xref: /openbmc/linux/fs/namespace.c (revision 97da55fc)
1 /*
2  *  linux/fs/namespace.c
3  *
4  * (C) Copyright Al Viro 2000, 2001
5  *	Released under GPL v2.
6  *
7  * Based on code from fs/super.c, copyright Linus Torvalds and others.
8  * Heavily rewritten.
9  */
10 
11 #include <linux/syscalls.h>
12 #include <linux/export.h>
13 #include <linux/capability.h>
14 #include <linux/mnt_namespace.h>
15 #include <linux/user_namespace.h>
16 #include <linux/namei.h>
17 #include <linux/security.h>
18 #include <linux/idr.h>
19 #include <linux/acct.h>		/* acct_auto_close_mnt */
20 #include <linux/ramfs.h>	/* init_rootfs */
21 #include <linux/fs_struct.h>	/* get_fs_root et.al. */
22 #include <linux/fsnotify.h>	/* fsnotify_vfsmount_delete */
23 #include <linux/uaccess.h>
24 #include <linux/proc_fs.h>
25 #include "pnode.h"
26 #include "internal.h"
27 
28 #define HASH_SHIFT ilog2(PAGE_SIZE / sizeof(struct list_head))
29 #define HASH_SIZE (1UL << HASH_SHIFT)
30 
31 static int event;
32 static DEFINE_IDA(mnt_id_ida);
33 static DEFINE_IDA(mnt_group_ida);
34 static DEFINE_SPINLOCK(mnt_id_lock);
35 static int mnt_id_start = 0;
36 static int mnt_group_start = 1;
37 
38 static struct list_head *mount_hashtable __read_mostly;
39 static struct kmem_cache *mnt_cache __read_mostly;
40 static struct rw_semaphore namespace_sem;
41 
42 /* /sys/fs */
43 struct kobject *fs_kobj;
44 EXPORT_SYMBOL_GPL(fs_kobj);
45 
46 /*
47  * vfsmount lock may be taken for read to prevent changes to the
48  * vfsmount hash, ie. during mountpoint lookups or walking back
49  * up the tree.
50  *
51  * It should be taken for write in all cases where the vfsmount
52  * tree or hash is modified or when a vfsmount structure is modified.
53  */
54 DEFINE_BRLOCK(vfsmount_lock);
55 
56 static inline unsigned long hash(struct vfsmount *mnt, struct dentry *dentry)
57 {
58 	unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
59 	tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
60 	tmp = tmp + (tmp >> HASH_SHIFT);
61 	return tmp & (HASH_SIZE - 1);
62 }
63 
64 #define MNT_WRITER_UNDERFLOW_LIMIT -(1<<16)
65 
66 /*
67  * allocation is serialized by namespace_sem, but we need the spinlock to
68  * serialize with freeing.
69  */
70 static int mnt_alloc_id(struct mount *mnt)
71 {
72 	int res;
73 
74 retry:
75 	ida_pre_get(&mnt_id_ida, GFP_KERNEL);
76 	spin_lock(&mnt_id_lock);
77 	res = ida_get_new_above(&mnt_id_ida, mnt_id_start, &mnt->mnt_id);
78 	if (!res)
79 		mnt_id_start = mnt->mnt_id + 1;
80 	spin_unlock(&mnt_id_lock);
81 	if (res == -EAGAIN)
82 		goto retry;
83 
84 	return res;
85 }
86 
87 static void mnt_free_id(struct mount *mnt)
88 {
89 	int id = mnt->mnt_id;
90 	spin_lock(&mnt_id_lock);
91 	ida_remove(&mnt_id_ida, id);
92 	if (mnt_id_start > id)
93 		mnt_id_start = id;
94 	spin_unlock(&mnt_id_lock);
95 }
96 
97 /*
98  * Allocate a new peer group ID
99  *
100  * mnt_group_ida is protected by namespace_sem
101  */
102 static int mnt_alloc_group_id(struct mount *mnt)
103 {
104 	int res;
105 
106 	if (!ida_pre_get(&mnt_group_ida, GFP_KERNEL))
107 		return -ENOMEM;
108 
109 	res = ida_get_new_above(&mnt_group_ida,
110 				mnt_group_start,
111 				&mnt->mnt_group_id);
112 	if (!res)
113 		mnt_group_start = mnt->mnt_group_id + 1;
114 
115 	return res;
116 }
117 
118 /*
119  * Release a peer group ID
120  */
121 void mnt_release_group_id(struct mount *mnt)
122 {
123 	int id = mnt->mnt_group_id;
124 	ida_remove(&mnt_group_ida, id);
125 	if (mnt_group_start > id)
126 		mnt_group_start = id;
127 	mnt->mnt_group_id = 0;
128 }
129 
130 /*
131  * vfsmount lock must be held for read
132  */
133 static inline void mnt_add_count(struct mount *mnt, int n)
134 {
135 #ifdef CONFIG_SMP
136 	this_cpu_add(mnt->mnt_pcp->mnt_count, n);
137 #else
138 	preempt_disable();
139 	mnt->mnt_count += n;
140 	preempt_enable();
141 #endif
142 }
143 
144 /*
145  * vfsmount lock must be held for write
146  */
147 unsigned int mnt_get_count(struct mount *mnt)
148 {
149 #ifdef CONFIG_SMP
150 	unsigned int count = 0;
151 	int cpu;
152 
153 	for_each_possible_cpu(cpu) {
154 		count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
155 	}
156 
157 	return count;
158 #else
159 	return mnt->mnt_count;
160 #endif
161 }
162 
163 static struct mount *alloc_vfsmnt(const char *name)
164 {
165 	struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
166 	if (mnt) {
167 		int err;
168 
169 		err = mnt_alloc_id(mnt);
170 		if (err)
171 			goto out_free_cache;
172 
173 		if (name) {
174 			mnt->mnt_devname = kstrdup(name, GFP_KERNEL);
175 			if (!mnt->mnt_devname)
176 				goto out_free_id;
177 		}
178 
179 #ifdef CONFIG_SMP
180 		mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
181 		if (!mnt->mnt_pcp)
182 			goto out_free_devname;
183 
184 		this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
185 #else
186 		mnt->mnt_count = 1;
187 		mnt->mnt_writers = 0;
188 #endif
189 
190 		INIT_LIST_HEAD(&mnt->mnt_hash);
191 		INIT_LIST_HEAD(&mnt->mnt_child);
192 		INIT_LIST_HEAD(&mnt->mnt_mounts);
193 		INIT_LIST_HEAD(&mnt->mnt_list);
194 		INIT_LIST_HEAD(&mnt->mnt_expire);
195 		INIT_LIST_HEAD(&mnt->mnt_share);
196 		INIT_LIST_HEAD(&mnt->mnt_slave_list);
197 		INIT_LIST_HEAD(&mnt->mnt_slave);
198 #ifdef CONFIG_FSNOTIFY
199 		INIT_HLIST_HEAD(&mnt->mnt_fsnotify_marks);
200 #endif
201 	}
202 	return mnt;
203 
204 #ifdef CONFIG_SMP
205 out_free_devname:
206 	kfree(mnt->mnt_devname);
207 #endif
208 out_free_id:
209 	mnt_free_id(mnt);
210 out_free_cache:
211 	kmem_cache_free(mnt_cache, mnt);
212 	return NULL;
213 }
214 
215 /*
216  * Most r/o checks on a fs are for operations that take
217  * discrete amounts of time, like a write() or unlink().
218  * We must keep track of when those operations start
219  * (for permission checks) and when they end, so that
220  * we can determine when writes are able to occur to
221  * a filesystem.
222  */
223 /*
224  * __mnt_is_readonly: check whether a mount is read-only
225  * @mnt: the mount to check for its write status
226  *
227  * This shouldn't be used directly ouside of the VFS.
228  * It does not guarantee that the filesystem will stay
229  * r/w, just that it is right *now*.  This can not and
230  * should not be used in place of IS_RDONLY(inode).
231  * mnt_want/drop_write() will _keep_ the filesystem
232  * r/w.
233  */
234 int __mnt_is_readonly(struct vfsmount *mnt)
235 {
236 	if (mnt->mnt_flags & MNT_READONLY)
237 		return 1;
238 	if (mnt->mnt_sb->s_flags & MS_RDONLY)
239 		return 1;
240 	return 0;
241 }
242 EXPORT_SYMBOL_GPL(__mnt_is_readonly);
243 
244 static inline void mnt_inc_writers(struct mount *mnt)
245 {
246 #ifdef CONFIG_SMP
247 	this_cpu_inc(mnt->mnt_pcp->mnt_writers);
248 #else
249 	mnt->mnt_writers++;
250 #endif
251 }
252 
253 static inline void mnt_dec_writers(struct mount *mnt)
254 {
255 #ifdef CONFIG_SMP
256 	this_cpu_dec(mnt->mnt_pcp->mnt_writers);
257 #else
258 	mnt->mnt_writers--;
259 #endif
260 }
261 
262 static unsigned int mnt_get_writers(struct mount *mnt)
263 {
264 #ifdef CONFIG_SMP
265 	unsigned int count = 0;
266 	int cpu;
267 
268 	for_each_possible_cpu(cpu) {
269 		count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
270 	}
271 
272 	return count;
273 #else
274 	return mnt->mnt_writers;
275 #endif
276 }
277 
278 static int mnt_is_readonly(struct vfsmount *mnt)
279 {
280 	if (mnt->mnt_sb->s_readonly_remount)
281 		return 1;
282 	/* Order wrt setting s_flags/s_readonly_remount in do_remount() */
283 	smp_rmb();
284 	return __mnt_is_readonly(mnt);
285 }
286 
287 /*
288  * Most r/o & frozen checks on a fs are for operations that take discrete
289  * amounts of time, like a write() or unlink().  We must keep track of when
290  * those operations start (for permission checks) and when they end, so that we
291  * can determine when writes are able to occur to a filesystem.
292  */
293 /**
294  * __mnt_want_write - get write access to a mount without freeze protection
295  * @m: the mount on which to take a write
296  *
297  * This tells the low-level filesystem that a write is about to be performed to
298  * it, and makes sure that writes are allowed (mnt it read-write) before
299  * returning success. This operation does not protect against filesystem being
300  * frozen. When the write operation is finished, __mnt_drop_write() must be
301  * called. This is effectively a refcount.
302  */
303 int __mnt_want_write(struct vfsmount *m)
304 {
305 	struct mount *mnt = real_mount(m);
306 	int ret = 0;
307 
308 	preempt_disable();
309 	mnt_inc_writers(mnt);
310 	/*
311 	 * The store to mnt_inc_writers must be visible before we pass
312 	 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
313 	 * incremented count after it has set MNT_WRITE_HOLD.
314 	 */
315 	smp_mb();
316 	while (ACCESS_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD)
317 		cpu_relax();
318 	/*
319 	 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
320 	 * be set to match its requirements. So we must not load that until
321 	 * MNT_WRITE_HOLD is cleared.
322 	 */
323 	smp_rmb();
324 	if (mnt_is_readonly(m)) {
325 		mnt_dec_writers(mnt);
326 		ret = -EROFS;
327 	}
328 	preempt_enable();
329 
330 	return ret;
331 }
332 
333 /**
334  * mnt_want_write - get write access to a mount
335  * @m: the mount on which to take a write
336  *
337  * This tells the low-level filesystem that a write is about to be performed to
338  * it, and makes sure that writes are allowed (mount is read-write, filesystem
339  * is not frozen) before returning success.  When the write operation is
340  * finished, mnt_drop_write() must be called.  This is effectively a refcount.
341  */
342 int mnt_want_write(struct vfsmount *m)
343 {
344 	int ret;
345 
346 	sb_start_write(m->mnt_sb);
347 	ret = __mnt_want_write(m);
348 	if (ret)
349 		sb_end_write(m->mnt_sb);
350 	return ret;
351 }
352 EXPORT_SYMBOL_GPL(mnt_want_write);
353 
354 /**
355  * mnt_clone_write - get write access to a mount
356  * @mnt: the mount on which to take a write
357  *
358  * This is effectively like mnt_want_write, except
359  * it must only be used to take an extra write reference
360  * on a mountpoint that we already know has a write reference
361  * on it. This allows some optimisation.
362  *
363  * After finished, mnt_drop_write must be called as usual to
364  * drop the reference.
