xref: /openbmc/linux/fs/namespace.c (revision aac5987a)
1 /*
2  *  linux/fs/namespace.c
3  *
4  * (C) Copyright Al Viro 2000, 2001
5  *	Released under GPL v2.
6  *
7  * Based on code from fs/super.c, copyright Linus Torvalds and others.
8  * Heavily rewritten.
9  */
10 
11 #include <linux/syscalls.h>
12 #include <linux/export.h>
13 #include <linux/capability.h>
14 #include <linux/mnt_namespace.h>
15 #include <linux/user_namespace.h>
16 #include <linux/namei.h>
17 #include <linux/security.h>
18 #include <linux/cred.h>
19 #include <linux/idr.h>
20 #include <linux/init.h>		/* init_rootfs */
21 #include <linux/fs_struct.h>	/* get_fs_root et.al. */
22 #include <linux/fsnotify.h>	/* fsnotify_vfsmount_delete */
23 #include <linux/uaccess.h>
24 #include <linux/proc_ns.h>
25 #include <linux/magic.h>
26 #include <linux/bootmem.h>
27 #include <linux/task_work.h>
28 #include <linux/sched/task.h>
29 
30 #include "pnode.h"
31 #include "internal.h"
32 
33 /* Maximum number of mounts in a mount namespace */
34 unsigned int sysctl_mount_max __read_mostly = 100000;
35 
36 static unsigned int m_hash_mask __read_mostly;
37 static unsigned int m_hash_shift __read_mostly;
38 static unsigned int mp_hash_mask __read_mostly;
39 static unsigned int mp_hash_shift __read_mostly;
40 
41 static __initdata unsigned long mhash_entries;
42 static int __init set_mhash_entries(char *str)
43 {
44 	if (!str)
45 		return 0;
46 	mhash_entries = simple_strtoul(str, &str, 0);
47 	return 1;
48 }
49 __setup("mhash_entries=", set_mhash_entries);
50 
51 static __initdata unsigned long mphash_entries;
52 static int __init set_mphash_entries(char *str)
53 {
54 	if (!str)
55 		return 0;
56 	mphash_entries = simple_strtoul(str, &str, 0);
57 	return 1;
58 }
59 __setup("mphash_entries=", set_mphash_entries);
60 
61 static u64 event;
62 static DEFINE_IDA(mnt_id_ida);
63 static DEFINE_IDA(mnt_group_ida);
64 static DEFINE_SPINLOCK(mnt_id_lock);
65 static int mnt_id_start = 0;
66 static int mnt_group_start = 1;
67 
68 static struct hlist_head *mount_hashtable __read_mostly;
69 static struct hlist_head *mountpoint_hashtable __read_mostly;
70 static struct kmem_cache *mnt_cache __read_mostly;
71 static DECLARE_RWSEM(namespace_sem);
72 
73 /* /sys/fs */
74 struct kobject *fs_kobj;
75 EXPORT_SYMBOL_GPL(fs_kobj);
76 
77 /*
78  * vfsmount lock may be taken for read to prevent changes to the
79  * vfsmount hash, ie. during mountpoint lookups or walking back
80  * up the tree.
81  *
82  * It should be taken for write in all cases where the vfsmount
83  * tree or hash is modified or when a vfsmount structure is modified.
84  */
85 __cacheline_aligned_in_smp DEFINE_SEQLOCK(mount_lock);
86 
87 static inline struct hlist_head *m_hash(struct vfsmount *mnt, struct dentry *dentry)
88 {
89 	unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
90 	tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
91 	tmp = tmp + (tmp >> m_hash_shift);
92 	return &mount_hashtable[tmp & m_hash_mask];
93 }
94 
95 static inline struct hlist_head *mp_hash(struct dentry *dentry)
96 {
97 	unsigned long tmp = ((unsigned long)dentry / L1_CACHE_BYTES);
98 	tmp = tmp + (tmp >> mp_hash_shift);
99 	return &mountpoint_hashtable[tmp & mp_hash_mask];
100 }
101 
102 static int mnt_alloc_id(struct mount *mnt)
103 {
104 	int res;
105 
106 retry:
107 	ida_pre_get(&mnt_id_ida, GFP_KERNEL);
108 	spin_lock(&mnt_id_lock);
109 	res = ida_get_new_above(&mnt_id_ida, mnt_id_start, &mnt->mnt_id);
110 	if (!res)
111 		mnt_id_start = mnt->mnt_id + 1;
112 	spin_unlock(&mnt_id_lock);
113 	if (res == -EAGAIN)
114 		goto retry;
115 
116 	return res;
117 }
118 
119 static void mnt_free_id(struct mount *mnt)
120 {
121 	int id = mnt->mnt_id;
122 	spin_lock(&mnt_id_lock);
123 	ida_remove(&mnt_id_ida, id);
124 	if (mnt_id_start > id)
125 		mnt_id_start = id;
126 	spin_unlock(&mnt_id_lock);
127 }
128 
129 /*
130  * Allocate a new peer group ID
131  *
132  * mnt_group_ida is protected by namespace_sem
133  */
134 static int mnt_alloc_group_id(struct mount *mnt)
135 {
136 	int res;
137 
138 	if (!ida_pre_get(&mnt_group_ida, GFP_KERNEL))
139 		return -ENOMEM;
140 
141 	res = ida_get_new_above(&mnt_group_ida,
142 				mnt_group_start,
143 				&mnt->mnt_group_id);
144 	if (!res)
145 		mnt_group_start = mnt->mnt_group_id + 1;
146 
147 	return res;
148 }
149 
150 /*
151  * Release a peer group ID
152  */
153 void mnt_release_group_id(struct mount *mnt)
154 {
155 	int id = mnt->mnt_group_id;
156 	ida_remove(&mnt_group_ida, id);
157 	if (mnt_group_start > id)
158 		mnt_group_start = id;
159 	mnt->mnt_group_id = 0;
160 }
161 
162 /*
163  * vfsmount lock must be held for read
164  */
165 static inline void mnt_add_count(struct mount *mnt, int n)
166 {
167 #ifdef CONFIG_SMP
168 	this_cpu_add(mnt->mnt_pcp->mnt_count, n);
169 #else
170 	preempt_disable();
171 	mnt->mnt_count += n;
172 	preempt_enable();
173 #endif
174 }
175 
176 /*
177  * vfsmount lock must be held for write
178  */
179 unsigned int mnt_get_count(struct mount *mnt)
180 {
181 #ifdef CONFIG_SMP
182 	unsigned int count = 0;
183 	int cpu;
184 
185 	for_each_possible_cpu(cpu) {
186 		count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
187 	}
188 
189 	return count;
190 #else
191 	return mnt->mnt_count;
192 #endif
193 }
194 
195 static void drop_mountpoint(struct fs_pin *p)
196 {
197 	struct mount *m = container_of(p, struct mount, mnt_umount);
198 	dput(m->mnt_ex_mountpoint);
199 	pin_remove(p);
200 	mntput(&m->mnt);
201 }
202 
203 static struct mount *alloc_vfsmnt(const char *name)
204 {
205 	struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
206 	if (mnt) {
207 		int err;
208 
209 		err = mnt_alloc_id(mnt);
210 		if (err)
211 			goto out_free_cache;
212 
213 		if (name) {
214 			mnt->mnt_devname = kstrdup_const(name, GFP_KERNEL);
215 			if (!mnt->mnt_devname)
216 				goto out_free_id;
217 		}
218 
219 #ifdef CONFIG_SMP
220 		mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
221 		if (!mnt->mnt_pcp)
222 			goto out_free_devname;
223 
224 		this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
225 #else
226 		mnt->mnt_count = 1;
227 		mnt->mnt_writers = 0;
228 #endif
229 
230 		INIT_HLIST_NODE(&mnt->mnt_hash);
231 		INIT_LIST_HEAD(&mnt->mnt_child);
232 		INIT_LIST_HEAD(&mnt->mnt_mounts);
233 		INIT_LIST_HEAD(&mnt->mnt_list);
234 		INIT_LIST_HEAD(&mnt->mnt_expire);
235 		INIT_LIST_HEAD(&mnt->mnt_share);
236 		INIT_LIST_HEAD(&mnt->mnt_slave_list);
237 		INIT_LIST_HEAD(&mnt->mnt_slave);
238 		INIT_HLIST_NODE(&mnt->mnt_mp_list);
239 #ifdef CONFIG_FSNOTIFY
240 		INIT_HLIST_HEAD(&mnt->mnt_fsnotify_marks);
241 #endif
242 		init_fs_pin(&mnt->mnt_umount, drop_mountpoint);
243 	}
244 	return mnt;
245 
246 #ifdef CONFIG_SMP
247 out_free_devname:
248 	kfree_const(mnt->mnt_devname);
249 #endif
250 out_free_id:
251 	mnt_free_id(mnt);
252 out_free_cache:
253 	kmem_cache_free(mnt_cache, mnt);
254 	return NULL;
255 }
256 
257 /*
258  * Most r/o checks on a fs are for operations that take
259  * discrete amounts of time, like a write() or unlink().
260  * We must keep track of when those operations start
261  * (for permission checks) and when they end, so that
262  * we can determine when writes are able to occur to
263  * a filesystem.
264  */
265 /*
266  * __mnt_is_readonly: check whether a mount is read-only
267  * @mnt: the mount to check for its write status
268  *
269  * This shouldn't be used directly ouside of the VFS.
270  * It does not guarantee that the filesystem will stay
271  * r/w, just that it is right *now*.  This can not and
272  * should not be used in place of IS_RDONLY(inode).
273  * mnt_want/drop_write() will _keep_ the filesystem
274  * r/w.
275  */
276 int __mnt_is_readonly(struct vfsmount *mnt)
277 {
278 	if (mnt->mnt_flags & MNT_READONLY)
279 		return 1;
280 	if (mnt->mnt_sb->s_flags & MS_RDONLY)
281 		return 1;
282 	return 0;
283 }
284 EXPORT_SYMBOL_GPL(__mnt_is_readonly);
285 
286 static inline void mnt_inc_writers(struct mount *mnt)
287 {
288 #ifdef CONFIG_SMP
289 	this_cpu_inc(mnt->mnt_pcp->mnt_writers);
290 #else
291 	mnt->mnt_writers++;
292 #endif
293 }
294 
295 static inline void mnt_dec_writers(struct mount *mnt)
296 {
297 #ifdef CONFIG_SMP
298 	this_cpu_dec(mnt->mnt_pcp->mnt_writers);
299 #else
300 	mnt->mnt_writers--;
301 #endif
302 }
303 
304 static unsigned int mnt_get_writers(struct mount *mnt)
305 {
306 #ifdef CONFIG_SMP
307 	unsigned int count = 0;
308 	int cpu;
309 
310 	for_each_possible_cpu(cpu) {
311 		count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
312 	}
313 
314 	return count;
315 #else
316 	return mnt->mnt_writers;
317 #endif
318 }
319 
320 static int mnt_is_readonly(struct vfsmount *mnt)
321 {
322 	if (mnt->mnt_sb->s_readonly_remount)
323 		return 1;
324 	/* Order wrt setting s_flags/s_readonly_remount in do_remount() */
325 	smp_rmb();
326 	return __mnt_is_readonly(mnt);
327 }
328 
329 /*
330  * Most r/o & frozen checks on a fs are for operations that take discrete
331  * amounts of time, like a write() or unlink().  We must keep track of when
332  * those operations start (for permission checks) and when they end, so that we
333  * can determine when writes are able to occur to a filesystem.
334  */
335 /**
336  * __mnt_want_write - get write access to a mount without freeze protection
337  * @m: the mount on which to take a write
338  *
339  * This tells the low-level filesystem that a write is about to be performed to
340  * it, and makes sure that writes are allowed (mnt it read-write) before
341  * returning success. This operation does not protect against filesystem being
342  * frozen. When the write operation is finished, __mnt_drop_write() must be
343  * called. This is effectively a refcount.
344  */
345 int __mnt_want_write(struct vfsmount *m)
346 {
347 	struct mount *mnt = real_mount(m);
348 	int ret = 0;
349 
350 	preempt_disable();
351 	mnt_inc_writers(mnt);
352 	/*
353 	 * The store to mnt_inc_writers must be visible before we pass
354 	 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
355 	 * incremented count after it has set MNT_WRITE_HOLD.
356 	 */
357 	smp_mb();
358 	while (ACCESS_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD)
359 		cpu_relax();
360 	/*
361 	 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
362 	 * be set to match its requirements. So we must not load that until
363 	 * MNT_WRITE_HOLD is cleared.
364 	 */
365 	smp_rmb();
366 	if (mnt_is_readonly(m)) {
367 		mnt_dec_writers(mnt);
368 		ret = -EROFS;
369 	}
370 	preempt_enable();
371 
372 	return ret;
373 }
374 
375 /**
376  * mnt_want_write - get write access to a mount
377  * @m: the mount on which to take a write
378  *
379  * This tells the low-level filesystem that a write is about to be performed to
380  * it, and makes sure that writes are allowed (mount is read-write, filesystem
381  * is not frozen) before returning success.  When the write operation is
382  * finished, mnt_drop_write() must be called.  This is effectively a refcount.
383  */
384 int mnt_want_write(struct vfsmount *m)
385 {
386 	int ret;
387 
388 	sb_start_write(m->mnt_sb);
389 	ret = __mnt_want_write(m);
390 	if (ret)
391 		sb_end_write(m->mnt_sb);
392 	return ret;
393 }
394 EXPORT_SYMBOL_GPL(mnt_want_write);
395 
396 /**
397  * mnt_clone_write - get write access to a mount
398  * @mnt: the mount on which to take a write
399  *
400  * This is effectively like mnt_want_write, except
401  * it must only be used to take an extra write reference
402  * on a mountpoint that we already know has a write reference
403  * on it. This allows some optimisation.
404  *
405  * After finished, mnt_drop_write must be called as usual to
406  * drop the reference.
407  */
408 int mnt_clone_write(struct vfsmount *mnt)
409 {
410 	/* superblock may be r/o */
411 	if (__mnt_is_readonly(mnt))
412 		return -EROFS;
413 	preempt_disable();
414 	mnt_inc_writers(real_mount(mnt));
415 	preempt_enable();
416 	return 0;
417 }
418 EXPORT_SYMBOL_GPL(mnt_clone_write);
419 
420 /**
421  * __mnt_want_write_file - get write access to a file's mount
422  * @file: the file who's mount on which to take a write
423  *
424  * This is like __mnt_want_write, but it takes a file and can
425  * do some optimisations if the file is open for write already
426  */
427 int __mnt_want_write_file(struct file *file)
428 {
429 	if (!(file->f_mode & FMODE_WRITER))
430 		return __mnt_want_write(file->f_path.mnt);
431 	else
432 		return mnt_clone_write(file->f_path.mnt);
433 }
434 
435 /**
436  * mnt_want_write_file - get write access to a file's mount
437  * @file: the file who's mount on which to take a write
438  *
439  * This is like mnt_want_write, but it takes a file and can
440  * do some optimisations if the file is open for write already
441  */
442 int mnt_want_write_file(struct file *file)
443 {
444 	int ret;
445 
446 	sb_start_write(file->f_path.mnt->mnt_sb);
447 	ret = __mnt_want_write_file(file);
448 	if (ret)
449 		sb_end_write(file->f_path.mnt->mnt_sb);
450 	return ret;
451 }
452 EXPORT_SYMBOL_GPL(mnt_want_write_file);
453 
454 /**
455  * __mnt_drop_write - give up write access to a mount
456  * @mnt: the mount on which to give up write access
457  *
458  * Tells the low-level filesystem that we are done
459  * performing writes to it.  Must be matched with
460  * __mnt_want_write() call above.
