xref: /openbmc/linux/fs/namespace.c (revision 9fb29c73)
1 /*
2  *  linux/fs/namespace.c
3  *
4  * (C) Copyright Al Viro 2000, 2001
5  *	Released under GPL v2.
6  *
7  * Based on code from fs/super.c, copyright Linus Torvalds and others.
8  * Heavily rewritten.
9  */
10 
11 #include <linux/syscalls.h>
12 #include <linux/export.h>
13 #include <linux/capability.h>
14 #include <linux/mnt_namespace.h>
15 #include <linux/user_namespace.h>
16 #include <linux/namei.h>
17 #include <linux/security.h>
18 #include <linux/cred.h>
19 #include <linux/idr.h>
20 #include <linux/init.h>		/* init_rootfs */
21 #include <linux/fs_struct.h>	/* get_fs_root et.al. */
22 #include <linux/fsnotify.h>	/* fsnotify_vfsmount_delete */
23 #include <linux/uaccess.h>
24 #include <linux/proc_ns.h>
25 #include <linux/magic.h>
26 #include <linux/memblock.h>
27 #include <linux/task_work.h>
28 #include <linux/sched/task.h>
29 #include <uapi/linux/mount.h>
30 
31 #include "pnode.h"
32 #include "internal.h"
33 
34 /* Maximum number of mounts in a mount namespace */
35 unsigned int sysctl_mount_max __read_mostly = 100000;
36 
37 static unsigned int m_hash_mask __read_mostly;
38 static unsigned int m_hash_shift __read_mostly;
39 static unsigned int mp_hash_mask __read_mostly;
40 static unsigned int mp_hash_shift __read_mostly;
41 
42 static __initdata unsigned long mhash_entries;
43 static int __init set_mhash_entries(char *str)
44 {
45 	if (!str)
46 		return 0;
47 	mhash_entries = simple_strtoul(str, &str, 0);
48 	return 1;
49 }
50 __setup("mhash_entries=", set_mhash_entries);
51 
52 static __initdata unsigned long mphash_entries;
53 static int __init set_mphash_entries(char *str)
54 {
55 	if (!str)
56 		return 0;
57 	mphash_entries = simple_strtoul(str, &str, 0);
58 	return 1;
59 }
60 __setup("mphash_entries=", set_mphash_entries);
61 
62 static u64 event;
63 static DEFINE_IDA(mnt_id_ida);
64 static DEFINE_IDA(mnt_group_ida);
65 
66 static struct hlist_head *mount_hashtable __read_mostly;
67 static struct hlist_head *mountpoint_hashtable __read_mostly;
68 static struct kmem_cache *mnt_cache __read_mostly;
69 static DECLARE_RWSEM(namespace_sem);
70 
71 /* /sys/fs */
72 struct kobject *fs_kobj;
73 EXPORT_SYMBOL_GPL(fs_kobj);
74 
75 /*
76  * vfsmount lock may be taken for read to prevent changes to the
77  * vfsmount hash, ie. during mountpoint lookups or walking back
78  * up the tree.
79  *
80  * It should be taken for write in all cases where the vfsmount
81  * tree or hash is modified or when a vfsmount structure is modified.
82  */
83 __cacheline_aligned_in_smp DEFINE_SEQLOCK(mount_lock);
84 
85 static inline struct hlist_head *m_hash(struct vfsmount *mnt, struct dentry *dentry)
86 {
87 	unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
88 	tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
89 	tmp = tmp + (tmp >> m_hash_shift);
90 	return &mount_hashtable[tmp & m_hash_mask];
91 }
92 
93 static inline struct hlist_head *mp_hash(struct dentry *dentry)
94 {
95 	unsigned long tmp = ((unsigned long)dentry / L1_CACHE_BYTES);
96 	tmp = tmp + (tmp >> mp_hash_shift);
97 	return &mountpoint_hashtable[tmp & mp_hash_mask];
98 }
99 
100 static int mnt_alloc_id(struct mount *mnt)
101 {
102 	int res = ida_alloc(&mnt_id_ida, GFP_KERNEL);
103 
104 	if (res < 0)
105 		return res;
106 	mnt->mnt_id = res;
107 	return 0;
108 }
109 
110 static void mnt_free_id(struct mount *mnt)
111 {
112 	ida_free(&mnt_id_ida, mnt->mnt_id);
113 }
114 
115 /*
116  * Allocate a new peer group ID
117  */
118 static int mnt_alloc_group_id(struct mount *mnt)
119 {
120 	int res = ida_alloc_min(&mnt_group_ida, 1, GFP_KERNEL);
121 
122 	if (res < 0)
123 		return res;
124 	mnt->mnt_group_id = res;
125 	return 0;
126 }
127 
128 /*
129  * Release a peer group ID
130  */
131 void mnt_release_group_id(struct mount *mnt)
132 {
133 	ida_free(&mnt_group_ida, mnt->mnt_group_id);
134 	mnt->mnt_group_id = 0;
135 }
136 
137 /*
138  * vfsmount lock must be held for read
139  */
140 static inline void mnt_add_count(struct mount *mnt, int n)
141 {
142 #ifdef CONFIG_SMP
143 	this_cpu_add(mnt->mnt_pcp->mnt_count, n);
144 #else
145 	preempt_disable();
146 	mnt->mnt_count += n;
147 	preempt_enable();
148 #endif
149 }
150 
151 /*
152  * vfsmount lock must be held for write
153  */
154 unsigned int mnt_get_count(struct mount *mnt)
155 {
156 #ifdef CONFIG_SMP
157 	unsigned int count = 0;
158 	int cpu;
159 
160 	for_each_possible_cpu(cpu) {
161 		count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
162 	}
163 
164 	return count;
165 #else
166 	return mnt->mnt_count;
167 #endif
168 }
169 
170 static void drop_mountpoint(struct fs_pin *p)
171 {
172 	struct mount *m = container_of(p, struct mount, mnt_umount);
173 	dput(m->mnt_ex_mountpoint);
174 	pin_remove(p);
175 	mntput(&m->mnt);
176 }
177 
178 static struct mount *alloc_vfsmnt(const char *name)
179 {
180 	struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
181 	if (mnt) {
182 		int err;
183 
184 		err = mnt_alloc_id(mnt);
185 		if (err)
186 			goto out_free_cache;
187 
188 		if (name) {
189 			mnt->mnt_devname = kstrdup_const(name, GFP_KERNEL);
190 			if (!mnt->mnt_devname)
191 				goto out_free_id;
192 		}
193 
194 #ifdef CONFIG_SMP
195 		mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
196 		if (!mnt->mnt_pcp)
197 			goto out_free_devname;
198 
199 		this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
200 #else
201 		mnt->mnt_count = 1;
202 		mnt->mnt_writers = 0;
203 #endif
204 
205 		INIT_HLIST_NODE(&mnt->mnt_hash);
206 		INIT_LIST_HEAD(&mnt->mnt_child);
207 		INIT_LIST_HEAD(&mnt->mnt_mounts);
208 		INIT_LIST_HEAD(&mnt->mnt_list);
209 		INIT_LIST_HEAD(&mnt->mnt_expire);
210 		INIT_LIST_HEAD(&mnt->mnt_share);
211 		INIT_LIST_HEAD(&mnt->mnt_slave_list);
212 		INIT_LIST_HEAD(&mnt->mnt_slave);
213 		INIT_HLIST_NODE(&mnt->mnt_mp_list);
214 		INIT_LIST_HEAD(&mnt->mnt_umounting);
215 		init_fs_pin(&mnt->mnt_umount, drop_mountpoint);
216 	}
217 	return mnt;
218 
219 #ifdef CONFIG_SMP
220 out_free_devname:
221 	kfree_const(mnt->mnt_devname);
222 #endif
223 out_free_id:
224 	mnt_free_id(mnt);
225 out_free_cache:
226 	kmem_cache_free(mnt_cache, mnt);
227 	return NULL;
228 }
229 
230 /*
231  * Most r/o checks on a fs are for operations that take
232  * discrete amounts of time, like a write() or unlink().
233  * We must keep track of when those operations start
234  * (for permission checks) and when they end, so that
235  * we can determine when writes are able to occur to
236  * a filesystem.
237  */
238 /*
239  * __mnt_is_readonly: check whether a mount is read-only
240  * @mnt: the mount to check for its write status
241  *
242  * This shouldn't be used directly ouside of the VFS.
243  * It does not guarantee that the filesystem will stay
244  * r/w, just that it is right *now*.  This can not and
245  * should not be used in place of IS_RDONLY(inode).
246  * mnt_want/drop_write() will _keep_ the filesystem
247  * r/w.
248  */
249 bool __mnt_is_readonly(struct vfsmount *mnt)
250 {
251 	return (mnt->mnt_flags & MNT_READONLY) || sb_rdonly(mnt->mnt_sb);
252 }
253 EXPORT_SYMBOL_GPL(__mnt_is_readonly);
254 
255 static inline void mnt_inc_writers(struct mount *mnt)
256 {
257 #ifdef CONFIG_SMP
258 	this_cpu_inc(mnt->mnt_pcp->mnt_writers);
259 #else
260 	mnt->mnt_writers++;
261 #endif
262 }
263 
264 static inline void mnt_dec_writers(struct mount *mnt)
265 {
266 #ifdef CONFIG_SMP
267 	this_cpu_dec(mnt->mnt_pcp->mnt_writers);
268 #else
269 	mnt->mnt_writers--;
270 #endif
271 }
272 
273 static unsigned int mnt_get_writers(struct mount *mnt)
274 {
275 #ifdef CONFIG_SMP
276 	unsigned int count = 0;
277 	int cpu;
278 
279 	for_each_possible_cpu(cpu) {
280 		count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
281 	}
282 
283 	return count;
284 #else
285 	return mnt->mnt_writers;
286 #endif
287 }
288 
289 static int mnt_is_readonly(struct vfsmount *mnt)
290 {
291 	if (mnt->mnt_sb->s_readonly_remount)
292 		return 1;
293 	/* Order wrt setting s_flags/s_readonly_remount in do_remount() */
294 	smp_rmb();
295 	return __mnt_is_readonly(mnt);
296 }
297 
298 /*
299  * Most r/o & frozen checks on a fs are for operations that take discrete
300  * amounts of time, like a write() or unlink().  We must keep track of when
301  * those operations start (for permission checks) and when they end, so that we
302  * can determine when writes are able to occur to a filesystem.
303  */
304 /**
305  * __mnt_want_write - get write access to a mount without freeze protection
306  * @m: the mount on which to take a write
307  *
308  * This tells the low-level filesystem that a write is about to be performed to
309  * it, and makes sure that writes are allowed (mnt it read-write) before
310  * returning success. This operation does not protect against filesystem being
311  * frozen. When the write operation is finished, __mnt_drop_write() must be
312  * called. This is effectively a refcount.
313  */
314 int __mnt_want_write(struct vfsmount *m)
315 {
316 	struct mount *mnt = real_mount(m);
317 	int ret = 0;
318 
319 	preempt_disable();
320 	mnt_inc_writers(mnt);
321 	/*
322 	 * The store to mnt_inc_writers must be visible before we pass
323 	 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
324 	 * incremented count after it has set MNT_WRITE_HOLD.
325 	 */
326 	smp_mb();
327 	while (READ_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD)
328 		cpu_relax();
329 	/*
330 	 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
331 	 * be set to match its requirements. So we must not load that until
332 	 * MNT_WRITE_HOLD is cleared.
333 	 */
334 	smp_rmb();
335 	if (mnt_is_readonly(m)) {
336 		mnt_dec_writers(mnt);
337 		ret = -EROFS;
338 	}
339 	preempt_enable();
340 
341 	return ret;
342 }
343 
344 /**
345  * mnt_want_write - get write access to a mount
346  * @m: the mount on which to take a write
347  *
348  * This tells the low-level filesystem that a write is about to be performed to
349  * it, and makes sure that writes are allowed (mount is read-write, filesystem
350  * is not frozen) before returning success.  When the write operation is
351  * finished, mnt_drop_write() must be called.  This is effectively a refcount.
352  */
353 int mnt_want_write(struct vfsmount *m)
354 {
355 	int ret;
356 
357 	sb_start_write(m->mnt_sb);
358 	ret = __mnt_want_write(m);
359 	if (ret)
360 		sb_end_write(m->mnt_sb);
361 	return ret;
362 }
363 EXPORT_SYMBOL_GPL(mnt_want_write);
364 
365 /**
366  * mnt_clone_write - get write access to a mount
367  * @mnt: the mount on which to take a write
368  *
369  * This is effectively like mnt_want_write, except
370  * it must only be used to take an extra write reference
371  * on a mountpoint that we already know has a write reference
372  * on it. This allows some optimisation.
373  *
374  * After finished, mnt_drop_write must be called as usual to
375  * drop the reference.
376  */
377 int mnt_clone_write(struct vfsmount *mnt)
378 {
379 	/* superblock may be r/o */
380 	if (__mnt_is_readonly(mnt))
381 		return -EROFS;
382 	preempt_disable();
383 	mnt_inc_writers(real_mount(mnt));
384 	preempt_enable();
385 	return 0;
386 }
387 EXPORT_SYMBOL_GPL(mnt_clone_write);
388 
389 /**
390  * __mnt_want_write_file - get write access to a file's mount
391  * @file: the file who's mount on which to take a write
392  *
393  * This is like __mnt_want_write, but it takes a file and can
394  * do some optimisations if the file is open for write already
395  */
396 int __mnt_want_write_file(struct file *file)
397 {
398 	if (!(file->f_mode & FMODE_WRITER))
399 		return __mnt_want_write(file->f_path.mnt);
400 	else
401 		return mnt_clone_write(file->f_path.mnt);
402 }
403 
404 /**
405  * mnt_want_write_file - get write access to a file's mount
406  * @file: the file who's mount on which to take a write
407  *
408  * This is like mnt_want_write, but it takes a file and can
409  * do some optimisations if the file is open for write already
410  */
411 int mnt_want_write_file(struct file *file)
412 {
413 	int ret;
414 
415 	sb_start_write(file_inode(file)->i_sb);
416 	ret = __mnt_want_write_file(file);
417 	if (ret)
418 		sb_end_write(file_inode(file)->i_sb);
419 	return ret;
420 }
421 EXPORT_SYMBOL_GPL(mnt_want_write_file);
422 
423 /**
424  * __mnt_drop_write - give up write access to a mount
425  * @mnt: the mount on which to give up write access
426  *
427  * Tells the low-level filesystem that we are done
428  * performing writes to it.  Must be matched with
429  * __mnt_want_write() call above.
430  */
431 void __mnt_drop_write(struct vfsmount *mnt)
432 {
433 	preempt_disable();
434 	mnt_dec_writers(real_mount(mnt));
435 	preempt_enable();
436 }
437 
438 /**
439  * mnt_drop_write - give up write access to a mount
440  * @mnt: the mount on which to give up write access
441  *
442  * Tells the low-level filesystem that we are done performing writes to it and
443  * also allows filesystem to be frozen again.  Must be matched with
444  * mnt_want_write() call above.
445  */
446 void mnt_drop_write(struct vfsmount *mnt)
447 {
448 	__mnt_drop_write(mnt);
449 	sb_end_write(mnt->mnt_sb);
450 }
451 EXPORT_SYMBOL_GPL(mnt_drop_write);
452 
453 void __mnt_drop_write_file(struct file *file)
454 {
455 	__mnt_drop_write(file->f_path.mnt);
456 }
457 
458 void mnt_drop_write_file(struct file *file)
459 {
460 	__mnt_drop_write_file(file);
461 	sb_end_write(file_inode(file)->i_sb);
462 }
463 EXPORT_SYMBOL(mnt_drop_write_file);
464 
465 static int mnt_make_readonly(struct mount *mnt)
466 {
467 	int ret = 0;
468 
469 	lock_mount_hash();
470 	mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
471 	/*
472 	 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
473 	 * should be visible before we do.