365  */
366 int mnt_clone_write(struct vfsmount *mnt)
367 {
368 	/* superblock may be r/o */
369 	if (__mnt_is_readonly(mnt))
370 		return -EROFS;
371 	preempt_disable();
372 	mnt_inc_writers(real_mount(mnt));
373 	preempt_enable();
374 	return 0;
375 }
376 EXPORT_SYMBOL_GPL(mnt_clone_write);
377 
378 /**
379  * __mnt_want_write_file - get write access to a file's mount
380  * @file: the file who's mount on which to take a write
381  *
382  * This is like __mnt_want_write, but it takes a file and can
383  * do some optimisations if the file is open for write already
384  */
385 int __mnt_want_write_file(struct file *file)
386 {
387 	struct inode *inode = file_inode(file);
388 
389 	if (!(file->f_mode & FMODE_WRITE) || special_file(inode->i_mode))
390 		return __mnt_want_write(file->f_path.mnt);
391 	else
392 		return mnt_clone_write(file->f_path.mnt);
393 }
394 
395 /**
396  * mnt_want_write_file - get write access to a file's mount
397  * @file: the file who's mount on which to take a write
398  *
399  * This is like mnt_want_write, but it takes a file and can
400  * do some optimisations if the file is open for write already
401  */
402 int mnt_want_write_file(struct file *file)
403 {
404 	int ret;
405 
406 	sb_start_write(file->f_path.mnt->mnt_sb);
407 	ret = __mnt_want_write_file(file);
408 	if (ret)
409 		sb_end_write(file->f_path.mnt->mnt_sb);
410 	return ret;
411 }
412 EXPORT_SYMBOL_GPL(mnt_want_write_file);
413 
414 /**
415  * __mnt_drop_write - give up write access to a mount
416  * @mnt: the mount on which to give up write access
417  *
418  * Tells the low-level filesystem that we are done
419  * performing writes to it.  Must be matched with
420  * __mnt_want_write() call above.
421  */
422 void __mnt_drop_write(struct vfsmount *mnt)
423 {
424 	preempt_disable();
425 	mnt_dec_writers(real_mount(mnt));
426 	preempt_enable();
427 }
428 
429 /**
430  * mnt_drop_write - give up write access to a mount
431  * @mnt: the mount on which to give up write access
432  *
433  * Tells the low-level filesystem that we are done performing writes to it and
434  * also allows filesystem to be frozen again.  Must be matched with
435  * mnt_want_write() call above.
436  */
437 void mnt_drop_write(struct vfsmount *mnt)
438 {
439 	__mnt_drop_write(mnt);
440 	sb_end_write(mnt->mnt_sb);
441 }
442 EXPORT_SYMBOL_GPL(mnt_drop_write);
443 
444 void __mnt_drop_write_file(struct file *file)
445 {
446 	__mnt_drop_write(file->f_path.mnt);
447 }
448 
449 void mnt_drop_write_file(struct file *file)
450 {
451 	mnt_drop_write(file->f_path.mnt);
452 }
453 EXPORT_SYMBOL(mnt_drop_write_file);
454 
455 static int mnt_make_readonly(struct mount *mnt)
456 {
457 	int ret = 0;
458 
459 	br_write_lock(&vfsmount_lock);
460 	mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
461 	/*
462 	 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
463 	 * should be visible before we do.
464 	 */
465 	smp_mb();
466 
467 	/*
468 	 * With writers on hold, if this value is zero, then there are
469 	 * definitely no active writers (although held writers may subsequently
470 	 * increment the count, they'll have to wait, and decrement it after
471 	 * seeing MNT_READONLY).
472 	 *
473 	 * It is OK to have counter incremented on one CPU and decremented on
474 	 * another: the sum will add up correctly. The danger would be when we
475 	 * sum up each counter, if we read a counter before it is incremented,
476 	 * but then read another CPU's count which it has been subsequently
477 	 * decremented from -- we would see more decrements than we should.
478 	 * MNT_WRITE_HOLD protects against this scenario, because
479 	 * mnt_want_write first increments count, then smp_mb, then spins on
480 	 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
481 	 * we're counting up here.
482 	 */
483 	if (mnt_get_writers(mnt) > 0)
484 		ret = -EBUSY;
485 	else
486 		mnt->mnt.mnt_flags |= MNT_READONLY;
487 	/*
488 	 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
489 	 * that become unheld will see MNT_READONLY.
490 	 */
491 	smp_wmb();
492 	mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
493 	br_write_unlock(&vfsmount_lock);
494 	return ret;
495 }
496 
497 static void __mnt_unmake_readonly(struct mount *mnt)
498 {
499 	br_write_lock(&vfsmount_lock);
500 	mnt->mnt.mnt_flags &= ~MNT_READONLY;
501 	br_write_unlock(&vfsmount_lock);
502 }
503 
504 int sb_prepare_remount_readonly(struct super_block *sb)
505 {
506 	struct mount *mnt;
507 	int err = 0;
508 
509 	/* Racy optimization.  Recheck the counter under MNT_WRITE_HOLD */
510 	if (atomic_long_read(&sb->s_remove_count))
511 		return -EBUSY;
512 
513 	br_write_lock(&vfsmount_lock);
514 	list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
515 		if (!(mnt->mnt.mnt_flags & MNT_READONLY)) {
516 			mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
517 			smp_mb();
518 			if (mnt_get_writers(mnt) > 0) {
519 				err = -EBUSY;
520 				break;
521 			}
522 		}
523 	}
524 	if (!err && atomic_long_read(&sb->s_remove_count))
525 		err = -EBUSY;
526 
527 	if (!err) {
528 		sb->s_readonly_remount = 1;
529 		smp_wmb();
530 	}
531 	list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
532 		if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
533 			mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
534 	}
535 	br_write_unlock(&vfsmount_lock);
536 
537 	return err;
538 }
539 
540 static void free_vfsmnt(struct mount *mnt)
541 {
542 	kfree(mnt->mnt_devname);
543 	mnt_free_id(mnt);
544 #ifdef CONFIG_SMP
545 	free_percpu(mnt->mnt_pcp);
546 #endif
547 	kmem_cache_free(mnt_cache, mnt);
548 }
549 
550 /*
551  * find the first or last mount at @dentry on vfsmount @mnt depending on
552  * @dir. If @dir is set return the first mount else return the last mount.
553  * vfsmount_lock must be held for read or write.
554  */
555 struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry,
556 			      int dir)
557 {
558 	struct list_head *head = mount_hashtable + hash(mnt, dentry);
559 	struct list_head *tmp = head;
560 	struct mount *p, *found = NULL;
561 
562 	for (;;) {
563 		tmp = dir ? tmp->next : tmp->prev;
564 		p = NULL;
565 		if (tmp == head)
566 			break;
567 		p = list_entry(tmp, struct mount, mnt_hash);
568 		if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry) {
569 			found = p;
570 			break;
571 		}
572 	}
573 	return found;
574 }
575 
576 /*
577  * lookup_mnt - Return the first child mount mounted at path
578  *
579  * "First" means first mounted chronologically.  If you create the
580  * following mounts:
581  *
582  * mount /dev/sda1 /mnt
583  * mount /dev/sda2 /mnt
584  * mount /dev/sda3 /mnt
585  *
586  * Then lookup_mnt() on the base /mnt dentry in the root mount will
587  * return successively the root dentry and vfsmount of /dev/sda1, then
588  * /dev/sda2, then /dev/sda3, then NULL.
589  *
590  * lookup_mnt takes a reference to the found vfsmount.
591  */
592 struct vfsmount *lookup_mnt(struct path *path)
593 {
594 	struct mount *child_mnt;
595 
596 	br_read_lock(&vfsmount_lock);
597 	child_mnt = __lookup_mnt(path->mnt, path->dentry, 1);
598 	if (child_mnt) {
599 		mnt_add_count(child_mnt, 1);
600 		br_read_unlock(&vfsmount_lock);
601 		return &child_mnt->mnt;
602 	} else {
603 		br_read_unlock(&vfsmount_lock);
604 		return NULL;
605 	}
606 }
607 
608 static inline int check_mnt(struct mount *mnt)
609 {
610 	return mnt->mnt_ns == current->nsproxy->mnt_ns;
611 }
612 
613 /*
614  * vfsmount lock must be held for write
615  */
616 static void touch_mnt_namespace(struct mnt_namespace *ns)
617 {
618 	if (ns) {
619 		ns->event = ++event;
620 		wake_up_interruptible(&ns->poll);
621 	}
622 }
623 
624 /*
625  * vfsmount lock must be held for write
626  */
627 static void __touch_mnt_namespace(struct mnt_namespace *ns)
628 {
629 	if (ns && ns->event != event) {
630 		ns->event = event;
631 		wake_up_interruptible(&ns->poll);
632 	}
633 }
634 
635 /*
636  * Clear dentry's mounted state if it has no remaining mounts.
637  * vfsmount_lock must be held for write.