461  */
462 void __mnt_drop_write(struct vfsmount *mnt)
463 {
464 	preempt_disable();
465 	mnt_dec_writers(real_mount(mnt));
466 	preempt_enable();
467 }
468 
469 /**
470  * mnt_drop_write - give up write access to a mount
471  * @mnt: the mount on which to give up write access
472  *
473  * Tells the low-level filesystem that we are done performing writes to it and
474  * also allows filesystem to be frozen again.  Must be matched with
475  * mnt_want_write() call above.
476  */
477 void mnt_drop_write(struct vfsmount *mnt)
478 {
479 	__mnt_drop_write(mnt);
480 	sb_end_write(mnt->mnt_sb);
481 }
482 EXPORT_SYMBOL_GPL(mnt_drop_write);
483 
484 void __mnt_drop_write_file(struct file *file)
485 {
486 	__mnt_drop_write(file->f_path.mnt);
487 }
488 
489 void mnt_drop_write_file(struct file *file)
490 {
491 	mnt_drop_write(file->f_path.mnt);
492 }
493 EXPORT_SYMBOL(mnt_drop_write_file);
494 
495 static int mnt_make_readonly(struct mount *mnt)
496 {
497 	int ret = 0;
498 
499 	lock_mount_hash();
500 	mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
501 	/*
502 	 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
503 	 * should be visible before we do.
504 	 */
505 	smp_mb();
506 
507 	/*
508 	 * With writers on hold, if this value is zero, then there are
509 	 * definitely no active writers (although held writers may subsequently
510 	 * increment the count, they'll have to wait, and decrement it after
511 	 * seeing MNT_READONLY).
512 	 *
513 	 * It is OK to have counter incremented on one CPU and decremented on
514 	 * another: the sum will add up correctly. The danger would be when we
515 	 * sum up each counter, if we read a counter before it is incremented,
516 	 * but then read another CPU's count which it has been subsequently
517 	 * decremented from -- we would see more decrements than we should.
518 	 * MNT_WRITE_HOLD protects against this scenario, because
519 	 * mnt_want_write first increments count, then smp_mb, then spins on
520 	 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
521 	 * we're counting up here.
522 	 */
523 	if (mnt_get_writers(mnt) > 0)
524 		ret = -EBUSY;
525 	else
526 		mnt->mnt.mnt_flags |= MNT_READONLY;
527 	/*
528 	 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
529 	 * that become unheld will see MNT_READONLY.
530 	 */
531 	smp_wmb();
532 	mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
533 	unlock_mount_hash();
534 	return ret;
535 }
536 
537 static void __mnt_unmake_readonly(struct mount *mnt)
538 {
539 	lock_mount_hash();
540 	mnt->mnt.mnt_flags &= ~MNT_READONLY;
541 	unlock_mount_hash();
542 }
543 
544 int sb_prepare_remount_readonly(struct super_block *sb)
545 {
546 	struct mount *mnt;
547 	int err = 0;
548 
549 	/* Racy optimization.  Recheck the counter under MNT_WRITE_HOLD */
550 	if (atomic_long_read(&sb->s_remove_count))
551 		return -EBUSY;
552 
553 	lock_mount_hash();
554 	list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
555 		if (!(mnt->mnt.mnt_flags & MNT_READONLY)) {
556 			mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
557 			smp_mb();
558 			if (mnt_get_writers(mnt) > 0) {
559 				err = -EBUSY;
560 				break;
561 			}
562 		}
563 	}
564 	if (!err && atomic_long_read(&sb->s_remove_count))
565 		err = -EBUSY;
566 
567 	if (!err) {
568 		sb->s_readonly_remount = 1;
569 		smp_wmb();
570 	}
571 	list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
572 		if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
573 			mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
574 	}
575 	unlock_mount_hash();
576 
577 	return err;
578 }
579 
580 static void free_vfsmnt(struct mount *mnt)
581 {
582 	kfree_const(mnt->mnt_devname);
583 #ifdef CONFIG_SMP
584 	free_percpu(mnt->mnt_pcp);
585 #endif
586 	kmem_cache_free(mnt_cache, mnt);
587 }
588 
589 static void delayed_free_vfsmnt(struct rcu_head *head)
590 {
591 	free_vfsmnt(container_of(head, struct mount, mnt_rcu));
592 }
593 
594 /* call under rcu_read_lock */
595 int __legitimize_mnt(struct vfsmount *bastard, unsigned seq)
596 {
597 	struct mount *mnt;
598 	if (read_seqretry(&mount_lock, seq))
599 		return 1;
600 	if (bastard == NULL)
601 		return 0;
602 	mnt = real_mount(bastard);
603 	mnt_add_count(mnt, 1);
604 	if (likely(!read_seqretry(&mount_lock, seq)))
605 		return 0;
606 	if (bastard->mnt_flags & MNT_SYNC_UMOUNT) {
607 		mnt_add_count(mnt, -1);
608 		return 1;
609 	}
610 	return -1;
611 }
612 
613 /* call under rcu_read_lock */
614 bool legitimize_mnt(struct vfsmount *bastard, unsigned seq)
615 {
616 	int res = __legitimize_mnt(bastard, seq);
617 	if (likely(!res))
618 		return true;
619 	if (unlikely(res < 0)) {
620 		rcu_read_unlock();
621 		mntput(bastard);
622 		rcu_read_lock();
623 	}
624 	return false;
625 }
626 
627 /*
628  * find the first mount at @dentry on vfsmount @mnt.
629  * call under rcu_read_lock()
630  */
631 struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry)
632 {
633 	struct hlist_head *head = m_hash(mnt, dentry);
634 	struct mount *p;
635 
636 	hlist_for_each_entry_rcu(p, head, mnt_hash)
637 		if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry)
638 			return p;
639 	return NULL;
640 }
641 
642 /*
643  * lookup_mnt - Return the first child mount mounted at path
644  *
645  * "First" means first mounted chronologically.  If you create the
646  * following mounts:
647  *
648  * mount /dev/sda1 /mnt
649  * mount /dev/sda2 /mnt
650  * mount /dev/sda3 /mnt
651  *
652  * Then lookup_mnt() on the base /mnt dentry in the root mount will
653  * return successively the root dentry and vfsmount of /dev/sda1, then
654  * /dev/sda2, then /dev/sda3, then NULL.
655  *
656  * lookup_mnt takes a reference to the found vfsmount.
657  */
658 struct vfsmount *lookup_mnt(const struct path *path)
659 {
660 	struct mount *child_mnt;
661 	struct vfsmount *m;
662 	unsigned seq;
663 
664 	rcu_read_lock();
665 	do {
666 		seq = read_seqbegin(&mount_lock);
667 		child_mnt = __lookup_mnt(path->mnt, path->dentry);
668 		m = child_mnt ? &child_mnt->mnt : NULL;
669 	} while (!legitimize_mnt(m, seq));
670 	rcu_read_unlock();
671 	return m;
672 }
673 
674 /*
675  * __is_local_mountpoint - Test to see if dentry is a mountpoint in the
676  *                         current mount namespace.
677  *
678  * The common case is dentries are not mountpoints at all and that
679  * test is handled inline.  For the slow case when we are actually
680  * dealing with a mountpoint of some kind, walk through all of the
681  * mounts in the current mount namespace and test to see if the dentry
682  * is a mountpoint.
683  *
684  * The mount_hashtable is not usable in the context because we
685  * need to identify all mounts that may be in the current mount
686  * namespace not just a mount that happens to have some specified
687  * parent mount.
688  */
689 bool __is_local_mountpoint(struct dentry *dentry)
690 {
691 	struct mnt_namespace *ns = current->nsproxy->mnt_ns;
692 	struct mount *mnt;
693 	bool is_covered = false;
694 
695 	if (!d_mountpoint(dentry))
696 		goto out;
697 
698 	down_read(&namespace_sem);
699 	list_for_each_entry(mnt, &ns->list, mnt_list) {
700 		is_covered = (mnt->mnt_mountpoint == dentry);
701 		if (is_covered)
702 			break;
703 	}
704 	up_read(&namespace_sem);
705 out:
706 	return is_covered;
707 }
708 
709 static struct mountpoint *lookup_mountpoint(struct dentry *dentry)
710 {
711 	struct hlist_head *chain = mp_hash(dentry);
712 	struct mountpoint *mp;
713 
714 	hlist_for_each_entry(mp, chain, m_hash) {
715 		if (mp->m_dentry == dentry) {
716 			/* might be worth a WARN_ON() */
717 			if (d_unlinked(dentry))
718 				return ERR_PTR(-ENOENT);
719 			mp->m_count++;
720 			return mp;
721 		}
722 	}
723 	return NULL;
724 }
725 
726 static struct mountpoint *get_mountpoint(struct dentry *dentry)
727 {
728 	struct mountpoint *mp, *new = NULL;
729 	int ret;
730 
731 	if (d_mountpoint(dentry)) {
732 mountpoint:
733 		read_seqlock_excl(&mount_lock);
734 		mp = lookup_mountpoint(dentry);
735 		read_sequnlock_excl(&mount_lock);
736 		if (mp)
737 			goto done;
738 	}
739 
740 	if (!new)
741 		new = kmalloc(sizeof(struct mountpoint), GFP_KERNEL);
742 	if (!new)
743 		return ERR_PTR(-ENOMEM);
744 
745 
746 	/* Exactly one processes may set d_mounted */
747 	ret = d_set_mounted(dentry);
748 
749 	/* Someone else set d_mounted? */
750 	if (ret == -EBUSY)
751 		goto mountpoint;
752 
753 	/* The dentry is not available as a mountpoint? */
754 	mp = ERR_PTR(ret);
755 	if (ret)
756 		goto done;
757 
758 	/* Add the new mountpoint to the hash table */
759 	read_seqlock_excl(&mount_lock);
760 	new->m_dentry = dentry;
761 	new->m_count = 1;
762 	hlist_add_head(&new->m_hash, mp_hash(dentry));
763 	INIT_HLIST_HEAD(&new->m_list);
764 	read_sequnlock_excl(&mount_lock);
765 
766 	mp = new;
767 	new = NULL;
768 done:
769 	kfree(new);
770 	return mp;
771 }
772 
773 static void put_mountpoint(struct mountpoint *mp)
774 {
775 	if (!--mp->m_count) {
776 		struct dentry *dentry = mp->m_dentry;
777 		BUG_ON(!hlist_empty(&mp->m_list));
778 		spin_lock(&dentry->d_lock);
779 		dentry->d_flags &= ~DCACHE_MOUNTED;
780 		spin_unlock(&dentry->d_lock);
781 		hlist_del(&mp->m_hash);
782 		kfree(mp);
783 	}
784 }
785 
786 static inline int check_mnt(struct mount *mnt)
787 {
788 	return mnt->mnt_ns == current->nsproxy->mnt_ns;
789 }
790 
791 /*
792  * vfsmount lock must be held for write
793  */
794 static void touch_mnt_namespace(struct mnt_namespace *ns)
795 {
796 	if (ns) {
797 		ns->event = ++event;
798 		wake_up_interruptible(&ns->poll);
799 	}
800 }
801 
802 /*
803  * vfsmount lock must be held for write
804  */
805 static void __touch_mnt_namespace(struct mnt_namespace *ns)
806 {
807 	if (ns && ns->event != event) {
808 		ns->event = event;
809 		wake_up_interruptible(&ns->poll);
810 	}
811 }
812 
813 /*
814  * vfsmount lock must be held for write
815  */
816 static void unhash_mnt(struct mount *mnt)
817 {
818 	mnt->mnt_parent = mnt;
819 	mnt->mnt_mountpoint = mnt->mnt.mnt_root;
820 	list_del_init(&mnt->mnt_child);
821 	hlist_del_init_rcu(&mnt->mnt_hash);
822 	hlist_del_init(&mnt->mnt_mp_list);
823 	put_mountpoint(mnt->mnt_mp);
824 	mnt->mnt_mp = NULL;
825 }
826 
827 /*
828  * vfsmount lock must be held for write
829  */
830 static void detach_mnt(struct mount *mnt, struct path *old_path)
831 {
832 	old_path->dentry = mnt->mnt_mountpoint;
833 	old_path->mnt = &mnt->mnt_parent->mnt;
834 	unhash_mnt(mnt);
835 }
836 
837 /*
838  * vfsmount lock must be held for write
839  */
840 static void umount_mnt(struct mount *mnt)
841 {
842 	/* old mountpoint will be dropped when we can do that */
843 	mnt->mnt_ex_mountpoint = mnt->mnt_mountpoint;
844 	unhash_mnt(mnt);
845 }
846 
847 /*
848  * vfsmount lock must be held for write
849  */
850 void mnt_set_mountpoint(struct mount *mnt,
851 			struct mountpoint *mp,
852 			struct mount *child_mnt)
853 {
854 	mp->m_count++;
855 	mnt_add_count(mnt, 1);	/* essentially, that's mntget */
856 	child_mnt->mnt_mountpoint = dget(mp->m_dentry);
857 	child_mnt->mnt_parent = mnt;
858 	child_mnt->mnt_mp = mp;
859 	hlist_add_head(&child_mnt->mnt_mp_list, &mp->m_list);
860 }
861 
862 static void __attach_mnt(struct mount *mnt, struct mount *parent)
863 {
864 	hlist_add_head_rcu(&mnt->mnt_hash,
865 			   m_hash(&parent->mnt, mnt->mnt_mountpoint));
866 	list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
867 }
868 
869 /*
870  * vfsmount lock must be held for write
871  */
872 static void attach_mnt(struct mount *mnt,
873 			struct mount *parent,
874 			struct mountpoint *mp)
875 {
876 	mnt_set_mountpoint(parent, mp, mnt);
877 	__attach_mnt(mnt, parent);
878 }
879 
880 void mnt_change_mountpoint(struct mount *parent, struct mountpoint *mp, struct mount *mnt)
881 {
882 	struct mountpoint *old_mp = mnt->mnt_mp;
883 	struct dentry *old_mountpoint = mnt->mnt_mountpoint;
884 	struct mount *old_parent = mnt->mnt_parent;
885 
886 	list_del_init(&mnt->mnt_child);
887 	hlist_del_init(&mnt->mnt_mp_list);
888 	hlist_del_init_rcu(&mnt->mnt_hash);
889 
890 	attach_mnt(mnt, parent, mp);
891 
892 	put_mountpoint(old_mp);
893 
894 	/*
895 	 * Safely avoid even the suggestion this code might sleep or
896 	 * lock the mount hash by taking advantage of the knowledge that
897 	 * mnt_change_mountpoint will not release the final reference
898 	 * to a mountpoint.
899 	 *
900 	 * During mounting, the mount passed in as the parent mount will
901 	 * continue to use the old mountpoint and during unmounting, the
902 	 * old mountpoint will continue to exist until namespace_unlock,
903 	 * which happens well after mnt_change_mountpoint.