474 	 */
475 	smp_mb();
476 
477 	/*
478 	 * With writers on hold, if this value is zero, then there are
479 	 * definitely no active writers (although held writers may subsequently
480 	 * increment the count, they'll have to wait, and decrement it after
481 	 * seeing MNT_READONLY).
482 	 *
483 	 * It is OK to have counter incremented on one CPU and decremented on
484 	 * another: the sum will add up correctly. The danger would be when we
485 	 * sum up each counter, if we read a counter before it is incremented,
486 	 * but then read another CPU's count which it has been subsequently
487 	 * decremented from -- we would see more decrements than we should.
488 	 * MNT_WRITE_HOLD protects against this scenario, because
489 	 * mnt_want_write first increments count, then smp_mb, then spins on
490 	 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
491 	 * we're counting up here.
492 	 */
493 	if (mnt_get_writers(mnt) > 0)
494 		ret = -EBUSY;
495 	else
496 		mnt->mnt.mnt_flags |= MNT_READONLY;
497 	/*
498 	 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
499 	 * that become unheld will see MNT_READONLY.
500 	 */
501 	smp_wmb();
502 	mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
503 	unlock_mount_hash();
504 	return ret;
505 }
506 
507 static int __mnt_unmake_readonly(struct mount *mnt)
508 {
509 	lock_mount_hash();
510 	mnt->mnt.mnt_flags &= ~MNT_READONLY;
511 	unlock_mount_hash();
512 	return 0;
513 }
514 
515 int sb_prepare_remount_readonly(struct super_block *sb)
516 {
517 	struct mount *mnt;
518 	int err = 0;
519 
520 	/* Racy optimization.  Recheck the counter under MNT_WRITE_HOLD */
521 	if (atomic_long_read(&sb->s_remove_count))
522 		return -EBUSY;
523 
524 	lock_mount_hash();
525 	list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
526 		if (!(mnt->mnt.mnt_flags & MNT_READONLY)) {
527 			mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
528 			smp_mb();
529 			if (mnt_get_writers(mnt) > 0) {
530 				err = -EBUSY;
531 				break;
532 			}
533 		}
534 	}
535 	if (!err && atomic_long_read(&sb->s_remove_count))
536 		err = -EBUSY;
537 
538 	if (!err) {
539 		sb->s_readonly_remount = 1;
540 		smp_wmb();
541 	}
542 	list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
543 		if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
544 			mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
545 	}
546 	unlock_mount_hash();
547 
548 	return err;
549 }
550 
551 static void free_vfsmnt(struct mount *mnt)
552 {
553 	kfree_const(mnt->mnt_devname);
554 #ifdef CONFIG_SMP
555 	free_percpu(mnt->mnt_pcp);
556 #endif
557 	kmem_cache_free(mnt_cache, mnt);
558 }
559 
560 static void delayed_free_vfsmnt(struct rcu_head *head)
561 {
562 	free_vfsmnt(container_of(head, struct mount, mnt_rcu));
563 }
564 
565 /* call under rcu_read_lock */
566 int __legitimize_mnt(struct vfsmount *bastard, unsigned seq)
567 {
568 	struct mount *mnt;
569 	if (read_seqretry(&mount_lock, seq))
570 		return 1;
571 	if (bastard == NULL)
572 		return 0;
573 	mnt = real_mount(bastard);
574 	mnt_add_count(mnt, 1);
575 	smp_mb();			// see mntput_no_expire()
576 	if (likely(!read_seqretry(&mount_lock, seq)))
577 		return 0;
578 	if (bastard->mnt_flags & MNT_SYNC_UMOUNT) {
579 		mnt_add_count(mnt, -1);
580 		return 1;
581 	}
582 	lock_mount_hash();
583 	if (unlikely(bastard->mnt_flags & MNT_DOOMED)) {
584 		mnt_add_count(mnt, -1);
585 		unlock_mount_hash();
586 		return 1;
587 	}
588 	unlock_mount_hash();
589 	/* caller will mntput() */
590 	return -1;
591 }
592 
593 /* call under rcu_read_lock */
594 bool legitimize_mnt(struct vfsmount *bastard, unsigned seq)
595 {
596 	int res = __legitimize_mnt(bastard, seq);
597 	if (likely(!res))
598 		return true;
599 	if (unlikely(res < 0)) {
600 		rcu_read_unlock();
601 		mntput(bastard);
602 		rcu_read_lock();
603 	}
604 	return false;
605 }
606 
607 /*
608  * find the first mount at @dentry on vfsmount @mnt.
609  * call under rcu_read_lock()
610  */
611 struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry)
612 {
613 	struct hlist_head *head = m_hash(mnt, dentry);
614 	struct mount *p;
615 
616 	hlist_for_each_entry_rcu(p, head, mnt_hash)
617 		if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry)
618 			return p;
619 	return NULL;
620 }
621 
622 /*
623  * lookup_mnt - Return the first child mount mounted at path
624  *
625  * "First" means first mounted chronologically.  If you create the
626  * following mounts:
627  *
628  * mount /dev/sda1 /mnt
629  * mount /dev/sda2 /mnt
630  * mount /dev/sda3 /mnt
631  *
632  * Then lookup_mnt() on the base /mnt dentry in the root mount will
633  * return successively the root dentry and vfsmount of /dev/sda1, then
634  * /dev/sda2, then /dev/sda3, then NULL.
635  *
636  * lookup_mnt takes a reference to the found vfsmount.
637  */
638 struct vfsmount *lookup_mnt(const struct path *path)
639 {
640 	struct mount *child_mnt;
641 	struct vfsmount *m;
642 	unsigned seq;
643 
644 	rcu_read_lock();
645 	do {
646 		seq = read_seqbegin(&mount_lock);
647 		child_mnt = __lookup_mnt(path->mnt, path->dentry);
648 		m = child_mnt ? &child_mnt->mnt : NULL;
649 	} while (!legitimize_mnt(m, seq));
650 	rcu_read_unlock();
651 	return m;
652 }
653 
654 /*
655  * __is_local_mountpoint - Test to see if dentry is a mountpoint in the
656  *                         current mount namespace.
657  *
658  * The common case is dentries are not mountpoints at all and that
659  * test is handled inline.  For the slow case when we are actually
660  * dealing with a mountpoint of some kind, walk through all of the
661  * mounts in the current mount namespace and test to see if the dentry
662  * is a mountpoint.
663  *
664  * The mount_hashtable is not usable in the context because we
665  * need to identify all mounts that may be in the current mount
666  * namespace not just a mount that happens to have some specified
667  * parent mount.
668  */
669 bool __is_local_mountpoint(struct dentry *dentry)
670 {
671 	struct mnt_namespace *ns = current->nsproxy->mnt_ns;
672 	struct mount *mnt;
673 	bool is_covered = false;
674 
675 	if (!d_mountpoint(dentry))
676 		goto out;
677 
678 	down_read(&namespace_sem);
679 	list_for_each_entry(mnt, &ns->list, mnt_list) {
680 		is_covered = (mnt->mnt_mountpoint == dentry);
681 		if (is_covered)
682 			break;
683 	}
684 	up_read(&namespace_sem);
685 out:
686 	return is_covered;
687 }
688 
689 static struct mountpoint *lookup_mountpoint(struct dentry *dentry)
690 {
691 	struct hlist_head *chain = mp_hash(dentry);
692 	struct mountpoint *mp;
693 
694 	hlist_for_each_entry(mp, chain, m_hash) {
695 		if (mp->m_dentry == dentry) {
696 			mp->m_count++;
697 			return mp;
698 		}
699 	}
700 	return NULL;
701 }
702 
703 static struct mountpoint *get_mountpoint(struct dentry *dentry)
704 {
705 	struct mountpoint *mp, *new = NULL;
706 	int ret;
707 
708 	if (d_mountpoint(dentry)) {
709 		/* might be worth a WARN_ON() */
710 		if (d_unlinked(dentry))
711 			return ERR_PTR(-ENOENT);
712 mountpoint:
713 		read_seqlock_excl(&mount_lock);
714 		mp = lookup_mountpoint(dentry);
715 		read_sequnlock_excl(&mount_lock);
716 		if (mp)
717 			goto done;
718 	}
719 
720 	if (!new)
721 		new = kmalloc(sizeof(struct mountpoint), GFP_KERNEL);
722 	if (!new)
723 		return ERR_PTR(-ENOMEM);
724 
725 
726 	/* Exactly one processes may set d_mounted */
727 	ret = d_set_mounted(dentry);
728 
729 	/* Someone else set d_mounted? */
730 	if (ret == -EBUSY)
731 		goto mountpoint;
732 
733 	/* The dentry is not available as a mountpoint? */
734 	mp = ERR_PTR(ret);
735 	if (ret)
736 		goto done;
737 
738 	/* Add the new mountpoint to the hash table */
739 	read_seqlock_excl(&mount_lock);
740 	new->m_dentry = dentry;
741 	new->m_count = 1;
742 	hlist_add_head(&new->m_hash, mp_hash(dentry));
743 	INIT_HLIST_HEAD(&new->m_list);
744 	read_sequnlock_excl(&mount_lock);
745 
746 	mp = new;
747 	new = NULL;
748 done:
749 	kfree(new);
750 	return mp;
751 }
752 
753 static void put_mountpoint(struct mountpoint *mp)
754 {
755 	if (!--mp->m_count) {
756 		struct dentry *dentry = mp->m_dentry;
757 		BUG_ON(!hlist_empty(&mp->m_list));
758 		spin_lock(&dentry->d_lock);
759 		dentry->d_flags &= ~DCACHE_MOUNTED;
760 		spin_unlock(&dentry->d_lock);
761 		hlist_del(&mp->m_hash);
762 		kfree(mp);
763 	}
764 }
765 
766 static inline int check_mnt(struct mount *mnt)
767 {
768 	return mnt->mnt_ns == current->nsproxy->mnt_ns;
769 }
770 
771 /*
772  * vfsmount lock must be held for write
773  */
774 static void touch_mnt_namespace(struct mnt_namespace *ns)
775 {
776 	if (ns) {
777 		ns->event = ++event;
778 		wake_up_interruptible(&ns->poll);
779 	}
780 }
781 
782 /*
783  * vfsmount lock must be held for write
784  */
785 static void __touch_mnt_namespace(struct mnt_namespace *ns)
786 {
787 	if (ns && ns->event != event) {
788 		ns->event = event;
789 		wake_up_interruptible(&ns->poll);
790 	}
791 }
792 
793 /*
794  * vfsmount lock must be held for write
795  */
796 static void unhash_mnt(struct mount *mnt)
797 {
798 	mnt->mnt_parent = mnt;
799 	mnt->mnt_mountpoint = mnt->mnt.mnt_root;
800 	list_del_init(&mnt->mnt_child);
801 	hlist_del_init_rcu(&mnt->mnt_hash);
802 	hlist_del_init(&mnt->mnt_mp_list);
803 	put_mountpoint(mnt->mnt_mp);
804 	mnt->mnt_mp = NULL;
805 }
806 
807 /*
808  * vfsmount lock must be held for write
809  */
810 static void detach_mnt(struct mount *mnt, struct path *old_path)
811 {
812 	old_path->dentry = mnt->mnt_mountpoint;
813 	old_path->mnt = &mnt->mnt_parent->mnt;
814 	unhash_mnt(mnt);
815 }
816 
817 /*
818  * vfsmount lock must be held for write
819  */
820 static void umount_mnt(struct mount *mnt)
821 {
822 	/* old mountpoint will be dropped when we can do that */
823 	mnt->mnt_ex_mountpoint = mnt->mnt_mountpoint;
824 	unhash_mnt(mnt);
825 }
826 
827 /*
828  * vfsmount lock must be held for write
829  */
830 void mnt_set_mountpoint(struct mount *mnt,
831 			struct mountpoint *mp,
832 			struct mount *child_mnt)
833 {
834 	mp->m_count++;
835 	mnt_add_count(mnt, 1);	/* essentially, that's mntget */
836 	child_mnt->mnt_mountpoint = dget(mp->m_dentry);
837 	child_mnt->mnt_parent = mnt;
838 	child_mnt->mnt_mp = mp;
839 	hlist_add_head(&child_mnt->mnt_mp_list, &mp->m_list);
840 }
841 
842 static void __attach_mnt(struct mount *mnt, struct mount *parent)
843 {
844 	hlist_add_head_rcu(&mnt->mnt_hash,
845 			   m_hash(&parent->mnt, mnt->mnt_mountpoint));
846 	list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
847 }
848 
849 /*
850  * vfsmount lock must be held for write
851  */
852 static void attach_mnt(struct mount *mnt,
853 			struct mount *parent,
854 			struct mountpoint *mp)
855 {
856 	mnt_set_mountpoint(parent, mp, mnt);
857 	__attach_mnt(mnt, parent);
858 }
859 
860 void mnt_change_mountpoint(struct mount *parent, struct mountpoint *mp, struct mount *mnt)
861 {
862 	struct mountpoint *old_mp = mnt->mnt_mp;
863 	struct dentry *old_mountpoint = mnt->mnt_mountpoint;
864 	struct mount *old_parent = mnt->mnt_parent;
865 
866 	list_del_init(&mnt->mnt_child);
867 	hlist_del_init(&mnt->mnt_mp_list);
868 	hlist_del_init_rcu(&mnt->mnt_hash);
869 
870 	attach_mnt(mnt, parent, mp);
871 
872 	put_mountpoint(old_mp);
873 
874 	/*
875 	 * Safely avoid even the suggestion this code might sleep or
876 	 * lock the mount hash by taking advantage of the knowledge that
877 	 * mnt_change_mountpoint will not release the final reference
878 	 * to a mountpoint.
879 	 *
880 	 * During mounting, the mount passed in as the parent mount will
881 	 * continue to use the old mountpoint and during unmounting, the
882 	 * old mountpoint will continue to exist until namespace_unlock,
883 	 * which happens well after mnt_change_mountpoint.
884 	 */
885 	spin_lock(&old_mountpoint->d_lock);
886 	old_mountpoint->d_lockref.count--;
887 	spin_unlock(&old_mountpoint->d_lock);
888 
889 	mnt_add_count(old_parent, -1);
890 }
891 
892 /*
893  * vfsmount lock must be held for write
894  */
895 static void commit_tree(struct mount *mnt)
896 {
897 	struct mount *parent = mnt->mnt_parent;
898 	struct mount *m;
899 	LIST_HEAD(head);
900 	struct mnt_namespace *n = parent->mnt_ns;
901 
902 	BUG_ON(parent == mnt);
903 
904 	list_add_tail(&head, &mnt->mnt_list);
905 	list_for_each_entry(m, &head, mnt_list)
906 		m->mnt_ns = n;
907 
908 	list_splice(&head, n->list.prev);
909 
910 	n->mounts += n->pending_mounts;
911 	n->pending_mounts = 0;
912 
913 	__attach_mnt(mnt, parent);
914 	touch_mnt_namespace(n);
915 }
916 
917 static struct mount *next_mnt(struct mount *p, struct mount *root)
918 {
919 	struct list_head *next = p->mnt_mounts.next;
920 	if (next == &p->mnt_mounts) {
921 		while (1) {
922 			if (p == root)
923 				return NULL;
924 			next = p->mnt_child.next;
925 			if (next != &p->mnt_parent->mnt_mounts)
926 				break;
927 			p = p->mnt_parent;
928 		}
929 	}
930 	return list_entry(next, struct mount, mnt_child);
931 }
932 
933 static struct mount *skip_mnt_tree(struct mount *p)
934 {
935 	struct list_head *prev = p->mnt_mounts.prev;
936 	while (prev != &p->mnt_mounts) {
937 		p = list_entry(prev, struct mount, mnt_child);
938 		prev = p->mnt_mounts.prev;
939 	}
940 	return p;
941 }
942 
943 struct vfsmount *
944 vfs_kern_mount(struct file_system_type *type, int flags, const char *name, void *data)
945 {
946 	struct mount *mnt;
947 	struct dentry *root;
948 
949 	if (!type)
950 		return ERR_PTR(-ENODEV);
951 
952 	mnt = alloc_vfsmnt(name);
953 	if (!mnt)
954 		return ERR_PTR(-ENOMEM);
955 
956 	if (flags & SB_KERNMOUNT)
957 		mnt->mnt.mnt_flags = MNT_INTERNAL;
958 
959 	root = mount_fs(type, flags, name, data);
960 	if (IS_ERR(root)) {
961 		mnt_free_id(mnt);
962 		free_vfsmnt(mnt);
963 		return ERR_CAST(root);
964 	}
965 
966 	mnt->mnt.mnt_root = root;
967 	mnt->mnt.mnt_sb = root->d_sb;
968 	mnt->mnt_mountpoint = mnt->mnt.mnt_root;
969 	mnt->mnt_parent = mnt;
970 	lock_mount_hash();
971 	list_add_tail(&mnt->mnt_instance, &root->d_sb->s_mounts);
972 	unlock_mount_hash();
973 	return &mnt->mnt;
974 }
975 EXPORT_SYMBOL_GPL(vfs_kern_mount);
976 
977 struct vfsmount *
978 vfs_submount(const struct dentry *mountpoint, struct file_system_type *type,
979 	     const char *name, void *data)
980 {
981 	/* Until it is worked out how to pass the user namespace
982 	 * through from the parent mount to the submount don't support
983 	 * unprivileged mounts with submounts.
