1 /* 2 * linux/fs/namespace.c 3 * 4 * (C) Copyright Al Viro 2000, 2001 5 * Released under GPL v2. 6 * 7 * Based on code from fs/super.c, copyright Linus Torvalds and others. 8 * Heavily rewritten. 9 */ 10 11 #include <linux/syscalls.h> 12 #include <linux/export.h> 13 #include <linux/capability.h> 14 #include <linux/mnt_namespace.h> 15 #include <linux/user_namespace.h> 16 #include <linux/namei.h> 17 #include <linux/security.h> 18 #include <linux/idr.h> 19 #include <linux/acct.h> /* acct_auto_close_mnt */ 20 #include <linux/ramfs.h> /* init_rootfs */ 21 #include <linux/fs_struct.h> /* get_fs_root et.al. */ 22 #include <linux/fsnotify.h> /* fsnotify_vfsmount_delete */ 23 #include <linux/uaccess.h> 24 #include <linux/proc_fs.h> 25 #include "pnode.h" 26 #include "internal.h" 27 28 #define HASH_SHIFT ilog2(PAGE_SIZE / sizeof(struct list_head)) 29 #define HASH_SIZE (1UL << HASH_SHIFT) 30 31 static int event; 32 static DEFINE_IDA(mnt_id_ida); 33 static DEFINE_IDA(mnt_group_ida); 34 static DEFINE_SPINLOCK(mnt_id_lock); 35 static int mnt_id_start = 0; 36 static int mnt_group_start = 1; 37 38 static struct list_head *mount_hashtable __read_mostly; 39 static struct kmem_cache *mnt_cache __read_mostly; 40 static struct rw_semaphore namespace_sem; 41 42 /* /sys/fs */ 43 struct kobject *fs_kobj; 44 EXPORT_SYMBOL_GPL(fs_kobj); 45 46 /* 47 * vfsmount lock may be taken for read to prevent changes to the 48 * vfsmount hash, ie. during mountpoint lookups or walking back 49 * up the tree. 50 * 51 * It should be taken for write in all cases where the vfsmount 52 * tree or hash is modified or when a vfsmount structure is modified. 53 */ 54 DEFINE_BRLOCK(vfsmount_lock); 55 56 static inline unsigned long hash(struct vfsmount *mnt, struct dentry *dentry) 57 { 58 unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES); 59 tmp += ((unsigned long)dentry / L1_CACHE_BYTES); 60 tmp = tmp + (tmp >> HASH_SHIFT); 61 return tmp & (HASH_SIZE - 1); 62 } 63 64 #define MNT_WRITER_UNDERFLOW_LIMIT -(1<<16) 65 66 /* 67 * allocation is serialized by namespace_sem, but we need the spinlock to 68 * serialize with freeing. 69 */ 70 static int mnt_alloc_id(struct mount *mnt) 71 { 72 int res; 73 74 retry: 75 ida_pre_get(&mnt_id_ida, GFP_KERNEL); 76 spin_lock(&mnt_id_lock); 77 res = ida_get_new_above(&mnt_id_ida, mnt_id_start, &mnt->mnt_id); 78 if (!res) 79 mnt_id_start = mnt->mnt_id + 1; 80 spin_unlock(&mnt_id_lock); 81 if (res == -EAGAIN) 82 goto retry; 83 84 return res; 85 } 86 87 static void mnt_free_id(struct mount *mnt) 88 { 89 int id = mnt->mnt_id; 90 spin_lock(&mnt_id_lock); 91 ida_remove(&mnt_id_ida, id); 92 if (mnt_id_start > id) 93 mnt_id_start = id; 94 spin_unlock(&mnt_id_lock); 95 } 96 97 /* 98 * Allocate a new peer group ID 99 * 100 * mnt_group_ida is protected by namespace_sem 101 */ 102 static int mnt_alloc_group_id(struct mount *mnt) 103 { 104 int res; 105 106 if (!ida_pre_get(&mnt_group_ida, GFP_KERNEL)) 107 return -ENOMEM; 108 109 res = ida_get_new_above(&mnt_group_ida, 110 mnt_group_start, 111 &mnt->mnt_group_id); 112 if (!res) 113 mnt_group_start = mnt->mnt_group_id + 1; 114 115 return res; 116 } 117 118 /* 119 * Release a peer group ID 120 */ 121 void mnt_release_group_id(struct mount *mnt) 122 { 123 int id = mnt->mnt_group_id; 124 ida_remove(&mnt_group_ida, id); 125 if (mnt_group_start > id) 126 mnt_group_start = id; 127 mnt->mnt_group_id = 0; 128 } 129 130 /* 131 * vfsmount lock must be held for read 132 */ 133 static inline void mnt_add_count(struct mount *mnt, int n) 134 { 135 #ifdef CONFIG_SMP 136 this_cpu_add(mnt->mnt_pcp->mnt_count, n); 137 #else 138 preempt_disable(); 139 mnt->mnt_count += n; 140 preempt_enable(); 141 #endif 142 } 143 144 /* 145 * vfsmount lock must be held for write 146 */ 147 unsigned int mnt_get_count(struct mount *mnt) 148 { 149 #ifdef CONFIG_SMP 150 unsigned int count = 0; 151 int cpu; 152 153 for_each_possible_cpu(cpu) { 154 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count; 155 } 156 157 return count; 158 #else 159 return mnt->mnt_count; 160 #endif 161 } 162 163 static struct mount *alloc_vfsmnt(const char *name) 164 { 165 struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL); 166 if (mnt) { 167 int err; 168 169 err = mnt_alloc_id(mnt); 170 if (err) 171 goto out_free_cache; 172 173 if (name) { 174 mnt->mnt_devname = kstrdup(name, GFP_KERNEL); 175 if (!mnt->mnt_devname) 176 goto out_free_id; 177 } 178 179 #ifdef CONFIG_SMP 180 mnt->mnt_pcp = alloc_percpu(struct mnt_pcp); 181 if (!mnt->mnt_pcp) 182 goto out_free_devname; 183 184 this_cpu_add(mnt->mnt_pcp->mnt_count, 1); 185 #else 186 mnt->mnt_count = 1; 187 mnt->mnt_writers = 0; 188 #endif 189 190 INIT_LIST_HEAD(&mnt->mnt_hash); 191 INIT_LIST_HEAD(&mnt->mnt_child); 192 INIT_LIST_HEAD(&mnt->mnt_mounts); 193 INIT_LIST_HEAD(&mnt->mnt_list); 194 INIT_LIST_HEAD(&mnt->mnt_expire); 195 INIT_LIST_HEAD(&mnt->mnt_share); 196 INIT_LIST_HEAD(&mnt->mnt_slave_list); 197 INIT_LIST_HEAD(&mnt->mnt_slave); 198 #ifdef CONFIG_FSNOTIFY 199 INIT_HLIST_HEAD(&mnt->mnt_fsnotify_marks); 200 #endif 201 } 202 return mnt; 203 204 #ifdef CONFIG_SMP 205 out_free_devname: 206 kfree(mnt->mnt_devname); 207 #endif 208 out_free_id: 209 mnt_free_id(mnt); 210 out_free_cache: 211 kmem_cache_free(mnt_cache, mnt); 212 return NULL; 213 } 214 215 /* 216 * Most r/o checks on a fs are for operations that take 217 * discrete amounts of time, like a write() or unlink(). 218 * We must keep track of when those operations start 219 * (for permission checks) and when they end, so that 220 * we can determine when writes are able to occur to 221 * a filesystem. 222 */ 223 /* 224 * __mnt_is_readonly: check whether a mount is read-only 225 * @mnt: the mount to check for its write status 226 * 227 * This shouldn't be used directly ouside of the VFS. 228 * It does not guarantee that the filesystem will stay 229 * r/w, just that it is right *now*. This can not and 230 * should not be used in place of IS_RDONLY(inode). 231 * mnt_want/drop_write() will _keep_ the filesystem 232 * r/w. 233 */ 234 int __mnt_is_readonly(struct vfsmount *mnt) 235 { 236 if (mnt->mnt_flags & MNT_READONLY) 237 return 1; 238 if (mnt->mnt_sb->s_flags & MS_RDONLY) 239 return 1; 240 return 0; 241 } 242 EXPORT_SYMBOL_GPL(__mnt_is_readonly); 243 244 static inline void mnt_inc_writers(struct mount *mnt) 245 { 246 #ifdef CONFIG_SMP 247 this_cpu_inc(mnt->mnt_pcp->mnt_writers); 248 #else 249 mnt->mnt_writers++; 250 #endif 251 } 252 253 static inline void mnt_dec_writers(struct mount *mnt) 254 { 255 #ifdef CONFIG_SMP 256 this_cpu_dec(mnt->mnt_pcp->mnt_writers); 257 #else 258 mnt->mnt_writers--; 259 #endif 260 } 261 262 static unsigned int mnt_get_writers(struct mount *mnt) 263 { 264 #ifdef CONFIG_SMP 265 unsigned int count = 0; 266 int cpu; 267 268 for_each_possible_cpu(cpu) { 269 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers; 270 } 271 272 return count; 273 #else 274 return mnt->mnt_writers; 275 #endif 276 } 277 278 static int mnt_is_readonly(struct vfsmount *mnt) 279 { 280 if (mnt->mnt_sb->s_readonly_remount) 281 return 1; 282 /* Order wrt setting s_flags/s_readonly_remount in do_remount() */ 283 smp_rmb(); 284 return __mnt_is_readonly(mnt); 285 } 286 287 /* 288 * Most r/o & frozen checks on a fs are for operations that take discrete 289 * amounts of time, like a write() or unlink(). We must keep track of when 290 * those operations start (for permission checks) and when they end, so that we 291 * can determine when writes are able to occur to a filesystem. 292 */ 293 /** 294 * __mnt_want_write - get write access to a mount without freeze protection 295 * @m: the mount on which to take a write 296 * 297 * This tells the low-level filesystem that a write is about to be performed to 298 * it, and makes sure that writes are allowed (mnt it read-write) before 299 * returning success. This operation does not protect against filesystem being 300 * frozen. When the write operation is finished, __mnt_drop_write() must be 301 * called. This is effectively a refcount. 302 */ 303 int __mnt_want_write(struct vfsmount *m) 304 { 305 struct mount *mnt = real_mount(m); 306 int ret = 0; 307 308 preempt_disable(); 309 mnt_inc_writers(mnt); 310 /* 311 * The store to mnt_inc_writers must be visible before we pass 312 * MNT_WRITE_HOLD loop below, so that the slowpath can see our 313 * incremented count after it has set MNT_WRITE_HOLD. 314 */ 315 smp_mb(); 316 while (ACCESS_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD) 317 cpu_relax(); 318 /* 319 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will 320 * be set to match its requirements. So we must not load that until 321 * MNT_WRITE_HOLD is cleared. 322 */ 323 smp_rmb(); 324 if (mnt_is_readonly(m)) { 325 mnt_dec_writers(mnt); 326 ret = -EROFS; 327 } 328 preempt_enable(); 329 330 return ret; 331 } 332 333 /** 334 * mnt_want_write - get write access to a mount 335 * @m: the mount on which to take a write 336 * 337 * This tells the low-level filesystem that a write is about to be performed to 338 * it, and makes sure that writes are allowed (mount is read-write, filesystem 339 * is not frozen) before returning success. When the write operation is 340 * finished, mnt_drop_write() must be called. This is effectively a refcount. 341 */ 342 int mnt_want_write(struct vfsmount *m) 343 { 344 int ret; 345 346 sb_start_write(m->mnt_sb); 347 ret = __mnt_want_write(m); 348 if (ret) 349 sb_end_write(m->mnt_sb); 350 return ret; 351 } 352 EXPORT_SYMBOL_GPL(mnt_want_write); 353 354 /** 355 * mnt_clone_write - get write access to a mount 356 * @mnt: the mount on which to take a write 357 * 358 * This is effectively like mnt_want_write, except 359 * it must only be used to take an extra write reference 360 * on a mountpoint that we already know has a write reference 361 * on it. This allows some optimisation. 