xref: /openbmc/linux/fs/namespace.c (revision aa0dc6a7)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/fs/namespace.c
4  *
5  * (C) Copyright Al Viro 2000, 2001
6  *
7  * Based on code from fs/super.c, copyright Linus Torvalds and others.
8  * Heavily rewritten.
9  */
10 
11 #include <linux/syscalls.h>
12 #include <linux/export.h>
13 #include <linux/capability.h>
14 #include <linux/mnt_namespace.h>
15 #include <linux/user_namespace.h>
16 #include <linux/namei.h>
17 #include <linux/security.h>
18 #include <linux/cred.h>
19 #include <linux/idr.h>
20 #include <linux/init.h>		/* init_rootfs */
21 #include <linux/fs_struct.h>	/* get_fs_root et.al. */
22 #include <linux/fsnotify.h>	/* fsnotify_vfsmount_delete */
23 #include <linux/file.h>
24 #include <linux/uaccess.h>
25 #include <linux/proc_ns.h>
26 #include <linux/magic.h>
27 #include <linux/memblock.h>
28 #include <linux/proc_fs.h>
29 #include <linux/task_work.h>
30 #include <linux/sched/task.h>
31 #include <uapi/linux/mount.h>
32 #include <linux/fs_context.h>
33 #include <linux/shmem_fs.h>
34 
35 #include "pnode.h"
36 #include "internal.h"
37 
38 /* Maximum number of mounts in a mount namespace */
39 unsigned int sysctl_mount_max __read_mostly = 100000;
40 
41 static unsigned int m_hash_mask __read_mostly;
42 static unsigned int m_hash_shift __read_mostly;
43 static unsigned int mp_hash_mask __read_mostly;
44 static unsigned int mp_hash_shift __read_mostly;
45 
46 static __initdata unsigned long mhash_entries;
47 static int __init set_mhash_entries(char *str)
48 {
49 	if (!str)
50 		return 0;
51 	mhash_entries = simple_strtoul(str, &str, 0);
52 	return 1;
53 }
54 __setup("mhash_entries=", set_mhash_entries);
55 
56 static __initdata unsigned long mphash_entries;
57 static int __init set_mphash_entries(char *str)
58 {
59 	if (!str)
60 		return 0;
61 	mphash_entries = simple_strtoul(str, &str, 0);
62 	return 1;
63 }
64 __setup("mphash_entries=", set_mphash_entries);
65 
66 static u64 event;
67 static DEFINE_IDA(mnt_id_ida);
68 static DEFINE_IDA(mnt_group_ida);
69 
70 static struct hlist_head *mount_hashtable __read_mostly;
71 static struct hlist_head *mountpoint_hashtable __read_mostly;
72 static struct kmem_cache *mnt_cache __read_mostly;
73 static DECLARE_RWSEM(namespace_sem);
74 static HLIST_HEAD(unmounted);	/* protected by namespace_sem */
75 static LIST_HEAD(ex_mountpoints); /* protected by namespace_sem */
76 
77 struct mount_kattr {
78 	unsigned int attr_set;
79 	unsigned int attr_clr;
80 	unsigned int propagation;
81 	unsigned int lookup_flags;
82 	bool recurse;
83 	struct user_namespace *mnt_userns;
84 };
85 
86 /* /sys/fs */
87 struct kobject *fs_kobj;
88 EXPORT_SYMBOL_GPL(fs_kobj);
89 
90 /*
91  * vfsmount lock may be taken for read to prevent changes to the
92  * vfsmount hash, ie. during mountpoint lookups or walking back
93  * up the tree.
94  *
95  * It should be taken for write in all cases where the vfsmount
96  * tree or hash is modified or when a vfsmount structure is modified.
97  */
98 __cacheline_aligned_in_smp DEFINE_SEQLOCK(mount_lock);
99 
100 static inline void lock_mount_hash(void)
101 {
102 	write_seqlock(&mount_lock);
103 }
104 
105 static inline void unlock_mount_hash(void)
106 {
107 	write_sequnlock(&mount_lock);
108 }
109 
110 static inline struct hlist_head *m_hash(struct vfsmount *mnt, struct dentry *dentry)
111 {
112 	unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
113 	tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
114 	tmp = tmp + (tmp >> m_hash_shift);
115 	return &mount_hashtable[tmp & m_hash_mask];
116 }
117 
118 static inline struct hlist_head *mp_hash(struct dentry *dentry)
119 {
120 	unsigned long tmp = ((unsigned long)dentry / L1_CACHE_BYTES);
121 	tmp = tmp + (tmp >> mp_hash_shift);
122 	return &mountpoint_hashtable[tmp & mp_hash_mask];
123 }
124 
125 static int mnt_alloc_id(struct mount *mnt)
126 {
127 	int res = ida_alloc(&mnt_id_ida, GFP_KERNEL);
128 
129 	if (res < 0)
130 		return res;
131 	mnt->mnt_id = res;
132 	return 0;
133 }
134 
135 static void mnt_free_id(struct mount *mnt)
136 {
137 	ida_free(&mnt_id_ida, mnt->mnt_id);
138 }
139 
140 /*
141  * Allocate a new peer group ID
142  */
143 static int mnt_alloc_group_id(struct mount *mnt)
144 {
145 	int res = ida_alloc_min(&mnt_group_ida, 1, GFP_KERNEL);
146 
147 	if (res < 0)
148 		return res;
149 	mnt->mnt_group_id = res;
150 	return 0;
151 }
152 
153 /*
154  * Release a peer group ID
155  */
156 void mnt_release_group_id(struct mount *mnt)
157 {
158 	ida_free(&mnt_group_ida, mnt->mnt_group_id);
159 	mnt->mnt_group_id = 0;
160 }
161 
162 /*
163  * vfsmount lock must be held for read
164  */
165 static inline void mnt_add_count(struct mount *mnt, int n)
166 {
167 #ifdef CONFIG_SMP
168 	this_cpu_add(mnt->mnt_pcp->mnt_count, n);
169 #else
170 	preempt_disable();
171 	mnt->mnt_count += n;
172 	preempt_enable();
173 #endif
174 }
175 
176 /*
177  * vfsmount lock must be held for write
178  */
179 int mnt_get_count(struct mount *mnt)
180 {
181 #ifdef CONFIG_SMP
182 	int count = 0;
183 	int cpu;
184 
185 	for_each_possible_cpu(cpu) {
186 		count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
187 	}
188 
189 	return count;
190 #else
191 	return mnt->mnt_count;
192 #endif
193 }
194 
195 static struct mount *alloc_vfsmnt(const char *name)
196 {
197 	struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
198 	if (mnt) {
199 		int err;
200 
201 		err = mnt_alloc_id(mnt);
202 		if (err)
203 			goto out_free_cache;
204 
205 		if (name) {
206 			mnt->mnt_devname = kstrdup_const(name, GFP_KERNEL);
207 			if (!mnt->mnt_devname)
208 				goto out_free_id;
209 		}
210 
211 #ifdef CONFIG_SMP
212 		mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
213 		if (!mnt->mnt_pcp)
214 			goto out_free_devname;
215 
216 		this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
217 #else
218 		mnt->mnt_count = 1;
219 		mnt->mnt_writers = 0;
220 #endif
221 
222 		INIT_HLIST_NODE(&mnt->mnt_hash);
223 		INIT_LIST_HEAD(&mnt->mnt_child);
224 		INIT_LIST_HEAD(&mnt->mnt_mounts);
225 		INIT_LIST_HEAD(&mnt->mnt_list);
226 		INIT_LIST_HEAD(&mnt->mnt_expire);
227 		INIT_LIST_HEAD(&mnt->mnt_share);
228 		INIT_LIST_HEAD(&mnt->mnt_slave_list);
229 		INIT_LIST_HEAD(&mnt->mnt_slave);
230 		INIT_HLIST_NODE(&mnt->mnt_mp_list);
231 		INIT_LIST_HEAD(&mnt->mnt_umounting);
232 		INIT_HLIST_HEAD(&mnt->mnt_stuck_children);
233 		mnt->mnt.mnt_userns = &init_user_ns;
234 	}
235 	return mnt;
236 
237 #ifdef CONFIG_SMP
238 out_free_devname:
239 	kfree_const(mnt->mnt_devname);
240 #endif
241 out_free_id:
242 	mnt_free_id(mnt);
243 out_free_cache:
244 	kmem_cache_free(mnt_cache, mnt);
245 	return NULL;
246 }
247 
248 /*
249  * Most r/o checks on a fs are for operations that take
250  * discrete amounts of time, like a write() or unlink().
251  * We must keep track of when those operations start
252  * (for permission checks) and when they end, so that
253  * we can determine when writes are able to occur to
254  * a filesystem.
255  */
256 /*
257  * __mnt_is_readonly: check whether a mount is read-only
258  * @mnt: the mount to check for its write status
259  *
260  * This shouldn't be used directly ouside of the VFS.
261  * It does not guarantee that the filesystem will stay
262  * r/w, just that it is right *now*.  This can not and
263  * should not be used in place of IS_RDONLY(inode).
264  * mnt_want/drop_write() will _keep_ the filesystem
265  * r/w.
266  */
267 bool __mnt_is_readonly(struct vfsmount *mnt)
268 {
269 	return (mnt->mnt_flags & MNT_READONLY) || sb_rdonly(mnt->mnt_sb);
270 }
271 EXPORT_SYMBOL_GPL(__mnt_is_readonly);
272 
273 static inline void mnt_inc_writers(struct mount *mnt)
274 {
275 #ifdef CONFIG_SMP
276 	this_cpu_inc(mnt->mnt_pcp->mnt_writers);
277 #else
278 	mnt->mnt_writers++;
279 #endif
280 }
281 
282 static inline void mnt_dec_writers(struct mount *mnt)
283 {
284 #ifdef CONFIG_SMP
285 	this_cpu_dec(mnt->mnt_pcp->mnt_writers);
286 #else
287 	mnt->mnt_writers--;
288 #endif
289 }
290 
291 static unsigned int mnt_get_writers(struct mount *mnt)
292 {
293 #ifdef CONFIG_SMP
294 	unsigned int count = 0;
295 	int cpu;
296 
297 	for_each_possible_cpu(cpu) {
298 		count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
299 	}
300 
301 	return count;
302 #else
303 	return mnt->mnt_writers;
304 #endif
305 }
306 
307 static int mnt_is_readonly(struct vfsmount *mnt)
308 {
309 	if (mnt->mnt_sb->s_readonly_remount)
310 		return 1;
311 	/* Order wrt setting s_flags/s_readonly_remount in do_remount() */
312 	smp_rmb();
313 	return __mnt_is_readonly(mnt);
314 }
315 
316 /*
317  * Most r/o & frozen checks on a fs are for operations that take discrete
318  * amounts of time, like a write() or unlink().  We must keep track of when
319  * those operations start (for permission checks) and when they end, so that we
320  * can determine when writes are able to occur to a filesystem.
321  */
322 /**
323  * __mnt_want_write - get write access to a mount without freeze protection
324  * @m: the mount on which to take a write
325  *
326  * This tells the low-level filesystem that a write is about to be performed to
327  * it, and makes sure that writes are allowed (mnt it read-write) before
328  * returning success. This operation does not protect against filesystem being
329  * frozen. When the write operation is finished, __mnt_drop_write() must be
330  * called. This is effectively a refcount.
331  */
332 int __mnt_want_write(struct vfsmount *m)
333 {
334 	struct mount *mnt = real_mount(m);
335 	int ret = 0;
336 
337 	preempt_disable();
338 	mnt_inc_writers(mnt);
339 	/*
340 	 * The store to mnt_inc_writers must be visible before we pass
341 	 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
342 	 * incremented count after it has set MNT_WRITE_HOLD.
343 	 */
344 	smp_mb();
345 	while (READ_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD)
346 		cpu_relax();
347 	/*
348 	 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
349 	 * be set to match its requirements. So we must not load that until
350 	 * MNT_WRITE_HOLD is cleared.
351 	 */
352 	smp_rmb();
353 	if (mnt_is_readonly(m)) {
354 		mnt_dec_writers(mnt);
355 		ret = -EROFS;
356 	}
357 	preempt_enable();
358 
359 	return ret;
360 }
361 
362 /**
363  * mnt_want_write - get write access to a mount
364  * @m: the mount on which to take a write
365  *
366  * This tells the low-level filesystem that a write is about to be performed to
367  * it, and makes sure that writes are allowed (mount is read-write, filesystem
368  * is not frozen) before returning success.  When the write operation is
369  * finished, mnt_drop_write() must be called.  This is effectively a refcount.
370  */
371 int mnt_want_write(struct vfsmount *m)
372 {
373 	int ret;
374 
375 	sb_start_write(m->mnt_sb);
376 	ret = __mnt_want_write(m);
377 	if (ret)
378 		sb_end_write(m->mnt_sb);
379 	return ret;
380 }
381 EXPORT_SYMBOL_GPL(mnt_want_write);
382 
383 /**
384  * __mnt_want_write_file - get write access to a file's mount
385  * @file: the file who's mount on which to take a write
386  *
387  * This is like __mnt_want_write, but if the file is already open for writing it
388  * skips incrementing mnt_writers (since the open file already has a reference)
389  * and instead only does the check for emergency r/o remounts.  This must be
390  * paired with __mnt_drop_write_file.
391  */
392 int __mnt_want_write_file(struct file *file)
393 {
394 	if (file->f_mode & FMODE_WRITER) {
395 		/*
396 		 * Superblock may have become readonly while there are still
397 		 * writable fd's, e.g. due to a fs error with errors=remount-ro
398 		 */
399 		if (__mnt_is_readonly(file->f_path.mnt))
400 			return -EROFS;
401 		return 0;
402 	}
403 	return __mnt_want_write(file->f_path.mnt);
404 }
405 
406 /**
407  * mnt_want_write_file - get write access to a file's mount
408  * @file: the file who's mount on which to take a write
409  *
410  * This is like mnt_want_write, but if the file is already open for writing it
411  * skips incrementing mnt_writers (since the open file already has a reference)
412  * and instead only does the freeze protection and the check for emergency r/o
413  * remounts.  This must be paired with mnt_drop_write_file.
414  */
415 int mnt_want_write_file(struct file *file)
416 {
417 	int ret;
418 
419 	sb_start_write(file_inode(file)->i_sb);
420 	ret = __mnt_want_write_file(file);
421 	if (ret)
422 		sb_end_write(file_inode(file)->i_sb);
423 	return ret;
424 }
425 EXPORT_SYMBOL_GPL(mnt_want_write_file);
426 
427 /**
428  * __mnt_drop_write - give up write access to a mount
429  * @mnt: the mount on which to give up write access
430  *
431  * Tells the low-level filesystem that we are done
432  * performing writes to it.  Must be matched with
433  * __mnt_want_write() call above.
434  */
435 void __mnt_drop_write(struct vfsmount *mnt)
436 {
437 	preempt_disable();
438 	mnt_dec_writers(real_mount(mnt));
439 	preempt_enable();
440 }
441 
442 /**
443  * mnt_drop_write - give up write access to a mount
444  * @mnt: the mount on which to give up write access
445  *
446  * Tells the low-level filesystem that we are done performing writes to it and
447  * also allows filesystem to be frozen again.  Must be matched with
448  * mnt_want_write() call above.
449  */
450 void mnt_drop_write(struct vfsmount *mnt)
451 {
452 	__mnt_drop_write(mnt);
453 	sb_end_write(mnt->mnt_sb);
454 }
455 EXPORT_SYMBOL_GPL(mnt_drop_write);
456 
457 void __mnt_drop_write_file(struct file *file)
458 {
459 	if (!(file->f_mode & FMODE_WRITER))
460 		__mnt_drop_write(file->f_path.mnt);
461 }
462 
463 void mnt_drop_write_file(struct file *file)
464 {
465 	__mnt_drop_write_file(file);
466 	sb_end_write(file_inode(file)->i_sb);
467 }
468 EXPORT_SYMBOL(mnt_drop_write_file);
469 
470 static inline int mnt_hold_writers(struct mount *mnt)
471 {
472 	mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
473 	/*
474 	 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
475 	 * should be visible before we do.
476 	 */
477 	smp_mb();
478 
479 	/*
480 	 * With writers on hold, if this value is zero, then there are
481 	 * definitely no active writers (although held writers may subsequently
482 	 * increment the count, they'll have to wait, and decrement it after
483 	 * seeing MNT_READONLY).
484 	 *
485 	 * It is OK to have counter incremented on one CPU and decremented on
486 	 * another: the sum will add up correctly. The danger would be when we
487 	 * sum up each counter, if we read a counter before it is incremented,
488 	 * but then read another CPU's count which it has been subsequently
489 	 * decremented from -- we would see more decrements than we should.
490 	 * MNT_WRITE_HOLD protects against this scenario, because
491 	 * mnt_want_write first increments count, then smp_mb, then spins on
492 	 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
493 	 * we're counting up here.
494 	 */
495 	if (mnt_get_writers(mnt) > 0)
496 		return -EBUSY;
497 
498 	return 0;
499 }
500 
501 static inline void mnt_unhold_writers(struct mount *mnt)
502 {
503 	/*
504 	 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
505 	 * that become unheld will see MNT_READONLY.
506 	 */
507 	smp_wmb();
508 	mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
509 }
510 
511 static int mnt_make_readonly(struct mount *mnt)
512 {
513 	int ret;
514 
515 	ret = mnt_hold_writers(mnt);
516 	if (!ret)
517 		mnt->mnt.mnt_flags |= MNT_READONLY;
518 	mnt_unhold_writers(mnt);
519 	return ret;
520 }
521 
522 int sb_prepare_remount_readonly(struct super_block *sb)
523 {
524 	struct mount *mnt;
525 	int err = 0;
526 
527 	/* Racy optimization.  Recheck the counter under MNT_WRITE_HOLD */
528 	if (atomic_long_read(&sb->s_remove_count))
529 		return -EBUSY;
530 
531 	lock_mount_hash();
532 	list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
533 		if (!(mnt->mnt.mnt_flags & MNT_READONLY)) {
534 			mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
535 			smp_mb();
536 			if (mnt_get_writers(mnt) > 0) {
537 				err = -EBUSY;
538 				break;
539 			}
540 		}
541 	}
542 	if (!err && atomic_long_read(&sb->s_remove_count))
543 		err = -EBUSY;
544 
545 	if (!err) {
546 		sb->s_readonly_remount = 1;
547 		smp_wmb();
548 	}
549 	list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
550 		if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
551 			mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
552 	}
553 	unlock_mount_hash();
554 
555 	return err;
556 }
557 
558 static void free_vfsmnt(struct mount *mnt)
559 {
560 	struct user_namespace *mnt_userns;
561 
562 	mnt_userns = mnt_user_ns(&mnt->mnt);
563 	if (mnt_userns != &init_user_ns)
564 		put_user_ns(mnt_userns);
565 	kfree_const(mnt->mnt_devname);
566 #ifdef CONFIG_SMP
567 	free_percpu(mnt->mnt_pcp);
568 #endif
569 	kmem_cache_free(mnt_cache, mnt);
570 }
571 
572 static void delayed_free_vfsmnt(struct rcu_head *head)
573 {
574 	free_vfsmnt(container_of(head, struct mount, mnt_rcu));
575 }
576 
577 /* call under rcu_read_lock */
578 int __legitimize_mnt(struct vfsmount *bastard, unsigned seq)
579 {
580 	struct mount *mnt;
581 	if (read_seqretry(&mount_lock, seq))
582 		return 1;
583 	if (bastard == NULL)
584 		return 0;
585 	mnt = real_mount(bastard);
586 	mnt_add_count(mnt, 1);
587 	smp_mb();			// see mntput_no_expire()
588 	if (likely(!read_seqretry(&mount_lock, seq)))
589 		return 0;
590 	if (bastard->mnt_flags & MNT_SYNC_UMOUNT) {
591 		mnt_add_count(mnt, -1);
592 		return 1;
593 	}
594 	lock_mount_hash();
595 	if (unlikely(bastard->mnt_flags & MNT_DOOMED)) {
596 		mnt_add_count(mnt, -1);
597 		unlock_mount_hash();
598 		return 1;
599 	}
600 	unlock_mount_hash();
601 	/* caller will mntput() */
602 	return -1;
603 }
604 
605 /* call under rcu_read_lock */
606 bool legitimize_mnt(struct vfsmount *bastard, unsigned seq)
607 {
608 	int res = __legitimize_mnt(bastard, seq);
609 	if (likely(!res))
610 		return true;
611 	if (unlikely(res < 0)) {
612 		rcu_read_unlock();
613 		mntput(bastard);
614 		rcu_read_lock();
615 	}
616 	return false;
617 }
618 
619 /*
620  * find the first mount at @dentry on vfsmount @mnt.