984 	 */
985 	if (mountpoint->d_sb->s_user_ns != &init_user_ns)
986 		return ERR_PTR(-EPERM);
987 
988 	return vfs_kern_mount(type, SB_SUBMOUNT, name, data);
989 }
990 EXPORT_SYMBOL_GPL(vfs_submount);
991 
992 static struct mount *clone_mnt(struct mount *old, struct dentry *root,
993 					int flag)
994 {
995 	struct super_block *sb = old->mnt.mnt_sb;
996 	struct mount *mnt;
997 	int err;
998 
999 	mnt = alloc_vfsmnt(old->mnt_devname);
1000 	if (!mnt)
1001 		return ERR_PTR(-ENOMEM);
1002 
1003 	if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE))
1004 		mnt->mnt_group_id = 0; /* not a peer of original */
1005 	else
1006 		mnt->mnt_group_id = old->mnt_group_id;
1007 
1008 	if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
1009 		err = mnt_alloc_group_id(mnt);
1010 		if (err)
1011 			goto out_free;
1012 	}
1013 
1014 	mnt->mnt.mnt_flags = old->mnt.mnt_flags;
1015 	mnt->mnt.mnt_flags &= ~(MNT_WRITE_HOLD|MNT_MARKED|MNT_INTERNAL);
1016 	/* Don't allow unprivileged users to change mount flags */
1017 	if (flag & CL_UNPRIVILEGED) {
1018 		mnt->mnt.mnt_flags |= MNT_LOCK_ATIME;
1019 
1020 		if (mnt->mnt.mnt_flags & MNT_READONLY)
1021 			mnt->mnt.mnt_flags |= MNT_LOCK_READONLY;
1022 
1023 		if (mnt->mnt.mnt_flags & MNT_NODEV)
1024 			mnt->mnt.mnt_flags |= MNT_LOCK_NODEV;
1025 
1026 		if (mnt->mnt.mnt_flags & MNT_NOSUID)
1027 			mnt->mnt.mnt_flags |= MNT_LOCK_NOSUID;
1028 
1029 		if (mnt->mnt.mnt_flags & MNT_NOEXEC)
1030 			mnt->mnt.mnt_flags |= MNT_LOCK_NOEXEC;
1031 	}
1032 
1033 	/* Don't allow unprivileged users to reveal what is under a mount */
1034 	if ((flag & CL_UNPRIVILEGED) &&
1035 	    (!(flag & CL_EXPIRE) || list_empty(&old->mnt_expire)))
1036 		mnt->mnt.mnt_flags |= MNT_LOCKED;
1037 
1038 	atomic_inc(&sb->s_active);
1039 	mnt->mnt.mnt_sb = sb;
1040 	mnt->mnt.mnt_root = dget(root);
1041 	mnt->mnt_mountpoint = mnt->mnt.mnt_root;
1042 	mnt->mnt_parent = mnt;
1043 	lock_mount_hash();
1044 	list_add_tail(&mnt->mnt_instance, &sb->s_mounts);
1045 	unlock_mount_hash();
1046 
1047 	if ((flag & CL_SLAVE) ||
1048 	    ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) {
1049 		list_add(&mnt->mnt_slave, &old->mnt_slave_list);
1050 		mnt->mnt_master = old;
1051 		CLEAR_MNT_SHARED(mnt);
1052 	} else if (!(flag & CL_PRIVATE)) {
1053 		if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
1054 			list_add(&mnt->mnt_share, &old->mnt_share);
1055 		if (IS_MNT_SLAVE(old))
1056 			list_add(&mnt->mnt_slave, &old->mnt_slave);
1057 		mnt->mnt_master = old->mnt_master;
1058 	} else {
1059 		CLEAR_MNT_SHARED(mnt);
1060 	}
1061 	if (flag & CL_MAKE_SHARED)
1062 		set_mnt_shared(mnt);
1063 
1064 	/* stick the duplicate mount on the same expiry list
1065 	 * as the original if that was on one */
1066 	if (flag & CL_EXPIRE) {
1067 		if (!list_empty(&old->mnt_expire))
1068 			list_add(&mnt->mnt_expire, &old->mnt_expire);
1069 	}
1070 
1071 	return mnt;
1072 
1073  out_free:
1074 	mnt_free_id(mnt);
1075 	free_vfsmnt(mnt);
1076 	return ERR_PTR(err);
1077 }
1078 
1079 static void cleanup_mnt(struct mount *mnt)
1080 {
1081 	/*
1082 	 * This probably indicates that somebody messed
1083 	 * up a mnt_want/drop_write() pair.  If this
1084 	 * happens, the filesystem was probably unable
1085 	 * to make r/w->r/o transitions.
1086 	 */
1087 	/*
1088 	 * The locking used to deal with mnt_count decrement provides barriers,
1089 	 * so mnt_get_writers() below is safe.
1090 	 */
1091 	WARN_ON(mnt_get_writers(mnt));
1092 	if (unlikely(mnt->mnt_pins.first))
1093 		mnt_pin_kill(mnt);
1094 	fsnotify_vfsmount_delete(&mnt->mnt);
1095 	dput(mnt->mnt.mnt_root);
1096 	deactivate_super(mnt->mnt.mnt_sb);
1097 	mnt_free_id(mnt);
1098 	call_rcu(&mnt->mnt_rcu, delayed_free_vfsmnt);
1099 }
1100 
1101 static void __cleanup_mnt(struct rcu_head *head)
1102 {
1103 	cleanup_mnt(container_of(head, struct mount, mnt_rcu));
1104 }
1105 
1106 static LLIST_HEAD(delayed_mntput_list);
1107 static void delayed_mntput(struct work_struct *unused)
1108 {
1109 	struct llist_node *node = llist_del_all(&delayed_mntput_list);
1110 	struct mount *m, *t;
1111 
1112 	llist_for_each_entry_safe(m, t, node, mnt_llist)
1113 		cleanup_mnt(m);
1114 }
1115 static DECLARE_DELAYED_WORK(delayed_mntput_work, delayed_mntput);
1116 
1117 static void mntput_no_expire(struct mount *mnt)
1118 {
1119 	rcu_read_lock();
1120 	if (likely(READ_ONCE(mnt->mnt_ns))) {
1121 		/*
1122 		 * Since we don't do lock_mount_hash() here,
1123 		 * ->mnt_ns can change under us.  However, if it's
1124 		 * non-NULL, then there's a reference that won't
1125 		 * be dropped until after an RCU delay done after
1126 		 * turning ->mnt_ns NULL.  So if we observe it
1127 		 * non-NULL under rcu_read_lock(), the reference
1128 		 * we are dropping is not the final one.
1129 		 */
1130 		mnt_add_count(mnt, -1);
1131 		rcu_read_unlock();
1132 		return;
1133 	}
1134 	lock_mount_hash();
1135 	/*
1136 	 * make sure that if __legitimize_mnt() has not seen us grab
1137 	 * mount_lock, we'll see their refcount increment here.
1138 	 */
1139 	smp_mb();
1140 	mnt_add_count(mnt, -1);
1141 	if (mnt_get_count(mnt)) {
1142 		rcu_read_unlock();
1143 		unlock_mount_hash();
1144 		return;
1145 	}
1146 	if (unlikely(mnt->mnt.mnt_flags & MNT_DOOMED)) {
1147 		rcu_read_unlock();
1148 		unlock_mount_hash();
1149 		return;
1150 	}
1151 	mnt->mnt.mnt_flags |= MNT_DOOMED;
1152 	rcu_read_unlock();
1153 
1154 	list_del(&mnt->mnt_instance);
1155 
1156 	if (unlikely(!list_empty(&mnt->mnt_mounts))) {
1157 		struct mount *p, *tmp;
1158 		list_for_each_entry_safe(p, tmp, &mnt->mnt_mounts,  mnt_child) {
1159 			umount_mnt(p);
1160 		}
1161 	}
1162 	unlock_mount_hash();
1163 
1164 	if (likely(!(mnt->mnt.mnt_flags & MNT_INTERNAL))) {
1165 		struct task_struct *task = current;
1166 		if (likely(!(task->flags & PF_KTHREAD))) {
1167 			init_task_work(&mnt->mnt_rcu, __cleanup_mnt);
1168 			if (!task_work_add(task, &mnt->mnt_rcu, true))
1169 				return;
1170 		}
1171 		if (llist_add(&mnt->mnt_llist, &delayed_mntput_list))
1172 			schedule_delayed_work(&delayed_mntput_work, 1);
1173 		return;
1174 	}
1175 	cleanup_mnt(mnt);
1176 }
1177 
1178 void mntput(struct vfsmount *mnt)
1179 {
1180 	if (mnt) {
1181 		struct mount *m = real_mount(mnt);
1182 		/* avoid cacheline pingpong, hope gcc doesn't get "smart" */
1183 		if (unlikely(m->mnt_expiry_mark))
1184 			m->mnt_expiry_mark = 0;
1185 		mntput_no_expire(m);
1186 	}
1187 }
1188 EXPORT_SYMBOL(mntput);
1189 
1190 struct vfsmount *mntget(struct vfsmount *mnt)
1191 {
1192 	if (mnt)
1193 		mnt_add_count(real_mount(mnt), 1);
1194 	return mnt;
1195 }
1196 EXPORT_SYMBOL(mntget);
1197 
1198 /* path_is_mountpoint() - Check if path is a mount in the current
1199  *                          namespace.
1200  *
1201  *  d_mountpoint() can only be used reliably to establish if a dentry is
1202  *  not mounted in any namespace and that common case is handled inline.
1203  *  d_mountpoint() isn't aware of the possibility there may be multiple
1204  *  mounts using a given dentry in a different namespace. This function
1205  *  checks if the passed in path is a mountpoint rather than the dentry
1206  *  alone.
1207  */
1208 bool path_is_mountpoint(const struct path *path)
1209 {
1210 	unsigned seq;
1211 	bool res;
1212 
1213 	if (!d_mountpoint(path->dentry))
1214 		return false;
1215 
1216 	rcu_read_lock();
1217 	do {
1218 		seq = read_seqbegin(&mount_lock);
1219 		res = __path_is_mountpoint(path);
1220 	} while (read_seqretry(&mount_lock, seq));
1221 	rcu_read_unlock();
1222 
1223 	return res;
1224 }
1225 EXPORT_SYMBOL(path_is_mountpoint);
1226 
1227 struct vfsmount *mnt_clone_internal(const struct path *path)
1228 {
1229 	struct mount *p;
1230 	p = clone_mnt(real_mount(path->mnt), path->dentry, CL_PRIVATE);
1231 	if (IS_ERR(p))
1232 		return ERR_CAST(p);
1233 	p->mnt.mnt_flags |= MNT_INTERNAL;
1234 	return &p->mnt;
1235 }
1236 
1237 #ifdef CONFIG_PROC_FS
1238 /* iterator; we want it to have access to namespace_sem, thus here... */
1239 static void *m_start(struct seq_file *m, loff_t *pos)
1240 {
1241 	struct proc_mounts *p = m->private;
1242 
1243 	down_read(&namespace_sem);
1244 	if (p->cached_event == p->ns->event) {
1245 		void *v = p->cached_mount;
1246 		if (*pos == p->cached_index)
1247 			return v;
1248 		if (*pos == p->cached_index + 1) {
1249 			v = seq_list_next(v, &p->ns->list, &p->cached_index);
1250 			return p->cached_mount = v;
1251 		}
1252 	}
1253 
1254 	p->cached_event = p->ns->event;
1255 	p->cached_mount = seq_list_start(&p->ns->list, *pos);
1256 	p->cached_index = *pos;
1257 	return p->cached_mount;
1258 }
1259 
1260 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
1261 {
1262 	struct proc_mounts *p = m->private;
1263 
1264 	p->cached_mount = seq_list_next(v, &p->ns->list, pos);
1265 	p->cached_index = *pos;
1266 	return p->cached_mount;
1267 }
1268 
1269 static void m_stop(struct seq_file *m, void *v)
1270 {
1271 	up_read(&namespace_sem);
1272 }
1273 
1274 static int m_show(struct seq_file *m, void *v)
1275 {
1276 	struct proc_mounts *p = m->private;
1277 	struct mount *r = list_entry(v, struct mount, mnt_list);
1278 	return p->show(m, &r->mnt);
1279 }
1280 
1281 const struct seq_operations mounts_op = {
1282 	.start	= m_start,
1283 	.next	= m_next,
1284 	.stop	= m_stop,
1285 	.show	= m_show,
1286 };
1287 #endif  /* CONFIG_PROC_FS */
1288 
1289 /**
1290  * may_umount_tree - check if a mount tree is busy
1291  * @mnt: root of mount tree
1292  *
1293  * This is called to check if a tree of mounts has any
1294  * open files, pwds, chroots or sub mounts that are
1295  * busy.
1296  */
1297 int may_umount_tree(struct vfsmount *m)
1298 {
1299 	struct mount *mnt = real_mount(m);
1300 	int actual_refs = 0;
1301 	int minimum_refs = 0;
1302 	struct mount *p;
1303 	BUG_ON(!m);
1304 
1305 	/* write lock needed for mnt_get_count */
1306 	lock_mount_hash();
1307 	for (p = mnt; p; p = next_mnt(p, mnt)) {
1308 		actual_refs += mnt_get_count(p);
1309 		minimum_refs += 2;
1310 	}
1311 	unlock_mount_hash();
1312 
1313 	if (actual_refs > minimum_refs)
1314 		return 0;
1315 
1316 	return 1;
1317 }
1318 
1319 EXPORT_SYMBOL(may_umount_tree);
1320 
1321 /**
1322  * may_umount - check if a mount point is busy
1323  * @mnt: root of mount
1324  *
1325  * This is called to check if a mount point has any
1326  * open files, pwds, chroots or sub mounts. If the
1327  * mount has sub mounts this will return busy
1328  * regardless of whether the sub mounts are busy.
1329  *
1330  * Doesn't take quota and stuff into account. IOW, in some cases it will
1331  * give false negatives. The main reason why it's here is that we need
1332  * a non-destructive way to look for easily umountable filesystems.