362 * 363 * After finished, mnt_drop_write must be called as usual to 364 * drop the reference. 365 */ 366 int mnt_clone_write(struct vfsmount *mnt) 367 { 368 /* superblock may be r/o */ 369 if (__mnt_is_readonly(mnt)) 370 return -EROFS; 371 preempt_disable(); 372 mnt_inc_writers(real_mount(mnt)); 373 preempt_enable(); 374 return 0; 375 } 376 EXPORT_SYMBOL_GPL(mnt_clone_write); 377 378 /** 379 * __mnt_want_write_file - get write access to a file's mount 380 * @file: the file who's mount on which to take a write 381 * 382 * This is like __mnt_want_write, but it takes a file and can 383 * do some optimisations if the file is open for write already 384 */ 385 int __mnt_want_write_file(struct file *file) 386 { 387 struct inode *inode = file_inode(file); 388 389 if (!(file->f_mode & FMODE_WRITE) || special_file(inode->i_mode)) 390 return __mnt_want_write(file->f_path.mnt); 391 else 392 return mnt_clone_write(file->f_path.mnt); 393 } 394 395 /** 396 * mnt_want_write_file - get write access to a file's mount 397 * @file: the file who's mount on which to take a write 398 * 399 * This is like mnt_want_write, but it takes a file and can 400 * do some optimisations if the file is open for write already 401 */ 402 int mnt_want_write_file(struct file *file) 403 { 404 int ret; 405 406 sb_start_write(file->f_path.mnt->mnt_sb); 407 ret = __mnt_want_write_file(file); 408 if (ret) 409 sb_end_write(file->f_path.mnt->mnt_sb); 410 return ret; 411 } 412 EXPORT_SYMBOL_GPL(mnt_want_write_file); 413 414 /** 415 * __mnt_drop_write - give up write access to a mount 416 * @mnt: the mount on which to give up write access 417 * 418 * Tells the low-level filesystem that we are done 419 * performing writes to it. Must be matched with 420 * __mnt_want_write() call above. 421 */ 422 void __mnt_drop_write(struct vfsmount *mnt) 423 { 424 preempt_disable(); 425 mnt_dec_writers(real_mount(mnt)); 426 preempt_enable(); 427 } 428 429 /** 430 * mnt_drop_write - give up write access to a mount 431 * @mnt: the mount on which to give up write access 432 * 433 * Tells the low-level filesystem that we are done performing writes to it and 434 * also allows filesystem to be frozen again. Must be matched with 435 * mnt_want_write() call above. 436 */ 437 void mnt_drop_write(struct vfsmount *mnt) 438 { 439 __mnt_drop_write(mnt); 440 sb_end_write(mnt->mnt_sb); 441 } 442 EXPORT_SYMBOL_GPL(mnt_drop_write); 443 444 void __mnt_drop_write_file(struct file *file) 445 { 446 __mnt_drop_write(file->f_path.mnt); 447 } 448 449 void mnt_drop_write_file(struct file *file) 450 { 451 mnt_drop_write(file->f_path.mnt); 452 } 453 EXPORT_SYMBOL(mnt_drop_write_file); 454 455 static int mnt_make_readonly(struct mount *mnt) 456 { 457 int ret = 0; 458 459 br_write_lock(&vfsmount_lock); 460 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD; 461 /* 462 * After storing MNT_WRITE_HOLD, we'll read the counters. This store 463 * should be visible before we do. 464 */ 465 smp_mb(); 466 467 /* 468 * With writers on hold, if this value is zero, then there are 469 * definitely no active writers (although held writers may subsequently 470 * increment the count, they'll have to wait, and decrement it after 471 * seeing MNT_READONLY). 472 * 473 * It is OK to have counter incremented on one CPU and decremented on 474 * another: the sum will add up correctly. The danger would be when we 475 * sum up each counter, if we read a counter before it is incremented, 476 * but then read another CPU's count which it has been subsequently 477 * decremented from -- we would see more decrements than we should. 478 * MNT_WRITE_HOLD protects against this scenario, because 479 * mnt_want_write first increments count, then smp_mb, then spins on 480 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while 481 * we're counting up here. 482 */ 483 if (mnt_get_writers(mnt) > 0) 484 ret = -EBUSY; 485 else 486 mnt->mnt.mnt_flags |= MNT_READONLY; 487 /* 488 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers 489 * that become unheld will see MNT_READONLY. 490 */ 491 smp_wmb(); 492 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD; 493 br_write_unlock(&vfsmount_lock); 494 return ret; 495 } 496 497 static void __mnt_unmake_readonly(struct mount *mnt) 498 { 499 br_write_lock(&vfsmount_lock); 500 mnt->mnt.mnt_flags &= ~MNT_READONLY; 501 br_write_unlock(&vfsmount_lock); 502 } 503 504 int sb_prepare_remount_readonly(struct super_block *sb) 505 { 506 struct mount *mnt; 507 int err = 0; 508 509 /* Racy optimization. Recheck the counter under MNT_WRITE_HOLD */ 510 if (atomic_long_read(&sb->s_remove_count)) 511 return -EBUSY; 512 513 br_write_lock(&vfsmount_lock); 514 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) { 515 if (!(mnt->mnt.mnt_flags & MNT_READONLY)) { 516 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD; 517 smp_mb(); 518 if (mnt_get_writers(mnt) > 0) { 519 err = -EBUSY; 520 break; 521 } 522 } 523 } 524 if (!err && atomic_long_read(&sb->s_remove_count)) 525 err = -EBUSY; 526 527 if (!err) { 528 sb->s_readonly_remount = 1; 529 smp_wmb(); 530 } 531 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) { 532 if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD) 533 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD; 534 } 535 br_write_unlock(&vfsmount_lock); 536 537 return err; 538 } 539 540 static void free_vfsmnt(struct mount *mnt) 541 { 542 kfree(mnt->mnt_devname); 543 mnt_free_id(mnt); 544 #ifdef CONFIG_SMP 545 free_percpu(mnt->mnt_pcp); 546 #endif 547 kmem_cache_free(mnt_cache, mnt); 548 } 549 550 /* 551 * find the first or last mount at @dentry on vfsmount @mnt depending on 552 * @dir. If @dir is set return the first mount else return the last mount. 553 * vfsmount_lock must be held for read or write. 554 */ 555 struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry, 556 int dir) 557 { 558 struct list_head *head = mount_hashtable + hash(mnt, dentry); 559 struct list_head *tmp = head; 560 struct mount *p, *found = NULL; 561 562 for (;;) { 563 tmp = dir ? tmp->next : tmp->prev; 564 p = NULL; 565 if (tmp == head) 566 break; 567 p = list_entry(tmp, struct mount, mnt_hash); 568 if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry) { 569 found = p; 570 break; 571 } 572 } 573 return found; 574 } 575 576 /* 577 * lookup_mnt - Return the first child mount mounted at path 578 * 579 * "First" means first mounted chronologically. If you create the 580 * following mounts: 581 * 582 * mount /dev/sda1 /mnt 583 * mount /dev/sda2 /mnt 584 * mount /dev/sda3 /mnt 585 * 586 * Then lookup_mnt() on the base /mnt dentry in the root mount will 587 * return successively the root dentry and vfsmount of /dev/sda1, then 588 * /dev/sda2, then /dev/sda3, then NULL. 589 * 590 * lookup_mnt takes a reference to the found vfsmount. 591 */ 592 struct vfsmount *lookup_mnt(struct path *path) 593 { 594 struct mount *child_mnt; 595 596 br_read_lock(&vfsmount_lock); 597 child_mnt = __lookup_mnt(path->mnt, path->dentry, 1); 598 if (child_mnt) { 599 mnt_add_count(child_mnt, 1); 600 br_read_unlock(&vfsmount_lock); 601 return &child_mnt->mnt; 602 } else { 603 br_read_unlock(&vfsmount_lock); 604 return NULL; 605 } 606 } 607 608 static inline int check_mnt(struct mount *mnt) 609 { 610 return mnt->mnt_ns == current->nsproxy->mnt_ns; 611 } 612 613 /* 614 * vfsmount lock must be held for write 615 */ 616 static void touch_mnt_namespace(struct mnt_namespace *ns) 617 { 618 if (ns) { 619 ns->event = ++event; 620 wake_up_interruptible(&ns->poll); 621 } 622 } 623 624 /* 625 * vfsmount lock must be held for write 626 */ 627 static void __touch_mnt_namespace(struct mnt_namespace *ns) 628 { 629 if (ns && ns->event != event) { 630 ns->event = event; 631 wake_up_interruptible(&ns->poll); 632 } 633 } 634 635 /* 636 * Clear dentry's mounted state if it has no remaining mounts. 637 * vfsmount_lock must be held for write. 638 */ 639 static void dentry_reset_mounted(struct dentry *dentry) 640 { 641 unsigned u; 642 643 for (u = 0; u < HASH_SIZE; u++) { 644 struct mount *p; 645 646 list_for_each_entry(p, &mount_hashtable[u], mnt_hash) { 647 if (p->mnt_mountpoint == dentry) 648 return; 649 } 650 } 651 spin_lock(&dentry->d_lock); 652 dentry->d_flags &= ~DCACHE_MOUNTED; 653 spin_unlock(&dentry->d_lock); 654 } 655 656 /* 657 * vfsmount lock must be held for write 658 */ 659 static void detach_mnt(struct mount *mnt, struct path *old_path) 660 { 661 old_path->dentry = mnt->mnt_mountpoint; 662 old_path->mnt = &mnt->mnt_parent->mnt; 663 mnt->mnt_parent = mnt; 664 mnt->mnt_mountpoint = mnt->mnt.mnt_root; 665 list_del_init(&mnt->mnt_child); 666 list_del_init(&mnt->mnt_hash); 667 dentry_reset_mounted(old_path->dentry); 668 } 669 670 /* 671 * vfsmount lock must be held for write 672 */ 673 void mnt_set_mountpoint(struct mount *mnt, struct dentry *dentry, 674 struct mount *child_mnt) 675 { 676 mnt_add_count(mnt, 1); /* essentially, that's mntget */ 677 child_mnt->mnt_mountpoint = dget(dentry); 678 child_mnt->mnt_parent = mnt; 679 spin_lock(&dentry->d_lock); 680 dentry->d_flags |= DCACHE_MOUNTED; 681 spin_unlock(&dentry->d_lock); 682 } 683 684 /* 685 * vfsmount lock must be held for write 686 */ 687 static void attach_mnt(struct mount *mnt, struct path *path) 688 { 689 mnt_set_mountpoint(real_mount(path->mnt), path->dentry, mnt); 690 list_add_tail(&mnt->mnt_hash, mount_hashtable + 691 hash(path->mnt, path->dentry)); 692 list_add_tail(&mnt->mnt_child, &real_mount(path->mnt)->mnt_mounts); 693 } 694 695 /* 696 * vfsmount lock must be held for write 697 */ 698 static void commit_tree(struct mount *mnt) 699 { 700 struct mount *parent = mnt->mnt_parent; 701 struct mount *m; 702 LIST_HEAD(head); 703 struct mnt_namespace *n = parent->mnt_ns; 704 705 BUG_ON(parent == mnt); 706 707 list_add_tail(&head, &mnt->mnt_list); 708 list_for_each_entry(m, &head, mnt_list) 709 m->mnt_ns = n; 710 711 list_splice(&head, n->list.prev); 712 713 list_add_tail(&mnt->mnt_hash, mount_hashtable + 714 hash(&parent->mnt, mnt->mnt_mountpoint)); 715 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts); 716 touch_mnt_namespace(n); 717 } 718 719 static struct mount *next_mnt(struct mount *p, struct mount *root) 720 { 721 struct list_head *next = p->mnt_mounts.next; 722 if (next == &p->mnt_mounts) { 723 while (1) { 724 if (p == root) 725 return NULL; 726 next = p->mnt_child.next; 727 if (next != &p->mnt_parent->mnt_mounts) 728 break; 729 p = p->mnt_parent; 730 } 731 } 732 return list_entry(next, struct mount, mnt_child); 733 } 734 735 static struct mount *skip_mnt_tree(struct mount *p) 736 { 737 struct list_head *prev = p->mnt_mounts.prev; 738 while (prev != &p->mnt_mounts) { 739 p = list_entry(prev, struct mount, mnt_child); 740 prev = p->mnt_mounts.prev; 741 } 742 return p; 743 } 744 745 struct vfsmount * 746 vfs_kern_mount(struct file_system_type *type, int flags, const char *name, void *data) 747 { 748 struct mount *mnt; 749 struct dentry *root; 750 751 if (!type) 752 return ERR_PTR(-ENODEV); 753 754 mnt = alloc_vfsmnt(name); 755 if (!mnt) 756 return ERR_PTR(-ENOMEM); 757 758 if (flags & MS_KERNMOUNT) 759 mnt->mnt.mnt_flags = MNT_INTERNAL; 760 761 root = mount_fs(type, flags, name, data); 762 if (IS_ERR(root)) { 763 free_vfsmnt(mnt); 764 return ERR_CAST(root); 765 } 766 767 mnt->mnt.mnt_root = root; 768 mnt->mnt.mnt_sb = root->d_sb; 769 mnt->mnt_mountpoint = mnt->mnt.mnt_root; 770 mnt->mnt_parent = mnt; 771 br_write_lock(&vfsmount_lock); 772 list_add_tail(&mnt->mnt_instance, &root->d_sb->s_mounts); 773 br_write_unlock(&vfsmount_lock); 774 return &mnt->mnt; 775 } 776 EXPORT_SYMBOL_GPL(vfs_kern_mount); 777 778 static struct mount *clone_mnt(struct mount *old, struct dentry *root, 779 int flag) 780 { 781 struct super_block *sb = old->mnt.mnt_sb; 782 struct mount *mnt; 783 int err; 784 785 mnt = alloc_vfsmnt(old->mnt_devname); 786 if (!mnt) 787 return ERR_PTR(-ENOMEM); 788 789 if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE)) 790 mnt->mnt_group_id = 0; /* not a peer of original */ 791 else 792 mnt->mnt_group_id = old->mnt_group_id; 793 794 if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) { 795 err = mnt_alloc_group_id(mnt); 796 if (err) 797 goto out_free; 798 } 799 800 mnt->mnt.mnt_flags = old->mnt.mnt_flags & ~MNT_WRITE_HOLD; 801 atomic_inc(&sb->s_active); 802 mnt->mnt.mnt_sb = sb; 803 mnt->mnt.mnt_root = dget(root); 804 mnt->mnt_mountpoint = mnt->mnt.mnt_root; 805 mnt->mnt_parent = mnt; 806 br_write_lock(&vfsmount_lock); 807 list_add_tail(&mnt->mnt_instance, &sb->s_mounts); 808 br_write_unlock(&vfsmount_lock); 809 810 if ((flag & CL_SLAVE) || 811 ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) { 812 list_add(&mnt->mnt_slave, &old->mnt_slave_list); 813 mnt->mnt_master = old; 814 CLEAR_MNT_SHARED(mnt); 815 } else if (!(flag & CL_PRIVATE)) { 816 if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old)) 817 list_add(&mnt->mnt_share, &old->mnt_share); 818 if (IS_MNT_SLAVE(old)) 819 list_add(&mnt->mnt_slave, &old->mnt_slave); 820 mnt->mnt_master = old->mnt_master; 821 } 822 if (flag & CL_MAKE_SHARED) 823 set_mnt_shared(mnt); 824 825 /* stick the duplicate mount on the same expiry list 826 * as the original if that was on one */ 827 if (flag & CL_EXPIRE) { 828 if (!list_empty(&old->mnt_expire)) 829 list_add(&mnt->mnt_expire, &old->mnt_expire); 830 } 831 832 return mnt; 833 834 out_free: 835 free_vfsmnt(mnt); 836 return ERR_PTR(err); 837 } 838 839 static inline void mntfree(struct mount *mnt) 840 { 841 struct vfsmount *m = &mnt->mnt; 842 struct super_block *sb = m->mnt_sb; 843 844 /* 845 * This probably indicates that somebody messed 846 * up a mnt_want/drop_write() pair. If this 847 * happens, the filesystem was probably unable 848 * to make r/w->r/o transitions. 849 */ 850 /* 851 * The locking used to deal with mnt_count decrement provides barriers, 852 * so mnt_get_writers() below is safe. 853 */ 854 WARN_ON(mnt_get_writers(mnt)); 855 fsnotify_vfsmount_delete(m); 856 dput(m->mnt_root); 857 free_vfsmnt(mnt); 858 deactivate_super(sb); 859 } 860 861 static void mntput_no_expire(struct mount *mnt) 862 { 863 put_again: 864 #ifdef CONFIG_SMP 865 br_read_lock(&vfsmount_lock); 866 if (likely(mnt->mnt_ns)) { 867 /* shouldn't be the last one */ 868 mnt_add_count(mnt, -1); 869 br_read_unlock(&vfsmount_lock); 870 return; 871 } 872 br_read_unlock(&vfsmount_lock); 873 874 br_write_lock(&vfsmount_lock); 875 mnt_add_count(mnt, -1); 876 if (mnt_get_count(mnt)) { 877 br_write_unlock(&vfsmount_lock); 878 return; 879 } 880 #else 881 mnt_add_count(mnt, -1); 882 if (likely(mnt_get_count(mnt))) 883 return; 884 br_write_lock(&vfsmount_lock); 885 #endif 886 if (unlikely(mnt->mnt_pinned)) { 887 mnt_add_count(mnt, mnt->mnt_pinned + 1); 888 mnt->mnt_pinned = 0; 889 br_write_unlock(&vfsmount_lock); 890 acct_auto_close_mnt(&mnt->mnt); 891 goto put_again; 892 } 893 894 list_del(&mnt->mnt_instance); 895 br_write_unlock(&vfsmount_lock); 896 mntfree(mnt); 897 } 898 899 void mntput(struct vfsmount *mnt) 900 { 901 if (mnt) { 902 struct mount *m = real_mount(mnt); 903 /* avoid cacheline pingpong, hope gcc doesn't get "smart" */ 904 if (unlikely(m->mnt_expiry_mark)) 905 m->mnt_expiry_mark = 0; 906 mntput_no_expire(m); 907 } 908 } 909 EXPORT_SYMBOL(mntput); 910 911 struct vfsmount *mntget(struct vfsmount *mnt) 912 { 913 if (mnt) 914 mnt_add_count(real_mount(mnt), 1); 915 return mnt; 916 } 917 EXPORT_SYMBOL(mntget); 918 919 void mnt_pin(struct vfsmount *mnt) 920 { 921 br_write_lock(&vfsmount_lock); 922 real_mount(mnt)->mnt_pinned++; 923 br_write_unlock(&vfsmount_lock); 924 } 925 EXPORT_SYMBOL(mnt_pin); 926 927 void mnt_unpin(struct vfsmount *m) 928 { 929 struct mount *mnt = real_mount(m); 930 br_write_lock(&vfsmount_lock); 931 if (mnt->mnt_pinned) { 932 mnt_add_count(mnt, 1); 933 mnt->mnt_pinned--; 934 } 935 br_write_unlock(&vfsmount_lock); 936 } 937 EXPORT_SYMBOL(mnt_unpin); 938 939 static inline void mangle(struct seq_file *m, const char *s) 940 { 941 seq_escape(m, s, " \t\n\\"); 942 } 943 944 /* 945 * Simple .show_options callback for filesystems which don't want to 946 * implement more complex mount option showing. 947 * 948 * See also save_mount_options(). 949 */ 950 int generic_show_options(struct seq_file *m, struct dentry *root) 951 { 952 const char *options; 953 954 rcu_read_lock(); 955 options = rcu_dereference(root->d_sb->s_options); 956 957 if (options != NULL && options[0]) { 958 seq_putc(m, ','); 959 mangle(m, options); 960 } 961 rcu_read_unlock(); 962 963 return 0; 964 } 965 EXPORT_SYMBOL(generic_show_options); 966 967 /* 968 * If filesystem uses generic_show_options(), this function should be 969 * called from the fill_super() callback. 970 * 971 * The .remount_fs callback usually needs to be handled in a special 972 * way, to make sure, that previous options are not overwritten if the 973 * remount fails. 974 * 975 * Also note, that if the filesystem's .remount_fs function doesn't 976 * reset all options to their default value, but changes only newly 977 * given options, then the displayed options will not reflect reality 978 * any more. 979 */ 980 void save_mount_options(struct super_block *sb, char *options) 981 { 982 BUG_ON(sb->s_options); 983 rcu_assign_pointer(sb->s_options, kstrdup(options, GFP_KERNEL)); 984 } 985 EXPORT_SYMBOL(save_mount_options); 986 987 void replace_mount_options(struct super_block *sb, char *options) 988 { 989 char *old = sb->s_options; 990 rcu_assign_pointer(sb->s_options, options); 991 if (old) { 992 synchronize_rcu(); 993 kfree(old); 994 } 995 } 996 EXPORT_SYMBOL(replace_mount_options); 997 998 #ifdef CONFIG_PROC_FS 999 /* iterator; we want it to have access to namespace_sem, thus here... */ 1000 static void *m_start(struct seq_file *m, loff_t *pos) 1001 { 1002 struct proc_mounts *p = proc_mounts(m); 1003 1004 down_read(&namespace_sem); 1005 return seq_list_start(&p->ns->list, *pos); 1006 } 1007 1008 static void *m_next(struct seq_file *m, void *v, loff_t *pos) 1009 { 1010 struct proc_mounts *p = proc_mounts(m); 1011 1012 return seq_list_next(v, &p->ns->list, pos); 1013 } 1014 1015 static void m_stop(struct seq_file *m, void *v) 1016 { 1017 up_read(&namespace_sem); 1018 } 1019 1020 static int m_show(struct seq_file *m, void *v) 1021 { 1022 struct proc_mounts *p = proc_mounts(m); 1023 struct mount *r = list_entry(v, struct mount, mnt_list); 1024 return p->show(m, &r->mnt); 1025 } 1026 1027 const struct seq_operations mounts_op = { 1028 .start = m_start, 1029 .next = m_next, 1030 .stop = m_stop, 1031 .show = m_show, 1032 }; 1033 #endif /* CONFIG_PROC_FS */ 1034 1035 /** 1036 * may_umount_tree - check if a mount tree is busy 1037 * @mnt: root of mount tree 1038 * 1039 * This is called to check if a tree of mounts has any 1040 * open files, pwds, chroots or sub mounts that are 1041 * busy. 1042 */ 1043 int may_umount_tree(struct vfsmount *m) 1044 { 1045 struct mount *mnt = real_mount(m); 1046 int actual_refs = 0; 1047 int minimum_refs = 0; 1048 struct mount *p; 1049 BUG_ON(!m); 1050 1051 /* write lock needed for mnt_get_count */ 1052 br_write_lock(&vfsmount_lock); 1053 for (p = mnt; p; p = next_mnt(p, mnt)) { 1054 actual_refs += mnt_get_count(p); 1055 minimum_refs += 2; 1056 } 1057 br_write_unlock(&vfsmount_lock); 1058 1059 if (actual_refs > minimum_refs) 1060 return 0; 1061 1062 return 1; 1063 } 1064 1065 EXPORT_SYMBOL(may_umount_tree); 1066 1067 /** 1068 * may_umount - check if a mount point is busy 1069 * @mnt: root of mount 1070 * 1071 * This is called to check if a mount point has any 1072 * open files, pwds, chroots or sub mounts. If the 1073 * mount has sub mounts this will return busy 1074 * regardless of whether the sub mounts are busy. 1075 * 1076 * Doesn't take quota and stuff into account. IOW, in some cases it will 1077 * give false negatives. The main reason why it's here is that we need 1078 * a non-destructive way to look for easily umountable filesystems. 