to old namespace */
3500 		nsproxy->mnt_ns = old_mnt_ns;
3501 		put_mnt_ns(mnt_ns);
3502 		return err;
3503 	}
3504 
3505 	put_mnt_ns(old_mnt_ns);
3506 
3507 	/* Update the pwd and root */
3508 	set_fs_pwd(fs, &root);
3509 	set_fs_root(fs, &root);
3510 
3511 	path_put(&root);
3512 	return 0;
3513 }
3514 
3515 static struct user_namespace *mntns_owner(struct ns_common *ns)
3516 {
3517 	return to_mnt_ns(ns)->user_ns;
3518 }
3519 
3520 const struct proc_ns_operations mntns_operations = {
3521 	.name		= "mnt",
3522 	.type		= CLONE_NEWNS,
3523 	.get		= mntns_get,
3524 	.put		= mntns_put,
3525 	.install	= mntns_install,
3526 	.owner		= mntns_owner,
3527 };
3528