1333  */
1334 int may_umount(struct vfsmount *mnt)
1335 {
1336 	int ret = 1;
1337 	down_read(&namespace_sem);
1338 	lock_mount_hash();
1339 	if (propagate_mount_busy(real_mount(mnt), 2))
1340 		ret = 0;
1341 	unlock_mount_hash();
1342 	up_read(&namespace_sem);
1343 	return ret;
1344 }
1345 
1346 EXPORT_SYMBOL(may_umount);
1347 
1348 static HLIST_HEAD(unmounted);	/* protected by namespace_sem */
1349 
1350 static void namespace_unlock(void)
1351 {
1352 	struct hlist_head head;
1353 
1354 	hlist_move_list(&unmounted, &head);
1355 
1356 	up_write(&namespace_sem);
1357 
1358 	if (likely(hlist_empty(&head)))
1359 		return;
1360 
1361 	synchronize_rcu_expedited();
1362 
1363 	group_pin_kill(&head);
1364 }
1365 
1366 static inline void namespace_lock(void)
1367 {
1368 	down_write(&namespace_sem);
1369 }
1370 
1371 enum umount_tree_flags {
1372 	UMOUNT_SYNC = 1,
1373 	UMOUNT_PROPAGATE = 2,
1374 	UMOUNT_CONNECTED = 4,
1375 };
1376 
1377 static bool disconnect_mount(struct mount *mnt, enum umount_tree_flags how)
1378 {
1379 	/* Leaving mounts connected is only valid for lazy umounts */
1380 	if (how & UMOUNT_SYNC)
1381 		return true;
1382 
1383 	/* A mount without a parent has nothing to be connected to */
1384 	if (!mnt_has_parent(mnt))
1385 		return true;
1386 
1387 	/* Because the reference counting rules change when mounts are
1388 	 * unmounted and connected, umounted mounts may not be
1389 	 * connected to mounted mounts.
1390 	 */
1391 	if (!(mnt->mnt_parent->mnt.mnt_flags & MNT_UMOUNT))
1392 		return true;
1393 
1394 	/* Has it been requested that the mount remain connected? */
1395 	if (how & UMOUNT_CONNECTED)
1396 		return false;
1397 
1398 	/* Is the mount locked such that it needs to remain connected? */
1399 	if (IS_MNT_LOCKED(mnt))
1400 		return false;
1401 
1402 	/* By default disconnect the mount */
1403 	return true;
1404 }
1405 
1406 /*
1407  * mount_lock must be held
1408  * namespace_sem must be held for write
1409  */
1410 static void umount_tree(struct mount *mnt, enum umount_tree_flags how)
1411 {
1412 	LIST_HEAD(tmp_list);
1413 	struct mount *p;
1414 
1415 	if (how & UMOUNT_PROPAGATE)
1416 		propagate_mount_unlock(mnt);
1417 
1418 	/* Gather the mounts to umount */
1419 	for (p = mnt; p; p = next_mnt(p, mnt)) {
1420 		p->mnt.mnt_flags |= MNT_UMOUNT;
1421 		list_move(&p->mnt_list, &tmp_list);
1422 	}
1423 
1424 	/* Hide the mounts from mnt_mounts */
1425 	list_for_each_entry(p, &tmp_list, mnt_list) {
1426 		list_del_init(&p->mnt_child);
1427 	}
1428 
1429 	/* Add propogated mounts to the tmp_list */
1430 	if (how & UMOUNT_PROPAGATE)
1431 		propagate_umount(&tmp_list);
1432 
1433 	while (!list_empty(&tmp_list)) {
1434 		struct mnt_namespace *ns;
1435 		bool disconnect;
1436 		p = list_first_entry(&tmp_list, struct mount, mnt_list);
1437 		list_del_init(&p->mnt_expire);
1438 		list_del_init(&p->mnt_list);
1439 		ns = p->mnt_ns;
1440 		if (ns) {
1441 			ns->mounts--;
1442 			__touch_mnt_namespace(ns);
1443 		}
1444 		p->mnt_ns = NULL;
1445 		if (how & UMOUNT_SYNC)
1446 			p->mnt.mnt_flags |= MNT_SYNC_UMOUNT;
1447 
1448 		disconnect = disconnect_mount(p, how);
1449 
1450 		pin_insert_group(&p->mnt_umount, &p->mnt_parent->mnt,
1451 				 disconnect ? &unmounted : NULL);
1452 		if (mnt_has_parent(p)) {
1453 			mnt_add_count(p->mnt_parent, -1);
1454 			if (!disconnect) {
1455 				/* Don't forget about p */
1456 				list_add_tail(&p->mnt_child, &p->mnt_parent->mnt_mounts);
1457 			} else {
1458 				umount_mnt(p);
1459 			}
1460 		}
1461 		change_mnt_propagation(p, MS_PRIVATE);
1462 	}
1463 }
1464 
1465 static void shrink_submounts(struct mount *mnt);
1466 
1467 static int do_umount(struct mount *mnt, int flags)
1468 {
1469 	struct super_block *sb = mnt->mnt.mnt_sb;
1470 	int retval;
1471 
1472 	retval = security_sb_umount(&mnt->mnt, flags);
1473 	if (retval)
1474 		return retval;
1475 
1476 	/*
1477 	 * Allow userspace to request a mountpoint be expired rather than
1478 	 * unmounting unconditionally. Unmount only happens if:
1479 	 *  (1) the mark is already set (the mark is cleared by mntput())
1480 	 *  (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1481 	 */
1482 	if (flags & MNT_EXPIRE) {
1483 		if (&mnt->mnt == current->fs->root.mnt ||
1484 		    flags & (MNT_FORCE | MNT_DETACH))
1485 			return -EINVAL;
1486 
1487 		/*
1488 		 * probably don't strictly need the lock here if we examined
1489 		 * all race cases, but it's a slowpath.
1490 		 */
1491 		lock_mount_hash();
1492 		if (mnt_get_count(mnt) != 2) {
1493 			unlock_mount_hash();
1494 			return -EBUSY;
1495 		}
1496 		unlock_mount_hash();
1497 
1498 		if (!xchg(&mnt->mnt_expiry_mark, 1))
1499 			return -EAGAIN;
1500 	}
1501 
1502 	/*
1503 	 * If we may have to abort operations to get out of this
1504 	 * mount, and they will themselves hold resources we must
1505 	 * allow the fs to do things. In the Unix tradition of
1506 	 * 'Gee thats tricky lets do it in userspace' the umount_begin
1507 	 * might fail to complete on the first run through as other tasks
1508 	 * must return, and the like. Thats for the mount program to worry
1509 	 * about for the moment.
1510 	 */
1511 
1512 	if (flags & MNT_FORCE && sb->s_op->umount_begin) {
1513 		sb->s_op->umount_begin(sb);
1514 	}
1515 
1516 	/*
1517 	 * No sense to grab the lock for this test, but test itself looks
1518 	 * somewhat bogus. Suggestions for better replacement?
1519 	 * Ho-hum... In principle, we might treat that as umount + switch
1520 	 * to rootfs. GC would eventually take care of the old vfsmount.
1521 	 * Actually it makes sense, especially if rootfs would contain a
1522 	 * /reboot - static binary that would close all descriptors and
1523 	 * call reboot(9). Then init(8) could umount root and exec /reboot.
1524 	 */
1525 	if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1526 		/*
1527 		 * Special case for "unmounting" root ...
1528 		 * we just try to remount it readonly.
1529 		 */
1530 		if (!ns_capable(sb->s_user_ns, CAP_SYS_ADMIN))
1531 			return -EPERM;
1532 		down_write(&sb->s_umount);
1533 		if (!sb_rdonly(sb))
1534 			retval = do_remount_sb(sb, SB_RDONLY, NULL, 0);
1535 		up_write(&sb->s_umount);
1536 		return retval;
1537 	}
1538 
1539 	namespace_lock();
1540 	lock_mount_hash();
1541 
1542 	/* Recheck MNT_LOCKED with the locks held */
1543 	retval = -EINVAL;
1544 	if (mnt->mnt.mnt_flags & MNT_LOCKED)
1545 		goto out;
1546 
1547 	event++;
1548 	if (flags & MNT_DETACH) {
1549 		if (!list_empty(&mnt->mnt_list))
1550 			umount_tree(mnt, UMOUNT_PROPAGATE);
1551 		retval = 0;
1552 	} else {
1553 		shrink_submounts(mnt);
1554 		retval = -EBUSY;
1555 		if (!propagate_mount_busy(mnt, 2)) {
1556 			if (!list_empty(&mnt->mnt_list))
1557 				umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
1558 			retval = 0;
1559 		}
1560 	}
1561 out:
1562 	unlock_mount_hash();
1563 	namespace_unlock();
1564 	return retval;
1565 }
1566 
1567 /*
1568  * __detach_mounts - lazily unmount all mounts on the specified dentry
1569  *
1570  * During unlink, rmdir, and d_drop it is possible to loose the path
1571  * to an existing mountpoint, and wind up leaking the mount.
1572  * detach_mounts allows lazily unmounting those mounts instead of
1573  * leaking them.
1574  *
1575  * The caller may hold dentry->d_inode->i_mutex.
1576  */
1577 void __detach_mounts(struct dentry *dentry)
1578 {
1579 	struct mountpoint *mp;
1580 	struct mount *mnt;
1581 
1582 	namespace_lock();
1583 	lock_mount_hash();
1584 	mp = lookup_mountpoint(dentry);
1585 	if (IS_ERR_OR_NULL(mp))
1586 		goto out_unlock;
1587 
1588 	event++;
1589 	while (!hlist_empty(&mp->m_list)) {
1590 		mnt = hlist_entry(mp->m_list.first, struct mount, mnt_mp_list);
1591 		if (mnt->mnt.mnt_flags & MNT_UMOUNT) {
1592 			hlist_add_head(&mnt->mnt_umount.s_list, &unmounted);
1593 			umount_mnt(mnt);
1594 		}
1595 		else umount_tree(mnt, UMOUNT_CONNECTED);
1596 	}
1597 	put_mountpoint(mp);
1598 out_unlock:
1599 	unlock_mount_hash();
1600 	namespace_unlock();
1601 }
1602 
1603 /*
1604  * Is the caller allowed to modify his namespace?
1605  */
1606 static inline bool may_mount(void)
1607 {
1608 	return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN);
1609 }
1610 
1611 static inline bool may_mandlock(void)
1612 {
1613 #ifndef	CONFIG_MANDATORY_FILE_LOCKING
1614 	return false;
1615 #endif
1616 	return capable(CAP_SYS_ADMIN);
1617 }
1618 
1619 /*
1620  * Now umount can handle mount points as well as block devices.
1621  * This is important for filesystems which use unnamed block devices.
1622  *
1623  * We now support a flag for forced unmount like the other 'big iron'
1624  * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
1625  */
1626 
1627 int ksys_umount(char __user *name, int flags)
1628 {
1629 	struct path path;
1630 	struct mount *mnt;
1631 	int retval;
1632 	int lookup_flags = 0;
1633 
1634 	if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
1635 		return -EINVAL;
1636 
1637 	if (!may_mount())
1638 		return -EPERM;
1639 
1640 	if (!(flags & UMOUNT_NOFOLLOW))
1641 		lookup_flags |= LOOKUP_FOLLOW;
1642 
1643 	retval = user_path_mountpoint_at(AT_FDCWD, name, lookup_flags, &path);
1644 	if (retval)
1645 		goto out;
1646 	mnt = real_mount(path.mnt);
1647 	retval = -EINVAL;
1648 	if (path.dentry != path.mnt->mnt_root)
1649 		goto dput_and_out;
1650 	if (!check_mnt(mnt))
1651 		goto dput_and_out;
1652 	if (mnt->mnt.mnt_flags & MNT_LOCKED) /* Check optimistically */
1653 		goto dput_and_out;
1654 	retval = -EPERM;
1655 	if (flags & MNT_FORCE && !capable(CAP_SYS_ADMIN))
1656 		goto dput_and_out;
1657 
1658 	retval = do_umount(mnt, flags);
1659 dput_and_out:
1660 	/* we mustn't call path_put() as that would clear mnt_expiry_mark */
1661 	dput(path.dentry);
1662 	mntput_no_expire(mnt);
1663 out:
1664 	return retval;
1665 }
1666 
1667 SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
1668 {
1669 	return ksys_umount(name, flags);
1670 }
1671 
1672 #ifdef __ARCH_WANT_SYS_OLDUMOUNT
1673 
1674 /*
1675  *	The 2.0 compatible umount. No flags.
1676  */
1677 SYSCALL_DEFINE1(oldumount, char __user *, name)
1678 {
1679 	return ksys_umount(name, 0);
1680 }
1681 
1682 #endif
1683 
1684 static bool is_mnt_ns_file(struct dentry *dentry)
1685 {
1686 	/* Is this a proxy for a mount namespace? */
1687 	return dentry->d_op == &ns_dentry_operations &&
1688 	       dentry->d_fsdata == &mntns_operations;
1689 }
1690 
1691 struct mnt_namespace *to_mnt_ns(struct ns_common *ns)
1692 {
1693 	return container_of(ns, struct mnt_namespace, ns);
1694 }
1695 
1696 static bool mnt_ns_loop(struct dentry *dentry)
1697 {
1698 	/* Could bind mounting the mount namespace inode cause a
1699 	 * mount namespace loop?
1700 	 */
1701 	struct mnt_namespace *mnt_ns;
1702 	if (!is_mnt_ns_file(dentry))
1703 		return false;
1704 
1705 	mnt_ns = to_mnt_ns(get_proc_ns(dentry->d_inode));
1706 	return current->nsproxy->mnt_ns->seq >= mnt_ns->seq;
1707 }
1708 
1709 struct mount *copy_tree(struct mount *mnt, struct dentry *dentry,
1710 					int flag)
1711 {
1712 	struct mount *res, *p, *q, *r, *parent;
1713 
1714 	if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(mnt))
1715 		return ERR_PTR(-EINVAL);
1716 
1717 	if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry))
1718 		return ERR_PTR(-EINVAL);
1719 
1720 	res = q = clone_mnt(mnt, dentry, flag);
1721 	if (IS_ERR(q))
1722 		return q;
1723 
1724 	q->mnt_mountpoint = mnt->mnt_mountpoint;
1725 
1726 	p = mnt;
1727 	list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
1728 		struct mount *s;
1729 		if (!is_subdir(r->mnt_mountpoint, dentry))
1730 			continue;
1731 
1732 		for (s = r; s; s = next_mnt(s, r)) {
1733 			if (!(flag & CL_COPY_UNBINDABLE) &&
1734 			    IS_MNT_UNBINDABLE(s)) {
1735 				if (s->mnt.mnt_flags & MNT_LOCKED) {
1736 					/* Both unbindable and locked. */
1737 					q = ERR_PTR(-EPERM);
1738 					goto out;
1739 				} else {
1740 					s = skip_mnt_tree(s);
1741 					continue;
1742 				}
1743 			}
1744 			if (!(flag & CL_COPY_MNT_NS_FILE) &&
1745 			    is_mnt_ns_file(s->mnt.mnt_root)) {
1746 				s = skip_mnt_tree(s);
1747 				continue;
1748 			}
1749 			while (p != s->mnt_parent) {
1750 				p = p->mnt_parent;
1751 				q = q->mnt_parent;
1752 			}
1753 			p = s;
1754 			parent = q;
1755 			q = clone_mnt(p, p->mnt.mnt_root, flag);
1756 			if (IS_ERR(q))
1757 				goto out;
1758 			lock_mount_hash();
1759 			list_add_tail(&q->mnt_list, &res->mnt_list);
1760 			attach_mnt(q, parent, p->mnt_mp);
1761 			unlock_mount_hash();
1762 		}
1763 	}
1764 	return res;
1765 out:
1766 	if (res) {
1767 		lock_mount_hash();
1768 		umount_tree(res, UMOUNT_SYNC);
1769 		unlock_mount_hash();
1770 	}
1771 	return q;
1772 }
1773 
1774 /* Caller should check returned pointer for errors */
1775 
1776 struct vfsmount *collect_mounts(const struct path *path)
1777 {
1778 	struct mount *tree;
1779 	namespace_lock();
1780 	if (!check_mnt(real_mount(path->mnt)))
1781 		tree = ERR_PTR(-EINVAL);
1782 	else
1783 		tree = copy_tree(real_mount(path->mnt), path->dentry,
1784 				 CL_COPY_ALL | CL_PRIVATE);
1785 	namespace_unlock();
1786 	if (IS_ERR(tree))
1787 		return ERR_CAST(tree);
1788 	return &tree->mnt;
1789 }
1790 
1791 void drop_collected_mounts(struct vfsmount *mnt)
1792 {
1793 	namespace_lock();
1794 	lock_mount_hash();
1795 	umount_tree(real_mount(mnt), 0);
1796 	unlock_mount_hash();
1797 	namespace_unlock();
1798 }
1799 
1800 /**
1801  * clone_private_mount - create a private clone of a path
1802  *
1803  * This creates a new vfsmount, which will be the clone of @path.  The new will
1804  * not be attached anywhere in the namespace and will be private (i.e. changes
1805  * to the originating mount won't be propagated into this).