904 	 */
905 	spin_lock(&old_mountpoint->d_lock);
906 	old_mountpoint->d_lockref.count--;
907 	spin_unlock(&old_mountpoint->d_lock);
908 
909 	mnt_add_count(old_parent, -1);
910 }
911 
912 /*
913  * vfsmount lock must be held for write
914  */
915 static void commit_tree(struct mount *mnt)
916 {
917 	struct mount *parent = mnt->mnt_parent;
918 	struct mount *m;
919 	LIST_HEAD(head);
920 	struct mnt_namespace *n = parent->mnt_ns;
921 
922 	BUG_ON(parent == mnt);
923 
924 	list_add_tail(&head, &mnt->mnt_list);
925 	list_for_each_entry(m, &head, mnt_list)
926 		m->mnt_ns = n;
927 
928 	list_splice(&head, n->list.prev);
929 
930 	n->mounts += n->pending_mounts;
931 	n->pending_mounts = 0;
932 
933 	__attach_mnt(mnt, parent);
934 	touch_mnt_namespace(n);
935 }
936 
937 static struct mount *next_mnt(struct mount *p, struct mount *root)
938 {
939 	struct list_head *next = p->mnt_mounts.next;
940 	if (next == &p->mnt_mounts) {
941 		while (1) {
942 			if (p == root)
943 				return NULL;
944 			next = p->mnt_child.next;
945 			if (next != &p->mnt_parent->mnt_mounts)
946 				break;
947 			p = p->mnt_parent;
948 		}
949 	}
950 	return list_entry(next, struct mount, mnt_child);
951 }
952 
953 static struct mount *skip_mnt_tree(struct mount *p)
954 {
955 	struct list_head *prev = p->mnt_mounts.prev;
956 	while (prev != &p->mnt_mounts) {
957 		p = list_entry(prev, struct mount, mnt_child);
958 		prev = p->mnt_mounts.prev;
959 	}
960 	return p;
961 }
962 
963 struct vfsmount *
964 vfs_kern_mount(struct file_system_type *type, int flags, const char *name, void *data)
965 {
966 	struct mount *mnt;
967 	struct dentry *root;
968 
969 	if (!type)
970 		return ERR_PTR(-ENODEV);
971 
972 	mnt = alloc_vfsmnt(name);
973 	if (!mnt)
974 		return ERR_PTR(-ENOMEM);
975 
976 	if (flags & MS_KERNMOUNT)
977 		mnt->mnt.mnt_flags = MNT_INTERNAL;
978 
979 	root = mount_fs(type, flags, name, data);
980 	if (IS_ERR(root)) {
981 		mnt_free_id(mnt);
982 		free_vfsmnt(mnt);
983 		return ERR_CAST(root);
984 	}
985 
986 	mnt->mnt.mnt_root = root;
987 	mnt->mnt.mnt_sb = root->d_sb;
988 	mnt->mnt_mountpoint = mnt->mnt.mnt_root;
989 	mnt->mnt_parent = mnt;
990 	lock_mount_hash();
991 	list_add_tail(&mnt->mnt_instance, &root->d_sb->s_mounts);
992 	unlock_mount_hash();
993 	return &mnt->mnt;
994 }
995 EXPORT_SYMBOL_GPL(vfs_kern_mount);
996 
997 struct vfsmount *
998 vfs_submount(const struct dentry *mountpoint, struct file_system_type *type,
999 	     const char *name, void *data)
1000 {
1001 	/* Until it is worked out how to pass the user namespace
1002 	 * through from the parent mount to the submount don't support
1003 	 * unprivileged mounts with submounts.
1004 	 */
1005 	if (mountpoint->d_sb->s_user_ns != &init_user_ns)
1006 		return ERR_PTR(-EPERM);
1007 
1008 	return vfs_kern_mount(type, MS_SUBMOUNT, name, data);
1009 }
1010 EXPORT_SYMBOL_GPL(vfs_submount);
1011 
1012 static struct mount *clone_mnt(struct mount *old, struct dentry *root,
1013 					int flag)
1014 {
1015 	struct super_block *sb = old->mnt.mnt_sb;
1016 	struct mount *mnt;
1017 	int err;
1018 
1019 	mnt = alloc_vfsmnt(old->mnt_devname);
1020 	if (!mnt)
1021 		return ERR_PTR(-ENOMEM);
1022 
1023 	if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE))
1024 		mnt->mnt_group_id = 0; /* not a peer of original */
1025 	else
1026 		mnt->mnt_group_id = old->mnt_group_id;
1027 
1028 	if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
1029 		err = mnt_alloc_group_id(mnt);
1030 		if (err)
1031 			goto out_free;
1032 	}
1033 
1034 	mnt->mnt.mnt_flags = old->mnt.mnt_flags & ~(MNT_WRITE_HOLD|MNT_MARKED);
1035 	/* Don't allow unprivileged users to change mount flags */
1036 	if (flag & CL_UNPRIVILEGED) {
1037 		mnt->mnt.mnt_flags |= MNT_LOCK_ATIME;
1038 
1039 		if (mnt->mnt.mnt_flags & MNT_READONLY)
1040 			mnt->mnt.mnt_flags |= MNT_LOCK_READONLY;
1041 
1042 		if (mnt->mnt.mnt_flags & MNT_NODEV)
1043 			mnt->mnt.mnt_flags |= MNT_LOCK_NODEV;
1044 
1045 		if (mnt->mnt.mnt_flags & MNT_NOSUID)
1046 			mnt->mnt.mnt_flags |= MNT_LOCK_NOSUID;
1047 
1048 		if (mnt->mnt.mnt_flags & MNT_NOEXEC)
1049 			mnt->mnt.mnt_flags |= MNT_LOCK_NOEXEC;
1050 	}
1051 
1052 	/* Don't allow unprivileged users to reveal what is under a mount */
1053 	if ((flag & CL_UNPRIVILEGED) &&
1054 	    (!(flag & CL_EXPIRE) || list_empty(&old->mnt_expire)))
1055 		mnt->mnt.mnt_flags |= MNT_LOCKED;
1056 
1057 	atomic_inc(&sb->s_active);
1058 	mnt->mnt.mnt_sb = sb;
1059 	mnt->mnt.mnt_root = dget(root);
1060 	mnt->mnt_mountpoint = mnt->mnt.mnt_root;
1061 	mnt->mnt_parent = mnt;
1062 	lock_mount_hash();
1063 	list_add_tail(&mnt->mnt_instance, &sb->s_mounts);
1064 	unlock_mount_hash();
1065 
1066 	if ((flag & CL_SLAVE) ||
1067 	    ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) {
1068 		list_add(&mnt->mnt_slave, &old->mnt_slave_list);
1069 		mnt->mnt_master = old;
1070 		CLEAR_MNT_SHARED(mnt);
1071 	} else if (!(flag & CL_PRIVATE)) {
1072 		if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
1073 			list_add(&mnt->mnt_share, &old->mnt_share);
1074 		if (IS_MNT_SLAVE(old))
1075 			list_add(&mnt->mnt_slave, &old->mnt_slave);
1076 		mnt->mnt_master = old->mnt_master;
1077 	} else {
1078 		CLEAR_MNT_SHARED(mnt);
1079 	}
1080 	if (flag & CL_MAKE_SHARED)
1081 		set_mnt_shared(mnt);
1082 
1083 	/* stick the duplicate mount on the same expiry list
1084 	 * as the original if that was on one */
1085 	if (flag & CL_EXPIRE) {
1086 		if (!list_empty(&old->mnt_expire))
1087 			list_add(&mnt->mnt_expire, &old->mnt_expire);
1088 	}
1089 
1090 	return mnt;
1091 
1092  out_free:
1093 	mnt_free_id(mnt);
1094 	free_vfsmnt(mnt);
1095 	return ERR_PTR(err);
1096 }
1097 
1098 static void cleanup_mnt(struct mount *mnt)
1099 {
1100 	/*
1101 	 * This probably indicates that somebody messed
1102 	 * up a mnt_want/drop_write() pair.  If this
1103 	 * happens, the filesystem was probably unable
1104 	 * to make r/w->r/o transitions.
1105 	 */
1106 	/*
1107 	 * The locking used to deal with mnt_count decrement provides barriers,
1108 	 * so mnt_get_writers() below is safe.
1109 	 */
1110 	WARN_ON(mnt_get_writers(mnt));
1111 	if (unlikely(mnt->mnt_pins.first))
1112 		mnt_pin_kill(mnt);
1113 	fsnotify_vfsmount_delete(&mnt->mnt);
1114 	dput(mnt->mnt.mnt_root);
1115 	deactivate_super(mnt->mnt.mnt_sb);
1116 	mnt_free_id(mnt);
1117 	call_rcu(&mnt->mnt_rcu, delayed_free_vfsmnt);
1118 }
1119 
1120 static void __cleanup_mnt(struct rcu_head *head)
1121 {
1122 	cleanup_mnt(container_of(head, struct mount, mnt_rcu));
1123 }
1124 
1125 static LLIST_HEAD(delayed_mntput_list);
1126 static void delayed_mntput(struct work_struct *unused)
1127 {
1128 	struct llist_node *node = llist_del_all(&delayed_mntput_list);
1129 	struct llist_node *next;
1130 
1131 	for (; node; node = next) {
1132 		next = llist_next(node);
1133 		cleanup_mnt(llist_entry(node, struct mount, mnt_llist));
1134 	}
1135 }
1136 static DECLARE_DELAYED_WORK(delayed_mntput_work, delayed_mntput);
1137 
1138 static void mntput_no_expire(struct mount *mnt)
1139 {
1140 	rcu_read_lock();
1141 	mnt_add_count(mnt, -1);
1142 	if (likely(mnt->mnt_ns)) { /* shouldn't be the last one */
1143 		rcu_read_unlock();
1144 		return;
1145 	}
1146 	lock_mount_hash();
1147 	if (mnt_get_count(mnt)) {
1148 		rcu_read_unlock();
1149 		unlock_mount_hash();
1150 		return;
1151 	}
1152 	if (unlikely(mnt->mnt.mnt_flags & MNT_DOOMED)) {
1153 		rcu_read_unlock();
1154 		unlock_mount_hash();
1155 		return;
1156 	}
1157 	mnt->mnt.mnt_flags |= MNT_DOOMED;
1158 	rcu_read_unlock();
1159 
1160 	list_del(&mnt->mnt_instance);
1161 
1162 	if (unlikely(!list_empty(&mnt->mnt_mounts))) {
1163 		struct mount *p, *tmp;
1164 		list_for_each_entry_safe(p, tmp, &mnt->mnt_mounts,  mnt_child) {
1165 			umount_mnt(p);
1166 		}
1167 	}
1168 	unlock_mount_hash();
1169 
1170 	if (likely(!(mnt->mnt.mnt_flags & MNT_INTERNAL))) {
1171 		struct task_struct *task = current;
1172 		if (likely(!(task->flags & PF_KTHREAD))) {
1173 			init_task_work(&mnt->mnt_rcu, __cleanup_mnt);
1174 			if (!task_work_add(task, &mnt->mnt_rcu, true))
1175 				return;
1176 		}
1177 		if (llist_add(&mnt->mnt_llist, &delayed_mntput_list))
1178 			schedule_delayed_work(&delayed_mntput_work, 1);
1179 		return;
1180 	}
1181 	cleanup_mnt(mnt);
1182 }
1183 
1184 void mntput(struct vfsmount *mnt)
1185 {
1186 	if (mnt) {
1187 		struct mount *m = real_mount(mnt);
1188 		/* avoid cacheline pingpong, hope gcc doesn't get "smart" */
1189 		if (unlikely(m->mnt_expiry_mark))
1190 			m->mnt_expiry_mark = 0;
1191 		mntput_no_expire(m);
1192 	}
1193 }
1194 EXPORT_SYMBOL(mntput);
1195 
1196 struct vfsmount *mntget(struct vfsmount *mnt)
1197 {
1198 	if (mnt)
1199 		mnt_add_count(real_mount(mnt), 1);
1200 	return mnt;
1201 }
1202 EXPORT_SYMBOL(mntget);
1203 
1204 /* path_is_mountpoint() - Check if path is a mount in the current
1205  *                          namespace.
1206  *
1207  *  d_mountpoint() can only be used reliably to establish if a dentry is
1208  *  not mounted in any namespace and that common case is handled inline.
1209  *  d_mountpoint() isn't aware of the possibility there may be multiple
1210  *  mounts using a given dentry in a different namespace. This function
1211  *  checks if the passed in path is a mountpoint rather than the dentry
1212  *  alone.
1213  */
1214 bool path_is_mountpoint(const struct path *path)
1215 {
1216 	unsigned seq;
1217 	bool res;
1218 
1219 	if (!d_mountpoint(path->dentry))
1220 		return false;
1221 
1222 	rcu_read_lock();
1223 	do {
1224 		seq = read_seqbegin(&mount_lock);
1225 		res = __path_is_mountpoint(path);
1226 	} while (read_seqretry(&mount_lock, seq));
1227 	rcu_read_unlock();
1228 
1229 	return res;
1230 }
1231 EXPORT_SYMBOL(path_is_mountpoint);
1232 
1233 struct vfsmount *mnt_clone_internal(const struct path *path)
1234 {
1235 	struct mount *p;
1236 	p = clone_mnt(real_mount(path->mnt), path->dentry, CL_PRIVATE);
1237 	if (IS_ERR(p))
1238 		return ERR_CAST(p);
1239 	p->mnt.mnt_flags |= MNT_INTERNAL;
1240 	return &p->mnt;
1241 }
1242 
1243 static inline void mangle(struct seq_file *m, const char *s)
1244 {
1245 	seq_escape(m, s, " \t\n\\");
1246 }
1247 
1248 /*
1249  * Simple .show_options callback for filesystems which don't want to
1250  * implement more complex mount option showing.
1251  *
1252  * See also save_mount_options().
1253  */
1254 int generic_show_options(struct seq_file *m, struct dentry *root)
1255 {
1256 	const char *options;
1257 
1258 	rcu_read_lock();
1259 	options = rcu_dereference(root->d_sb->s_options);
1260 
1261 	if (options != NULL && options[0]) {
1262 		seq_putc(m, ',');
1263 		mangle(m, options);
1264 	}
1265 	rcu_read_unlock();
1266 
1267 	return 0;
1268 }
1269 EXPORT_SYMBOL(generic_show_options);
1270 
1271 /*
1272  * If filesystem uses generic_show_options(), this function should be
1273  * called from the fill_super() callback.
1274  *
1275  * The .remount_fs callback usually needs to be handled in a special
1276  * way, to make sure, that previous options are not overwritten if the
1277  * remount fails.
1278  *
1279  * Also note, that if the filesystem's .remount_fs function doesn't
1280  * reset all options to their default value, but changes only newly
1281  * given options, then the displayed options will not reflect reality
1282  * any more.
1283  */
1284 void save_mount_options(struct super_block *sb, char *options)
1285 {
1286 	BUG_ON(sb->s_options);
1287 	rcu_assign_pointer(sb->s_options, kstrdup(options, GFP_KERNEL));
1288 }
1289 EXPORT_SYMBOL(save_mount_options);
1290 
1291 void replace_mount_options(struct super_block *sb, char *options)
1292 {
1293 	char *old = sb->s_options;
1294 	rcu_assign_pointer(sb->s_options, options);
1295 	if (old) {
1296 		synchronize_rcu();
1297 		kfree(old);
1298 	}
1299 }
1300 EXPORT_SYMBOL(replace_mount_options);
1301 
1302 #ifdef CONFIG_PROC_FS
1303 /* iterator; we want it to have access to namespace_sem, thus here... */
1304 static void *m_start(struct seq_file *m, loff_t *pos)
1305 {
1306 	struct proc_mounts *p = m->private;
1307 
1308 	down_read(&namespace_sem);
1309 	if (p->cached_event == p->ns->event) {
1310 		void *v = p->cached_mount;
1311 		if (*pos == p->cached_index)
1312 			return v;
1313 		if (*pos == p->cached_index + 1) {
1314 			v = seq_list_next(v, &p->ns->list, &p->cached_index);
1315 			return p->cached_mount = v;
1316 		}
1317 	}
1318 
1319 	p->cached_event = p->ns->event;
1320 	p->cached_mount = seq_list_start(&p->ns->list, *pos);
1321 	p->cached_index = *pos;
1322 	return p->cached_mount;
1323 }
1324 
1325 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
1326 {
1327 	struct proc_mounts *p = m->private;
1328 
1329 	p->cached_mount = seq_list_next(v, &p->ns->list, pos);
1330 	p->cached_index = *pos;
1331 	return p->cached_mount;
1332 }
1333 
1334 static void m_stop(struct seq_file *m, void *v)
1335 {
1336 	up_read(&namespace_sem);
1337 }
1338 
1339 static int m_show(struct seq_file *m, void *v)
1340 {
1341 	struct proc_mounts *p = m->private;
1342 	struct mount *r = list_entry(v, struct mount, mnt_list);
1343 	return p->show(m, &r->mnt);
1344 }
1345 
1346 const struct seq_operations mounts_op = {
1347 	.start	= m_start,
1348 	.next	= m_next,
1349 	.stop	= m_stop,
1350 	.show	= m_show,
1351 };
1352 #endif  /* CONFIG_PROC_FS */
1353 
1354 /**
1355  * may_umount_tree - check if a mount tree is busy
1356  * @mnt: root of mount tree
1357  *
1358  * This is called to check if a tree of mounts has any
1359  * open files, pwds, chroots or sub mounts that are
1360  * busy.