1079 */ 1080 int may_umount(struct vfsmount *mnt) 1081 { 1082 int ret = 1; 1083 down_read(&namespace_sem); 1084 br_write_lock(&vfsmount_lock); 1085 if (propagate_mount_busy(real_mount(mnt), 2)) 1086 ret = 0; 1087 br_write_unlock(&vfsmount_lock); 1088 up_read(&namespace_sem); 1089 return ret; 1090 } 1091 1092 EXPORT_SYMBOL(may_umount); 1093 1094 void release_mounts(struct list_head *head) 1095 { 1096 struct mount *mnt; 1097 while (!list_empty(head)) { 1098 mnt = list_first_entry(head, struct mount, mnt_hash); 1099 list_del_init(&mnt->mnt_hash); 1100 if (mnt_has_parent(mnt)) { 1101 struct dentry *dentry; 1102 struct mount *m; 1103 1104 br_write_lock(&vfsmount_lock); 1105 dentry = mnt->mnt_mountpoint; 1106 m = mnt->mnt_parent; 1107 mnt->mnt_mountpoint = mnt->mnt.mnt_root; 1108 mnt->mnt_parent = mnt; 1109 m->mnt_ghosts--; 1110 br_write_unlock(&vfsmount_lock); 1111 dput(dentry); 1112 mntput(&m->mnt); 1113 } 1114 mntput(&mnt->mnt); 1115 } 1116 } 1117 1118 /* 1119 * vfsmount lock must be held for write 1120 * namespace_sem must be held for write 1121 */ 1122 void umount_tree(struct mount *mnt, int propagate, struct list_head *kill) 1123 { 1124 LIST_HEAD(tmp_list); 1125 struct mount *p; 1126 1127 for (p = mnt; p; p = next_mnt(p, mnt)) 1128 list_move(&p->mnt_hash, &tmp_list); 1129 1130 if (propagate) 1131 propagate_umount(&tmp_list); 1132 1133 list_for_each_entry(p, &tmp_list, mnt_hash) { 1134 list_del_init(&p->mnt_expire); 1135 list_del_init(&p->mnt_list); 1136 __touch_mnt_namespace(p->mnt_ns); 1137 p->mnt_ns = NULL; 1138 list_del_init(&p->mnt_child); 1139 if (mnt_has_parent(p)) { 1140 p->mnt_parent->mnt_ghosts++; 1141 dentry_reset_mounted(p->mnt_mountpoint); 1142 } 1143 change_mnt_propagation(p, MS_PRIVATE); 1144 } 1145 list_splice(&tmp_list, kill); 1146 } 1147 1148 static void shrink_submounts(struct mount *mnt, struct list_head *umounts); 1149 1150 static int do_umount(struct mount *mnt, int flags) 1151 { 1152 struct super_block *sb = mnt->mnt.mnt_sb; 1153 int retval; 1154 LIST_HEAD(umount_list); 1155 1156 retval = security_sb_umount(&mnt->mnt, flags); 1157 if (retval) 1158 return retval; 1159 1160 /* 1161 * Allow userspace to request a mountpoint be expired rather than 1162 * unmounting unconditionally. Unmount only happens if: 1163 * (1) the mark is already set (the mark is cleared by mntput()) 1164 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount] 1165 */ 1166 if (flags & MNT_EXPIRE) { 1167 if (&mnt->mnt == current->fs->root.mnt || 1168 flags & (MNT_FORCE | MNT_DETACH)) 1169 return -EINVAL; 1170 1171 /* 1172 * probably don't strictly need the lock here if we examined 1173 * all race cases, but it's a slowpath. 1174 */ 1175 br_write_lock(&vfsmount_lock); 1176 if (mnt_get_count(mnt) != 2) { 1177 br_write_unlock(&vfsmount_lock); 1178 return -EBUSY; 1179 } 1180 br_write_unlock(&vfsmount_lock); 1181 1182 if (!xchg(&mnt->mnt_expiry_mark, 1)) 1183 return -EAGAIN; 1184 } 1185 1186 /* 1187 * If we may have to abort operations to get out of this 1188 * mount, and they will themselves hold resources we must 1189 * allow the fs to do things. In the Unix tradition of 1190 * 'Gee thats tricky lets do it in userspace' the umount_begin 1191 * might fail to complete on the first run through as other tasks 1192 * must return, and the like. Thats for the mount program to worry 1193 * about for the moment. 1194 */ 1195 1196 if (flags & MNT_FORCE && sb->s_op->umount_begin) { 1197 sb->s_op->umount_begin(sb); 1198 } 1199 1200 /* 1201 * No sense to grab the lock for this test, but test itself looks 1202 * somewhat bogus. Suggestions for better replacement? 1203 * Ho-hum... In principle, we might treat that as umount + switch 1204 * to rootfs. GC would eventually take care of the old vfsmount. 1205 * Actually it makes sense, especially if rootfs would contain a 1206 * /reboot - static binary that would close all descriptors and 1207 * call reboot(9). Then init(8) could umount root and exec /reboot. 1208 */ 1209 if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) { 1210 /* 1211 * Special case for "unmounting" root ... 1212 * we just try to remount it readonly. 1213 */ 1214 down_write(&sb->s_umount); 1215 if (!(sb->s_flags & MS_RDONLY)) 1216 retval = do_remount_sb(sb, MS_RDONLY, NULL, 0); 1217 up_write(&sb->s_umount); 1218 return retval; 1219 } 1220 1221 down_write(&namespace_sem); 1222 br_write_lock(&vfsmount_lock); 1223 event++; 1224 1225 if (!(flags & MNT_DETACH)) 1226 shrink_submounts(mnt, &umount_list); 1227 1228 retval = -EBUSY; 1229 if (flags & MNT_DETACH || !propagate_mount_busy(mnt, 2)) { 1230 if (!list_empty(&mnt->mnt_list)) 1231 umount_tree(mnt, 1, &umount_list); 1232 retval = 0; 1233 } 1234 br_write_unlock(&vfsmount_lock); 1235 up_write(&namespace_sem); 1236 release_mounts(&umount_list); 1237 return retval; 1238 } 1239 1240 /* 1241 * Is the caller allowed to modify his namespace? 1242 */ 1243 static inline bool may_mount(void) 1244 { 1245 return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN); 1246 } 1247 1248 /* 1249 * Now umount can handle mount points as well as block devices. 1250 * This is important for filesystems which use unnamed block devices. 1251 * 1252 * We now support a flag for forced unmount like the other 'big iron' 1253 * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD 1254 */ 1255 1256 SYSCALL_DEFINE2(umount, char __user *, name, int, flags) 1257 { 1258 struct path path; 1259 struct mount *mnt; 1260 int retval; 1261 int lookup_flags = 0; 1262 1263 if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW)) 1264 return -EINVAL; 1265 1266 if (!may_mount()) 1267 return -EPERM; 1268 1269 if (!(flags & UMOUNT_NOFOLLOW)) 1270 lookup_flags |= LOOKUP_FOLLOW; 1271 1272 retval = user_path_at(AT_FDCWD, name, lookup_flags, &path); 1273 if (retval) 1274 goto out; 1275 mnt = real_mount(path.mnt); 1276 retval = -EINVAL; 1277 if (path.dentry != path.mnt->mnt_root) 1278 goto dput_and_out; 1279 if (!check_mnt(mnt)) 1280 goto dput_and_out; 1281 1282 retval = do_umount(mnt, flags); 1283 dput_and_out: 1284 /* we mustn't call path_put() as that would clear mnt_expiry_mark */ 1285 dput(path.dentry); 1286 mntput_no_expire(mnt); 1287 out: 1288 return retval; 1289 } 1290 1291 #ifdef __ARCH_WANT_SYS_OLDUMOUNT 1292 1293 /* 1294 * The 2.0 compatible umount. No flags. 1295 */ 1296 SYSCALL_DEFINE1(oldumount, char __user *, name) 1297 { 1298 return sys_umount(name, 0); 1299 } 1300 1301 #endif 1302 1303 static bool mnt_ns_loop(struct path *path) 1304 { 1305 /* Could bind mounting the mount namespace inode cause a 1306 * mount namespace loop? 1307 */ 1308 struct inode *inode = path->dentry->d_inode; 1309 struct proc_inode *ei; 1310 struct mnt_namespace *mnt_ns; 1311 1312 if (!proc_ns_inode(inode)) 1313 return false; 1314 1315 ei = PROC_I(inode); 1316 if (ei->ns_ops != &mntns_operations) 1317 return false; 1318 1319 mnt_ns = ei->ns; 1320 return current->nsproxy->mnt_ns->seq >= mnt_ns->seq; 1321 } 1322 1323 struct mount *copy_tree(struct mount *mnt, struct dentry *dentry, 1324 int flag) 1325 { 1326 struct mount *res, *p, *q, *r; 1327 struct path path; 1328 1329 if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(mnt)) 1330 return ERR_PTR(-EINVAL); 1331 1332 res = q = clone_mnt(mnt, dentry, flag); 1333 if (IS_ERR(q)) 1334 return q; 1335 1336 q->mnt_mountpoint = mnt->mnt_mountpoint; 1337 1338 p = mnt; 1339 list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) { 1340 struct mount *s; 1341 if (!is_subdir(r->mnt_mountpoint, dentry)) 1342 continue; 1343 1344 for (s = r; s; s = next_mnt(s, r)) { 1345 if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(s)) { 1346 s = skip_mnt_tree(s); 1347 continue; 1348 } 1349 while (p != s->mnt_parent) { 1350 p = p->mnt_parent; 1351 q = q->mnt_parent; 1352 } 1353 p = s; 1354 path.mnt = &q->mnt; 1355 path.dentry = p->mnt_mountpoint; 1356 q = clone_mnt(p, p->mnt.mnt_root, flag); 1357 if (IS_ERR(q)) 1358 goto out; 1359 br_write_lock(&vfsmount_lock); 1360 list_add_tail(&q->mnt_list, &res->mnt_list); 1361 attach_mnt(q, &path); 1362 br_write_unlock(&vfsmount_lock); 1363 } 1364 } 1365 return res; 1366 out: 1367 if (res) { 1368 LIST_HEAD(umount_list); 1369 br_write_lock(&vfsmount_lock); 1370 umount_tree(res, 0, &umount_list); 1371 br_write_unlock(&vfsmount_lock); 1372 release_mounts(&umount_list); 1373 } 1374 return q; 1375 } 1376 1377 /* Caller should check returned pointer for errors */ 1378 1379 struct vfsmount *collect_mounts(struct path *path) 1380 { 1381 struct mount *tree; 1382 down_write(&namespace_sem); 1383 tree = copy_tree(real_mount(path->mnt), path->dentry, 1384 CL_COPY_ALL | CL_PRIVATE); 1385 up_write(&namespace_sem); 1386 if (IS_ERR(tree)) 1387 return NULL; 1388 return &tree->mnt; 1389 } 1390 1391 void drop_collected_mounts(struct vfsmount *mnt) 1392 { 1393 LIST_HEAD(umount_list); 1394 down_write(&namespace_sem); 1395 br_write_lock(&vfsmount_lock); 1396 umount_tree(real_mount(mnt), 0, &umount_list); 1397 br_write_unlock(&vfsmount_lock); 1398 up_write(&namespace_sem); 1399 release_mounts(&umount_list); 1400 } 1401 1402 int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg, 1403 struct vfsmount *root) 1404 { 1405 struct mount *mnt; 1406 int res = f(root, arg); 1407 if (res) 1408 return res; 1409 list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) { 1410 res = f(&mnt->mnt, arg); 1411 if (res) 1412 return res; 1413 } 1414 return 0; 1415 } 1416 1417 static void cleanup_group_ids(struct mount *mnt, struct mount *end) 1418 { 1419 struct mount *p; 1420 1421 for (p = mnt; p != end; p = next_mnt(p, mnt)) { 1422 if (p->mnt_group_id && !IS_MNT_SHARED(p)) 1423 mnt_release_group_id(p); 1424 } 1425 } 1426 1427 static int invent_group_ids(struct mount *mnt, bool recurse) 1428 { 1429 struct mount *p; 1430 1431 for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) { 1432 if (!p->mnt_group_id && !IS_MNT_SHARED(p)) { 1433 int err = mnt_alloc_group_id(p); 1434 if (err) { 1435 cleanup_group_ids(mnt, p); 1436 return err; 1437 } 1438 } 1439 } 1440 1441 return 0; 1442 } 1443 1444 /* 1445 * @source_mnt : mount tree to be attached 1446 * @nd : place the mount tree @source_mnt is attached 1447 * @parent_nd : if non-null, detach the source_mnt from its parent and 1448 * store the parent mount and mountpoint dentry. 