1 /* 2 * linux/fs/namespace.c 3 * 4 * (C) Copyright Al Viro 2000, 2001 5 * Released under GPL v2. 6 * 7 * Based on code from fs/super.c, copyright Linus Torvalds and others. 8 * Heavily rewritten. 9 */ 10 11 #include <linux/syscalls.h> 12 #include <linux/export.h> 13 #include <linux/capability.h> 14 #include <linux/mnt_namespace.h> 15 #include <linux/user_namespace.h> 16 #include <linux/namei.h> 17 #include <linux/security.h> 18 #include <linux/cred.h> 19 #include <linux/idr.h> 20 #include <linux/init.h> /* init_rootfs */ 21 #include <linux/fs_struct.h> /* get_fs_root et.al. */ 22 #include <linux/fsnotify.h> /* fsnotify_vfsmount_delete */ 23 #include <linux/uaccess.h> 24 #include <linux/proc_ns.h> 25 #include <linux/magic.h> 26 #include <linux/bootmem.h> 27 #include <linux/task_work.h> 28 #include <linux/sched/task.h> 29 30 #include "pnode.h" 31 #include "internal.h" 32 33 /* Maximum number of mounts in a mount namespace */ 34 unsigned int sysctl_mount_max __read_mostly = 100000; 35 36 static unsigned int m_hash_mask __read_mostly; 37 static unsigned int m_hash_shift __read_mostly; 38 static unsigned int mp_hash_mask __read_mostly; 39 static unsigned int mp_hash_shift __read_mostly; 40 41 static __initdata unsigned long mhash_entries; 42 static int __init set_mhash_entries(char *str) 43 { 44 if (!str) 45 return 0; 46 mhash_entries = simple_strtoul(str, &str, 0); 47 return 1; 48 } 49 __setup("mhash_entries=", set_mhash_entries); 50 51 static __initdata unsigned long mphash_entries; 52 static int __init set_mphash_entries(char *str) 53 { 54 if (!str) 55 return 0; 56 mphash_entries = simple_strtoul(str, &str, 0); 57 return 1; 58 } 59 __setup("mphash_entries=", set_mphash_entries); 60 61 static u64 event; 62 static DEFINE_IDA(mnt_id_ida); 63 static DEFINE_IDA(mnt_group_ida); 64 static DEFINE_SPINLOCK(mnt_id_lock); 65 static int mnt_id_start = 0; 66 static int mnt_group_start = 1; 67 68 static struct hlist_head *mount_hashtable __read_mostly; 69 static struct hlist_head *mountpoint_hashtable __read_mostly; 70 static struct kmem_cache *mnt_cache __read_mostly; 71 static DECLARE_RWSEM(namespace_sem); 72 73 /* /sys/fs */ 74 struct kobject *fs_kobj; 75 EXPORT_SYMBOL_GPL(fs_kobj); 76 77 /* 78 * vfsmount lock may be taken for read to prevent changes to the 79 * vfsmount hash, ie. during mountpoint lookups or walking back 80 * up the tree. 81 * 82 * It should be taken for write in all cases where the vfsmount 83 * tree or hash is modified or when a vfsmount structure is modified. 84 */ 85 __cacheline_aligned_in_smp DEFINE_SEQLOCK(mount_lock); 86 87 static inline struct hlist_head *m_hash(struct vfsmount *mnt, struct dentry *dentry) 88 { 89 unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES); 90 tmp += ((unsigned long)dentry / L1_CACHE_BYTES); 91 tmp = tmp + (tmp >> m_hash_shift); 92 return &mount_hashtable[tmp & m_hash_mask]; 93 } 94 95 static inline struct hlist_head *mp_hash(struct dentry *dentry) 96 { 97 unsigned long tmp = ((unsigned long)dentry / L1_CACHE_BYTES); 98 tmp = tmp + (tmp >> mp_hash_shift); 99 return &mountpoint_hashtable[tmp & mp_hash_mask]; 100 } 101 102 static int mnt_alloc_id(struct mount *mnt) 103 { 104 int res; 105 106 retry: 107 ida_pre_get(&mnt_id_ida, GFP_KERNEL); 108 spin_lock(&mnt_id_lock); 109 res = ida_get_new_above(&mnt_id_ida, mnt_id_start, &mnt->mnt_id); 110 if (!res) 111 mnt_id_start = mnt->mnt_id + 1; 112 spin_unlock(&mnt_id_lock); 113 if (res == -EAGAIN) 114 goto retry; 115 116 return res; 117 } 118 119 static void mnt_free_id(struct mount *mnt) 120 { 121 int id = mnt->mnt_id; 122 spin_lock(&mnt_id_lock); 123 ida_remove(&mnt_id_ida, id); 124 if (mnt_id_start > id) 125 mnt_id_start = id; 126 spin_unlock(&mnt_id_lock); 127 } 128 129 /* 130 * Allocate a new peer group ID 131 * 132 * mnt_group_ida is protected by namespace_sem 133 */ 134 static int mnt_alloc_group_id(struct mount *mnt) 135 { 136 int res; 137 138 if (!ida_pre_get(&mnt_group_ida, GFP_KERNEL)) 139 return -ENOMEM; 140 141 res = ida_get_new_above(&mnt_group_ida, 142 mnt_group_start, 143 &mnt->mnt_group_id); 144 if (!res) 145 mnt_group_start = mnt->mnt_group_id + 1; 146 147 return res; 148 } 149 150 /* 151 * Release a peer group ID 152 */ 153 void mnt_release_group_id(struct mount *mnt) 154 { 155 int id = mnt->mnt_group_id; 156 ida_remove(&mnt_group_ida, id); 157 if (mnt_group_start > id) 158 mnt_group_start = id; 159 mnt->mnt_group_id = 0; 160 } 161 162 /* 163 * vfsmount lock must be held for read 164 */ 165 static inline void mnt_add_count(struct mount *mnt, int n) 166 { 167 #ifdef CONFIG_SMP 168 this_cpu_add(mnt->mnt_pcp->mnt_count, n); 169 #else 170 preempt_disable(); 171 mnt->mnt_count += n; 172 preempt_enable(); 173 #endif 174 } 175 176 /* 177 * vfsmount lock must be held for write 178 */ 179 unsigned int mnt_get_count(struct mount *mnt) 180 { 181 #ifdef CONFIG_SMP 182 unsigned int count = 0; 183 int cpu; 184 185 for_each_possible_cpu(cpu) { 186 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count; 187 } 188 189 return count; 190 #else 191 return mnt->mnt_count; 192 #endif 193 } 194 195 static void drop_mountpoint(struct fs_pin *p) 196 { 197 struct mount *m = container_of(p, struct mount, mnt_umount); 198 dput(m->mnt_ex_mountpoint); 199 pin_remove(p); 200 mntput(&m->mnt); 201 } 202 203 static struct mount *alloc_vfsmnt(const char *name) 204 { 205 struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL); 206 if (mnt) { 207 int err; 208 209 err = mnt_alloc_id(mnt); 210 if (err) 211 goto out_free_cache; 212 213 if (name) { 214 mnt->mnt_devname = kstrdup_const(name, GFP_KERNEL); 215 if (!mnt->mnt_devname) 216 goto out_free_id; 217 } 218 219 #ifdef CONFIG_SMP 220 mnt->mnt_pcp = alloc_percpu(struct mnt_pcp); 221 if (!mnt->mnt_pcp) 222 goto out_free_devname; 223 224 this_cpu_add(mnt->mnt_pcp->mnt_count, 1); 225 #else 226 mnt->mnt_count = 1; 227 mnt->mnt_writers = 0; 228 #endif 229 230 INIT_HLIST_NODE(&mnt->mnt_hash); 231 INIT_LIST_HEAD(&mnt->mnt_child); 232 INIT_LIST_HEAD(&mnt->mnt_mounts); 233 INIT_LIST_HEAD(&mnt->mnt_list); 234 INIT_LIST_HEAD(&mnt->mnt_expire); 235 INIT_LIST_HEAD(&mnt->mnt_share); 236 INIT_LIST_HEAD(&mnt->mnt_slave_list); 237 INIT_LIST_HEAD(&mnt->mnt_slave); 238 INIT_HLIST_NODE(&mnt->mnt_mp_list); 239 #ifdef CONFIG_FSNOTIFY 240 INIT_HLIST_HEAD(&mnt->mnt_fsnotify_marks); 241 #endif 242 init_fs_pin(&mnt->mnt_umount, drop_mountpoint); 243 } 244 return mnt; 245 246 #ifdef CONFIG_SMP 247 out_free_devname: 248 kfree_const(mnt->mnt_devname); 249 #endif 250 out_free_id: 251 mnt_free_id(mnt); 252 out_free_cache: 253 kmem_cache_free(mnt_cache, mnt); 254 return NULL; 255 } 256 257 /* 258 * Most r/o checks on a fs are for operations that take 259 * discrete amounts of time, like a write() or unlink(). 260 * We must keep track of when those operations start 261 * (for permission checks) and when they end, so that 262 * we can determine when writes are able to occur to 263 * a filesystem. 264 */ 265 /* 266 * __mnt_is_readonly: check whether a mount is read-only 267 * @mnt: the mount to check for its write status 268 * 269 * This shouldn't be used directly ouside of the VFS. 270 * It does not guarantee that the filesystem will stay 271 * r/w, just that it is right *now*. This can not and 272 * should not be used in place of IS_RDONLY(inode). 273 * mnt_want/drop_write() will _keep_ the filesystem 274 * r/w. 275 */ 276 int __mnt_is_readonly(struct vfsmount *mnt) 277 { 278 if (mnt->mnt_flags & MNT_READONLY) 279 return 1; 280 if (mnt->mnt_sb->s_flags & MS_RDONLY) 281 return 1; 282 return 0; 283 } 284 EXPORT_SYMBOL_GPL(__mnt_is_readonly); 285 286 static inline void mnt_inc_writers(struct mount *mnt) 287 { 288 #ifdef CONFIG_SMP 289 this_cpu_inc(mnt->mnt_pcp->mnt_writers); 290 #else 291 mnt->mnt_writers++; 292 #endif 293 } 294 295 static inline void mnt_dec_writers(struct mount *mnt) 296 { 297 #ifdef CONFIG_SMP 298 this_cpu_dec(mnt->mnt_pcp->mnt_writers); 299 #else 300 mnt->mnt_writers--; 301 #endif 302 } 303 304 static unsigned int mnt_get_writers(struct mount *mnt) 305 { 306 #ifdef CONFIG_SMP 307 unsigned int count = 0; 308 int cpu; 309 310 for_each_possible_cpu(cpu) { 311 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers; 312 } 313 314 return count; 315 #else 316 return mnt->mnt_writers; 317 #endif 318 } 319 320 static int mnt_is_readonly(struct vfsmount *mnt) 321 { 322 if (mnt->mnt_sb->s_readonly_remount) 323 return 1; 324 /* Order wrt setting s_flags/s_readonly_remount in do_remount() */ 325 smp_rmb(); 326 return __mnt_is_readonly(mnt); 327 } 328 329 /* 330 * Most r/o & frozen checks on a fs are for operations that take discrete 331 * amounts of time, like a write() or unlink(). We must keep track of when 332 * those operations start (for permission checks) and when they end, so that we 333 * can determine when writes are able to occur to a filesystem. 334 */ 335 /** 336 * __mnt_want_write - get write access to a mount without freeze protection 337 * @m: the mount on which to take a write 338 * 339 * This tells the low-level filesystem that a write is about to be performed to 340 * it, and makes sure that writes are allowed (mnt it read-write) before 341 * returning success. This operation does not protect against filesystem being 342 * frozen. When the write operation is finished, __mnt_drop_write() must be 343 * called. This is effectively a refcount. 344 */ 345 int __mnt_want_write(struct vfsmount *m) 346 { 347 struct mount *mnt = real_mount(m); 348 int ret = 0; 349 350 preempt_disable(); 351 mnt_inc_writers(mnt); 352 /* 353 * The store to mnt_inc_writers must be visible before we pass 354 * MNT_WRITE_HOLD loop below, so that the slowpath can see our 355 * incremented count after it has set MNT_WRITE_HOLD. 356 */ 357 smp_mb(); 358 while (ACCESS_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD) 359 cpu_relax(); 360 /* 361 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will 362 * be set to match its requirements. So we must not load that until 363 * MNT_WRITE_HOLD is cleared. 364 */ 365 smp_rmb(); 366 if (mnt_is_readonly(m)) { 367 mnt_dec_writers(mnt); 368 ret = -EROFS; 369 } 370 preempt_enable(); 371 372 return ret; 373 } 374 375 /** 376 * mnt_want_write - get write access to a mount 377 * @m: the mount on which to take a write 378 * 379 * This tells the low-level filesystem that a write is about to be performed to 380 * it, and makes sure that writes are allowed (mount is read-write, filesystem 381 * is not frozen) before returning success. When the write operation is 382 * finished, mnt_drop_write() must be called. This is effectively a refcount. 383 */ 384 int mnt_want_write(struct vfsmount *m) 385 { 386 int ret; 387 388 sb_start_write(m->mnt_sb); 389 ret = __mnt_want_write(m); 390 if (ret) 391 sb_end_write(m->mnt_sb); 392 return ret; 393 } 394 EXPORT_SYMBOL_GPL(mnt_want_write); 395 396 /** 397 * mnt_clone_write - get write access to a mount 398 * @mnt: the mount on which to take a write 399 * 400 * This is effectively like mnt_want_write, except 401 * it must only be used to take an extra write reference 402 * on a mountpoint that we already know has a write reference 403 * on it. This allows some optimisation. 404 * 405 * After finished, mnt_drop_write must be called as usual to 406 * drop the reference. 407 */ 408 int mnt_clone_write(struct vfsmount *mnt) 409 { 410 /* superblock may be r/o */ 411 if (__mnt_is_readonly(mnt)) 412 return -EROFS; 413 preempt_disable(); 414 mnt_inc_writers(real_mount(mnt)); 415 preempt_enable(); 416 return 0; 417 } 418 EXPORT_SYMBOL_GPL(mnt_clone_write); 419 420 /** 421 * __mnt_want_write_file - get write access to a file's mount 422 * @file: the file who's mount on which to take a write 423 * 424 * This is like __mnt_want_write, but it takes a file and can 425 * do some optimisations if the file is open for write already 426 */ 427 int __mnt_want_write_file(struct file *file) 428 { 429 if (!