1361  */
1362 int may_umount_tree(struct vfsmount *m)
1363 {
1364 	struct mount *mnt = real_mount(m);
1365 	int actual_refs = 0;
1366 	int minimum_refs = 0;
1367 	struct mount *p;
1368 	BUG_ON(!m);
1369 
1370 	/* write lock needed for mnt_get_count */
1371 	lock_mount_hash();
1372 	for (p = mnt; p; p = next_mnt(p, mnt)) {
1373 		actual_refs += mnt_get_count(p);
1374 		minimum_refs += 2;
1375 	}
1376 	unlock_mount_hash();
1377 
1378 	if (actual_refs > minimum_refs)
1379 		return 0;
1380 
1381 	return 1;
1382 }
1383 
1384 EXPORT_SYMBOL(may_umount_tree);
1385 
1386 /**
1387  * may_umount - check if a mount point is busy
1388  * @mnt: root of mount
1389  *
1390  * This is called to check if a mount point has any
1391  * open files, pwds, chroots or sub mounts. If the
1392  * mount has sub mounts this will return busy
1393  * regardless of whether the sub mounts are busy.
1394  *
1395  * Doesn't take quota and stuff into account. IOW, in some cases it will
1396  * give false negatives. The main reason why it's here is that we need
1397  * a non-destructive way to look for easily umountable filesystems.
1398  */
1399 int may_umount(struct vfsmount *mnt)
1400 {
1401 	int ret = 1;
1402 	down_read(&namespace_sem);
1403 	lock_mount_hash();
1404 	if (propagate_mount_busy(real_mount(mnt), 2))
1405 		ret = 0;
1406 	unlock_mount_hash();
1407 	up_read(&namespace_sem);
1408 	return ret;
1409 }
1410 
1411 EXPORT_SYMBOL(may_umount);
1412 
1413 static HLIST_HEAD(unmounted);	/* protected by namespace_sem */
1414 
1415 static void namespace_unlock(void)
1416 {
1417 	struct hlist_head head;
1418 
1419 	hlist_move_list(&unmounted, &head);
1420 
1421 	up_write(&namespace_sem);
1422 
1423 	if (likely(hlist_empty(&head)))
1424 		return;
1425 
1426 	synchronize_rcu();
1427 
1428 	group_pin_kill(&head);
1429 }
1430 
1431 static inline void namespace_lock(void)
1432 {
1433 	down_write(&namespace_sem);
1434 }
1435 
1436 enum umount_tree_flags {
1437 	UMOUNT_SYNC = 1,
1438 	UMOUNT_PROPAGATE = 2,
1439 	UMOUNT_CONNECTED = 4,
1440 };
1441 
1442 static bool disconnect_mount(struct mount *mnt, enum umount_tree_flags how)
1443 {
1444 	/* Leaving mounts connected is only valid for lazy umounts */
1445 	if (how & UMOUNT_SYNC)
1446 		return true;
1447 
1448 	/* A mount without a parent has nothing to be connected to */
1449 	if (!mnt_has_parent(mnt))
1450 		return true;
1451 
1452 	/* Because the reference counting rules change when mounts are
1453 	 * unmounted and connected, umounted mounts may not be
1454 	 * connected to mounted mounts.
1455 	 */
1456 	if (!(mnt->mnt_parent->mnt.mnt_flags & MNT_UMOUNT))
1457 		return true;
1458 
1459 	/* Has it been requested that the mount remain connected? */
1460 	if (how & UMOUNT_CONNECTED)
1461 		return false;
1462 
1463 	/* Is the mount locked such that it needs to remain connected? */
1464 	if (IS_MNT_LOCKED(mnt))
1465 		return false;
1466 
1467 	/* By default disconnect the mount */
1468 	return true;
1469 }
1470 
1471 /*
1472  * mount_lock must be held
1473  * namespace_sem must be held for write
1474  */
1475 static void umount_tree(struct mount *mnt, enum umount_tree_flags how)
1476 {
1477 	LIST_HEAD(tmp_list);
1478 	struct mount *p;
1479 
1480 	if (how & UMOUNT_PROPAGATE)
1481 		propagate_mount_unlock(mnt);
1482 
1483 	/* Gather the mounts to umount */
1484 	for (p = mnt; p; p = next_mnt(p, mnt)) {
1485 		p->mnt.mnt_flags |= MNT_UMOUNT;
1486 		list_move(&p->mnt_list, &tmp_list);
1487 	}
1488 
1489 	/* Hide the mounts from mnt_mounts */
1490 	list_for_each_entry(p, &tmp_list, mnt_list) {
1491 		list_del_init(&p->mnt_child);
1492 	}
1493 
1494 	/* Add propogated mounts to the tmp_list */
1495 	if (how & UMOUNT_PROPAGATE)
1496 		propagate_umount(&tmp_list);
1497 
1498 	while (!list_empty(&tmp_list)) {
1499 		struct mnt_namespace *ns;
1500 		bool disconnect;
1501 		p = list_first_entry(&tmp_list, struct mount, mnt_list);
1502 		list_del_init(&p->mnt_expire);
1503 		list_del_init(&p->mnt_list);
1504 		ns = p->mnt_ns;
1505 		if (ns) {
1506 			ns->mounts--;
1507 			__touch_mnt_namespace(ns);
1508 		}
1509 		p->mnt_ns = NULL;
1510 		if (how & UMOUNT_SYNC)
1511 			p->mnt.mnt_flags |= MNT_SYNC_UMOUNT;
1512 
1513 		disconnect = disconnect_mount(p, how);
1514 
1515 		pin_insert_group(&p->mnt_umount, &p->mnt_parent->mnt,
1516 				 disconnect ? &unmounted : NULL);
1517 		if (mnt_has_parent(p)) {
1518 			mnt_add_count(p->mnt_parent, -1);
1519 			if (!disconnect) {
1520 				/* Don't forget about p */
1521 				list_add_tail(&p->mnt_child, &p->mnt_parent->mnt_mounts);
1522 			} else {
1523 				umount_mnt(p);
1524 			}
1525 		}
1526 		change_mnt_propagation(p, MS_PRIVATE);
1527 	}
1528 }
1529 
1530 static void shrink_submounts(struct mount *mnt);
1531 
1532 static int do_umount(struct mount *mnt, int flags)
1533 {
1534 	struct super_block *sb = mnt->mnt.mnt_sb;
1535 	int retval;
1536 
1537 	retval = security_sb_umount(&mnt->mnt, flags);
1538 	if (retval)
1539 		return retval;
1540 
1541 	/*
1542 	 * Allow userspace to request a mountpoint be expired rather than
1543 	 * unmounting unconditionally. Unmount only happens if:
1544 	 *  (1) the mark is already set (the mark is cleared by mntput())
1545 	 *  (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1546 	 */
1547 	if (flags & MNT_EXPIRE) {
1548 		if (&mnt->mnt == current->fs->root.mnt ||
1549 		    flags & (MNT_FORCE | MNT_DETACH))
1550 			return -EINVAL;
1551 
1552 		/*
1553 		 * probably don't strictly need the lock here if we examined
1554 		 * all race cases, but it's a slowpath.
1555 		 */
1556 		lock_mount_hash();
1557 		if (mnt_get_count(mnt) != 2) {
1558 			unlock_mount_hash();
1559 			return -EBUSY;
1560 		}
1561 		unlock_mount_hash();
1562 
1563 		if (!xchg(&mnt->mnt_expiry_mark, 1))
1564 			return -EAGAIN;
1565 	}
1566 
1567 	/*
1568 	 * If we may have to abort operations to get out of this
1569 	 * mount, and they will themselves hold resources we must
1570 	 * allow the fs to do things. In the Unix tradition of
1571 	 * 'Gee thats tricky lets do it in userspace' the umount_begin
1572 	 * might fail to complete on the first run through as other tasks
1573 	 * must return, and the like. Thats for the mount program to worry
1574 	 * about for the moment.
1575 	 */
1576 
1577 	if (flags & MNT_FORCE && sb->s_op->umount_begin) {
1578 		sb->s_op->umount_begin(sb);
1579 	}
1580 
1581 	/*
1582 	 * No sense to grab the lock for this test, but test itself looks
1583 	 * somewhat bogus. Suggestions for better replacement?
1584 	 * Ho-hum... In principle, we might treat that as umount + switch
1585 	 * to rootfs. GC would eventually take care of the old vfsmount.
1586 	 * Actually it makes sense, especially if rootfs would contain a
1587 	 * /reboot - static binary that would close all descriptors and
1588 	 * call reboot(9). Then init(8) could umount root and exec /reboot.
1589 	 */
1590 	if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1591 		/*
1592 		 * Special case for "unmounting" root ...
1593 		 * we just try to remount it readonly.
1594 		 */
1595 		if (!capable(CAP_SYS_ADMIN))
1596 			return -EPERM;
1597 		down_write(&sb->s_umount);
1598 		if (!(sb->s_flags & MS_RDONLY))
1599 			retval = do_remount_sb(sb, MS_RDONLY, NULL, 0);
1600 		up_write(&sb->s_umount);
1601 		return retval;
1602 	}
1603 
1604 	namespace_lock();
1605 	lock_mount_hash();
1606 	event++;
1607 
1608 	if (flags & MNT_DETACH) {
1609 		if (!list_empty(&mnt->mnt_list))
1610 			umount_tree(mnt, UMOUNT_PROPAGATE);
1611 		retval = 0;
1612 	} else {
1613 		shrink_submounts(mnt);
1614 		retval = -EBUSY;
1615 		if (!propagate_mount_busy(mnt, 2)) {
1616 			if (!list_empty(&mnt->mnt_list))
1617 				umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
1618 			retval = 0;
1619 		}
1620 	}
1621 	unlock_mount_hash();
1622 	namespace_unlock();
1623 	return retval;
1624 }
1625 
1626 /*
1627  * __detach_mounts - lazily unmount all mounts on the specified dentry
1628  *
1629  * During unlink, rmdir, and d_drop it is possible to loose the path
1630  * to an existing mountpoint, and wind up leaking the mount.
1631  * detach_mounts allows lazily unmounting those mounts instead of
1632  * leaking them.
1633  *
1634  * The caller may hold dentry->d_inode->i_mutex.
1635  */
1636 void __detach_mounts(struct dentry *dentry)
1637 {
1638 	struct mountpoint *mp;
1639 	struct mount *mnt;
1640 
1641 	namespace_lock();
1642 	lock_mount_hash();
1643 	mp = lookup_mountpoint(dentry);
1644 	if (IS_ERR_OR_NULL(mp))
1645 		goto out_unlock;
1646 
1647 	event++;
1648 	while (!hlist_empty(&mp->m_list)) {
1649 		mnt = hlist_entry(mp->m_list.first, struct mount, mnt_mp_list);
1650 		if (mnt->mnt.mnt_flags & MNT_UMOUNT) {
1651 			hlist_add_head(&mnt->mnt_umount.s_list, &unmounted);
1652 			umount_mnt(mnt);
1653 		}
1654 		else umount_tree(mnt, UMOUNT_CONNECTED);
1655 	}
1656 	put_mountpoint(mp);
1657 out_unlock:
1658 	unlock_mount_hash();
1659 	namespace_unlock();
1660 }
1661 
1662 /*
1663  * Is the caller allowed to modify his namespace?
1664  */
1665 static inline bool may_mount(void)
1666 {
1667 	return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN);
1668 }
1669 
1670 static inline bool may_mandlock(void)
1671 {
1672 #ifndef	CONFIG_MANDATORY_FILE_LOCKING
1673 	return false;
1674 #endif
1675 	return capable(CAP_SYS_ADMIN);
1676 }
1677 
1678 /*
1679  * Now umount can handle mount points as well as block devices.
1680  * This is important for filesystems which use unnamed block devices.
1681  *
1682  * We now support a flag for forced unmount like the other 'big iron'
1683  * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
1684  */
1685 
1686 SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
1687 {
1688 	struct path path;
1689 	struct mount *mnt;
1690 	int retval;
1691 	int lookup_flags = 0;
1692 
1693 	if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
1694 		return -EINVAL;
1695 
1696 	if (!may_mount())
1697 		return -EPERM;
1698 
1699 	if (!(flags & UMOUNT_NOFOLLOW))
1700 		lookup_flags |= LOOKUP_FOLLOW;
1701 
1702 	retval = user_path_mountpoint_at(AT_FDCWD, name, lookup_flags, &path);
1703 	if (retval)
1704 		goto out;
1705 	mnt = real_mount(path.mnt);
1706 	retval = -EINVAL;
1707 	if (path.dentry != path.mnt->mnt_root)
1708 		goto dput_and_out;
1709 	if (!check_mnt(mnt))
1710 		goto dput_and_out;
1711 	if (mnt->mnt.mnt_flags & MNT_LOCKED)
1712 		goto dput_and_out;
1713 	retval = -EPERM;
1714 	if (flags & MNT_FORCE && !capable(CAP_SYS_ADMIN))
1715 		goto dput_and_out;
1716 
1717 	retval = do_umount(mnt, flags);
1718 dput_and_out:
1719 	/* we mustn't call path_put() as that would clear mnt_expiry_mark */
1720 	dput(path.dentry);
1721 	mntput_no_expire(mnt);
1722 out:
1723 	return retval;
1724 }
1725 
1726 #ifdef __ARCH_WANT_SYS_OLDUMOUNT
1727 
1728 /*
1729  *	The 2.0 compatible umount. No flags.
1730  */
1731 SYSCALL_DEFINE1(oldumount, char __user *, name)
1732 {
1733 	return sys_umount(name, 0);
1734 }
1735 
1736 #endif
1737 
1738 static bool is_mnt_ns_file(struct dentry *dentry)
1739 {
1740 	/* Is this a proxy for a mount namespace? */
1741 	return dentry->d_op == &ns_dentry_operations &&
1742 	       dentry->d_fsdata == &mntns_operations;
1743 }
1744 
1745 struct mnt_namespace *to_mnt_ns(struct ns_common *ns)
1746 {
1747 	return container_of(ns, struct mnt_namespace, ns);
1748 }
1749 
1750 static bool mnt_ns_loop(struct dentry *dentry)
1751 {
1752 	/* Could bind mounting the mount namespace inode cause a
1753 	 * mount namespace loop?