621  * call under rcu_read_lock()
622  */
623 struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry)
624 {
625 	struct hlist_head *head = m_hash(mnt, dentry);
626 	struct mount *p;
627 
628 	hlist_for_each_entry_rcu(p, head, mnt_hash)
629 		if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry)
630 			return p;
631 	return NULL;
632 }
633 
634 /*
635  * lookup_mnt - Return the first child mount mounted at path
636  *
637  * "First" means first mounted chronologically.  If you create the
638  * following mounts:
639  *
640  * mount /dev/sda1 /mnt
641  * mount /dev/sda2 /mnt
642  * mount /dev/sda3 /mnt
643  *
644  * Then lookup_mnt() on the base /mnt dentry in the root mount will
645  * return successively the root dentry and vfsmount of /dev/sda1, then
646  * /dev/sda2, then /dev/sda3, then NULL.
647  *
648  * lookup_mnt takes a reference to the found vfsmount.
649  */
650 struct vfsmount *lookup_mnt(const struct path *path)
651 {
652 	struct mount *child_mnt;
653 	struct vfsmount *m;
654 	unsigned seq;
655 
656 	rcu_read_lock();
657 	do {
658 		seq = read_seqbegin(&mount_lock);
659 		child_mnt = __lookup_mnt(path->mnt, path->dentry);
660 		m = child_mnt ? &child_mnt->mnt : NULL;
661 	} while (!legitimize_mnt(m, seq));
662 	rcu_read_unlock();
663 	return m;
664 }
665 
666 static inline void lock_ns_list(struct mnt_namespace *ns)
667 {
668 	spin_lock(&ns->ns_lock);
669 }
670 
671 static inline void unlock_ns_list(struct mnt_namespace *ns)
672 {
673 	spin_unlock(&ns->ns_lock);
674 }
675 
676 static inline bool mnt_is_cursor(struct mount *mnt)
677 {
678 	return mnt->mnt.mnt_flags & MNT_CURSOR;
679 }
680 
681 /*
682  * __is_local_mountpoint - Test to see if dentry is a mountpoint in the
683  *                         current mount namespace.
684  *
685  * The common case is dentries are not mountpoints at all and that
686  * test is handled inline.  For the slow case when we are actually
687  * dealing with a mountpoint of some kind, walk through all of the
688  * mounts in the current mount namespace and test to see if the dentry
689  * is a mountpoint.
690  *
691  * The mount_hashtable is not usable in the context because we
692  * need to identify all mounts that may be in the current mount
693  * namespace not just a mount that happens to have some specified
694  * parent mount.
695  */
696 bool __is_local_mountpoint(struct dentry *dentry)
697 {
698 	struct mnt_namespace *ns = current->nsproxy->mnt_ns;
699 	struct mount *mnt;
700 	bool is_covered = false;
701 
702 	down_read(&namespace_sem);
703 	lock_ns_list(ns);
704 	list_for_each_entry(mnt, &ns->list, mnt_list) {
705 		if (mnt_is_cursor(mnt))
706 			continue;
707 		is_covered = (mnt->mnt_mountpoint == dentry);
708 		if (is_covered)
709 			break;
710 	}
711 	unlock_ns_list(ns);
712 	up_read(&namespace_sem);
713 
714 	return is_covered;
715 }
716 
717 static struct mountpoint *lookup_mountpoint(struct dentry *dentry)
718 {
719 	struct hlist_head *chain = mp_hash(dentry);
720 	struct mountpoint *mp;
721 
722 	hlist_for_each_entry(mp, chain, m_hash) {
723 		if (mp->m_dentry == dentry) {
724 			mp->m_count++;
725 			return mp;
726 		}
727 	}
728 	return NULL;
729 }
730 
731 static struct mountpoint *get_mountpoint(struct dentry *dentry)
732 {
733 	struct mountpoint *mp, *new = NULL;
734 	int ret;
735 
736 	if (d_mountpoint(dentry)) {
737 		/* might be worth a WARN_ON() */
738 		if (d_unlinked(dentry))
739 			return ERR_PTR(-ENOENT);
740 mountpoint:
741 		read_seqlock_excl(&mount_lock);
742 		mp = lookup_mountpoint(dentry);
743 		read_sequnlock_excl(&mount_lock);
744 		if (mp)
745 			goto done;
746 	}
747 
748 	if (!new)
749 		new = kmalloc(sizeof(struct mountpoint), GFP_KERNEL);
750 	if (!new)
751 		return ERR_PTR(-ENOMEM);
752 
753 
754 	/* Exactly one processes may set d_mounted */
755 	ret = d_set_mounted(dentry);
756 
757 	/* Someone else set d_mounted? */
758 	if (ret == -EBUSY)
759 		goto mountpoint;
760 
761 	/* The dentry is not available as a mountpoint? */
762 	mp = ERR_PTR(ret);
763 	if (ret)
764 		goto done;
765 
766 	/* Add the new mountpoint to the hash table */
767 	read_seqlock_excl(&mount_lock);
768 	new->m_dentry = dget(dentry);
769 	new->m_count = 1;
770 	hlist_add_head(&new->m_hash, mp_hash(dentry));
771 	INIT_HLIST_HEAD(&new->m_list);
772 	read_sequnlock_excl(&mount_lock);
773 
774 	mp = new;
775 	new = NULL;
776 done:
777 	kfree(new);
778 	return mp;
779 }
780 
781 /*
782  * vfsmount lock must be held.  Additionally, the caller is responsible
783  * for serializing calls for given disposal list.
784  */
785 static void __put_mountpoint(struct mountpoint *mp, struct list_head *list)
786 {
787 	if (!--mp->m_count) {
788 		struct dentry *dentry = mp->m_dentry;
789 		BUG_ON(!hlist_empty(&mp->m_list));
790 		spin_lock(&dentry->d_lock);
791 		dentry->d_flags &= ~DCACHE_MOUNTED;
792 		spin_unlock(&dentry->d_lock);
793 		dput_to_list(dentry, list);
794 		hlist_del(&mp->m_hash);
795 		kfree(mp);
796 	}
797 }
798 
799 /* called with namespace_lock and vfsmount lock */
800 static void put_mountpoint(struct mountpoint *mp)
801 {
802 	__put_mountpoint(mp, &ex_mountpoints);
803 }
804 
805 static inline int check_mnt(struct mount *mnt)
806 {
807 	return mnt->mnt_ns == current->nsproxy->mnt_ns;
808 }
809 
810 /*
811  * vfsmount lock must be held for write
812  */
813 static void touch_mnt_namespace(struct mnt_namespace *ns)
814 {
815 	if (ns) {
816 		ns->event = ++event;
817 		wake_up_interruptible(&ns->poll);
818 	}
819 }
820 
821 /*
822  * vfsmount lock must be held for write
823  */
824 static void __touch_mnt_namespace(struct mnt_namespace *ns)
825 {
826 	if (ns && ns->event != event) {
827 		ns->event = event;
828 		wake_up_interruptible(&ns->poll);
829 	}
830 }
831 
832 /*
833  * vfsmount lock must be held for write
834  */
835 static struct mountpoint *unhash_mnt(struct mount *mnt)
836 {
837 	struct mountpoint *mp;
838 	mnt->mnt_parent = mnt;
839 	mnt->mnt_mountpoint = mnt->mnt.mnt_root;
840 	list_del_init(&mnt->mnt_child);
841 	hlist_del_init_rcu(&mnt->mnt_hash);
842 	hlist_del_init(&mnt->mnt_mp_list);
843 	mp = mnt->mnt_mp;
844 	mnt->mnt_mp = NULL;
845 	return mp;
846 }
847 
848 /*
849  * vfsmount lock must be held for write
850  */
851 static void umount_mnt(struct mount *mnt)
852 {
853 	put_mountpoint(unhash_mnt(mnt));
854 }
855 
856 /*
857  * vfsmount lock must be held for write
858  */
859 void mnt_set_mountpoint(struct mount *mnt,
860 			struct mountpoint *mp,
861 			struct mount *child_mnt)
862 {
863 	mp->m_count++;
864 	mnt_add_count(mnt, 1);	/* essentially, that's mntget */
865 	child_mnt->mnt_mountpoint = mp->m_dentry;
866 	child_mnt->mnt_parent = mnt;
867 	child_mnt->mnt_mp = mp;
868 	hlist_add_head(&child_mnt->mnt_mp_list, &mp->m_list);
869 }
870 
871 static void __attach_mnt(struct mount *mnt, struct mount *parent)
872 {
873 	hlist_add_head_rcu(&mnt->mnt_hash,
874 			   m_hash(&parent->mnt, mnt->mnt_mountpoint));
875 	list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
876 }
877 
878 /*
879  * vfsmount lock must be held for write
880  */
881 static void attach_mnt(struct mount *mnt,
882 			struct mount *parent,
883 			struct mountpoint *mp)
884 {
885 	mnt_set_mountpoint(parent, mp, mnt);
886 	__attach_mnt(mnt, parent);
887 }
888 
889 void mnt_change_mountpoint(struct mount *parent, struct mountpoint *mp, struct mount *mnt)
890 {
891 	struct mountpoint *old_mp = mnt->mnt_mp;
892 	struct mount *old_parent = mnt->mnt_parent;
893 
894 	list_del_init(&mnt->mnt_child);
895 	hlist_del_init(&mnt->mnt_mp_list);
896 	hlist_del_init_rcu(&mnt->mnt_hash);
897 
898 	attach_mnt(mnt, parent, mp);
899 
900 	put_mountpoint(old_mp);
901 	mnt_add_count(old_parent, -1);
902 }
903 
904 /*
905  * vfsmount lock must be held for write
906  */
907 static void commit_tree(struct mount *mnt)
908 {
909 	struct mount *parent = mnt->mnt_parent;
910 	struct mount *m;
911 	LIST_HEAD(head);
912 	struct mnt_namespace *n = parent->mnt_ns;
913 
914 	BUG_ON(parent == mnt);
915 
916 	list_add_tail(&head, &mnt->mnt_list);
917 	list_for_each_entry(m, &head, mnt_list)
918 		m->mnt_ns = n;
919 
920 	list_splice(&head, n->list.prev);
921 
922 	n->mounts += n->pending_mounts;
923 	n->pending_mounts = 0;
924 
925 	__attach_mnt(mnt, parent);
926 	touch_mnt_namespace(n);
927 }
928 
929 static struct mount *next_mnt(struct mount *p, struct mount *root)
930 {
931 	struct list_head *next = p->mnt_mounts.next;
932 	if (next == &p->mnt_mounts) {
933 		while (1) {
934 			if (p == root)
935 				return NULL;
936 			next = p->mnt_child.next;
937 			if (next != &p->mnt_parent->mnt_mounts)
938 				break;
939 			p = p->mnt_parent;
940 		}
941 	}
942 	return list_entry(next, struct mount, mnt_child);
943 }
944 
945 static struct mount *skip_mnt_tree(struct mount *p)
946 {
947 	struct list_head *prev = p->mnt_mounts.prev;
948 	while (prev != &p->mnt_mounts) {
949 		p = list_entry(prev, struct mount, mnt_child);
950 		prev = p->mnt_mounts.prev;
951 	}
952 	return p;
953 }
954 
955 /**
956  * vfs_create_mount - Create a mount for a configured superblock
957  * @fc: The configuration context with the superblock attached
958  *
959  * Create a mount to an already configured superblock.  If necessary, the
960  * caller should invoke vfs_get_tree() before calling this.
961  *
962  * Note that this does not attach the mount to anything.
963  */
964 struct vfsmount *vfs_create_mount(struct fs_context *fc)
965 {
966 	struct mount *mnt;
967 
968 	if (!fc->root)
969 		return ERR_PTR(-EINVAL);
970 
971 	mnt = alloc_vfsmnt(fc->source ?: "none");
972 	if (!mnt)
973 		return ERR_PTR(-ENOMEM);
974 
975 	if (fc->sb_flags & SB_KERNMOUNT)
976 		mnt->mnt.mnt_flags = MNT_INTERNAL;
977 
978 	atomic_inc(&fc->root->d_sb->s_active);
979 	mnt->mnt.mnt_sb		= fc->root->d_sb;
980 	mnt->mnt.mnt_root	= dget(fc->root);
981 	mnt->mnt_mountpoint	= mnt->mnt.mnt_root;
982 	mnt->mnt_parent		= mnt;
983 
984 	lock_mount_hash();
985 	list_add_tail(&mnt->mnt_instance, &mnt->mnt.mnt_sb->s_mounts);
986 	unlock_mount_hash();
987 	return &mnt->mnt;
988 }
989 EXPORT_SYMBOL(vfs_create_mount);
990 
991 struct vfsmount *fc_mount(struct fs_context *fc)
992 {
993 	int err = vfs_get_tree(fc);
994 	if (!err) {
995 		up_write(&fc->root->d_sb->s_umount);
996 		return vfs_create_mount(fc);
997 	}
998 	return ERR_PTR(err);
999 }
1000 EXPORT_SYMBOL(fc_mount);
1001 
1002 struct vfsmount *vfs_kern_mount(struct file_system_type *type,
1003 				int flags, const char *name,
1004 				void *data)
1005 {
1006 	struct fs_context *fc;
1007 	struct vfsmount *mnt;
1008 	int ret = 0;
1009 
1010 	if (!type)
1011 		return ERR_PTR(-EINVAL);
1012 
1013 	fc = fs_context_for_mount(type, flags);
1014 	if (IS_ERR(fc))
1015 		return ERR_CAST(fc);
1016 
1017 	if (name)
1018 		ret = vfs_parse_fs_string(fc, "source",
1019 					  name, strlen(name));
1020 	if (!ret)
1021 		ret = parse_monolithic_mount_data(fc, data);
1022 	if (!ret)
1023 		mnt = fc_mount(fc);
1024 	else
1025 		mnt = ERR_PTR(ret);
1026 
1027 	put_fs_context(fc);
1028 	return mnt;
1029 }
1030 EXPORT_SYMBOL_GPL(vfs_kern_mount);
1031 
1032 struct vfsmount *
1033 vfs_submount(const struct dentry *mountpoint, struct file_system_type *type,
1034 	     const char *name, void *data)
1035 {
1036 	/* Until it is worked out how to pass the user namespace
1037 	 * through from the parent mount to the submount don't support
1038 	 * unprivileged mounts with submounts.
1039 	 */
1040 	if (mountpoint->d_sb->s_user_ns != &init_user_ns)
1041 		return ERR_PTR(-EPERM);
1042 
1043 	return vfs_kern_mount(type, SB_SUBMOUNT, name, data);
1044 }
1045 EXPORT_SYMBOL_GPL(vfs_submount);
1046 
1047 static struct mount *clone_mnt(struct mount *old, struct dentry *root,
1048 					int flag)
1049 {
1050 	struct super_block *sb = old->mnt.mnt_sb;
1051 	struct mount *mnt;
1052 	int err;
1053 
1054 	mnt = alloc_vfsmnt(old->mnt_devname);
1055 	if (!mnt)
1056 		return ERR_PTR(-ENOMEM);
1057 
1058 	if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE))
1059 		mnt->mnt_group_id = 0; /* not a peer of original */
1060 	else
1061 		mnt->mnt_group_id = old->mnt_group_id;
1062 
1063 	if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
1064 		err = mnt_alloc_group_id(mnt);
1065 		if (err)
1066 			goto out_free;
1067 	}
1068 
1069 	mnt->mnt.mnt_flags = old->mnt.mnt_flags;
1070 	mnt->mnt.mnt_flags &= ~(MNT_WRITE_HOLD|MNT_MARKED|MNT_INTERNAL);
1071 
1072 	atomic_inc(&sb->s_active);
1073 	mnt->mnt.mnt_userns = mnt_user_ns(&old->mnt);
1074 	if (mnt->mnt.mnt_userns != &init_user_ns)
1075 		mnt->mnt.mnt_userns = get_user_ns(mnt->mnt.mnt_userns);
1076 	mnt->mnt.mnt_sb = sb;
1077 	mnt->mnt.mnt_root = dget(root);
1078 	mnt->mnt_mountpoint = mnt->mnt.mnt_root;
1079 	mnt->mnt_parent = mnt;
1080 	lock_mount_hash();
1081 	list_add_tail(&mnt->mnt_instance, &sb->s_mounts);
1082 	unlock_mount_hash();
1083 
1084 	if ((flag & CL_SLAVE) ||
1085 	    ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) {
1086 		list_add(&mnt->mnt_slave, &old->mnt_slave_list);
1087 		mnt->mnt_master = old;
1088 		CLEAR_MNT_SHARED(mnt);
1089 	} else if (!(flag & CL_PRIVATE)) {
1090 		if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
1091 			list_add(&mnt->mnt_share, &old->mnt_share);
1092 		if (IS_MNT_SLAVE(old))
1093 			list_add(&mnt->mnt_slave, &old->mnt_slave);
1094 		mnt->mnt_master = old->mnt_master;
1095 	} else {
1096 		CLEAR_MNT_SHARED(mnt);
1097 	}
1098 	if (flag & CL_MAKE_SHARED)
1099 		set_mnt_shared(mnt);
1100 
1101 	/* stick the duplicate mount on the same expiry list
1102 	 * as the original if that was on one */
1103 	if (flag & CL_EXPIRE) {
1104 		if (!list_empty(&old->mnt_expire))
1105 			list_add(&mnt->mnt_expire, &old->mnt_expire);
1106 	}
1107 
1108 	return mnt;
1109 
1110  out_free:
1111 	mnt_free_id(mnt);
1112 	free_vfsmnt(mnt);
1113 	return ERR_PTR(err);
1114 }
1115 
1116 static void cleanup_mnt(struct mount *mnt)
1117 {
1118 	struct hlist_node *p;
1119 	struct mount *m;
1120 	/*
1121 	 * The warning here probably indicates that somebody messed
1122 	 * up a mnt_want/drop_write() pair.  If this happens, the
1123 	 * filesystem was probably unable to make r/w->r/o transitions.
1124 	 * The locking used to deal with mnt_count decrement provides barriers,
1125 	 * so mnt_get_writers() below is safe.
1126 	 */
1127 	WARN_ON(mnt_get_writers(mnt));
1128 	if (unlikely(mnt->mnt_pins.first))
1129 		mnt_pin_kill(mnt);
1130 	hlist_for_each_entry_safe(m, p, &mnt->mnt_stuck_children, mnt_umount) {
1131 		hlist_del(&m->mnt_umount);
1132 		mntput(&m->mnt);
1133 	}
1134 	fsnotify_vfsmount_delete(&mnt->mnt);
1135 	dput(mnt->mnt.mnt_root);
1136 	deactivate_super(mnt->mnt.mnt_sb);
1137 	mnt_free_id(mnt);
1138 	call_rcu(&mnt->mnt_rcu, delayed_free_vfsmnt);
1139 }
1140 
1141 static void __cleanup_mnt(struct rcu_head *head)
1142 {
1143 	cleanup_mnt(container_of(head, struct mount, mnt_rcu));
1144 }
1145 
1146 static LLIST_HEAD(delayed_mntput_list);
1147 static void delayed_mntput(struct work_struct *unused)
1148 {
1149 	struct llist_node *node = llist_del_all(&delayed_mntput_list);
1150 	struct mount *m, *t;
1151 
1152 	llist_for_each_entry_safe(m, t, node, mnt_llist)
1153 		cleanup_mnt(m);
1154 }
1155 static DECLARE_DELAYED_WORK(delayed_mntput_work, delayed_mntput);
1156 
1157 static void mntput_no_expire(struct mount *mnt)
1158 {
1159 	LIST_HEAD(list);
1160 	int count;
1161 
1162 	rcu_read_lock();
1163 	if (likely(READ_ONCE(mnt->mnt_ns))) {
1164 		/*
1165 		 * Since we don't do lock_mount_hash() here,
1166 		 * ->mnt_ns can change under us.  However, if it's
1167 		 * non-NULL, then there's a reference that won't
1168 		 * be dropped until after an RCU delay done after
1169 		 * turning ->mnt_ns NULL.  So if we observe it
1170 		 * non-NULL under rcu_read_lock(), the reference
1171 		 * we are dropping is not the final one.
1172 		 */
1173 		mnt_add_count(mnt, -1);
1174 		rcu_read_unlock();
1175 		return;
1176 	}
1177 	lock_mount_hash();
1178 	/*
1179 	 * make sure that if __legitimize_mnt() has not seen us grab
1180 	 * mount_lock, we'll see their refcount increment here.