1806  *
1807  * Release with mntput().
1808  */
1809 struct vfsmount *clone_private_mount(const struct path *path)
1810 {
1811 	struct mount *old_mnt = real_mount(path->mnt);
1812 	struct mount *new_mnt;
1813 
1814 	if (IS_MNT_UNBINDABLE(old_mnt))
1815 		return ERR_PTR(-EINVAL);
1816 
1817 	new_mnt = clone_mnt(old_mnt, path->dentry, CL_PRIVATE);
1818 	if (IS_ERR(new_mnt))
1819 		return ERR_CAST(new_mnt);
1820 
1821 	return &new_mnt->mnt;
1822 }
1823 EXPORT_SYMBOL_GPL(clone_private_mount);
1824 
1825 int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
1826 		   struct vfsmount *root)
1827 {
1828 	struct mount *mnt;
1829 	int res = f(root, arg);
1830 	if (res)
1831 		return res;
1832 	list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) {
1833 		res = f(&mnt->mnt, arg);
1834 		if (res)
1835 			return res;
1836 	}
1837 	return 0;
1838 }
1839 
1840 static void cleanup_group_ids(struct mount *mnt, struct mount *end)
1841 {
1842 	struct mount *p;
1843 
1844 	for (p = mnt; p != end; p = next_mnt(p, mnt)) {
1845 		if (p->mnt_group_id && !IS_MNT_SHARED(p))
1846 			mnt_release_group_id(p);
1847 	}
1848 }
1849 
1850 static int invent_group_ids(struct mount *mnt, bool recurse)
1851 {
1852 	struct mount *p;
1853 
1854 	for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
1855 		if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
1856 			int err = mnt_alloc_group_id(p);
1857 			if (err) {
1858 				cleanup_group_ids(mnt, p);
1859 				return err;
1860 			}
1861 		}
1862 	}
1863 
1864 	return 0;
1865 }
1866 
1867 int count_mounts(struct mnt_namespace *ns, struct mount *mnt)
1868 {
1869 	unsigned int max = READ_ONCE(sysctl_mount_max);
1870 	unsigned int mounts = 0, old, pending, sum;
1871 	struct mount *p;
1872 
1873 	for (p = mnt; p; p = next_mnt(p, mnt))
1874 		mounts++;
1875 
1876 	old = ns->mounts;
1877 	pending = ns->pending_mounts;
1878 	sum = old + pending;
1879 	if ((old > sum) ||
1880 	    (pending > sum) ||
1881 	    (max < sum) ||
1882 	    (mounts > (max - sum)))
1883 		return -ENOSPC;
1884 
1885 	ns->pending_mounts = pending + mounts;
1886 	return 0;
1887 }
1888 
1889 /*
1890  *  @source_mnt : mount tree to be attached
1891  *  @nd         : place the mount tree @source_mnt is attached
1892  *  @parent_nd  : if non-null, detach the source_mnt from its parent and
1893  *  		   store the parent mount and mountpoint dentry.
1894  *  		   (done when source_mnt is moved)
1895  *
1896  *  NOTE: in the table below explains the semantics when a source mount
1897  *  of a given type is attached to a destination mount of a given type.
1898  * ---------------------------------------------------------------------------
1899  * |         BIND MOUNT OPERATION                                            |
1900  * |**************************************************************************
1901  * | source-->| shared        |       private  |       slave    | unbindable |
1902  * | dest     |               |                |                |            |
1903  * |   |      |               |                |                |            |
1904  * |   v      |               |                |                |            |
1905  * |**************************************************************************
1906  * |  shared  | shared (++)   |     shared (+) |     shared(+++)|  invalid   |
1907  * |          |               |                |                |            |
1908  * |non-shared| shared (+)    |      private   |      slave (*) |  invalid   |
1909  * ***************************************************************************
1910  * A bind operation clones the source mount and mounts the clone on the
1911  * destination mount.
1912  *
1913  * (++)  the cloned mount is propagated to all the mounts in the propagation
1914  * 	 tree of the destination mount and the cloned mount is added to
1915  * 	 the peer group of the source mount.
1916  * (+)   the cloned mount is created under the destination mount and is marked
1917  *       as shared. The cloned mount is added to the peer group of the source
1918  *       mount.
1919  * (+++) the mount is propagated to all the mounts in the propagation tree
1920  *       of the destination mount and the cloned mount is made slave
1921  *       of the same master as that of the source mount. The cloned mount
1922  *       is marked as 'shared and slave'.
1923  * (*)   the cloned mount is made a slave of the same master as that of the
1924  * 	 source mount.
1925  *
1926  * ---------------------------------------------------------------------------
1927  * |         		MOVE MOUNT OPERATION                                 |
1928  * |**************************************************************************
1929  * | source-->| shared        |       private  |       slave    | unbindable |
1930  * | dest     |               |                |                |            |
1931  * |   |      |               |                |                |            |
1932  * |   v      |               |                |                |            |
1933  * |**************************************************************************
1934  * |  shared  | shared (+)    |     shared (+) |    shared(+++) |  invalid   |
1935  * |          |               |                |                |            |
1936  * |non-shared| shared (+*)   |      private   |    slave (*)   | unbindable |
1937  * ***************************************************************************
1938  *
1939  * (+)  the mount is moved to the destination. And is then propagated to
1940  * 	all the mounts in the propagation tree of the destination mount.
1941  * (+*)  the mount is moved to the destination.
1942  * (+++)  the mount is moved to the destination and is then propagated to
1943  * 	all the mounts belonging to the destination mount's propagation tree.
1944  * 	the mount is marked as 'shared and slave'.
1945  * (*)	the mount continues to be a slave at the new location.
1946  *
1947  * if the source mount is a tree, the operations explained above is
1948  * applied to each mount in the tree.
1949  * Must be called without spinlocks held, since this function can sleep
1950  * in allocations.
1951  */
1952 static int attach_recursive_mnt(struct mount *source_mnt,
1953 			struct mount *dest_mnt,
1954 			struct mountpoint *dest_mp,
1955 			struct path *parent_path)
1956 {
1957 	HLIST_HEAD(tree_list);
1958 	struct mnt_namespace *ns = dest_mnt->mnt_ns;
1959 	struct mountpoint *smp;
1960 	struct mount *child, *p;
1961 	struct hlist_node *n;
1962 	int err;
1963 
1964 	/* Preallocate a mountpoint in case the new mounts need
1965 	 * to be tucked under other mounts.
1966 	 */
1967 	smp = get_mountpoint(source_mnt->mnt.mnt_root);
1968 	if (IS_ERR(smp))
1969 		return PTR_ERR(smp);
1970 
1971 	/* Is there space to add these mounts to the mount namespace? */
1972 	if (!parent_path) {
1973 		err = count_mounts(ns, source_mnt);
1974 		if (err)
1975 			goto out;
1976 	}
1977 
1978 	if (IS_MNT_SHARED(dest_mnt)) {
1979 		err = invent_group_ids(source_mnt, true);
1980 		if (err)
1981 			goto out;
1982 		err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list);
1983 		lock_mount_hash();
1984 		if (err)
1985 			goto out_cleanup_ids;
1986 		for (p = source_mnt; p; p = next_mnt(p, source_mnt))
1987 			set_mnt_shared(p);
1988 	} else {
1989 		lock_mount_hash();
1990 	}
1991 	if (parent_path) {
1992 		detach_mnt(source_mnt, parent_path);
1993 		attach_mnt(source_mnt, dest_mnt, dest_mp);
1994 		touch_mnt_namespace(source_mnt->mnt_ns);
1995 	} else {
1996 		mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt);
1997 		commit_tree(source_mnt);
1998 	}
1999 
2000 	hlist_for_each_entry_safe(child, n, &tree_list, mnt_hash) {
2001 		struct mount *q;
2002 		hlist_del_init(&child->mnt_hash);
2003 		q = __lookup_mnt(&child->mnt_parent->mnt,
2004 				 child->mnt_mountpoint);
2005 		if (q)
2006 			mnt_change_mountpoint(child, smp, q);
2007 		commit_tree(child);
2008 	}
2009 	put_mountpoint(smp);
2010 	unlock_mount_hash();
2011 
2012 	return 0;
2013 
2014  out_cleanup_ids:
2015 	while (!hlist_empty(&tree_list)) {
2016 		child = hlist_entry(tree_list.first, struct mount, mnt_hash);
2017 		child->mnt_parent->mnt_ns->pending_mounts = 0;
2018 		umount_tree(child, UMOUNT_SYNC);
2019 	}
2020 	unlock_mount_hash();
2021 	cleanup_group_ids(source_mnt, NULL);
2022  out:
2023 	ns->pending_mounts = 0;
2024 
2025 	read_seqlock_excl(&mount_lock);
2026 	put_mountpoint(smp);
2027 	read_sequnlock_excl(&mount_lock);
2028 
2029 	return err;
2030 }
2031 
2032 static struct mountpoint *lock_mount(struct path *path)
2033 {
2034 	struct vfsmount *mnt;
2035 	struct dentry *dentry = path->dentry;
2036 retry:
2037 	inode_lock(dentry->d_inode);
2038 	if (unlikely(cant_mount(dentry))) {
2039 		inode_unlock(dentry->d_inode);
2040 		return ERR_PTR(-ENOENT);
2041 	}
2042 	namespace_lock();
2043 	mnt = lookup_mnt(path);
2044 	if (likely(!mnt)) {
2045 		struct mountpoint *mp = get_mountpoint(dentry);
2046 		if (IS_ERR(mp)) {
2047 			namespace_unlock();
2048 			inode_unlock(dentry->d_inode);
2049 			return mp;
2050 		}
2051 		return mp;
2052 	}
2053 	namespace_unlock();
2054 	inode_unlock(path->dentry->d_inode);
2055 	path_put(path);
2056 	path->mnt = mnt;
2057 	dentry = path->dentry = dget(mnt->mnt_root);
2058 	goto retry;
2059 }
2060 
2061 static void unlock_mount(struct mountpoint *where)
2062 {
2063 	struct dentry *dentry = where->m_dentry;
2064 
2065 	read_seqlock_excl(&mount_lock);
2066 	put_mountpoint(where);
2067 	read_sequnlock_excl(&mount_lock);
2068 
2069 	namespace_unlock();
2070 	inode_unlock(dentry->d_inode);
2071 }
2072 
2073 static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp)
2074 {
2075 	if (mnt->mnt.mnt_sb->s_flags & SB_NOUSER)
2076 		return -EINVAL;
2077 
2078 	if (d_is_dir(mp->m_dentry) !=
2079 	      d_is_dir(mnt->mnt.mnt_root))
2080 		return -ENOTDIR;
2081 
2082 	return attach_recursive_mnt(mnt, p, mp, NULL);
2083 }
2084 
2085 /*
2086  * Sanity check the flags to change_mnt_propagation.
2087  */
2088 
2089 static int flags_to_propagation_type(int ms_flags)
2090 {
2091 	int type = ms_flags & ~(MS_REC | MS_SILENT);
2092 
2093 	/* Fail if any non-propagation flags are set */
2094 	if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2095 		return 0;
2096 	/* Only one propagation flag should be set */
2097 	if (!is_power_of_2(type))
2098 		return 0;
2099 	return type;
2100 }
2101 
2102 /*
2103  * recursively change the type of the mountpoint.
2104  */
2105 static int do_change_type(struct path *path, int ms_flags)
2106 {
2107 	struct mount *m;
2108 	struct mount *mnt = real_mount(path->mnt);
2109 	int recurse = ms_flags & MS_REC;
2110 	int type;
2111 	int err = 0;
2112 
2113 	if (path->dentry != path->mnt->mnt_root)
2114 		return -EINVAL;
2115 
2116 	type = flags_to_propagation_type(ms_flags);
2117 	if (!type)
2118 		return -EINVAL;
2119 
2120 	namespace_lock();
2121 	if (type == MS_SHARED) {
2122 		err = invent_group_ids(mnt, recurse);
2123 		if (err)
2124 			goto out_unlock;
2125 	}
2126 
2127 	lock_mount_hash();
2128 	for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
2129 		change_mnt_propagation(m, type);
2130 	unlock_mount_hash();
2131 
2132  out_unlock:
2133 	namespace_unlock();
2134 	return err;
2135 }
2136 
2137 static bool has_locked_children(struct mount *mnt, struct dentry *dentry)
2138 {
2139 	struct mount *child;
2140 	list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
2141 		if (!is_subdir(child->mnt_mountpoint, dentry))
2142 			continue;
2143 
2144 		if (child->mnt.mnt_flags & MNT_LOCKED)
2145 			return true;
2146 	}
2147 	return false;
2148 }
2149 
2150 /*
2151  * do loopback mount.
2152  */
2153 static int do_loopback(struct path *path, const char *old_name,
2154 				int recurse)
2155 {
2156 	struct path old_path;
2157 	struct mount *mnt = NULL, *old, *parent;
2158 	struct mountpoint *mp;
2159 	int err;
2160 	if (!old_name || !*old_name)
2161 		return -EINVAL;
2162 	err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
2163 	if (err)
2164 		return err;
2165 
2166 	err = -EINVAL;
2167 	if (mnt_ns_loop(old_path.dentry))
2168 		goto out;
2169 
2170 	mp = lock_mount(path);
2171 	err = PTR_ERR(mp);
2172 	if (IS_ERR(mp))
2173 		goto out;
2174 
2175 	old = real_mount(old_path.mnt);
2176 	parent = real_mount(path->mnt);
2177 
2178 	err = -EINVAL;
2179 	if (IS_MNT_UNBINDABLE(old))
2180 		goto out2;
2181 
2182 	if (!check_mnt(parent))
2183 		goto out2;
2184 
2185 	if (!check_mnt(old) && old_path.dentry->d_op != &ns_dentry_operations)
2186 		goto out2;
2187 
2188 	if (!recurse && has_locked_children(old, old_path.dentry))
2189 		goto out2;
2190 
2191 	if (recurse)
2192 		mnt = copy_tree(old, old_path.dentry, CL_COPY_MNT_NS_FILE);
2193 	else
2194 		mnt = clone_mnt(old, old_path.dentry, 0);
2195 
2196 	if (IS_ERR(mnt)) {
2197 		err = PTR_ERR(mnt);
2198 		goto out2;
2199 	}
2200 
2201 	mnt->mnt.mnt_flags &= ~MNT_LOCKED;
2202 
2203 	err = graft_tree(mnt, parent, mp);
2204 	if (err) {
2205 		lock_mount_hash();
2206 		umount_tree(mnt, UMOUNT_SYNC);
2207 		unlock_mount_hash();
2208 	}
2209 out2:
2210 	unlock_mount(mp);
2211 out:
2212 	path_put(&old_path);
2213 	return err;
2214 }
2215 
2216 /*
2217  * Don't allow locked mount flags to be cleared.
2218  *
2219  * No locks need to be held here while testing the various MNT_LOCK
2220  * flags because those flags can never be cleared once they are set.