1754 	 */
1755 	struct mnt_namespace *mnt_ns;
1756 	if (!is_mnt_ns_file(dentry))
1757 		return false;
1758 
1759 	mnt_ns = to_mnt_ns(get_proc_ns(dentry->d_inode));
1760 	return current->nsproxy->mnt_ns->seq >= mnt_ns->seq;
1761 }
1762 
1763 struct mount *copy_tree(struct mount *mnt, struct dentry *dentry,
1764 					int flag)
1765 {
1766 	struct mount *res, *p, *q, *r, *parent;
1767 
1768 	if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(mnt))
1769 		return ERR_PTR(-EINVAL);
1770 
1771 	if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry))
1772 		return ERR_PTR(-EINVAL);
1773 
1774 	res = q = clone_mnt(mnt, dentry, flag);
1775 	if (IS_ERR(q))
1776 		return q;
1777 
1778 	q->mnt_mountpoint = mnt->mnt_mountpoint;
1779 
1780 	p = mnt;
1781 	list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
1782 		struct mount *s;
1783 		if (!is_subdir(r->mnt_mountpoint, dentry))
1784 			continue;
1785 
1786 		for (s = r; s; s = next_mnt(s, r)) {
1787 			if (!(flag & CL_COPY_UNBINDABLE) &&
1788 			    IS_MNT_UNBINDABLE(s)) {
1789 				s = skip_mnt_tree(s);
1790 				continue;
1791 			}
1792 			if (!(flag & CL_COPY_MNT_NS_FILE) &&
1793 			    is_mnt_ns_file(s->mnt.mnt_root)) {
1794 				s = skip_mnt_tree(s);
1795 				continue;
1796 			}
1797 			while (p != s->mnt_parent) {
1798 				p = p->mnt_parent;
1799 				q = q->mnt_parent;
1800 			}
1801 			p = s;
1802 			parent = q;
1803 			q = clone_mnt(p, p->mnt.mnt_root, flag);
1804 			if (IS_ERR(q))
1805 				goto out;
1806 			lock_mount_hash();
1807 			list_add_tail(&q->mnt_list, &res->mnt_list);
1808 			attach_mnt(q, parent, p->mnt_mp);
1809 			unlock_mount_hash();
1810 		}
1811 	}
1812 	return res;
1813 out:
1814 	if (res) {
1815 		lock_mount_hash();
1816 		umount_tree(res, UMOUNT_SYNC);
1817 		unlock_mount_hash();
1818 	}
1819 	return q;
1820 }
1821 
1822 /* Caller should check returned pointer for errors */
1823 
1824 struct vfsmount *collect_mounts(const struct path *path)
1825 {
1826 	struct mount *tree;
1827 	namespace_lock();
1828 	if (!check_mnt(real_mount(path->mnt)))
1829 		tree = ERR_PTR(-EINVAL);
1830 	else
1831 		tree = copy_tree(real_mount(path->mnt), path->dentry,
1832 				 CL_COPY_ALL | CL_PRIVATE);
1833 	namespace_unlock();
1834 	if (IS_ERR(tree))
1835 		return ERR_CAST(tree);
1836 	return &tree->mnt;
1837 }
1838 
1839 void drop_collected_mounts(struct vfsmount *mnt)
1840 {
1841 	namespace_lock();
1842 	lock_mount_hash();
1843 	umount_tree(real_mount(mnt), UMOUNT_SYNC);
1844 	unlock_mount_hash();
1845 	namespace_unlock();
1846 }
1847 
1848 /**
1849  * clone_private_mount - create a private clone of a path
1850  *
1851  * This creates a new vfsmount, which will be the clone of @path.  The new will
1852  * not be attached anywhere in the namespace and will be private (i.e. changes
1853  * to the originating mount won't be propagated into this).
1854  *
1855  * Release with mntput().
1856  */
1857 struct vfsmount *clone_private_mount(const struct path *path)
1858 {
1859 	struct mount *old_mnt = real_mount(path->mnt);
1860 	struct mount *new_mnt;
1861 
1862 	if (IS_MNT_UNBINDABLE(old_mnt))
1863 		return ERR_PTR(-EINVAL);
1864 
1865 	new_mnt = clone_mnt(old_mnt, path->dentry, CL_PRIVATE);
1866 	if (IS_ERR(new_mnt))
1867 		return ERR_CAST(new_mnt);
1868 
1869 	return &new_mnt->mnt;
1870 }
1871 EXPORT_SYMBOL_GPL(clone_private_mount);
1872 
1873 int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
1874 		   struct vfsmount *root)
1875 {
1876 	struct mount *mnt;
1877 	int res = f(root, arg);
1878 	if (res)
1879 		return res;
1880 	list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) {
1881 		res = f(&mnt->mnt, arg);
1882 		if (res)
1883 			return res;
1884 	}
1885 	return 0;
1886 }
1887 
1888 static void cleanup_group_ids(struct mount *mnt, struct mount *end)
1889 {
1890 	struct mount *p;
1891 
1892 	for (p = mnt; p != end; p = next_mnt(p, mnt)) {
1893 		if (p->mnt_group_id && !IS_MNT_SHARED(p))
1894 			mnt_release_group_id(p);
1895 	}
1896 }
1897 
1898 static int invent_group_ids(struct mount *mnt, bool recurse)
1899 {
1900 	struct mount *p;
1901 
1902 	for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
1903 		if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
1904 			int err = mnt_alloc_group_id(p);
1905 			if (err) {
1906 				cleanup_group_ids(mnt, p);
1907 				return err;
1908 			}
1909 		}
1910 	}
1911 
1912 	return 0;
1913 }
1914 
1915 int count_mounts(struct mnt_namespace *ns, struct mount *mnt)
1916 {
1917 	unsigned int max = READ_ONCE(sysctl_mount_max);
1918 	unsigned int mounts = 0, old, pending, sum;
1919 	struct mount *p;
1920 
1921 	for (p = mnt; p; p = next_mnt(p, mnt))
1922 		mounts++;
1923 
1924 	old = ns->mounts;
1925 	pending = ns->pending_mounts;
1926 	sum = old + pending;
1927 	if ((old > sum) ||
1928 	    (pending > sum) ||
1929 	    (max < sum) ||
1930 	    (mounts > (max - sum)))
1931 		return -ENOSPC;
1932 
1933 	ns->pending_mounts = pending + mounts;
1934 	return 0;
1935 }
1936 
1937 /*
1938  *  @source_mnt : mount tree to be attached
1939  *  @nd         : place the mount tree @source_mnt is attached
1940  *  @parent_nd  : if non-null, detach the source_mnt from its parent and
1941  *  		   store the parent mount and mountpoint dentry.
1942  *  		   (done when source_mnt is moved)
1943  *
1944  *  NOTE: in the table below explains the semantics when a source mount
1945  *  of a given type is attached to a destination mount of a given type.
1946  * ---------------------------------------------------------------------------
1947  * |         BIND MOUNT OPERATION                                            |
1948  * |**************************************************************************
1949  * | source-->| shared        |       private  |       slave    | unbindable |
1950  * | dest     |               |                |                |            |
1951  * |   |      |               |                |                |            |
1952  * |   v      |               |                |                |            |
1953  * |**************************************************************************
1954  * |  shared  | shared (++)   |     shared (+) |     shared(+++)|  invalid   |
1955  * |          |               |                |                |            |
1956  * |non-shared| shared (+)    |      private   |      slave (*) |  invalid   |
1957  * ***************************************************************************
1958  * A bind operation clones the source mount and mounts the clone on the
1959  * destination mount.
1960  *
1961  * (++)  the cloned mount is propagated to all the mounts in the propagation
1962  * 	 tree of the destination mount and the cloned mount is added to
1963  * 	 the peer group of the source mount.
1964  * (+)   the cloned mount is created under the destination mount and is marked
1965  *       as shared. The cloned mount is added to the peer group of the source
1966  *       mount.
1967  * (+++) the mount is propagated to all the mounts in the propagation tree
1968  *       of the destination mount and the cloned mount is made slave
1969  *       of the same master as that of the source mount. The cloned mount
1970  *       is marked as 'shared and slave'.
1971  * (*)   the cloned mount is made a slave of the same master as that of the
1972  * 	 source mount.
1973  *
1974  * ---------------------------------------------------------------------------
1975  * |         		MOVE MOUNT OPERATION                                 |
1976  * |**************************************************************************
1977  * | source-->| shared        |       private  |       slave    | unbindable |
1978  * | dest     |               |                |                |            |
1979  * |   |      |               |                |                |            |
1980  * |   v      |               |                |                |            |
1981  * |**************************************************************************
1982  * |  shared  | shared (+)    |     shared (+) |    shared(+++) |  invalid   |
1983  * |          |               |                |                |            |
1984  * |non-shared| shared (+*)   |      private   |    slave (*)   | unbindable |
1985  * ***************************************************************************
1986  *
1987  * (+)  the mount is moved to the destination. And is then propagated to
1988  * 	all the mounts in the propagation tree of the destination mount.
1989  * (+*)  the mount is moved to the destination.
1990  * (+++)  the mount is moved to the destination and is then propagated to
1991  * 	all the mounts belonging to the destination mount's propagation tree.
1992  * 	the mount is marked as 'shared and slave'.
1993  * (*)	the mount continues to be a slave at the new location.
1994  *
1995  * if the source mount is a tree, the operations explained above is
1996  * applied to each mount in the tree.
1997  * Must be called without spinlocks held, since this function can sleep
1998  * in allocations.
1999  */
2000 static int attach_recursive_mnt(struct mount *source_mnt,
2001 			struct mount *dest_mnt,
2002 			struct mountpoint *dest_mp,
2003 			struct path *parent_path)
2004 {
2005 	HLIST_HEAD(tree_list);
2006 	struct mnt_namespace *ns = dest_mnt->mnt_ns;
2007 	struct mountpoint *smp;
2008 	struct mount *child, *p;
2009 	struct hlist_node *n;
2010 	int err;
2011 
2012 	/* Preallocate a mountpoint in case the new mounts need
2013 	 * to be tucked under other mounts.
2014 	 */
2015 	smp = get_mountpoint(source_mnt->mnt.mnt_root);
2016 	if (IS_ERR(smp))
2017 		return PTR_ERR(smp);
2018 
2019 	/* Is there space to add these mounts to the mount namespace? */
2020 	if (!parent_path) {
2021 		err = count_mounts(ns, source_mnt);
2022 		if (err)
2023 			goto out;
2024 	}
2025 
2026 	if (IS_MNT_SHARED(dest_mnt)) {
2027 		err = invent_group_ids(source_mnt, true);
2028 		if (err)
2029 			goto out;
2030 		err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list);
2031 		lock_mount_hash();
2032 		if (err)
2033 			goto out_cleanup_ids;
2034 		for (p = source_mnt; p; p = next_mnt(p, source_mnt))
2035 			set_mnt_shared(p);
2036 	} else {
2037 		lock_mount_hash();
2038 	}
2039 	if (parent_path) {
2040 		detach_mnt(source_mnt, parent_path);
2041 		attach_mnt(source_mnt, dest_mnt, dest_mp);
2042 		touch_mnt_namespace(source_mnt->mnt_ns);
2043 	} else {
2044 		mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt);
2045 		commit_tree(source_mnt);
2046 	}
2047 
2048 	hlist_for_each_entry_safe(child, n, &tree_list, mnt_hash) {
2049 		struct mount *q;
2050 		hlist_del_init(&child->mnt_hash);
2051 		q = __lookup_mnt(&child->mnt_parent->mnt,
2052 				 child->mnt_mountpoint);
2053 		if (q)
2054 			mnt_change_mountpoint(child, smp, q);
2055 		commit_tree(child);
2056 	}
2057 	put_mountpoint(smp);
2058 	unlock_mount_hash();
2059 
2060 	return 0;
2061 
2062  out_cleanup_ids:
2063 	while (!hlist_empty(&tree_list)) {
2064 		child = hlist_entry(tree_list.first, struct mount, mnt_hash);
2065 		child->mnt_parent->mnt_ns->pending_mounts = 0;
2066 		umount_tree(child, UMOUNT_SYNC);
2067 	}
2068 	unlock_mount_hash();
2069 	cleanup_group_ids(source_mnt, NULL);
2070  out:
2071 	ns->pending_mounts = 0;
2072 
2073 	read_seqlock_excl(&mount_lock);
2074 	put_mountpoint(smp);
2075 	read_sequnlock_excl(&mount_lock);
2076 
2077 	return err;
2078 }
2079 
2080 static struct mountpoint *lock_mount(struct path *path)
2081 {
2082 	struct vfsmount *mnt;
2083 	struct dentry *dentry = path->dentry;
2084 retry:
2085 	inode_lock(dentry->d_inode);
2086 	if (unlikely(cant_mount(dentry))) {
2087 		inode_unlock(dentry->d_inode);
2088 		return ERR_PTR(-ENOENT);
2089 	}
2090 	namespace_lock();
2091 	mnt = lookup_mnt(path);
2092 	if (likely(!mnt)) {
2093 		struct mountpoint *mp = get_mountpoint(dentry);
2094 		if (IS_ERR(mp)) {
2095 			namespace_unlock();
2096 			inode_unlock(dentry->d_inode);
2097 			return mp;
2098 		}
2099 		return mp;
2100 	}
2101 	namespace_unlock();
2102 	inode_unlock(path->dentry->d_inode);
2103 	path_put(path);
2104 	path->mnt = mnt;
2105 	dentry = path->dentry = dget(mnt->mnt_root);
2106 	goto retry;
2107 }
2108 
2109 static void unlock_mount(struct mountpoint *where)
2110 {
2111 	struct dentry *dentry = where->m_dentry;
2112 
2113 	read_seqlock_excl(&mount_lock);
2114 	put_mountpoint(where);
2115 	read_sequnlock_excl(&mount_lock);
2116 
2117 	namespace_unlock();
2118 	inode_unlock(dentry->d_inode);
2119 }
2120 
2121 static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp)
2122 {
2123 	if (mnt->mnt.mnt_sb->s_flags & MS_NOUSER)
2124 		return -EINVAL;
2125 
2126 	if (d_is_dir(mp->m_dentry) !=
2127 	      d_is_dir(mnt->mnt.mnt_root))
2128 		return -ENOTDIR;
2129 
2130 	return attach_recursive_mnt(mnt, p, mp, NULL);
2131 }
2132 
2133 /*
2134  * Sanity check the flags to change_mnt_propagation.
2135  */
2136 
2137 static int flags_to_propagation_type(int flags)
2138 {
2139 	int type = flags & ~(MS_REC | MS_SILENT);
2140 
2141 	/* Fail if any non-propagation flags are set */
2142 	if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2143 		return 0;
2144 	/* Only one propagation flag should be set */
2145 	if (!is_power_of_2(type))
2146 		return 0;
2147 	return type;
2148 }
2149 
2150 /*
2151  * recursively change the type of the mountpoint.
2152  */
2153 static int do_change_type(struct path *path, int flag)
2154 {
2155 	struct mount *m;
2156 	struct mount *mnt = real_mount(path->mnt);
2157 	int recurse = flag & MS_REC;
2158 	int type;
2159 	int err = 0;
2160 
2161 	if (path->dentry != path->mnt->mnt_root)
2162 		return -EINVAL;
2163 
2164 	type = flags_to_propagation_type(flag);
2165 	if (!type)
2166 		return -EINVAL;
2167 
2168 	namespace_lock();
2169 	if (type == MS_SHARED) {
2170 		err = invent_group_ids(mnt, recurse);
2171 		if (err)
2172 			goto out_unlock;
2173 	}
2174 
2175 	lock_mount_hash();
2176 	for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
2177 		change_mnt_propagation(m, type);
2178 	unlock_mount_hash();
2179 
2180  out_unlock:
2181 	namespace_unlock();
2182 	return err;
2183 }
2184 
2185 static bool has_locked_children(struct mount *mnt, struct dentry *dentry)
2186 {
2187 	struct mount *child;
2188 	list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
2189 		if (!is_subdir(child->mnt_mountpoint, dentry))
2190 			continue;
2191 
2192 		if (child->mnt.mnt_flags & MNT_LOCKED)
2193 			return true;
2194 	}
2195 	return false;
2196 }
2197 
2198 /*
2199  * do loopback mount.