1181 	 */
1182 	smp_mb();
1183 	mnt_add_count(mnt, -1);
1184 	count = mnt_get_count(mnt);
1185 	if (count != 0) {
1186 		WARN_ON(count < 0);
1187 		rcu_read_unlock();
1188 		unlock_mount_hash();
1189 		return;
1190 	}
1191 	if (unlikely(mnt->mnt.mnt_flags & MNT_DOOMED)) {
1192 		rcu_read_unlock();
1193 		unlock_mount_hash();
1194 		return;
1195 	}
1196 	mnt->mnt.mnt_flags |= MNT_DOOMED;
1197 	rcu_read_unlock();
1198 
1199 	list_del(&mnt->mnt_instance);
1200 
1201 	if (unlikely(!list_empty(&mnt->mnt_mounts))) {
1202 		struct mount *p, *tmp;
1203 		list_for_each_entry_safe(p, tmp, &mnt->mnt_mounts,  mnt_child) {
1204 			__put_mountpoint(unhash_mnt(p), &list);
1205 			hlist_add_head(&p->mnt_umount, &mnt->mnt_stuck_children);
1206 		}
1207 	}
1208 	unlock_mount_hash();
1209 	shrink_dentry_list(&list);
1210 
1211 	if (likely(!(mnt->mnt.mnt_flags & MNT_INTERNAL))) {
1212 		struct task_struct *task = current;
1213 		if (likely(!(task->flags & PF_KTHREAD))) {
1214 			init_task_work(&mnt->mnt_rcu, __cleanup_mnt);
1215 			if (!task_work_add(task, &mnt->mnt_rcu, TWA_RESUME))
1216 				return;
1217 		}
1218 		if (llist_add(&mnt->mnt_llist, &delayed_mntput_list))
1219 			schedule_delayed_work(&delayed_mntput_work, 1);
1220 		return;
1221 	}
1222 	cleanup_mnt(mnt);
1223 }
1224 
1225 void mntput(struct vfsmount *mnt)
1226 {
1227 	if (mnt) {
1228 		struct mount *m = real_mount(mnt);
1229 		/* avoid cacheline pingpong, hope gcc doesn't get "smart" */
1230 		if (unlikely(m->mnt_expiry_mark))
1231 			m->mnt_expiry_mark = 0;
1232 		mntput_no_expire(m);
1233 	}
1234 }
1235 EXPORT_SYMBOL(mntput);
1236 
1237 struct vfsmount *mntget(struct vfsmount *mnt)
1238 {
1239 	if (mnt)
1240 		mnt_add_count(real_mount(mnt), 1);
1241 	return mnt;
1242 }
1243 EXPORT_SYMBOL(mntget);
1244 
1245 /**
1246  * path_is_mountpoint() - Check if path is a mount in the current namespace.
1247  * @path: path to check
1248  *
1249  *  d_mountpoint() can only be used reliably to establish if a dentry is
1250  *  not mounted in any namespace and that common case is handled inline.
1251  *  d_mountpoint() isn't aware of the possibility there may be multiple
1252  *  mounts using a given dentry in a different namespace. This function
1253  *  checks if the passed in path is a mountpoint rather than the dentry
1254  *  alone.
1255  */
1256 bool path_is_mountpoint(const struct path *path)
1257 {
1258 	unsigned seq;
1259 	bool res;
1260 
1261 	if (!d_mountpoint(path->dentry))
1262 		return false;
1263 
1264 	rcu_read_lock();
1265 	do {
1266 		seq = read_seqbegin(&mount_lock);
1267 		res = __path_is_mountpoint(path);
1268 	} while (read_seqretry(&mount_lock, seq));
1269 	rcu_read_unlock();
1270 
1271 	return res;
1272 }
1273 EXPORT_SYMBOL(path_is_mountpoint);
1274 
1275 struct vfsmount *mnt_clone_internal(const struct path *path)
1276 {
1277 	struct mount *p;
1278 	p = clone_mnt(real_mount(path->mnt), path->dentry, CL_PRIVATE);
1279 	if (IS_ERR(p))
1280 		return ERR_CAST(p);
1281 	p->mnt.mnt_flags |= MNT_INTERNAL;
1282 	return &p->mnt;
1283 }
1284 
1285 #ifdef CONFIG_PROC_FS
1286 static struct mount *mnt_list_next(struct mnt_namespace *ns,
1287 				   struct list_head *p)
1288 {
1289 	struct mount *mnt, *ret = NULL;
1290 
1291 	lock_ns_list(ns);
1292 	list_for_each_continue(p, &ns->list) {
1293 		mnt = list_entry(p, typeof(*mnt), mnt_list);
1294 		if (!mnt_is_cursor(mnt)) {
1295 			ret = mnt;
1296 			break;
1297 		}
1298 	}
1299 	unlock_ns_list(ns);
1300 
1301 	return ret;
1302 }
1303 
1304 /* iterator; we want it to have access to namespace_sem, thus here... */
1305 static void *m_start(struct seq_file *m, loff_t *pos)
1306 {
1307 	struct proc_mounts *p = m->private;
1308 	struct list_head *prev;
1309 
1310 	down_read(&namespace_sem);
1311 	if (!*pos) {
1312 		prev = &p->ns->list;
1313 	} else {
1314 		prev = &p->cursor.mnt_list;
1315 
1316 		/* Read after we'd reached the end? */
1317 		if (list_empty(prev))
1318 			return NULL;
1319 	}
1320 
1321 	return mnt_list_next(p->ns, prev);
1322 }
1323 
1324 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
1325 {
1326 	struct proc_mounts *p = m->private;
1327 	struct mount *mnt = v;
1328 
1329 	++*pos;
1330 	return mnt_list_next(p->ns, &mnt->mnt_list);
1331 }
1332 
1333 static void m_stop(struct seq_file *m, void *v)
1334 {
1335 	struct proc_mounts *p = m->private;
1336 	struct mount *mnt = v;
1337 
1338 	lock_ns_list(p->ns);
1339 	if (mnt)
1340 		list_move_tail(&p->cursor.mnt_list, &mnt->mnt_list);
1341 	else
1342 		list_del_init(&p->cursor.mnt_list);
1343 	unlock_ns_list(p->ns);
1344 	up_read(&namespace_sem);
1345 }
1346 
1347 static int m_show(struct seq_file *m, void *v)
1348 {
1349 	struct proc_mounts *p = m->private;
1350 	struct mount *r = v;
1351 	return p->show(m, &r->mnt);
1352 }
1353 
1354 const struct seq_operations mounts_op = {
1355 	.start	= m_start,
1356 	.next	= m_next,
1357 	.stop	= m_stop,
1358 	.show	= m_show,
1359 };
1360 
1361 void mnt_cursor_del(struct mnt_namespace *ns, struct mount *cursor)
1362 {
1363 	down_read(&namespace_sem);
1364 	lock_ns_list(ns);
1365 	list_del(&cursor->mnt_list);
1366 	unlock_ns_list(ns);
1367 	up_read(&namespace_sem);
1368 }
1369 #endif  /* CONFIG_PROC_FS */
1370 
1371 /**
1372  * may_umount_tree - check if a mount tree is busy
1373  * @m: root of mount tree
1374  *
1375  * This is called to check if a tree of mounts has any
1376  * open files, pwds, chroots or sub mounts that are
1377  * busy.
1378  */
1379 int may_umount_tree(struct vfsmount *m)
1380 {
1381 	struct mount *mnt = real_mount(m);
1382 	int actual_refs = 0;
1383 	int minimum_refs = 0;
1384 	struct mount *p;
1385 	BUG_ON(!m);
1386 
1387 	/* write lock needed for mnt_get_count */
1388 	lock_mount_hash();
1389 	for (p = mnt; p; p = next_mnt(p, mnt)) {
1390 		actual_refs += mnt_get_count(p);
1391 		minimum_refs += 2;
1392 	}
1393 	unlock_mount_hash();
1394 
1395 	if (actual_refs > minimum_refs)
1396 		return 0;
1397 
1398 	return 1;
1399 }
1400 
1401 EXPORT_SYMBOL(may_umount_tree);
1402 
1403 /**
1404  * may_umount - check if a mount point is busy
1405  * @mnt: root of mount
1406  *
1407  * This is called to check if a mount point has any
1408  * open files, pwds, chroots or sub mounts. If the
1409  * mount has sub mounts this will return busy
1410  * regardless of whether the sub mounts are busy.
1411  *
1412  * Doesn't take quota and stuff into account. IOW, in some cases it will
1413  * give false negatives. The main reason why it's here is that we need
1414  * a non-destructive way to look for easily umountable filesystems.
1415  */
1416 int may_umount(struct vfsmount *mnt)
1417 {
1418 	int ret = 1;
1419 	down_read(&namespace_sem);
1420 	lock_mount_hash();
1421 	if (propagate_mount_busy(real_mount(mnt), 2))
1422 		ret = 0;
1423 	unlock_mount_hash();
1424 	up_read(&namespace_sem);
1425 	return ret;
1426 }
1427 
1428 EXPORT_SYMBOL(may_umount);
1429 
1430 static void namespace_unlock(void)
1431 {
1432 	struct hlist_head head;
1433 	struct hlist_node *p;
1434 	struct mount *m;
1435 	LIST_HEAD(list);
1436 
1437 	hlist_move_list(&unmounted, &head);
1438 	list_splice_init(&ex_mountpoints, &list);
1439 
1440 	up_write(&namespace_sem);
1441 
1442 	shrink_dentry_list(&list);
1443 
1444 	if (likely(hlist_empty(&head)))
1445 		return;
1446 
1447 	synchronize_rcu_expedited();
1448 
1449 	hlist_for_each_entry_safe(m, p, &head, mnt_umount) {
1450 		hlist_del(&m->mnt_umount);
1451 		mntput(&m->mnt);
1452 	}
1453 }
1454 
1455 static inline void namespace_lock(void)
1456 {
1457 	down_write(&namespace_sem);
1458 }
1459 
1460 enum umount_tree_flags {
1461 	UMOUNT_SYNC = 1,
1462 	UMOUNT_PROPAGATE = 2,
1463 	UMOUNT_CONNECTED = 4,
1464 };
1465 
1466 static bool disconnect_mount(struct mount *mnt, enum umount_tree_flags how)
1467 {
1468 	/* Leaving mounts connected is only valid for lazy umounts */
1469 	if (how & UMOUNT_SYNC)
1470 		return true;
1471 
1472 	/* A mount without a parent has nothing to be connected to */
1473 	if (!mnt_has_parent(mnt))
1474 		return true;
1475 
1476 	/* Because the reference counting rules change when mounts are
1477 	 * unmounted and connected, umounted mounts may not be
1478 	 * connected to mounted mounts.
1479 	 */
1480 	if (!(mnt->mnt_parent->mnt.mnt_flags & MNT_UMOUNT))
1481 		return true;
1482 
1483 	/* Has it been requested that the mount remain connected? */
1484 	if (how & UMOUNT_CONNECTED)
1485 		return false;
1486 
1487 	/* Is the mount locked such that it needs to remain connected? */
1488 	if (IS_MNT_LOCKED(mnt))
1489 		return false;
1490 
1491 	/* By default disconnect the mount */
1492 	return true;
1493 }
1494 
1495 /*
1496  * mount_lock must be held
1497  * namespace_sem must be held for write
1498  */
1499 static void umount_tree(struct mount *mnt, enum umount_tree_flags how)
1500 {
1501 	LIST_HEAD(tmp_list);
1502 	struct mount *p;
1503 
1504 	if (how & UMOUNT_PROPAGATE)
1505 		propagate_mount_unlock(mnt);
1506 
1507 	/* Gather the mounts to umount */
1508 	for (p = mnt; p; p = next_mnt(p, mnt)) {
1509 		p->mnt.mnt_flags |= MNT_UMOUNT;
1510 		list_move(&p->mnt_list, &tmp_list);
1511 	}
1512 
1513 	/* Hide the mounts from mnt_mounts */
1514 	list_for_each_entry(p, &tmp_list, mnt_list) {
1515 		list_del_init(&p->mnt_child);
1516 	}
1517 
1518 	/* Add propogated mounts to the tmp_list */
1519 	if (how & UMOUNT_PROPAGATE)
1520 		propagate_umount(&tmp_list);
1521 
1522 	while (!list_empty(&tmp_list)) {
1523 		struct mnt_namespace *ns;
1524 		bool disconnect;
1525 		p = list_first_entry(&tmp_list, struct mount, mnt_list);
1526 		list_del_init(&p->mnt_expire);
1527 		list_del_init(&p->mnt_list);
1528 		ns = p->mnt_ns;
1529 		if (ns) {
1530 			ns->mounts--;
1531 			__touch_mnt_namespace(ns);
1532 		}
1533 		p->mnt_ns = NULL;
1534 		if (how & UMOUNT_SYNC)
1535 			p->mnt.mnt_flags |= MNT_SYNC_UMOUNT;
1536 
1537 		disconnect = disconnect_mount(p, how);
1538 		if (mnt_has_parent(p)) {
1539 			mnt_add_count(p->mnt_parent, -1);
1540 			if (!disconnect) {
1541 				/* Don't forget about p */
1542 				list_add_tail(&p->mnt_child, &p->mnt_parent->mnt_mounts);
1543 			} else {
1544 				umount_mnt(p);
1545 			}
1546 		}
1547 		change_mnt_propagation(p, MS_PRIVATE);
1548 		if (disconnect)
1549 			hlist_add_head(&p->mnt_umount, &unmounted);
1550 	}
1551 }
1552 
1553 static void shrink_submounts(struct mount *mnt);
1554 
1555 static int do_umount_root(struct super_block *sb)
1556 {
1557 	int ret = 0;
1558 
1559 	down_write(&sb->s_umount);
1560 	if (!sb_rdonly(sb)) {
1561 		struct fs_context *fc;
1562 
1563 		fc = fs_context_for_reconfigure(sb->s_root, SB_RDONLY,
1564 						SB_RDONLY);
1565 		if (IS_ERR(fc)) {
1566 			ret = PTR_ERR(fc);
1567 		} else {
1568 			ret = parse_monolithic_mount_data(fc, NULL);
1569 			if (!ret)
1570 				ret = reconfigure_super(fc);
1571 			put_fs_context(fc);
1572 		}
1573 	}
1574 	up_write(&sb->s_umount);
1575 	return ret;
1576 }
1577 
1578 static int do_umount(struct mount *mnt, int flags)
1579 {
1580 	struct super_block *sb = mnt->mnt.mnt_sb;
1581 	int retval;
1582 
1583 	retval = security_sb_umount(&mnt->mnt, flags);
1584 	if (retval)
1585 		return retval;
1586 
1587 	/*
1588 	 * Allow userspace to request a mountpoint be expired rather than
1589 	 * unmounting unconditionally. Unmount only happens if:
1590 	 *  (1) the mark is already set (the mark is cleared by mntput())
1591 	 *  (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1592 	 */
1593 	if (flags & MNT_EXPIRE) {
1594 		if (&mnt->mnt == current->fs->root.mnt ||
1595 		    flags & (MNT_FORCE | MNT_DETACH))
1596 			return -EINVAL;
1597 
1598 		/*
1599 		 * probably don't strictly need the lock here if we examined
1600 		 * all race cases, but it's a slowpath.
1601 		 */
1602 		lock_mount_hash();
1603 		if (mnt_get_count(mnt) != 2) {
1604 			unlock_mount_hash();
1605 			return -EBUSY;
1606 		}
1607 		unlock_mount_hash();
1608 
1609 		if (!xchg(&mnt->mnt_expiry_mark, 1))
1610 			return -EAGAIN;
1611 	}
1612 
1613 	/*
1614 	 * If we may have to abort operations to get out of this
1615 	 * mount, and they will themselves hold resources we must
1616 	 * allow the fs to do things. In the Unix tradition of
1617 	 * 'Gee thats tricky lets do it in userspace' the umount_begin
1618 	 * might fail to complete on the first run through as other tasks
1619 	 * must return, and the like. Thats for the mount program to worry
1620 	 * about for the moment.
1621 	 */
1622 
1623 	if (flags & MNT_FORCE && sb->s_op->umount_begin) {
1624 		sb->s_op->umount_begin(sb);
1625 	}
1626 
1627 	/*
1628 	 * No sense to grab the lock for this test, but test itself looks
1629 	 * somewhat bogus. Suggestions for better replacement?
1630 	 * Ho-hum... In principle, we might treat that as umount + switch
1631 	 * to rootfs. GC would eventually take care of the old vfsmount.
1632 	 * Actually it makes sense, especially if rootfs would contain a
1633 	 * /reboot - static binary that would close all descriptors and
1634 	 * call reboot(9). Then init(8) could umount root and exec /reboot.
1635 	 */
1636 	if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1637 		/*
1638 		 * Special case for "unmounting" root ...
1639 		 * we just try to remount it readonly.
1640 		 */
1641 		if (!ns_capable(sb->s_user_ns, CAP_SYS_ADMIN))
1642 			return -EPERM;
1643 		return do_umount_root(sb);
1644 	}
1645 
1646 	namespace_lock();
1647 	lock_mount_hash();
1648 
1649 	/* Recheck MNT_LOCKED with the locks held */
1650 	retval = -EINVAL;
1651 	if (mnt->mnt.mnt_flags & MNT_LOCKED)
1652 		goto out;
1653 
1654 	event++;
1655 	if (flags & MNT_DETACH) {
1656 		if (!list_empty(&mnt->mnt_list))
1657 			umount_tree(mnt, UMOUNT_PROPAGATE);
1658 		retval = 0;
1659 	} else {
1660 		shrink_submounts(mnt);
1661 		retval = -EBUSY;
1662 		if (!propagate_mount_busy(mnt, 2)) {
1663 			if (!list_empty(&mnt->mnt_list))
1664 				umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
1665 			retval = 0;
1666 		}
1667 	}
1668 out:
1669 	unlock_mount_hash();
1670 	namespace_unlock();
1671 	return retval;
1672 }
1673 
1674 /*
1675  * __detach_mounts - lazily unmount all mounts on the specified dentry
1676  *
1677  * During unlink, rmdir, and d_drop it is possible to loose the path
1678  * to an existing mountpoint, and wind up leaking the mount.
1679  * detach_mounts allows lazily unmounting those mounts instead of
1680  * leaking them.
1681  *
1682  * The caller may hold dentry->d_inode->i_mutex.
1683  */
1684 void __detach_mounts(struct dentry *dentry)
1685 {
1686 	struct mountpoint *mp;
1687 	struct mount *mnt;
1688 
1689 	namespace_lock();
1690 	lock_mount_hash();
1691 	mp = lookup_mountpoint(dentry);
1692 	if (!mp)
1693 		goto out_unlock;
1694 
1695 	event++;
1696 	while (!hlist_empty(&mp->m_list)) {
1697 		mnt = hlist_entry(mp->m_list.first, struct mount, mnt_mp_list);
1698 		if (mnt->mnt.mnt_flags & MNT_UMOUNT) {
1699 			umount_mnt(mnt);
1700 			hlist_add_head(&mnt->mnt_umount, &unmounted);
1701 		}
1702 		else umount_tree(mnt, UMOUNT_CONNECTED);
1703 	}
1704 	put_mountpoint(mp);
1705 out_unlock:
1706 	unlock_mount_hash();
1707 	namespace_unlock();
1708 }
1709 
1710 /*
1711  * Is the caller allowed to modify his namespace?