2221  */
2222 static bool can_change_locked_flags(struct mount *mnt, unsigned int mnt_flags)
2223 {
2224 	unsigned int fl = mnt->mnt.mnt_flags;
2225 
2226 	if ((fl & MNT_LOCK_READONLY) &&
2227 	    !(mnt_flags & MNT_READONLY))
2228 		return false;
2229 
2230 	if ((fl & MNT_LOCK_NODEV) &&
2231 	    !(mnt_flags & MNT_NODEV))
2232 		return false;
2233 
2234 	if ((fl & MNT_LOCK_NOSUID) &&
2235 	    !(mnt_flags & MNT_NOSUID))
2236 		return false;
2237 
2238 	if ((fl & MNT_LOCK_NOEXEC) &&
2239 	    !(mnt_flags & MNT_NOEXEC))
2240 		return false;
2241 
2242 	if ((fl & MNT_LOCK_ATIME) &&
2243 	    ((fl & MNT_ATIME_MASK) != (mnt_flags & MNT_ATIME_MASK)))
2244 		return false;
2245 
2246 	return true;
2247 }
2248 
2249 static int change_mount_ro_state(struct mount *mnt, unsigned int mnt_flags)
2250 {
2251 	bool readonly_request = (mnt_flags & MNT_READONLY);
2252 
2253 	if (readonly_request == __mnt_is_readonly(&mnt->mnt))
2254 		return 0;
2255 
2256 	if (readonly_request)
2257 		return mnt_make_readonly(mnt);
2258 
2259 	return __mnt_unmake_readonly(mnt);
2260 }
2261 
2262 /*
2263  * Update the user-settable attributes on a mount.  The caller must hold
2264  * sb->s_umount for writing.
2265  */
2266 static void set_mount_attributes(struct mount *mnt, unsigned int mnt_flags)
2267 {
2268 	lock_mount_hash();
2269 	mnt_flags |= mnt->mnt.mnt_flags & ~MNT_USER_SETTABLE_MASK;
2270 	mnt->mnt.mnt_flags = mnt_flags;
2271 	touch_mnt_namespace(mnt->mnt_ns);
2272 	unlock_mount_hash();
2273 }
2274 
2275 /*
2276  * Handle reconfiguration of the mountpoint only without alteration of the
2277  * superblock it refers to.  This is triggered by specifying MS_REMOUNT|MS_BIND
2278  * to mount(2).
2279  */
2280 static int do_reconfigure_mnt(struct path *path, unsigned int mnt_flags)
2281 {
2282 	struct super_block *sb = path->mnt->mnt_sb;
2283 	struct mount *mnt = real_mount(path->mnt);
2284 	int ret;
2285 
2286 	if (!check_mnt(mnt))
2287 		return -EINVAL;
2288 
2289 	if (path->dentry != mnt->mnt.mnt_root)
2290 		return -EINVAL;
2291 
2292 	if (!can_change_locked_flags(mnt, mnt_flags))
2293 		return -EPERM;
2294 
2295 	down_write(&sb->s_umount);
2296 	ret = change_mount_ro_state(mnt, mnt_flags);
2297 	if (ret == 0)
2298 		set_mount_attributes(mnt, mnt_flags);
2299 	up_write(&sb->s_umount);
2300 	return ret;
2301 }
2302 
2303 /*
2304  * change filesystem flags. dir should be a physical root of filesystem.
2305  * If you've mounted a non-root directory somewhere and want to do remount
2306  * on it - tough luck.
2307  */
2308 static int do_remount(struct path *path, int ms_flags, int sb_flags,
2309 		      int mnt_flags, void *data)
2310 {
2311 	int err;
2312 	struct super_block *sb = path->mnt->mnt_sb;
2313 	struct mount *mnt = real_mount(path->mnt);
2314 	void *sec_opts = NULL;
2315 
2316 	if (!check_mnt(mnt))
2317 		return -EINVAL;
2318 
2319 	if (path->dentry != path->mnt->mnt_root)
2320 		return -EINVAL;
2321 
2322 	if (!can_change_locked_flags(mnt, mnt_flags))
2323 		return -EPERM;
2324 
2325 	if (data && !(sb->s_type->fs_flags & FS_BINARY_MOUNTDATA)) {
2326 		err = security_sb_eat_lsm_opts(data, &sec_opts);
2327 		if (err)
2328 			return err;
2329 	}
2330 	err = security_sb_remount(sb, sec_opts);
2331 	security_free_mnt_opts(&sec_opts);
2332 	if (err)
2333 		return err;
2334 
2335 	down_write(&sb->s_umount);
2336 	err = -EPERM;
2337 	if (ns_capable(sb->s_user_ns, CAP_SYS_ADMIN)) {
2338 		err = do_remount_sb(sb, sb_flags, data, 0);
2339 		if (!err)
2340 			set_mount_attributes(mnt, mnt_flags);
2341 	}
2342 	up_write(&sb->s_umount);
2343 	return err;
2344 }
2345 
2346 static inline int tree_contains_unbindable(struct mount *mnt)
2347 {
2348 	struct mount *p;
2349 	for (p = mnt; p; p = next_mnt(p, mnt)) {
2350 		if (IS_MNT_UNBINDABLE(p))
2351 			return 1;
2352 	}
2353 	return 0;
2354 }
2355 
2356 static int do_move_mount(struct path *path, const char *old_name)
2357 {
2358 	struct path old_path, parent_path;
2359 	struct mount *p;
2360 	struct mount *old;
2361 	struct mountpoint *mp;
2362 	int err;
2363 	if (!old_name || !*old_name)
2364 		return -EINVAL;
2365 	err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
2366 	if (err)
2367 		return err;
2368 
2369 	mp = lock_mount(path);
2370 	err = PTR_ERR(mp);
2371 	if (IS_ERR(mp))
2372 		goto out;
2373 
2374 	old = real_mount(old_path.mnt);
2375 	p = real_mount(path->mnt);
2376 
2377 	err = -EINVAL;
2378 	if (!check_mnt(p) || !check_mnt(old))
2379 		goto out1;
2380 
2381 	if (old->mnt.mnt_flags & MNT_LOCKED)
2382 		goto out1;
2383 
2384 	err = -EINVAL;
2385 	if (old_path.dentry != old_path.mnt->mnt_root)
2386 		goto out1;
2387 
2388 	if (!mnt_has_parent(old))
2389 		goto out1;
2390 
2391 	if (d_is_dir(path->dentry) !=
2392 	      d_is_dir(old_path.dentry))
2393 		goto out1;
2394 	/*
2395 	 * Don't move a mount residing in a shared parent.
2396 	 */
2397 	if (IS_MNT_SHARED(old->mnt_parent))
2398 		goto out1;
2399 	/*
2400 	 * Don't move a mount tree containing unbindable mounts to a destination
2401 	 * mount which is shared.
2402 	 */
2403 	if (IS_MNT_SHARED(p) && tree_contains_unbindable(old))
2404 		goto out1;
2405 	err = -ELOOP;
2406 	for (; mnt_has_parent(p); p = p->mnt_parent)
2407 		if (p == old)
2408 			goto out1;
2409 
2410 	err = attach_recursive_mnt(old, real_mount(path->mnt), mp, &parent_path);
2411 	if (err)
2412 		goto out1;
2413 
2414 	/* if the mount is moved, it should no longer be expire
2415 	 * automatically */
2416 	list_del_init(&old->mnt_expire);
2417 out1:
2418 	unlock_mount(mp);
2419 out:
2420 	if (!err)
2421 		path_put(&parent_path);
2422 	path_put(&old_path);
2423 	return err;
2424 }
2425 
2426 static struct vfsmount *fs_set_subtype(struct vfsmount *mnt, const char *fstype)
2427 {
2428 	int err;
2429 	const char *subtype = strchr(fstype, '.');
2430 	if (subtype) {
2431 		subtype++;
2432 		err = -EINVAL;
2433 		if (!subtype[0])
2434 			goto err;
2435 	} else
2436 		subtype = "";
2437 
2438 	mnt->mnt_sb->s_subtype = kstrdup(subtype, GFP_KERNEL);
2439 	err = -ENOMEM;
2440 	if (!mnt->mnt_sb->s_subtype)
2441 		goto err;
2442 	return mnt;
2443 
2444  err:
2445 	mntput(mnt);
2446 	return ERR_PTR(err);
2447 }
2448 
2449 /*
2450  * add a mount into a namespace's mount tree
2451  */
2452 static int do_add_mount(struct mount *newmnt, struct path *path, int mnt_flags)
2453 {
2454 	struct mountpoint *mp;
2455 	struct mount *parent;
2456 	int err;
2457 
2458 	mnt_flags &= ~MNT_INTERNAL_FLAGS;
2459 
2460 	mp = lock_mount(path);
2461 	if (IS_ERR(mp))
2462 		return PTR_ERR(mp);
2463 
2464 	parent = real_mount(path->mnt);
2465 	err = -EINVAL;
2466 	if (unlikely(!check_mnt(parent))) {
2467 		/* that's acceptable only for automounts done in private ns */
2468 		if (!(mnt_flags & MNT_SHRINKABLE))
2469 			goto unlock;
2470 		/* ... and for those we'd better have mountpoint still alive */
2471 		if (!parent->mnt_ns)
2472 			goto unlock;
2473 	}
2474 
2475 	/* Refuse the same filesystem on the same mount point */
2476 	err = -EBUSY;
2477 	if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb &&
2478 	    path->mnt->mnt_root == path->dentry)
2479 		goto unlock;
2480 
2481 	err = -EINVAL;
2482 	if (d_is_symlink(newmnt->mnt.mnt_root))
2483 		goto unlock;
2484 
2485 	newmnt->mnt.mnt_flags = mnt_flags;
2486 	err = graft_tree(newmnt, parent, mp);
2487 
2488 unlock:
2489 	unlock_mount(mp);
2490 	return err;
2491 }
2492 
2493 static bool mount_too_revealing(struct vfsmount *mnt, int *new_mnt_flags);
2494 
2495 /*
2496  * create a new mount for userspace and request it to be added into the
2497  * namespace's tree
2498  */
2499 static int do_new_mount(struct path *path, const char *fstype, int sb_flags,
2500 			int mnt_flags, const char *name, void *data)
2501 {
2502 	struct file_system_type *type;
2503 	struct vfsmount *mnt;
2504 	int err;
2505 
2506 	if (!fstype)
2507 		return -EINVAL;
2508 
2509 	type = get_fs_type(fstype);
2510 	if (!type)
2511 		return -ENODEV;
2512 
2513 	mnt = vfs_kern_mount(type, sb_flags, name, data);
2514 	if (!IS_ERR(mnt) && (type->fs_flags & FS_HAS_SUBTYPE) &&
2515 	    !mnt->mnt_sb->s_subtype)
2516 		mnt = fs_set_subtype(mnt, fstype);
2517 
2518 	put_filesystem(type);
2519 	if (IS_ERR(mnt))
2520 		return PTR_ERR(mnt);
2521 
2522 	if (mount_too_revealing(mnt, &mnt_flags)) {
2523 		mntput(mnt);
2524 		return -EPERM;
2525 	}
2526 
2527 	err = do_add_mount(real_mount(mnt), path, mnt_flags);
2528 	if (err)
2529 		mntput(mnt);
2530 	return err;
2531 }
2532 
2533 int finish_automount(struct vfsmount *m, struct path *path)
2534 {
2535 	struct mount *mnt = real_mount(m);
2536 	int err;
2537 	/* The new mount record should have at least 2 refs to prevent it being
2538 	 * expired before we get a chance to add it
2539 	 */
2540 	BUG_ON(mnt_get_count(mnt) < 2);
2541 
2542 	if (m->mnt_sb == path->mnt->mnt_sb &&
2543 	    m->mnt_root == path->dentry) {
2544 		err = -ELOOP;
2545 		goto fail;
2546 	}
2547 
2548 	err = do_add_mount(mnt, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
2549 	if (!err)
2550 		return 0;
2551 fail:
2552 	/* remove m from any expiration list it may be on */
2553 	if (!list_empty(&mnt->mnt_expire)) {
2554 		namespace_lock();
2555 		list_del_init(&mnt->mnt_expire);
2556 		namespace_unlock();
2557 	}
2558 	mntput(m);
2559 	mntput(m);
2560 	return err;
2561 }
2562 
2563 /**
2564  * mnt_set_expiry - Put a mount on an expiration list
2565  * @mnt: The mount to list.
2566  * @expiry_list: The list to add the mount to.
2567  */
2568 void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
2569 {
2570 	namespace_lock();
2571 
2572 	list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
2573 
2574 	namespace_unlock();
2575 }
2576 EXPORT_SYMBOL(mnt_set_expiry);
2577 
2578 /*
2579  * process a list of expirable mountpoints with the intent of discarding any
2580  * mountpoints that aren't in use and haven't been touched since last we came
2581  * here
2582  */
2583 void mark_mounts_for_expiry(struct list_head *mounts)
2584 {
2585 	struct mount *mnt, *next;
2586 	LIST_HEAD(graveyard);
2587 
2588 	if (list_empty(mounts))
2589 		return;
2590 
2591 	namespace_lock();
2592 	lock_mount_hash();
2593 
2594 	/* extract from the expiration list every vfsmount that matches the
2595 	 * following criteria:
2596 	 * - only referenced by its parent vfsmount
2597 	 * - still marked for expiry (marked on the last call here; marks are
2598 	 *   cleared by mntput())
2599 	 */
2600 	list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
2601 		if (!xchg(&mnt->mnt_expiry_mark, 1) ||
2602 			propagate_mount_busy(mnt, 1))
2603 			continue;
2604 		list_move(&mnt->mnt_expire, &graveyard);
2605 	}
2606 	while (!list_empty(&graveyard)) {
2607 		mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
2608 		touch_mnt_namespace(mnt->mnt_ns);
2609 		umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
2610 	}
2611 	unlock_mount_hash();
2612 	namespace_unlock();
2613 }
2614 
2615 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
2616 
2617 /*
2618  * Ripoff of 'select_parent()'
2619  *
2620  * search the list of submounts for a given mountpoint, and move any
2621  * shrinkable submounts to the 'graveyard' list.
2622  */
2623 static int select_submounts(struct mount *parent, struct list_head *graveyard)
2624 {
2625 	struct mount *this_parent = parent;
2626 	struct list_head *next;
2627 	int found = 0;
2628 
2629 repeat:
2630 	next = this_parent->mnt_mounts.next;
2631 resume:
2632 	while (next != &this_parent->mnt_mounts) {
2633 		struct list_head *tmp = next;
2634 		struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
2635 
2636 		next = tmp->next;
2637 		if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
2638 			continue;
2639 		/*
2640 		 * Descend a level if the d_mounts list is non-empty.
2641 		 */
2642 		if (!list_empty(&mnt->mnt_mounts)) {
2643 			this_parent = mnt;
2644 			goto repeat;
2645 		}
2646 
2647 		if (!propagate_mount_busy(mnt, 1)) {
2648 			list_move_tail(&mnt->mnt_expire, graveyard);
2649 			found++;
2650 		}
2651 	}
2652 	/*
2653 	 * All done at this level ... ascend and resume the search
2654 	 */
2655 	if (this_parent != parent) {
2656 		next = this_parent->mnt_child.next;
2657 		this_parent = this_parent->mnt_parent;
2658 		goto resume;
2659 	}
2660 	return found;
2661 }
2662 
2663 /*
2664  * process a list of expirable mountpoints with the intent of discarding any
2665  * submounts of a specific parent mountpoint
2666  *
2667  * mount_lock must be held for write
2668  */
2669 static void shrink_submounts(struct mount *mnt)
2670 {
2671 	LIST_HEAD(graveyard);
2672 	struct mount *m;
2673 
2674 	/* extract submounts of 'mountpoint' from the expiration list */
2675 	while (select_submounts(mnt, &graveyard)) {
2676 		while (!list_empty(&graveyard)) {
2677 			m = list_first_entry(&graveyard, struct mount,
2678 						mnt_expire);
2679 			touch_mnt_namespace(m->mnt_ns);
2680 			umount_tree(m, UMOUNT_PROPAGATE|UMOUNT_SYNC);
2681 		}
2682 	}
2683 }
2684 
2685 /*
2686  * Some copy_from_user() implementations do not return the exact number of
2687  * bytes remaining to copy on a fault.  But copy_mount_options() requires that.