2200  */
2201 static int do_loopback(struct path *path, const char *old_name,
2202 				int recurse)
2203 {
2204 	struct path old_path;
2205 	struct mount *mnt = NULL, *old, *parent;
2206 	struct mountpoint *mp;
2207 	int err;
2208 	if (!old_name || !*old_name)
2209 		return -EINVAL;
2210 	err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
2211 	if (err)
2212 		return err;
2213 
2214 	err = -EINVAL;
2215 	if (mnt_ns_loop(old_path.dentry))
2216 		goto out;
2217 
2218 	mp = lock_mount(path);
2219 	err = PTR_ERR(mp);
2220 	if (IS_ERR(mp))
2221 		goto out;
2222 
2223 	old = real_mount(old_path.mnt);
2224 	parent = real_mount(path->mnt);
2225 
2226 	err = -EINVAL;
2227 	if (IS_MNT_UNBINDABLE(old))
2228 		goto out2;
2229 
2230 	if (!check_mnt(parent))
2231 		goto out2;
2232 
2233 	if (!check_mnt(old) && old_path.dentry->d_op != &ns_dentry_operations)
2234 		goto out2;
2235 
2236 	if (!recurse && has_locked_children(old, old_path.dentry))
2237 		goto out2;
2238 
2239 	if (recurse)
2240 		mnt = copy_tree(old, old_path.dentry, CL_COPY_MNT_NS_FILE);
2241 	else
2242 		mnt = clone_mnt(old, old_path.dentry, 0);
2243 
2244 	if (IS_ERR(mnt)) {
2245 		err = PTR_ERR(mnt);
2246 		goto out2;
2247 	}
2248 
2249 	mnt->mnt.mnt_flags &= ~MNT_LOCKED;
2250 
2251 	err = graft_tree(mnt, parent, mp);
2252 	if (err) {
2253 		lock_mount_hash();
2254 		umount_tree(mnt, UMOUNT_SYNC);
2255 		unlock_mount_hash();
2256 	}
2257 out2:
2258 	unlock_mount(mp);
2259 out:
2260 	path_put(&old_path);
2261 	return err;
2262 }
2263 
2264 static int change_mount_flags(struct vfsmount *mnt, int ms_flags)
2265 {
2266 	int error = 0;
2267 	int readonly_request = 0;
2268 
2269 	if (ms_flags & MS_RDONLY)
2270 		readonly_request = 1;
2271 	if (readonly_request == __mnt_is_readonly(mnt))
2272 		return 0;
2273 
2274 	if (readonly_request)
2275 		error = mnt_make_readonly(real_mount(mnt));
2276 	else
2277 		__mnt_unmake_readonly(real_mount(mnt));
2278 	return error;
2279 }
2280 
2281 /*
2282  * change filesystem flags. dir should be a physical root of filesystem.
2283  * If you've mounted a non-root directory somewhere and want to do remount
2284  * on it - tough luck.
2285  */
2286 static int do_remount(struct path *path, int flags, int mnt_flags,
2287 		      void *data)
2288 {
2289 	int err;
2290 	struct super_block *sb = path->mnt->mnt_sb;
2291 	struct mount *mnt = real_mount(path->mnt);
2292 
2293 	if (!check_mnt(mnt))
2294 		return -EINVAL;
2295 
2296 	if (path->dentry != path->mnt->mnt_root)
2297 		return -EINVAL;
2298 
2299 	/* Don't allow changing of locked mnt flags.
2300 	 *
2301 	 * No locks need to be held here while testing the various
2302 	 * MNT_LOCK flags because those flags can never be cleared
2303 	 * once they are set.
2304 	 */
2305 	if ((mnt->mnt.mnt_flags & MNT_LOCK_READONLY) &&
2306 	    !(mnt_flags & MNT_READONLY)) {
2307 		return -EPERM;
2308 	}
2309 	if ((mnt->mnt.mnt_flags & MNT_LOCK_NODEV) &&
2310 	    !(mnt_flags & MNT_NODEV)) {
2311 		return -EPERM;
2312 	}
2313 	if ((mnt->mnt.mnt_flags & MNT_LOCK_NOSUID) &&
2314 	    !(mnt_flags & MNT_NOSUID)) {
2315 		return -EPERM;
2316 	}
2317 	if ((mnt->mnt.mnt_flags & MNT_LOCK_NOEXEC) &&
2318 	    !(mnt_flags & MNT_NOEXEC)) {
2319 		return -EPERM;
2320 	}
2321 	if ((mnt->mnt.mnt_flags & MNT_LOCK_ATIME) &&
2322 	    ((mnt->mnt.mnt_flags & MNT_ATIME_MASK) != (mnt_flags & MNT_ATIME_MASK))) {
2323 		return -EPERM;
2324 	}
2325 
2326 	err = security_sb_remount(sb, data);
2327 	if (err)
2328 		return err;
2329 
2330 	down_write(&sb->s_umount);
2331 	if (flags & MS_BIND)
2332 		err = change_mount_flags(path->mnt, flags);
2333 	else if (!capable(CAP_SYS_ADMIN))
2334 		err = -EPERM;
2335 	else
2336 		err = do_remount_sb(sb, flags, data, 0);
2337 	if (!err) {
2338 		lock_mount_hash();
2339 		mnt_flags |= mnt->mnt.mnt_flags & ~MNT_USER_SETTABLE_MASK;
2340 		mnt->mnt.mnt_flags = mnt_flags;
2341 		touch_mnt_namespace(mnt->mnt_ns);
2342 		unlock_mount_hash();
2343 	}
2344 	up_write(&sb->s_umount);
2345 	return err;
2346 }
2347 
2348 static inline int tree_contains_unbindable(struct mount *mnt)
2349 {
2350 	struct mount *p;
2351 	for (p = mnt; p; p = next_mnt(p, mnt)) {
2352 		if (IS_MNT_UNBINDABLE(p))
2353 			return 1;
2354 	}
2355 	return 0;
2356 }
2357 
2358 static int do_move_mount(struct path *path, const char *old_name)
2359 {
2360 	struct path old_path, parent_path;
2361 	struct mount *p;
2362 	struct mount *old;
2363 	struct mountpoint *mp;
2364 	int err;
2365 	if (!old_name || !*old_name)
2366 		return -EINVAL;
2367 	err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
2368 	if (err)
2369 		return err;
2370 
2371 	mp = lock_mount(path);
2372 	err = PTR_ERR(mp);
2373 	if (IS_ERR(mp))
2374 		goto out;
2375 
2376 	old = real_mount(old_path.mnt);
2377 	p = real_mount(path->mnt);
2378 
2379 	err = -EINVAL;
2380 	if (!check_mnt(p) || !check_mnt(old))
2381 		goto out1;
2382 
2383 	if (old->mnt.mnt_flags & MNT_LOCKED)
2384 		goto out1;
2385 
2386 	err = -EINVAL;
2387 	if (old_path.dentry != old_path.mnt->mnt_root)
2388 		goto out1;
2389 
2390 	if (!mnt_has_parent(old))
2391 		goto out1;
2392 
2393 	if (d_is_dir(path->dentry) !=
2394 	      d_is_dir(old_path.dentry))
2395 		goto out1;
2396 	/*
2397 	 * Don't move a mount residing in a shared parent.
2398 	 */
2399 	if (IS_MNT_SHARED(old->mnt_parent))
2400 		goto out1;
2401 	/*
2402 	 * Don't move a mount tree containing unbindable mounts to a destination
2403 	 * mount which is shared.
2404 	 */
2405 	if (IS_MNT_SHARED(p) && tree_contains_unbindable(old))
2406 		goto out1;
2407 	err = -ELOOP;
2408 	for (; mnt_has_parent(p); p = p->mnt_parent)
2409 		if (p == old)
2410 			goto out1;
2411 
2412 	err = attach_recursive_mnt(old, real_mount(path->mnt), mp, &parent_path);
2413 	if (err)
2414 		goto out1;
2415 
2416 	/* if the mount is moved, it should no longer be expire
2417 	 * automatically */
2418 	list_del_init(&old->mnt_expire);
2419 out1:
2420 	unlock_mount(mp);
2421 out:
2422 	if (!err)
2423 		path_put(&parent_path);
2424 	path_put(&old_path);
2425 	return err;
2426 }
2427 
2428 static struct vfsmount *fs_set_subtype(struct vfsmount *mnt, const char *fstype)
2429 {
2430 	int err;
2431 	const char *subtype = strchr(fstype, '.');
2432 	if (subtype) {
2433 		subtype++;
2434 		err = -EINVAL;
2435 		if (!subtype[0])
2436 			goto err;
2437 	} else
2438 		subtype = "";
2439 
2440 	mnt->mnt_sb->s_subtype = kstrdup(subtype, GFP_KERNEL);
2441 	err = -ENOMEM;
2442 	if (!mnt->mnt_sb->s_subtype)
2443 		goto err;
2444 	return mnt;
2445 
2446  err:
2447 	mntput(mnt);
2448 	return ERR_PTR(err);
2449 }
2450 
2451 /*
2452  * add a mount into a namespace's mount tree
2453  */
2454 static int do_add_mount(struct mount *newmnt, struct path *path, int mnt_flags)
2455 {
2456 	struct mountpoint *mp;
2457 	struct mount *parent;
2458 	int err;
2459 
2460 	mnt_flags &= ~MNT_INTERNAL_FLAGS;
2461 
2462 	mp = lock_mount(path);
2463 	if (IS_ERR(mp))
2464 		return PTR_ERR(mp);
2465 
2466 	parent = real_mount(path->mnt);
2467 	err = -EINVAL;
2468 	if (unlikely(!check_mnt(parent))) {
2469 		/* that's acceptable only for automounts done in private ns */
2470 		if (!(mnt_flags & MNT_SHRINKABLE))
2471 			goto unlock;
2472 		/* ... and for those we'd better have mountpoint still alive */
2473 		if (!parent->mnt_ns)
2474 			goto unlock;
2475 	}
2476 
2477 	/* Refuse the same filesystem on the same mount point */
2478 	err = -EBUSY;
2479 	if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb &&
2480 	    path->mnt->mnt_root == path->dentry)
2481 		goto unlock;
2482 
2483 	err = -EINVAL;
2484 	if (d_is_symlink(newmnt->mnt.mnt_root))
2485 		goto unlock;
2486 
2487 	newmnt->mnt.mnt_flags = mnt_flags;
2488 	err = graft_tree(newmnt, parent, mp);
2489 
2490 unlock:
2491 	unlock_mount(mp);
2492 	return err;
2493 }
2494 
2495 static bool mount_too_revealing(struct vfsmount *mnt, int *new_mnt_flags);
2496 
2497 /*
2498  * create a new mount for userspace and request it to be added into the
2499  * namespace's tree
2500  */
2501 static int do_new_mount(struct path *path, const char *fstype, int flags,
2502 			int mnt_flags, const char *name, void *data)
2503 {
2504 	struct file_system_type *type;
2505 	struct vfsmount *mnt;
2506 	int err;
2507 
2508 	if (!fstype)
2509 		return -EINVAL;
2510 
2511 	type = get_fs_type(fstype);
2512 	if (!type)
2513 		return -ENODEV;
2514 
2515 	mnt = vfs_kern_mount(type, flags, name, data);
2516 	if (!IS_ERR(mnt) && (type->fs_flags & FS_HAS_SUBTYPE) &&
2517 	    !mnt->mnt_sb->s_subtype)
2518 		mnt = fs_set_subtype(mnt, fstype);
2519 
2520 	put_filesystem(type);
2521 	if (IS_ERR(mnt))
2522 		return PTR_ERR(mnt);
2523 
2524 	if (mount_too_revealing(mnt, &mnt_flags)) {
2525 		mntput(mnt);
2526 		return -EPERM;
2527 	}
2528 
2529 	err = do_add_mount(real_mount(mnt), path, mnt_flags);
2530 	if (err)
2531 		mntput(mnt);
2532 	return err;
2533 }
2534 
2535 int finish_automount(struct vfsmount *m, struct path *path)
2536 {
2537 	struct mount *mnt = real_mount(m);
2538 	int err;
2539 	/* The new mount record should have at least 2 refs to prevent it being
2540 	 * expired before we get a chance to add it
2541 	 */
2542 	BUG_ON(mnt_get_count(mnt) < 2);
2543 
2544 	if (m->mnt_sb == path->mnt->mnt_sb &&
2545 	    m->mnt_root == path->dentry) {
2546 		err = -ELOOP;
2547 		goto fail;
2548 	}
2549 
2550 	err = do_add_mount(mnt, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
2551 	if (!err)
2552 		return 0;
2553 fail:
2554 	/* remove m from any expiration list it may be on */
2555 	if (!list_empty(&mnt->mnt_expire)) {
2556 		namespace_lock();
2557 		list_del_init(&mnt->mnt_expire);
2558 		namespace_unlock();
2559 	}
2560 	mntput(m);
2561 	mntput(m);
2562 	return err;
2563 }
2564 
2565 /**
2566  * mnt_set_expiry - Put a mount on an expiration list
2567  * @mnt: The mount to list.
2568  * @expiry_list: The list to add the mount to.
2569  */
2570 void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
2571 {
2572 	namespace_lock();
2573 
2574 	list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
2575 
2576 	namespace_unlock();
2577 }
2578 EXPORT_SYMBOL(mnt_set_expiry);
2579 
2580 /*
2581  * process a list of expirable mountpoints with the intent of discarding any
2582  * mountpoints that aren't in use and haven't been touched since last we came
2583  * here
2584  */
2585 void mark_mounts_for_expiry(struct list_head *mounts)
2586 {
2587 	struct mount *mnt, *next;
2588 	LIST_HEAD(graveyard);
2589 
2590 	if (list_empty(mounts))
2591 		return;
2592 
2593 	namespace_lock();
2594 	lock_mount_hash();
2595 
2596 	/* extract from the expiration list every vfsmount that matches the
2597 	 * following criteria:
2598 	 * - only referenced by its parent vfsmount
2599 	 * - still marked for expiry (marked on the last call here; marks are
2600 	 *   cleared by mntput())
2601 	 */
2602 	list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
2603 		if (!xchg(&mnt->mnt_expiry_mark, 1) ||
2604 			propagate_mount_busy(mnt, 1))
2605 			continue;
2606 		list_move(&mnt->mnt_expire, &graveyard);
2607 	}
2608 	while (!list_empty(&graveyard)) {
2609 		mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
2610 		touch_mnt_namespace(mnt->mnt_ns);
2611 		umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
2612 	}
2613 	unlock_mount_hash();
2614 	namespace_unlock();
2615 }
2616 
2617 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
2618 
2619 /*
2620  * Ripoff of 'select_parent()'
2621  *
2622  * search the list of submounts for a given mountpoint, and move any
2623  * shrinkable submounts to the 'graveyard' list.
2624  */
2625 static int select_submounts(struct mount *parent, struct list_head *graveyard)
2626 {
2627 	struct mount *this_parent = parent;
2628 	struct list_head *next;
2629 	int found = 0;
2630 
2631 repeat:
2632 	next = this_parent->mnt_mounts.next;
2633 resume:
2634 	while (next != &this_parent->mnt_mounts) {
2635 		struct list_head *tmp = next;
2636 		struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
2637 
2638 		next = tmp->next;
2639 		if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
2640 			continue;
2641 		/*
2642 		 * Descend a level if the d_mounts list is non-empty.
2643 		 */
2644 		if (!list_empty(&mnt->mnt_mounts)) {
2645 			this_parent = mnt;
2646 			goto repeat;
2647 		}
2648 
2649 		if (!propagate_mount_busy(mnt, 1)) {
2650 			list_move_tail(&mnt->mnt_expire, graveyard);
2651 			found++;
2652 		}
2653 	}
2654 	/*
2655 	 * All done at this level ... ascend and resume the search
2656 	 */
2657 	if (this_parent != parent) {
2658 		next = this_parent->mnt_child.next;
2659 		this_parent = this_parent->mnt_parent;
2660 		goto resume;
2661 	}
2662 	return found;
2663 }
2664 
2665 /*
2666  * process a list of expirable mountpoints with the intent of discarding any
2667  * submounts of a specific parent mountpoint
2668  *
2669  * mount_lock must be held for write
2670  */
2671 static void shrink_submounts(struct mount *mnt)
2672 {
2673 	LIST_HEAD(graveyard);
2674 	struct mount *m;
2675 
2676 	/* extract submounts of 'mountpoint' from the expiration list */
2677 	while (select_submounts(mnt, &graveyard)) {
2678 		while (!list_empty(&graveyard)) {
2679 			m = list_first_entry(&graveyard, struct mount,
2680 						mnt_expire);
2681 			touch_mnt_namespace(m->mnt_ns);
2682 			umount_tree(m, UMOUNT_PROPAGATE|UMOUNT_SYNC);
2683 		}
2684 	}
2685 }
2686 
2687 /*
2688  * Some copy_from_user() implementations do not return the exact number of
2689  * bytes remaining to copy on a fault.  But copy_mount_options() requires that.