1449 * (done when source_mnt is moved) 1450 * 1451 * NOTE: in the table below explains the semantics when a source mount 1452 * of a given type is attached to a destination mount of a given type. 1453 * --------------------------------------------------------------------------- 1454 * | BIND MOUNT OPERATION | 1455 * |************************************************************************** 1456 * | source-->| shared | private | slave | unbindable | 1457 * | dest | | | | | 1458 * | | | | | | | 1459 * | v | | | | | 1460 * |************************************************************************** 1461 * | shared | shared (++) | shared (+) | shared(+++)| invalid | 1462 * | | | | | | 1463 * |non-shared| shared (+) | private | slave (*) | invalid | 1464 * *************************************************************************** 1465 * A bind operation clones the source mount and mounts the clone on the 1466 * destination mount. 1467 * 1468 * (++) the cloned mount is propagated to all the mounts in the propagation 1469 * tree of the destination mount and the cloned mount is added to 1470 * the peer group of the source mount. 1471 * (+) the cloned mount is created under the destination mount and is marked 1472 * as shared. The cloned mount is added to the peer group of the source 1473 * mount. 1474 * (+++) the mount is propagated to all the mounts in the propagation tree 1475 * of the destination mount and the cloned mount is made slave 1476 * of the same master as that of the source mount. The cloned mount 1477 * is marked as 'shared and slave'. 1478 * (*) the cloned mount is made a slave of the same master as that of the 1479 * source mount. 1480 * 1481 * --------------------------------------------------------------------------- 1482 * | MOVE MOUNT OPERATION | 1483 * |************************************************************************** 1484 * | source-->| shared | private | slave | unbindable | 1485 * | dest | | | | | 1486 * | | | | | | | 1487 * | v | | | | | 1488 * |************************************************************************** 1489 * | shared | shared (+) | shared (+) | shared(+++) | invalid | 1490 * | | | | | | 1491 * |non-shared| shared (+*) | private | slave (*) | unbindable | 1492 * *************************************************************************** 1493 * 1494 * (+) the mount is moved to the destination. And is then propagated to 1495 * all the mounts in the propagation tree of the destination mount. 1496 * (+*) the mount is moved to the destination. 1497 * (+++) the mount is moved to the destination and is then propagated to 1498 * all the mounts belonging to the destination mount's propagation tree. 1499 * the mount is marked as 'shared and slave'. 1500 * (*) the mount continues to be a slave at the new location. 1501 * 1502 * if the source mount is a tree, the operations explained above is 1503 * applied to each mount in the tree. 1504 * Must be called without spinlocks held, since this function can sleep 1505 * in allocations. 1506 */ 1507 static int attach_recursive_mnt(struct mount *source_mnt, 1508 struct path *path, struct path *parent_path) 1509 { 1510 LIST_HEAD(tree_list); 1511 struct mount *dest_mnt = real_mount(path->mnt); 1512 struct dentry *dest_dentry = path->dentry; 1513 struct mount *child, *p; 1514 int err; 1515 1516 if (IS_MNT_SHARED(dest_mnt)) { 1517 err = invent_group_ids(source_mnt, true); 1518 if (err) 1519 goto out; 1520 } 1521 err = propagate_mnt(dest_mnt, dest_dentry, source_mnt, &tree_list); 1522 if (err) 1523 goto out_cleanup_ids; 1524 1525 br_write_lock(&vfsmount_lock); 1526 1527 if (IS_MNT_SHARED(dest_mnt)) { 1528 for (p = source_mnt; p; p = next_mnt(p, source_mnt)) 1529 set_mnt_shared(p); 1530 } 1531 if (parent_path) { 1532 detach_mnt(source_mnt, parent_path); 1533 attach_mnt(source_mnt, path); 1534 touch_mnt_namespace(source_mnt->mnt_ns); 1535 } else { 1536 mnt_set_mountpoint(dest_mnt, dest_dentry, source_mnt); 1537 commit_tree(source_mnt); 1538 } 1539 1540 list_for_each_entry_safe(child, p, &tree_list, mnt_hash) { 1541 list_del_init(&child->mnt_hash); 1542 commit_tree(child); 1543 } 1544 br_write_unlock(&vfsmount_lock); 1545 1546 return 0; 1547 1548 out_cleanup_ids: 1549 if (IS_MNT_SHARED(dest_mnt)) 1550 cleanup_group_ids(source_mnt, NULL); 1551 out: 1552 return err; 1553 } 1554 1555 static int lock_mount(struct path *path) 1556 { 1557 struct vfsmount *mnt; 1558 retry: 1559 mutex_lock(&path->dentry->d_inode->i_mutex); 1560 if (unlikely(cant_mount(path->dentry))) { 1561 mutex_unlock(&path->dentry->d_inode->i_mutex); 1562 return -ENOENT; 1563 } 1564 down_write(&namespace_sem); 1565 mnt = lookup_mnt(path); 1566 if (likely(!mnt)) 1567 return 0; 1568 up_write(&namespace_sem); 1569 mutex_unlock(&path->dentry->d_inode->i_mutex); 1570 path_put(path); 1571 path->mnt = mnt; 1572 path->dentry = dget(mnt->mnt_root); 1573 goto retry; 1574 } 1575 1576 static void unlock_mount(struct path *path) 1577 { 1578 up_write(&namespace_sem); 1579 mutex_unlock(&path->dentry->d_inode->i_mutex); 1580 } 1581 1582 static int graft_tree(struct mount *mnt, struct path *path) 1583 { 1584 if (mnt->mnt.mnt_sb->s_flags & MS_NOUSER) 1585 return -EINVAL; 1586 1587 if (S_ISDIR(path->dentry->d_inode->i_mode) != 1588 S_ISDIR(mnt->mnt.mnt_root->d_inode->i_mode)) 1589 return -ENOTDIR; 1590 1591 if (d_unlinked(path->dentry)) 1592 return -ENOENT; 1593 1594 return attach_recursive_mnt(mnt, path, NULL); 1595 } 1596 1597 /* 1598 * Sanity check the flags to change_mnt_propagation. 1599 */ 1600 1601 static int flags_to_propagation_type(int flags) 1602 { 1603 int type = flags & ~(MS_REC | MS_SILENT); 1604 1605 /* Fail if any non-propagation flags are set */ 1606 if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE)) 1607 return 0; 1608 /* Only one propagation flag should be set */ 1609 if (!is_power_of_2(type)) 1610 return 0; 1611 return type; 1612 } 1613 1614 /* 1615 * recursively change the type of the mountpoint. 1616 */ 1617 static int do_change_type(struct path *path, int flag) 1618 { 1619 struct mount *m; 1620 struct mount *mnt = real_mount(path->mnt); 1621 int recurse = flag & MS_REC; 1622 int type; 1623 int err = 0; 1624 1625 if (path->dentry != path->mnt->mnt_root) 1626 return -EINVAL; 1627 1628 type = flags_to_propagation_type(flag); 1629 if (!type) 1630 return -EINVAL; 1631 1632 down_write(&namespace_sem); 1633 if (type == MS_SHARED) { 1634 err = invent_group_ids(mnt, recurse); 1635 if (err) 1636 goto out_unlock; 1637 } 1638 1639 br_write_lock(&vfsmount_lock); 1640 for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL)) 1641 change_mnt_propagation(m, type); 1642 br_write_unlock(&vfsmount_lock); 1643 1644 out_unlock: 1645 up_write(&namespace_sem); 1646 return err; 1647 } 1648 1649 /* 1650 * do loopback mount. 1651 */ 1652 static int do_loopback(struct path *path, const char *old_name, 1653 int recurse) 1654 { 1655 LIST_HEAD(umount_list); 1656 struct path old_path; 1657 struct mount *mnt = NULL, *old; 1658 int err; 1659 if (!old_name || !*old_name) 1660 return -EINVAL; 1661 err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path); 1662 if (err) 1663 return err; 1664 1665 err = -EINVAL; 1666 if (mnt_ns_loop(&old_path)) 1667 goto out; 1668 1669 err = lock_mount(path); 1670 if (err) 1671 goto out; 1672 1673 old = real_mount(old_path.mnt); 1674 1675 err = -EINVAL; 1676 if (IS_MNT_UNBINDABLE(old)) 1677 goto out2; 1678 1679 if (!check_mnt(real_mount(path->mnt)) || !check_mnt(old)) 1680 goto out2; 1681 1682 if (recurse) 1683 mnt = copy_tree(old, old_path.dentry, 0); 1684 else 1685 mnt = clone_mnt(old, old_path.dentry, 0); 1686 1687 if (IS_ERR(mnt)) { 1688 err = PTR_ERR(mnt); 1689 goto out; 1690 } 1691 1692 err = graft_tree(mnt, path); 1693 if (err) { 1694 br_write_lock(&vfsmount_lock); 1695 umount_tree(mnt, 0, &umount_list); 1696 br_write_unlock(&vfsmount_lock); 1697 } 1698 out2: 1699 unlock_mount(path); 1700 release_mounts(&umount_list); 1701 out: 1702 path_put(&old_path); 1703 return err; 1704 } 1705 1706 static int change_mount_flags(struct vfsmount *mnt, int ms_flags) 1707 { 1708 int error = 0; 1709 int readonly_request = 0; 1710 1711 if (ms_flags & MS_RDONLY) 1712 readonly_request = 1; 1713 if (readonly_request == __mnt_is_readonly(mnt)) 1714 return 0; 1715 1716 if (readonly_request) 1717 error = mnt_make_readonly(real_mount(mnt)); 1718 else 1719 __mnt_unmake_readonly(real_mount(mnt)); 1720 return error; 1721 } 1722 1723 /* 1724 * change filesystem flags. dir should be a physical root of filesystem. 