2688  * Note that this function differs from copy_from_user() in that it will oops
2689  * on bad values of `to', rather than returning a short copy.
2690  */
2691 static long exact_copy_from_user(void *to, const void __user * from,
2692 				 unsigned long n)
2693 {
2694 	char *t = to;
2695 	const char __user *f = from;
2696 	char c;
2697 
2698 	if (!access_ok(from, n))
2699 		return n;
2700 
2701 	current->kernel_uaccess_faults_ok++;
2702 	while (n) {
2703 		if (__get_user(c, f)) {
2704 			memset(t, 0, n);
2705 			break;
2706 		}
2707 		*t++ = c;
2708 		f++;
2709 		n--;
2710 	}
2711 	current->kernel_uaccess_faults_ok--;
2712 	return n;
2713 }
2714 
2715 void *copy_mount_options(const void __user * data)
2716 {
2717 	int i;
2718 	unsigned long size;
2719 	char *copy;
2720 
2721 	if (!data)
2722 		return NULL;
2723 
2724 	copy = kmalloc(PAGE_SIZE, GFP_KERNEL);
2725 	if (!copy)
2726 		return ERR_PTR(-ENOMEM);
2727 
2728 	/* We only care that *some* data at the address the user
2729 	 * gave us is valid.  Just in case, we'll zero
2730 	 * the remainder of the page.
2731 	 */
2732 	/* copy_from_user cannot cross TASK_SIZE ! */
2733 	size = TASK_SIZE - (unsigned long)data;
2734 	if (size > PAGE_SIZE)
2735 		size = PAGE_SIZE;
2736 
2737 	i = size - exact_copy_from_user(copy, data, size);
2738 	if (!i) {
2739 		kfree(copy);
2740 		return ERR_PTR(-EFAULT);
2741 	}
2742 	if (i != PAGE_SIZE)
2743 		memset(copy + i, 0, PAGE_SIZE - i);
2744 	return copy;
2745 }
2746 
2747 char *copy_mount_string(const void __user *data)
2748 {
2749 	return data ? strndup_user(data, PAGE_SIZE) : NULL;
2750 }
2751 
2752 /*
2753  * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
2754  * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
2755  *
2756  * data is a (void *) that can point to any structure up to
2757  * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
2758  * information (or be NULL).
2759  *
2760  * Pre-0.97 versions of mount() didn't have a flags word.
2761  * When the flags word was introduced its top half was required
2762  * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
2763  * Therefore, if this magic number is present, it carries no information
2764  * and must be discarded.
2765  */
2766 long do_mount(const char *dev_name, const char __user *dir_name,
2767 		const char *type_page, unsigned long flags, void *data_page)
2768 {
2769 	struct path path;
2770 	unsigned int mnt_flags = 0, sb_flags;
2771 	int retval = 0;
2772 
2773 	/* Discard magic */
2774 	if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
2775 		flags &= ~MS_MGC_MSK;
2776 
2777 	/* Basic sanity checks */
2778 	if (data_page)
2779 		((char *)data_page)[PAGE_SIZE - 1] = 0;
2780 
2781 	if (flags & MS_NOUSER)
2782 		return -EINVAL;
2783 
2784 	/* ... and get the mountpoint */
2785 	retval = user_path(dir_name, &path);
2786 	if (retval)
2787 		return retval;
2788 
2789 	retval = security_sb_mount(dev_name, &path,
2790 				   type_page, flags, data_page);
2791 	if (!retval && !may_mount())
2792 		retval = -EPERM;
2793 	if (!retval && (flags & SB_MANDLOCK) && !may_mandlock())
2794 		retval = -EPERM;
2795 	if (retval)
2796 		goto dput_out;
2797 
2798 	/* Default to relatime unless overriden */
2799 	if (!(flags & MS_NOATIME))
2800 		mnt_flags |= MNT_RELATIME;
2801 
2802 	/* Separate the per-mountpoint flags */
2803 	if (flags & MS_NOSUID)
2804 		mnt_flags |= MNT_NOSUID;
2805 	if (flags & MS_NODEV)
2806 		mnt_flags |= MNT_NODEV;
2807 	if (flags & MS_NOEXEC)
2808 		mnt_flags |= MNT_NOEXEC;
2809 	if (flags & MS_NOATIME)
2810 		mnt_flags |= MNT_NOATIME;
2811 	if (flags & MS_NODIRATIME)
2812 		mnt_flags |= MNT_NODIRATIME;
2813 	if (flags & MS_STRICTATIME)
2814 		mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
2815 	if (flags & MS_RDONLY)
2816 		mnt_flags |= MNT_READONLY;
2817 
2818 	/* The default atime for remount is preservation */
2819 	if ((flags & MS_REMOUNT) &&
2820 	    ((flags & (MS_NOATIME | MS_NODIRATIME | MS_RELATIME |
2821 		       MS_STRICTATIME)) == 0)) {
2822 		mnt_flags &= ~MNT_ATIME_MASK;
2823 		mnt_flags |= path.mnt->mnt_flags & MNT_ATIME_MASK;
2824 	}
2825 
2826 	sb_flags = flags & (SB_RDONLY |
2827 			    SB_SYNCHRONOUS |
2828 			    SB_MANDLOCK |
2829 			    SB_DIRSYNC |
2830 			    SB_SILENT |
2831 			    SB_POSIXACL |
2832 			    SB_LAZYTIME |
2833 			    SB_I_VERSION);
2834 
2835 	if ((flags & (MS_REMOUNT | MS_BIND)) == (MS_REMOUNT | MS_BIND))
2836 		retval = do_reconfigure_mnt(&path, mnt_flags);
2837 	else if (flags & MS_REMOUNT)
2838 		retval = do_remount(&path, flags, sb_flags, mnt_flags,
2839 				    data_page);
2840 	else if (flags & MS_BIND)
2841 		retval = do_loopback(&path, dev_name, flags & MS_REC);
2842 	else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2843 		retval = do_change_type(&path, flags);
2844 	else if (flags & MS_MOVE)
2845 		retval = do_move_mount(&path, dev_name);
2846 	else
2847 		retval = do_new_mount(&path, type_page, sb_flags, mnt_flags,
2848 				      dev_name, data_page);
2849 dput_out:
2850 	path_put(&path);
2851 	return retval;
2852 }
2853 
2854 static struct ucounts *inc_mnt_namespaces(struct user_namespace *ns)
2855 {
2856 	return inc_ucount(ns, current_euid(), UCOUNT_MNT_NAMESPACES);
2857 }
2858 
2859 static void dec_mnt_namespaces(struct ucounts *ucounts)
2860 {
2861 	dec_ucount(ucounts, UCOUNT_MNT_NAMESPACES);
2862 }
2863 
2864 static void free_mnt_ns(struct mnt_namespace *ns)
2865 {
2866 	ns_free_inum(&ns->ns);
2867 	dec_mnt_namespaces(ns->ucounts);
2868 	put_user_ns(ns->user_ns);
2869 	kfree(ns);
2870 }
2871 
2872 /*
2873  * Assign a sequence number so we can detect when we attempt to bind
2874  * mount a reference to an older mount namespace into the current
2875  * mount namespace, preventing reference counting loops.  A 64bit
2876  * number incrementing at 10Ghz will take 12,427 years to wrap which
2877  * is effectively never, so we can ignore the possibility.
2878  */
2879 static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1);
2880 
2881 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns)
2882 {
2883 	struct mnt_namespace *new_ns;
2884 	struct ucounts *ucounts;
2885 	int ret;
2886 
2887 	ucounts = inc_mnt_namespaces(user_ns);
2888 	if (!ucounts)
2889 		return ERR_PTR(-ENOSPC);
2890 
2891 	new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
2892 	if (!new_ns) {
2893 		dec_mnt_namespaces(ucounts);
2894 		return ERR_PTR(-ENOMEM);
2895 	}
2896 	ret = ns_alloc_inum(&new_ns->ns);
2897 	if (ret) {
2898 		kfree(new_ns);
2899 		dec_mnt_namespaces(ucounts);
2900 		return ERR_PTR(ret);
2901 	}
2902 	new_ns->ns.ops = &mntns_operations;
2903 	new_ns->seq = atomic64_add_return(1, &mnt_ns_seq);
2904 	atomic_set(&new_ns->count, 1);
2905 	new_ns->root = NULL;
2906 	INIT_LIST_HEAD(&new_ns->list);
2907 	init_waitqueue_head(&new_ns->poll);
2908 	new_ns->event = 0;
2909 	new_ns->user_ns = get_user_ns(user_ns);
2910 	new_ns->ucounts = ucounts;
2911 	new_ns->mounts = 0;
2912 	new_ns->pending_mounts = 0;
2913 	return new_ns;
2914 }
2915 
2916 __latent_entropy
2917 struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
2918 		struct user_namespace *user_ns, struct fs_struct *new_fs)
2919 {
2920 	struct mnt_namespace *new_ns;
2921 	struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
2922 	struct mount *p, *q;
2923 	struct mount *old;
2924 	struct mount *new;
2925 	int copy_flags;
2926 
2927 	BUG_ON(!ns);
2928 
2929 	if (likely(!(flags & CLONE_NEWNS))) {
2930 		get_mnt_ns(ns);
2931 		return ns;
2932 	}
2933 
2934 	old = ns->root;
2935 
2936 	new_ns = alloc_mnt_ns(user_ns);
2937 	if (IS_ERR(new_ns))
2938 		return new_ns;
2939 
2940 	namespace_lock();
2941 	/* First pass: copy the tree topology */
2942 	copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE;
2943 	if (user_ns != ns->user_ns)
2944 		copy_flags |= CL_SHARED_TO_SLAVE | CL_UNPRIVILEGED;
2945 	new = copy_tree(old, old->mnt.mnt_root, copy_flags);
2946 	if (IS_ERR(new)) {
2947 		namespace_unlock();
2948 		free_mnt_ns(new_ns);
2949 		return ERR_CAST(new);
2950 	}
2951 	new_ns->root = new;
2952 	list_add_tail(&new_ns->list, &new->mnt_list);
2953 
2954 	/*
2955 	 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
2956 	 * as belonging to new namespace.  We have already acquired a private
2957 	 * fs_struct, so tsk->fs->lock is not needed.
2958 	 */
2959 	p = old;
2960 	q = new;
2961 	while (p) {
2962 		q->mnt_ns = new_ns;
2963 		new_ns->mounts++;
2964 		if (new_fs) {
2965 			if (&p->mnt == new_fs->root.mnt) {
2966 				new_fs->root.mnt = mntget(&q->mnt);
2967 				rootmnt = &p->mnt;
2968 			}
2969 			if (&p->mnt == new_fs->pwd.mnt) {
2970 				new_fs->pwd.mnt = mntget(&q->mnt);
2971 				pwdmnt = &p->mnt;
2972 			}
2973 		}
2974 		p = next_mnt(p, old);
2975 		q = next_mnt(q, new);
2976 		if (!q)
2977 			break;
2978 		while (p->mnt.mnt_root != q->mnt.mnt_root)
2979 			p = next_mnt(p, old);
2980 	}
2981 	namespace_unlock();
2982 
2983 	if (rootmnt)
2984 		mntput(rootmnt);
2985 	if (pwdmnt)
2986 		mntput(pwdmnt);
2987 
2988 	return new_ns;
2989 }
2990 
2991 /**
2992  * create_mnt_ns - creates a private namespace and adds a root filesystem
2993  * @mnt: pointer to the new root filesystem mountpoint
2994  */
2995 static struct mnt_namespace *create_mnt_ns(struct vfsmount *m)
2996 {
2997 	struct mnt_namespace *new_ns = alloc_mnt_ns(&init_user_ns);
2998 	if (!IS_ERR(new_ns)) {
2999 		struct mount *mnt = real_mount(m);
3000 		mnt->mnt_ns = new_ns;
3001 		new_ns->root = mnt;
3002 		new_ns->mounts++;
3003 		list_add(&mnt->mnt_list, &new_ns->list);
3004 	} else {
3005 		mntput(m);
3006 	}
3007 	return new_ns;
3008 }
3009 
3010 struct dentry *mount_subtree(struct vfsmount *mnt, const char *name)
3011 {
3012 	struct mnt_namespace *ns;
3013 	struct super_block *s;
3014 	struct path path;
3015 	int err;
3016 
3017 	ns = create_mnt_ns(mnt);
3018 	if (IS_ERR(ns))
3019 		return ERR_CAST(ns);
3020 
3021 	err = vfs_path_lookup(mnt->mnt_root, mnt,
3022 			name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
3023 
3024 	put_mnt_ns(ns);
3025 
3026 	if (err)
3027 		return ERR_PTR(err);
3028 
3029 	/* trade a vfsmount reference for active sb one */
3030 	s = path.mnt->mnt_sb;
3031 	atomic_inc(&s->s_active);
3032 	mntput(path.mnt);
3033 	/* lock the sucker */
3034 	down_write(&s->s_umount);
3035 	/* ... and return the root of (sub)tree on it */
3036 	return path.dentry;
3037 }
3038 EXPORT_SYMBOL(mount_subtree);
3039 
3040 int ksys_mount(char __user *dev_name, char __user *dir_name, char __user *type,
3041 	       unsigned long flags, void __user *data)
3042 {
3043 	int ret;
3044 	char *kernel_type;
3045 	char *kernel_dev;
3046 	void *options;
3047 
3048 	kernel_type = copy_mount_string(type);
3049 	ret = PTR_ERR(kernel_type);
3050 	if (IS_ERR(kernel_type))
3051 		goto out_type;
3052 
3053 	kernel_dev = copy_mount_string(dev_name);
3054 	ret = PTR_ERR(kernel_dev);
3055 	if (IS_ERR(kernel_dev))
3056 		goto out_dev;
3057 
3058 	options = copy_mount_options(data);
3059 	ret = PTR_ERR(options);
3060 	if (IS_ERR(options))
3061 		goto out_data;
3062 
3063 	ret = do_mount(kernel_dev, dir_name, kernel_type, flags, options);
3064 
3065 	kfree(options);
3066 out_data:
3067 	kfree(kernel_dev);
3068 out_dev:
3069 	kfree(kernel_type);
3070 out_type:
3071 	return ret;
3072 }
3073 
3074 SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
3075 		char __user *, type, unsigned long, flags, void __user *, data)
3076 {
3077 	return ksys_mount(dev_name, dir_name, type, flags, data);
3078 }
3079 
3080 /*
3081  * Return true if path is reachable from root
3082  *
3083  * namespace_sem or mount_lock is held
3084  */
3085 bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
3086 			 const struct path *root)
3087 {
3088 	while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
3089 		dentry = mnt->mnt_mountpoint;
3090 		mnt = mnt->mnt_parent;
3091 	}
3092 	return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
3093 }
3094 
3095 bool path_is_under(const struct path *path1, const struct path *path2)
3096 {
3097 	bool res;
3098 	read_seqlock_excl(&mount_lock);
3099 	res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
3100 	read_sequnlock_excl(&mount_lock);
3101 	return res;
3102 }
3103 EXPORT_SYMBOL(path_is_under);
3104 
3105 /*
3106  * pivot_root Semantics:
3107  * Moves the root file system of the current process to the directory put_old,
3108  * makes new_root as the new root file system of the current process, and sets
3109  * root/cwd of all processes which had them on the current root to new_root.
3110  *
3111  * Restrictions:
3112  * The new_root and put_old must be directories, and  must not be on the
3113  * same file  system as the current process root. The put_old  must  be
3114  * underneath new_root,  i.e. adding a non-zero number of /.. to the string
3115  * pointed to by put_old must yield the same directory as new_root. No other
3116  * file system may be mounted on put_old. After all, new_root is a mountpoint.