(file->f_mode & FMODE_WRITER)) 430 return __mnt_want_write(file->f_path.mnt); 431 else 432 return mnt_clone_write(file->f_path.mnt); 433 } 434 435 /** 436 * mnt_want_write_file - get write access to a file's mount 437 * @file: the file who's mount on which to take a write 438 * 439 * This is like mnt_want_write, but it takes a file and can 440 * do some optimisations if the file is open for write already 441 */ 442 int mnt_want_write_file(struct file *file) 443 { 444 int ret; 445 446 sb_start_write(file->f_path.mnt->mnt_sb); 447 ret = __mnt_want_write_file(file); 448 if (ret) 449 sb_end_write(file->f_path.mnt->mnt_sb); 450 return ret; 451 } 452 EXPORT_SYMBOL_GPL(mnt_want_write_file); 453 454 /** 455 * __mnt_drop_write - give up write access to a mount 456 * @mnt: the mount on which to give up write access 457 * 458 * Tells the low-level filesystem that we are done 459 * performing writes to it. Must be matched with 460 * __mnt_want_write() call above. 461 */ 462 void __mnt_drop_write(struct vfsmount *mnt) 463 { 464 preempt_disable(); 465 mnt_dec_writers(real_mount(mnt)); 466 preempt_enable(); 467 } 468 469 /** 470 * mnt_drop_write - give up write access to a mount 471 * @mnt: the mount on which to give up write access 472 * 473 * Tells the low-level filesystem that we are done performing writes to it and 474 * also allows filesystem to be frozen again. Must be matched with 475 * mnt_want_write() call above. 476 */ 477 void mnt_drop_write(struct vfsmount *mnt) 478 { 479 __mnt_drop_write(mnt); 480 sb_end_write(mnt->mnt_sb); 481 } 482 EXPORT_SYMBOL_GPL(mnt_drop_write); 483 484 void __mnt_drop_write_file(struct file *file) 485 { 486 __mnt_drop_write(file->f_path.mnt); 487 } 488 489 void mnt_drop_write_file(struct file *file) 490 { 491 mnt_drop_write(file->f_path.mnt); 492 } 493 EXPORT_SYMBOL(mnt_drop_write_file); 494 495 static int mnt_make_readonly(struct mount *mnt) 496 { 497 int ret = 0; 498 499 lock_mount_hash(); 500 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD; 501 /* 502 * After storing MNT_WRITE_HOLD, we'll read the counters. This store 503 * should be visible before we do. 504 */ 505 smp_mb(); 506 507 /* 508 * With writers on hold, if this value is zero, then there are 509 * definitely no active writers (although held writers may subsequently 510 * increment the count, they'll have to wait, and decrement it after 511 * seeing MNT_READONLY). 512 * 513 * It is OK to have counter incremented on one CPU and decremented on 514 * another: the sum will add up correctly. The danger would be when we 515 * sum up each counter, if we read a counter before it is incremented, 516 * but then read another CPU's count which it has been subsequently 517 * decremented from -- we would see more decrements than we should. 518 * MNT_WRITE_HOLD protects against this scenario, because 519 * mnt_want_write first increments count, then smp_mb, then spins on 520 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while 521 * we're counting up here. 522 */ 523 if (mnt_get_writers(mnt) > 0) 524 ret = -EBUSY; 525 else 526 mnt->mnt.mnt_flags |= MNT_READONLY; 527 /* 528 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers 529 * that become unheld will see MNT_READONLY. 530 */ 531 smp_wmb(); 532 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD; 533 unlock_mount_hash(); 534 return ret; 535 } 536 537 static void __mnt_unmake_readonly(struct mount *mnt) 538 { 539 lock_mount_hash(); 540 mnt->mnt.mnt_flags &= ~MNT_READONLY; 541 unlock_mount_hash(); 542 } 543 544 int sb_prepare_remount_readonly(struct super_block *sb) 545 { 546 struct mount *mnt; 547 int err = 0; 548 549 /* Racy optimization. Recheck the counter under MNT_WRITE_HOLD */ 550 if (atomic_long_read(&sb->s_remove_count)) 551 return -EBUSY; 552 553 lock_mount_hash(); 554 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) { 555 if (!(mnt->mnt.mnt_flags & MNT_READONLY)) { 556 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD; 557 smp_mb(); 558 if (mnt_get_writers(mnt) > 0) { 559 err = -EBUSY; 560 break; 561 } 562 } 563 } 564 if (!err && atomic_long_read(&sb->s_remove_count)) 565 err = -EBUSY; 566 567 if (!err) { 568 sb->s_readonly_remount = 1; 569 smp_wmb(); 570 } 571 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) { 572 if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD) 573 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD; 574 } 575 unlock_mount_hash(); 576 577 return err; 578 } 579 580 static void free_vfsmnt(struct mount *mnt) 581 { 582 kfree_const(mnt->mnt_devname); 583 #ifdef CONFIG_SMP 584 free_percpu(mnt->mnt_pcp); 585 #endif 586 kmem_cache_free(mnt_cache, mnt); 587 } 588 589 static void delayed_free_vfsmnt(struct rcu_head *head) 590 { 591 free_vfsmnt(container_of(head, struct mount, mnt_rcu)); 592 } 593 594 /* call under rcu_read_lock */ 595 int __legitimize_mnt(struct vfsmount *bastard, unsigned seq) 596 { 597 struct mount *mnt; 598 if (read_seqretry(&mount_lock, seq)) 599 return 1; 600 if (bastard == NULL) 601 return 0; 602 mnt = real_mount(bastard); 603 mnt_add_count(mnt, 1); 604 if (likely(!read_seqretry(&mount_lock, seq))) 605 return 0; 606 if (bastard->mnt_flags & MNT_SYNC_UMOUNT) { 607 mnt_add_count(mnt, -1); 608 return 1; 609 } 610 return -1; 611 } 612 613 /* call under rcu_read_lock */ 614 bool legitimize_mnt(struct vfsmount *bastard, unsigned seq) 615 { 616 int res = __legitimize_mnt(bastard, seq); 617 if (likely(!res)) 618 return true; 619 if (unlikely(res < 0)) { 620 rcu_read_unlock(); 621 mntput(bastard); 622 rcu_read_lock(); 623 } 624 return false; 625 } 626 627 /* 628 * find the first mount at @dentry on vfsmount @mnt. 629 * call under rcu_read_lock() 630 */ 631 struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry) 632 { 633 struct hlist_head *head = m_hash(mnt, dentry); 634 struct mount *p; 635 636 hlist_for_each_entry_rcu(p, head, mnt_hash) 637 if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry) 638 return p; 639 return NULL; 640 } 641 642 /* 643 * lookup_mnt - Return the first child mount mounted at path 644 * 645 * "First" means first mounted chronologically. If you create the 646 * following mounts: 647 * 648 * mount /dev/sda1 /mnt 649 * mount /dev/sda2 /mnt 650 * mount /dev/sda3 /mnt 651 * 652 * Then lookup_mnt() on the base /mnt dentry in the root mount will 653 * return successively the root dentry and vfsmount of /dev/sda1, then 654 * /dev/sda2, then /dev/sda3, then NULL. 655 * 656 * lookup_mnt takes a reference to the found vfsmount. 657 */ 658 struct vfsmount *lookup_mnt(const struct path *path) 659 { 660 struct mount *child_mnt; 661 struct vfsmount *m; 662 unsigned seq; 663 664 rcu_read_lock(); 665 do { 666 seq = read_seqbegin(&mount_lock); 667 child_mnt = __lookup_mnt(path->mnt, path->dentry); 668 m = child_mnt ? &child_mnt->mnt : NULL; 669 } while (!legitimize_mnt(m, seq)); 670 rcu_read_unlock(); 671 return m; 672 } 673 674 /* 675 * __is_local_mountpoint - Test to see if dentry is a mountpoint in the 676 * current mount namespace. 677 * 678 * The common case is dentries are not mountpoints at all and that 679 * test is handled inline. For the slow case when we are actually 680 * dealing with a mountpoint of some kind, walk through all of the 681 * mounts in the current mount namespace and test to see if the dentry 682 * is a mountpoint. 683 * 684 * The mount_hashtable is not usable in the context because we 685 * need to identify all mounts that may be in the current mount 686 * namespace not just a mount that happens to have some specified 687 * parent mount. 688 */ 689 bool __is_local_mountpoint(struct dentry *dentry) 690 { 691 struct mnt_namespace *ns = current->nsproxy->mnt_ns; 692 struct mount *mnt; 693 bool is_covered = false; 694 695 if (!d_mountpoint(dentry)) 696 goto out; 697 698 down_read(&namespace_sem); 699 list_for_each_entry(mnt, &ns->list, mnt_list) { 700 is_covered = (mnt->mnt_mountpoint == dentry); 701 if (is_covered) 702 break; 703 } 704 up_read(&namespace_sem); 705 out: 706 return is_covered; 707 } 708 709 static struct mountpoint *lookup_mountpoint(struct dentry *dentry) 710 { 711 struct hlist_head *chain = mp_hash(dentry); 712 struct mountpoint *mp; 713 714 hlist_for_each_entry(mp, chain, m_hash) { 715 if (mp->m_dentry == dentry) { 716 /* might be worth a WARN_ON() */ 717 if (d_unlinked(dentry)) 718 return ERR_PTR(-ENOENT); 719 mp->m_count++; 720 return mp; 721 } 722 } 723 return NULL; 724 } 725 726 static struct mountpoint *get_mountpoint(struct dentry *dentry) 727 { 728 struct mountpoint *mp, *new = NULL; 729 int ret; 730 731 if (d_mountpoint(dentry)) { 732 mountpoint: 733 read_seqlock_excl(&mount_lock); 734 mp = lookup_mountpoint(dentry); 735 read_sequnlock_excl(&mount_lock); 736 if (mp) 737 goto done; 738 } 739 740 if (!new) 741 new = kmalloc(sizeof(struct mountpoint), GFP_KERNEL); 742 if (!new) 743 return ERR_PTR(-ENOMEM); 744 745 746 /* Exactly one processes may set d_mounted */ 747 ret = d_set_mounted(dentry); 748 749 /* Someone else set d_mounted? */ 750 if (ret == -EBUSY) 751 goto mountpoint; 752 753 /* The dentry is not available as a mountpoint? */ 754 mp = ERR_PTR(ret); 755 if (ret) 756 goto done; 757 758 /* Add the new mountpoint to the hash table */ 759 read_seqlock_excl(&mount_lock); 760 new->m_dentry = dentry; 761 new->m_count = 1; 762 hlist_add_head(&new->m_hash, mp_hash(dentry)); 763 INIT_HLIST_HEAD(&new->m_list); 764 read_sequnlock_excl(&mount_lock); 765 766 mp = new; 767 new = NULL; 768 done: 769 kfree(new); 770 return mp; 771 } 772 773 static void put_mountpoint(struct mountpoint *mp) 774 { 775 if (!--mp->m_count) { 776 struct dentry *dentry = mp->m_dentry; 777 BUG_ON(!hlist_empty(&mp->m_list)); 778 spin_lock(&dentry->d_lock); 779 dentry->d_flags &= ~DCACHE_MOUNTED; 780 spin_unlock(&dentry->d_lock); 781 hlist_del(&mp->m_hash); 782 kfree(mp); 783 } 784 } 785 786 static inline int check_mnt(struct mount *mnt) 787 { 788 return mnt->mnt_ns == current->nsproxy->mnt_ns; 789 } 790 791 /* 792 * vfsmount lock must be held for write 793 */ 794 static void touch_mnt_namespace(struct mnt_namespace *ns) 795 { 796 if (ns) { 797 ns->event = ++event; 798 wake_up_interruptible(&ns->poll); 799 } 800 } 801 802 /* 803 * vfsmount lock must be held for write 804 */ 805 static void __touch_mnt_namespace(struct mnt_namespace *ns) 806 { 807 if (ns && ns->event != event) { 808 ns->event = event; 809 wake_up_interruptible(&ns->poll); 810 } 811 } 812 813 /* 814 * vfsmount lock must be held for write 815 */ 816 static void unhash_mnt(struct mount *mnt) 817 { 818 mnt->mnt_parent = mnt; 819 mnt->mnt_mountpoint = mnt->mnt.mnt_root; 820 list_del_init(&mnt->mnt_child); 821 hlist_del_init_rcu(&mnt->mnt_hash); 822 hlist_del_init(&mnt->mnt_mp_list); 823 put_mountpoint(mnt->mnt_mp); 824 mnt->mnt_mp = NULL; 825 } 826 827 /* 828 * vfsmount lock must be held for write 829 */ 830 static void detach_mnt(struct mount *mnt, struct path *old_path) 831 { 832 old_path->dentry = mnt->mnt_mountpoint; 833 old_path->mnt = &mnt->mnt_parent->mnt; 834 unhash_mnt(mnt); 835 } 836 837 /* 838 * vfsmount lock must be held for write 839 */ 840 static void umount_mnt(struct mount *mnt) 841 { 842 /* old mountpoint will be dropped when we can do that */ 843 mnt->mnt_ex_mountpoint = mnt->mnt_mountpoint; 844 unhash_mnt(mnt); 845 } 846 847 /* 848 * vfsmount lock must be held for write 849 */ 850 void mnt_set_mountpoint(struct mount *mnt, 851 struct mountpoint *mp, 852 struct mount *child_mnt) 853 { 854 mp->m_count++; 855 mnt_add_count(mnt, 1); /* essentially, that's mntget */ 856 child_mnt->mnt_mountpoint = dget(mp->m_dentry); 857 child_mnt->mnt_parent = mnt; 858 child_mnt->mnt_mp = mp; 859 hlist_add_head(&child_mnt->mnt_mp_list, &mp->m_list); 860 } 861 862 static void __attach_mnt(struct mount *mnt, struct mount *parent) 863 { 864 hlist_add_head_rcu(&mnt->mnt_hash, 865 m_hash(&parent->mnt, mnt->mnt_mountpoint)); 866 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts); 867 } 868 869 /* 870 * vfsmount lock must be held for write 871 */ 872 static void attach_mnt(struct mount *mnt, 873 struct mount *parent, 874 struct mountpoint *mp) 875 { 876 mnt_set_mountpoint(parent, mp, mnt); 877 __attach_mnt(mnt, parent); 878 } 879 880 void mnt_change_mountpoint(struct mount *parent, struct mountpoint *mp, struct mount *mnt) 881 { 882 struct mountpoint *old_mp = mnt->mnt_mp; 883 struct dentry *old_mountpoint = mnt->mnt_mountpoint; 884 struct mount *old_parent = mnt->mnt_parent; 885 886 list_del_init(&mnt->mnt_child); 887 hlist_del_init(&mnt->mnt_mp_list); 888 hlist_del_init_rcu(&mnt->mnt_hash); 889 890 attach_mnt(mnt, parent, mp); 891 892 put_mountpoint(old_mp); 893 894 /* 895 * Safely avoid even the suggestion this code might sleep or 896 * lock the mount hash by taking advantage of the knowledge that 897 * mnt_change_mountpoint will not release the final reference 898 * to a mountpoint. 