1712  */
1713 static inline bool may_mount(void)
1714 {
1715 	return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN);
1716 }
1717 
1718 #ifdef	CONFIG_MANDATORY_FILE_LOCKING
1719 static inline bool may_mandlock(void)
1720 {
1721 	return capable(CAP_SYS_ADMIN);
1722 }
1723 #else
1724 static inline bool may_mandlock(void)
1725 {
1726 	pr_warn("VFS: \"mand\" mount option not supported");
1727 	return false;
1728 }
1729 #endif
1730 
1731 static int can_umount(const struct path *path, int flags)
1732 {
1733 	struct mount *mnt = real_mount(path->mnt);
1734 
1735 	if (!may_mount())
1736 		return -EPERM;
1737 	if (path->dentry != path->mnt->mnt_root)
1738 		return -EINVAL;
1739 	if (!check_mnt(mnt))
1740 		return -EINVAL;
1741 	if (mnt->mnt.mnt_flags & MNT_LOCKED) /* Check optimistically */
1742 		return -EINVAL;
1743 	if (flags & MNT_FORCE && !capable(CAP_SYS_ADMIN))
1744 		return -EPERM;
1745 	return 0;
1746 }
1747 
1748 // caller is responsible for flags being sane
1749 int path_umount(struct path *path, int flags)
1750 {
1751 	struct mount *mnt = real_mount(path->mnt);
1752 	int ret;
1753 
1754 	ret = can_umount(path, flags);
1755 	if (!ret)
1756 		ret = do_umount(mnt, flags);
1757 
1758 	/* we mustn't call path_put() as that would clear mnt_expiry_mark */
1759 	dput(path->dentry);
1760 	mntput_no_expire(mnt);
1761 	return ret;
1762 }
1763 
1764 static int ksys_umount(char __user *name, int flags)
1765 {
1766 	int lookup_flags = LOOKUP_MOUNTPOINT;
1767 	struct path path;
1768 	int ret;
1769 
1770 	// basic validity checks done first
1771 	if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
1772 		return -EINVAL;
1773 
1774 	if (!(flags & UMOUNT_NOFOLLOW))
1775 		lookup_flags |= LOOKUP_FOLLOW;
1776 	ret = user_path_at(AT_FDCWD, name, lookup_flags, &path);
1777 	if (ret)
1778 		return ret;
1779 	return path_umount(&path, flags);
1780 }
1781 
1782 SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
1783 {
1784 	return ksys_umount(name, flags);
1785 }
1786 
1787 #ifdef __ARCH_WANT_SYS_OLDUMOUNT
1788 
1789 /*
1790  *	The 2.0 compatible umount. No flags.
1791  */
1792 SYSCALL_DEFINE1(oldumount, char __user *, name)
1793 {
1794 	return ksys_umount(name, 0);
1795 }
1796 
1797 #endif
1798 
1799 static bool is_mnt_ns_file(struct dentry *dentry)
1800 {
1801 	/* Is this a proxy for a mount namespace? */
1802 	return dentry->d_op == &ns_dentry_operations &&
1803 	       dentry->d_fsdata == &mntns_operations;
1804 }
1805 
1806 static struct mnt_namespace *to_mnt_ns(struct ns_common *ns)
1807 {
1808 	return container_of(ns, struct mnt_namespace, ns);
1809 }
1810 
1811 struct ns_common *from_mnt_ns(struct mnt_namespace *mnt)
1812 {
1813 	return &mnt->ns;
1814 }
1815 
1816 static bool mnt_ns_loop(struct dentry *dentry)
1817 {
1818 	/* Could bind mounting the mount namespace inode cause a
1819 	 * mount namespace loop?
1820 	 */
1821 	struct mnt_namespace *mnt_ns;
1822 	if (!is_mnt_ns_file(dentry))
1823 		return false;
1824 
1825 	mnt_ns = to_mnt_ns(get_proc_ns(dentry->d_inode));
1826 	return current->nsproxy->mnt_ns->seq >= mnt_ns->seq;
1827 }
1828 
1829 struct mount *copy_tree(struct mount *mnt, struct dentry *dentry,
1830 					int flag)
1831 {
1832 	struct mount *res, *p, *q, *r, *parent;
1833 
1834 	if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(mnt))
1835 		return ERR_PTR(-EINVAL);
1836 
1837 	if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry))
1838 		return ERR_PTR(-EINVAL);
1839 
1840 	res = q = clone_mnt(mnt, dentry, flag);
1841 	if (IS_ERR(q))
1842 		return q;
1843 
1844 	q->mnt_mountpoint = mnt->mnt_mountpoint;
1845 
1846 	p = mnt;
1847 	list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
1848 		struct mount *s;
1849 		if (!is_subdir(r->mnt_mountpoint, dentry))
1850 			continue;
1851 
1852 		for (s = r; s; s = next_mnt(s, r)) {
1853 			if (!(flag & CL_COPY_UNBINDABLE) &&
1854 			    IS_MNT_UNBINDABLE(s)) {
1855 				if (s->mnt.mnt_flags & MNT_LOCKED) {
1856 					/* Both unbindable and locked. */
1857 					q = ERR_PTR(-EPERM);
1858 					goto out;
1859 				} else {
1860 					s = skip_mnt_tree(s);
1861 					continue;
1862 				}
1863 			}
1864 			if (!(flag & CL_COPY_MNT_NS_FILE) &&
1865 			    is_mnt_ns_file(s->mnt.mnt_root)) {
1866 				s = skip_mnt_tree(s);
1867 				continue;
1868 			}
1869 			while (p != s->mnt_parent) {
1870 				p = p->mnt_parent;
1871 				q = q->mnt_parent;
1872 			}
1873 			p = s;
1874 			parent = q;
1875 			q = clone_mnt(p, p->mnt.mnt_root, flag);
1876 			if (IS_ERR(q))
1877 				goto out;
1878 			lock_mount_hash();
1879 			list_add_tail(&q->mnt_list, &res->mnt_list);
1880 			attach_mnt(q, parent, p->mnt_mp);
1881 			unlock_mount_hash();
1882 		}
1883 	}
1884 	return res;
1885 out:
1886 	if (res) {
1887 		lock_mount_hash();
1888 		umount_tree(res, UMOUNT_SYNC);
1889 		unlock_mount_hash();
1890 	}
1891 	return q;
1892 }
1893 
1894 /* Caller should check returned pointer for errors */
1895 
1896 struct vfsmount *collect_mounts(const struct path *path)
1897 {
1898 	struct mount *tree;
1899 	namespace_lock();
1900 	if (!check_mnt(real_mount(path->mnt)))
1901 		tree = ERR_PTR(-EINVAL);
1902 	else
1903 		tree = copy_tree(real_mount(path->mnt), path->dentry,
1904 				 CL_COPY_ALL | CL_PRIVATE);
1905 	namespace_unlock();
1906 	if (IS_ERR(tree))
1907 		return ERR_CAST(tree);
1908 	return &tree->mnt;
1909 }
1910 
1911 static void free_mnt_ns(struct mnt_namespace *);
1912 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *, bool);
1913 
1914 void dissolve_on_fput(struct vfsmount *mnt)
1915 {
1916 	struct mnt_namespace *ns;
1917 	namespace_lock();
1918 	lock_mount_hash();
1919 	ns = real_mount(mnt)->mnt_ns;
1920 	if (ns) {
1921 		if (is_anon_ns(ns))
1922 			umount_tree(real_mount(mnt), UMOUNT_CONNECTED);
1923 		else
1924 			ns = NULL;
1925 	}
1926 	unlock_mount_hash();
1927 	namespace_unlock();
1928 	if (ns)
1929 		free_mnt_ns(ns);
1930 }
1931 
1932 void drop_collected_mounts(struct vfsmount *mnt)
1933 {
1934 	namespace_lock();
1935 	lock_mount_hash();
1936 	umount_tree(real_mount(mnt), 0);
1937 	unlock_mount_hash();
1938 	namespace_unlock();
1939 }
1940 
1941 /**
1942  * clone_private_mount - create a private clone of a path
1943  * @path: path to clone
1944  *
1945  * This creates a new vfsmount, which will be the clone of @path.  The new mount
1946  * will not be attached anywhere in the namespace and will be private (i.e.
1947  * changes to the originating mount won't be propagated into this).
1948  *
1949  * Release with mntput().
1950  */
1951 struct vfsmount *clone_private_mount(const struct path *path)
1952 {
1953 	struct mount *old_mnt = real_mount(path->mnt);
1954 	struct mount *new_mnt;
1955 
1956 	if (IS_MNT_UNBINDABLE(old_mnt))
1957 		return ERR_PTR(-EINVAL);
1958 
1959 	new_mnt = clone_mnt(old_mnt, path->dentry, CL_PRIVATE);
1960 	if (IS_ERR(new_mnt))
1961 		return ERR_CAST(new_mnt);
1962 
1963 	/* Longterm mount to be removed by kern_unmount*() */
1964 	new_mnt->mnt_ns = MNT_NS_INTERNAL;
1965 
1966 	return &new_mnt->mnt;
1967 }
1968 EXPORT_SYMBOL_GPL(clone_private_mount);
1969 
1970 int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
1971 		   struct vfsmount *root)
1972 {
1973 	struct mount *mnt;
1974 	int res = f(root, arg);
1975 	if (res)
1976 		return res;
1977 	list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) {
1978 		res = f(&mnt->mnt, arg);
1979 		if (res)
1980 			return res;
1981 	}
1982 	return 0;
1983 }
1984 
1985 static void lock_mnt_tree(struct mount *mnt)
1986 {
1987 	struct mount *p;
1988 
1989 	for (p = mnt; p; p = next_mnt(p, mnt)) {
1990 		int flags = p->mnt.mnt_flags;
1991 		/* Don't allow unprivileged users to change mount flags */
1992 		flags |= MNT_LOCK_ATIME;
1993 
1994 		if (flags & MNT_READONLY)
1995 			flags |= MNT_LOCK_READONLY;
1996 
1997 		if (flags & MNT_NODEV)
1998 			flags |= MNT_LOCK_NODEV;
1999 
2000 		if (flags & MNT_NOSUID)
2001 			flags |= MNT_LOCK_NOSUID;
2002 
2003 		if (flags & MNT_NOEXEC)
2004 			flags |= MNT_LOCK_NOEXEC;
2005 		/* Don't allow unprivileged users to reveal what is under a mount */
2006 		if (list_empty(&p->mnt_expire))
2007 			flags |= MNT_LOCKED;
2008 		p->mnt.mnt_flags = flags;
2009 	}
2010 }
2011 
2012 static void cleanup_group_ids(struct mount *mnt, struct mount *end)
2013 {
2014 	struct mount *p;
2015 
2016 	for (p = mnt; p != end; p = next_mnt(p, mnt)) {
2017 		if (p->mnt_group_id && !IS_MNT_SHARED(p))
2018 			mnt_release_group_id(p);
2019 	}
2020 }
2021 
2022 static int invent_group_ids(struct mount *mnt, bool recurse)
2023 {
2024 	struct mount *p;
2025 
2026 	for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
2027 		if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
2028 			int err = mnt_alloc_group_id(p);
2029 			if (err) {
2030 				cleanup_group_ids(mnt, p);
2031 				return err;
2032 			}
2033 		}
2034 	}
2035 
2036 	return 0;
2037 }
2038 
2039 int count_mounts(struct mnt_namespace *ns, struct mount *mnt)
2040 {
2041 	unsigned int max = READ_ONCE(sysctl_mount_max);
2042 	unsigned int mounts = 0, old, pending, sum;
2043 	struct mount *p;
2044 
2045 	for (p = mnt; p; p = next_mnt(p, mnt))
2046 		mounts++;
2047 
2048 	old = ns->mounts;
2049 	pending = ns->pending_mounts;
2050 	sum = old + pending;
2051 	if ((old > sum) ||
2052 	    (pending > sum) ||
2053 	    (max < sum) ||
2054 	    (mounts > (max - sum)))
2055 		return -ENOSPC;
2056 
2057 	ns->pending_mounts = pending + mounts;
2058 	return 0;
2059 }
2060 
2061 /*
2062  *  @source_mnt : mount tree to be attached
2063  *  @nd         : place the mount tree @source_mnt is attached
2064  *  @parent_nd  : if non-null, detach the source_mnt from its parent and
2065  *  		   store the parent mount and mountpoint dentry.
2066  *  		   (done when source_mnt is moved)
2067  *
2068  *  NOTE: in the table below explains the semantics when a source mount
2069  *  of a given type is attached to a destination mount of a given type.
2070  * ---------------------------------------------------------------------------
2071  * |         BIND MOUNT OPERATION                                            |
2072  * |**************************************************************************
2073  * | source-->| shared        |       private  |       slave    | unbindable |
2074  * | dest     |               |                |                |            |
2075  * |   |      |               |                |                |            |
2076  * |   v      |               |                |                |            |
2077  * |**************************************************************************
2078  * |  shared  | shared (++)   |     shared (+) |     shared(+++)|  invalid   |
2079  * |          |               |                |                |            |
2080  * |non-shared| shared (+)    |      private   |      slave (*) |  invalid   |
2081  * ***************************************************************************
2082  * A bind operation clones the source mount and mounts the clone on the
2083  * destination mount.
2084  *
2085  * (++)  the cloned mount is propagated to all the mounts in the propagation
2086  * 	 tree of the destination mount and the cloned mount is added to
2087  * 	 the peer group of the source mount.
2088  * (+)   the cloned mount is created under the destination mount and is marked
2089  *       as shared. The cloned mount is added to the peer group of the source
2090  *       mount.
2091  * (+++) the mount is propagated to all the mounts in the propagation tree
2092  *       of the destination mount and the cloned mount is made slave
2093  *       of the same master as that of the source mount. The cloned mount
2094  *       is marked as 'shared and slave'.
2095  * (*)   the cloned mount is made a slave of the same master as that of the
2096  * 	 source mount.
2097  *
2098  * ---------------------------------------------------------------------------
2099  * |         		MOVE MOUNT OPERATION                                 |
2100  * |**************************************************************************
2101  * | source-->| shared        |       private  |       slave    | unbindable |
2102  * | dest     |               |                |                |            |
2103  * |   |      |               |                |                |            |
2104  * |   v      |               |                |                |            |
2105  * |**************************************************************************
2106  * |  shared  | shared (+)    |     shared (+) |    shared(+++) |  invalid   |
2107  * |          |               |                |                |            |
2108  * |non-shared| shared (+*)   |      private   |    slave (*)   | unbindable |
2109  * ***************************************************************************
2110  *
2111  * (+)  the mount is moved to the destination. And is then propagated to
2112  * 	all the mounts in the propagation tree of the destination mount.
2113  * (+*)  the mount is moved to the destination.
2114  * (+++)  the mount is moved to the destination and is then propagated to
2115  * 	all the mounts belonging to the destination mount's propagation tree.
2116  * 	the mount is marked as 'shared and slave'.
2117  * (*)	the mount continues to be a slave at the new location.
2118  *
2119  * if the source mount is a tree, the operations explained above is
2120  * applied to each mount in the tree.
2121  * Must be called without spinlocks held, since this function can sleep
2122  * in allocations.
2123  */
2124 static int attach_recursive_mnt(struct mount *source_mnt,
2125 			struct mount *dest_mnt,
2126 			struct mountpoint *dest_mp,
2127 			bool moving)
2128 {
2129 	struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns;
2130 	HLIST_HEAD(tree_list);
2131 	struct mnt_namespace *ns = dest_mnt->mnt_ns;
2132 	struct mountpoint *smp;
2133 	struct mount *child, *p;
2134 	struct hlist_node *n;
2135 	int err;
2136 
2137 	/* Preallocate a mountpoint in case the new mounts need
2138 	 * to be tucked under other mounts.
2139 	 */
2140 	smp = get_mountpoint(source_mnt->mnt.mnt_root);
2141 	if (IS_ERR(smp))
2142 		return PTR_ERR(smp);
2143 
2144 	/* Is there space to add these mounts to the mount namespace? */
2145 	if (!moving) {
2146 		err = count_mounts(ns, source_mnt);
2147 		if (err)
2148 			goto out;
2149 	}
2150 
2151 	if (IS_MNT_SHARED(dest_mnt)) {
2152 		err = invent_group_ids(source_mnt, true);
2153 		if (err)
2154 			goto out;
2155 		err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list);
2156 		lock_mount_hash();
2157 		if (err)
2158 			goto out_cleanup_ids;
2159 		for (p = source_mnt; p; p = next_mnt(p, source_mnt))
2160 			set_mnt_shared(p);
2161 	} else {
2162 		lock_mount_hash();
2163 	}
2164 	if (moving) {
2165 		unhash_mnt(source_mnt);
2166 		attach_mnt(source_mnt, dest_mnt, dest_mp);
2167 		touch_mnt_namespace(source_mnt->mnt_ns);
2168 	} else {
2169 		if (source_mnt->mnt_ns) {
2170 			/* move from anon - the caller will destroy */
2171 			list_del_init(&source_mnt->mnt_ns->list);
2172 		}
2173 		mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt);
2174 		commit_tree(source_mnt);
2175 	}
2176 
2177 	hlist_for_each_entry_safe(child, n, &tree_list, mnt_hash) {
2178 		struct mount *q;
2179 		hlist_del_init(&child->mnt_hash);
2180 		q = __lookup_mnt(&child->mnt_parent->mnt,
2181 				 child->mnt_mountpoint);
2182 		if (q)
2183 			mnt_change_mountpoint(child, smp, q);
2184 		/* Notice when we are propagating across user namespaces */
2185 		if (child->mnt_parent->mnt_ns->user_ns != user_ns)
2186 			lock_mnt_tree(child);
2187 		child->mnt.mnt_flags &= ~MNT_LOCKED;
2188 		commit_tree(child);
2189 	}
2190 	put_mountpoint(smp);
2191 	unlock_mount_hash();
2192 
2193 	return 0;
2194 
2195  out_cleanup_ids:
2196 	while (!hlist_empty(&tree_list)) {
2197 		child = hlist_entry(tree_list.first, struct mount, mnt_hash);
2198 		child->mnt_parent->mnt_ns->pending_mounts = 0;
2199 		umount_tree(child, UMOUNT_SYNC);
2200 	}
2201 	unlock_mount_hash();
2202 	cleanup_group_ids(source_mnt, NULL);
2203  out:
2204 	ns->pending_mounts = 0;
2205 
2206 	read_seqlock_excl(&mount_lock);
2207 	put_mountpoint(smp);
2208 	read_sequnlock_excl(&mount_lock);
2209 
2210 	return err;
2211 }
2212 
2213 static struct mountpoint *lock_mount(struct path *path)
2214 {
2215 	struct vfsmount *mnt;
2216 	struct dentry *dentry = path->dentry;
2217 retry:
2218 	inode_lock(dentry->d_inode);
2219 	if (unlikely(cant_mount(dentry))) {
2220 		inode_unlock(dentry->d_inode);
2221 		return ERR_PTR(-ENOENT);
2222 	}
2223 	namespace_lock();
2224 	mnt = lookup_mnt(path);
2225 	if (likely(!mnt)) {
2226 		struct mountpoint *mp = get_mountpoint(dentry);
2227 		if (IS_ERR(mp)) {
2228 			namespace_unlock();
2229 			inode_unlock(dentry->d_inode);
2230 			return mp;
2231 		}
2232 		return mp;
2233 	}
2234 	namespace_unlock();
2235 	inode_unlock(path->dentry->d_inode);
2236 	path_put(path);
2237 	path->mnt = mnt;
2238 	dentry = path->dentry = dget(mnt->mnt_root);
2239 	goto retry;
2240 }
2241 
2242 static void unlock_mount(struct mountpoint *where)
2243 {
2244 	struct dentry *dentry = where->m_dentry;
2245 
2246 	read_seqlock_excl(&mount_lock);
2247 	put_mountpoint(where);
2248 	read_sequnlock_excl(&mount_lock);
2249 
2250 	namespace_unlock();
2251 	inode_unlock(dentry->d_inode);
2252 }
2253 
2254 static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp)
2255 {
2256 	if (mnt->mnt.mnt_sb->s_flags & SB_NOUSER)
2257 		return -EINVAL;
2258 
2259 	if (d_is_dir(mp->m_dentry) !=
2260 	      d_is_dir(mnt->mnt.mnt_root))
2261 		return -ENOTDIR;
2262 
2263 	return attach_recursive_mnt(mnt, p, mp, false);
2264 }
2265 
2266 /*
2267  * Sanity check the flags to change_mnt_propagation.
2268  */
2269 
2270 static int flags_to_propagation_type(int ms_flags)
2271 {
2272 	int type = ms_flags & ~(MS_REC | MS_SILENT);
2273 
2274 	/* Fail if any non-propagation flags are set */
2275 	if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2276 		return 0;
2277 	/* Only one propagation flag should be set */
2278 	if (!is_power_of_2(type))
2279 		return 0;
2280 	return type;
2281 }
2282 
2283 /*
2284  * recursively change the type of the mountpoint.