2690  * Note that this function differs from copy_from_user() in that it will oops
2691  * on bad values of `to', rather than returning a short copy.
2692  */
2693 static long exact_copy_from_user(void *to, const void __user * from,
2694 				 unsigned long n)
2695 {
2696 	char *t = to;
2697 	const char __user *f = from;
2698 	char c;
2699 
2700 	if (!access_ok(VERIFY_READ, from, n))
2701 		return n;
2702 
2703 	while (n) {
2704 		if (__get_user(c, f)) {
2705 			memset(t, 0, n);
2706 			break;
2707 		}
2708 		*t++ = c;
2709 		f++;
2710 		n--;
2711 	}
2712 	return n;
2713 }
2714 
2715 void *copy_mount_options(const void __user * data)
2716 {
2717 	int i;
2718 	unsigned long size;
2719 	char *copy;
2720 
2721 	if (!data)
2722 		return NULL;
2723 
2724 	copy = kmalloc(PAGE_SIZE, GFP_KERNEL);
2725 	if (!copy)
2726 		return ERR_PTR(-ENOMEM);
2727 
2728 	/* We only care that *some* data at the address the user
2729 	 * gave us is valid.  Just in case, we'll zero
2730 	 * the remainder of the page.
2731 	 */
2732 	/* copy_from_user cannot cross TASK_SIZE ! */
2733 	size = TASK_SIZE - (unsigned long)data;
2734 	if (size > PAGE_SIZE)
2735 		size = PAGE_SIZE;
2736 
2737 	i = size - exact_copy_from_user(copy, data, size);
2738 	if (!i) {
2739 		kfree(copy);
2740 		return ERR_PTR(-EFAULT);
2741 	}
2742 	if (i != PAGE_SIZE)
2743 		memset(copy + i, 0, PAGE_SIZE - i);
2744 	return copy;
2745 }
2746 
2747 char *copy_mount_string(const void __user *data)
2748 {
2749 	return data ? strndup_user(data, PAGE_SIZE) : NULL;
2750 }
2751 
2752 /*
2753  * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
2754  * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
2755  *
2756  * data is a (void *) that can point to any structure up to
2757  * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
2758  * information (or be NULL).
2759  *
2760  * Pre-0.97 versions of mount() didn't have a flags word.
2761  * When the flags word was introduced its top half was required
2762  * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
2763  * Therefore, if this magic number is present, it carries no information
2764  * and must be discarded.
2765  */
2766 long do_mount(const char *dev_name, const char __user *dir_name,
2767 		const char *type_page, unsigned long flags, void *data_page)
2768 {
2769 	struct path path;
2770 	int retval = 0;
2771 	int mnt_flags = 0;
2772 
2773 	/* Discard magic */
2774 	if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
2775 		flags &= ~MS_MGC_MSK;
2776 
2777 	/* Basic sanity checks */
2778 	if (data_page)
2779 		((char *)data_page)[PAGE_SIZE - 1] = 0;
2780 
2781 	/* ... and get the mountpoint */
2782 	retval = user_path(dir_name, &path);
2783 	if (retval)
2784 		return retval;
2785 
2786 	retval = security_sb_mount(dev_name, &path,
2787 				   type_page, flags, data_page);
2788 	if (!retval && !may_mount())
2789 		retval = -EPERM;
2790 	if (!retval && (flags & MS_MANDLOCK) && !may_mandlock())
2791 		retval = -EPERM;
2792 	if (retval)
2793 		goto dput_out;
2794 
2795 	/* Default to relatime unless overriden */
2796 	if (!(flags & MS_NOATIME))
2797 		mnt_flags |= MNT_RELATIME;
2798 
2799 	/* Separate the per-mountpoint flags */
2800 	if (flags & MS_NOSUID)
2801 		mnt_flags |= MNT_NOSUID;
2802 	if (flags & MS_NODEV)
2803 		mnt_flags |= MNT_NODEV;
2804 	if (flags & MS_NOEXEC)
2805 		mnt_flags |= MNT_NOEXEC;
2806 	if (flags & MS_NOATIME)
2807 		mnt_flags |= MNT_NOATIME;
2808 	if (flags & MS_NODIRATIME)
2809 		mnt_flags |= MNT_NODIRATIME;
2810 	if (flags & MS_STRICTATIME)
2811 		mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
2812 	if (flags & MS_RDONLY)
2813 		mnt_flags |= MNT_READONLY;
2814 
2815 	/* The default atime for remount is preservation */
2816 	if ((flags & MS_REMOUNT) &&
2817 	    ((flags & (MS_NOATIME | MS_NODIRATIME | MS_RELATIME |
2818 		       MS_STRICTATIME)) == 0)) {
2819 		mnt_flags &= ~MNT_ATIME_MASK;
2820 		mnt_flags |= path.mnt->mnt_flags & MNT_ATIME_MASK;
2821 	}
2822 
2823 	flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE | MS_BORN |
2824 		   MS_NOATIME | MS_NODIRATIME | MS_RELATIME| MS_KERNMOUNT |
2825 		   MS_STRICTATIME | MS_NOREMOTELOCK | MS_SUBMOUNT);
2826 
2827 	if (flags & MS_REMOUNT)
2828 		retval = do_remount(&path, flags & ~MS_REMOUNT, mnt_flags,
2829 				    data_page);
2830 	else if (flags & MS_BIND)
2831 		retval = do_loopback(&path, dev_name, flags & MS_REC);
2832 	else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2833 		retval = do_change_type(&path, flags);
2834 	else if (flags & MS_MOVE)
2835 		retval = do_move_mount(&path, dev_name);
2836 	else
2837 		retval = do_new_mount(&path, type_page, flags, mnt_flags,
2838 				      dev_name, data_page);
2839 dput_out:
2840 	path_put(&path);
2841 	return retval;
2842 }
2843 
2844 static struct ucounts *inc_mnt_namespaces(struct user_namespace *ns)
2845 {
2846 	return inc_ucount(ns, current_euid(), UCOUNT_MNT_NAMESPACES);
2847 }
2848 
2849 static void dec_mnt_namespaces(struct ucounts *ucounts)
2850 {
2851 	dec_ucount(ucounts, UCOUNT_MNT_NAMESPACES);
2852 }
2853 
2854 static void free_mnt_ns(struct mnt_namespace *ns)
2855 {
2856 	ns_free_inum(&ns->ns);
2857 	dec_mnt_namespaces(ns->ucounts);
2858 	put_user_ns(ns->user_ns);
2859 	kfree(ns);
2860 }
2861 
2862 /*
2863  * Assign a sequence number so we can detect when we attempt to bind
2864  * mount a reference to an older mount namespace into the current
2865  * mount namespace, preventing reference counting loops.  A 64bit
2866  * number incrementing at 10Ghz will take 12,427 years to wrap which
2867  * is effectively never, so we can ignore the possibility.
2868  */
2869 static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1);
2870 
2871 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns)
2872 {
2873 	struct mnt_namespace *new_ns;
2874 	struct ucounts *ucounts;
2875 	int ret;
2876 
2877 	ucounts = inc_mnt_namespaces(user_ns);
2878 	if (!ucounts)
2879 		return ERR_PTR(-ENOSPC);
2880 
2881 	new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
2882 	if (!new_ns) {
2883 		dec_mnt_namespaces(ucounts);
2884 		return ERR_PTR(-ENOMEM);
2885 	}
2886 	ret = ns_alloc_inum(&new_ns->ns);
2887 	if (ret) {
2888 		kfree(new_ns);
2889 		dec_mnt_namespaces(ucounts);
2890 		return ERR_PTR(ret);
2891 	}
2892 	new_ns->ns.ops = &mntns_operations;
2893 	new_ns->seq = atomic64_add_return(1, &mnt_ns_seq);
2894 	atomic_set(&new_ns->count, 1);
2895 	new_ns->root = NULL;
2896 	INIT_LIST_HEAD(&new_ns->list);
2897 	init_waitqueue_head(&new_ns->poll);
2898 	new_ns->event = 0;
2899 	new_ns->user_ns = get_user_ns(user_ns);
2900 	new_ns->ucounts = ucounts;
2901 	new_ns->mounts = 0;
2902 	new_ns->pending_mounts = 0;
2903 	return new_ns;
2904 }
2905 
2906 __latent_entropy
2907 struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
2908 		struct user_namespace *user_ns, struct fs_struct *new_fs)
2909 {
2910 	struct mnt_namespace *new_ns;
2911 	struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
2912 	struct mount *p, *q;
2913 	struct mount *old;
2914 	struct mount *new;
2915 	int copy_flags;
2916 
2917 	BUG_ON(!ns);
2918 
2919 	if (likely(!(flags & CLONE_NEWNS))) {
2920 		get_mnt_ns(ns);
2921 		return ns;
2922 	}
2923 
2924 	old = ns->root;
2925 
2926 	new_ns = alloc_mnt_ns(user_ns);
2927 	if (IS_ERR(new_ns))
2928 		return new_ns;
2929 
2930 	namespace_lock();
2931 	/* First pass: copy the tree topology */
2932 	copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE;
2933 	if (user_ns != ns->user_ns)
2934 		copy_flags |= CL_SHARED_TO_SLAVE | CL_UNPRIVILEGED;
2935 	new = copy_tree(old, old->mnt.mnt_root, copy_flags);
2936 	if (IS_ERR(new)) {
2937 		namespace_unlock();
2938 		free_mnt_ns(new_ns);
2939 		return ERR_CAST(new);
2940 	}
2941 	new_ns->root = new;
2942 	list_add_tail(&new_ns->list, &new->mnt_list);
2943 
2944 	/*
2945 	 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
2946 	 * as belonging to new namespace.  We have already acquired a private
2947 	 * fs_struct, so tsk->fs->lock is not needed.
2948 	 */
2949 	p = old;
2950 	q = new;
2951 	while (p) {
2952 		q->mnt_ns = new_ns;
2953 		new_ns->mounts++;
2954 		if (new_fs) {
2955 			if (&p->mnt == new_fs->root.mnt) {
2956 				new_fs->root.mnt = mntget(&q->mnt);
2957 				rootmnt = &p->mnt;
2958 			}
2959 			if (&p->mnt == new_fs->pwd.mnt) {
2960 				new_fs->pwd.mnt = mntget(&q->mnt);
2961 				pwdmnt = &p->mnt;
2962 			}
2963 		}
2964 		p = next_mnt(p, old);
2965 		q = next_mnt(q, new);
2966 		if (!q)
2967 			break;
2968 		while (p->mnt.mnt_root != q->mnt.mnt_root)
2969 			p = next_mnt(p, old);
2970 	}
2971 	namespace_unlock();
2972 
2973 	if (rootmnt)
2974 		mntput(rootmnt);
2975 	if (pwdmnt)
2976 		mntput(pwdmnt);
2977 
2978 	return new_ns;
2979 }
2980 
2981 /**
2982  * create_mnt_ns - creates a private namespace and adds a root filesystem
2983  * @mnt: pointer to the new root filesystem mountpoint
2984  */
2985 static struct mnt_namespace *create_mnt_ns(struct vfsmount *m)
2986 {
2987 	struct mnt_namespace *new_ns = alloc_mnt_ns(&init_user_ns);
2988 	if (!IS_ERR(new_ns)) {
2989 		struct mount *mnt = real_mount(m);
2990 		mnt->mnt_ns = new_ns;
2991 		new_ns->root = mnt;
2992 		new_ns->mounts++;
2993 		list_add(&mnt->mnt_list, &new_ns->list);
2994 	} else {
2995 		mntput(m);
2996 	}
2997 	return new_ns;
2998 }
2999 
3000 struct dentry *mount_subtree(struct vfsmount *mnt, const char *name)
3001 {
3002 	struct mnt_namespace *ns;
3003 	struct super_block *s;
3004 	struct path path;
3005 	int err;
3006 
3007 	ns = create_mnt_ns(mnt);
3008 	if (IS_ERR(ns))
3009 		return ERR_CAST(ns);
3010 
3011 	err = vfs_path_lookup(mnt->mnt_root, mnt,
3012 			name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
3013 
3014 	put_mnt_ns(ns);
3015 
3016 	if (err)
3017 		return ERR_PTR(err);
3018 
3019 	/* trade a vfsmount reference for active sb one */
3020 	s = path.mnt->mnt_sb;
3021 	atomic_inc(&s->s_active);
3022 	mntput(path.mnt);
3023 	/* lock the sucker */
3024 	down_write(&s->s_umount);
3025 	/* ... and return the root of (sub)tree on it */
3026 	return path.dentry;
3027 }
3028 EXPORT_SYMBOL(mount_subtree);
3029 
3030 SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
3031 		char __user *, type, unsigned long, flags, void __user *, data)
3032 {
3033 	int ret;
3034 	char *kernel_type;
3035 	char *kernel_dev;
3036 	void *options;
3037 
3038 	kernel_type = copy_mount_string(type);
3039 	ret = PTR_ERR(kernel_type);
3040 	if (IS_ERR(kernel_type))
3041 		goto out_type;
3042 
3043 	kernel_dev = copy_mount_string(dev_name);
3044 	ret = PTR_ERR(kernel_dev);
3045 	if (IS_ERR(kernel_dev))
3046 		goto out_dev;
3047 
3048 	options = copy_mount_options(data);
3049 	ret = PTR_ERR(options);
3050 	if (IS_ERR(options))
3051 		goto out_data;
3052 
3053 	ret = do_mount(kernel_dev, dir_name, kernel_type, flags, options);
3054 
3055 	kfree(options);
3056 out_data:
3057 	kfree(kernel_dev);
3058 out_dev:
3059 	kfree(kernel_type);
3060 out_type:
3061 	return ret;
3062 }
3063 
3064 /*
3065  * Return true if path is reachable from root
3066  *
3067  * namespace_sem or mount_lock is held
3068  */
3069 bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
3070 			 const struct path *root)
3071 {
3072 	while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
3073 		dentry = mnt->mnt_mountpoint;
3074 		mnt = mnt->mnt_parent;
3075 	}
3076 	return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
3077 }
3078 
3079 bool path_is_under(const struct path *path1, const struct path *path2)
3080 {
3081 	bool res;
3082 	read_seqlock_excl(&mount_lock);
3083 	res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
3084 	read_sequnlock_excl(&mount_lock);
3085 	return res;
3086 }
3087 EXPORT_SYMBOL(path_is_under);
3088 
3089 /*
3090  * pivot_root Semantics:
3091  * Moves the root file system of the current process to the directory put_old,
3092  * makes new_root as the new root file system of the current process, and sets
3093  * root/cwd of all processes which had them on the current root to new_root.
3094  *
3095  * Restrictions:
3096  * The new_root and put_old must be directories, and  must not be on the
3097  * same file  system as the current process root. The put_old  must  be
3098  * underneath new_root,  i.e. adding a non-zero number of /.. to the string
3099  * pointed to by put_old must yield the same directory as new_root. No other
3100  * file system may be mounted on put_old. After all, new_root is a mountpoint.
3101  *
3102  * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
3103  * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
3104  * in this situation.