899 * 900 * During mounting, the mount passed in as the parent mount will 901 * continue to use the old mountpoint and during unmounting, the 902 * old mountpoint will continue to exist until namespace_unlock, 903 * which happens well after mnt_change_mountpoint. 904 */ 905 spin_lock(&old_mountpoint->d_lock); 906 old_mountpoint->d_lockref.count--; 907 spin_unlock(&old_mountpoint->d_lock); 908 909 mnt_add_count(old_parent, -1); 910 } 911 912 /* 913 * vfsmount lock must be held for write 914 */ 915 static void commit_tree(struct mount *mnt) 916 { 917 struct mount *parent = mnt->mnt_parent; 918 struct mount *m; 919 LIST_HEAD(head); 920 struct mnt_namespace *n = parent->mnt_ns; 921 922 BUG_ON(parent == mnt); 923 924 list_add_tail(&head, &mnt->mnt_list); 925 list_for_each_entry(m, &head, mnt_list) 926 m->mnt_ns = n; 927 928 list_splice(&head, n->list.prev); 929 930 n->mounts += n->pending_mounts; 931 n->pending_mounts = 0; 932 933 __attach_mnt(mnt, parent); 934 touch_mnt_namespace(n); 935 } 936 937 static struct mount *next_mnt(struct mount *p, struct mount *root) 938 { 939 struct list_head *next = p->mnt_mounts.next; 940 if (next == &p->mnt_mounts) { 941 while (1) { 942 if (p == root) 943 return NULL; 944 next = p->mnt_child.next; 945 if (next != &p->mnt_parent->mnt_mounts) 946 break; 947 p = p->mnt_parent; 948 } 949 } 950 return list_entry(next, struct mount, mnt_child); 951 } 952 953 static struct mount *skip_mnt_tree(struct mount *p) 954 { 955 struct list_head *prev = p->mnt_mounts.prev; 956 while (prev != &p->mnt_mounts) { 957 p = list_entry(prev, struct mount, mnt_child); 958 prev = p->mnt_mounts.prev; 959 } 960 return p; 961 } 962 963 struct vfsmount * 964 vfs_kern_mount(struct file_system_type *type, int flags, const char *name, void *data) 965 { 966 struct mount *mnt; 967 struct dentry *root; 968 969 if (!type) 970 return ERR_PTR(-ENODEV); 971 972 mnt = alloc_vfsmnt(name); 973 if (!mnt) 974 return ERR_PTR(-ENOMEM); 975 976 if (flags & MS_KERNMOUNT) 977 mnt->mnt.mnt_flags = MNT_INTERNAL; 978 979 root = mount_fs(type, flags, name, data); 980 if (IS_ERR(root)) { 981 mnt_free_id(mnt); 982 free_vfsmnt(mnt); 983 return ERR_CAST(root); 984 } 985 986 mnt->mnt.mnt_root = root; 987 mnt->mnt.mnt_sb = root->d_sb; 988 mnt->mnt_mountpoint = mnt->mnt.mnt_root; 989 mnt->mnt_parent = mnt; 990 lock_mount_hash(); 991 list_add_tail(&mnt->mnt_instance, &root->d_sb->s_mounts); 992 unlock_mount_hash(); 993 return &mnt->mnt; 994 } 995 EXPORT_SYMBOL_GPL(vfs_kern_mount); 996 997 struct vfsmount * 998 vfs_submount(const struct dentry *mountpoint, struct file_system_type *type, 999 const char *name, void *data) 1000 { 1001 /* Until it is worked out how to pass the user namespace 1002 * through from the parent mount to the submount don't support 1003 * unprivileged mounts with submounts. 1004 */ 1005 if (mountpoint->d_sb->s_user_ns != &init_user_ns) 1006 return ERR_PTR(-EPERM); 1007 1008 return vfs_kern_mount(type, MS_SUBMOUNT, name, data); 1009 } 1010 EXPORT_SYMBOL_GPL(vfs_submount); 1011 1012 static struct mount *clone_mnt(struct mount *old, struct dentry *root, 1013 int flag) 1014 { 1015 struct super_block *sb = old->mnt.mnt_sb; 1016 struct mount *mnt; 1017 int err; 1018 1019 mnt = alloc_vfsmnt(old->mnt_devname); 1020 if (!mnt) 1021 return ERR_PTR(-ENOMEM); 1022 1023 if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE)) 1024 mnt->mnt_group_id = 0; /* not a peer of original */ 1025 else 1026 mnt->mnt_group_id = old->mnt_group_id; 1027 1028 if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) { 1029 err = mnt_alloc_group_id(mnt); 1030 if (err) 1031 goto out_free; 1032 } 1033 1034 mnt->mnt.mnt_flags = old->mnt.mnt_flags & ~(MNT_WRITE_HOLD|MNT_MARKED); 1035 /* Don't allow unprivileged users to change mount flags */ 1036 if (flag & CL_UNPRIVILEGED) { 1037 mnt->mnt.mnt_flags |= MNT_LOCK_ATIME; 1038 1039 if (mnt->mnt.mnt_flags & MNT_READONLY) 1040 mnt->mnt.mnt_flags |= MNT_LOCK_READONLY; 1041 1042 if (mnt->mnt.mnt_flags & MNT_NODEV) 1043 mnt->mnt.mnt_flags |= MNT_LOCK_NODEV; 1044 1045 if (mnt->mnt.mnt_flags & MNT_NOSUID) 1046 mnt->mnt.mnt_flags |= MNT_LOCK_NOSUID; 1047 1048 if (mnt->mnt.mnt_flags & MNT_NOEXEC) 1049 mnt->mnt.mnt_flags |= MNT_LOCK_NOEXEC; 1050 } 1051 1052 /* Don't allow unprivileged users to reveal what is under a mount */ 1053 if ((flag & CL_UNPRIVILEGED) && 1054 (!(flag & CL_EXPIRE) || list_empty(&old->mnt_expire))) 1055 mnt->mnt.mnt_flags |= MNT_LOCKED; 1056 1057 atomic_inc(&sb->s_active); 1058 mnt->mnt.mnt_sb = sb; 1059 mnt->mnt.mnt_root = dget(root); 1060 mnt->mnt_mountpoint = mnt->mnt.mnt_root; 1061 mnt->mnt_parent = mnt; 1062 lock_mount_hash(); 1063 list_add_tail(&mnt->mnt_instance, &sb->s_mounts); 1064 unlock_mount_hash(); 1065 1066 if ((flag & CL_SLAVE) || 1067 ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) { 1068 list_add(&mnt->mnt_slave, &old->mnt_slave_list); 1069 mnt->mnt_master = old; 1070 CLEAR_MNT_SHARED(mnt); 1071 } else if (!(flag & CL_PRIVATE)) { 1072 if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old)) 1073 list_add(&mnt->mnt_share, &old->mnt_share); 1074 if (IS_MNT_SLAVE(old)) 1075 list_add(&mnt->mnt_slave, &old->mnt_slave); 1076 mnt->mnt_master = old->mnt_master; 1077 } else { 1078 CLEAR_MNT_SHARED(mnt); 1079 } 1080 if (flag & CL_MAKE_SHARED) 1081 set_mnt_shared(mnt); 1082 1083 /* stick the duplicate mount on the same expiry list 1084 * as the original if that was on one */ 1085 if (flag & CL_EXPIRE) { 1086 if (!list_empty(&old->mnt_expire)) 1087 list_add(&mnt->mnt_expire, &old->mnt_expire); 1088 } 1089 1090 return mnt; 1091 1092 out_free: 1093 mnt_free_id(mnt); 1094 free_vfsmnt(mnt); 1095 return ERR_PTR(err); 1096 } 1097 1098 static void cleanup_mnt(struct mount *mnt) 1099 { 1100 /* 1101 * This probably indicates that somebody messed 1102 * up a mnt_want/drop_write() pair. If this 1103 * happens, the filesystem was probably unable 1104 * to make r/w->r/o transitions. 1105 */ 1106 /* 1107 * The locking used to deal with mnt_count decrement provides barriers, 1108 * so mnt_get_writers() below is safe. 1109 */ 1110 WARN_ON(mnt_get_writers(mnt)); 1111 if (unlikely(mnt->mnt_pins.first)) 1112 mnt_pin_kill(mnt); 1113 fsnotify_vfsmount_delete(&mnt->mnt); 1114 dput(mnt->mnt.mnt_root); 1115 deactivate_super(mnt->mnt.mnt_sb); 1116 mnt_free_id(mnt); 1117 call_rcu(&mnt->mnt_rcu, delayed_free_vfsmnt); 1118 } 1119 1120 static void __cleanup_mnt(struct rcu_head *head) 1121 { 1122 cleanup_mnt(container_of(head, struct mount, mnt_rcu)); 1123 } 1124 1125 static LLIST_HEAD(delayed_mntput_list); 1126 static void delayed_mntput(struct work_struct *unused) 1127 { 1128 struct llist_node *node = llist_del_all(&delayed_mntput_list); 1129 struct llist_node *next; 1130 1131 for (; node; node = next) { 1132 next = llist_next(node); 1133 cleanup_mnt(llist_entry(node, struct mount, mnt_llist)); 1134 } 1135 } 1136 static DECLARE_DELAYED_WORK(delayed_mntput_work, delayed_mntput); 1137 1138 static void mntput_no_expire(struct mount *mnt) 1139 { 1140 rcu_read_lock(); 1141 mnt_add_count(mnt, -1); 1142 if (likely(mnt->mnt_ns)) { /* shouldn't be the last one */ 1143 rcu_read_unlock(); 1144 return; 1145 } 1146 lock_mount_hash(); 1147 if (mnt_get_count(mnt)) { 1148 rcu_read_unlock(); 1149 unlock_mount_hash(); 1150 return; 1151 } 1152 if (unlikely(mnt->mnt.mnt_flags & MNT_DOOMED)) { 1153 rcu_read_unlock(); 1154 unlock_mount_hash(); 1155 return; 1156 } 1157 mnt->mnt.mnt_flags |= MNT_DOOMED; 1158 rcu_read_unlock(); 1159 1160 list_del(&mnt->mnt_instance); 1161 1162 if (unlikely(!list_empty(&mnt->mnt_mounts))) { 1163 struct mount *p, *tmp; 1164 list_for_each_entry_safe(p, tmp, &mnt->mnt_mounts, mnt_child) { 1165 umount_mnt(p); 1166 } 1167 } 1168 unlock_mount_hash(); 1169 1170 if (likely(!(mnt->mnt.mnt_flags & MNT_INTERNAL))) { 1171 struct task_struct *task = current; 1172 if (likely(!(task->flags & PF_KTHREAD))) { 1173 init_task_work(&mnt->mnt_rcu, __cleanup_mnt); 1174 if (!task_work_add(task, &mnt->mnt_rcu, true)) 1175 return; 1176 } 1177 if (llist_add(&mnt->mnt_llist, &delayed_mntput_list)) 1178 schedule_delayed_work(&delayed_mntput_work, 1); 1179 return; 1180 } 1181 cleanup_mnt(mnt); 1182 } 1183 1184 void mntput(struct vfsmount *mnt) 1185 { 1186 if (mnt) { 1187 struct mount *m = real_mount(mnt); 1188 /* avoid cacheline pingpong, hope gcc doesn't get "smart" */ 1189 if (unlikely(m->mnt_expiry_mark)) 1190 m->mnt_expiry_mark = 0; 1191 mntput_no_expire(m); 1192 } 1193 } 1194 EXPORT_SYMBOL(mntput); 1195 1196 struct vfsmount *mntget(struct vfsmount *mnt) 1197 { 1198 if (mnt) 1199 mnt_add_count(real_mount(mnt), 1); 1200 return mnt; 1201 } 1202 EXPORT_SYMBOL(mntget); 1203 1204 /* path_is_mountpoint() - Check if path is a mount in the current 1205 * namespace. 1206 * 1207 * d_mountpoint() can only be used reliably to establish if a dentry is 1208 * not mounted in any namespace and that common case is handled inline. 1209 * d_mountpoint() isn't aware of the possibility there may be multiple 1210 * mounts using a given dentry in a different namespace. This function 1211 * checks if the passed in path is a mountpoint rather than the dentry 1212 * alone. 1213 */ 1214 bool path_is_mountpoint(const struct path *path) 1215 { 1216 unsigned seq; 1217 bool res; 1218 1219 if (!d_mountpoint(path->dentry)) 1220 return false; 1221 1222 rcu_read_lock(); 1223 do { 1224 seq = read_seqbegin(&mount_lock); 1225 res = __path_is_mountpoint(path); 1226 } while (read_seqretry(&mount_lock, seq)); 1227 rcu_read_unlock(); 1228 1229 return res; 1230 } 1231 EXPORT_SYMBOL(path_is_mountpoint); 1232 1233 struct vfsmount *mnt_clone_internal(const struct path *path) 1234 { 1235 struct mount *p; 1236 p = clone_mnt(real_mount(path->mnt), path->dentry, CL_PRIVATE); 1237 if (IS_ERR(p)) 1238 return ERR_CAST(p); 1239 p->mnt.mnt_flags |= MNT_INTERNAL; 1240 return &p->mnt; 1241 } 1242 1243 static inline void mangle(struct seq_file *m, const char *s) 1244 { 1245 seq_escape(m, s, " \t\n\\"); 1246 } 1247 1248 /* 1249 * Simple .show_options callback for filesystems which don't want to 1250 * implement more complex mount option showing. 1251 * 1252 * See also save_mount_options(). 1253 */ 1254 int generic_show_options(struct seq_file *m, struct dentry *root) 1255 { 1256 const char *options; 1257 1258 rcu_read_lock(); 1259 options = rcu_dereference(root->d_sb->s_options); 1260 1261 if (options != NULL && options[0]) { 1262 seq_putc(m, ','); 1263 mangle(m, options); 1264 } 1265 rcu_read_unlock(); 1266 1267 return 0; 1268 } 1269 EXPORT_SYMBOL(generic_show_options); 1270 1271 /* 1272 * If filesystem uses generic_show_options(), this function should be 1273 * called from the fill_super() callback. 1274 * 1275 * The .remount_fs callback usually needs to be handled in a special 1276 * way, to make sure, that previous options are not overwritten if the 1277 * remount fails. 