2285  */
2286 static int do_change_type(struct path *path, int ms_flags)
2287 {
2288 	struct mount *m;
2289 	struct mount *mnt = real_mount(path->mnt);
2290 	int recurse = ms_flags & MS_REC;
2291 	int type;
2292 	int err = 0;
2293 
2294 	if (path->dentry != path->mnt->mnt_root)
2295 		return -EINVAL;
2296 
2297 	type = flags_to_propagation_type(ms_flags);
2298 	if (!type)
2299 		return -EINVAL;
2300 
2301 	namespace_lock();
2302 	if (type == MS_SHARED) {
2303 		err = invent_group_ids(mnt, recurse);
2304 		if (err)
2305 			goto out_unlock;
2306 	}
2307 
2308 	lock_mount_hash();
2309 	for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
2310 		change_mnt_propagation(m, type);
2311 	unlock_mount_hash();
2312 
2313  out_unlock:
2314 	namespace_unlock();
2315 	return err;
2316 }
2317 
2318 static bool has_locked_children(struct mount *mnt, struct dentry *dentry)
2319 {
2320 	struct mount *child;
2321 	list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
2322 		if (!is_subdir(child->mnt_mountpoint, dentry))
2323 			continue;
2324 
2325 		if (child->mnt.mnt_flags & MNT_LOCKED)
2326 			return true;
2327 	}
2328 	return false;
2329 }
2330 
2331 static struct mount *__do_loopback(struct path *old_path, int recurse)
2332 {
2333 	struct mount *mnt = ERR_PTR(-EINVAL), *old = real_mount(old_path->mnt);
2334 
2335 	if (IS_MNT_UNBINDABLE(old))
2336 		return mnt;
2337 
2338 	if (!check_mnt(old) && old_path->dentry->d_op != &ns_dentry_operations)
2339 		return mnt;
2340 
2341 	if (!recurse && has_locked_children(old, old_path->dentry))
2342 		return mnt;
2343 
2344 	if (recurse)
2345 		mnt = copy_tree(old, old_path->dentry, CL_COPY_MNT_NS_FILE);
2346 	else
2347 		mnt = clone_mnt(old, old_path->dentry, 0);
2348 
2349 	if (!IS_ERR(mnt))
2350 		mnt->mnt.mnt_flags &= ~MNT_LOCKED;
2351 
2352 	return mnt;
2353 }
2354 
2355 /*
2356  * do loopback mount.
2357  */
2358 static int do_loopback(struct path *path, const char *old_name,
2359 				int recurse)
2360 {
2361 	struct path old_path;
2362 	struct mount *mnt = NULL, *parent;
2363 	struct mountpoint *mp;
2364 	int err;
2365 	if (!old_name || !*old_name)
2366 		return -EINVAL;
2367 	err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
2368 	if (err)
2369 		return err;
2370 
2371 	err = -EINVAL;
2372 	if (mnt_ns_loop(old_path.dentry))
2373 		goto out;
2374 
2375 	mp = lock_mount(path);
2376 	if (IS_ERR(mp)) {
2377 		err = PTR_ERR(mp);
2378 		goto out;
2379 	}
2380 
2381 	parent = real_mount(path->mnt);
2382 	if (!check_mnt(parent))
2383 		goto out2;
2384 
2385 	mnt = __do_loopback(&old_path, recurse);
2386 	if (IS_ERR(mnt)) {
2387 		err = PTR_ERR(mnt);
2388 		goto out2;
2389 	}
2390 
2391 	err = graft_tree(mnt, parent, mp);
2392 	if (err) {
2393 		lock_mount_hash();
2394 		umount_tree(mnt, UMOUNT_SYNC);
2395 		unlock_mount_hash();
2396 	}
2397 out2:
2398 	unlock_mount(mp);
2399 out:
2400 	path_put(&old_path);
2401 	return err;
2402 }
2403 
2404 static struct file *open_detached_copy(struct path *path, bool recursive)
2405 {
2406 	struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns;
2407 	struct mnt_namespace *ns = alloc_mnt_ns(user_ns, true);
2408 	struct mount *mnt, *p;
2409 	struct file *file;
2410 
2411 	if (IS_ERR(ns))
2412 		return ERR_CAST(ns);
2413 
2414 	namespace_lock();
2415 	mnt = __do_loopback(path, recursive);
2416 	if (IS_ERR(mnt)) {
2417 		namespace_unlock();
2418 		free_mnt_ns(ns);
2419 		return ERR_CAST(mnt);
2420 	}
2421 
2422 	lock_mount_hash();
2423 	for (p = mnt; p; p = next_mnt(p, mnt)) {
2424 		p->mnt_ns = ns;
2425 		ns->mounts++;
2426 	}
2427 	ns->root = mnt;
2428 	list_add_tail(&ns->list, &mnt->mnt_list);
2429 	mntget(&mnt->mnt);
2430 	unlock_mount_hash();
2431 	namespace_unlock();
2432 
2433 	mntput(path->mnt);
2434 	path->mnt = &mnt->mnt;
2435 	file = dentry_open(path, O_PATH, current_cred());
2436 	if (IS_ERR(file))
2437 		dissolve_on_fput(path->mnt);
2438 	else
2439 		file->f_mode |= FMODE_NEED_UNMOUNT;
2440 	return file;
2441 }
2442 
2443 SYSCALL_DEFINE3(open_tree, int, dfd, const char __user *, filename, unsigned, flags)
2444 {
2445 	struct file *file;
2446 	struct path path;
2447 	int lookup_flags = LOOKUP_AUTOMOUNT | LOOKUP_FOLLOW;
2448 	bool detached = flags & OPEN_TREE_CLONE;
2449 	int error;
2450 	int fd;
2451 
2452 	BUILD_BUG_ON(OPEN_TREE_CLOEXEC != O_CLOEXEC);
2453 
2454 	if (flags & ~(AT_EMPTY_PATH | AT_NO_AUTOMOUNT | AT_RECURSIVE |
2455 		      AT_SYMLINK_NOFOLLOW | OPEN_TREE_CLONE |
2456 		      OPEN_TREE_CLOEXEC))
2457 		return -EINVAL;
2458 
2459 	if ((flags & (AT_RECURSIVE | OPEN_TREE_CLONE)) == AT_RECURSIVE)
2460 		return -EINVAL;
2461 
2462 	if (flags & AT_NO_AUTOMOUNT)
2463 		lookup_flags &= ~LOOKUP_AUTOMOUNT;
2464 	if (flags & AT_SYMLINK_NOFOLLOW)
2465 		lookup_flags &= ~LOOKUP_FOLLOW;
2466 	if (flags & AT_EMPTY_PATH)
2467 		lookup_flags |= LOOKUP_EMPTY;
2468 
2469 	if (detached && !may_mount())
2470 		return -EPERM;
2471 
2472 	fd = get_unused_fd_flags(flags & O_CLOEXEC);
2473 	if (fd < 0)
2474 		return fd;
2475 
2476 	error = user_path_at(dfd, filename, lookup_flags, &path);
2477 	if (unlikely(error)) {
2478 		file = ERR_PTR(error);
2479 	} else {
2480 		if (detached)
2481 			file = open_detached_copy(&path, flags & AT_RECURSIVE);
2482 		else
2483 			file = dentry_open(&path, O_PATH, current_cred());
2484 		path_put(&path);
2485 	}
2486 	if (IS_ERR(file)) {
2487 		put_unused_fd(fd);
2488 		return PTR_ERR(file);
2489 	}
2490 	fd_install(fd, file);
2491 	return fd;
2492 }
2493 
2494 /*
2495  * Don't allow locked mount flags to be cleared.
2496  *
2497  * No locks need to be held here while testing the various MNT_LOCK
2498  * flags because those flags can never be cleared once they are set.
2499  */
2500 static bool can_change_locked_flags(struct mount *mnt, unsigned int mnt_flags)
2501 {
2502 	unsigned int fl = mnt->mnt.mnt_flags;
2503 
2504 	if ((fl & MNT_LOCK_READONLY) &&
2505 	    !(mnt_flags & MNT_READONLY))
2506 		return false;
2507 
2508 	if ((fl & MNT_LOCK_NODEV) &&
2509 	    !(mnt_flags & MNT_NODEV))
2510 		return false;
2511 
2512 	if ((fl & MNT_LOCK_NOSUID) &&
2513 	    !(mnt_flags & MNT_NOSUID))
2514 		return false;
2515 
2516 	if ((fl & MNT_LOCK_NOEXEC) &&
2517 	    !(mnt_flags & MNT_NOEXEC))
2518 		return false;
2519 
2520 	if ((fl & MNT_LOCK_ATIME) &&
2521 	    ((fl & MNT_ATIME_MASK) != (mnt_flags & MNT_ATIME_MASK)))
2522 		return false;
2523 
2524 	return true;
2525 }
2526 
2527 static int change_mount_ro_state(struct mount *mnt, unsigned int mnt_flags)
2528 {
2529 	bool readonly_request = (mnt_flags & MNT_READONLY);
2530 
2531 	if (readonly_request == __mnt_is_readonly(&mnt->mnt))
2532 		return 0;
2533 
2534 	if (readonly_request)
2535 		return mnt_make_readonly(mnt);
2536 
2537 	mnt->mnt.mnt_flags &= ~MNT_READONLY;
2538 	return 0;
2539 }
2540 
2541 static void set_mount_attributes(struct mount *mnt, unsigned int mnt_flags)
2542 {
2543 	mnt_flags |= mnt->mnt.mnt_flags & ~MNT_USER_SETTABLE_MASK;
2544 	mnt->mnt.mnt_flags = mnt_flags;
2545 	touch_mnt_namespace(mnt->mnt_ns);
2546 }
2547 
2548 static void mnt_warn_timestamp_expiry(struct path *mountpoint, struct vfsmount *mnt)
2549 {
2550 	struct super_block *sb = mnt->mnt_sb;
2551 
2552 	if (!__mnt_is_readonly(mnt) &&
2553 	   (ktime_get_real_seconds() + TIME_UPTIME_SEC_MAX > sb->s_time_max)) {
2554 		char *buf = (char *)__get_free_page(GFP_KERNEL);
2555 		char *mntpath = buf ? d_path(mountpoint, buf, PAGE_SIZE) : ERR_PTR(-ENOMEM);
2556 		struct tm tm;
2557 
2558 		time64_to_tm(sb->s_time_max, 0, &tm);
2559 
2560 		pr_warn("%s filesystem being %s at %s supports timestamps until %04ld (0x%llx)\n",
2561 			sb->s_type->name,
2562 			is_mounted(mnt) ? "remounted" : "mounted",
2563 			mntpath,
2564 			tm.tm_year+1900, (unsigned long long)sb->s_time_max);
2565 
2566 		free_page((unsigned long)buf);
2567 	}
2568 }
2569 
2570 /*
2571  * Handle reconfiguration of the mountpoint only without alteration of the
2572  * superblock it refers to.  This is triggered by specifying MS_REMOUNT|MS_BIND
2573  * to mount(2).
2574  */
2575 static int do_reconfigure_mnt(struct path *path, unsigned int mnt_flags)
2576 {
2577 	struct super_block *sb = path->mnt->mnt_sb;
2578 	struct mount *mnt = real_mount(path->mnt);
2579 	int ret;
2580 
2581 	if (!check_mnt(mnt))
2582 		return -EINVAL;
2583 
2584 	if (path->dentry != mnt->mnt.mnt_root)
2585 		return -EINVAL;
2586 
2587 	if (!can_change_locked_flags(mnt, mnt_flags))
2588 		return -EPERM;
2589 
2590 	/*
2591 	 * We're only checking whether the superblock is read-only not
2592 	 * changing it, so only take down_read(&sb->s_umount).
2593 	 */
2594 	down_read(&sb->s_umount);
2595 	lock_mount_hash();
2596 	ret = change_mount_ro_state(mnt, mnt_flags);
2597 	if (ret == 0)
2598 		set_mount_attributes(mnt, mnt_flags);
2599 	unlock_mount_hash();
2600 	up_read(&sb->s_umount);
2601 
2602 	mnt_warn_timestamp_expiry(path, &mnt->mnt);
2603 
2604 	return ret;
2605 }
2606 
2607 /*
2608  * change filesystem flags. dir should be a physical root of filesystem.
2609  * If you've mounted a non-root directory somewhere and want to do remount
2610  * on it - tough luck.
2611  */
2612 static int do_remount(struct path *path, int ms_flags, int sb_flags,
2613 		      int mnt_flags, void *data)
2614 {
2615 	int err;
2616 	struct super_block *sb = path->mnt->mnt_sb;
2617 	struct mount *mnt = real_mount(path->mnt);
2618 	struct fs_context *fc;
2619 
2620 	if (!check_mnt(mnt))
2621 		return -EINVAL;
2622 
2623 	if (path->dentry != path->mnt->mnt_root)
2624 		return -EINVAL;
2625 
2626 	if (!can_change_locked_flags(mnt, mnt_flags))
2627 		return -EPERM;
2628 
2629 	fc = fs_context_for_reconfigure(path->dentry, sb_flags, MS_RMT_MASK);
2630 	if (IS_ERR(fc))
2631 		return PTR_ERR(fc);
2632 
2633 	fc->oldapi = true;
2634 	err = parse_monolithic_mount_data(fc, data);
2635 	if (!err) {
2636 		down_write(&sb->s_umount);
2637 		err = -EPERM;
2638 		if (ns_capable(sb->s_user_ns, CAP_SYS_ADMIN)) {
2639 			err = reconfigure_super(fc);
2640 			if (!err) {
2641 				lock_mount_hash();
2642 				set_mount_attributes(mnt, mnt_flags);
2643 				unlock_mount_hash();
2644 			}
2645 		}
2646 		up_write(&sb->s_umount);
2647 	}
2648 
2649 	mnt_warn_timestamp_expiry(path, &mnt->mnt);
2650 
2651 	put_fs_context(fc);
2652 	return err;
2653 }
2654 
2655 static inline int tree_contains_unbindable(struct mount *mnt)
2656 {
2657 	struct mount *p;
2658 	for (p = mnt; p; p = next_mnt(p, mnt)) {
2659 		if (IS_MNT_UNBINDABLE(p))
2660 			return 1;
2661 	}
2662 	return 0;
2663 }
2664 
2665 /*
2666  * Check that there aren't references to earlier/same mount namespaces in the
2667  * specified subtree.  Such references can act as pins for mount namespaces
2668  * that aren't checked by the mount-cycle checking code, thereby allowing
2669  * cycles to be made.
2670  */
2671 static bool check_for_nsfs_mounts(struct mount *subtree)
2672 {
2673 	struct mount *p;
2674 	bool ret = false;
2675 
2676 	lock_mount_hash();
2677 	for (p = subtree; p; p = next_mnt(p, subtree))
2678 		if (mnt_ns_loop(p->mnt.mnt_root))
2679 			goto out;
2680 
2681 	ret = true;
2682 out:
2683 	unlock_mount_hash();
2684 	return ret;
2685 }
2686 
2687 static int do_move_mount(struct path *old_path, struct path *new_path)
2688 {
2689 	struct mnt_namespace *ns;
2690 	struct mount *p;
2691 	struct mount *old;
2692 	struct mount *parent;
2693 	struct mountpoint *mp, *old_mp;
2694 	int err;
2695 	bool attached;
2696 
2697 	mp = lock_mount(new_path);
2698 	if (IS_ERR(mp))
2699 		return PTR_ERR(mp);
2700 
2701 	old = real_mount(old_path->mnt);
2702 	p = real_mount(new_path->mnt);
2703 	parent = old->mnt_parent;
2704 	attached = mnt_has_parent(old);
2705 	old_mp = old->mnt_mp;
2706 	ns = old->mnt_ns;
2707 
2708 	err = -EINVAL;
2709 	/* The mountpoint must be in our namespace. */
2710 	if (!check_mnt(p))
2711 		goto out;
2712 
2713 	/* The thing moved must be mounted... */
2714 	if (!is_mounted(&old->mnt))
2715 		goto out;
2716 
2717 	/* ... and either ours or the root of anon namespace */
2718 	if (!(attached ? check_mnt(old) : is_anon_ns(ns)))
2719 		goto out;
2720 
2721 	if (old->mnt.mnt_flags & MNT_LOCKED)
2722 		goto out;
2723 
2724 	if (old_path->dentry != old_path->mnt->mnt_root)
2725 		goto out;
2726 
2727 	if (d_is_dir(new_path->dentry) !=
2728 	    d_is_dir(old_path->dentry))
2729 		goto out;
2730 	/*
2731 	 * Don't move a mount residing in a shared parent.
2732 	 */
2733 	if (attached && IS_MNT_SHARED(parent))
2734 		goto out;
2735 	/*
2736 	 * Don't move a mount tree containing unbindable mounts to a destination
2737 	 * mount which is shared.
2738 	 */
2739 	if (IS_MNT_SHARED(p) && tree_contains_unbindable(old))
2740 		goto out;
2741 	err = -ELOOP;
2742 	if (!check_for_nsfs_mounts(old))
2743 		goto out;
2744 	for (; mnt_has_parent(p); p = p->mnt_parent)
2745 		if (p == old)
2746 			goto out;
2747 
2748 	err = attach_recursive_mnt(old, real_mount(new_path->mnt), mp,
2749 				   attached);
2750 	if (err)
2751 		goto out;
2752 
2753 	/* if the mount is moved, it should no longer be expire
2754 	 * automatically */
2755 	list_del_init(&old->mnt_expire);
2756 	if (attached)
2757 		put_mountpoint(old_mp);
2758 out:
2759 	unlock_mount(mp);
2760 	if (!err) {
2761 		if (attached)
2762 			mntput_no_expire(parent);
2763 		else
2764 			free_mnt_ns(ns);
2765 	}
2766 	return err;
2767 }
2768 
2769 static int do_move_mount_old(struct path *path, const char *old_name)
2770 {
2771 	struct path old_path;
2772 	int err;
2773 
2774 	if (!old_name || !*old_name)
2775 		return -EINVAL;
2776 
2777 	err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
2778 	if (err)
2779 		return err;
2780 
2781 	err = do_move_mount(&old_path, path);
2782 	path_put(&old_path);
2783 	return err;
2784 }
2785 
2786 /*
2787  * add a mount into a namespace's mount tree
2788  */
2789 static int do_add_mount(struct mount *newmnt, struct mountpoint *mp,
2790 			struct path *path, int mnt_flags)
2791 {
2792 	struct mount *parent = real_mount(path->mnt);
2793 
2794 	mnt_flags &= ~MNT_INTERNAL_FLAGS;
2795 
2796 	if (unlikely(!check_mnt(parent))) {
2797 		/* that's acceptable only for automounts done in private ns */
2798 		if (!(mnt_flags & MNT_SHRINKABLE))
2799 			return -EINVAL;
2800 		/* ... and for those we'd better have mountpoint still alive */
2801 		if (!parent->mnt_ns)
2802 			return -EINVAL;
2803 	}
2804 
2805 	/* Refuse the same filesystem on the same mount point */
2806 	if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb &&
2807 	    path->mnt->mnt_root == path->dentry)
2808 		return -EBUSY;
2809 
2810 	if (d_is_symlink(newmnt->mnt.mnt_root))
2811 		return -EINVAL;
2812 
2813 	newmnt->mnt.mnt_flags = mnt_flags;
2814 	return graft_tree(newmnt, parent, mp);
2815 }
2816 
2817 static bool mount_too_revealing(const struct super_block *sb, int *new_mnt_flags);
2818 
2819 /*
2820  * Create a new mount using a superblock configuration and request it
2821  * be added to the namespace tree.