3105  *
3106  * Notes:
3107  *  - we don't move root/cwd if they are not at the root (reason: if something
3108  *    cared enough to change them, it's probably wrong to force them elsewhere)
3109  *  - it's okay to pick a root that isn't the root of a file system, e.g.
3110  *    /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
3111  *    though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
3112  *    first.
3113  */
3114 SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
3115 		const char __user *, put_old)
3116 {
3117 	struct path new, old, parent_path, root_parent, root;
3118 	struct mount *new_mnt, *root_mnt, *old_mnt;
3119 	struct mountpoint *old_mp, *root_mp;
3120 	int error;
3121 
3122 	if (!may_mount())
3123 		return -EPERM;
3124 
3125 	error = user_path_dir(new_root, &new);
3126 	if (error)
3127 		goto out0;
3128 
3129 	error = user_path_dir(put_old, &old);
3130 	if (error)
3131 		goto out1;
3132 
3133 	error = security_sb_pivotroot(&old, &new);
3134 	if (error)
3135 		goto out2;
3136 
3137 	get_fs_root(current->fs, &root);
3138 	old_mp = lock_mount(&old);
3139 	error = PTR_ERR(old_mp);
3140 	if (IS_ERR(old_mp))
3141 		goto out3;
3142 
3143 	error = -EINVAL;
3144 	new_mnt = real_mount(new.mnt);
3145 	root_mnt = real_mount(root.mnt);
3146 	old_mnt = real_mount(old.mnt);
3147 	if (IS_MNT_SHARED(old_mnt) ||
3148 		IS_MNT_SHARED(new_mnt->mnt_parent) ||
3149 		IS_MNT_SHARED(root_mnt->mnt_parent))
3150 		goto out4;
3151 	if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
3152 		goto out4;
3153 	if (new_mnt->mnt.mnt_flags & MNT_LOCKED)
3154 		goto out4;
3155 	error = -ENOENT;
3156 	if (d_unlinked(new.dentry))
3157 		goto out4;
3158 	error = -EBUSY;
3159 	if (new_mnt == root_mnt || old_mnt == root_mnt)
3160 		goto out4; /* loop, on the same file system  */
3161 	error = -EINVAL;
3162 	if (root.mnt->mnt_root != root.dentry)
3163 		goto out4; /* not a mountpoint */
3164 	if (!mnt_has_parent(root_mnt))
3165 		goto out4; /* not attached */
3166 	root_mp = root_mnt->mnt_mp;
3167 	if (new.mnt->mnt_root != new.dentry)
3168 		goto out4; /* not a mountpoint */
3169 	if (!mnt_has_parent(new_mnt))
3170 		goto out4; /* not attached */
3171 	/* make sure we can reach put_old from new_root */
3172 	if (!is_path_reachable(old_mnt, old.dentry, &new))
3173 		goto out4;
3174 	/* make certain new is below the root */
3175 	if (!is_path_reachable(new_mnt, new.dentry, &root))
3176 		goto out4;
3177 	root_mp->m_count++; /* pin it so it won't go away */
3178 	lock_mount_hash();
3179 	detach_mnt(new_mnt, &parent_path);
3180 	detach_mnt(root_mnt, &root_parent);
3181 	if (root_mnt->mnt.mnt_flags & MNT_LOCKED) {
3182 		new_mnt->mnt.mnt_flags |= MNT_LOCKED;
3183 		root_mnt->mnt.mnt_flags &= ~MNT_LOCKED;
3184 	}
3185 	/* mount old root on put_old */
3186 	attach_mnt(root_mnt, old_mnt, old_mp);
3187 	/* mount new_root on / */
3188 	attach_mnt(new_mnt, real_mount(root_parent.mnt), root_mp);
3189 	touch_mnt_namespace(current->nsproxy->mnt_ns);
3190 	/* A moved mount should not expire automatically */
3191 	list_del_init(&new_mnt->mnt_expire);
3192 	put_mountpoint(root_mp);
3193 	unlock_mount_hash();
3194 	chroot_fs_refs(&root, &new);
3195 	error = 0;
3196 out4:
3197 	unlock_mount(old_mp);
3198 	if (!error) {
3199 		path_put(&root_parent);
3200 		path_put(&parent_path);
3201 	}
3202 out3:
3203 	path_put(&root);
3204 out2:
3205 	path_put(&old);
3206 out1:
3207 	path_put(&new);
3208 out0:
3209 	return error;
3210 }
3211 
3212 static void __init init_mount_tree(void)
3213 {
3214 	struct vfsmount *mnt;
3215 	struct mnt_namespace *ns;
3216 	struct path root;
3217 	struct file_system_type *type;
3218 
3219 	type = get_fs_type("rootfs");
3220 	if (!type)
3221 		panic("Can't find rootfs type");
3222 	mnt = vfs_kern_mount(type, 0, "rootfs", NULL);
3223 	put_filesystem(type);
3224 	if (IS_ERR(mnt))
3225 		panic("Can't create rootfs");
3226 
3227 	ns = create_mnt_ns(mnt);
3228 	if (IS_ERR(ns))
3229 		panic("Can't allocate initial namespace");
3230 
3231 	init_task.nsproxy->mnt_ns = ns;
3232 	get_mnt_ns(ns);
3233 
3234 	root.mnt = mnt;
3235 	root.dentry = mnt->mnt_root;
3236 	mnt->mnt_flags |= MNT_LOCKED;
3237 
3238 	set_fs_pwd(current->fs, &root);
3239 	set_fs_root(current->fs, &root);
3240 }
3241 
3242 void __init mnt_init(void)
3243 {
3244 	unsigned u;
3245 	int err;
3246 
3247 	mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
3248 			0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
3249 
3250 	mount_hashtable = alloc_large_system_hash("Mount-cache",
3251 				sizeof(struct hlist_head),
3252 				mhash_entries, 19,
3253 				0,
3254 				&m_hash_shift, &m_hash_mask, 0, 0);
3255 	mountpoint_hashtable = alloc_large_system_hash("Mountpoint-cache",
3256 				sizeof(struct hlist_head),
3257 				mphash_entries, 19,
3258 				0,
3259 				&mp_hash_shift, &mp_hash_mask, 0, 0);
3260 
3261 	if (!mount_hashtable || !mountpoint_hashtable)
3262 		panic("Failed to allocate mount hash table\n");
3263 
3264 	for (u = 0; u <= m_hash_mask; u++)
3265 		INIT_HLIST_HEAD(&mount_hashtable[u]);
3266 	for (u = 0; u <= mp_hash_mask; u++)
3267 		INIT_HLIST_HEAD(&mountpoint_hashtable[u]);
3268 
3269 	kernfs_init();
3270 
3271 	err = sysfs_init();
3272 	if (err)
3273 		printk(KERN_WARNING "%s: sysfs_init error: %d\n",
3274 			__func__, err);
3275 	fs_kobj = kobject_create_and_add("fs", NULL);
3276 	if (!fs_kobj)
3277 		printk(KERN_WARNING "%s: kobj create error\n", __func__);
3278 	init_rootfs();
3279 	init_mount_tree();
3280 }
3281 
3282 void put_mnt_ns(struct mnt_namespace *ns)
3283 {
3284 	if (!atomic_dec_and_test(&ns->count))
3285 		return;
3286 	drop_collected_mounts(&ns->root->mnt);
3287 	free_mnt_ns(ns);
3288 }
3289 
3290 struct vfsmount *kern_mount_data(struct file_system_type *type, void *data)
3291 {
3292 	struct vfsmount *mnt;
3293 	mnt = vfs_kern_mount(type, MS_KERNMOUNT, type->name, data);
3294 	if (!IS_ERR(mnt)) {
3295 		/*
3296 		 * it is a longterm mount, don't release mnt until
3297 		 * we unmount before file sys is unregistered
3298 		*/
3299 		real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
3300 	}
3301 	return mnt;
3302 }
3303 EXPORT_SYMBOL_GPL(kern_mount_data);
3304 
3305 void kern_unmount(struct vfsmount *mnt)
3306 {
3307 	/* release long term mount so mount point can be released */
3308 	if (!IS_ERR_OR_NULL(mnt)) {
3309 		real_mount(mnt)->mnt_ns = NULL;
3310 		synchronize_rcu();	/* yecchhh... */
3311 		mntput(mnt);
3312 	}
3313 }
3314 EXPORT_SYMBOL(kern_unmount);
3315 
3316 bool our_mnt(struct vfsmount *mnt)
3317 {
3318 	return check_mnt(real_mount(mnt));
3319 }
3320 
3321 bool current_chrooted(void)
3322 {
3323 	/* Does the current process have a non-standard root */
3324 	struct path ns_root;
3325 	struct path fs_root;
3326 	bool chrooted;
3327 
3328 	/* Find the namespace root */
3329 	ns_root.mnt = &current->nsproxy->mnt_ns->root->mnt;
3330 	ns_root.dentry = ns_root.mnt->mnt_root;
3331 	path_get(&ns_root);
3332 	while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root))
3333 		;
3334 
3335 	get_fs_root(current->fs, &fs_root);
3336 
3337 	chrooted = !path_equal(&fs_root, &ns_root);
3338 
3339 	path_put(&fs_root);
3340 	path_put(&ns_root);
3341 
3342 	return chrooted;
3343 }
3344 
3345 static bool mnt_already_visible(struct mnt_namespace *ns, struct vfsmount *new,
3346 				int *new_mnt_flags)
3347 {
3348 	int new_flags = *new_mnt_flags;
3349 	struct mount *mnt;
3350 	bool visible = false;
3351 
3352 	down_read(&namespace_sem);
3353 	list_for_each_entry(mnt, &ns->list, mnt_list) {
3354 		struct mount *child;
3355 		int mnt_flags;
3356 
3357 		if (mnt->mnt.mnt_sb->s_type != new->mnt_sb->s_type)
3358 			continue;
3359 
3360 		/* This mount is not fully visible if it's root directory
3361 		 * is not the root directory of the filesystem.
3362 		 */
3363 		if (mnt->mnt.mnt_root != mnt->mnt.mnt_sb->s_root)
3364 			continue;
3365 
3366 		/* A local view of the mount flags */
3367 		mnt_flags = mnt->mnt.mnt_flags;
3368 
3369 		/* Don't miss readonly hidden in the superblock flags */
3370 		if (mnt->mnt.mnt_sb->s_flags & MS_RDONLY)
3371 			mnt_flags |= MNT_LOCK_READONLY;
3372 
3373 		/* Verify the mount flags are equal to or more permissive
3374 		 * than the proposed new mount.
3375 		 */
3376 		if ((mnt_flags & MNT_LOCK_READONLY) &&
3377 		    !(new_flags & MNT_READONLY))
3378 			continue;
3379 		if ((mnt_flags & MNT_LOCK_ATIME) &&
3380 		    ((mnt_flags & MNT_ATIME_MASK) != (new_flags & MNT_ATIME_MASK)))
3381 			continue;
3382 
3383 		/* This mount is not fully visible if there are any
3384 		 * locked child mounts that cover anything except for
3385 		 * empty directories.
3386 		 */
3387 		list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
3388 			struct inode *inode = child->mnt_mountpoint->d_inode;
3389 			/* Only worry about locked mounts */
3390 			if (!(child->mnt.mnt_flags & MNT_LOCKED))
3391 				continue;
3392 			/* Is the directory permanetly empty? */
3393 			if (!is_empty_dir_inode(inode))
3394 				goto next;
3395 		}
3396 		/* Preserve the locked attributes */
3397 		*new_mnt_flags |= mnt_flags & (MNT_LOCK_READONLY | \
3398 					       MNT_LOCK_ATIME);
3399 		visible = true;
3400 		goto found;
3401 	next:	;
3402 	}
3403 found:
3404 	up_read(&namespace_sem);
3405 	return visible;
3406 }
3407 
3408 static bool mount_too_revealing(struct vfsmount *mnt, int *new_mnt_flags)
3409 {
3410 	const unsigned long required_iflags = SB_I_NOEXEC | SB_I_NODEV;
3411 	struct mnt_namespace *ns = current->nsproxy->mnt_ns;
3412 	unsigned long s_iflags;
3413 
3414 	if (ns->user_ns == &init_user_ns)
3415 		return false;
3416 
3417 	/* Can this filesystem be too revealing? */
3418 	s_iflags = mnt->mnt_sb->s_iflags;
3419 	if (!(s_iflags & SB_I_USERNS_VISIBLE))
3420 		return false;
3421 
3422 	if ((s_iflags & required_iflags) != required_iflags) {
3423 		WARN_ONCE(1, "Expected s_iflags to contain 0x%lx\n",
3424 			  required_iflags);
3425 		return true;
3426 	}
3427 
3428 	return !mnt_already_visible(ns, mnt, new_mnt_flags);
3429 }
3430 
3431 bool mnt_may_suid(struct vfsmount *mnt)
3432 {
3433 	/*
3434 	 * Foreign mounts (accessed via fchdir or through /proc
3435 	 * symlinks) are always treated as if they are nosuid.  This
3436 	 * prevents namespaces from trusting potentially unsafe
3437 	 * suid/sgid bits, file caps, or security labels that originate
3438 	 * in other namespaces.
3439 	 */
3440 	return !(mnt->mnt_flags & MNT_NOSUID) && check_mnt(real_mount(mnt)) &&
3441 	       current_in_userns(mnt->mnt_sb->s_user_ns);
3442 }
3443 
3444 static struct ns_common *mntns_get(struct task_struct *task)
3445 {
3446 	struct ns_common *ns = NULL;
3447 	struct nsproxy *nsproxy;
3448 
3449 	task_lock(task);
3450 	nsproxy = task->nsproxy;
3451 	if (nsproxy) {
3452 		ns = &nsproxy->mnt_ns->ns;
3453 		get_mnt_ns(to_mnt_ns(ns));
3454 	}
3455 	task_unlock(task);
3456 
3457 	return ns;
3458 }
3459 
3460 static void mntns_put(struct ns_common *ns)
3461 {
3462 	put_mnt_ns(to_mnt_ns(ns));
3463 }
3464 
3465 static int mntns_install(struct nsproxy *nsproxy, struct ns_common *ns)
3466 {
3467 	struct fs_struct *fs = current->fs;
3468 	struct mnt_namespace *mnt_ns = to_mnt_ns(ns);
3469 	struct path root;
3470 
3471 	if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) ||
3472 	    !ns_capable(current_user_ns(), CAP_SYS_CHROOT) ||
3473 	    !ns_capable(current_user_ns(), CAP_SYS_ADMIN))
3474 		return -EPERM;
3475 
3476 	if (fs->users != 1)
3477 		return -EINVAL;
3478 
3479 	get_mnt_ns(mnt_ns);
3480 	put_mnt_ns(nsproxy->mnt_ns);
3481 	nsproxy->mnt_ns = mnt_ns;
3482 
3483 	/* Find the root */
3484 	root.mnt    = &mnt_ns->root->mnt;
3485 	root.dentry = mnt_ns->root->mnt.mnt_root;
3486 	path_get(&root);
3487 	while(d_mountpoint(root.dentry) && follow_down_one(&root))
3488 		;
3489 
3490 	/* Update the pwd and root */
3491 	set_fs_pwd(fs, &root);
3492 	set_fs_root(fs, &root);
3493 
3494 	path_put(&root);
3495 	return 0;
3496 }
3497 
3498 static struct user_namespace *mntns_owner(struct ns_common *ns)
3499 {
3500 	return to_mnt_ns(ns)->user_ns;
3501 }
3502 
3503 const struct proc_ns_operations mntns_operations = {
3504 	.name		= "mnt",
3505 	.type		= CLONE_NEWNS,
3506 	.get		= mntns_get,
3507 	.put		= mntns_put,
3508 	.install	= mntns_install,
3509 	.owner		= mntns_owner,
3510 };
3511