638  */
639 static void dentry_reset_mounted(struct dentry *dentry)
640 {
641 	unsigned u;
642 
643 	for (u = 0; u < HASH_SIZE; u++) {
644 		struct mount *p;
645 
646 		list_for_each_entry(p, &mount_hashtable[u], mnt_hash) {
647 			if (p->mnt_mountpoint == dentry)
648 				return;
649 		}
650 	}
651 	spin_lock(&dentry->d_lock);
652 	dentry->d_flags &= ~DCACHE_MOUNTED;
653 	spin_unlock(&dentry->d_lock);
654 }
655 
656 /*
657  * vfsmount lock must be held for write
658  */
659 static void detach_mnt(struct mount *mnt, struct path *old_path)
660 {
661 	old_path->dentry = mnt->mnt_mountpoint;
662 	old_path->mnt = &mnt->mnt_parent->mnt;
663 	mnt->mnt_parent = mnt;
664 	mnt->mnt_mountpoint = mnt->mnt.mnt_root;
665 	list_del_init(&mnt->mnt_child);
666 	list_del_init(&mnt->mnt_hash);
667 	dentry_reset_mounted(old_path->dentry);
668 }
669 
670 /*
671  * vfsmount lock must be held for write
672  */
673 void mnt_set_mountpoint(struct mount *mnt, struct dentry *dentry,
674 			struct mount *child_mnt)
675 {
676 	mnt_add_count(mnt, 1);	/* essentially, that's mntget */
677 	child_mnt->mnt_mountpoint = dget(dentry);
678 	child_mnt->mnt_parent = mnt;
679 	spin_lock(&dentry->d_lock);
680 	dentry->d_flags |= DCACHE_MOUNTED;
681 	spin_unlock(&dentry->d_lock);
682 }
683 
684 /*
685  * vfsmount lock must be held for write
686  */
687 static void attach_mnt(struct mount *mnt, struct path *path)
688 {
689 	mnt_set_mountpoint(real_mount(path->mnt), path->dentry, mnt);
690 	list_add_tail(&mnt->mnt_hash, mount_hashtable +
691 			hash(path->mnt, path->dentry));
692 	list_add_tail(&mnt->mnt_child, &real_mount(path->mnt)->mnt_mounts);
693 }
694 
695 /*
696  * vfsmount lock must be held for write
697  */
698 static void commit_tree(struct mount *mnt)
699 {
700 	struct mount *parent = mnt->mnt_parent;
701 	struct mount *m;
702 	LIST_HEAD(head);
703 	struct mnt_namespace *n = parent->mnt_ns;
704 
705 	BUG_ON(parent == mnt);
706 
707 	list_add_tail(&head, &mnt->mnt_list);
708 	list_for_each_entry(m, &head, mnt_list)
709 		m->mnt_ns = n;
710 
711 	list_splice(&head, n->list.prev);
712 
713 	list_add_tail(&mnt->mnt_hash, mount_hashtable +
714 				hash(&parent->mnt, mnt->mnt_mountpoint));
715 	list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
716 	touch_mnt_namespace(n);
717 }
718 
719 static struct mount *next_mnt(struct mount *p, struct mount *root)
720 {
721 	struct list_head *next = p->mnt_mounts.next;
722 	if (next == &p->mnt_mounts) {
723 		while (1) {
724 			if (p == root)
725 				return NULL;
726 			next = p->mnt_child.next;
727 			if (next != &p->mnt_parent->mnt_mounts)
728 				break;
729 			p = p->mnt_parent;
730 		}
731 	}
732 	return list_entry(next, struct mount, mnt_child);
733 }
734 
735 static struct mount *skip_mnt_tree(struct mount *p)
736 {
737 	struct list_head *prev = p->mnt_mounts.prev;
738 	while (prev != &p->mnt_mounts) {
739 		p = list_entry(prev, struct mount, mnt_child);
740 		prev = p->mnt_mounts.prev;
741 	}
742 	return p;
743 }
744 
745 struct vfsmount *
746 vfs_kern_mount(struct file_system_type *type, int flags, const char *name, void *data)
747 {
748 	struct mount *mnt;
749 	struct dentry *root;
750 
751 	if (!type)
752 		return ERR_PTR(-ENODEV);
753 
754 	mnt = alloc_vfsmnt(name);
755 	if (!mnt)
756 		return ERR_PTR(-ENOMEM);
757 
758 	if (flags & MS_KERNMOUNT)
759 		mnt->mnt.mnt_flags = MNT_INTERNAL;
760 
761 	root = mount_fs(type, flags, name, data);
762 	if (IS_ERR(root)) {
763 		free_vfsmnt(mnt);
764 		return ERR_CAST(root);
765 	}
766 
767 	mnt->mnt.mnt_root = root;
768 	mnt->mnt.mnt_sb = root->d_sb;
769 	mnt->mnt_mountpoint = mnt->mnt.mnt_root;
770 	mnt->mnt_parent = mnt;
771 	br_write_lock(&vfsmount_lock);
772 	list_add_tail(&mnt->mnt_instance, &root->d_sb->s_mounts);
773 	br_write_unlock(&vfsmount_lock);
774 	return &mnt->mnt;
775 }
776 EXPORT_SYMBOL_GPL(vfs_kern_mount);
777 
778 static struct mount *clone_mnt(struct mount *old, struct dentry *root,
779 					int flag)
780 {
781 	struct super_block *sb = old->mnt.mnt_sb;
782 	struct mount *mnt;
783 	int err;
784 
785 	mnt = alloc_vfsmnt(old->mnt_devname);
786 	if (!mnt)
787 		return ERR_PTR(-ENOMEM);
788 
789 	if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE))
790 		mnt->mnt_group_id = 0; /* not a peer of original */
791 	else
792 		mnt->mnt_group_id = old->mnt_group_id;
793 
794 	if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
795 		err = mnt_alloc_group_id(mnt);
796 		if (err)
797 			goto out_free;
798 	}
799 
800 	mnt->mnt.mnt_flags = old->mnt.mnt_flags & ~MNT_WRITE_HOLD;
801 	atomic_inc(&sb->s_active);
802 	mnt->mnt.mnt_sb = sb;
803 	mnt->mnt.mnt_root = dget(root);
804 	mnt->mnt_mountpoint = mnt->mnt.mnt_root;
805 	mnt->mnt_parent = mnt;
806 	br_write_lock(&vfsmount_lock);
807 	list_add_tail(&mnt->mnt_instance, &sb->s_mounts);
808 	br_write_unlock(&vfsmount_lock);
809 
810 	if ((flag & CL_SLAVE) ||
811 	    ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) {
812 		list_add(&mnt->mnt_slave, &old->mnt_slave_list);
813 		mnt->mnt_master = old;
814 		CLEAR_MNT_SHARED(mnt);
815 	} else if (!(flag & CL_PRIVATE)) {
816 		if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
817 			list_add(&mnt->mnt_share, &old->mnt_share);
818 		if (IS_MNT_SLAVE(old))
819 			list_add(&mnt->mnt_slave, &old->mnt_slave);
820 		mnt->mnt_master = old->mnt_master;
821 	}
822 	if (flag & CL_MAKE_SHARED)
823 		set_mnt_shared(mnt);
824 
825 	/* stick the duplicate mount on the same expiry list
826 	 * as the original if that was on one */
827 	if (flag & CL_EXPIRE) {
828 		if (!list_empty(&old->mnt_expire))
829 			list_add(&mnt->mnt_expire, &old->mnt_expire);
830 	}
831 
832 	return mnt;
833 
834  out_free:
835 	free_vfsmnt(mnt);
836 	return ERR_PTR(err);
837 }
838 
839 static inline void mntfree(struct mount *mnt)
840 {
841 	struct vfsmount *m = &mnt->mnt;
842 	struct super_block *sb = m->mnt_sb;
843 
844 	/*
845 	 * This probably indicates that somebody messed
846 	 * up a mnt_want/drop_write() pair.  If this
847 	 * happens, the filesystem was probably unable
848 	 * to make r/w->r/o transitions.
849 	 */
850 	/*
851 	 * The locking used to deal with mnt_count decrement provides barriers,
852 	 * so mnt_get_writers() below is safe.
853 	 */
854 	WARN_ON(mnt_get_writers(mnt));
855 	fsnotify_vfsmount_delete(m);
856 	dput(m->mnt_root);
857 	free_vfsmnt(mnt);
858 	deactivate_super(sb);
859 }
860 
861 static void mntput_no_expire(struct mount *mnt)
862 {
863 put_again:
864 #ifdef CONFIG_SMP
865 	br_read_lock(&vfsmount_lock);
866 	if (likely(mnt->mnt_ns)) {
867 		/* shouldn't be the last one */
868 		mnt_add_count(mnt, -1);
869 		br_read_unlock(&vfsmount_lock);
870 		return;
871 	}
872 	br_read_unlock(&vfsmount_lock);
873 
874 	br_write_lock(&vfsmount_lock);
875 	mnt_add_count(mnt, -1);
876 	if (mnt_get_count(mnt)) {
877 		br_write_unlock(&vfsmount_lock);
878 		return;
879 	}
880 #else
881 	mnt_add_count(mnt, -1);
882 	if (likely(mnt_get_count(mnt)))
883 		return;
884 	br_write_lock(&vfsmount_lock);
885 #endif
886 	if (unlikely(mnt->mnt_pinned)) {
887 		mnt_add_count(mnt, mnt->mnt_pinned + 1);
888 		mnt->mnt_pinned = 0;
889 		br_write_unlock(&vfsmount_lock);
890 		acct_auto_close_mnt(&mnt->mnt);
891 		goto put_again;
892 	}
893 
894 	list_del(&mnt->mnt_instance);
895 	br_write_unlock(&vfsmount_lock);
896 	mntfree(mnt);
897 }
898 
899 void mntput(struct vfsmount *mnt)
900 {
901 	if (mnt) {
902 		struct mount *m = real_mount(mnt);
903 		/* avoid cacheline pingpong, hope gcc doesn't get "smart" */
904 		if (unlikely(m->mnt_expiry_mark))
905 			m->mnt_expiry_mark = 0;
906 		mntput_no_expire(m);
907 	}
908 }
909 EXPORT_SYMBOL(mntput);
910 
911 struct vfsmount *mntget(struct vfsmount *mnt)
912 {
913 	if (mnt)
914 		mnt_add_count(real_mount(mnt), 1);
915 	return mnt;
916 }
917 EXPORT_SYMBOL(mntget);
918 
919 void mnt_pin(struct vfsmount *mnt)
920 {
921 	br_write_lock(&vfsmount_lock);
922 	real_mount(mnt)->mnt_pinned++;
923 	br_write_unlock(&vfsmount_lock);
924 }
925 EXPORT_SYMBOL(mnt_pin);
926 
927 void mnt_unpin(struct vfsmount *m)
928 {
929 	struct mount *mnt = real_mount(m);
930 	br_write_lock(&vfsmount_lock);
931 	if (mnt->mnt_pinned) {
932 		mnt_add_count(mnt, 1);
933 		mnt->mnt_pinned--;
934 	}
935 	br_write_unlock(&vfsmount_lock);
936 }
937 EXPORT_SYMBOL(mnt_unpin);
938 
939 static inline void mangle(struct seq_file *m, const char *s)
940 {
941 	seq_escape(m, s, " \t\n\\");
942 }
943 
944 /*
945  * Simple .show_options callback for filesystems which don't want to
946  * implement more complex mount option showing.
947  *
948  * See also save_mount_options().
949  */
950 int generic_show_options(struct seq_file *m, struct dentry *root)
951 {
952 	const char *options;
953 
954 	rcu_read_lock();
955 	options = rcu_dereference(root->d_sb->s_options);
956 
957 	if (options != NULL && options[0]) {
958 		seq_putc(m, ',');
959 		mangle(m, options);
960 	}
961 	rcu_read_unlock();
962 
963 	return 0;
964 }
965 EXPORT_SYMBOL(generic_show_options);
966 
967 /*
968  * If filesystem uses generic_show_options(), this function should be
969  * called from the fill_super() callback.
970  *
971  * The .remount_fs callback usually needs to be handled in a special
972  * way, to make sure, that previous options are not overwritten if the
973  * remount fails.
974  *
975  * Also note, that if the filesystem's .remount_fs function doesn't
976  * reset all options to their default value, but changes only newly
977  * given options, then the displayed options will not reflect reality
978  * any more.
979  */
980 void save_mount_options(struct super_block *sb, char *options)
981 {
982 	BUG_ON(sb->s_options);
983 	rcu_assign_pointer(sb->s_options, kstrdup(options, GFP_KERNEL));
984 }
985 EXPORT_SYMBOL(save_mount_options);
986 
987 void replace_mount_options(struct super_block *sb, char *options)
988 {
989 	char *old = sb->s_options;
990 	rcu_assign_pointer(sb->s_options, options);
991 	if (old) {
992 		synchronize_rcu();
993 		kfree(old);
994 	}
995 }
996 EXPORT_SYMBOL(replace_mount_options);
997 
998 #ifdef CONFIG_PROC_FS
999 /* iterator; we want it to have access to namespace_sem, thus here... */
1000 static void *m_start(struct seq_file *m, loff_t *pos)
1001 {
1002 	struct proc_mounts *p = proc_mounts(m);
1003 
1004 	down_read(&namespace_sem);
1005 	return seq_list_start(&p->ns->list, *pos);
1006 }
1007 
1008 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
1009 {
1010 	struct proc_mounts *p = proc_mounts(m);
1011 
1012 	return seq_list_next(v, &p->ns->list, pos);
1013 }
1014 
1015 static void m_stop(struct seq_file *m, void *v)
1016 {
1017 	up_read(&namespace_sem);
1018 }
1019 
1020 static int m_show(struct seq_file *m, void *v)
1021 {
1022 	struct proc_mounts *p = proc_mounts(m);
1023 	struct mount *r = list_entry(v, struct mount, mnt_list);
1024 	return p->show(m, &r->mnt);
1025 }
1026 
1027 const struct seq_operations mounts_op = {
1028 	.start	= m_start,
1029 	.next	= m_next,
1030 	.stop	= m_stop,
1031 	.show	= m_show,
1032 };
1033 #endif  /* CONFIG_PROC_FS */
1034 
1035 /**
1036  * may_umount_tree - check if a mount tree is busy
1037  * @mnt: root of mount tree
1038  *
1039  * This is called to check if a tree of mounts has any
1040  * open files, pwds, chroots or sub mounts that are
1041  * busy.
1042  */
1043 int may_umount_tree(struct vfsmount *m)
1044 {
1045 	struct mount *mnt = real_mount(m);
1046 	int actual_refs = 0;
1047 	int minimum_refs = 0;
1048 	struct mount *p;
1049 	BUG_ON(!m);
1050 
1051 	/* write lock needed for mnt_get_count */
1052 	br_write_lock(&vfsmount_lock);
1053 	for (p = mnt; p; p = next_mnt(p, mnt)) {
1054 		actual_refs += mnt_get_count(p);
1055 		minimum_refs += 2;
1056 	}
1057 	br_write_unlock(&vfsmount_lock);
1058 
1059 	if (actual_refs > minimum_refs)
1060 		return 0;
1061 
1062 	return 1;
1063 }
1064 
1065 EXPORT_SYMBOL(may_umount_tree);
1066 
1067 /**
1068  * may_umount - check if a mount point is busy
1069  * @mnt: root of mount
1070  *
1071  * This is called to check if a mount point has any
1072  * open files, pwds, chroots or sub mounts. If the
1073  * mount has sub mounts this will return busy
1074  * regardless of whether the sub mounts are busy.
1075  *
1076  * Doesn't take quota and stuff into account. IOW, in some cases it will
1077  * give false negatives. The main reason why it's here is that we need
1078  * a non-destructive way to look for easily umountable filesystems.