2822  */
2823 static int do_new_mount_fc(struct fs_context *fc, struct path *mountpoint,
2824 			   unsigned int mnt_flags)
2825 {
2826 	struct vfsmount *mnt;
2827 	struct mountpoint *mp;
2828 	struct super_block *sb = fc->root->d_sb;
2829 	int error;
2830 
2831 	error = security_sb_kern_mount(sb);
2832 	if (!error && mount_too_revealing(sb, &mnt_flags))
2833 		error = -EPERM;
2834 
2835 	if (unlikely(error)) {
2836 		fc_drop_locked(fc);
2837 		return error;
2838 	}
2839 
2840 	up_write(&sb->s_umount);
2841 
2842 	mnt = vfs_create_mount(fc);
2843 	if (IS_ERR(mnt))
2844 		return PTR_ERR(mnt);
2845 
2846 	mnt_warn_timestamp_expiry(mountpoint, mnt);
2847 
2848 	mp = lock_mount(mountpoint);
2849 	if (IS_ERR(mp)) {
2850 		mntput(mnt);
2851 		return PTR_ERR(mp);
2852 	}
2853 	error = do_add_mount(real_mount(mnt), mp, mountpoint, mnt_flags);
2854 	unlock_mount(mp);
2855 	if (error < 0)
2856 		mntput(mnt);
2857 	return error;
2858 }
2859 
2860 /*
2861  * create a new mount for userspace and request it to be added into the
2862  * namespace's tree
2863  */
2864 static int do_new_mount(struct path *path, const char *fstype, int sb_flags,
2865 			int mnt_flags, const char *name, void *data)
2866 {
2867 	struct file_system_type *type;
2868 	struct fs_context *fc;
2869 	const char *subtype = NULL;
2870 	int err = 0;
2871 
2872 	if (!fstype)
2873 		return -EINVAL;
2874 
2875 	type = get_fs_type(fstype);
2876 	if (!type)
2877 		return -ENODEV;
2878 
2879 	if (type->fs_flags & FS_HAS_SUBTYPE) {
2880 		subtype = strchr(fstype, '.');
2881 		if (subtype) {
2882 			subtype++;
2883 			if (!*subtype) {
2884 				put_filesystem(type);
2885 				return -EINVAL;
2886 			}
2887 		}
2888 	}
2889 
2890 	fc = fs_context_for_mount(type, sb_flags);
2891 	put_filesystem(type);
2892 	if (IS_ERR(fc))
2893 		return PTR_ERR(fc);
2894 
2895 	if (subtype)
2896 		err = vfs_parse_fs_string(fc, "subtype",
2897 					  subtype, strlen(subtype));
2898 	if (!err && name)
2899 		err = vfs_parse_fs_string(fc, "source", name, strlen(name));
2900 	if (!err)
2901 		err = parse_monolithic_mount_data(fc, data);
2902 	if (!err && !mount_capable(fc))
2903 		err = -EPERM;
2904 	if (!err)
2905 		err = vfs_get_tree(fc);
2906 	if (!err)
2907 		err = do_new_mount_fc(fc, path, mnt_flags);
2908 
2909 	put_fs_context(fc);
2910 	return err;
2911 }
2912 
2913 int finish_automount(struct vfsmount *m, struct path *path)
2914 {
2915 	struct dentry *dentry = path->dentry;
2916 	struct mountpoint *mp;
2917 	struct mount *mnt;
2918 	int err;
2919 
2920 	if (!m)
2921 		return 0;
2922 	if (IS_ERR(m))
2923 		return PTR_ERR(m);
2924 
2925 	mnt = real_mount(m);
2926 	/* The new mount record should have at least 2 refs to prevent it being
2927 	 * expired before we get a chance to add it
2928 	 */
2929 	BUG_ON(mnt_get_count(mnt) < 2);
2930 
2931 	if (m->mnt_sb == path->mnt->mnt_sb &&
2932 	    m->mnt_root == dentry) {
2933 		err = -ELOOP;
2934 		goto discard;
2935 	}
2936 
2937 	/*
2938 	 * we don't want to use lock_mount() - in this case finding something
2939 	 * that overmounts our mountpoint to be means "quitely drop what we've
2940 	 * got", not "try to mount it on top".
2941 	 */
2942 	inode_lock(dentry->d_inode);
2943 	namespace_lock();
2944 	if (unlikely(cant_mount(dentry))) {
2945 		err = -ENOENT;
2946 		goto discard_locked;
2947 	}
2948 	rcu_read_lock();
2949 	if (unlikely(__lookup_mnt(path->mnt, dentry))) {
2950 		rcu_read_unlock();
2951 		err = 0;
2952 		goto discard_locked;
2953 	}
2954 	rcu_read_unlock();
2955 	mp = get_mountpoint(dentry);
2956 	if (IS_ERR(mp)) {
2957 		err = PTR_ERR(mp);
2958 		goto discard_locked;
2959 	}
2960 
2961 	err = do_add_mount(mnt, mp, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
2962 	unlock_mount(mp);
2963 	if (unlikely(err))
2964 		goto discard;
2965 	mntput(m);
2966 	return 0;
2967 
2968 discard_locked:
2969 	namespace_unlock();
2970 	inode_unlock(dentry->d_inode);
2971 discard:
2972 	/* remove m from any expiration list it may be on */
2973 	if (!list_empty(&mnt->mnt_expire)) {
2974 		namespace_lock();
2975 		list_del_init(&mnt->mnt_expire);
2976 		namespace_unlock();
2977 	}
2978 	mntput(m);
2979 	mntput(m);
2980 	return err;
2981 }
2982 
2983 /**
2984  * mnt_set_expiry - Put a mount on an expiration list
2985  * @mnt: The mount to list.
2986  * @expiry_list: The list to add the mount to.
2987  */
2988 void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
2989 {
2990 	namespace_lock();
2991 
2992 	list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
2993 
2994 	namespace_unlock();
2995 }
2996 EXPORT_SYMBOL(mnt_set_expiry);
2997 
2998 /*
2999  * process a list of expirable mountpoints with the intent of discarding any
3000  * mountpoints that aren't in use and haven't been touched since last we came
3001  * here
3002  */
3003 void mark_mounts_for_expiry(struct list_head *mounts)
3004 {
3005 	struct mount *mnt, *next;
3006 	LIST_HEAD(graveyard);
3007 
3008 	if (list_empty(mounts))
3009 		return;
3010 
3011 	namespace_lock();
3012 	lock_mount_hash();
3013 
3014 	/* extract from the expiration list every vfsmount that matches the
3015 	 * following criteria:
3016 	 * - only referenced by its parent vfsmount
3017 	 * - still marked for expiry (marked on the last call here; marks are
3018 	 *   cleared by mntput())
3019 	 */
3020 	list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
3021 		if (!xchg(&mnt->mnt_expiry_mark, 1) ||
3022 			propagate_mount_busy(mnt, 1))
3023 			continue;
3024 		list_move(&mnt->mnt_expire, &graveyard);
3025 	}
3026 	while (!list_empty(&graveyard)) {
3027 		mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
3028 		touch_mnt_namespace(mnt->mnt_ns);
3029 		umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
3030 	}
3031 	unlock_mount_hash();
3032 	namespace_unlock();
3033 }
3034 
3035 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
3036 
3037 /*
3038  * Ripoff of 'select_parent()'
3039  *
3040  * search the list of submounts for a given mountpoint, and move any
3041  * shrinkable submounts to the 'graveyard' list.
3042  */
3043 static int select_submounts(struct mount *parent, struct list_head *graveyard)
3044 {
3045 	struct mount *this_parent = parent;
3046 	struct list_head *next;
3047 	int found = 0;
3048 
3049 repeat:
3050 	next = this_parent->mnt_mounts.next;
3051 resume:
3052 	while (next != &this_parent->mnt_mounts) {
3053 		struct list_head *tmp = next;
3054 		struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
3055 
3056 		next = tmp->next;
3057 		if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
3058 			continue;
3059 		/*
3060 		 * Descend a level if the d_mounts list is non-empty.
3061 		 */
3062 		if (!list_empty(&mnt->mnt_mounts)) {
3063 			this_parent = mnt;
3064 			goto repeat;
3065 		}
3066 
3067 		if (!propagate_mount_busy(mnt, 1)) {
3068 			list_move_tail(&mnt->mnt_expire, graveyard);
3069 			found++;
3070 		}
3071 	}
3072 	/*
3073 	 * All done at this level ... ascend and resume the search
3074 	 */
3075 	if (this_parent != parent) {
3076 		next = this_parent->mnt_child.next;
3077 		this_parent = this_parent->mnt_parent;
3078 		goto resume;
3079 	}
3080 	return found;
3081 }
3082 
3083 /*
3084  * process a list of expirable mountpoints with the intent of discarding any
3085  * submounts of a specific parent mountpoint
3086  *
3087  * mount_lock must be held for write
3088  */
3089 static void shrink_submounts(struct mount *mnt)
3090 {
3091 	LIST_HEAD(graveyard);
3092 	struct mount *m;
3093 
3094 	/* extract submounts of 'mountpoint' from the expiration list */
3095 	while (select_submounts(mnt, &graveyard)) {
3096 		while (!list_empty(&graveyard)) {
3097 			m = list_first_entry(&graveyard, struct mount,
3098 						mnt_expire);
3099 			touch_mnt_namespace(m->mnt_ns);
3100 			umount_tree(m, UMOUNT_PROPAGATE|UMOUNT_SYNC);
3101 		}
3102 	}
3103 }
3104 
3105 static void *copy_mount_options(const void __user * data)
3106 {
3107 	char *copy;
3108 	unsigned left, offset;
3109 
3110 	if (!data)
3111 		return NULL;
3112 
3113 	copy = kmalloc(PAGE_SIZE, GFP_KERNEL);
3114 	if (!copy)
3115 		return ERR_PTR(-ENOMEM);
3116 
3117 	left = copy_from_user(copy, data, PAGE_SIZE);
3118 
3119 	/*
3120 	 * Not all architectures have an exact copy_from_user(). Resort to
3121 	 * byte at a time.
3122 	 */
3123 	offset = PAGE_SIZE - left;
3124 	while (left) {
3125 		char c;
3126 		if (get_user(c, (const char __user *)data + offset))
3127 			break;
3128 		copy[offset] = c;
3129 		left--;
3130 		offset++;
3131 	}
3132 
3133 	if (left == PAGE_SIZE) {
3134 		kfree(copy);
3135 		return ERR_PTR(-EFAULT);
3136 	}
3137 
3138 	return copy;
3139 }
3140 
3141 static char *copy_mount_string(const void __user *data)
3142 {
3143 	return data ? strndup_user(data, PATH_MAX) : NULL;
3144 }
3145 
3146 /*
3147  * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
3148  * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
3149  *
3150  * data is a (void *) that can point to any structure up to
3151  * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
3152  * information (or be NULL).
3153  *
3154  * Pre-0.97 versions of mount() didn't have a flags word.
3155  * When the flags word was introduced its top half was required
3156  * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
3157  * Therefore, if this magic number is present, it carries no information
3158  * and must be discarded.
3159  */
3160 int path_mount(const char *dev_name, struct path *path,
3161 		const char *type_page, unsigned long flags, void *data_page)
3162 {
3163 	unsigned int mnt_flags = 0, sb_flags;
3164 	int ret;
3165 
3166 	/* Discard magic */
3167 	if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
3168 		flags &= ~MS_MGC_MSK;
3169 
3170 	/* Basic sanity checks */
3171 	if (data_page)
3172 		((char *)data_page)[PAGE_SIZE - 1] = 0;
3173 
3174 	if (flags & MS_NOUSER)
3175 		return -EINVAL;
3176 
3177 	ret = security_sb_mount(dev_name, path, type_page, flags, data_page);
3178 	if (ret)
3179 		return ret;
3180 	if (!may_mount())
3181 		return -EPERM;
3182 	if ((flags & SB_MANDLOCK) && !may_mandlock())
3183 		return -EPERM;
3184 
3185 	/* Default to relatime unless overriden */
3186 	if (!(flags & MS_NOATIME))
3187 		mnt_flags |= MNT_RELATIME;
3188 
3189 	/* Separate the per-mountpoint flags */
3190 	if (flags & MS_NOSUID)
3191 		mnt_flags |= MNT_NOSUID;
3192 	if (flags & MS_NODEV)
3193 		mnt_flags |= MNT_NODEV;
3194 	if (flags & MS_NOEXEC)
3195 		mnt_flags |= MNT_NOEXEC;
3196 	if (flags & MS_NOATIME)
3197 		mnt_flags |= MNT_NOATIME;
3198 	if (flags & MS_NODIRATIME)
3199 		mnt_flags |= MNT_NODIRATIME;
3200 	if (flags & MS_STRICTATIME)
3201 		mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
3202 	if (flags & MS_RDONLY)
3203 		mnt_flags |= MNT_READONLY;
3204 	if (flags & MS_NOSYMFOLLOW)
3205 		mnt_flags |= MNT_NOSYMFOLLOW;
3206 
3207 	/* The default atime for remount is preservation */
3208 	if ((flags & MS_REMOUNT) &&
3209 	    ((flags & (MS_NOATIME | MS_NODIRATIME | MS_RELATIME |
3210 		       MS_STRICTATIME)) == 0)) {
3211 		mnt_flags &= ~MNT_ATIME_MASK;
3212 		mnt_flags |= path->mnt->mnt_flags & MNT_ATIME_MASK;
3213 	}
3214 
3215 	sb_flags = flags & (SB_RDONLY |
3216 			    SB_SYNCHRONOUS |
3217 			    SB_MANDLOCK |
3218 			    SB_DIRSYNC |
3219 			    SB_SILENT |
3220 			    SB_POSIXACL |
3221 			    SB_LAZYTIME |
3222 			    SB_I_VERSION);
3223 
3224 	if ((flags & (MS_REMOUNT | MS_BIND)) == (MS_REMOUNT | MS_BIND))
3225 		return do_reconfigure_mnt(path, mnt_flags);
3226 	if (flags & MS_REMOUNT)
3227 		return do_remount(path, flags, sb_flags, mnt_flags, data_page);
3228 	if (flags & MS_BIND)
3229 		return do_loopback(path, dev_name, flags & MS_REC);
3230 	if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
3231 		return do_change_type(path, flags);
3232 	if (flags & MS_MOVE)
3233 		return do_move_mount_old(path, dev_name);
3234 
3235 	return do_new_mount(path, type_page, sb_flags, mnt_flags, dev_name,
3236 			    data_page);
3237 }
3238 
3239 long do_mount(const char *dev_name, const char __user *dir_name,
3240 		const char *type_page, unsigned long flags, void *data_page)
3241 {
3242 	struct path path;
3243 	int ret;
3244 
3245 	ret = user_path_at(AT_FDCWD, dir_name, LOOKUP_FOLLOW, &path);
3246 	if (ret)
3247 		return ret;
3248 	ret = path_mount(dev_name, &path, type_page, flags, data_page);
3249 	path_put(&path);
3250 	return ret;
3251 }
3252 
3253 static struct ucounts *inc_mnt_namespaces(struct user_namespace *ns)
3254 {
3255 	return inc_ucount(ns, current_euid(), UCOUNT_MNT_NAMESPACES);
3256 }
3257 
3258 static void dec_mnt_namespaces(struct ucounts *ucounts)
3259 {
3260 	dec_ucount(ucounts, UCOUNT_MNT_NAMESPACES);
3261 }
3262 
3263 static void free_mnt_ns(struct mnt_namespace *ns)
3264 {
3265 	if (!is_anon_ns(ns))
3266 		ns_free_inum(&ns->ns);
3267 	dec_mnt_namespaces(ns->ucounts);
3268 	put_user_ns(ns->user_ns);
3269 	kfree(ns);
3270 }
3271 
3272 /*
3273  * Assign a sequence number so we can detect when we attempt to bind
3274  * mount a reference to an older mount namespace into the current
3275  * mount namespace, preventing reference counting loops.  A 64bit
3276  * number incrementing at 10Ghz will take 12,427 years to wrap which
3277  * is effectively never, so we can ignore the possibility.
3278  */
3279 static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1);
3280 
3281 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns, bool anon)
3282 {
3283 	struct mnt_namespace *new_ns;
3284 	struct ucounts *ucounts;
3285 	int ret;
3286 
3287 	ucounts = inc_mnt_namespaces(user_ns);
3288 	if (!ucounts)
3289 		return ERR_PTR(-ENOSPC);
3290 
3291 	new_ns = kzalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
3292 	if (!new_ns) {
3293 		dec_mnt_namespaces(ucounts);
3294 		return ERR_PTR(-ENOMEM);
3295 	}
3296 	if (!anon) {
3297 		ret = ns_alloc_inum(&new_ns->ns);
3298 		if (ret) {
3299 			kfree(new_ns);
3300 			dec_mnt_namespaces(ucounts);
3301 			return ERR_PTR(ret);
3302 		}
3303 	}
3304 	new_ns->ns.ops = &mntns_operations;
3305 	if (!anon)
3306 		new_ns->seq = atomic64_add_return(1, &mnt_ns_seq);
3307 	refcount_set(&new_ns->ns.count, 1);
3308 	INIT_LIST_HEAD(&new_ns->list);
3309 	init_waitqueue_head(&new_ns->poll);
3310 	spin_lock_init(&new_ns->ns_lock);
3311 	new_ns->user_ns = get_user_ns(user_ns);
3312 	new_ns->ucounts = ucounts;
3313 	return new_ns;
3314 }
3315 
3316 __latent_entropy
3317 struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
3318 		struct user_namespace *user_ns, struct fs_struct *new_fs)
3319 {
3320 	struct mnt_namespace *new_ns;
3321 	struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
3322 	struct mount *p, *q;
3323 	struct mount *old;
3324 	struct mount *new;
3325 	int copy_flags;
3326 
3327 	BUG_ON(!ns);
3328 
3329 	if (likely(!(flags & CLONE_NEWNS))) {
3330 		get_mnt_ns(ns);
3331 		return ns;
3332 	}
3333 
3334 	old = ns->root;
3335 
3336 	new_ns = alloc_mnt_ns(user_ns, false);
3337 	if (IS_ERR(new_ns))
3338 		return new_ns;
3339 
3340 	namespace_lock();
3341 	/* First pass: copy the tree topology */
3342 	copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE;
3343 	if (user_ns != ns->user_ns)
3344 		copy_flags |= CL_SHARED_TO_SLAVE;
3345 	new = copy_tree(old, old->mnt.mnt_root, copy_flags);
3346 	if (IS_ERR(new)) {
3347 		namespace_unlock();
3348 		free_mnt_ns(new_ns);
3349 		return ERR_CAST(new);
3350 	}
3351 	if (user_ns != ns->user_ns) {
3352 		lock_mount_hash();
3353 		lock_mnt_tree(new);
3354 		unlock_mount_hash();
3355 	}
3356 	new_ns->root = new;
3357 	list_add_tail(&new_ns->list, &new->mnt_list);
3358 
3359 	/*
3360 	 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
3361 	 * as belonging to new namespace.  We have already acquired a private
3362 	 * fs_struct, so tsk->fs->lock is not needed.
3363 	 */
3364 	p = old;
3365 	q = new;
3366 	while (p) {
3367 		q->mnt_ns = new_ns;
3368 		new_ns->mounts++;
3369 		if (new_fs) {
3370 			if (&p->mnt == new_fs->root.mnt) {
3371 				new_fs->root.mnt = mntget(&q->mnt);
3372 				rootmnt = &p->mnt;
3373 			}
3374 			if (&p->mnt == new_fs->pwd.mnt) {
3375 				new_fs->pwd.mnt = mntget(&q->mnt);
3376 				pwdmnt = &p->mnt;
3377 			}
3378 		}
3379 		p = next_mnt(p, old);
3380 		q = next_mnt(q, new);
3381 		if (!q)
3382 			break;
3383 		while (p->mnt.mnt_root != q->mnt.mnt_root)
3384 			p = next_mnt(p, old);
3385 	}
3386 	namespace_unlock();
3387 
3388 	if (rootmnt)
3389 		mntput(rootmnt);
3390 	if (pwdmnt)
3391 		mntput(pwdmnt);
3392 
3393 	return new_ns;
3394 }
3395 
3396 struct dentry *mount_subtree(struct vfsmount *m, const char *name)
3397 {
3398 	struct mount *mnt = real_mount(m);
3399 	struct mnt_namespace *ns;
3400 	struct super_block *s;
3401 	struct path path;
3402 	int err;
3403 
3404 	ns = alloc_mnt_ns(&init_user_ns, true);
3405 	if (IS_ERR(ns)) {
3406 		mntput(m);
3407 		return ERR_CAST(ns);
3408 	}
3409 	mnt->mnt_ns = ns;
3410 	ns->root = mnt;
3411 	ns->mounts++;
3412 	list_add(&mnt->mnt_list, &ns->list);
3413 
3414 	err = vfs_path_lookup(m->mnt_root, m,
3415 			name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
3416 
3417 	put_mnt_ns(ns);
3418 
3419 	if (err)
3420 		return ERR_PTR(err);
3421 
3422 	/* trade a vfsmount reference for active sb one */
3423 	s = path.mnt->mnt_sb;
3424 	atomic_inc(&s->s_active);
3425 	mntput(path.mnt);
3426 	/* lock the sucker */
3427 	down_write(&s->s_umount);
3428 	/* ... and return the root of (sub)tree on it */
3429 	return path.dentry;
3430 }
3431 EXPORT_SYMBOL(mount_subtree);
3432 
3433 SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
3434 		char __user *, type, unsigned long, flags, void __user *, data)
3435 {
3436 	int ret;
3437 	char *kernel_type;
3438 	char *kernel_dev;
3439 	void *options;
3440 
3441 	kernel_type = copy_mount_string(type);
3442 	ret = PTR_ERR(kernel_type);
3443 	if (IS_ERR(kernel_type))
3444 		goto out_type;
3445 
3446 	kernel_dev = copy_mount_string(dev_name);
3447 	ret = PTR_ERR(kernel_dev);
3448 	if (IS_ERR(kernel_dev))
3449 		goto out_dev;
3450 
3451 	options = copy_mount_options(data);
3452 	ret = PTR_ERR(options);
3453 	if (IS_ERR(options))
3454 		goto out_data;
3455 
3456 	ret = do_mount(kernel_dev, dir_name, kernel_type, flags, options);
3457 
3458 	kfree(options);
3459 out_data:
3460 	kfree(kernel_dev);
3461 out_dev:
3462 	kfree(kernel_type);
3463 out_type:
3464 	return ret;
3465 }
3466 
3467 #define FSMOUNT_VALID_FLAGS                                                    \
3468 	(MOUNT_ATTR_RDONLY | MOUNT_ATTR_NOSUID | MOUNT_ATTR_NODEV |            \
3469 	 MOUNT_ATTR_NOEXEC | MOUNT_ATTR__ATIME | MOUNT_ATTR_NODIRATIME |       \
3470 	 MOUNT_ATTR_NOSYMFOLLOW)
3471 
3472 #define MOUNT_SETATTR_VALID_FLAGS (FSMOUNT_VALID_FLAGS | MOUNT_ATTR_IDMAP)
3473 
3474 #define MOUNT_SETATTR_PROPAGATION_FLAGS \
3475 	(MS_UNBINDABLE | MS_PRIVATE | MS_SLAVE | MS_SHARED)
3476 
3477 static unsigned int attr_flags_to_mnt_flags(u64 attr_flags)
3478 {
3479 	unsigned int mnt_flags = 0;
3480 
3481 	if (attr_flags & MOUNT_ATTR_RDONLY)
3482 		mnt_flags |= MNT_READONLY;
3483 	if (attr_flags & MOUNT_ATTR_NOSUID)
3484 		mnt_flags |= MNT_NOSUID;
3485 	if (attr_flags & MOUNT_ATTR_NODEV)
3486 		mnt_flags |= MNT_NODEV;
3487 	if (attr_flags & MOUNT_ATTR_NOEXEC)
3488 		mnt_flags |= MNT_NOEXEC;
3489 	if (attr_flags & MOUNT_ATTR_NODIRATIME)
3490 		mnt_flags |= MNT_NODIRATIME;
3491 	if (attr_flags & MOUNT_ATTR_NOSYMFOLLOW)
3492 		mnt_flags |= MNT_NOSYMFOLLOW;
3493 
3494 	return mnt_flags;
3495 }
3496 
3497 /*
3498  * Create a kernel mount representation for a new, prepared superblock
3499  * (specified by fs_fd) and attach to an open_tree-like file descriptor.