1725 * If you've mounted a non-root directory somewhere and want to do remount 1726 * on it - tough luck. 1727 */ 1728 static int do_remount(struct path *path, int flags, int mnt_flags, 1729 void *data) 1730 { 1731 int err; 1732 struct super_block *sb = path->mnt->mnt_sb; 1733 struct mount *mnt = real_mount(path->mnt); 1734 1735 if (!check_mnt(mnt)) 1736 return -EINVAL; 1737 1738 if (path->dentry != path->mnt->mnt_root) 1739 return -EINVAL; 1740 1741 err = security_sb_remount(sb, data); 1742 if (err) 1743 return err; 1744 1745 down_write(&sb->s_umount); 1746 if (flags & MS_BIND) 1747 err = change_mount_flags(path->mnt, flags); 1748 else if (!capable(CAP_SYS_ADMIN)) 1749 err = -EPERM; 1750 else 1751 err = do_remount_sb(sb, flags, data, 0); 1752 if (!err) { 1753 br_write_lock(&vfsmount_lock); 1754 mnt_flags |= mnt->mnt.mnt_flags & MNT_PROPAGATION_MASK; 1755 mnt->mnt.mnt_flags = mnt_flags; 1756 br_write_unlock(&vfsmount_lock); 1757 } 1758 up_write(&sb->s_umount); 1759 if (!err) { 1760 br_write_lock(&vfsmount_lock); 1761 touch_mnt_namespace(mnt->mnt_ns); 1762 br_write_unlock(&vfsmount_lock); 1763 } 1764 return err; 1765 } 1766 1767 static inline int tree_contains_unbindable(struct mount *mnt) 1768 { 1769 struct mount *p; 1770 for (p = mnt; p; p = next_mnt(p, mnt)) { 1771 if (IS_MNT_UNBINDABLE(p)) 1772 return 1; 1773 } 1774 return 0; 1775 } 1776 1777 static int do_move_mount(struct path *path, const char *old_name) 1778 { 1779 struct path old_path, parent_path; 1780 struct mount *p; 1781 struct mount *old; 1782 int err; 1783 if (!old_name || !*old_name) 1784 return -EINVAL; 1785 err = kern_path(old_name, LOOKUP_FOLLOW, &old_path); 1786 if (err) 1787 return err; 1788 1789 err = lock_mount(path); 1790 if (err < 0) 1791 goto out; 1792 1793 old = real_mount(old_path.mnt); 1794 p = real_mount(path->mnt); 1795 1796 err = -EINVAL; 1797 if (!check_mnt(p) || !check_mnt(old)) 1798 goto out1; 1799 1800 if (d_unlinked(path->dentry)) 1801 goto out1; 1802 1803 err = -EINVAL; 1804 if (old_path.dentry != old_path.mnt->mnt_root) 1805 goto out1; 1806 1807 if (!mnt_has_parent(old)) 1808 goto out1; 1809 1810 if (S_ISDIR(path->dentry->d_inode->i_mode) != 1811 S_ISDIR(old_path.dentry->d_inode->i_mode)) 1812 goto out1; 1813 /* 1814 * Don't move a mount residing in a shared parent. 1815 */ 1816 if (IS_MNT_SHARED(old->mnt_parent)) 1817 goto out1; 1818 /* 1819 * Don't move a mount tree containing unbindable mounts to a destination 1820 * mount which is shared. 1821 */ 1822 if (IS_MNT_SHARED(p) && tree_contains_unbindable(old)) 1823 goto out1; 1824 err = -ELOOP; 1825 for (; mnt_has_parent(p); p = p->mnt_parent) 1826 if (p == old) 1827 goto out1; 1828 1829 err = attach_recursive_mnt(old, path, &parent_path); 1830 if (err) 1831 goto out1; 1832 1833 /* if the mount is moved, it should no longer be expire 1834 * automatically */ 1835 list_del_init(&old->mnt_expire); 1836 out1: 1837 unlock_mount(path); 1838 out: 1839 if (!err) 1840 path_put(&parent_path); 1841 path_put(&old_path); 1842 return err; 1843 } 1844 1845 static struct vfsmount *fs_set_subtype(struct vfsmount *mnt, const char *fstype) 1846 { 1847 int err; 1848 const char *subtype = strchr(fstype, '.'); 1849 if (subtype) { 1850 subtype++; 1851 err = -EINVAL; 1852 if (!subtype[0]) 1853 goto err; 1854 } else 1855 subtype = ""; 1856 1857 mnt->mnt_sb->s_subtype = kstrdup(subtype, GFP_KERNEL); 1858 err = -ENOMEM; 1859 if (!mnt->mnt_sb->s_subtype) 1860 goto err; 1861 return mnt; 1862 1863 err: 1864 mntput(mnt); 1865 return ERR_PTR(err); 1866 } 1867 1868 /* 1869 * add a mount into a namespace's mount tree 1870 */ 1871 static int do_add_mount(struct mount *newmnt, struct path *path, int mnt_flags) 1872 { 1873 int err; 1874 1875 mnt_flags &= ~(MNT_SHARED | MNT_WRITE_HOLD | MNT_INTERNAL); 1876 1877 err = lock_mount(path); 1878 if (err) 1879 return err; 1880 1881 err = -EINVAL; 1882 if (unlikely(!check_mnt(real_mount(path->mnt)))) { 1883 /* that's acceptable only for automounts done in private ns */ 1884 if (!(mnt_flags & MNT_SHRINKABLE)) 1885 goto unlock; 1886 /* ... and for those we'd better have mountpoint still alive */ 1887 if (!real_mount(path->mnt)->mnt_ns) 1888 goto unlock; 1889 } 1890 1891 /* Refuse the same filesystem on the same mount point */ 1892 err = -EBUSY; 1893 if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb && 1894 path->mnt->mnt_root == path->dentry) 1895 goto unlock; 1896 1897 err = -EINVAL; 1898 if (S_ISLNK(newmnt->mnt.mnt_root->d_inode->i_mode)) 1899 goto unlock; 1900 1901 newmnt->mnt.mnt_flags = mnt_flags; 1902 err = graft_tree(newmnt, path); 1903 1904 unlock: 1905 unlock_mount(path); 1906 return err; 1907 } 1908 1909 /* 1910 * create a new mount for userspace and request it to be added into the 1911 * namespace's tree 1912 */ 1913 static int do_new_mount(struct path *path, const char *fstype, int flags, 1914 int mnt_flags, const char *name, void *data) 1915 { 1916 struct file_system_type *type; 1917 struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns; 1918 struct vfsmount *mnt; 1919 int err; 1920 1921 if (!fstype) 1922 return -EINVAL; 1923 1924 type = get_fs_type(fstype); 1925 if (!type) 1926 return -ENODEV; 1927 1928 if (user_ns != &init_user_ns) { 1929 if (!(type->fs_flags & FS_USERNS_MOUNT)) { 1930 put_filesystem(type); 1931 return -EPERM; 1932 } 1933 /* Only in special cases allow devices from mounts 1934 * created outside the initial user namespace. 1935 */ 1936 if (!(type->fs_flags & FS_USERNS_DEV_MOUNT)) { 1937 flags |= MS_NODEV; 1938 mnt_flags |= MNT_NODEV; 1939 } 1940 } 1941 1942 mnt = vfs_kern_mount(type, flags, name, data); 1943 if (!IS_ERR(mnt) && (type->fs_flags & FS_HAS_SUBTYPE) && 1944 !mnt->mnt_sb->s_subtype) 1945 mnt = fs_set_subtype(mnt, fstype); 1946 1947 put_filesystem(type); 1948 if (IS_ERR(mnt)) 1949 return PTR_ERR(mnt); 1950 1951 err = do_add_mount(real_mount(mnt), path, mnt_flags); 1952 if (err) 1953 mntput(mnt); 1954 return err; 1955 } 1956 1957 int finish_automount(struct vfsmount *m, struct path *path) 1958 { 1959 struct mount *mnt = real_mount(m); 1960 int err; 1961 /* The new mount record should have at least 2 refs to prevent it being 1962 * expired before we get a chance to add it 1963 */ 1964 BUG_ON(mnt_get_count(mnt) < 2); 1965 1966 if (m->mnt_sb == path->mnt->mnt_sb && 1967 m->mnt_root == path->dentry) { 1968 err = -ELOOP; 1969 goto fail; 1970 } 1971 1972 err = do_add_mount(mnt, path, path->mnt->mnt_flags | MNT_SHRINKABLE); 1973 if (!err) 1974 return 0; 1975 fail: 1976 /* remove m from any expiration list it may be on */ 1977 if (!list_empty(&mnt->mnt_expire)) { 1978 down_write(&namespace_sem); 1979 br_write_lock(&vfsmount_lock); 1980 list_del_init(&mnt->mnt_expire); 1981 br_write_unlock(&vfsmount_lock); 1982 up_write(&namespace_sem); 1983 } 1984 mntput(m); 1985 mntput(m); 1986 return err; 1987 } 1988 1989 /** 1990 * mnt_set_expiry - Put a mount on an expiration list 1991 * @mnt: The mount to list. 1992 * @expiry_list: The list to add the mount to. 1993 */ 1994 void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list) 1995 { 1996 down_write(&namespace_sem); 1997 br_write_lock(&vfsmount_lock); 1998 1999 list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list); 2000 2001 br_write_unlock(&vfsmount_lock); 2002 up_write(&namespace_sem); 2003 } 2004 EXPORT_SYMBOL(mnt_set_expiry); 2005 2006 /* 2007 * process a list of expirable mountpoints with the intent of discarding any 2008 * mountpoints that aren't in use and haven't been touched since last we came 2009 * here 2010 */ 2011 void mark_mounts_for_expiry(struct list_head *mounts) 2012 { 2013 struct mount *mnt, *next; 2014 LIST_HEAD(graveyard); 2015 LIST_HEAD(umounts); 2016 2017 if (list_empty(mounts)) 2018 return; 2019 2020 down_write(&namespace_sem); 2021 br_write_lock(&vfsmount_lock); 2022 2023 /* extract from the expiration list every vfsmount that matches the 2024 * following criteria: 2025 * - only referenced by its parent vfsmount 2026 * - still marked for expiry (marked on the last call here; marks are 2027 * cleared by mntput()) 2028 */ 2029 list_for_each_entry_safe(mnt, next, mounts, mnt_expire) { 2030 if (!xchg(&mnt->mnt_expiry_mark, 1) || 2031 propagate_mount_busy(mnt, 1)) 2032 continue; 2033 list_move(&mnt->mnt_expire, &graveyard); 2034 } 2035 while (!list_empty(&graveyard)) { 2036 mnt = list_first_entry(&graveyard, struct mount, mnt_expire); 2037 touch_mnt_namespace(mnt->mnt_ns); 2038 umount_tree(mnt, 1, &umounts); 2039 } 2040 br_write_unlock(&vfsmount_lock); 2041 up_write(&namespace_sem); 2042 2043 release_mounts(&umounts); 2044 } 2045 2046 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry); 2047 2048 /* 2049 * Ripoff of 'select_parent()' 2050 * 2051 * search the list of submounts for a given mountpoint, and move any 2052 * shrinkable submounts to the 'graveyard' list. 2053 */ 2054 static int select_submounts(struct mount *parent, struct list_head *graveyard) 2055 { 2056 struct mount *this_parent = parent; 2057 struct list_head *next; 2058 int found = 0; 2059 2060 repeat: 2061 next = this_parent->mnt_mounts.next; 2062 resume: 2063 while (next != &this_parent->mnt_mounts) { 2064 struct list_head *tmp = next; 2065 struct mount *mnt = list_entry(tmp, struct mount, mnt_child); 2066 2067 next = tmp->next; 2068 if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE)) 2069 continue; 2070 /* 2071 * Descend a level if the d_mounts list is non-empty. 