1079  */
1080 int may_umount(struct vfsmount *mnt)
1081 {
1082 	int ret = 1;
1083 	down_read(&namespace_sem);
1084 	br_write_lock(&vfsmount_lock);
1085 	if (propagate_mount_busy(real_mount(mnt), 2))
1086 		ret = 0;
1087 	br_write_unlock(&vfsmount_lock);
1088 	up_read(&namespace_sem);
1089 	return ret;
1090 }
1091 
1092 EXPORT_SYMBOL(may_umount);
1093 
1094 void release_mounts(struct list_head *head)
1095 {
1096 	struct mount *mnt;
1097 	while (!list_empty(head)) {
1098 		mnt = list_first_entry(head, struct mount, mnt_hash);
1099 		list_del_init(&mnt->mnt_hash);
1100 		if (mnt_has_parent(mnt)) {
1101 			struct dentry *dentry;
1102 			struct mount *m;
1103 
1104 			br_write_lock(&vfsmount_lock);
1105 			dentry = mnt->mnt_mountpoint;
1106 			m = mnt->mnt_parent;
1107 			mnt->mnt_mountpoint = mnt->mnt.mnt_root;
1108 			mnt->mnt_parent = mnt;
1109 			m->mnt_ghosts--;
1110 			br_write_unlock(&vfsmount_lock);
1111 			dput(dentry);
1112 			mntput(&m->mnt);
1113 		}
1114 		mntput(&mnt->mnt);
1115 	}
1116 }
1117 
1118 /*
1119  * vfsmount lock must be held for write
1120  * namespace_sem must be held for write
1121  */
1122 void umount_tree(struct mount *mnt, int propagate, struct list_head *kill)
1123 {
1124 	LIST_HEAD(tmp_list);
1125 	struct mount *p;
1126 
1127 	for (p = mnt; p; p = next_mnt(p, mnt))
1128 		list_move(&p->mnt_hash, &tmp_list);
1129 
1130 	if (propagate)
1131 		propagate_umount(&tmp_list);
1132 
1133 	list_for_each_entry(p, &tmp_list, mnt_hash) {
1134 		list_del_init(&p->mnt_expire);
1135 		list_del_init(&p->mnt_list);
1136 		__touch_mnt_namespace(p->mnt_ns);
1137 		p->mnt_ns = NULL;
1138 		list_del_init(&p->mnt_child);
1139 		if (mnt_has_parent(p)) {
1140 			p->mnt_parent->mnt_ghosts++;
1141 			dentry_reset_mounted(p->mnt_mountpoint);
1142 		}
1143 		change_mnt_propagation(p, MS_PRIVATE);
1144 	}
1145 	list_splice(&tmp_list, kill);
1146 }
1147 
1148 static void shrink_submounts(struct mount *mnt, struct list_head *umounts);
1149 
1150 static int do_umount(struct mount *mnt, int flags)
1151 {
1152 	struct super_block *sb = mnt->mnt.mnt_sb;
1153 	int retval;
1154 	LIST_HEAD(umount_list);
1155 
1156 	retval = security_sb_umount(&mnt->mnt, flags);
1157 	if (retval)
1158 		return retval;
1159 
1160 	/*
1161 	 * Allow userspace to request a mountpoint be expired rather than
1162 	 * unmounting unconditionally. Unmount only happens if:
1163 	 *  (1) the mark is already set (the mark is cleared by mntput())
1164 	 *  (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1165 	 */
1166 	if (flags & MNT_EXPIRE) {
1167 		if (&mnt->mnt == current->fs->root.mnt ||
1168 		    flags & (MNT_FORCE | MNT_DETACH))
1169 			return -EINVAL;
1170 
1171 		/*
1172 		 * probably don't strictly need the lock here if we examined
1173 		 * all race cases, but it's a slowpath.
1174 		 */
1175 		br_write_lock(&vfsmount_lock);
1176 		if (mnt_get_count(mnt) != 2) {
1177 			br_write_unlock(&vfsmount_lock);
1178 			return -EBUSY;
1179 		}
1180 		br_write_unlock(&vfsmount_lock);
1181 
1182 		if (!xchg(&mnt->mnt_expiry_mark, 1))
1183 			return -EAGAIN;
1184 	}
1185 
1186 	/*
1187 	 * If we may have to abort operations to get out of this
1188 	 * mount, and they will themselves hold resources we must
1189 	 * allow the fs to do things. In the Unix tradition of
1190 	 * 'Gee thats tricky lets do it in userspace' the umount_begin
1191 	 * might fail to complete on the first run through as other tasks
1192 	 * must return, and the like. Thats for the mount program to worry
1193 	 * about for the moment.
1194 	 */
1195 
1196 	if (flags & MNT_FORCE && sb->s_op->umount_begin) {
1197 		sb->s_op->umount_begin(sb);
1198 	}
1199 
1200 	/*
1201 	 * No sense to grab the lock for this test, but test itself looks
1202 	 * somewhat bogus. Suggestions for better replacement?
1203 	 * Ho-hum... In principle, we might treat that as umount + switch
1204 	 * to rootfs. GC would eventually take care of the old vfsmount.
1205 	 * Actually it makes sense, especially if rootfs would contain a
1206 	 * /reboot - static binary that would close all descriptors and
1207 	 * call reboot(9). Then init(8) could umount root and exec /reboot.
1208 	 */
1209 	if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1210 		/*
1211 		 * Special case for "unmounting" root ...
1212 		 * we just try to remount it readonly.
1213 		 */
1214 		down_write(&sb->s_umount);
1215 		if (!(sb->s_flags & MS_RDONLY))
1216 			retval = do_remount_sb(sb, MS_RDONLY, NULL, 0);
1217 		up_write(&sb->s_umount);
1218 		return retval;
1219 	}
1220 
1221 	down_write(&namespace_sem);
1222 	br_write_lock(&vfsmount_lock);
1223 	event++;
1224 
1225 	if (!(flags & MNT_DETACH))
1226 		shrink_submounts(mnt, &umount_list);
1227 
1228 	retval = -EBUSY;
1229 	if (flags & MNT_DETACH || !propagate_mount_busy(mnt, 2)) {
1230 		if (!list_empty(&mnt->mnt_list))
1231 			umount_tree(mnt, 1, &umount_list);
1232 		retval = 0;
1233 	}
1234 	br_write_unlock(&vfsmount_lock);
1235 	up_write(&namespace_sem);
1236 	release_mounts(&umount_list);
1237 	return retval;
1238 }
1239 
1240 /*
1241  * Is the caller allowed to modify his namespace?
1242  */
1243 static inline bool may_mount(void)
1244 {
1245 	return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN);
1246 }
1247 
1248 /*
1249  * Now umount can handle mount points as well as block devices.
1250  * This is important for filesystems which use unnamed block devices.
1251  *
1252  * We now support a flag for forced unmount like the other 'big iron'
1253  * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
1254  */
1255 
1256 SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
1257 {
1258 	struct path path;
1259 	struct mount *mnt;
1260 	int retval;
1261 	int lookup_flags = 0;
1262 
1263 	if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
1264 		return -EINVAL;
1265 
1266 	if (!may_mount())
1267 		return -EPERM;
1268 
1269 	if (!(flags & UMOUNT_NOFOLLOW))
1270 		lookup_flags |= LOOKUP_FOLLOW;
1271 
1272 	retval = user_path_at(AT_FDCWD, name, lookup_flags, &path);
1273 	if (retval)
1274 		goto out;
1275 	mnt = real_mount(path.mnt);
1276 	retval = -EINVAL;
1277 	if (path.dentry != path.mnt->mnt_root)
1278 		goto dput_and_out;
1279 	if (!check_mnt(mnt))
1280 		goto dput_and_out;
1281 
1282 	retval = do_umount(mnt, flags);
1283 dput_and_out:
1284 	/* we mustn't call path_put() as that would clear mnt_expiry_mark */
1285 	dput(path.dentry);
1286 	mntput_no_expire(mnt);
1287 out:
1288 	return retval;
1289 }
1290 
1291 #ifdef __ARCH_WANT_SYS_OLDUMOUNT
1292 
1293 /*
1294  *	The 2.0 compatible umount. No flags.
1295  */
1296 SYSCALL_DEFINE1(oldumount, char __user *, name)
1297 {
1298 	return sys_umount(name, 0);
1299 }
1300 
1301 #endif
1302 
1303 static bool mnt_ns_loop(struct path *path)
1304 {
1305 	/* Could bind mounting the mount namespace inode cause a
1306 	 * mount namespace loop?
1307 	 */
1308 	struct inode *inode = path->dentry->d_inode;
1309 	struct proc_inode *ei;
1310 	struct mnt_namespace *mnt_ns;
1311 
1312 	if (!proc_ns_inode(inode))
1313 		return false;
1314 
1315 	ei = PROC_I(inode);
1316 	if (ei->ns_ops != &mntns_operations)
1317 		return false;
1318 
1319 	mnt_ns = ei->ns;
1320 	return current->nsproxy->mnt_ns->seq >= mnt_ns->seq;
1321 }
1322 
1323 struct mount *copy_tree(struct mount *mnt, struct dentry *dentry,
1324 					int flag)
1325 {
1326 	struct mount *res, *p, *q, *r;
1327 	struct path path;
1328 
1329 	if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(mnt))
1330 		return ERR_PTR(-EINVAL);
1331 
1332 	res = q = clone_mnt(mnt, dentry, flag);
1333 	if (IS_ERR(q))
1334 		return q;
1335 
1336 	q->mnt_mountpoint = mnt->mnt_mountpoint;
1337 
1338 	p = mnt;
1339 	list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
1340 		struct mount *s;
1341 		if (!is_subdir(r->mnt_mountpoint, dentry))
1342 			continue;
1343 
1344 		for (s = r; s; s = next_mnt(s, r)) {
1345 			if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(s)) {
1346 				s = skip_mnt_tree(s);
1347 				continue;
1348 			}
1349 			while (p != s->mnt_parent) {
1350 				p = p->mnt_parent;
1351 				q = q->mnt_parent;
1352 			}
1353 			p = s;
1354 			path.mnt = &q->mnt;
1355 			path.dentry = p->mnt_mountpoint;
1356 			q = clone_mnt(p, p->mnt.mnt_root, flag);
1357 			if (IS_ERR(q))
1358 				goto out;
1359 			br_write_lock(&vfsmount_lock);
1360 			list_add_tail(&q->mnt_list, &res->mnt_list);
1361 			attach_mnt(q, &path);
1362 			br_write_unlock(&vfsmount_lock);
1363 		}
1364 	}
1365 	return res;
1366 out:
1367 	if (res) {
1368 		LIST_HEAD(umount_list);
1369 		br_write_lock(&vfsmount_lock);
1370 		umount_tree(res, 0, &umount_list);
1371 		br_write_unlock(&vfsmount_lock);
1372 		release_mounts(&umount_list);
1373 	}
1374 	return q;
1375 }
1376 
1377 /* Caller should check returned pointer for errors */
1378 
1379 struct vfsmount *collect_mounts(struct path *path)
1380 {
1381 	struct mount *tree;
1382 	down_write(&namespace_sem);
1383 	tree = copy_tree(real_mount(path->mnt), path->dentry,
1384 			 CL_COPY_ALL | CL_PRIVATE);
1385 	up_write(&namespace_sem);
1386 	if (IS_ERR(tree))
1387 		return NULL;
1388 	return &tree->mnt;
1389 }
1390 
1391 void drop_collected_mounts(struct vfsmount *mnt)
1392 {
1393 	LIST_HEAD(umount_list);
1394 	down_write(&namespace_sem);
1395 	br_write_lock(&vfsmount_lock);
1396 	umount_tree(real_mount(mnt), 0, &umount_list);
1397 	br_write_unlock(&vfsmount_lock);
1398 	up_write(&namespace_sem);
1399 	release_mounts(&umount_list);
1400 }
1401 
1402 int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
1403 		   struct vfsmount *root)
1404 {
1405 	struct mount *mnt;
1406 	int res = f(root, arg);
1407 	if (res)
1408 		return res;
1409 	list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) {
1410 		res = f(&mnt->mnt, arg);
1411 		if (res)
1412 			return res;
1413 	}
1414 	return 0;
1415 }
1416 
1417 static void cleanup_group_ids(struct mount *mnt, struct mount *end)
1418 {
1419 	struct mount *p;
1420 
1421 	for (p = mnt; p != end; p = next_mnt(p, mnt)) {
1422 		if (p->mnt_group_id && !IS_MNT_SHARED(p))
1423 			mnt_release_group_id(p);
1424 	}
1425 }
1426 
1427 static int invent_group_ids(struct mount *mnt, bool recurse)
1428 {
1429 	struct mount *p;
1430 
1431 	for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
1432 		if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
1433 			int err = mnt_alloc_group_id(p);
1434 			if (err) {
1435 				cleanup_group_ids(mnt, p);
1436 				return err;
1437 			}
1438 		}
1439 	}
1440 
1441 	return 0;
1442 }
1443 
1444 /*
1445  *  @source_mnt : mount tree to be attached
1446  *  @nd         : place the mount tree @source_mnt is attached
1447  *  @parent_nd  : if non-null, detach the source_mnt from its parent and
1448  *  		   store the parent mount and mountpoint dentry.