3500  */
3501 SYSCALL_DEFINE3(fsmount, int, fs_fd, unsigned int, flags,
3502 		unsigned int, attr_flags)
3503 {
3504 	struct mnt_namespace *ns;
3505 	struct fs_context *fc;
3506 	struct file *file;
3507 	struct path newmount;
3508 	struct mount *mnt;
3509 	struct fd f;
3510 	unsigned int mnt_flags = 0;
3511 	long ret;
3512 
3513 	if (!may_mount())
3514 		return -EPERM;
3515 
3516 	if ((flags & ~(FSMOUNT_CLOEXEC)) != 0)
3517 		return -EINVAL;
3518 
3519 	if (attr_flags & ~FSMOUNT_VALID_FLAGS)
3520 		return -EINVAL;
3521 
3522 	mnt_flags = attr_flags_to_mnt_flags(attr_flags);
3523 
3524 	switch (attr_flags & MOUNT_ATTR__ATIME) {
3525 	case MOUNT_ATTR_STRICTATIME:
3526 		break;
3527 	case MOUNT_ATTR_NOATIME:
3528 		mnt_flags |= MNT_NOATIME;
3529 		break;
3530 	case MOUNT_ATTR_RELATIME:
3531 		mnt_flags |= MNT_RELATIME;
3532 		break;
3533 	default:
3534 		return -EINVAL;
3535 	}
3536 
3537 	f = fdget(fs_fd);
3538 	if (!f.file)
3539 		return -EBADF;
3540 
3541 	ret = -EINVAL;
3542 	if (f.file->f_op != &fscontext_fops)
3543 		goto err_fsfd;
3544 
3545 	fc = f.file->private_data;
3546 
3547 	ret = mutex_lock_interruptible(&fc->uapi_mutex);
3548 	if (ret < 0)
3549 		goto err_fsfd;
3550 
3551 	/* There must be a valid superblock or we can't mount it */
3552 	ret = -EINVAL;
3553 	if (!fc->root)
3554 		goto err_unlock;
3555 
3556 	ret = -EPERM;
3557 	if (mount_too_revealing(fc->root->d_sb, &mnt_flags)) {
3558 		pr_warn("VFS: Mount too revealing\n");
3559 		goto err_unlock;
3560 	}
3561 
3562 	ret = -EBUSY;
3563 	if (fc->phase != FS_CONTEXT_AWAITING_MOUNT)
3564 		goto err_unlock;
3565 
3566 	ret = -EPERM;
3567 	if ((fc->sb_flags & SB_MANDLOCK) && !may_mandlock())
3568 		goto err_unlock;
3569 
3570 	newmount.mnt = vfs_create_mount(fc);
3571 	if (IS_ERR(newmount.mnt)) {
3572 		ret = PTR_ERR(newmount.mnt);
3573 		goto err_unlock;
3574 	}
3575 	newmount.dentry = dget(fc->root);
3576 	newmount.mnt->mnt_flags = mnt_flags;
3577 
3578 	/* We've done the mount bit - now move the file context into more or
3579 	 * less the same state as if we'd done an fspick().  We don't want to
3580 	 * do any memory allocation or anything like that at this point as we
3581 	 * don't want to have to handle any errors incurred.
3582 	 */
3583 	vfs_clean_context(fc);
3584 
3585 	ns = alloc_mnt_ns(current->nsproxy->mnt_ns->user_ns, true);
3586 	if (IS_ERR(ns)) {
3587 		ret = PTR_ERR(ns);
3588 		goto err_path;
3589 	}
3590 	mnt = real_mount(newmount.mnt);
3591 	mnt->mnt_ns = ns;
3592 	ns->root = mnt;
3593 	ns->mounts = 1;
3594 	list_add(&mnt->mnt_list, &ns->list);
3595 	mntget(newmount.mnt);
3596 
3597 	/* Attach to an apparent O_PATH fd with a note that we need to unmount
3598 	 * it, not just simply put it.
3599 	 */
3600 	file = dentry_open(&newmount, O_PATH, fc->cred);
3601 	if (IS_ERR(file)) {
3602 		dissolve_on_fput(newmount.mnt);
3603 		ret = PTR_ERR(file);
3604 		goto err_path;
3605 	}
3606 	file->f_mode |= FMODE_NEED_UNMOUNT;
3607 
3608 	ret = get_unused_fd_flags((flags & FSMOUNT_CLOEXEC) ? O_CLOEXEC : 0);
3609 	if (ret >= 0)
3610 		fd_install(ret, file);
3611 	else
3612 		fput(file);
3613 
3614 err_path:
3615 	path_put(&newmount);
3616 err_unlock:
3617 	mutex_unlock(&fc->uapi_mutex);
3618 err_fsfd:
3619 	fdput(f);
3620 	return ret;
3621 }
3622 
3623 /*
3624  * Move a mount from one place to another.  In combination with
3625  * fsopen()/fsmount() this is used to install a new mount and in combination
3626  * with open_tree(OPEN_TREE_CLONE [| AT_RECURSIVE]) it can be used to copy
3627  * a mount subtree.
3628  *
3629  * Note the flags value is a combination of MOVE_MOUNT_* flags.
3630  */
3631 SYSCALL_DEFINE5(move_mount,
3632 		int, from_dfd, const char __user *, from_pathname,
3633 		int, to_dfd, const char __user *, to_pathname,
3634 		unsigned int, flags)
3635 {
3636 	struct path from_path, to_path;
3637 	unsigned int lflags;
3638 	int ret = 0;
3639 
3640 	if (!may_mount())
3641 		return -EPERM;
3642 
3643 	if (flags & ~MOVE_MOUNT__MASK)
3644 		return -EINVAL;
3645 
3646 	/* If someone gives a pathname, they aren't permitted to move
3647 	 * from an fd that requires unmount as we can't get at the flag
3648 	 * to clear it afterwards.
3649 	 */
3650 	lflags = 0;
3651 	if (flags & MOVE_MOUNT_F_SYMLINKS)	lflags |= LOOKUP_FOLLOW;
3652 	if (flags & MOVE_MOUNT_F_AUTOMOUNTS)	lflags |= LOOKUP_AUTOMOUNT;
3653 	if (flags & MOVE_MOUNT_F_EMPTY_PATH)	lflags |= LOOKUP_EMPTY;
3654 
3655 	ret = user_path_at(from_dfd, from_pathname, lflags, &from_path);
3656 	if (ret < 0)
3657 		return ret;
3658 
3659 	lflags = 0;
3660 	if (flags & MOVE_MOUNT_T_SYMLINKS)	lflags |= LOOKUP_FOLLOW;
3661 	if (flags & MOVE_MOUNT_T_AUTOMOUNTS)	lflags |= LOOKUP_AUTOMOUNT;
3662 	if (flags & MOVE_MOUNT_T_EMPTY_PATH)	lflags |= LOOKUP_EMPTY;
3663 
3664 	ret = user_path_at(to_dfd, to_pathname, lflags, &to_path);
3665 	if (ret < 0)
3666 		goto out_from;
3667 
3668 	ret = security_move_mount(&from_path, &to_path);
3669 	if (ret < 0)
3670 		goto out_to;
3671 
3672 	ret = do_move_mount(&from_path, &to_path);
3673 
3674 out_to:
3675 	path_put(&to_path);
3676 out_from:
3677 	path_put(&from_path);
3678 	return ret;
3679 }
3680 
3681 /*
3682  * Return true if path is reachable from root
3683  *
3684  * namespace_sem or mount_lock is held
3685  */
3686 bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
3687 			 const struct path *root)
3688 {
3689 	while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
3690 		dentry = mnt->mnt_mountpoint;
3691 		mnt = mnt->mnt_parent;
3692 	}
3693 	return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
3694 }
3695 
3696 bool path_is_under(const struct path *path1, const struct path *path2)
3697 {
3698 	bool res;
3699 	read_seqlock_excl(&mount_lock);
3700 	res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
3701 	read_sequnlock_excl(&mount_lock);
3702 	return res;
3703 }
3704 EXPORT_SYMBOL(path_is_under);
3705 
3706 /*
3707  * pivot_root Semantics:
3708  * Moves the root file system of the current process to the directory put_old,
3709  * makes new_root as the new root file system of the current process, and sets
3710  * root/cwd of all processes which had them on the current root to new_root.
3711  *
3712  * Restrictions:
3713  * The new_root and put_old must be directories, and  must not be on the
3714  * same file  system as the current process root. The put_old  must  be
3715  * underneath new_root,  i.e. adding a non-zero number of /.. to the string
3716  * pointed to by put_old must yield the same directory as new_root. No other
3717  * file system may be mounted on put_old. After all, new_root is a mountpoint.
3718  *
3719  * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
3720  * See Documentation/filesystems/ramfs-rootfs-initramfs.rst for alternatives
3721  * in this situation.
3722  *
3723  * Notes:
3724  *  - we don't move root/cwd if they are not at the root (reason: if something
3725  *    cared enough to change them, it's probably wrong to force them elsewhere)
3726  *  - it's okay to pick a root that isn't the root of a file system, e.g.
3727  *    /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
3728  *    though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
3729  *    first.
3730  */
3731 SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
3732 		const char __user *, put_old)
3733 {
3734 	struct path new, old, root;
3735 	struct mount *new_mnt, *root_mnt, *old_mnt, *root_parent, *ex_parent;
3736 	struct mountpoint *old_mp, *root_mp;
3737 	int error;
3738 
3739 	if (!may_mount())
3740 		return -EPERM;
3741 
3742 	error = user_path_at(AT_FDCWD, new_root,
3743 			     LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &new);
3744 	if (error)
3745 		goto out0;
3746 
3747 	error = user_path_at(AT_FDCWD, put_old,
3748 			     LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &old);
3749 	if (error)
3750 		goto out1;
3751 
3752 	error = security_sb_pivotroot(&old, &new);
3753 	if (error)
3754 		goto out2;
3755 
3756 	get_fs_root(current->fs, &root);
3757 	old_mp = lock_mount(&old);
3758 	error = PTR_ERR(old_mp);
3759 	if (IS_ERR(old_mp))
3760 		goto out3;
3761 
3762 	error = -EINVAL;
3763 	new_mnt = real_mount(new.mnt);
3764 	root_mnt = real_mount(root.mnt);
3765 	old_mnt = real_mount(old.mnt);
3766 	ex_parent = new_mnt->mnt_parent;
3767 	root_parent = root_mnt->mnt_parent;
3768 	if (IS_MNT_SHARED(old_mnt) ||
3769 		IS_MNT_SHARED(ex_parent) ||
3770 		IS_MNT_SHARED(root_parent))
3771 		goto out4;
3772 	if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
3773 		goto out4;
3774 	if (new_mnt->mnt.mnt_flags & MNT_LOCKED)
3775 		goto out4;
3776 	error = -ENOENT;
3777 	if (d_unlinked(new.dentry))
3778 		goto out4;
3779 	error = -EBUSY;
3780 	if (new_mnt == root_mnt || old_mnt == root_mnt)
3781 		goto out4; /* loop, on the same file system  */
3782 	error = -EINVAL;
3783 	if (root.mnt->mnt_root != root.dentry)
3784 		goto out4; /* not a mountpoint */
3785 	if (!mnt_has_parent(root_mnt))
3786 		goto out4; /* not attached */
3787 	if (new.mnt->mnt_root != new.dentry)
3788 		goto out4; /* not a mountpoint */
3789 	if (!mnt_has_parent(new_mnt))
3790 		goto out4; /* not attached */
3791 	/* make sure we can reach put_old from new_root */
3792 	if (!is_path_reachable(old_mnt, old.dentry, &new))
3793 		goto out4;
3794 	/* make certain new is below the root */
3795 	if (!is_path_reachable(new_mnt, new.dentry, &root))
3796 		goto out4;
3797 	lock_mount_hash();
3798 	umount_mnt(new_mnt);
3799 	root_mp = unhash_mnt(root_mnt);  /* we'll need its mountpoint */
3800 	if (root_mnt->mnt.mnt_flags & MNT_LOCKED) {
3801 		new_mnt->mnt.mnt_flags |= MNT_LOCKED;
3802 		root_mnt->mnt.mnt_flags &= ~MNT_LOCKED;
3803 	}
3804 	/* mount old root on put_old */
3805 	attach_mnt(root_mnt, old_mnt, old_mp);
3806 	/* mount new_root on / */
3807 	attach_mnt(new_mnt, root_parent, root_mp);
3808 	mnt_add_count(root_parent, -1);
3809 	touch_mnt_namespace(current->nsproxy->mnt_ns);
3810 	/* A moved mount should not expire automatically */
3811 	list_del_init(&new_mnt->mnt_expire);
3812 	put_mountpoint(root_mp);
3813 	unlock_mount_hash();
3814 	chroot_fs_refs(&root, &new);
3815 	error = 0;
3816 out4:
3817 	unlock_mount(old_mp);
3818 	if (!error)
3819 		mntput_no_expire(ex_parent);
3820 out3:
3821 	path_put(&root);
3822 out2:
3823 	path_put(&old);
3824 out1:
3825 	path_put(&new);
3826 out0:
3827 	return error;
3828 }
3829 
3830 static unsigned int recalc_flags(struct mount_kattr *kattr, struct mount *mnt)
3831 {
3832 	unsigned int flags = mnt->mnt.mnt_flags;
3833 
3834 	/*  flags to clear */
3835 	flags &= ~kattr->attr_clr;
3836 	/* flags to raise */
3837 	flags |= kattr->attr_set;
3838 
3839 	return flags;
3840 }
3841 
3842 static int can_idmap_mount(const struct mount_kattr *kattr, struct mount *mnt)
3843 {
3844 	struct vfsmount *m = &mnt->mnt;
3845 
3846 	if (!kattr->mnt_userns)
3847 		return 0;
3848 
3849 	/*
3850 	 * Once a mount has been idmapped we don't allow it to change its
3851 	 * mapping. It makes things simpler and callers can just create
3852 	 * another bind-mount they can idmap if they want to.
3853 	 */
3854 	if (mnt_user_ns(m) != &init_user_ns)
3855 		return -EPERM;
3856 
3857 	/* The underlying filesystem doesn't support idmapped mounts yet. */
3858 	if (!(m->mnt_sb->s_type->fs_flags & FS_ALLOW_IDMAP))
3859 		return -EINVAL;
3860 
3861 	/* Don't yet support filesystem mountable in user namespaces. */
3862 	if (m->mnt_sb->s_user_ns != &init_user_ns)
3863 		return -EINVAL;
3864 
3865 	/* We're not controlling the superblock. */
3866 	if (!capable(CAP_SYS_ADMIN))
3867 		return -EPERM;
3868 
3869 	/* Mount has already been visible in the filesystem hierarchy. */
3870 	if (!is_anon_ns(mnt->mnt_ns))
3871 		return -EINVAL;
3872 
3873 	return 0;
3874 }
3875 
3876 static struct mount *mount_setattr_prepare(struct mount_kattr *kattr,
3877 					   struct mount *mnt, int *err)
3878 {
3879 	struct mount *m = mnt, *last = NULL;
3880 
3881 	if (!is_mounted(&m->mnt)) {
3882 		*err = -EINVAL;
3883 		goto out;
3884 	}
3885 
3886 	if (!(mnt_has_parent(m) ? check_mnt(m) : is_anon_ns(m->mnt_ns))) {
3887 		*err = -EINVAL;
3888 		goto out;
3889 	}
3890 
3891 	do {
3892 		unsigned int flags;
3893 
3894 		flags = recalc_flags(kattr, m);
3895 		if (!can_change_locked_flags(m, flags)) {
3896 			*err = -EPERM;
3897 			goto out;
3898 		}
3899 
3900 		*err = can_idmap_mount(kattr, m);
3901 		if (*err)
3902 			goto out;
3903 
3904 		last = m;
3905 
3906 		if ((kattr->attr_set & MNT_READONLY) &&
3907 		    !(m->mnt.mnt_flags & MNT_READONLY)) {
3908 			*err = mnt_hold_writers(m);
3909 			if (*err)
3910 				goto out;
3911 		}
3912 	} while (kattr->recurse && (m = next_mnt(m, mnt)));
3913 
3914 out:
3915 	return last;
3916 }
3917 
3918 static void do_idmap_mount(const struct mount_kattr *kattr, struct mount *mnt)
3919 {
3920 	struct user_namespace *mnt_userns;
3921 
3922 	if (!kattr->mnt_userns)
3923 		return;
3924 
3925 	mnt_userns = get_user_ns(kattr->mnt_userns);
3926 	/* Pairs with smp_load_acquire() in mnt_user_ns(). */
3927 	smp_store_release(&mnt->mnt.mnt_userns, mnt_userns);
3928 }
3929 
3930 static void mount_setattr_commit(struct mount_kattr *kattr,
3931 				 struct mount *mnt, struct mount *last,
3932 				 int err)
3933 {
3934 	struct mount *m = mnt;
3935 
3936 	do {
3937 		if (!err) {
3938 			unsigned int flags;
3939 
3940 			do_idmap_mount(kattr, m);
3941 			flags = recalc_flags(kattr, m);
3942 			WRITE_ONCE(m->mnt.mnt_flags, flags);
3943 		}
3944 
3945 		/*
3946 		 * We either set MNT_READONLY above so make it visible
3947 		 * before ~MNT_WRITE_HOLD or we failed to recursively
3948 		 * apply mount options.
3949 		 */
3950 		if ((kattr->attr_set & MNT_READONLY) &&
3951 		    (m->mnt.mnt_flags & MNT_WRITE_HOLD))
3952 			mnt_unhold_writers(m);
3953 
3954 		if (!err && kattr->propagation)
3955 			change_mnt_propagation(m, kattr->propagation);
3956 
3957 		/*
3958 		 * On failure, only cleanup until we found the first mount
3959 		 * we failed to handle.
3960 		 */
3961 		if (err && m == last)
3962 			break;
3963 	} while (kattr->recurse && (m = next_mnt(m, mnt)));
3964 
3965 	if (!err)
3966 		touch_mnt_namespace(mnt->mnt_ns);
3967 }
3968 
3969 static int do_mount_setattr(struct path *path, struct mount_kattr *kattr)
3970 {
3971 	struct mount *mnt = real_mount(path->mnt), *last = NULL;
3972 	int err = 0;
3973 
3974 	if (path->dentry != mnt->mnt.mnt_root)
3975 		return -EINVAL;
3976 
3977 	if (kattr->propagation) {
3978 		/*
3979 		 * Only take namespace_lock() if we're actually changing
3980 		 * propagation.