2072 */ 2073 if (!list_empty(&mnt->mnt_mounts)) { 2074 this_parent = mnt; 2075 goto repeat; 2076 } 2077 2078 if (!propagate_mount_busy(mnt, 1)) { 2079 list_move_tail(&mnt->mnt_expire, graveyard); 2080 found++; 2081 } 2082 } 2083 /* 2084 * All done at this level ... ascend and resume the search 2085 */ 2086 if (this_parent != parent) { 2087 next = this_parent->mnt_child.next; 2088 this_parent = this_parent->mnt_parent; 2089 goto resume; 2090 } 2091 return found; 2092 } 2093 2094 /* 2095 * process a list of expirable mountpoints with the intent of discarding any 2096 * submounts of a specific parent mountpoint 2097 * 2098 * vfsmount_lock must be held for write 2099 */ 2100 static void shrink_submounts(struct mount *mnt, struct list_head *umounts) 2101 { 2102 LIST_HEAD(graveyard); 2103 struct mount *m; 2104 2105 /* extract submounts of 'mountpoint' from the expiration list */ 2106 while (select_submounts(mnt, &graveyard)) { 2107 while (!list_empty(&graveyard)) { 2108 m = list_first_entry(&graveyard, struct mount, 2109 mnt_expire); 2110 touch_mnt_namespace(m->mnt_ns); 2111 umount_tree(m, 1, umounts); 2112 } 2113 } 2114 } 2115 2116 /* 2117 * Some copy_from_user() implementations do not return the exact number of 2118 * bytes remaining to copy on a fault. But copy_mount_options() requires that. 2119 * Note that this function differs from copy_from_user() in that it will oops 2120 * on bad values of `to', rather than returning a short copy. 2121 */ 2122 static long exact_copy_from_user(void *to, const void __user * from, 2123 unsigned long n) 2124 { 2125 char *t = to; 2126 const char __user *f = from; 2127 char c; 2128 2129 if (!access_ok(VERIFY_READ, from, n)) 2130 return n; 2131 2132 while (n) { 2133 if (__get_user(c, f)) { 2134 memset(t, 0, n); 2135 break; 2136 } 2137 *t++ = c; 2138 f++; 2139 n--; 2140 } 2141 return n; 2142 } 2143 2144 int copy_mount_options(const void __user * data, unsigned long *where) 2145 { 2146 int i; 2147 unsigned long page; 2148 unsigned long size; 2149 2150 *where = 0; 2151 if (!data) 2152 return 0; 2153 2154 if (!(page = __get_free_page(GFP_KERNEL))) 2155 return -ENOMEM; 2156 2157 /* We only care that *some* data at the address the user 2158 * gave us is valid. Just in case, we'll zero 2159 * the remainder of the page. 2160 */ 2161 /* copy_from_user cannot cross TASK_SIZE ! */ 2162 size = TASK_SIZE - (unsigned long)data; 2163 if (size > PAGE_SIZE) 2164 size = PAGE_SIZE; 2165 2166 i = size - exact_copy_from_user((void *)page, data, size); 2167 if (!i) { 2168 free_page(page); 2169 return -EFAULT; 2170 } 2171 if (i != PAGE_SIZE) 2172 memset((char *)page + i, 0, PAGE_SIZE - i); 2173 *where = page; 2174 return 0; 2175 } 2176 2177 int copy_mount_string(const void __user *data, char **where) 2178 { 2179 char *tmp; 2180 2181 if (!data) { 2182 *where = NULL; 2183 return 0; 2184 } 2185 2186 tmp = strndup_user(data, PAGE_SIZE); 2187 if (IS_ERR(tmp)) 2188 return PTR_ERR(tmp); 2189 2190 *where = tmp; 2191 return 0; 2192 } 2193 2194 /* 2195 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to 2196 * be given to the mount() call (ie: read-only, no-dev, no-suid etc). 2197 * 2198 * data is a (void *) that can point to any structure up to 2199 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent 2200 * information (or be NULL). 2201 * 2202 * Pre-0.97 versions of mount() didn't have a flags word. 2203 * When the flags word was introduced its top half was required 2204 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9. 2205 * Therefore, if this magic number is present, it carries no information 2206 * and must be discarded. 2207 */ 2208 long do_mount(const char *dev_name, const char *dir_name, 2209 const char *type_page, unsigned long flags, void *data_page) 2210 { 2211 struct path path; 2212 int retval = 0; 2213 int mnt_flags = 0; 2214 2215 /* Discard magic */ 2216 if ((flags & MS_MGC_MSK) == MS_MGC_VAL) 2217 flags &= ~MS_MGC_MSK; 2218 2219 /* Basic sanity checks */ 2220 2221 if (!dir_name || !*dir_name || !memchr(dir_name, 0, PAGE_SIZE)) 2222 return -EINVAL; 2223 2224 if (data_page) 2225 ((char *)data_page)[PAGE_SIZE - 1] = 0; 2226 2227 /* ... and get the mountpoint */ 2228 retval = kern_path(dir_name, LOOKUP_FOLLOW, &path); 2229 if (retval) 2230 return retval; 2231 2232 retval = security_sb_mount(dev_name, &path, 2233 type_page, flags, data_page); 2234 if (retval) 2235 goto dput_out; 2236 2237 if (!may_mount()) 2238 return -EPERM; 2239 2240 /* Default to relatime unless overriden */ 2241 if (!(flags & MS_NOATIME)) 2242 mnt_flags |= MNT_RELATIME; 2243 2244 /* Separate the per-mountpoint flags */ 2245 if (flags & MS_NOSUID) 2246 mnt_flags |= MNT_NOSUID; 2247 if (flags & MS_NODEV) 2248 mnt_flags |= MNT_NODEV; 2249 if (flags & MS_NOEXEC) 2250 mnt_flags |= MNT_NOEXEC; 2251 if (flags & MS_NOATIME) 2252 mnt_flags |= MNT_NOATIME; 2253 if (flags & MS_NODIRATIME) 2254 mnt_flags |= MNT_NODIRATIME; 2255 if (flags & MS_STRICTATIME) 2256 mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME); 2257 if (flags & MS_RDONLY) 2258 mnt_flags |= MNT_READONLY; 2259 2260 flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE | MS_BORN | 2261 MS_NOATIME | MS_NODIRATIME | MS_RELATIME| MS_KERNMOUNT | 2262 MS_STRICTATIME); 2263 2264 if (flags & MS_REMOUNT) 2265 retval = do_remount(&path, flags & ~MS_REMOUNT, mnt_flags, 2266 data_page); 2267 else if (flags & MS_BIND) 2268 retval = do_loopback(&path, dev_name, flags & MS_REC); 2269 else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE)) 2270 retval = do_change_type(&path, flags); 2271 else if (flags & MS_MOVE) 2272 retval = do_move_mount(&path, dev_name); 2273 else 2274 retval = do_new_mount(&path, type_page, flags, mnt_flags, 2275 dev_name, data_page); 2276 dput_out: 2277 path_put(&path); 2278 return retval; 2279 } 2280 2281 static void free_mnt_ns(struct mnt_namespace *ns) 2282 { 2283 proc_free_inum(ns->proc_inum); 2284 put_user_ns(ns->user_ns); 2285 kfree(ns); 2286 } 2287 2288 /* 2289 * Assign a sequence number so we can detect when we attempt to bind 2290 * mount a reference to an older mount namespace into the current 2291 * mount namespace, preventing reference counting loops. A 64bit 2292 * number incrementing at 10Ghz will take 12,427 years to wrap which 2293 * is effectively never, so we can ignore the possibility. 2294 */ 2295 static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1); 2296 2297 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns) 2298 { 2299 struct mnt_namespace *new_ns; 2300 int ret; 2301 2302 new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL); 2303 if (!new_ns) 2304 return ERR_PTR(-ENOMEM); 2305 ret = proc_alloc_inum(&new_ns->proc_inum); 2306 if (ret) { 2307 kfree(new_ns); 2308 return ERR_PTR(ret); 2309 } 2310 new_ns->seq = atomic64_add_return(1, &mnt_ns_seq); 2311 atomic_set(&new_ns->count, 1); 2312 new_ns->root = NULL; 2313 INIT_LIST_HEAD(&new_ns->list); 2314 init_waitqueue_head(&new_ns->poll); 2315 new_ns->event = 0; 2316 new_ns->user_ns = get_user_ns(user_ns); 2317 return new_ns; 2318 } 2319 2320 /* 2321 * Allocate a new namespace structure and populate it with contents 2322 * copied from the namespace of the passed in task structure. 2323 */ 2324 static struct mnt_namespace *dup_mnt_ns(struct mnt_namespace *mnt_ns, 2325 struct user_namespace *user_ns, struct fs_struct *fs) 2326 { 2327 struct mnt_namespace *new_ns; 2328 struct vfsmount *rootmnt = NULL, *pwdmnt = NULL; 2329 struct mount *p, *q; 2330 struct mount *old = mnt_ns->root; 2331 struct mount *new; 2332 int copy_flags; 2333 2334 new_ns = alloc_mnt_ns(user_ns); 2335 if (IS_ERR(new_ns)) 2336 return new_ns; 2337 2338 down_write(&namespace_sem); 2339 /* First pass: copy the tree topology */ 2340 copy_flags = CL_COPY_ALL | CL_EXPIRE; 2341 if (user_ns != mnt_ns->user_ns) 2342 copy_flags |= CL_SHARED_TO_SLAVE; 2343 new = copy_tree(old, old->mnt.mnt_root, copy_flags); 2344 if (IS_ERR(new)) { 2345 up_write(&namespace_sem); 2346 free_mnt_ns(new_ns); 2347 return ERR_CAST(new); 2348 } 2349 new_ns->root = new; 2350 br_write_lock(&vfsmount_lock); 2351 list_add_tail(&new_ns->list, &new->mnt_list); 2352 br_write_unlock(&vfsmount_lock); 2353 2354 /* 2355 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts 2356 * as belonging to new namespace. We have already acquired a private 2357 * fs_struct, so tsk->fs->lock is not needed. 2358 */ 2359 p = old; 2360 q = new; 2361 while (p) { 2362 q->mnt_ns = new_ns; 2363 if (fs) { 2364 if (&p->mnt == fs->root.mnt) { 2365 fs->root.mnt = mntget(&q->mnt); 2366 rootmnt = &p->mnt; 2367 } 2368 if (&p->mnt == fs->pwd.mnt) { 2369 fs->pwd.mnt = mntget(&q->mnt); 2370 pwdmnt = &p->mnt; 2371 } 2372 } 2373 p = next_mnt(p, old); 2374 q = next_mnt(q, new); 2375 } 2376 up_write(&namespace_sem); 2377 2378 if (rootmnt) 2379 mntput(rootmnt); 2380 if (pwdmnt) 2381 mntput(pwdmnt); 2382 2383 return new_ns; 2384 } 2385 2386 struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns, 2387 struct user_namespace *user_ns, struct fs_struct *new_fs) 2388 { 2389 struct mnt_namespace *new_ns; 2390 2391 BUG_ON(!ns); 2392 get_mnt_ns(ns); 2393 2394 if (!(flags & CLONE_NEWNS)) 2395 return ns; 2396 2397 new_ns = dup_mnt_ns(ns, user_ns, new_fs); 2398 2399 put_mnt_ns(ns); 2400 return new_ns; 2401 } 2402 2403 /** 2404 * create_mnt_ns - creates a private namespace and adds a root filesystem 2405 * @mnt: pointer to the new root filesystem mountpoint 2406 */ 2407 static struct mnt_namespace *create_mnt_ns(struct vfsmount *m) 2408 { 2409 struct mnt_namespace *new_ns = alloc_mnt_ns(&init_user_ns); 2410 if (!IS_ERR(new_ns)) { 2411 struct mount *mnt = real_mount(m); 2412 mnt->mnt_ns = new_ns; 2413 new_ns->root = mnt; 2414 list_add(&new_ns->list, &mnt->mnt_list); 2415 } else { 2416 mntput(m); 2417 } 2418 return new_ns; 2419 } 2420 2421 struct dentry *mount_subtree(struct vfsmount *mnt, const char *name) 2422 { 2423 struct mnt_namespace *ns; 2424 struct super_block *s; 2425 struct path path; 2426 int err; 2427 2428 ns = create_mnt_ns(mnt); 2429 if (IS_ERR(ns)) 2430 return ERR_CAST(ns); 2431 2432 err = vfs_path_lookup(mnt->mnt_root, mnt, 2433 name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path); 2434 2435 put_mnt_ns(ns); 2436 2437 if (err) 2438 return ERR_PTR(err); 2439 2440 /* trade a vfsmount reference for active sb one */ 2441 s = path.mnt->mnt_sb; 2442 atomic_inc(&s->s_active); 2443 mntput(path.mnt); 2444 /* lock the sucker */ 2445 down_write(&s->s_umount); 2446 /* ... and return the root of (sub)tree on it */ 2447 return path.dentry; 2448 } 2449 EXPORT_SYMBOL(mount_subtree); 2450 2451 SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name, 