1449  *  		   (done when source_mnt is moved)
1450  *
1451  *  NOTE: in the table below explains the semantics when a source mount
1452  *  of a given type is attached to a destination mount of a given type.
1453  * ---------------------------------------------------------------------------
1454  * |         BIND MOUNT OPERATION                                            |
1455  * |**************************************************************************
1456  * | source-->| shared        |       private  |       slave    | unbindable |
1457  * | dest     |               |                |                |            |
1458  * |   |      |               |                |                |            |
1459  * |   v      |               |                |                |            |
1460  * |**************************************************************************
1461  * |  shared  | shared (++)   |     shared (+) |     shared(+++)|  invalid   |
1462  * |          |               |                |                |            |
1463  * |non-shared| shared (+)    |      private   |      slave (*) |  invalid   |
1464  * ***************************************************************************
1465  * A bind operation clones the source mount and mounts the clone on the
1466  * destination mount.
1467  *
1468  * (++)  the cloned mount is propagated to all the mounts in the propagation
1469  * 	 tree of the destination mount and the cloned mount is added to
1470  * 	 the peer group of the source mount.
1471  * (+)   the cloned mount is created under the destination mount and is marked
1472  *       as shared. The cloned mount is added to the peer group of the source
1473  *       mount.
1474  * (+++) the mount is propagated to all the mounts in the propagation tree
1475  *       of the destination mount and the cloned mount is made slave
1476  *       of the same master as that of the source mount. The cloned mount
1477  *       is marked as 'shared and slave'.
1478  * (*)   the cloned mount is made a slave of the same master as that of the
1479  * 	 source mount.
1480  *
1481  * ---------------------------------------------------------------------------
1482  * |         		MOVE MOUNT OPERATION                                 |
1483  * |**************************************************************************
1484  * | source-->| shared        |       private  |       slave    | unbindable |
1485  * | dest     |               |                |                |            |
1486  * |   |      |               |                |                |            |
1487  * |   v      |               |                |                |            |
1488  * |**************************************************************************
1489  * |  shared  | shared (+)    |     shared (+) |    shared(+++) |  invalid   |
1490  * |          |               |                |                |            |
1491  * |non-shared| shared (+*)   |      private   |    slave (*)   | unbindable |
1492  * ***************************************************************************
1493  *
1494  * (+)  the mount is moved to the destination. And is then propagated to
1495  * 	all the mounts in the propagation tree of the destination mount.
1496  * (+*)  the mount is moved to the destination.
1497  * (+++)  the mount is moved to the destination and is then propagated to
1498  * 	all the mounts belonging to the destination mount's propagation tree.
1499  * 	the mount is marked as 'shared and slave'.
1500  * (*)	the mount continues to be a slave at the new location.
1501  *
1502  * if the source mount is a tree, the operations explained above is
1503  * applied to each mount in the tree.
1504  * Must be called without spinlocks held, since this function can sleep
1505  * in allocations.
1506  */
1507 static int attach_recursive_mnt(struct mount *source_mnt,
1508 			struct path *path, struct path *parent_path)
1509 {
1510 	LIST_HEAD(tree_list);
1511 	struct mount *dest_mnt = real_mount(path->mnt);
1512 	struct dentry *dest_dentry = path->dentry;
1513 	struct mount *child, *p;
1514 	int err;
1515 
1516 	if (IS_MNT_SHARED(dest_mnt)) {
1517 		err = invent_group_ids(source_mnt, true);
1518 		if (err)
1519 			goto out;
1520 	}
1521 	err = propagate_mnt(dest_mnt, dest_dentry, source_mnt, &tree_list);
1522 	if (err)
1523 		goto out_cleanup_ids;
1524 
1525 	br_write_lock(&vfsmount_lock);
1526 
1527 	if (IS_MNT_SHARED(dest_mnt)) {
1528 		for (p = source_mnt; p; p = next_mnt(p, source_mnt))
1529 			set_mnt_shared(p);
1530 	}
1531 	if (parent_path) {
1532 		detach_mnt(source_mnt, parent_path);
1533 		attach_mnt(source_mnt, path);
1534 		touch_mnt_namespace(source_mnt->mnt_ns);
1535 	} else {
1536 		mnt_set_mountpoint(dest_mnt, dest_dentry, source_mnt);
1537 		commit_tree(source_mnt);
1538 	}
1539 
1540 	list_for_each_entry_safe(child, p, &tree_list, mnt_hash) {
1541 		list_del_init(&child->mnt_hash);
1542 		commit_tree(child);
1543 	}
1544 	br_write_unlock(&vfsmount_lock);
1545 
1546 	return 0;
1547 
1548  out_cleanup_ids:
1549 	if (IS_MNT_SHARED(dest_mnt))
1550 		cleanup_group_ids(source_mnt, NULL);
1551  out:
1552 	return err;
1553 }
1554 
1555 static int lock_mount(struct path *path)
1556 {
1557 	struct vfsmount *mnt;
1558 retry:
1559 	mutex_lock(&path->dentry->d_inode->i_mutex);
1560 	if (unlikely(cant_mount(path->dentry))) {
1561 		mutex_unlock(&path->dentry->d_inode->i_mutex);
1562 		return -ENOENT;
1563 	}
1564 	down_write(&namespace_sem);
1565 	mnt = lookup_mnt(path);
1566 	if (likely(!mnt))
1567 		return 0;
1568 	up_write(&namespace_sem);
1569 	mutex_unlock(&path->dentry->d_inode->i_mutex);
1570 	path_put(path);
1571 	path->mnt = mnt;
1572 	path->dentry = dget(mnt->mnt_root);
1573 	goto retry;
1574 }
1575 
1576 static void unlock_mount(struct path *path)
1577 {
1578 	up_write(&namespace_sem);
1579 	mutex_unlock(&path->dentry->d_inode->i_mutex);
1580 }
1581 
1582 static int graft_tree(struct mount *mnt, struct path *path)
1583 {
1584 	if (mnt->mnt.mnt_sb->s_flags & MS_NOUSER)
1585 		return -EINVAL;
1586 
1587 	if (S_ISDIR(path->dentry->d_inode->i_mode) !=
1588 	      S_ISDIR(mnt->mnt.mnt_root->d_inode->i_mode))
1589 		return -ENOTDIR;
1590 
1591 	if (d_unlinked(path->dentry))
1592 		return -ENOENT;
1593 
1594 	return attach_recursive_mnt(mnt, path, NULL);
1595 }
1596 
1597 /*
1598  * Sanity check the flags to change_mnt_propagation.
1599  */
1600 
1601 static int flags_to_propagation_type(int flags)
1602 {
1603 	int type = flags & ~(MS_REC | MS_SILENT);
1604 
1605 	/* Fail if any non-propagation flags are set */
1606 	if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
1607 		return 0;
1608 	/* Only one propagation flag should be set */
1609 	if (!is_power_of_2(type))
1610 		return 0;
1611 	return type;
1612 }
1613 
1614 /*
1615  * recursively change the type of the mountpoint.
1616  */
1617 static int do_change_type(struct path *path, int flag)
1618 {
1619 	struct mount *m;
1620 	struct mount *mnt = real_mount(path->mnt);
1621 	int recurse = flag & MS_REC;
1622 	int type;
1623 	int err = 0;
1624 
1625 	if (path->dentry != path->mnt->mnt_root)
1626 		return -EINVAL;
1627 
1628 	type = flags_to_propagation_type(flag);
1629 	if (!type)
1630 		return -EINVAL;
1631 
1632 	down_write(&namespace_sem);
1633 	if (type == MS_SHARED) {
1634 		err = invent_group_ids(mnt, recurse);
1635 		if (err)
1636 			goto out_unlock;
1637 	}
1638 
1639 	br_write_lock(&vfsmount_lock);
1640 	for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
1641 		change_mnt_propagation(m, type);
1642 	br_write_unlock(&vfsmount_lock);
1643 
1644  out_unlock:
1645 	up_write(&namespace_sem);
1646 	return err;
1647 }
1648 
1649 /*
1650  * do loopback mount.
1651  */
1652 static int do_loopback(struct path *path, const char *old_name,
1653 				int recurse)
1654 {
1655 	LIST_HEAD(umount_list);
1656 	struct path old_path;
1657 	struct mount *mnt = NULL, *old;
1658 	int err;
1659 	if (!old_name || !*old_name)
1660 		return -EINVAL;
1661 	err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
1662 	if (err)
1663 		return err;
1664 
1665 	err = -EINVAL;
1666 	if (mnt_ns_loop(&old_path))
1667 		goto out;
1668 
1669 	err = lock_mount(path);
1670 	if (err)
1671 		goto out;
1672 
1673 	old = real_mount(old_path.mnt);
1674 
1675 	err = -EINVAL;
1676 	if (IS_MNT_UNBINDABLE(old))
1677 		goto out2;
1678 
1679 	if (!check_mnt(real_mount(path->mnt)) || !check_mnt(old))
1680 		goto out2;
1681 
1682 	if (recurse)
1683 		mnt = copy_tree(old, old_path.dentry, 0);
1684 	else
1685 		mnt = clone_mnt(old, old_path.dentry, 0);
1686 
1687 	if (IS_ERR(mnt)) {
1688 		err = PTR_ERR(mnt);
1689 		goto out;
1690 	}
1691 
1692 	err = graft_tree(mnt, path);
1693 	if (err) {
1694 		br_write_lock(&vfsmount_lock);
1695 		umount_tree(mnt, 0, &umount_list);
1696 		br_write_unlock(&vfsmount_lock);
1697 	}
1698 out2:
1699 	unlock_mount(path);
1700 	release_mounts(&umount_list);
1701 out:
1702 	path_put(&old_path);
1703 	return err;
1704 }
1705 
1706 static int change_mount_flags(struct vfsmount *mnt, int ms_flags)
1707 {
1708 	int error = 0;
1709 	int readonly_request = 0;
1710 
1711 	if (ms_flags & MS_RDONLY)
1712 		readonly_request = 1;
1713 	if (readonly_request == __mnt_is_readonly(mnt))
1714 		return 0;
1715 
1716 	if (readonly_request)
1717 		error = mnt_make_readonly(real_mount(mnt));
1718 	else
1719 		__mnt_unmake_readonly(real_mount(mnt));
1720 	return error;
1721 }
1722 
1723 /*
1724  * change filesystem flags. dir should be a physical root of filesystem.
1725  * If you've mounted a non-root directory somewhere and want to do remount
1726  * on it - tough luck.