1278 * 1279 * Also note, that if the filesystem's .remount_fs function doesn't 1280 * reset all options to their default value, but changes only newly 1281 * given options, then the displayed options will not reflect reality 1282 * any more. 1283 */ 1284 void save_mount_options(struct super_block *sb, char *options) 1285 { 1286 BUG_ON(sb->s_options); 1287 rcu_assign_pointer(sb->s_options, kstrdup(options, GFP_KERNEL)); 1288 } 1289 EXPORT_SYMBOL(save_mount_options); 1290 1291 void replace_mount_options(struct super_block *sb, char *options) 1292 { 1293 char *old = sb->s_options; 1294 rcu_assign_pointer(sb->s_options, options); 1295 if (old) { 1296 synchronize_rcu(); 1297 kfree(old); 1298 } 1299 } 1300 EXPORT_SYMBOL(replace_mount_options); 1301 1302 #ifdef CONFIG_PROC_FS 1303 /* iterator; we want it to have access to namespace_sem, thus here... */ 1304 static void *m_start(struct seq_file *m, loff_t *pos) 1305 { 1306 struct proc_mounts *p = m->private; 1307 1308 down_read(&namespace_sem); 1309 if (p->cached_event == p->ns->event) { 1310 void *v = p->cached_mount; 1311 if (*pos == p->cached_index) 1312 return v; 1313 if (*pos == p->cached_index + 1) { 1314 v = seq_list_next(v, &p->ns->list, &p->cached_index); 1315 return p->cached_mount = v; 1316 } 1317 } 1318 1319 p->cached_event = p->ns->event; 1320 p->cached_mount = seq_list_start(&p->ns->list, *pos); 1321 p->cached_index = *pos; 1322 return p->cached_mount; 1323 } 1324 1325 static void *m_next(struct seq_file *m, void *v, loff_t *pos) 1326 { 1327 struct proc_mounts *p = m->private; 1328 1329 p->cached_mount = seq_list_next(v, &p->ns->list, pos); 1330 p->cached_index = *pos; 1331 return p->cached_mount; 1332 } 1333 1334 static void m_stop(struct seq_file *m, void *v) 1335 { 1336 up_read(&namespace_sem); 1337 } 1338 1339 static int m_show(struct seq_file *m, void *v) 1340 { 1341 struct proc_mounts *p = m->private; 1342 struct mount *r = list_entry(v, struct mount, mnt_list); 1343 return p->show(m, &r->mnt); 1344 } 1345 1346 const struct seq_operations mounts_op = { 1347 .start = m_start, 1348 .next = m_next, 1349 .stop = m_stop, 1350 .show = m_show, 1351 }; 1352 #endif /* CONFIG_PROC_FS */ 1353 1354 /** 1355 * may_umount_tree - check if a mount tree is busy 1356 * @mnt: root of mount tree 1357 * 1358 * This is called to check if a tree of mounts has any 1359 * open files, pwds, chroots or sub mounts that are 1360 * busy. 1361 */ 1362 int may_umount_tree(struct vfsmount *m) 1363 { 1364 struct mount *mnt = real_mount(m); 1365 int actual_refs = 0; 1366 int minimum_refs = 0; 1367 struct mount *p; 1368 BUG_ON(!m); 1369 1370 /* write lock needed for mnt_get_count */ 1371 lock_mount_hash(); 1372 for (p = mnt; p; p = next_mnt(p, mnt)) { 1373 actual_refs += mnt_get_count(p); 1374 minimum_refs += 2; 1375 } 1376 unlock_mount_hash(); 1377 1378 if (actual_refs > minimum_refs) 1379 return 0; 1380 1381 return 1; 1382 } 1383 1384 EXPORT_SYMBOL(may_umount_tree); 1385 1386 /** 1387 * may_umount - check if a mount point is busy 1388 * @mnt: root of mount 1389 * 1390 * This is called to check if a mount point has any 1391 * open files, pwds, chroots or sub mounts. If the 1392 * mount has sub mounts this will return busy 1393 * regardless of whether the sub mounts are busy. 1394 * 1395 * Doesn't take quota and stuff into account. IOW, in some cases it will 1396 * give false negatives. The main reason why it's here is that we need 1397 * a non-destructive way to look for easily umountable filesystems. 1398 */ 1399 int may_umount(struct vfsmount *mnt) 1400 { 1401 int ret = 1; 1402 down_read(&namespace_sem); 1403 lock_mount_hash(); 1404 if (propagate_mount_busy(real_mount(mnt), 2)) 1405 ret = 0; 1406 unlock_mount_hash(); 1407 up_read(&namespace_sem); 1408 return ret; 1409 } 1410 1411 EXPORT_SYMBOL(may_umount); 1412 1413 static HLIST_HEAD(unmounted); /* protected by namespace_sem */ 1414 1415 static void namespace_unlock(void) 1416 { 1417 struct hlist_head head; 1418 1419 hlist_move_list(&unmounted, &head); 1420 1421 up_write(&namespace_sem); 1422 1423 if (likely(hlist_empty(&head))) 1424 return; 1425 1426 synchronize_rcu(); 1427 1428 group_pin_kill(&head); 1429 } 1430 1431 static inline void namespace_lock(void) 1432 { 1433 down_write(&namespace_sem); 1434 } 1435 1436 enum umount_tree_flags { 1437 UMOUNT_SYNC = 1, 1438 UMOUNT_PROPAGATE = 2, 1439 UMOUNT_CONNECTED = 4, 1440 }; 1441 1442 static bool disconnect_mount(struct mount *mnt, enum umount_tree_flags how) 1443 { 1444 /* Leaving mounts connected is only valid for lazy umounts */ 1445 if (how & UMOUNT_SYNC) 1446 return true; 1447 1448 /* A mount without a parent has nothing to be connected to */ 1449 if (!mnt_has_parent(mnt)) 1450 return true; 1451 1452 /* Because the reference counting rules change when mounts are 1453 * unmounted and connected, umounted mounts may not be 1454 * connected to mounted mounts. 1455 */ 1456 if (!(mnt->mnt_parent->mnt.mnt_flags & MNT_UMOUNT)) 1457 return true; 1458 1459 /* Has it been requested that the mount remain connected? */ 1460 if (how & UMOUNT_CONNECTED) 1461 return false; 1462 1463 /* Is the mount locked such that it needs to remain connected? */ 1464 if (IS_MNT_LOCKED(mnt)) 1465 return false; 1466 1467 /* By default disconnect the mount */ 1468 return true; 1469 } 1470 1471 /* 1472 * mount_lock must be held 1473 * namespace_sem must be held for write 1474 */ 1475 static void umount_tree(struct mount *mnt, enum umount_tree_flags how) 1476 { 1477 LIST_HEAD(tmp_list); 1478 struct mount *p; 1479 1480 if (how & UMOUNT_PROPAGATE) 1481 propagate_mount_unlock(mnt); 1482 1483 /* Gather the mounts to umount */ 1484 for (p = mnt; p; p = next_mnt(p, mnt)) { 1485 p->mnt.mnt_flags |= MNT_UMOUNT; 1486 list_move(&p->mnt_list, &tmp_list); 1487 } 1488 1489 /* Hide the mounts from mnt_mounts */ 1490 list_for_each_entry(p, &tmp_list, mnt_list) { 1491 list_del_init(&p->mnt_child); 1492 } 1493 1494 /* Add propogated mounts to the tmp_list */ 1495 if (how & UMOUNT_PROPAGATE) 1496 propagate_umount(&tmp_list); 1497 1498 while (!list_empty(&tmp_list)) { 1499 struct mnt_namespace *ns; 1500 bool disconnect; 1501 p = list_first_entry(&tmp_list, struct mount, mnt_list); 1502 list_del_init(&p->mnt_expire); 1503 list_del_init(&p->mnt_list); 1504 ns = p->mnt_ns; 1505 if (ns) { 1506 ns->mounts--; 1507 __touch_mnt_namespace(ns); 1508 } 1509 p->mnt_ns = NULL; 1510 if (how & UMOUNT_SYNC) 1511 p->mnt.mnt_flags |= MNT_SYNC_UMOUNT; 1512 1513 disconnect = disconnect_mount(p, how); 1514 1515 pin_insert_group(&p->mnt_umount, &p->mnt_parent->mnt, 1516 disconnect ? &unmounted : NULL); 1517 if (mnt_has_parent(p)) { 1518 mnt_add_count(p->mnt_parent, -1); 1519 if (!disconnect) { 1520 /* Don't forget about p */ 1521 list_add_tail(&p->mnt_child, &p->mnt_parent->mnt_mounts); 1522 } else { 1523 umount_mnt(p); 1524 } 1525 } 1526 change_mnt_propagation(p, MS_PRIVATE); 1527 } 1528 } 1529 1530 static void shrink_submounts(struct mount *mnt); 1531 1532 static int do_umount(struct mount *mnt, int flags) 1533 { 1534 struct super_block *sb = mnt->mnt.mnt_sb; 1535 int retval; 1536 1537 retval = security_sb_umount(&mnt->mnt, flags); 1538 if (retval) 1539 return retval; 1540 1541 /* 1542 * Allow userspace to request a mountpoint be expired rather than 1543 * unmounting unconditionally. Unmount only happens if: 1544 * (1) the mark is already set (the mark is cleared by mntput()) 1545 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount] 1546 */ 1547 if (flags & MNT_EXPIRE) { 1548 if (&mnt->mnt == current->fs->root.mnt || 1549 flags & (MNT_FORCE | MNT_DETACH)) 1550 return -EINVAL; 1551 1552 /* 1553 * probably don't strictly need the lock here if we examined 1554 * all race cases, but it's a slowpath. 1555 */ 1556 lock_mount_hash(); 1557 if (mnt_get_count(mnt) != 2) { 1558 unlock_mount_hash(); 1559 return -EBUSY; 1560 } 1561 unlock_mount_hash(); 1562 1563 if (!xchg(&mnt->mnt_expiry_mark, 1)) 1564 return -EAGAIN; 1565 } 1566 1567 /* 1568 * If we may have to abort operations to get out of this 1569 * mount, and they will themselves hold resources we must 1570 * allow the fs to do things. In the Unix tradition of 1571 * 'Gee thats tricky lets do it in userspace' the umount_begin 1572 * might fail to complete on the first run through as other tasks 1573 * must return, and the like. Thats for the mount program to worry 1574 * about for the moment. 1575 */ 1576 1577 if (flags & MNT_FORCE && sb->s_op->umount_begin) { 1578 sb->s_op->umount_begin(sb); 1579 } 1580 1581 /* 1582 * No sense to grab the lock for this test, but test itself looks 1583 * somewhat bogus. Suggestions for better replacement? 1584 * Ho-hum... In principle, we might treat that as umount + switch 1585 * to rootfs. GC would eventually take care of the old vfsmount. 1586 * Actually it makes sense, especially if rootfs would contain a 1587 * /reboot - static binary that would close all descriptors and 1588 * call reboot(9). Then init(8) could umount root and exec /reboot. 1589 */ 1590 if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) { 1591 /* 1592 * Special case for "unmounting" root ... 1593 * we just try to remount it readonly. 1594 */ 1595 if (!capable(CAP_SYS_ADMIN)) 1596 return -EPERM; 1597 down_write(&sb->s_umount); 1598 if (!(sb->s_flags & MS_RDONLY)) 1599 retval = do_remount_sb(sb, MS_RDONLY, NULL, 0); 1600 up_write(&sb->s_umount); 1601 return retval; 1602 } 1603 1604 namespace_lock(); 1605 lock_mount_hash(); 1606 event++; 1607 1608 if (flags & MNT_DETACH) { 1609 if (!list_empty(&mnt->mnt_list)) 1610 umount_tree(mnt, UMOUNT_PROPAGATE); 1611 retval = 0; 1612 } else { 1613 shrink_submounts(mnt); 1614 retval = -EBUSY; 1615 if (!propagate_mount_busy(mnt, 2)) { 1616 if (!list_empty(&mnt->mnt_list)) 1617 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC); 1618 retval = 0; 1619 } 1620 } 1621 unlock_mount_hash(); 1622 namespace_unlock(); 1623 return retval; 1624 } 1625 1626 /* 1627 * __detach_mounts - lazily unmount all mounts on the specified dentry 1628 * 1629 * During unlink, rmdir, and d_drop it is possible to loose the path 1630 * to an existing mountpoint, and wind up leaking the mount. 1631 * detach_mounts allows lazily unmounting those mounts instead of 1632 * leaking them. 1633 * 1634 * The caller may hold dentry->d_inode->i_mutex. 1635 */ 1636 void __detach_mounts(struct dentry *dentry) 1637 { 1638 struct mountpoint *mp; 1639 struct mount *mnt; 1640 1641 namespace_lock(); 1642 lock_mount_hash(); 1643 mp = lookup_mountpoint(dentry); 1644 if (IS_ERR_OR_NULL(mp)) 1645 goto out_unlock; 1646 1647 event++; 1648 while (!hlist_empty(&mp->m_list)) { 1649 mnt = hlist_entry(mp->m_list.first, struct mount, mnt_mp_list); 1650 if (mnt->mnt.mnt_flags & MNT_UMOUNT) { 1651 hlist_add_head(&mnt->mnt_umount.s_list, &unmounted); 1652 umount_mnt(mnt); 1653 } 1654 else umount_tree(mnt, UMOUNT_CONNECTED); 1655 } 1656 put_mountpoint(mp); 1657 out_unlock: 1658 unlock_mount_hash(); 1659 namespace_unlock(); 1660 } 1661 1662 /* 1663 * Is the caller allowed to modify his namespace? 1664 */ 1665 static inline bool may_mount(void) 1666 { 1667 return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN); 1668 } 1669 1670 static inline bool may_mandlock(void) 1671 { 1672 #ifndef CONFIG_MANDATORY_FILE_LOCKING 1673 return false; 1674 #endif 1675 return capable(CAP_SYS_ADMIN); 1676 } 1677 1678 /* 1679 * Now umount can handle mount points as well as block devices. 1680 * This is important for filesystems which use unnamed block devices. 1681 * 1682 * We now support a flag for forced unmount like the other 'big iron' 1683 * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD 1684 */ 1685 1686 SYSCALL_DEFINE2(umount, char __user *, name, int, flags) 1687 { 1688 struct path path; 1689 struct mount *mnt; 1690 int retval; 1691 int lookup_flags = 0; 1692 1693 if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW)) 1694 return -EINVAL; 1695 1696 if (!may_mount()) 1697 return -EPERM; 1698 1699 if (!(flags & UMOUNT_NOFOLLOW)) 1700 lookup_flags |= LOOKUP_FOLLOW; 1701 1702 retval = user_path_mountpoint_at(AT_FDCWD, name, lookup_flags, &path); 1703 if (retval) 1704 goto out; 1705 mnt = real_mount(path.mnt); 1706 retval = -EINVAL; 1707 if (path.dentry != path.mnt->mnt_root) 1708 goto dput_and_out; 1709 if (!check_mnt(mnt)) 1710 goto dput_and_out; 1711 if (mnt->mnt.mnt_flags & MNT_LOCKED) 1712 goto dput_and_out; 1713 retval = -EPERM; 1714 if (flags & MNT_FORCE && !capable(CAP_SYS_ADMIN)) 1715 goto dput_and_out; 1716 1717 retval = do_umount(mnt, flags); 1718 dput_and_out: 1719 /* we mustn't call path_put() as that would clear mnt_expiry_mark */ 1720 dput(path.dentry); 1721 mntput_no_expire(mnt); 1722 out: 1723 return retval; 1724 } 1725 1726 #ifdef __ARCH_WANT_SYS_OLDUMOUNT 1727 1728 /* 1729 * The 2.0 compatible umount. No flags. 1730 */ 1731 SYSCALL_DEFINE1(oldumount, char __user *, name) 1732 { 1733 return sys_umount(name, 0); 1734 } 1735 1736 #endif 1737 1738 static bool is_mnt_ns_file(struct dentry *dentry) 1739 { 1740 /* Is this a proxy for a mount namespace? */ 1741 return dentry->d_op == &ns_dentry_operations && 1742 dentry->d_fsdata == &mntns_operations; 1743 } 1744 1745 struct mnt_namespace *to_mnt_ns(struct ns_common *ns) 1746 { 1747 return container_of(ns, struct mnt_namespace, ns); 1748 } 1749 1750 static bool mnt_ns_loop(struct dentry *dentry) 1751 { 1752 /* Could bind mounting the mount namespace inode cause a 1753 * mount namespace loop? 1754 */ 1755 struct mnt_namespace *mnt_ns; 1756 if (!is_mnt_ns_file(dentry)) 1757 return false; 1758 1759 mnt_ns = to_mnt_ns(get_proc_ns(dentry->d_inode)); 1760 return current->nsproxy->mnt_ns->seq >= mnt_ns->seq; 1761 } 1762 1763 struct mount *copy_tree(struct mount *mnt, struct dentry *dentry, 1764 int flag) 1765 { 1766 struct mount *res, *p, *q, *r, *parent; 1767 1768 if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(mnt)) 1769 return ERR_PTR(-EINVAL); 1770 1771 if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry)) 1772 return ERR_PTR(-EINVAL); 1773 1774 res = q = clone_mnt(mnt, dentry, flag); 1775 if (IS_ERR(q)) 1776 return q; 1777 1778 q->mnt_mountpoint = mnt->mnt_mountpoint; 1779 1780 p = mnt; 1781 list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) { 1782 struct mount *s; 1783 if (!is_subdir(r->mnt_mountpoint, dentry)) 1784 continue; 1785 1786 for (s = r; s; s = next_mnt(s, r)) { 1787 if (!