3117  *
3118  * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
3119  * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
3120  * in this situation.
3121  *
3122  * Notes:
3123  *  - we don't move root/cwd if they are not at the root (reason: if something
3124  *    cared enough to change them, it's probably wrong to force them elsewhere)
3125  *  - it's okay to pick a root that isn't the root of a file system, e.g.
3126  *    /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
3127  *    though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
3128  *    first.
3129  */
3130 SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
3131 		const char __user *, put_old)
3132 {
3133 	struct path new, old, parent_path, root_parent, root;
3134 	struct mount *new_mnt, *root_mnt, *old_mnt;
3135 	struct mountpoint *old_mp, *root_mp;
3136 	int error;
3137 
3138 	if (!may_mount())
3139 		return -EPERM;
3140 
3141 	error = user_path_dir(new_root, &new);
3142 	if (error)
3143 		goto out0;
3144 
3145 	error = user_path_dir(put_old, &old);
3146 	if (error)
3147 		goto out1;
3148 
3149 	error = security_sb_pivotroot(&old, &new);
3150 	if (error)
3151 		goto out2;
3152 
3153 	get_fs_root(current->fs, &root);
3154 	old_mp = lock_mount(&old);
3155 	error = PTR_ERR(old_mp);
3156 	if (IS_ERR(old_mp))
3157 		goto out3;
3158 
3159 	error = -EINVAL;
3160 	new_mnt = real_mount(new.mnt);
3161 	root_mnt = real_mount(root.mnt);
3162 	old_mnt = real_mount(old.mnt);
3163 	if (IS_MNT_SHARED(old_mnt) ||
3164 		IS_MNT_SHARED(new_mnt->mnt_parent) ||
3165 		IS_MNT_SHARED(root_mnt->mnt_parent))
3166 		goto out4;
3167 	if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
3168 		goto out4;
3169 	if (new_mnt->mnt.mnt_flags & MNT_LOCKED)
3170 		goto out4;
3171 	error = -ENOENT;
3172 	if (d_unlinked(new.dentry))
3173 		goto out4;
3174 	error = -EBUSY;
3175 	if (new_mnt == root_mnt || old_mnt == root_mnt)
3176 		goto out4; /* loop, on the same file system  */
3177 	error = -EINVAL;
3178 	if (root.mnt->mnt_root != root.dentry)
3179 		goto out4; /* not a mountpoint */
3180 	if (!mnt_has_parent(root_mnt))
3181 		goto out4; /* not attached */
3182 	root_mp = root_mnt->mnt_mp;
3183 	if (new.mnt->mnt_root != new.dentry)
3184 		goto out4; /* not a mountpoint */
3185 	if (!mnt_has_parent(new_mnt))
3186 		goto out4; /* not attached */
3187 	/* make sure we can reach put_old from new_root */
3188 	if (!is_path_reachable(old_mnt, old.dentry, &new))
3189 		goto out4;
3190 	/* make certain new is below the root */
3191 	if (!is_path_reachable(new_mnt, new.dentry, &root))
3192 		goto out4;
3193 	root_mp->m_count++; /* pin it so it won't go away */
3194 	lock_mount_hash();
3195 	detach_mnt(new_mnt, &parent_path);
3196 	detach_mnt(root_mnt, &root_parent);
3197 	if (root_mnt->mnt.mnt_flags & MNT_LOCKED) {
3198 		new_mnt->mnt.mnt_flags |= MNT_LOCKED;
3199 		root_mnt->mnt.mnt_flags &= ~MNT_LOCKED;
3200 	}
3201 	/* mount old root on put_old */
3202 	attach_mnt(root_mnt, old_mnt, old_mp);
3203 	/* mount new_root on / */
3204 	attach_mnt(new_mnt, real_mount(root_parent.mnt), root_mp);
3205 	touch_mnt_namespace(current->nsproxy->mnt_ns);
3206 	/* A moved mount should not expire automatically */
3207 	list_del_init(&new_mnt->mnt_expire);
3208 	put_mountpoint(root_mp);
3209 	unlock_mount_hash();
3210 	chroot_fs_refs(&root, &new);
3211 	error = 0;
3212 out4:
3213 	unlock_mount(old_mp);
3214 	if (!error) {
3215 		path_put(&root_parent);
3216 		path_put(&parent_path);
3217 	}
3218 out3:
3219 	path_put(&root);
3220 out2:
3221 	path_put(&old);
3222 out1:
3223 	path_put(&new);
3224 out0:
3225 	return error;
3226 }
3227 
3228 static void __init init_mount_tree(void)
3229 {
3230 	struct vfsmount *mnt;
3231 	struct mnt_namespace *ns;
3232 	struct path root;
3233 	struct file_system_type *type;
3234 
3235 	type = get_fs_type("rootfs");
3236 	if (!type)
3237 		panic("Can't find rootfs type");
3238 	mnt = vfs_kern_mount(type, 0, "rootfs", NULL);
3239 	put_filesystem(type);
3240 	if (IS_ERR(mnt))
3241 		panic("Can't create rootfs");
3242 
3243 	ns = create_mnt_ns(mnt);
3244 	if (IS_ERR(ns))
3245 		panic("Can't allocate initial namespace");
3246 
3247 	init_task.nsproxy->mnt_ns = ns;
3248 	get_mnt_ns(ns);
3249 
3250 	root.mnt = mnt;
3251 	root.dentry = mnt->mnt_root;
3252 	mnt->mnt_flags |= MNT_LOCKED;
3253 
3254 	set_fs_pwd(current->fs, &root);
3255 	set_fs_root(current->fs, &root);
3256 }
3257 
3258 void __init mnt_init(void)
3259 {
3260 	int err;
3261 
3262 	mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
3263 			0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
3264 
3265 	mount_hashtable = alloc_large_system_hash("Mount-cache",
3266 				sizeof(struct hlist_head),
3267 				mhash_entries, 19,
3268 				HASH_ZERO,
3269 				&m_hash_shift, &m_hash_mask, 0, 0);
3270 	mountpoint_hashtable = alloc_large_system_hash("Mountpoint-cache",
3271 				sizeof(struct hlist_head),
3272 				mphash_entries, 19,
3273 				HASH_ZERO,
3274 				&mp_hash_shift, &mp_hash_mask, 0, 0);
3275 
3276 	if (!mount_hashtable || !mountpoint_hashtable)
3277 		panic("Failed to allocate mount hash table\n");
3278 
3279 	kernfs_init();
3280 
3281 	err = sysfs_init();
3282 	if (err)
3283 		printk(KERN_WARNING "%s: sysfs_init error: %d\n",
3284 			__func__, err);
3285 	fs_kobj = kobject_create_and_add("fs", NULL);
3286 	if (!fs_kobj)
3287 		printk(KERN_WARNING "%s: kobj create error\n", __func__);
3288 	init_rootfs();
3289 	init_mount_tree();
3290 }
3291 
3292 void put_mnt_ns(struct mnt_namespace *ns)
3293 {
3294 	if (!atomic_dec_and_test(&ns->count))
3295 		return;
3296 	drop_collected_mounts(&ns->root->mnt);
3297 	free_mnt_ns(ns);
3298 }
3299 
3300 struct vfsmount *kern_mount_data(struct file_system_type *type, void *data)
3301 {
3302 	struct vfsmount *mnt;
3303 	mnt = vfs_kern_mount(type, SB_KERNMOUNT, type->name, data);
3304 	if (!IS_ERR(mnt)) {
3305 		/*
3306 		 * it is a longterm mount, don't release mnt until
3307 		 * we unmount before file sys is unregistered
3308 		*/
3309 		real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
3310 	}
3311 	return mnt;
3312 }
3313 EXPORT_SYMBOL_GPL(kern_mount_data);
3314 
3315 void kern_unmount(struct vfsmount *mnt)
3316 {
3317 	/* release long term mount so mount point can be released */
3318 	if (!IS_ERR_OR_NULL(mnt)) {
3319 		real_mount(mnt)->mnt_ns = NULL;
3320 		synchronize_rcu();	/* yecchhh... */
3321 		mntput(mnt);
3322 	}
3323 }
3324 EXPORT_SYMBOL(kern_unmount);
3325 
3326 bool our_mnt(struct vfsmount *mnt)
3327 {
3328 	return check_mnt(real_mount(mnt));
3329 }
3330 
3331 bool current_chrooted(void)
3332 {
3333 	/* Does the current process have a non-standard root */
3334 	struct path ns_root;
3335 	struct path fs_root;
3336 	bool chrooted;
3337 
3338 	/* Find the namespace root */
3339 	ns_root.mnt = &current->nsproxy->mnt_ns->root->mnt;
3340 	ns_root.dentry = ns_root.mnt->mnt_root;
3341 	path_get(&ns_root);
3342 	while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root))
3343 		;
3344 
3345 	get_fs_root(current->fs, &fs_root);
3346 
3347 	chrooted = !path_equal(&fs_root, &ns_root);
3348 
3349 	path_put(&fs_root);
3350 	path_put(&ns_root);
3351 
3352 	return chrooted;
3353 }
3354 
3355 static bool mnt_already_visible(struct mnt_namespace *ns, struct vfsmount *new,
3356 				int *new_mnt_flags)
3357 {
3358 	int new_flags = *new_mnt_flags;
3359 	struct mount *mnt;
3360 	bool visible = false;
3361 
3362 	down_read(&namespace_sem);
3363 	list_for_each_entry(mnt, &ns->list, mnt_list) {
3364 		struct mount *child;
3365 		int mnt_flags;
3366 
3367 		if (mnt->mnt.mnt_sb->s_type != new->mnt_sb->s_type)
3368 			continue;
3369 
3370 		/* This mount is not fully visible if it's root directory
3371 		 * is not the root directory of the filesystem.
3372 		 */
3373 		if (mnt->mnt.mnt_root != mnt->mnt.mnt_sb->s_root)
3374 			continue;
3375 
3376 		/* A local view of the mount flags */
3377 		mnt_flags = mnt->mnt.mnt_flags;
3378 
3379 		/* Don't miss readonly hidden in the superblock flags */
3380 		if (sb_rdonly(mnt->mnt.mnt_sb))
3381 			mnt_flags |= MNT_LOCK_READONLY;
3382 
3383 		/* Verify the mount flags are equal to or more permissive
3384 		 * than the proposed new mount.
3385 		 */
3386 		if ((mnt_flags & MNT_LOCK_READONLY) &&
3387 		    !(new_flags & MNT_READONLY))
3388 			continue;
3389 		if ((mnt_flags & MNT_LOCK_ATIME) &&
3390 		    ((mnt_flags & MNT_ATIME_MASK) != (new_flags & MNT_ATIME_MASK)))
3391 			continue;
3392 
3393 		/* This mount is not fully visible if there are any
3394 		 * locked child mounts that cover anything except for
3395 		 * empty directories.
3396 		 */
3397 		list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
3398 			struct inode *inode = child->mnt_mountpoint->d_inode;
3399 			/* Only worry about locked mounts */
3400 			if (!(child->mnt.mnt_flags & MNT_LOCKED))
3401 				continue;
3402 			/* Is the directory permanetly empty? */
3403 			if (!is_empty_dir_inode(inode))
3404 				goto next;
3405 		}
3406 		/* Preserve the locked attributes */
3407 		*new_mnt_flags |= mnt_flags & (MNT_LOCK_READONLY | \
3408 					       MNT_LOCK_ATIME);
3409 		visible = true;
3410 		goto found;
3411 	next:	;
3412 	}
3413 found:
3414 	up_read(&namespace_sem);
3415 	return visible;
3416 }
3417 
3418 static bool mount_too_revealing(struct vfsmount *mnt, int *new_mnt_flags)
3419 {
3420 	const unsigned long required_iflags = SB_I_NOEXEC | SB_I_NODEV;
3421 	struct mnt_namespace *ns = current->nsproxy->mnt_ns;
3422 	unsigned long s_iflags;
3423 
3424 	if (ns->user_ns == &init_user_ns)
3425 		return false;
3426 
3427 	/* Can this filesystem be too revealing? */
3428 	s_iflags = mnt->mnt_sb->s_iflags;
3429 	if (!(s_iflags & SB_I_USERNS_VISIBLE))
3430 		return false;
3431 
3432 	if ((s_iflags & required_iflags) != required_iflags) {
3433 		WARN_ONCE(1, "Expected s_iflags to contain 0x%lx\n",
3434 			  required_iflags);
3435 		return true;
3436 	}
3437 
3438 	return !mnt_already_visible(ns, mnt, new_mnt_flags);
3439 }
3440 
3441 bool mnt_may_suid(struct vfsmount *mnt)
3442 {
3443 	/*
3444 	 * Foreign mounts (accessed via fchdir or through /proc
3445 	 * symlinks) are always treated as if they are nosuid.  This
3446 	 * prevents namespaces from trusting potentially unsafe
3447 	 * suid/sgid bits, file caps, or security labels that originate
3448 	 * in other namespaces.
3449 	 */
3450 	return !(mnt->mnt_flags & MNT_NOSUID) && check_mnt(real_mount(mnt)) &&
3451 	       current_in_userns(mnt->mnt_sb->s_user_ns);
3452 }
3453 
3454 static struct ns_common *mntns_get(struct task_struct *task)
3455 {
3456 	struct ns_common *ns = NULL;
3457 	struct nsproxy *nsproxy;
3458 
3459 	task_lock(task);
3460 	nsproxy = task->nsproxy;
3461 	if (nsproxy) {
3462 		ns = &nsproxy->mnt_ns->ns;
3463 		get_mnt_ns(to_mnt_ns(ns));
3464 	}
3465 	task_unlock(task);
3466 
3467 	return ns;
3468 }
3469 
3470 static void mntns_put(struct ns_common *ns)
3471 {
3472 	put_mnt_ns(to_mnt_ns(ns));
3473 }
3474 
3475 static int mntns_install(struct nsproxy *nsproxy, struct ns_common *ns)
3476 {
3477 	struct fs_struct *fs = current->fs;
3478 	struct mnt_namespace *mnt_ns = to_mnt_ns(ns), *old_mnt_ns;
3479 	struct path root;
3480 	int err;
3481 
3482 	if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) ||
3483 	    !ns_capable(current_user_ns(), CAP_SYS_CHROOT) ||
3484 	    !ns_capable(current_user_ns(), CAP_SYS_ADMIN))
3485 		return -EPERM;
3486 
3487 	if (fs->users != 1)
3488 		return -EINVAL;
3489 
3490 	get_mnt_ns(mnt_ns);
3491 	old_mnt_ns = nsproxy->mnt_ns;
3492 	nsproxy->mnt_ns = mnt_ns;
3493 
3494 	/* Find the root */
3495 	err = vfs_path_lookup(mnt_ns->root->mnt.mnt_root, &mnt_ns->root->mnt,
3496 				"/", LOOKUP_DOWN, &root);
3497 	if (err) {
3498 		/* revert to old namespace */
3499 		nsproxy->mnt_ns = old_mnt_ns;
3500 		put_mnt_ns(mnt_ns);
3501 		return err;
3502 	}
3503 
3504 	put_mnt_ns(old_mnt_ns);
3505 
3506 	/* Update the pwd and root */
3507 	set_fs_pwd(fs, &root);
3508 	set_fs_root(fs, &root);
3509 
3510 	path_put(&root);
3511 	return 0;
3512 }
3513 
3514 static struct user_namespace *mntns_owner(struct ns_common *ns)
3515 {
3516 	return to_mnt_ns(ns)->user_ns;
3517 }
3518 
3519 const struct proc_ns_operations mntns_operations = {
3520 	.name		= "mnt",
3521 	.type		= CLONE_NEWNS,
3522 	.get		= mntns_get,
3523 	.put		= mntns_put,
3524 	.install	= mntns_install,
3525 	.owner		= mntns_owner,
3526 };
3527