1727  */
1728 static int do_remount(struct path *path, int flags, int mnt_flags,
1729 		      void *data)
1730 {
1731 	int err;
1732 	struct super_block *sb = path->mnt->mnt_sb;
1733 	struct mount *mnt = real_mount(path->mnt);
1734 
1735 	if (!check_mnt(mnt))
1736 		return -EINVAL;
1737 
1738 	if (path->dentry != path->mnt->mnt_root)
1739 		return -EINVAL;
1740 
1741 	err = security_sb_remount(sb, data);
1742 	if (err)
1743 		return err;
1744 
1745 	down_write(&sb->s_umount);
1746 	if (flags & MS_BIND)
1747 		err = change_mount_flags(path->mnt, flags);
1748 	else if (!capable(CAP_SYS_ADMIN))
1749 		err = -EPERM;
1750 	else
1751 		err = do_remount_sb(sb, flags, data, 0);
1752 	if (!err) {
1753 		br_write_lock(&vfsmount_lock);
1754 		mnt_flags |= mnt->mnt.mnt_flags & MNT_PROPAGATION_MASK;
1755 		mnt->mnt.mnt_flags = mnt_flags;
1756 		br_write_unlock(&vfsmount_lock);
1757 	}
1758 	up_write(&sb->s_umount);
1759 	if (!err) {
1760 		br_write_lock(&vfsmount_lock);
1761 		touch_mnt_namespace(mnt->mnt_ns);
1762 		br_write_unlock(&vfsmount_lock);
1763 	}
1764 	return err;
1765 }
1766 
1767 static inline int tree_contains_unbindable(struct mount *mnt)
1768 {
1769 	struct mount *p;
1770 	for (p = mnt; p; p = next_mnt(p, mnt)) {
1771 		if (IS_MNT_UNBINDABLE(p))
1772 			return 1;
1773 	}
1774 	return 0;
1775 }
1776 
1777 static int do_move_mount(struct path *path, const char *old_name)
1778 {
1779 	struct path old_path, parent_path;
1780 	struct mount *p;
1781 	struct mount *old;
1782 	int err;
1783 	if (!old_name || !*old_name)
1784 		return -EINVAL;
1785 	err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
1786 	if (err)
1787 		return err;
1788 
1789 	err = lock_mount(path);
1790 	if (err < 0)
1791 		goto out;
1792 
1793 	old = real_mount(old_path.mnt);
1794 	p = real_mount(path->mnt);
1795 
1796 	err = -EINVAL;
1797 	if (!check_mnt(p) || !check_mnt(old))
1798 		goto out1;
1799 
1800 	if (d_unlinked(path->dentry))
1801 		goto out1;
1802 
1803 	err = -EINVAL;
1804 	if (old_path.dentry != old_path.mnt->mnt_root)
1805 		goto out1;
1806 
1807 	if (!mnt_has_parent(old))
1808 		goto out1;
1809 
1810 	if (S_ISDIR(path->dentry->d_inode->i_mode) !=
1811 	      S_ISDIR(old_path.dentry->d_inode->i_mode))
1812 		goto out1;
1813 	/*
1814 	 * Don't move a mount residing in a shared parent.
1815 	 */
1816 	if (IS_MNT_SHARED(old->mnt_parent))
1817 		goto out1;
1818 	/*
1819 	 * Don't move a mount tree containing unbindable mounts to a destination
1820 	 * mount which is shared.
1821 	 */
1822 	if (IS_MNT_SHARED(p) && tree_contains_unbindable(old))
1823 		goto out1;
1824 	err = -ELOOP;
1825 	for (; mnt_has_parent(p); p = p->mnt_parent)
1826 		if (p == old)
1827 			goto out1;
1828 
1829 	err = attach_recursive_mnt(old, path, &parent_path);
1830 	if (err)
1831 		goto out1;
1832 
1833 	/* if the mount is moved, it should no longer be expire
1834 	 * automatically */
1835 	list_del_init(&old->mnt_expire);
1836 out1:
1837 	unlock_mount(path);
1838 out:
1839 	if (!err)
1840 		path_put(&parent_path);
1841 	path_put(&old_path);
1842 	return err;
1843 }
1844 
1845 static struct vfsmount *fs_set_subtype(struct vfsmount *mnt, const char *fstype)
1846 {
1847 	int err;
1848 	const char *subtype = strchr(fstype, '.');
1849 	if (subtype) {
1850 		subtype++;
1851 		err = -EINVAL;
1852 		if (!subtype[0])
1853 			goto err;
1854 	} else
1855 		subtype = "";
1856 
1857 	mnt->mnt_sb->s_subtype = kstrdup(subtype, GFP_KERNEL);
1858 	err = -ENOMEM;
1859 	if (!mnt->mnt_sb->s_subtype)
1860 		goto err;
1861 	return mnt;
1862 
1863  err:
1864 	mntput(mnt);
1865 	return ERR_PTR(err);
1866 }
1867 
1868 /*
1869  * add a mount into a namespace's mount tree
1870  */
1871 static int do_add_mount(struct mount *newmnt, struct path *path, int mnt_flags)
1872 {
1873 	int err;
1874 
1875 	mnt_flags &= ~(MNT_SHARED | MNT_WRITE_HOLD | MNT_INTERNAL);
1876 
1877 	err = lock_mount(path);
1878 	if (err)
1879 		return err;
1880 
1881 	err = -EINVAL;
1882 	if (unlikely(!check_mnt(real_mount(path->mnt)))) {
1883 		/* that's acceptable only for automounts done in private ns */
1884 		if (!(mnt_flags & MNT_SHRINKABLE))
1885 			goto unlock;
1886 		/* ... and for those we'd better have mountpoint still alive */
1887 		if (!real_mount(path->mnt)->mnt_ns)
1888 			goto unlock;
1889 	}
1890 
1891 	/* Refuse the same filesystem on the same mount point */
1892 	err = -EBUSY;
1893 	if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb &&
1894 	    path->mnt->mnt_root == path->dentry)
1895 		goto unlock;
1896 
1897 	err = -EINVAL;
1898 	if (S_ISLNK(newmnt->mnt.mnt_root->d_inode->i_mode))
1899 		goto unlock;
1900 
1901 	newmnt->mnt.mnt_flags = mnt_flags;
1902 	err = graft_tree(newmnt, path);
1903 
1904 unlock:
1905 	unlock_mount(path);
1906 	return err;
1907 }
1908 
1909 /*
1910  * create a new mount for userspace and request it to be added into the
1911  * namespace's tree
1912  */
1913 static int do_new_mount(struct path *path, const char *fstype, int flags,
1914 			int mnt_flags, const char *name, void *data)
1915 {
1916 	struct file_system_type *type;
1917 	struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns;
1918 	struct vfsmount *mnt;
1919 	int err;
1920 
1921 	if (!fstype)
1922 		return -EINVAL;
1923 
1924 	type = get_fs_type(fstype);
1925 	if (!type)
1926 		return -ENODEV;
1927 
1928 	if (user_ns != &init_user_ns) {
1929 		if (!(type->fs_flags & FS_USERNS_MOUNT)) {
1930 			put_filesystem(type);
1931 			return -EPERM;
1932 		}
1933 		/* Only in special cases allow devices from mounts
1934 		 * created outside the initial user namespace.
1935 		 */
1936 		if (!(type->fs_flags & FS_USERNS_DEV_MOUNT)) {
1937 			flags |= MS_NODEV;
1938 			mnt_flags |= MNT_NODEV;
1939 		}
1940 	}
1941 
1942 	mnt = vfs_kern_mount(type, flags, name, data);
1943 	if (!IS_ERR(mnt) && (type->fs_flags & FS_HAS_SUBTYPE) &&
1944 	    !mnt->mnt_sb->s_subtype)
1945 		mnt = fs_set_subtype(mnt, fstype);
1946 
1947 	put_filesystem(type);
1948 	if (IS_ERR(mnt))
1949 		return PTR_ERR(mnt);
1950 
1951 	err = do_add_mount(real_mount(mnt), path, mnt_flags);
1952 	if (err)
1953 		mntput(mnt);
1954 	return err;
1955 }
1956 
1957 int finish_automount(struct vfsmount *m, struct path *path)
1958 {
1959 	struct mount *mnt = real_mount(m);
1960 	int err;
1961 	/* The new mount record should have at least 2 refs to prevent it being
1962 	 * expired before we get a chance to add it
1963 	 */
1964 	BUG_ON(mnt_get_count(mnt) < 2);
1965 
1966 	if (m->mnt_sb == path->mnt->mnt_sb &&
1967 	    m->mnt_root == path->dentry) {
1968 		err = -ELOOP;
1969 		goto fail;
1970 	}
1971 
1972 	err = do_add_mount(mnt, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
1973 	if (!err)
1974 		return 0;
1975 fail:
1976 	/* remove m from any expiration list it may be on */
1977 	if (!list_empty(&mnt->mnt_expire)) {
1978 		down_write(&namespace_sem);
1979 		br_write_lock(&vfsmount_lock);
1980 		list_del_init(&mnt->mnt_expire);
1981 		br_write_unlock(&vfsmount_lock);
1982 		up_write(&namespace_sem);
1983 	}
1984 	mntput(m);
1985 	mntput(m);
1986 	return err;
1987 }
1988 
1989 /**
1990  * mnt_set_expiry - Put a mount on an expiration list
1991  * @mnt: The mount to list.
1992  * @expiry_list: The list to add the mount to.
1993  */
1994 void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
1995 {
1996 	down_write(&namespace_sem);
1997 	br_write_lock(&vfsmount_lock);
1998 
1999 	list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
2000 
2001 	br_write_unlock(&vfsmount_lock);
2002 	up_write(&namespace_sem);
2003 }
2004 EXPORT_SYMBOL(mnt_set_expiry);
2005 
2006 /*
2007  * process a list of expirable mountpoints with the intent of discarding any
2008  * mountpoints that aren't in use and haven't been touched since last we came
2009  * here
2010  */
2011 void mark_mounts_for_expiry(struct list_head *mounts)
2012 {
2013 	struct mount *mnt, *next;
2014 	LIST_HEAD(graveyard);
2015 	LIST_HEAD(umounts);
2016 
2017 	if (list_empty(mounts))
2018 		return;
2019 
2020 	down_write(&namespace_sem);
2021 	br_write_lock(&vfsmount_lock);
2022 
2023 	/* extract from the expiration list every vfsmount that matches the
2024 	 * following criteria:
2025 	 * - only referenced by its parent vfsmount
2026 	 * - still marked for expiry (marked on the last call here; marks are
2027 	 *   cleared by mntput())
2028 	 */
2029 	list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
2030 		if (!xchg(&mnt->mnt_expiry_mark, 1) ||
2031 			propagate_mount_busy(mnt, 1))
2032 			continue;
2033 		list_move(&mnt->mnt_expire, &graveyard);
2034 	}
2035 	while (!list_empty(&graveyard)) {
2036 		mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
2037 		touch_mnt_namespace(mnt->mnt_ns);
2038 		umount_tree(mnt, 1, &umounts);
2039 	}
2040 	br_write_unlock(&vfsmount_lock);
2041 	up_write(&namespace_sem);
2042 
2043 	release_mounts(&umounts);
2044 }
2045 
2046 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
2047 
2048 /*
2049  * Ripoff of 'select_parent()'
2050  *
2051  * search the list of submounts for a given mountpoint, and move any
2052  * shrinkable submounts to the 'graveyard' list.
2053  */
2054 static int select_submounts(struct mount *parent, struct list_head *graveyard)
2055 {
2056 	struct mount *this_parent = parent;
2057 	struct list_head *next;
2058 	int found = 0;
2059 
2060 repeat:
2061 	next = this_parent->mnt_mounts.next;
2062 resume:
2063 	while (next != &this_parent->mnt_mounts) {
2064 		struct list_head *tmp = next;
2065 		struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
2066 
2067 		next = tmp->next;
2068 		if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
2069 			continue;
2070 		/*
2071 		 * Descend a level if the d_mounts list is non-empty.
2072 		 */
2073 		if (!list_empty(&mnt->mnt_mounts)) {
2074 			this_parent = mnt;
2075 			goto repeat;
2076 		}
2077 
2078 		if (!propagate_mount_busy(mnt, 1)) {
2079 			list_move_tail(&mnt->mnt_expire, graveyard);
2080 			found++;
2081 		}
2082 	}
2083 	/*
2084 	 * All done at this level ... ascend and resume the search
2085 	 */
2086 	if (this_parent != parent) {
2087 		next = this_parent->mnt_child.next;
2088 		this_parent = this_parent->mnt_parent;
2089 		goto resume;
2090 	}
2091 	return found;
2092 }
2093 
2094 /*
2095  * process a list of expirable mountpoints with the intent of discarding any
2096  * submounts of a specific parent mountpoint
2097  *
2098  * vfsmount_lock must be held for write
2099  */
2100 static void shrink_submounts(struct mount *mnt, struct list_head *umounts)
2101 {
2102 	LIST_HEAD(graveyard);
2103 	struct mount *m;
2104 
2105 	/* extract submounts of 'mountpoint' from the expiration list */
2106 	while (select_submounts(mnt, &graveyard)) {
2107 		while (!list_empty(&graveyard)) {
2108 			m = list_first_entry(&graveyard, struct mount,
2109 						mnt_expire);
2110 			touch_mnt_namespace(m->mnt_ns);
2111 			umount_tree(m, 1, umounts);
2112 		}
2113 	}
2114 }
2115 
2116 /*
2117  * Some copy_from_user() implementations do not return the exact number of
2118  * bytes remaining to copy on a fault.  But copy_mount_options() requires that.