2452 char __user *, type, unsigned long, flags, void __user *, data) 2453 { 2454 int ret; 2455 char *kernel_type; 2456 struct filename *kernel_dir; 2457 char *kernel_dev; 2458 unsigned long data_page; 2459 2460 ret = copy_mount_string(type, &kernel_type); 2461 if (ret < 0) 2462 goto out_type; 2463 2464 kernel_dir = getname(dir_name); 2465 if (IS_ERR(kernel_dir)) { 2466 ret = PTR_ERR(kernel_dir); 2467 goto out_dir; 2468 } 2469 2470 ret = copy_mount_string(dev_name, &kernel_dev); 2471 if (ret < 0) 2472 goto out_dev; 2473 2474 ret = copy_mount_options(data, &data_page); 2475 if (ret < 0) 2476 goto out_data; 2477 2478 ret = do_mount(kernel_dev, kernel_dir->name, kernel_type, flags, 2479 (void *) data_page); 2480 2481 free_page(data_page); 2482 out_data: 2483 kfree(kernel_dev); 2484 out_dev: 2485 putname(kernel_dir); 2486 out_dir: 2487 kfree(kernel_type); 2488 out_type: 2489 return ret; 2490 } 2491 2492 /* 2493 * Return true if path is reachable from root 2494 * 2495 * namespace_sem or vfsmount_lock is held 2496 */ 2497 bool is_path_reachable(struct mount *mnt, struct dentry *dentry, 2498 const struct path *root) 2499 { 2500 while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) { 2501 dentry = mnt->mnt_mountpoint; 2502 mnt = mnt->mnt_parent; 2503 } 2504 return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry); 2505 } 2506 2507 int path_is_under(struct path *path1, struct path *path2) 2508 { 2509 int res; 2510 br_read_lock(&vfsmount_lock); 2511 res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2); 2512 br_read_unlock(&vfsmount_lock); 2513 return res; 2514 } 2515 EXPORT_SYMBOL(path_is_under); 2516 2517 /* 2518 * pivot_root Semantics: 2519 * Moves the root file system of the current process to the directory put_old, 2520 * makes new_root as the new root file system of the current process, and sets 2521 * root/cwd of all processes which had them on the current root to new_root. 2522 * 2523 * Restrictions: 2524 * The new_root and put_old must be directories, and must not be on the 2525 * same file system as the current process root. The put_old must be 2526 * underneath new_root, i.e. adding a non-zero number of /.. to the string 2527 * pointed to by put_old must yield the same directory as new_root. No other 2528 * file system may be mounted on put_old. After all, new_root is a mountpoint. 2529 * 2530 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem. 2531 * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives 2532 * in this situation. 2533 * 2534 * Notes: 2535 * - we don't move root/cwd if they are not at the root (reason: if something 2536 * cared enough to change them, it's probably wrong to force them elsewhere) 2537 * - it's okay to pick a root that isn't the root of a file system, e.g. 2538 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint, 2539 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root 2540 * first. 2541 */ 2542 SYSCALL_DEFINE2(pivot_root, const char __user *, new_root, 2543 const char __user *, put_old) 2544 { 2545 struct path new, old, parent_path, root_parent, root; 2546 struct mount *new_mnt, *root_mnt; 2547 int error; 2548 2549 if (!may_mount()) 2550 return -EPERM; 2551 2552 error = user_path_dir(new_root, &new); 2553 if (error) 2554 goto out0; 2555 2556 error = user_path_dir(put_old, &old); 2557 if (error) 2558 goto out1; 2559 2560 error = security_sb_pivotroot(&old, &new); 2561 if (error) 2562 goto out2; 2563 2564 get_fs_root(current->fs, &root); 2565 error = lock_mount(&old); 2566 if (error) 2567 goto out3; 2568 2569 error = -EINVAL; 2570 new_mnt = real_mount(new.mnt); 2571 root_mnt = real_mount(root.mnt); 2572 if (IS_MNT_SHARED(real_mount(old.mnt)) || 2573 IS_MNT_SHARED(new_mnt->mnt_parent) || 2574 IS_MNT_SHARED(root_mnt->mnt_parent)) 2575 goto out4; 2576 if (!check_mnt(root_mnt) || !check_mnt(new_mnt)) 2577 goto out4; 2578 error = -ENOENT; 2579 if (d_unlinked(new.dentry)) 2580 goto out4; 2581 if (d_unlinked(old.dentry)) 2582 goto out4; 2583 error = -EBUSY; 2584 if (new.mnt == root.mnt || 2585 old.mnt == root.mnt) 2586 goto out4; /* loop, on the same file system */ 2587 error = -EINVAL; 2588 if (root.mnt->mnt_root != root.dentry) 2589 goto out4; /* not a mountpoint */ 2590 if (!mnt_has_parent(root_mnt)) 2591 goto out4; /* not attached */ 2592 if (new.mnt->mnt_root != new.dentry) 2593 goto out4; /* not a mountpoint */ 2594 if (!mnt_has_parent(new_mnt)) 2595 goto out4; /* not attached */ 2596 /* make sure we can reach put_old from new_root */ 2597 if (!is_path_reachable(real_mount(old.mnt), old.dentry, &new)) 2598 goto out4; 2599 br_write_lock(&vfsmount_lock); 2600 detach_mnt(new_mnt, &parent_path); 2601 detach_mnt(root_mnt, &root_parent); 2602 /* mount old root on put_old */ 2603 attach_mnt(root_mnt, &old); 2604 /* mount new_root on / */ 2605 attach_mnt(new_mnt, &root_parent); 2606 touch_mnt_namespace(current->nsproxy->mnt_ns); 2607 br_write_unlock(&vfsmount_lock); 2608 chroot_fs_refs(&root, &new); 2609 error = 0; 2610 out4: 2611 unlock_mount(&old); 2612 if (!error) { 2613 path_put(&root_parent); 2614 path_put(&parent_path); 2615 } 2616 out3: 2617 path_put(&root); 2618 out2: 2619 path_put(&old); 2620 out1: 2621 path_put(&new); 2622 out0: 2623 return error; 2624 } 2625 2626 static void __init init_mount_tree(void) 2627 { 2628 struct vfsmount *mnt; 2629 struct mnt_namespace *ns; 2630 struct path root; 2631 struct file_system_type *type; 2632 2633 type = get_fs_type("rootfs"); 2634 if (!type) 2635 panic("Can't find rootfs type"); 2636 mnt = vfs_kern_mount(type, 0, "rootfs", NULL); 2637 put_filesystem(type); 2638 if (IS_ERR(mnt)) 2639 panic("Can't create rootfs"); 2640 2641 ns = create_mnt_ns(mnt); 2642 if (IS_ERR(ns)) 2643 panic("Can't allocate initial namespace"); 2644 2645 init_task.nsproxy->mnt_ns = ns; 2646 get_mnt_ns(ns); 2647 2648 root.mnt = mnt; 2649 root.dentry = mnt->mnt_root; 2650 2651 set_fs_pwd(current->fs, &root); 2652 set_fs_root(current->fs, &root); 2653 } 2654 2655 void __init mnt_init(void) 2656 { 2657 unsigned u; 2658 int err; 2659 2660 init_rwsem(&namespace_sem); 2661 2662 mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount), 2663 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL); 2664 2665 mount_hashtable = (struct list_head *)__get_free_page(GFP_ATOMIC); 2666 2667 if (!mount_hashtable) 2668 panic("Failed to allocate mount hash table\n"); 2669 2670 printk(KERN_INFO "Mount-cache hash table entries: %lu\n", HASH_SIZE); 2671 2672 for (u = 0; u < HASH_SIZE; u++) 2673 INIT_LIST_HEAD(&mount_hashtable[u]); 2674 2675 br_lock_init(&vfsmount_lock); 2676 2677 err = sysfs_init(); 2678 if (err) 2679 printk(KERN_WARNING "%s: sysfs_init error: %d\n", 2680 __func__, err); 2681 fs_kobj = kobject_create_and_add("fs", NULL); 2682 if (!fs_kobj) 2683 printk(KERN_WARNING "%s: kobj create error\n", __func__); 2684 init_rootfs(); 2685 init_mount_tree(); 2686 } 2687 2688 void put_mnt_ns(struct mnt_namespace *ns) 2689 { 2690 LIST_HEAD(umount_list); 2691 2692 if (!atomic_dec_and_test(&ns->count)) 2693 return; 2694 down_write(&namespace_sem); 2695 br_write_lock(&vfsmount_lock); 2696 umount_tree(ns->root, 0, &umount_list); 2697 br_write_unlock(&vfsmount_lock); 2698 up_write(&namespace_sem); 2699 release_mounts(&umount_list); 2700 free_mnt_ns(ns); 2701 } 2702 2703 struct vfsmount *kern_mount_data(struct file_system_type *type, void *data) 2704 { 2705 struct vfsmount *mnt; 2706 mnt = vfs_kern_mount(type, MS_KERNMOUNT, type->name, data); 2707 if (!IS_ERR(mnt)) { 2708 /* 2709 * it is a longterm mount, don't release mnt until 2710 * we unmount before file sys is unregistered 2711 */ 2712 real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL; 2713 } 2714 return mnt; 2715 } 2716 EXPORT_SYMBOL_GPL(kern_mount_data); 2717 2718 void kern_unmount(struct vfsmount *mnt) 2719 { 2720 /* release long term mount so mount point can be released */ 2721 if (!IS_ERR_OR_NULL(mnt)) { 2722 br_write_lock(&vfsmount_lock); 2723 real_mount(mnt)->mnt_ns = NULL; 2724 br_write_unlock(&vfsmount_lock); 2725 mntput(mnt); 2726 } 2727 } 2728 EXPORT_SYMBOL(kern_unmount); 2729 2730 bool our_mnt(struct vfsmount *mnt) 2731 { 2732 return check_mnt(real_mount(mnt)); 2733 } 2734 2735 static void *mntns_get(struct task_struct *task) 2736 { 2737 struct mnt_namespace *ns = NULL; 2738 struct nsproxy *nsproxy; 2739 2740 rcu_read_lock(); 2741 nsproxy = task_nsproxy(task); 2742 if (nsproxy) { 2743 ns = nsproxy->mnt_ns; 2744 get_mnt_ns(ns); 2745 } 2746 rcu_read_unlock(); 2747 2748 return ns; 2749 } 2750 2751 static void mntns_put(void *ns) 2752 { 2753 put_mnt_ns(ns); 2754 } 2755 2756 static int mntns_install(struct nsproxy *nsproxy, void *ns) 2757 { 2758 struct fs_struct *fs = current->fs; 2759 struct mnt_namespace *mnt_ns = ns; 2760 struct path root; 2761 2762 if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) || 2763 !nsown_capable(CAP_SYS_CHROOT) || 2764 !nsown_capable(CAP_SYS_ADMIN)) 2765 return -EPERM; 2766 2767 if (fs->users != 1) 2768 return -EINVAL; 2769 2770 get_mnt_ns(mnt_ns); 2771 put_mnt_ns(nsproxy->mnt_ns); 2772 nsproxy->mnt_ns = mnt_ns; 2773 2774 /* Find the root */ 2775 root.mnt = &mnt_ns->root->mnt; 2776 root.dentry = mnt_ns->root->mnt.mnt_root; 2777 path_get(&root); 2778 while(d_mountpoint(root.dentry) && follow_down_one(&root)) 2779 ; 2780 2781 /* Update the pwd and root */ 2782 set_fs_pwd(fs, &root); 2783 set_fs_root(fs, &root); 2784 2785 path_put(&root); 2786 return 0; 2787 } 2788 2789 static unsigned int mntns_inum(void *ns) 2790 { 2791 struct mnt_namespace *mnt_ns = ns; 2792 return mnt_ns->proc_inum; 2793 } 2794 2795 const struct proc_ns_operations mntns_operations = { 2796 .name = "mnt", 2797 .type = CLONE_NEWNS, 2798 .get = mntns_get, 2799 .put = mntns_put, 2800 .install = mntns_install, 2801 .inum = mntns_inum, 2802 }; 2803