(flag & CL_COPY_UNBINDABLE) && 1788 IS_MNT_UNBINDABLE(s)) { 1789 s = skip_mnt_tree(s); 1790 continue; 1791 } 1792 if (!(flag & CL_COPY_MNT_NS_FILE) && 1793 is_mnt_ns_file(s->mnt.mnt_root)) { 1794 s = skip_mnt_tree(s); 1795 continue; 1796 } 1797 while (p != s->mnt_parent) { 1798 p = p->mnt_parent; 1799 q = q->mnt_parent; 1800 } 1801 p = s; 1802 parent = q; 1803 q = clone_mnt(p, p->mnt.mnt_root, flag); 1804 if (IS_ERR(q)) 1805 goto out; 1806 lock_mount_hash(); 1807 list_add_tail(&q->mnt_list, &res->mnt_list); 1808 attach_mnt(q, parent, p->mnt_mp); 1809 unlock_mount_hash(); 1810 } 1811 } 1812 return res; 1813 out: 1814 if (res) { 1815 lock_mount_hash(); 1816 umount_tree(res, UMOUNT_SYNC); 1817 unlock_mount_hash(); 1818 } 1819 return q; 1820 } 1821 1822 /* Caller should check returned pointer for errors */ 1823 1824 struct vfsmount *collect_mounts(const struct path *path) 1825 { 1826 struct mount *tree; 1827 namespace_lock(); 1828 if (!check_mnt(real_mount(path->mnt))) 1829 tree = ERR_PTR(-EINVAL); 1830 else 1831 tree = copy_tree(real_mount(path->mnt), path->dentry, 1832 CL_COPY_ALL | CL_PRIVATE); 1833 namespace_unlock(); 1834 if (IS_ERR(tree)) 1835 return ERR_CAST(tree); 1836 return &tree->mnt; 1837 } 1838 1839 void drop_collected_mounts(struct vfsmount *mnt) 1840 { 1841 namespace_lock(); 1842 lock_mount_hash(); 1843 umount_tree(real_mount(mnt), UMOUNT_SYNC); 1844 unlock_mount_hash(); 1845 namespace_unlock(); 1846 } 1847 1848 /** 1849 * clone_private_mount - create a private clone of a path 1850 * 1851 * This creates a new vfsmount, which will be the clone of @path. The new will 1852 * not be attached anywhere in the namespace and will be private (i.e. changes 1853 * to the originating mount won't be propagated into this). 1854 * 1855 * Release with mntput(). 1856 */ 1857 struct vfsmount *clone_private_mount(const struct path *path) 1858 { 1859 struct mount *old_mnt = real_mount(path->mnt); 1860 struct mount *new_mnt; 1861 1862 if (IS_MNT_UNBINDABLE(old_mnt)) 1863 return ERR_PTR(-EINVAL); 1864 1865 new_mnt = clone_mnt(old_mnt, path->dentry, CL_PRIVATE); 1866 if (IS_ERR(new_mnt)) 1867 return ERR_CAST(new_mnt); 1868 1869 return &new_mnt->mnt; 1870 } 1871 EXPORT_SYMBOL_GPL(clone_private_mount); 1872 1873 int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg, 1874 struct vfsmount *root) 1875 { 1876 struct mount *mnt; 1877 int res = f(root, arg); 1878 if (res) 1879 return res; 1880 list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) { 1881 res = f(&mnt->mnt, arg); 1882 if (res) 1883 return res; 1884 } 1885 return 0; 1886 } 1887 1888 static void cleanup_group_ids(struct mount *mnt, struct mount *end) 1889 { 1890 struct mount *p; 1891 1892 for (p = mnt; p != end; p = next_mnt(p, mnt)) { 1893 if (p->mnt_group_id && !IS_MNT_SHARED(p)) 1894 mnt_release_group_id(p); 1895 } 1896 } 1897 1898 static int invent_group_ids(struct mount *mnt, bool recurse) 1899 { 1900 struct mount *p; 1901 1902 for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) { 1903 if (!p->mnt_group_id && !IS_MNT_SHARED(p)) { 1904 int err = mnt_alloc_group_id(p); 1905 if (err) { 1906 cleanup_group_ids(mnt, p); 1907 return err; 1908 } 1909 } 1910 } 1911 1912 return 0; 1913 } 1914 1915 int count_mounts(struct mnt_namespace *ns, struct mount *mnt) 1916 { 1917 unsigned int max = READ_ONCE(sysctl_mount_max); 1918 unsigned int mounts = 0, old, pending, sum; 1919 struct mount *p; 1920 1921 for (p = mnt; p; p = next_mnt(p, mnt)) 1922 mounts++; 1923 1924 old = ns->mounts; 1925 pending = ns->pending_mounts; 1926 sum = old + pending; 1927 if ((old > sum) || 1928 (pending > sum) || 1929 (max < sum) || 1930 (mounts > (max - sum))) 1931 return -ENOSPC; 1932 1933 ns->pending_mounts = pending + mounts; 1934 return 0; 1935 } 1936 1937 /* 1938 * @source_mnt : mount tree to be attached 1939 * @nd : place the mount tree @source_mnt is attached 1940 * @parent_nd : if non-null, detach the source_mnt from its parent and 1941 * store the parent mount and mountpoint dentry. 1942 * (done when source_mnt is moved) 1943 * 1944 * NOTE: in the table below explains the semantics when a source mount 1945 * of a given type is attached to a destination mount of a given type. 1946 * --------------------------------------------------------------------------- 1947 * | BIND MOUNT OPERATION | 1948 * |************************************************************************** 1949 * | source-->| shared | private | slave | unbindable | 1950 * | dest | | | | | 1951 * | | | | | | | 1952 * | v | | | | | 1953 * |************************************************************************** 1954 * | shared | shared (++) | shared (+) | shared(+++)| invalid | 1955 * | | | | | | 1956 * |non-shared| shared (+) | private | slave (*) | invalid | 1957 * *************************************************************************** 1958 * A bind operation clones the source mount and mounts the clone on the 1959 * destination mount. 1960 * 1961 * (++) the cloned mount is propagated to all the mounts in the propagation 1962 * tree of the destination mount and the cloned mount is added to 1963 * the peer group of the source mount. 1964 * (+) the cloned mount is created under the destination mount and is marked 1965 * as shared. The cloned mount is added to the peer group of the source 1966 * mount. 1967 * (+++) the mount is propagated to all the mounts in the propagation tree 1968 * of the destination mount and the cloned mount is made slave 1969 * of the same master as that of the source mount. The cloned mount 1970 * is marked as 'shared and slave'. 1971 * (*) the cloned mount is made a slave of the same master as that of the 1972 * source mount. 1973 * 1974 * --------------------------------------------------------------------------- 1975 * | MOVE MOUNT OPERATION | 1976 * |************************************************************************** 1977 * | source-->| shared | private | slave | unbindable | 1978 * | dest | | | | | 1979 * | | | | | | | 1980 * | v | | | | | 1981 * |************************************************************************** 1982 * | shared | shared (+) | shared (+) | shared(+++) | invalid | 1983 * | | | | | | 1984 * |non-shared| shared (+*) | private | slave (*) | unbindable | 1985 * *************************************************************************** 1986 * 1987 * (+) the mount is moved to the destination. And is then propagated to 1988 * all the mounts in the propagation tree of the destination mount. 1989 * (+*) the mount is moved to the destination. 1990 * (+++) the mount is moved to the destination and is then propagated to 1991 * all the mounts belonging to the destination mount's propagation tree. 1992 * the mount is marked as 'shared and slave'. 1993 * (*) the mount continues to be a slave at the new location. 1994 * 1995 * if the source mount is a tree, the operations explained above is 1996 * applied to each mount in the tree. 1997 * Must be called without spinlocks held, since this function can sleep 1998 * in allocations. 1999 */ 2000 static int attach_recursive_mnt(struct mount *source_mnt, 2001 struct mount *dest_mnt, 2002 struct mountpoint *dest_mp, 2003 struct path *parent_path) 2004 { 2005 HLIST_HEAD(tree_list); 2006 struct mnt_namespace *ns = dest_mnt->mnt_ns; 2007 struct mountpoint *smp; 2008 struct mount *child, *p; 2009 struct hlist_node *n; 2010 int err; 2011 2012 /* Preallocate a mountpoint in case the new mounts need 2013 * to be tucked under other mounts. 2014 */ 2015 smp = get_mountpoint(source_mnt->mnt.mnt_root); 2016 if (IS_ERR(smp)) 2017 return PTR_ERR(smp); 2018 2019 /* Is there space to add these mounts to the mount namespace? */ 2020 if (!parent_path) { 2021 err = count_mounts(ns, source_mnt); 2022 if (err) 2023 goto out; 2024 } 2025 2026 if (IS_MNT_SHARED(dest_mnt)) { 2027 err = invent_group_ids(source_mnt, true); 2028 if (err) 2029 goto out; 2030 err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list); 2031 lock_mount_hash(); 2032 if (err) 2033 goto out_cleanup_ids; 2034 for (p = source_mnt; p; p = next_mnt(p, source_mnt)) 2035 set_mnt_shared(p); 2036 } else { 2037 lock_mount_hash(); 2038 } 2039 if (parent_path) { 2040 detach_mnt(source_mnt, parent_path); 2041 attach_mnt(source_mnt, dest_mnt, dest_mp); 2042 touch_mnt_namespace(source_mnt->mnt_ns); 2043 } else { 2044 mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt); 2045 commit_tree(source_mnt); 2046 } 2047 2048 hlist_for_each_entry_safe(child, n, &tree_list, mnt_hash) { 2049 struct mount *q; 2050 hlist_del_init(&child->mnt_hash); 2051 q = __lookup_mnt(&child->mnt_parent->mnt, 2052 child->mnt_mountpoint); 2053 if (q) 2054 mnt_change_mountpoint(child, smp, q); 2055 commit_tree(child); 2056 } 2057 put_mountpoint(smp); 2058 unlock_mount_hash(); 2059 2060 return 0; 2061 2062 out_cleanup_ids: 2063 while (!hlist_empty(&tree_list)) { 2064 child = hlist_entry(tree_list.first, struct mount, mnt_hash); 2065 child->mnt_parent->mnt_ns->pending_mounts = 0; 2066 umount_tree(child, UMOUNT_SYNC); 2067 } 2068 unlock_mount_hash(); 2069 cleanup_group_ids(source_mnt, NULL); 2070 out: 2071 ns->pending_mounts = 0; 2072 2073 read_seqlock_excl(&mount_lock); 2074 put_mountpoint(smp); 2075 read_sequnlock_excl(&mount_lock); 2076 2077 return err; 2078 } 2079 2080 static struct mountpoint *lock_mount(struct path *path) 2081 { 2082 struct vfsmount *mnt; 2083 struct dentry *dentry = path->dentry; 2084 retry: 2085 inode_lock(dentry->d_inode); 2086 if (unlikely(cant_mount(dentry))) { 2087 inode_unlock(dentry->d_inode); 2088 return ERR_PTR(-ENOENT); 2089 } 2090 namespace_lock(); 2091 mnt = lookup_mnt(path); 2092 if (likely(!mnt)) { 2093 struct mountpoint *mp = get_mountpoint(dentry); 2094 if (IS_ERR(mp)) { 2095 namespace_unlock(); 2096 inode_unlock(dentry->d_inode); 2097 return mp; 2098 } 2099 return mp; 2100 } 2101 namespace_unlock(); 2102 inode_unlock(path->dentry->d_inode); 2103 path_put(path); 2104 path->mnt = mnt; 2105 dentry = path->dentry = dget(mnt->mnt_root); 2106 goto retry; 2107 } 2108 2109 static void unlock_mount(struct mountpoint *where) 2110 { 2111 struct dentry *dentry = where->m_dentry; 2112 2113 read_seqlock_excl(&mount_lock); 2114 put_mountpoint(where); 2115 read_sequnlock_excl(&mount_lock); 2116 2117 namespace_unlock(); 2118 inode_unlock(dentry->d_inode); 2119 } 2120 2121 static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp) 2122 { 2123 if (mnt->mnt.mnt_sb->s_flags & MS_NOUSER) 2124 return -EINVAL; 2125 2126 if (d_is_dir(mp->m_dentry) != 2127 d_is_dir(mnt->mnt.mnt_root)) 2128 return -ENOTDIR; 2129 2130 return attach_recursive_mnt(mnt, p, mp, NULL); 2131 } 2132 2133 /* 2134 * Sanity check the flags to change_mnt_propagation. 2135 */ 2136 2137 static int flags_to_propagation_type(int flags) 2138 { 2139 int type = flags & ~(MS_REC | MS_SILENT); 2140 2141 /* Fail if any non-propagation flags are set */ 2142 if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE)) 2143 return 0; 2144 /* Only one propagation flag should be set */ 2145 if (!is_power_of_2(type)) 2146 return 0; 2147 return type; 2148 } 2149 2150 /* 2151 * recursively change the type of the mountpoint. 2152 */ 2153 static int do_change_type(struct path *path, int flag) 2154 { 2155 struct mount *m; 2156 struct mount *mnt = real_mount(path->mnt); 2157 int recurse = flag & MS_REC; 2158 int type; 2159 int err = 0; 2160 2161 if (path->dentry != path->mnt->mnt_root) 2162 return -EINVAL; 2163 2164 type = flags_to_propagation_type(flag); 2165 if (!type) 2166 return -EINVAL; 2167 2168 namespace_lock(); 2169 if (type == MS_SHARED) { 2170 err = invent_group_ids(mnt, recurse); 2171 if (err) 2172 goto out_unlock; 2173 } 2174 2175 lock_mount_hash(); 2176 for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL)) 2177 change_mnt_propagation(m, type); 2178 unlock_mount_hash(); 2179 2180 out_unlock: 2181 namespace_unlock(); 2182 return err; 2183 } 2184 2185 static bool has_locked_children(struct mount *mnt, struct dentry *dentry) 2186 { 2187 struct mount *child; 2188 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) { 2189 if (!is_subdir(child->mnt_mountpoint, dentry)) 2190 continue; 2191 2192 if (child->mnt.mnt_flags & MNT_LOCKED) 2193 return true; 2194 } 2195 return false; 2196 } 2197 2198 /* 2199 * do loopback mount. 