2119  * Note that this function differs from copy_from_user() in that it will oops
2120  * on bad values of `to', rather than returning a short copy.
2121  */
2122 static long exact_copy_from_user(void *to, const void __user * from,
2123 				 unsigned long n)
2124 {
2125 	char *t = to;
2126 	const char __user *f = from;
2127 	char c;
2128 
2129 	if (!access_ok(VERIFY_READ, from, n))
2130 		return n;
2131 
2132 	while (n) {
2133 		if (__get_user(c, f)) {
2134 			memset(t, 0, n);
2135 			break;
2136 		}
2137 		*t++ = c;
2138 		f++;
2139 		n--;
2140 	}
2141 	return n;
2142 }
2143 
2144 int copy_mount_options(const void __user * data, unsigned long *where)
2145 {
2146 	int i;
2147 	unsigned long page;
2148 	unsigned long size;
2149 
2150 	*where = 0;
2151 	if (!data)
2152 		return 0;
2153 
2154 	if (!(page = __get_free_page(GFP_KERNEL)))
2155 		return -ENOMEM;
2156 
2157 	/* We only care that *some* data at the address the user
2158 	 * gave us is valid.  Just in case, we'll zero
2159 	 * the remainder of the page.
2160 	 */
2161 	/* copy_from_user cannot cross TASK_SIZE ! */
2162 	size = TASK_SIZE - (unsigned long)data;
2163 	if (size > PAGE_SIZE)
2164 		size = PAGE_SIZE;
2165 
2166 	i = size - exact_copy_from_user((void *)page, data, size);
2167 	if (!i) {
2168 		free_page(page);
2169 		return -EFAULT;
2170 	}
2171 	if (i != PAGE_SIZE)
2172 		memset((char *)page + i, 0, PAGE_SIZE - i);
2173 	*where = page;
2174 	return 0;
2175 }
2176 
2177 int copy_mount_string(const void __user *data, char **where)
2178 {
2179 	char *tmp;
2180 
2181 	if (!data) {
2182 		*where = NULL;
2183 		return 0;
2184 	}
2185 
2186 	tmp = strndup_user(data, PAGE_SIZE);
2187 	if (IS_ERR(tmp))
2188 		return PTR_ERR(tmp);
2189 
2190 	*where = tmp;
2191 	return 0;
2192 }
2193 
2194 /*
2195  * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
2196  * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
2197  *
2198  * data is a (void *) that can point to any structure up to
2199  * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
2200  * information (or be NULL).
2201  *
2202  * Pre-0.97 versions of mount() didn't have a flags word.
2203  * When the flags word was introduced its top half was required
2204  * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
2205  * Therefore, if this magic number is present, it carries no information
2206  * and must be discarded.
2207  */
2208 long do_mount(const char *dev_name, const char *dir_name,
2209 		const char *type_page, unsigned long flags, void *data_page)
2210 {
2211 	struct path path;
2212 	int retval = 0;
2213 	int mnt_flags = 0;
2214 
2215 	/* Discard magic */
2216 	if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
2217 		flags &= ~MS_MGC_MSK;
2218 
2219 	/* Basic sanity checks */
2220 
2221 	if (!dir_name || !*dir_name || !memchr(dir_name, 0, PAGE_SIZE))
2222 		return -EINVAL;
2223 
2224 	if (data_page)
2225 		((char *)data_page)[PAGE_SIZE - 1] = 0;
2226 
2227 	/* ... and get the mountpoint */
2228 	retval = kern_path(dir_name, LOOKUP_FOLLOW, &path);
2229 	if (retval)
2230 		return retval;
2231 
2232 	retval = security_sb_mount(dev_name, &path,
2233 				   type_page, flags, data_page);
2234 	if (retval)
2235 		goto dput_out;
2236 
2237 	if (!may_mount())
2238 		return -EPERM;
2239 
2240 	/* Default to relatime unless overriden */
2241 	if (!(flags & MS_NOATIME))
2242 		mnt_flags |= MNT_RELATIME;
2243 
2244 	/* Separate the per-mountpoint flags */
2245 	if (flags & MS_NOSUID)
2246 		mnt_flags |= MNT_NOSUID;
2247 	if (flags & MS_NODEV)
2248 		mnt_flags |= MNT_NODEV;
2249 	if (flags & MS_NOEXEC)
2250 		mnt_flags |= MNT_NOEXEC;
2251 	if (flags & MS_NOATIME)
2252 		mnt_flags |= MNT_NOATIME;
2253 	if (flags & MS_NODIRATIME)
2254 		mnt_flags |= MNT_NODIRATIME;
2255 	if (flags & MS_STRICTATIME)
2256 		mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
2257 	if (flags & MS_RDONLY)
2258 		mnt_flags |= MNT_READONLY;
2259 
2260 	flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE | MS_BORN |
2261 		   MS_NOATIME | MS_NODIRATIME | MS_RELATIME| MS_KERNMOUNT |
2262 		   MS_STRICTATIME);
2263 
2264 	if (flags & MS_REMOUNT)
2265 		retval = do_remount(&path, flags & ~MS_REMOUNT, mnt_flags,
2266 				    data_page);
2267 	else if (flags & MS_BIND)
2268 		retval = do_loopback(&path, dev_name, flags & MS_REC);
2269 	else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2270 		retval = do_change_type(&path, flags);
2271 	else if (flags & MS_MOVE)
2272 		retval = do_move_mount(&path, dev_name);
2273 	else
2274 		retval = do_new_mount(&path, type_page, flags, mnt_flags,
2275 				      dev_name, data_page);
2276 dput_out:
2277 	path_put(&path);
2278 	return retval;
2279 }
2280 
2281 static void free_mnt_ns(struct mnt_namespace *ns)
2282 {
2283 	proc_free_inum(ns->proc_inum);
2284 	put_user_ns(ns->user_ns);
2285 	kfree(ns);
2286 }
2287 
2288 /*
2289  * Assign a sequence number so we can detect when we attempt to bind
2290  * mount a reference to an older mount namespace into the current
2291  * mount namespace, preventing reference counting loops.  A 64bit
2292  * number incrementing at 10Ghz will take 12,427 years to wrap which
2293  * is effectively never, so we can ignore the possibility.
2294  */
2295 static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1);
2296 
2297 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns)
2298 {
2299 	struct mnt_namespace *new_ns;
2300 	int ret;
2301 
2302 	new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
2303 	if (!new_ns)
2304 		return ERR_PTR(-ENOMEM);
2305 	ret = proc_alloc_inum(&new_ns->proc_inum);
2306 	if (ret) {
2307 		kfree(new_ns);
2308 		return ERR_PTR(ret);
2309 	}
2310 	new_ns->seq = atomic64_add_return(1, &mnt_ns_seq);
2311 	atomic_set(&new_ns->count, 1);
2312 	new_ns->root = NULL;
2313 	INIT_LIST_HEAD(&new_ns->list);
2314 	init_waitqueue_head(&new_ns->poll);
2315 	new_ns->event = 0;
2316 	new_ns->user_ns = get_user_ns(user_ns);
2317 	return new_ns;
2318 }
2319 
2320 /*
2321  * Allocate a new namespace structure and populate it with contents
2322  * copied from the namespace of the passed in task structure.
2323  */
2324 static struct mnt_namespace *dup_mnt_ns(struct mnt_namespace *mnt_ns,
2325 		struct user_namespace *user_ns, struct fs_struct *fs)
2326 {
2327 	struct mnt_namespace *new_ns;
2328 	struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
2329 	struct mount *p, *q;
2330 	struct mount *old = mnt_ns->root;
2331 	struct mount *new;
2332 	int copy_flags;
2333 
2334 	new_ns = alloc_mnt_ns(user_ns);
2335 	if (IS_ERR(new_ns))
2336 		return new_ns;
2337 
2338 	down_write(&namespace_sem);
2339 	/* First pass: copy the tree topology */
2340 	copy_flags = CL_COPY_ALL | CL_EXPIRE;
2341 	if (user_ns != mnt_ns->user_ns)
2342 		copy_flags |= CL_SHARED_TO_SLAVE;
2343 	new = copy_tree(old, old->mnt.mnt_root, copy_flags);
2344 	if (IS_ERR(new)) {
2345 		up_write(&namespace_sem);
2346 		free_mnt_ns(new_ns);
2347 		return ERR_CAST(new);
2348 	}
2349 	new_ns->root = new;
2350 	br_write_lock(&vfsmount_lock);
2351 	list_add_tail(&new_ns->list, &new->mnt_list);
2352 	br_write_unlock(&vfsmount_lock);
2353 
2354 	/*
2355 	 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
2356 	 * as belonging to new namespace.  We have already acquired a private
2357 	 * fs_struct, so tsk->fs->lock is not needed.
2358 	 */
2359 	p = old;
2360 	q = new;
2361 	while (p) {
2362 		q->mnt_ns = new_ns;
2363 		if (fs) {
2364 			if (&p->mnt == fs->root.mnt) {
2365 				fs->root.mnt = mntget(&q->mnt);
2366 				rootmnt = &p->mnt;
2367 			}
2368 			if (&p->mnt == fs->pwd.mnt) {
2369 				fs->pwd.mnt = mntget(&q->mnt);
2370 				pwdmnt = &p->mnt;
2371 			}
2372 		}
2373 		p = next_mnt(p, old);
2374 		q = next_mnt(q, new);
2375 	}
2376 	up_write(&namespace_sem);
2377 
2378 	if (rootmnt)
2379 		mntput(rootmnt);
2380 	if (pwdmnt)
2381 		mntput(pwdmnt);
2382 
2383 	return new_ns;
2384 }
2385 
2386 struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
2387 		struct user_namespace *user_ns, struct fs_struct *new_fs)
2388 {
2389 	struct mnt_namespace *new_ns;
2390 
2391 	BUG_ON(!ns);
2392 	get_mnt_ns(ns);
2393 
2394 	if (!(flags & CLONE_NEWNS))
2395 		return ns;
2396 
2397 	new_ns = dup_mnt_ns(ns, user_ns, new_fs);
2398 
2399 	put_mnt_ns(ns);
2400 	return new_ns;
2401 }
2402 
2403 /**
2404  * create_mnt_ns - creates a private namespace and adds a root filesystem
2405  * @mnt: pointer to the new root filesystem mountpoint
2406  */
2407 static struct mnt_namespace *create_mnt_ns(struct vfsmount *m)
2408 {
2409 	struct mnt_namespace *new_ns = alloc_mnt_ns(&init_user_ns);
2410 	if (!IS_ERR(new_ns)) {
2411 		struct mount *mnt = real_mount(m);
2412 		mnt->mnt_ns = new_ns;
2413 		new_ns->root = mnt;
2414 		list_add(&new_ns->list, &mnt->mnt_list);
2415 	} else {
2416 		mntput(m);
2417 	}
2418 	return new_ns;
2419 }
2420 
2421 struct dentry *mount_subtree(struct vfsmount *mnt, const char *name)
2422 {
2423 	struct mnt_namespace *ns;
2424 	struct super_block *s;
2425 	struct path path;
2426 	int err;
2427 
2428 	ns = create_mnt_ns(mnt);
2429 	if (IS_ERR(ns))
2430 		return ERR_CAST(ns);
2431 
2432 	err = vfs_path_lookup(mnt->mnt_root, mnt,
2433 			name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
2434 
2435 	put_mnt_ns(ns);
2436 
2437 	if (err)
2438 		return ERR_PTR(err);
2439 
2440 	/* trade a vfsmount reference for active sb one */
2441 	s = path.mnt->mnt_sb;
2442 	atomic_inc(&s->s_active);
2443 	mntput(path.mnt);
2444 	/* lock the sucker */
2445 	down_write(&s->s_umount);
2446 	/* ... and return the root of (sub)tree on it */
2447 	return path.dentry;
2448 }
2449 EXPORT_SYMBOL(mount_subtree);
2450 
2451 SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
2452 		char __user *, type, unsigned long, flags, void __user *, data)
2453 {
2454 	int ret;
2455 	char *kernel_type;
2456 	struct filename *kernel_dir;
2457 	char *kernel_dev;
2458 	unsigned long data_page;
2459 
2460 	ret = copy_mount_string(type, &kernel_type);
2461 	if (ret < 0)
2462 		goto out_type;
2463 
2464 	kernel_dir = getname(dir_name);
2465 	if (IS_ERR(kernel_dir)) {
2466 		ret = PTR_ERR(kernel_dir);
2467 		goto out_dir;
2468 	}
2469 
2470 	ret = copy_mount_string(dev_name, &kernel_dev);
2471 	if (ret < 0)
2472 		goto out_dev;
2473 
2474 	ret = copy_mount_options(data, &data_page);
2475 	if (ret < 0)
2476 		goto out_data;
2477 
2478 	ret = do_mount(kernel_dev, kernel_dir->name, kernel_type, flags,
2479 		(void *) data_page);
2480 
2481 	free_page(data_page);
2482 out_data:
2483 	kfree(kernel_dev);
2484 out_dev:
2485 	putname(kernel_dir);
2486 out_dir:
2487 	kfree(kernel_type);
2488 out_type:
2489 	return ret;
2490 }
2491 
2492 /*
2493  * Return true if path is reachable from root
2494  *
2495  * namespace_sem or vfsmount_lock is held
2496  */
2497 bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
2498 			 const struct path *root)
2499 {
2500 	while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
2501 		dentry = mnt->mnt_mountpoint;
2502 		mnt = mnt->mnt_parent;
2503 	}
2504 	return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
2505 }
2506 
2507 int path_is_under(struct path *path1, struct path *path2)
2508 {
2509 	int res;
2510 	br_read_lock(&vfsmount_lock);
2511 	res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
2512 	br_read_unlock(&vfsmount_lock);
2513 	return res;
2514 }
2515 EXPORT_SYMBOL(path_is_under);
2516 
2517 /*
2518  * pivot_root Semantics:
2519  * Moves the root file system of the current process to the directory put_old,
2520  * makes new_root as the new root file system of the current process, and sets
2521  * root/cwd of all processes which had them on the current root to new_root.