3981 		 */
3982 		namespace_lock();
3983 		if (kattr->propagation == MS_SHARED) {
3984 			err = invent_group_ids(mnt, kattr->recurse);
3985 			if (err) {
3986 				namespace_unlock();
3987 				return err;
3988 			}
3989 		}
3990 	}
3991 
3992 	lock_mount_hash();
3993 
3994 	/*
3995 	 * Get the mount tree in a shape where we can change mount
3996 	 * properties without failure.
3997 	 */
3998 	last = mount_setattr_prepare(kattr, mnt, &err);
3999 	if (last) /* Commit all changes or revert to the old state. */
4000 		mount_setattr_commit(kattr, mnt, last, err);
4001 
4002 	unlock_mount_hash();
4003 
4004 	if (kattr->propagation) {
4005 		namespace_unlock();
4006 		if (err)
4007 			cleanup_group_ids(mnt, NULL);
4008 	}
4009 
4010 	return err;
4011 }
4012 
4013 static int build_mount_idmapped(const struct mount_attr *attr, size_t usize,
4014 				struct mount_kattr *kattr, unsigned int flags)
4015 {
4016 	int err = 0;
4017 	struct ns_common *ns;
4018 	struct user_namespace *mnt_userns;
4019 	struct file *file;
4020 
4021 	if (!((attr->attr_set | attr->attr_clr) & MOUNT_ATTR_IDMAP))
4022 		return 0;
4023 
4024 	/*
4025 	 * We currently do not support clearing an idmapped mount. If this ever
4026 	 * is a use-case we can revisit this but for now let's keep it simple
4027 	 * and not allow it.
4028 	 */
4029 	if (attr->attr_clr & MOUNT_ATTR_IDMAP)
4030 		return -EINVAL;
4031 
4032 	if (attr->userns_fd > INT_MAX)
4033 		return -EINVAL;
4034 
4035 	file = fget(attr->userns_fd);
4036 	if (!file)
4037 		return -EBADF;
4038 
4039 	if (!proc_ns_file(file)) {
4040 		err = -EINVAL;
4041 		goto out_fput;
4042 	}
4043 
4044 	ns = get_proc_ns(file_inode(file));
4045 	if (ns->ops->type != CLONE_NEWUSER) {
4046 		err = -EINVAL;
4047 		goto out_fput;
4048 	}
4049 
4050 	/*
4051 	 * The init_user_ns is used to indicate that a vfsmount is not idmapped.
4052 	 * This is simpler than just having to treat NULL as unmapped. Users
4053 	 * wanting to idmap a mount to init_user_ns can just use a namespace
4054 	 * with an identity mapping.
4055 	 */
4056 	mnt_userns = container_of(ns, struct user_namespace, ns);
4057 	if (mnt_userns == &init_user_ns) {
4058 		err = -EPERM;
4059 		goto out_fput;
4060 	}
4061 	kattr->mnt_userns = get_user_ns(mnt_userns);
4062 
4063 out_fput:
4064 	fput(file);
4065 	return err;
4066 }
4067 
4068 static int build_mount_kattr(const struct mount_attr *attr, size_t usize,
4069 			     struct mount_kattr *kattr, unsigned int flags)
4070 {
4071 	unsigned int lookup_flags = LOOKUP_AUTOMOUNT | LOOKUP_FOLLOW;
4072 
4073 	if (flags & AT_NO_AUTOMOUNT)
4074 		lookup_flags &= ~LOOKUP_AUTOMOUNT;
4075 	if (flags & AT_SYMLINK_NOFOLLOW)
4076 		lookup_flags &= ~LOOKUP_FOLLOW;
4077 	if (flags & AT_EMPTY_PATH)
4078 		lookup_flags |= LOOKUP_EMPTY;
4079 
4080 	*kattr = (struct mount_kattr) {
4081 		.lookup_flags	= lookup_flags,
4082 		.recurse	= !!(flags & AT_RECURSIVE),
4083 	};
4084 
4085 	if (attr->propagation & ~MOUNT_SETATTR_PROPAGATION_FLAGS)
4086 		return -EINVAL;
4087 	if (hweight32(attr->propagation & MOUNT_SETATTR_PROPAGATION_FLAGS) > 1)
4088 		return -EINVAL;
4089 	kattr->propagation = attr->propagation;
4090 
4091 	if ((attr->attr_set | attr->attr_clr) & ~MOUNT_SETATTR_VALID_FLAGS)
4092 		return -EINVAL;
4093 
4094 	kattr->attr_set = attr_flags_to_mnt_flags(attr->attr_set);
4095 	kattr->attr_clr = attr_flags_to_mnt_flags(attr->attr_clr);
4096 
4097 	/*
4098 	 * Since the MOUNT_ATTR_<atime> values are an enum, not a bitmap,
4099 	 * users wanting to transition to a different atime setting cannot
4100 	 * simply specify the atime setting in @attr_set, but must also
4101 	 * specify MOUNT_ATTR__ATIME in the @attr_clr field.
4102 	 * So ensure that MOUNT_ATTR__ATIME can't be partially set in
4103 	 * @attr_clr and that @attr_set can't have any atime bits set if
4104 	 * MOUNT_ATTR__ATIME isn't set in @attr_clr.
4105 	 */
4106 	if (attr->attr_clr & MOUNT_ATTR__ATIME) {
4107 		if ((attr->attr_clr & MOUNT_ATTR__ATIME) != MOUNT_ATTR__ATIME)
4108 			return -EINVAL;
4109 
4110 		/*
4111 		 * Clear all previous time settings as they are mutually
4112 		 * exclusive.
4113 		 */
4114 		kattr->attr_clr |= MNT_RELATIME | MNT_NOATIME;
4115 		switch (attr->attr_set & MOUNT_ATTR__ATIME) {
4116 		case MOUNT_ATTR_RELATIME:
4117 			kattr->attr_set |= MNT_RELATIME;
4118 			break;
4119 		case MOUNT_ATTR_NOATIME:
4120 			kattr->attr_set |= MNT_NOATIME;
4121 			break;
4122 		case MOUNT_ATTR_STRICTATIME:
4123 			break;
4124 		default:
4125 			return -EINVAL;
4126 		}
4127 	} else {
4128 		if (attr->attr_set & MOUNT_ATTR__ATIME)
4129 			return -EINVAL;
4130 	}
4131 
4132 	return build_mount_idmapped(attr, usize, kattr, flags);
4133 }
4134 
4135 static void finish_mount_kattr(struct mount_kattr *kattr)
4136 {
4137 	put_user_ns(kattr->mnt_userns);
4138 	kattr->mnt_userns = NULL;
4139 }
4140 
4141 SYSCALL_DEFINE5(mount_setattr, int, dfd, const char __user *, path,
4142 		unsigned int, flags, struct mount_attr __user *, uattr,
4143 		size_t, usize)
4144 {
4145 	int err;
4146 	struct path target;
4147 	struct mount_attr attr;
4148 	struct mount_kattr kattr;
4149 
4150 	BUILD_BUG_ON(sizeof(struct mount_attr) != MOUNT_ATTR_SIZE_VER0);
4151 
4152 	if (flags & ~(AT_EMPTY_PATH |
4153 		      AT_RECURSIVE |
4154 		      AT_SYMLINK_NOFOLLOW |
4155 		      AT_NO_AUTOMOUNT))
4156 		return -EINVAL;
4157 
4158 	if (unlikely(usize > PAGE_SIZE))
4159 		return -E2BIG;
4160 	if (unlikely(usize < MOUNT_ATTR_SIZE_VER0))
4161 		return -EINVAL;
4162 
4163 	if (!may_mount())
4164 		return -EPERM;
4165 
4166 	err = copy_struct_from_user(&attr, sizeof(attr), uattr, usize);
4167 	if (err)
4168 		return err;
4169 
4170 	/* Don't bother walking through the mounts if this is a nop. */
4171 	if (attr.attr_set == 0 &&
4172 	    attr.attr_clr == 0 &&
4173 	    attr.propagation == 0)
4174 		return 0;
4175 
4176 	err = build_mount_kattr(&attr, usize, &kattr, flags);
4177 	if (err)
4178 		return err;
4179 
4180 	err = user_path_at(dfd, path, kattr.lookup_flags, &target);
4181 	if (err)
4182 		return err;
4183 
4184 	err = do_mount_setattr(&target, &kattr);
4185 	finish_mount_kattr(&kattr);
4186 	path_put(&target);
4187 	return err;
4188 }
4189 
4190 static void __init init_mount_tree(void)
4191 {
4192 	struct vfsmount *mnt;
4193 	struct mount *m;
4194 	struct mnt_namespace *ns;
4195 	struct path root;
4196 
4197 	mnt = vfs_kern_mount(&rootfs_fs_type, 0, "rootfs", NULL);
4198 	if (IS_ERR(mnt))
4199 		panic("Can't create rootfs");
4200 
4201 	ns = alloc_mnt_ns(&init_user_ns, false);
4202 	if (IS_ERR(ns))
4203 		panic("Can't allocate initial namespace");
4204 	m = real_mount(mnt);
4205 	m->mnt_ns = ns;
4206 	ns->root = m;
4207 	ns->mounts = 1;
4208 	list_add(&m->mnt_list, &ns->list);
4209 	init_task.nsproxy->mnt_ns = ns;
4210 	get_mnt_ns(ns);
4211 
4212 	root.mnt = mnt;
4213 	root.dentry = mnt->mnt_root;
4214 	mnt->mnt_flags |= MNT_LOCKED;
4215 
4216 	set_fs_pwd(current->fs, &root);
4217 	set_fs_root(current->fs, &root);
4218 }
4219 
4220 void __init mnt_init(void)
4221 {
4222 	int err;
4223 
4224 	mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
4225 			0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
4226 
4227 	mount_hashtable = alloc_large_system_hash("Mount-cache",
4228 				sizeof(struct hlist_head),
4229 				mhash_entries, 19,
4230 				HASH_ZERO,
4231 				&m_hash_shift, &m_hash_mask, 0, 0);
4232 	mountpoint_hashtable = alloc_large_system_hash("Mountpoint-cache",
4233 				sizeof(struct hlist_head),
4234 				mphash_entries, 19,
4235 				HASH_ZERO,
4236 				&mp_hash_shift, &mp_hash_mask, 0, 0);
4237 
4238 	if (!mount_hashtable || !mountpoint_hashtable)
4239 		panic("Failed to allocate mount hash table\n");
4240 
4241 	kernfs_init();
4242 
4243 	err = sysfs_init();
4244 	if (err)
4245 		printk(KERN_WARNING "%s: sysfs_init error: %d\n",
4246 			__func__, err);
4247 	fs_kobj = kobject_create_and_add("fs", NULL);
4248 	if (!fs_kobj)
4249 		printk(KERN_WARNING "%s: kobj create error\n", __func__);
4250 	shmem_init();
4251 	init_rootfs();
4252 	init_mount_tree();
4253 }
4254 
4255 void put_mnt_ns(struct mnt_namespace *ns)
4256 {
4257 	if (!refcount_dec_and_test(&ns->ns.count))
4258 		return;
4259 	drop_collected_mounts(&ns->root->mnt);
4260 	free_mnt_ns(ns);
4261 }
4262 
4263 struct vfsmount *kern_mount(struct file_system_type *type)
4264 {
4265 	struct vfsmount *mnt;
4266 	mnt = vfs_kern_mount(type, SB_KERNMOUNT, type->name, NULL);
4267 	if (!IS_ERR(mnt)) {
4268 		/*
4269 		 * it is a longterm mount, don't release mnt until
4270 		 * we unmount before file sys is unregistered
4271 		*/
4272 		real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
4273 	}
4274 	return mnt;
4275 }
4276 EXPORT_SYMBOL_GPL(kern_mount);
4277 
4278 void kern_unmount(struct vfsmount *mnt)
4279 {
4280 	/* release long term mount so mount point can be released */
4281 	if (!IS_ERR_OR_NULL(mnt)) {
4282 		real_mount(mnt)->mnt_ns = NULL;
4283 		synchronize_rcu();	/* yecchhh... */
4284 		mntput(mnt);
4285 	}
4286 }
4287 EXPORT_SYMBOL(kern_unmount);
4288 
4289 void kern_unmount_array(struct vfsmount *mnt[], unsigned int num)
4290 {
4291 	unsigned int i;
4292 
4293 	for (i = 0; i < num; i++)
4294 		if (mnt[i])
4295 			real_mount(mnt[i])->mnt_ns = NULL;
4296 	synchronize_rcu_expedited();
4297 	for (i = 0; i < num; i++)
4298 		mntput(mnt[i]);
4299 }
4300 EXPORT_SYMBOL(kern_unmount_array);
4301 
4302 bool our_mnt(struct vfsmount *mnt)
4303 {
4304 	return check_mnt(real_mount(mnt));
4305 }
4306 
4307 bool current_chrooted(void)
4308 {
4309 	/* Does the current process have a non-standard root */
4310 	struct path ns_root;
4311 	struct path fs_root;
4312 	bool chrooted;
4313 
4314 	/* Find the namespace root */
4315 	ns_root.mnt = &current->nsproxy->mnt_ns->root->mnt;
4316 	ns_root.dentry = ns_root.mnt->mnt_root;
4317 	path_get(&ns_root);
4318 	while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root))
4319 		;
4320 
4321 	get_fs_root(current->fs, &fs_root);
4322 
4323 	chrooted = !path_equal(&fs_root, &ns_root);
4324 
4325 	path_put(&fs_root);
4326 	path_put(&ns_root);
4327 
4328 	return chrooted;
4329 }
4330 
4331 static bool mnt_already_visible(struct mnt_namespace *ns,
4332 				const struct super_block *sb,
4333 				int *new_mnt_flags)
4334 {
4335 	int new_flags = *new_mnt_flags;
4336 	struct mount *mnt;
4337 	bool visible = false;
4338 
4339 	down_read(&namespace_sem);
4340 	lock_ns_list(ns);
4341 	list_for_each_entry(mnt, &ns->list, mnt_list) {
4342 		struct mount *child;
4343 		int mnt_flags;
4344 
4345 		if (mnt_is_cursor(mnt))
4346 			continue;
4347 
4348 		if (mnt->mnt.mnt_sb->s_type != sb->s_type)
4349 			continue;
4350 
4351 		/* This mount is not fully visible if it's root directory
4352 		 * is not the root directory of the filesystem.
4353 		 */
4354 		if (mnt->mnt.mnt_root != mnt->mnt.mnt_sb->s_root)
4355 			continue;
4356 
4357 		/* A local view of the mount flags */
4358 		mnt_flags = mnt->mnt.mnt_flags;
4359 
4360 		/* Don't miss readonly hidden in the superblock flags */
4361 		if (sb_rdonly(mnt->mnt.mnt_sb))
4362 			mnt_flags |= MNT_LOCK_READONLY;
4363 
4364 		/* Verify the mount flags are equal to or more permissive
4365 		 * than the proposed new mount.
4366 		 */
4367 		if ((mnt_flags & MNT_LOCK_READONLY) &&
4368 		    !(new_flags & MNT_READONLY))
4369 			continue;
4370 		if ((mnt_flags & MNT_LOCK_ATIME) &&
4371 		    ((mnt_flags & MNT_ATIME_MASK) != (new_flags & MNT_ATIME_MASK)))
4372 			continue;
4373 
4374 		/* This mount is not fully visible if there are any
4375 		 * locked child mounts that cover anything except for
4376 		 * empty directories.
4377 		 */
4378 		list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
4379 			struct inode *inode = child->mnt_mountpoint->d_inode;
4380 			/* Only worry about locked mounts */
4381 			if (!(child->mnt.mnt_flags & MNT_LOCKED))
4382 				continue;
4383 			/* Is the directory permanetly empty? */
4384 			if (!is_empty_dir_inode(inode))
4385 				goto next;
4386 		}
4387 		/* Preserve the locked attributes */
4388 		*new_mnt_flags |= mnt_flags & (MNT_LOCK_READONLY | \
4389 					       MNT_LOCK_ATIME);
4390 		visible = true;
4391 		goto found;
4392 	next:	;
4393 	}
4394 found:
4395 	unlock_ns_list(ns);
4396 	up_read(&namespace_sem);
4397 	return visible;
4398 }
4399 
4400 static bool mount_too_revealing(const struct super_block *sb, int *new_mnt_flags)
4401 {
4402 	const unsigned long required_iflags = SB_I_NOEXEC | SB_I_NODEV;
4403 	struct mnt_namespace *ns = current->nsproxy->mnt_ns;
4404 	unsigned long s_iflags;
4405 
4406 	if (ns->user_ns == &init_user_ns)
4407 		return false;
4408 
4409 	/* Can this filesystem be too revealing? */
4410 	s_iflags = sb->s_iflags;
4411 	if (!(s_iflags & SB_I_USERNS_VISIBLE))
4412 		return false;
4413 
4414 	if ((s_iflags & required_iflags) != required_iflags) {
4415 		WARN_ONCE(1, "Expected s_iflags to contain 0x%lx\n",
4416 			  required_iflags);
4417 		return true;
4418 	}
4419 
4420 	return !mnt_already_visible(ns, sb, new_mnt_flags);
4421 }
4422 
4423 bool mnt_may_suid(struct vfsmount *mnt)
4424 {
4425 	/*
4426 	 * Foreign mounts (accessed via fchdir or through /proc
4427 	 * symlinks) are always treated as if they are nosuid.  This
4428 	 * prevents namespaces from trusting potentially unsafe
4429 	 * suid/sgid bits, file caps, or security labels that originate
4430 	 * in other namespaces.
4431 	 */
4432 	return !(mnt->mnt_flags & MNT_NOSUID) && check_mnt(real_mount(mnt)) &&
4433 	       current_in_userns(mnt->mnt_sb->s_user_ns);
4434 }
4435 
4436 static struct ns_common *mntns_get(struct task_struct *task)
4437 {
4438 	struct ns_common *ns = NULL;
4439 	struct nsproxy *nsproxy;
4440 
4441 	task_lock(task);
4442 	nsproxy = task->nsproxy;
4443 	if (nsproxy) {
4444 		ns = &nsproxy->mnt_ns->ns;
4445 		get_mnt_ns(to_mnt_ns(ns));
4446 	}
4447 	task_unlock(task);
4448 
4449 	return ns;
4450 }
4451 
4452 static void mntns_put(struct ns_common *ns)
4453 {
4454 	put_mnt_ns(to_mnt_ns(ns));
4455 }
4456 
4457 static int mntns_install(struct nsset *nsset, struct ns_common *ns)
4458 {
4459 	struct nsproxy *nsproxy = nsset->nsproxy;
4460 	struct fs_struct *fs = nsset->fs;
4461 	struct mnt_namespace *mnt_ns = to_mnt_ns(ns), *old_mnt_ns;
4462 	struct user_namespace *user_ns = nsset->cred->user_ns;
4463 	struct path root;
4464 	int err;
4465 
4466 	if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) ||
4467 	    !ns_capable(user_ns, CAP_SYS_CHROOT) ||
4468 	    !ns_capable(user_ns, CAP_SYS_ADMIN))
4469 		return -EPERM;
4470 
4471 	if (is_anon_ns(mnt_ns))
4472 		return -EINVAL;
4473 
4474 	if (fs->users != 1)
4475 		return -EINVAL;
4476 
4477 	get_mnt_ns(mnt_ns);
4478 	old_mnt_ns = nsproxy->mnt_ns;
4479 	nsproxy->mnt_ns = mnt_ns;
4480 
4481 	/* Find the root */
4482 	err = vfs_path_lookup(mnt_ns->root->mnt.mnt_root, &mnt_ns->root->mnt,
4483 				"/", LOOKUP_DOWN, &root);
4484 	if (err) {
4485 		/* revert to old namespace */
4486 		nsproxy->mnt_ns = old_mnt_ns;
4487 		put_mnt_ns(mnt_ns);
4488 		return err;
4489 	}
4490 
4491 	put_mnt_ns(old_mnt_ns);
4492 
4493 	/* Update the pwd and root */
4494 	set_fs_pwd(fs, &root);
4495 	set_fs_root(fs, &root);
4496 
4497 	path_put(&root);
4498 	return 0;
4499 }
4500 
4501 static struct user_namespace *mntns_owner(struct ns_common *ns)
4502 {
4503 	return to_mnt_ns(ns)->user_ns;
4504 }
4505 
4506 const struct proc_ns_operations mntns_operations = {
4507 	.name		= "mnt",
4508 	.type		= CLONE_NEWNS,
4509 	.get		= mntns_get,
4510 	.put		= mntns_put,
4511 	.install	= mntns_install,
4512 	.owner		= mntns_owner,
4513 };
4514