2200 */ 2201 static int do_loopback(struct path *path, const char *old_name, 2202 int recurse) 2203 { 2204 struct path old_path; 2205 struct mount *mnt = NULL, *old, *parent; 2206 struct mountpoint *mp; 2207 int err; 2208 if (!old_name || !*old_name) 2209 return -EINVAL; 2210 err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path); 2211 if (err) 2212 return err; 2213 2214 err = -EINVAL; 2215 if (mnt_ns_loop(old_path.dentry)) 2216 goto out; 2217 2218 mp = lock_mount(path); 2219 err = PTR_ERR(mp); 2220 if (IS_ERR(mp)) 2221 goto out; 2222 2223 old = real_mount(old_path.mnt); 2224 parent = real_mount(path->mnt); 2225 2226 err = -EINVAL; 2227 if (IS_MNT_UNBINDABLE(old)) 2228 goto out2; 2229 2230 if (!check_mnt(parent)) 2231 goto out2; 2232 2233 if (!check_mnt(old) && old_path.dentry->d_op != &ns_dentry_operations) 2234 goto out2; 2235 2236 if (!recurse && has_locked_children(old, old_path.dentry)) 2237 goto out2; 2238 2239 if (recurse) 2240 mnt = copy_tree(old, old_path.dentry, CL_COPY_MNT_NS_FILE); 2241 else 2242 mnt = clone_mnt(old, old_path.dentry, 0); 2243 2244 if (IS_ERR(mnt)) { 2245 err = PTR_ERR(mnt); 2246 goto out2; 2247 } 2248 2249 mnt->mnt.mnt_flags &= ~MNT_LOCKED; 2250 2251 err = graft_tree(mnt, parent, mp); 2252 if (err) { 2253 lock_mount_hash(); 2254 umount_tree(mnt, UMOUNT_SYNC); 2255 unlock_mount_hash(); 2256 } 2257 out2: 2258 unlock_mount(mp); 2259 out: 2260 path_put(&old_path); 2261 return err; 2262 } 2263 2264 static int change_mount_flags(struct vfsmount *mnt, int ms_flags) 2265 { 2266 int error = 0; 2267 int readonly_request = 0; 2268 2269 if (ms_flags & MS_RDONLY) 2270 readonly_request = 1; 2271 if (readonly_request == __mnt_is_readonly(mnt)) 2272 return 0; 2273 2274 if (readonly_request) 2275 error = mnt_make_readonly(real_mount(mnt)); 2276 else 2277 __mnt_unmake_readonly(real_mount(mnt)); 2278 return error; 2279 } 2280 2281 /* 2282 * change filesystem flags. dir should be a physical root of filesystem. 2283 * If you've mounted a non-root directory somewhere and want to do remount 2284 * on it - tough luck. 2285 */ 2286 static int do_remount(struct path *path, int flags, int mnt_flags, 2287 void *data) 2288 { 2289 int err; 2290 struct super_block *sb = path->mnt->mnt_sb; 2291 struct mount *mnt = real_mount(path->mnt); 2292 2293 if (!check_mnt(mnt)) 2294 return -EINVAL; 2295 2296 if (path->dentry != path->mnt->mnt_root) 2297 return -EINVAL; 2298 2299 /* Don't allow changing of locked mnt flags. 2300 * 2301 * No locks need to be held here while testing the various 2302 * MNT_LOCK flags because those flags can never be cleared 2303 * once they are set. 2304 */ 2305 if ((mnt->mnt.mnt_flags & MNT_LOCK_READONLY) && 2306 !(mnt_flags & MNT_READONLY)) { 2307 return -EPERM; 2308 } 2309 if ((mnt->mnt.mnt_flags & MNT_LOCK_NODEV) && 2310 !(mnt_flags & MNT_NODEV)) { 2311 return -EPERM; 2312 } 2313 if ((mnt->mnt.mnt_flags & MNT_LOCK_NOSUID) && 2314 !(mnt_flags & MNT_NOSUID)) { 2315 return -EPERM; 2316 } 2317 if ((mnt->mnt.mnt_flags & MNT_LOCK_NOEXEC) && 2318 !(mnt_flags & MNT_NOEXEC)) { 2319 return -EPERM; 2320 } 2321 if ((mnt->mnt.mnt_flags & MNT_LOCK_ATIME) && 2322 ((mnt->mnt.mnt_flags & MNT_ATIME_MASK) != (mnt_flags & MNT_ATIME_MASK))) { 2323 return -EPERM; 2324 } 2325 2326 err = security_sb_remount(sb, data); 2327 if (err) 2328 return err; 2329 2330 down_write(&sb->s_umount); 2331 if (flags & MS_BIND) 2332 err = change_mount_flags(path->mnt, flags); 2333 else if (!capable(CAP_SYS_ADMIN)) 2334 err = -EPERM; 2335 else 2336 err = do_remount_sb(sb, flags, data, 0); 2337 if (!err) { 2338 lock_mount_hash(); 2339 mnt_flags |= mnt->mnt.mnt_flags & ~MNT_USER_SETTABLE_MASK; 2340 mnt->mnt.mnt_flags = mnt_flags; 2341 touch_mnt_namespace(mnt->mnt_ns); 2342 unlock_mount_hash(); 2343 } 2344 up_write(&sb->s_umount); 2345 return err; 2346 } 2347 2348 static inline int tree_contains_unbindable(struct mount *mnt) 2349 { 2350 struct mount *p; 2351 for (p = mnt; p; p = next_mnt(p, mnt)) { 2352 if (IS_MNT_UNBINDABLE(p)) 2353 return 1; 2354 } 2355 return 0; 2356 } 2357 2358 static int do_move_mount(struct path *path, const char *old_name) 2359 { 2360 struct path old_path, parent_path; 2361 struct mount *p; 2362 struct mount *old; 2363 struct mountpoint *mp; 2364 int err; 2365 if (!old_name || !*old_name) 2366 return -EINVAL; 2367 err = kern_path(old_name, LOOKUP_FOLLOW, &old_path); 2368 if (err) 2369 return err; 2370 2371 mp = lock_mount(path); 2372 err = PTR_ERR(mp); 2373 if (IS_ERR(mp)) 2374 goto out; 2375 2376 old = real_mount(old_path.mnt); 2377 p = real_mount(path->mnt); 2378 2379 err = -EINVAL; 2380 if (!check_mnt(p) || !check_mnt(old)) 2381 goto out1; 2382 2383 if (old->mnt.mnt_flags & MNT_LOCKED) 2384 goto out1; 2385 2386 err = -EINVAL; 2387 if (old_path.dentry != old_path.mnt->mnt_root) 2388 goto out1; 2389 2390 if (!mnt_has_parent(old)) 2391 goto out1; 2392 2393 if (d_is_dir(path->dentry) != 2394 d_is_dir(old_path.dentry)) 2395 goto out1; 2396 /* 2397 * Don't move a mount residing in a shared parent. 2398 */ 2399 if (IS_MNT_SHARED(old->mnt_parent)) 2400 goto out1; 2401 /* 2402 * Don't move a mount tree containing unbindable mounts to a destination 2403 * mount which is shared. 2404 */ 2405 if (IS_MNT_SHARED(p) && tree_contains_unbindable(old)) 2406 goto out1; 2407 err = -ELOOP; 2408 for (; mnt_has_parent(p); p = p->mnt_parent) 2409 if (p == old) 2410 goto out1; 2411 2412 err = attach_recursive_mnt(old, real_mount(path->mnt), mp, &parent_path); 2413 if (err) 2414 goto out1; 2415 2416 /* if the mount is moved, it should no longer be expire 2417 * automatically */ 2418 list_del_init(&old->mnt_expire); 2419 out1: 2420 unlock_mount(mp); 2421 out: 2422 if (!err) 2423 path_put(&parent_path); 2424 path_put(&old_path); 2425 return err; 2426 } 2427 2428 static struct vfsmount *fs_set_subtype(struct vfsmount *mnt, const char *fstype) 2429 { 2430 int err; 2431 const char *subtype = strchr(fstype, '.'); 2432 if (subtype) { 2433 subtype++; 2434 err = -EINVAL; 2435 if (!subtype[0]) 2436 goto err; 2437 } else 2438 subtype = ""; 2439 2440 mnt->mnt_sb->s_subtype = kstrdup(subtype, GFP_KERNEL); 2441 err = -ENOMEM; 2442 if (!mnt->mnt_sb->s_subtype) 2443 goto err; 2444 return mnt; 2445 2446 err: 2447 mntput(mnt); 2448 return ERR_PTR(err); 2449 } 2450 2451 /* 2452 * add a mount into a namespace's mount tree 2453 */ 2454 static int do_add_mount(struct mount *newmnt, struct path *path, int mnt_flags) 2455 { 2456 struct mountpoint *mp; 2457 struct mount *parent; 2458 int err; 2459 2460 mnt_flags &= ~MNT_INTERNAL_FLAGS; 2461 2462 mp = lock_mount(path); 2463 if (IS_ERR(mp)) 2464 return PTR_ERR(mp); 2465 2466 parent = real_mount(path->mnt); 2467 err = -EINVAL; 2468 if (unlikely(!check_mnt(parent))) { 2469 /* that's acceptable only for automounts done in private ns */ 2470 if (!(mnt_flags & MNT_SHRINKABLE)) 2471 goto unlock; 2472 /* ... and for those we'd better have mountpoint still alive */ 2473 if (!parent->mnt_ns) 2474 goto unlock; 2475 } 2476 2477 /* Refuse the same filesystem on the same mount point */ 2478 err = -EBUSY; 2479 if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb && 2480 path->mnt->mnt_root == path->dentry) 2481 goto unlock; 2482 2483 err = -EINVAL; 2484 if (d_is_symlink(newmnt->mnt.mnt_root)) 2485 goto unlock; 2486 2487 newmnt->mnt.mnt_flags = mnt_flags; 2488 err = graft_tree(newmnt, parent, mp); 2489 2490 unlock: 2491 unlock_mount(mp); 2492 return err; 2493 } 2494 2495 static bool mount_too_revealing(struct vfsmount *mnt, int *new_mnt_flags); 2496 2497 /* 2498 * create a new mount for userspace and request it to be added into the 2499 * namespace's tree 2500 */ 2501 static int do_new_mount(struct path *path, const char *fstype, int flags, 2502 int mnt_flags, const char *name, void *data) 2503 { 2504 struct file_system_type *type; 2505 struct vfsmount *mnt; 2506 int err; 2507 2508 if (!fstype) 2509 return -EINVAL; 2510 2511 type = get_fs_type(fstype); 2512 if (!type) 2513 return -ENODEV; 2514 2515 mnt = vfs_kern_mount(type, flags, name, data); 2516 if (!IS_ERR(mnt) && (type->fs_flags & FS_HAS_SUBTYPE) && 2517 !mnt->mnt_sb->s_subtype) 2518 mnt = fs_set_subtype(mnt, fstype); 2519 2520 put_filesystem(type); 2521 if (IS_ERR(mnt)) 2522 return PTR_ERR(mnt); 2523 2524 if (mount_too_revealing(mnt, &mnt_flags)) { 2525 mntput(mnt); 2526 return -EPERM; 2527 } 2528 2529 err = do_add_mount(real_mount(mnt), path, mnt_flags); 2530 if (err) 2531 mntput(mnt); 2532 return err; 2533 } 2534 2535 int finish_automount(struct vfsmount *m, struct path *path) 2536 { 2537 struct mount *mnt = real_mount(m); 2538 int err; 2539 /* The new mount record should have at least 2 refs to prevent it being 2540 * expired before we get a chance to add it 2541 */ 2542 BUG_ON(mnt_get_count(mnt) < 2); 2543 2544 if (m->mnt_sb == path->mnt->mnt_sb && 2545 m->mnt_root == path->dentry) { 2546 err = -ELOOP; 2547 goto fail; 2548 } 2549 2550 err = do_add_mount(mnt, path, path->mnt->mnt_flags | MNT_SHRINKABLE); 2551 if (!err) 2552 return 0; 2553 fail: 2554 /* remove m from any expiration list it may be on */ 2555 if (!list_empty(&mnt->mnt_expire)) { 2556 namespace_lock(); 2557 list_del_init(&mnt->mnt_expire); 2558 namespace_unlock(); 2559 } 2560 mntput(m); 2561 mntput(m); 2562 return err; 2563 } 2564 2565 /** 2566 * mnt_set_expiry - Put a mount on an expiration list 2567 * @mnt: The mount to list. 2568 * @expiry_list: The list to add the mount to. 2569 */ 2570 void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list) 2571 { 2572 namespace_lock(); 2573 2574 list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list); 2575 2576 namespace_unlock(); 2577 } 2578 EXPORT_SYMBOL(mnt_set_expiry); 2579 2580 /* 2581 * process a list of expirable mountpoints with the intent of discarding any 2582 * mountpoints that aren't in use and haven't been touched since last we came 2583 * here 2584 */ 2585 void mark_mounts_for_expiry(struct list_head *mounts) 2586 { 2587 struct mount *mnt, *next; 2588 LIST_HEAD(graveyard); 2589 2590 if (list_empty(mounts)) 2591 return; 2592 2593 namespace_lock(); 2594 lock_mount_hash(); 2595 2596 /* extract from the expiration list every vfsmount that matches the 2597 * following criteria: 2598 * - only referenced by its parent vfsmount 2599 * - still marked for expiry (marked on the last call here; marks are 2600 * cleared by mntput()) 2601 */ 2602 list_for_each_entry_safe(mnt, next, mounts, mnt_expire) { 2603 if (!xchg(&mnt->mnt_expiry_mark, 1) || 2604 propagate_mount_busy(mnt, 1)) 2605 continue; 2606 list_move(&mnt->mnt_expire, &graveyard); 2607 } 2608 while (!list_empty(&graveyard)) { 2609 mnt = list_first_entry(&graveyard, struct mount, mnt_expire); 2610 touch_mnt_namespace(mnt->mnt_ns); 2611 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC); 2612 } 2613 unlock_mount_hash(); 2614 namespace_unlock(); 2615 } 2616 2617 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry); 2618 2619 /* 2620 * Ripoff of 'select_parent()' 2621 * 2622 * search the list of submounts for a given mountpoint, and move any 2623 * shrinkable submounts to the 'graveyard' list. 2624 */ 2625 static int select_submounts(struct mount *parent, struct list_head *graveyard) 2626 { 2627 struct mount *this_parent = parent; 2628 struct list_head *next; 2629 int found = 0; 2630 2631 repeat: 2632 next = this_parent->mnt_mounts.next; 2633 resume: 2634 while (next != &this_parent->mnt_mounts) { 2635 struct list_head *tmp = next; 2636 struct mount *mnt = list_entry(tmp, struct mount, mnt_child); 2637 2638 next = tmp->next; 2639 if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE)) 2640 continue; 2641 /* 2642 * Descend a level if the d_mounts list is non-empty. 