2522  *
2523  * Restrictions:
2524  * The new_root and put_old must be directories, and  must not be on the
2525  * same file  system as the current process root. The put_old  must  be
2526  * underneath new_root,  i.e. adding a non-zero number of /.. to the string
2527  * pointed to by put_old must yield the same directory as new_root. No other
2528  * file system may be mounted on put_old. After all, new_root is a mountpoint.
2529  *
2530  * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
2531  * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
2532  * in this situation.
2533  *
2534  * Notes:
2535  *  - we don't move root/cwd if they are not at the root (reason: if something
2536  *    cared enough to change them, it's probably wrong to force them elsewhere)
2537  *  - it's okay to pick a root that isn't the root of a file system, e.g.
2538  *    /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
2539  *    though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
2540  *    first.
2541  */
2542 SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
2543 		const char __user *, put_old)
2544 {
2545 	struct path new, old, parent_path, root_parent, root;
2546 	struct mount *new_mnt, *root_mnt;
2547 	int error;
2548 
2549 	if (!may_mount())
2550 		return -EPERM;
2551 
2552 	error = user_path_dir(new_root, &new);
2553 	if (error)
2554 		goto out0;
2555 
2556 	error = user_path_dir(put_old, &old);
2557 	if (error)
2558 		goto out1;
2559 
2560 	error = security_sb_pivotroot(&old, &new);
2561 	if (error)
2562 		goto out2;
2563 
2564 	get_fs_root(current->fs, &root);
2565 	error = lock_mount(&old);
2566 	if (error)
2567 		goto out3;
2568 
2569 	error = -EINVAL;
2570 	new_mnt = real_mount(new.mnt);
2571 	root_mnt = real_mount(root.mnt);
2572 	if (IS_MNT_SHARED(real_mount(old.mnt)) ||
2573 		IS_MNT_SHARED(new_mnt->mnt_parent) ||
2574 		IS_MNT_SHARED(root_mnt->mnt_parent))
2575 		goto out4;
2576 	if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
2577 		goto out4;
2578 	error = -ENOENT;
2579 	if (d_unlinked(new.dentry))
2580 		goto out4;
2581 	if (d_unlinked(old.dentry))
2582 		goto out4;
2583 	error = -EBUSY;
2584 	if (new.mnt == root.mnt ||
2585 	    old.mnt == root.mnt)
2586 		goto out4; /* loop, on the same file system  */
2587 	error = -EINVAL;
2588 	if (root.mnt->mnt_root != root.dentry)
2589 		goto out4; /* not a mountpoint */
2590 	if (!mnt_has_parent(root_mnt))
2591 		goto out4; /* not attached */
2592 	if (new.mnt->mnt_root != new.dentry)
2593 		goto out4; /* not a mountpoint */
2594 	if (!mnt_has_parent(new_mnt))
2595 		goto out4; /* not attached */
2596 	/* make sure we can reach put_old from new_root */
2597 	if (!is_path_reachable(real_mount(old.mnt), old.dentry, &new))
2598 		goto out4;
2599 	br_write_lock(&vfsmount_lock);
2600 	detach_mnt(new_mnt, &parent_path);
2601 	detach_mnt(root_mnt, &root_parent);
2602 	/* mount old root on put_old */
2603 	attach_mnt(root_mnt, &old);
2604 	/* mount new_root on / */
2605 	attach_mnt(new_mnt, &root_parent);
2606 	touch_mnt_namespace(current->nsproxy->mnt_ns);
2607 	br_write_unlock(&vfsmount_lock);
2608 	chroot_fs_refs(&root, &new);
2609 	error = 0;
2610 out4:
2611 	unlock_mount(&old);
2612 	if (!error) {
2613 		path_put(&root_parent);
2614 		path_put(&parent_path);
2615 	}
2616 out3:
2617 	path_put(&root);
2618 out2:
2619 	path_put(&old);
2620 out1:
2621 	path_put(&new);
2622 out0:
2623 	return error;
2624 }
2625 
2626 static void __init init_mount_tree(void)
2627 {
2628 	struct vfsmount *mnt;
2629 	struct mnt_namespace *ns;
2630 	struct path root;
2631 	struct file_system_type *type;
2632 
2633 	type = get_fs_type("rootfs");
2634 	if (!type)
2635 		panic("Can't find rootfs type");
2636 	mnt = vfs_kern_mount(type, 0, "rootfs", NULL);
2637 	put_filesystem(type);
2638 	if (IS_ERR(mnt))
2639 		panic("Can't create rootfs");
2640 
2641 	ns = create_mnt_ns(mnt);
2642 	if (IS_ERR(ns))
2643 		panic("Can't allocate initial namespace");
2644 
2645 	init_task.nsproxy->mnt_ns = ns;
2646 	get_mnt_ns(ns);
2647 
2648 	root.mnt = mnt;
2649 	root.dentry = mnt->mnt_root;
2650 
2651 	set_fs_pwd(current->fs, &root);
2652 	set_fs_root(current->fs, &root);
2653 }
2654 
2655 void __init mnt_init(void)
2656 {
2657 	unsigned u;
2658 	int err;
2659 
2660 	init_rwsem(&namespace_sem);
2661 
2662 	mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
2663 			0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
2664 
2665 	mount_hashtable = (struct list_head *)__get_free_page(GFP_ATOMIC);
2666 
2667 	if (!mount_hashtable)
2668 		panic("Failed to allocate mount hash table\n");
2669 
2670 	printk(KERN_INFO "Mount-cache hash table entries: %lu\n", HASH_SIZE);
2671 
2672 	for (u = 0; u < HASH_SIZE; u++)
2673 		INIT_LIST_HEAD(&mount_hashtable[u]);
2674 
2675 	br_lock_init(&vfsmount_lock);
2676 
2677 	err = sysfs_init();
2678 	if (err)
2679 		printk(KERN_WARNING "%s: sysfs_init error: %d\n",
2680 			__func__, err);
2681 	fs_kobj = kobject_create_and_add("fs", NULL);
2682 	if (!fs_kobj)
2683 		printk(KERN_WARNING "%s: kobj create error\n", __func__);
2684 	init_rootfs();
2685 	init_mount_tree();
2686 }
2687 
2688 void put_mnt_ns(struct mnt_namespace *ns)
2689 {
2690 	LIST_HEAD(umount_list);
2691 
2692 	if (!atomic_dec_and_test(&ns->count))
2693 		return;
2694 	down_write(&namespace_sem);
2695 	br_write_lock(&vfsmount_lock);
2696 	umount_tree(ns->root, 0, &umount_list);
2697 	br_write_unlock(&vfsmount_lock);
2698 	up_write(&namespace_sem);
2699 	release_mounts(&umount_list);
2700 	free_mnt_ns(ns);
2701 }
2702 
2703 struct vfsmount *kern_mount_data(struct file_system_type *type, void *data)
2704 {
2705 	struct vfsmount *mnt;
2706 	mnt = vfs_kern_mount(type, MS_KERNMOUNT, type->name, data);
2707 	if (!IS_ERR(mnt)) {
2708 		/*
2709 		 * it is a longterm mount, don't release mnt until
2710 		 * we unmount before file sys is unregistered
2711 		*/
2712 		real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
2713 	}
2714 	return mnt;
2715 }
2716 EXPORT_SYMBOL_GPL(kern_mount_data);
2717 
2718 void kern_unmount(struct vfsmount *mnt)
2719 {
2720 	/* release long term mount so mount point can be released */
2721 	if (!IS_ERR_OR_NULL(mnt)) {
2722 		br_write_lock(&vfsmount_lock);
2723 		real_mount(mnt)->mnt_ns = NULL;
2724 		br_write_unlock(&vfsmount_lock);
2725 		mntput(mnt);
2726 	}
2727 }
2728 EXPORT_SYMBOL(kern_unmount);
2729 
2730 bool our_mnt(struct vfsmount *mnt)
2731 {
2732 	return check_mnt(real_mount(mnt));
2733 }
2734 
2735 static void *mntns_get(struct task_struct *task)
2736 {
2737 	struct mnt_namespace *ns = NULL;
2738 	struct nsproxy *nsproxy;
2739 
2740 	rcu_read_lock();
2741 	nsproxy = task_nsproxy(task);
2742 	if (nsproxy) {
2743 		ns = nsproxy->mnt_ns;
2744 		get_mnt_ns(ns);
2745 	}
2746 	rcu_read_unlock();
2747 
2748 	return ns;
2749 }
2750 
2751 static void mntns_put(void *ns)
2752 {
2753 	put_mnt_ns(ns);
2754 }
2755 
2756 static int mntns_install(struct nsproxy *nsproxy, void *ns)
2757 {
2758 	struct fs_struct *fs = current->fs;
2759 	struct mnt_namespace *mnt_ns = ns;
2760 	struct path root;
2761 
2762 	if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) ||
2763 	    !nsown_capable(CAP_SYS_CHROOT) ||
2764 	    !nsown_capable(CAP_SYS_ADMIN))
2765 		return -EPERM;
2766 
2767 	if (fs->users != 1)
2768 		return -EINVAL;
2769 
2770 	get_mnt_ns(mnt_ns);
2771 	put_mnt_ns(nsproxy->mnt_ns);
2772 	nsproxy->mnt_ns = mnt_ns;
2773 
2774 	/* Find the root */
2775 	root.mnt    = &mnt_ns->root->mnt;
2776 	root.dentry = mnt_ns->root->mnt.mnt_root;
2777 	path_get(&root);
2778 	while(d_mountpoint(root.dentry) && follow_down_one(&root))
2779 		;
2780 
2781 	/* Update the pwd and root */
2782 	set_fs_pwd(fs, &root);
2783 	set_fs_root(fs, &root);
2784 
2785 	path_put(&root);
2786 	return 0;
2787 }
2788 
2789 static unsigned int mntns_inum(void *ns)
2790 {
2791 	struct mnt_namespace *mnt_ns = ns;
2792 	return mnt_ns->proc_inum;
2793 }
2794 
2795 const struct proc_ns_operations mntns_operations = {
2796 	.name		= "mnt",
2797 	.type		= CLONE_NEWNS,
2798 	.get		= mntns_get,
2799 	.put		= mntns_put,
2800 	.install	= mntns_install,
2801 	.inum		= mntns_inum,
2802 };
2803