2643 */ 2644 if (!list_empty(&mnt->mnt_mounts)) { 2645 this_parent = mnt; 2646 goto repeat; 2647 } 2648 2649 if (!propagate_mount_busy(mnt, 1)) { 2650 list_move_tail(&mnt->mnt_expire, graveyard); 2651 found++; 2652 } 2653 } 2654 /* 2655 * All done at this level ... ascend and resume the search 2656 */ 2657 if (this_parent != parent) { 2658 next = this_parent->mnt_child.next; 2659 this_parent = this_parent->mnt_parent; 2660 goto resume; 2661 } 2662 return found; 2663 } 2664 2665 /* 2666 * process a list of expirable mountpoints with the intent of discarding any 2667 * submounts of a specific parent mountpoint 2668 * 2669 * mount_lock must be held for write 2670 */ 2671 static void shrink_submounts(struct mount *mnt) 2672 { 2673 LIST_HEAD(graveyard); 2674 struct mount *m; 2675 2676 /* extract submounts of 'mountpoint' from the expiration list */ 2677 while (select_submounts(mnt, &graveyard)) { 2678 while (!list_empty(&graveyard)) { 2679 m = list_first_entry(&graveyard, struct mount, 2680 mnt_expire); 2681 touch_mnt_namespace(m->mnt_ns); 2682 umount_tree(m, UMOUNT_PROPAGATE|UMOUNT_SYNC); 2683 } 2684 } 2685 } 2686 2687 /* 2688 * Some copy_from_user() implementations do not return the exact number of 2689 * bytes remaining to copy on a fault. But copy_mount_options() requires that. 2690 * Note that this function differs from copy_from_user() in that it will oops 2691 * on bad values of `to', rather than returning a short copy. 2692 */ 2693 static long exact_copy_from_user(void *to, const void __user * from, 2694 unsigned long n) 2695 { 2696 char *t = to; 2697 const char __user *f = from; 2698 char c; 2699 2700 if (!access_ok(VERIFY_READ, from, n)) 2701 return n; 2702 2703 while (n) { 2704 if (__get_user(c, f)) { 2705 memset(t, 0, n); 2706 break; 2707 } 2708 *t++ = c; 2709 f++; 2710 n--; 2711 } 2712 return n; 2713 } 2714 2715 void *copy_mount_options(const void __user * data) 2716 { 2717 int i; 2718 unsigned long size; 2719 char *copy; 2720 2721 if (!data) 2722 return NULL; 2723 2724 copy = kmalloc(PAGE_SIZE, GFP_KERNEL); 2725 if (!copy) 2726 return ERR_PTR(-ENOMEM); 2727 2728 /* We only care that *some* data at the address the user 2729 * gave us is valid. Just in case, we'll zero 2730 * the remainder of the page. 2731 */ 2732 /* copy_from_user cannot cross TASK_SIZE ! */ 2733 size = TASK_SIZE - (unsigned long)data; 2734 if (size > PAGE_SIZE) 2735 size = PAGE_SIZE; 2736 2737 i = size - exact_copy_from_user(copy, data, size); 2738 if (!i) { 2739 kfree(copy); 2740 return ERR_PTR(-EFAULT); 2741 } 2742 if (i != PAGE_SIZE) 2743 memset(copy + i, 0, PAGE_SIZE - i); 2744 return copy; 2745 } 2746 2747 char *copy_mount_string(const void __user *data) 2748 { 2749 return data ? strndup_user(data, PAGE_SIZE) : NULL; 2750 } 2751 2752 /* 2753 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to 2754 * be given to the mount() call (ie: read-only, no-dev, no-suid etc). 2755 * 2756 * data is a (void *) that can point to any structure up to 2757 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent 2758 * information (or be NULL). 2759 * 2760 * Pre-0.97 versions of mount() didn't have a flags word. 2761 * When the flags word was introduced its top half was required 2762 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9. 2763 * Therefore, if this magic number is present, it carries no information 2764 * and must be discarded. 2765 */ 2766 long do_mount(const char *dev_name, const char __user *dir_name, 2767 const char *type_page, unsigned long flags, void *data_page) 2768 { 2769 struct path path; 2770 int retval = 0; 2771 int mnt_flags = 0; 2772 2773 /* Discard magic */ 2774 if ((flags & MS_MGC_MSK) == MS_MGC_VAL) 2775 flags &= ~MS_MGC_MSK; 2776 2777 /* Basic sanity checks */ 2778 if (data_page) 2779 ((char *)data_page)[PAGE_SIZE - 1] = 0; 2780 2781 /* ... and get the mountpoint */ 2782 retval = user_path(dir_name, &path); 2783 if (retval) 2784 return retval; 2785 2786 retval = security_sb_mount(dev_name, &path, 2787 type_page, flags, data_page); 2788 if (!retval && !may_mount()) 2789 retval = -EPERM; 2790 if (!retval && (flags & MS_MANDLOCK) && !may_mandlock()) 2791 retval = -EPERM; 2792 if (retval) 2793 goto dput_out; 2794 2795 /* Default to relatime unless overriden */ 2796 if (!(flags & MS_NOATIME)) 2797 mnt_flags |= MNT_RELATIME; 2798 2799 /* Separate the per-mountpoint flags */ 2800 if (flags & MS_NOSUID) 2801 mnt_flags |= MNT_NOSUID; 2802 if (flags & MS_NODEV) 2803 mnt_flags |= MNT_NODEV; 2804 if (flags & MS_NOEXEC) 2805 mnt_flags |= MNT_NOEXEC; 2806 if (flags & MS_NOATIME) 2807 mnt_flags |= MNT_NOATIME; 2808 if (flags & MS_NODIRATIME) 2809 mnt_flags |= MNT_NODIRATIME; 2810 if (flags & MS_STRICTATIME) 2811 mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME); 2812 if (flags & MS_RDONLY) 2813 mnt_flags |= MNT_READONLY; 2814 2815 /* The default atime for remount is preservation */ 2816 if ((flags & MS_REMOUNT) && 2817 ((flags & (MS_NOATIME | MS_NODIRATIME | MS_RELATIME | 2818 MS_STRICTATIME)) == 0)) { 2819 mnt_flags &= ~MNT_ATIME_MASK; 2820 mnt_flags |= path.mnt->mnt_flags & MNT_ATIME_MASK; 2821 } 2822 2823 flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE | MS_BORN | 2824 MS_NOATIME | MS_NODIRATIME | MS_RELATIME| MS_KERNMOUNT | 2825 MS_STRICTATIME | MS_NOREMOTELOCK | MS_SUBMOUNT); 2826 2827 if (flags & MS_REMOUNT) 2828 retval = do_remount(&path, flags & ~MS_REMOUNT, mnt_flags, 2829 data_page); 2830 else if (flags & MS_BIND) 2831 retval = do_loopback(&path, dev_name, flags & MS_REC); 2832 else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE)) 2833 retval = do_change_type(&path, flags); 2834 else if (flags & MS_MOVE) 2835 retval = do_move_mount(&path, dev_name); 2836 else 2837 retval = do_new_mount(&path, type_page, flags, mnt_flags, 2838 dev_name, data_page); 2839 dput_out: 2840 path_put(&path); 2841 return retval; 2842 } 2843 2844 static struct ucounts *inc_mnt_namespaces(struct user_namespace *ns) 2845 { 2846 return inc_ucount(ns, current_euid(), UCOUNT_MNT_NAMESPACES); 2847 } 2848 2849 static void dec_mnt_namespaces(struct ucounts *ucounts) 2850 { 2851 dec_ucount(ucounts, UCOUNT_MNT_NAMESPACES); 2852 } 2853 2854 static void free_mnt_ns(struct mnt_namespace *ns) 2855 { 2856 ns_free_inum(&ns->ns); 2857 dec_mnt_namespaces(ns->ucounts); 2858 put_user_ns(ns->user_ns); 2859 kfree(ns); 2860 } 2861 2862 /* 2863 * Assign a sequence number so we can detect when we attempt to bind 2864 * mount a reference to an older mount namespace into the current 2865 * mount namespace, preventing reference counting loops. A 64bit 2866 * number incrementing at 10Ghz will take 12,427 years to wrap which 2867 * is effectively never, so we can ignore the possibility. 2868 */ 2869 static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1); 2870 2871 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns) 2872 { 2873 struct mnt_namespace *new_ns; 2874 struct ucounts *ucounts; 2875 int ret; 2876 2877 ucounts = inc_mnt_namespaces(user_ns); 2878 if (!ucounts) 2879 return ERR_PTR(-ENOSPC); 2880 2881 new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL); 2882 if (!new_ns) { 2883 dec_mnt_namespaces(ucounts); 2884 return ERR_PTR(-ENOMEM); 2885 } 2886 ret = ns_alloc_inum(&new_ns->ns); 2887 if (ret) { 2888 kfree(new_ns); 2889 dec_mnt_namespaces(ucounts); 2890 return ERR_PTR(ret); 2891 } 2892 new_ns->ns.ops = &mntns_operations; 2893 new_ns->seq = atomic64_add_return(1, &mnt_ns_seq); 2894 atomic_set(&new_ns->count, 1); 2895 new_ns->root = NULL; 2896 INIT_LIST_HEAD(&new_ns->list); 2897 init_waitqueue_head(&new_ns->poll); 2898 new_ns->event = 0; 2899 new_ns->user_ns = get_user_ns(user_ns); 2900 new_ns->ucounts = ucounts; 2901 new_ns->mounts = 0; 2902 new_ns->pending_mounts = 0; 2903 return new_ns; 2904 } 2905 2906 __latent_entropy 2907 struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns, 2908 struct user_namespace *user_ns, struct fs_struct *new_fs) 2909 { 2910 struct mnt_namespace *new_ns; 2911 struct vfsmount *rootmnt = NULL, *pwdmnt = NULL; 2912 struct mount *p, *q; 2913 struct mount *old; 2914 struct mount *new; 2915 int copy_flags; 2916 2917 BUG_ON(!ns); 2918 2919 if (likely(!(flags & CLONE_NEWNS))) { 2920 get_mnt_ns(ns); 2921 return ns; 2922 } 2923 2924 old = ns->root; 2925 2926 new_ns = alloc_mnt_ns(user_ns); 2927 if (IS_ERR(new_ns)) 2928 return new_ns; 2929 2930 namespace_lock(); 2931 /* First pass: copy the tree topology */ 2932 copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE; 2933 if (user_ns != ns->user_ns) 2934 copy_flags |= CL_SHARED_TO_SLAVE | CL_UNPRIVILEGED; 2935 new = copy_tree(old, old->mnt.mnt_root, copy_flags); 2936 if (IS_ERR(new)) { 2937 namespace_unlock(); 2938 free_mnt_ns(new_ns); 2939 return ERR_CAST(new); 2940 } 2941 new_ns->root = new; 2942 list_add_tail(&new_ns->list, &new->mnt_list); 2943 2944 /* 2945 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts 2946 * as belonging to new namespace. We have already acquired a private 2947 * fs_struct, so tsk->fs->lock is not needed. 2948 */ 2949 p = old; 2950 q = new; 2951 while (p) { 2952 q->mnt_ns = new_ns; 2953 new_ns->mounts++; 2954 if (new_fs) { 2955 if (&p->mnt == new_fs->root.mnt) { 2956 new_fs->root.mnt = mntget(&q->mnt); 2957 rootmnt = &p->mnt; 2958 } 2959 if (&p->mnt == new_fs->pwd.mnt) { 2960 new_fs->pwd.mnt = mntget(&q->mnt); 2961 pwdmnt = &p->mnt; 2962 } 2963 } 2964 p = next_mnt(p, old); 2965 q = next_mnt(q, new); 2966 if (!q) 2967 break; 2968 while (p->mnt.mnt_root != q->mnt.mnt_root) 2969 p = next_mnt(p, old); 2970 } 2971 namespace_unlock(); 2972 2973 if (rootmnt) 2974 mntput(rootmnt); 2975 if (pwdmnt) 2976 mntput(pwdmnt); 2977 2978 return new_ns; 2979 } 2980 2981 /** 2982 * create_mnt_ns - creates a private namespace and adds a root filesystem 2983 * @mnt: pointer to the new root filesystem mountpoint 2984 */ 2985 static struct mnt_namespace *create_mnt_ns(struct vfsmount *m) 2986 { 2987 struct mnt_namespace *new_ns = alloc_mnt_ns(&init_user_ns); 2988 if (!IS_ERR(new_ns)) { 2989 struct mount *mnt = real_mount(m); 2990 mnt->mnt_ns = new_ns; 2991 new_ns->root = mnt; 2992 new_ns->mounts++; 2993 list_add(&mnt->mnt_list, &new_ns->list); 2994 } else { 2995 mntput(m); 2996 } 2997 return new_ns; 2998 } 2999 3000 struct dentry *mount_subtree(struct vfsmount *mnt, const char *name) 3001 { 3002 struct mnt_namespace *ns; 3003 struct super_block *s; 3004 struct path path; 3005 int err; 3006 3007 ns = create_mnt_ns(mnt); 3008 if (IS_ERR(ns)) 3009 return ERR_CAST(ns); 3010 3011 err = vfs_path_lookup(mnt->mnt_root, mnt, 3012 name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path); 3013 3014 put_mnt_ns(ns); 3015 3016 if (err) 3017 return ERR_PTR(err); 3018 3019 /* trade a vfsmount reference for active sb one */ 3020 s = path.mnt->mnt_sb; 3021 atomic_inc(&s->s_active); 3022 mntput(path.mnt); 3023 /* lock the sucker */ 3024 down_write(&s->s_umount); 3025 /* ... and return the root of (sub)tree on it */ 3026 return path.dentry; 3027 } 3028 EXPORT_SYMBOL(mount_subtree); 3029 3030 SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name, 3031 char __user *, type, unsigned long, flags, void __user *, data) 3032 { 3033 int ret; 3034 char *kernel_type; 3035 char *kernel_dev; 3036 void *options; 3037 3038 kernel_type = copy_mount_string(type); 3039 ret = PTR_ERR(kernel_type); 3040 if (IS_ERR(kernel_type)) 3041 goto out_type; 3042 3043 kernel_dev = copy_mount_string(dev_name); 3044 ret = PTR_ERR(kernel_dev); 3045 if (IS_ERR(kernel_dev)) 3046 goto out_dev; 3047 3048 options = copy_mount_options(data); 3049 ret = PTR_ERR(options); 3050 if (IS_ERR(options)) 3051 goto out_data; 3052 3053 ret = do_mount(kernel_dev, dir_name, kernel_type, flags, options); 3054 3055 kfree(options); 3056 out_data: 3057 kfree(kernel_dev); 3058 out_dev: 3059 kfree(kernel_type); 3060 out_type: 3061 return ret; 3062 } 3063 3064 /* 3065 * Return true if path is reachable from root 3066 * 3067 * namespace_sem or mount_lock is held 3068 */ 3069 bool is_path_reachable(struct mount *mnt, struct dentry *dentry, 3070 const struct path *root) 3071 { 3072 while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) { 3073 dentry = mnt->mnt_mountpoint; 3074 mnt = mnt->mnt_parent; 3075 } 3076 return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry); 3077 } 3078 3079 bool path_is_under(const struct path *path1, const struct path *path2) 3080 { 3081 bool res; 3082 read_seqlock_excl(&mount_lock); 3083 res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2); 3084 read_sequnlock_excl(&mount_lock); 3085 return res; 3086 } 3087 EXPORT_SYMBOL(path_is_under); 3088 3089 /* 3090 * pivot_root Semantics: 3091 * Moves the root file system of the current process to the directory put_old, 3092 * makes new_root as the new root file system of the current process, and sets 3093 * root/cwd of all processes which had them on the current root to new_root. 3094 * 3095 * Restrictions: 3096 * The new_root and put_old must be directories, and must not be on the 3097 * same file system as the current process root. The put_old must be 3098 * underneath new_root, i.e. adding a non-zero number of /.. to the string 3099 * pointed to by put_old must yield the same directory as new_root. No other 3100 * file system may be mounted on put_old. After all, new_root is a mountpoint. 3101 * 3102 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem. 3103 * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives 3104 * in this situation. 3105 * 3106 * Notes: 3107 * - we don't move root/cwd if they are not at the root (reason: if something 3108 * cared enough to change them, it's probably wrong to force them elsewhere) 3109 * - it's okay to pick a root that isn't the root of a file system, e.g. 3110 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint, 3111 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root 3112 * first. 3113 */ 3114 SYSCALL_DEFINE2(pivot_root, const char __user *, new_root, 3115 const char __user *, put_old) 3116 { 3117 struct path new, old, parent_path, root_parent, root; 3118 struct mount *new_mnt, *root_mnt, *old_mnt; 3119 struct mountpoint *old_mp, *root_mp; 3120 int error; 3121 3122 if (!may_mount()) 3123 return -EPERM; 3124 3125 error = user_path_dir(new_root, &new); 3126 if (error) 3127 goto out0; 3128 3129 error = user_path_dir(put_old, &old); 3130 if (error) 3131 goto out1; 3132 3133 error = security_sb_pivotroot(&old, &new); 3134 if (error) 3135 goto out2; 3136 3137 get_fs_root(current->fs, &root); 3138 old_mp = lock_mount(&old); 3139 error = PTR_ERR(old_mp); 3140 if (IS_ERR(old_mp)) 3141 goto out3; 3142 3143 error = -EINVAL; 3144 new_mnt = real_mount(new.mnt); 3145 root_mnt = real_mount(root.mnt); 3146 old_mnt = real_mount(old.mnt); 3147 if (IS_MNT_SHARED(old_mnt) || 3148 IS_MNT_SHARED(new_mnt->mnt_parent) || 3149 IS_MNT_SHARED(root_mnt->mnt_parent)) 3150 goto out4; 3151 if (!check_mnt(root_mnt) || !check_mnt(new_mnt)) 3152 goto out4; 3153 if (new_mnt->mnt.mnt_flags & MNT_LOCKED) 3154 goto out4; 3155 error = -ENOENT; 3156 if (d_unlinked(new.dentry)) 3157 goto out4; 3158 error = -EBUSY; 3159 if (new_mnt == root_mnt || old_mnt == root_mnt) 3160 goto out4; /* loop, on the same file system */ 3161 error = -EINVAL; 3162 if (root.mnt->mnt_root != root.dentry) 3163 goto out4; /* not a mountpoint */ 3164 if (!mnt_has_parent(root_mnt)) 3165 goto out4; /* not attached */ 3166 root_mp = root_mnt->mnt_mp; 3167 if (new.mnt->mnt_root != new.dentry) 3168 goto out4; /* not a mountpoint */ 3169 if (!mnt_has_parent(new_mnt)) 3170 goto out4; /* not attached */ 3171 /* make sure we can reach put_old from new_root */ 3172 if (!is_path_reachable(old_mnt, old.dentry, &new)) 3173 goto out4; 3174 /* make certain new is below the root */ 3175 if (!is_path_reachable(new_mnt, new.dentry, &root)) 3176 goto out4; 3177 root_mp->m_count++; /* pin it so it won't go away */ 3178 lock_mount_hash(); 3179 detach_mnt(new_mnt, &parent_path); 3180 detach_mnt(root_mnt, &root_parent); 3181 if (root_mnt->mnt.mnt_flags & MNT_LOCKED) { 3182 new_mnt->mnt.mnt_flags |= MNT_LOCKED; 3183 root_mnt->mnt.mnt_flags &= ~MNT_LOCKED; 3184 } 3185 /* mount old root on put_old */ 3186 attach_mnt(root_mnt, old_mnt, old_mp); 3187 /* mount new_root on / */ 3188 attach_mnt(new_mnt, real_mount(root_parent.mnt), root_mp); 3189 touch_mnt_namespace(current->nsproxy->mnt_ns); 3190 /* A moved mount should not expire automatically */ 3191 list_del_init(&new_mnt->mnt_expire); 3192 put_mountpoint(root_mp); 3193 unlock_mount_hash(); 3194 chroot_fs_refs(&root, &new); 3195 error = 0; 3196 out4: 3197 unlock_mount(old_mp); 3198 if (!error) { 3199 path_put(&root_parent); 3200 path_put(&parent_path); 3201 } 3202 out3: 3203 path_put(&root); 3204 out2: 3205 path_put(&old); 3206 out1: 3207 path_put(&new); 3208 out0: 3209 return error; 3210 } 3211 3212 static void __init init_mount_tree(void) 3213 { 3214 struct vfsmount *mnt; 3215 struct mnt_namespace *ns; 3216 struct path root; 3217 struct file_system_type *type; 3218 3219 type = get_fs_type("rootfs"); 3220 if (!type) 3221 panic("Can't find rootfs type"); 3222 mnt = vfs_kern_mount(type, 0, "rootfs", NULL); 3223 put_filesystem(type); 3224 if (IS_ERR(mnt)) 3225 panic("Can't create rootfs"); 3226 3227 ns = create_mnt_ns(mnt); 3228 if (IS_ERR(ns)) 3229 panic("Can't allocate initial namespace"); 3230 3231 init_task.nsproxy->mnt_ns = ns; 3232 get_mnt_ns(ns); 3233 3234 root.mnt = mnt; 3235 root.dentry = mnt->mnt_root; 3236 mnt->mnt_flags |= MNT_LOCKED; 3237 3238 set_fs_pwd(current->fs, &root); 3239 set_fs_root(current->fs, &root); 3240 } 3241 3242 void __init mnt_init(void) 3243 { 3244 unsigned u; 3245 int err; 3246 3247 mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount), 3248 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL); 3249 3250 mount_hashtable = alloc_large_system_hash("Mount-cache", 3251 sizeof(struct hlist_head), 3252 mhash_entries, 19, 3253 0, 3254 &m_hash_shift, &m_hash_mask, 0, 0); 3255 mountpoint_hashtable = alloc_large_system_hash("Mountpoint-cache", 3256 sizeof(struct hlist_head), 3257 mphash_entries, 19, 3258 0, 3259 &mp_hash_shift, &mp_hash_mask, 0, 0); 3260 3261 if (!mount_hashtable || !mountpoint_hashtable) 3262 panic("Failed to allocate mount hash table\n"); 3263 3264 for (u = 0; u <= m_hash_mask; u++) 3265 INIT_HLIST_HEAD(&mount_hashtable[u]); 3266 for (u = 0; u <= mp_hash_mask; u++) 3267 INIT_HLIST_HEAD(&mountpoint_hashtable[u]); 3268 3269 kernfs_init(); 3270 3271 err = sysfs_init(); 3272 if (err) 3273 printk(KERN_WARNING "%s: sysfs_init error: %d\n", 3274 __func__, err); 3275 fs_kobj = kobject_create_and_add("fs", NULL); 3276 if (!fs_kobj) 3277 printk(KERN_WARNING "%s: kobj create error\n", __func__); 3278 init_rootfs(); 3279 init_mount_tree(); 3280 } 3281 3282 void put_mnt_ns(struct mnt_namespace *ns) 3283 { 3284 if (!atomic_dec_and_test(&ns->count)) 3285 return; 3286 drop_collected_mounts(&ns->root->mnt); 3287 free_mnt_ns(ns); 3288 } 3289 3290 struct vfsmount *kern_mount_data(struct file_system_type *type, void *data) 3291 { 3292 struct vfsmount *mnt; 3293 mnt = vfs_kern_mount(type, MS_KERNMOUNT, type->name, data); 3294 if (!IS_ERR(mnt)) { 3295 /* 3296 * it is a longterm mount, don't release mnt until 3297 * we unmount before file sys is unregistered 3298 */ 3299 real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL; 3300 } 3301 return mnt; 3302 } 3303 EXPORT_SYMBOL_GPL(kern_mount_data); 3304 3305 void kern_unmount(struct vfsmount *mnt) 3306 { 3307 /* release long term mount so mount point can be released */ 3308 if (!IS_ERR_OR_NULL(mnt)) { 3309 real_mount(mnt)->mnt_ns = NULL; 3310 synchronize_rcu(); /* yecchhh... */ 3311 mntput(mnt); 3312 } 3313 } 3314 EXPORT_SYMBOL(kern_unmount); 3315 3316 bool our_mnt(struct vfsmount *mnt) 3317 { 3318 return check_mnt(real_mount(mnt)); 3319 } 3320 3321 bool current_chrooted(void) 3322 { 3323 /* Does the current process have a non-standard root */ 3324 struct path ns_root; 3325 struct path fs_root; 3326 bool chrooted; 3327 3328 /* Find the namespace root */ 3329 ns_root.mnt = ¤t->nsproxy->mnt_ns->root->mnt; 3330 ns_root.dentry = ns_root.mnt->mnt_root; 3331 path_get(&ns_root); 3332 while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root)) 3333 ; 3334 3335 get_fs_root(current->fs, &fs_root); 3336 3337 chrooted = !path_equal(&fs_root, &ns_root); 3338 3339 path_put(&fs_root); 3340 path_put(&ns_root); 3341 3342 return chrooted; 3343 } 3344 3345 static bool mnt_already_visible(struct mnt_namespace *ns, struct vfsmount *new, 3346 int *new_mnt_flags) 3347 { 3348 int new_flags = *new_mnt_flags; 3349 struct mount *mnt; 3350 bool visible = false; 3351 3352 down_read(&namespace_sem); 3353 list_for_each_entry(mnt, &ns->list, mnt_list) { 3354 struct mount *child; 3355 int mnt_flags; 3356 3357 if (mnt->mnt.mnt_sb->s_type != new->mnt_sb->s_type) 3358 continue; 3359 3360 /* This mount is not fully visible if it's root directory 3361 * is not the root directory of the filesystem. 3362 */ 3363 if (mnt->mnt.mnt_root != mnt->mnt.mnt_sb->s_root) 3364 continue; 3365 3366 /* A local view of the mount flags */ 3367 mnt_flags = mnt->mnt.mnt_flags; 3368 3369 /* Don't miss readonly hidden in the superblock flags */ 3370 if (mnt->mnt.mnt_sb->s_flags & MS_RDONLY) 3371 mnt_flags |= MNT_LOCK_READONLY; 3372 3373 /* Verify the mount flags are equal to or more permissive 3374 * than the proposed new mount. 3375 */ 3376 if ((mnt_flags & MNT_LOCK_READONLY) && 3377 !(new_flags & MNT_READONLY)) 3378 continue; 3379 if ((mnt_flags & MNT_LOCK_ATIME) && 3380 ((mnt_flags & MNT_ATIME_MASK) != (new_flags & MNT_ATIME_MASK))) 3381 continue; 3382 3383 /* This mount is not fully visible if there are any 3384 * locked child mounts that cover anything except for 3385 * empty directories. 3386 */ 3387 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) { 3388 struct inode *inode = child->mnt_mountpoint->d_inode; 3389 /* Only worry about locked mounts */ 3390 if (!(child->mnt.mnt_flags & MNT_LOCKED)) 3391 continue; 3392 /* Is the directory permanetly empty? */ 3393 if (!is_empty_dir_inode(inode)) 3394 goto next; 3395 } 3396 /* Preserve the locked attributes */ 3397 *new_mnt_flags |= mnt_flags & (MNT_LOCK_READONLY | \ 3398 MNT_LOCK_ATIME); 3399 visible = true; 3400 goto found; 3401 next: ; 3402 } 3403 found: 3404 up_read(&namespace_sem); 3405 return visible; 3406 } 3407 3408 static bool mount_too_revealing(struct vfsmount *mnt, int *new_mnt_flags) 3409 { 3410 const unsigned long required_iflags = SB_I_NOEXEC | SB_I_NODEV; 3411 struct mnt_namespace *ns = current->nsproxy->mnt_ns; 3412 unsigned long s_iflags; 3413 3414 if (ns->user_ns == &init_user_ns) 3415 return false; 3416 3417 /* Can this filesystem be too revealing? */ 3418 s_iflags = mnt->mnt_sb->s_iflags; 3419 if (!(s_iflags & SB_I_USERNS_VISIBLE)) 3420 return false; 3421 3422 if ((s_iflags & required_iflags) != required_iflags) { 3423 WARN_ONCE(1, "Expected s_iflags to contain 0x%lx\n", 3424 required_iflags); 3425 return true; 3426 } 3427 3428 return !mnt_already_visible(ns, mnt, new_mnt_flags); 3429 } 3430 3431 bool mnt_may_suid(struct vfsmount *mnt) 3432 { 3433 /* 3434 * Foreign mounts (accessed via fchdir or through /proc 3435 * symlinks) are always treated as if they are nosuid. This 3436 * prevents namespaces from trusting potentially unsafe 3437 * suid/sgid bits, file caps, or security labels that originate 3438 * in other namespaces. 3439 */ 3440 return !(mnt->mnt_flags & MNT_NOSUID) && check_mnt(real_mount(mnt)) && 3441 current_in_userns(mnt->mnt_sb->s_user_ns); 3442 } 3443 3444 static struct ns_common *mntns_get(struct task_struct *task) 3445 { 3446 struct ns_common *ns = NULL; 3447 struct nsproxy *nsproxy; 3448 3449 task_lock(task); 3450 nsproxy = task->nsproxy; 3451 if (nsproxy) { 3452 ns = &nsproxy->mnt_ns->ns; 3453 get_mnt_ns(to_mnt_ns(ns)); 3454 } 3455 task_unlock(task); 3456 3457 return ns; 3458 } 3459 3460 static void mntns_put(struct ns_common *ns) 3461 { 3462 put_mnt_ns(to_mnt_ns(ns)); 3463 } 3464 3465 static int mntns_install(struct nsproxy *nsproxy, struct ns_common *ns) 3466 { 3467 struct fs_struct *fs = current->fs; 3468 struct mnt_namespace *mnt_ns = to_mnt_ns(ns); 3469 struct path root; 3470 3471 if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) || 3472 !ns_capable(current_user_ns(), CAP_SYS_CHROOT) || 3473 !ns_capable(current_user_ns(), CAP_SYS_ADMIN)) 3474 return -EPERM; 3475 3476 if (fs->users != 1) 3477 return -EINVAL; 3478 3479 get_mnt_ns(mnt_ns); 3480 put_mnt_ns(nsproxy->mnt_ns); 3481 nsproxy->mnt_ns = mnt_ns; 3482 3483 /* Find the root */ 3484 root.mnt = &mnt_ns->root->mnt; 3485 root.dentry = mnt_ns->root->mnt.mnt_root; 3486 path_get(&root); 3487 while(d_mountpoint(root.dentry) && follow_down_one(&root)) 3488 ; 3489 3490 /* Update the pwd and root */ 3491 set_fs_pwd(fs, &root); 3492 set_fs_root(fs, &root); 3493 3494 path_put(&root); 3495 return 0; 3496 } 3497 3498 static struct user_namespace *mntns_owner(struct ns_common *ns) 3499 { 3500 return to_mnt_ns(ns)->user_ns; 3501 } 3502 3503 const struct proc_ns_operations mntns_operations = { 3504 .name = "mnt", 3505 .type = CLONE_NEWNS, 3506 .get = mntns_get, 3507 .put = mntns_put, 3508 .install = mntns_install, 3509 .owner = mntns_owner, 3510 }; 3511