xref: /openbmc/linux/fs/namespace.c (revision 94c7b6fc)
1 /*
2  *  linux/fs/namespace.c
3  *
4  * (C) Copyright Al Viro 2000, 2001
5  *	Released under GPL v2.
6  *
7  * Based on code from fs/super.c, copyright Linus Torvalds and others.
8  * Heavily rewritten.
9  */
10 
11 #include <linux/syscalls.h>
12 #include <linux/export.h>
13 #include <linux/capability.h>
14 #include <linux/mnt_namespace.h>
15 #include <linux/user_namespace.h>
16 #include <linux/namei.h>
17 #include <linux/security.h>
18 #include <linux/idr.h>
19 #include <linux/acct.h>		/* acct_auto_close_mnt */
20 #include <linux/init.h>		/* init_rootfs */
21 #include <linux/fs_struct.h>	/* get_fs_root et.al. */
22 #include <linux/fsnotify.h>	/* fsnotify_vfsmount_delete */
23 #include <linux/uaccess.h>
24 #include <linux/proc_ns.h>
25 #include <linux/magic.h>
26 #include <linux/bootmem.h>
27 #include "pnode.h"
28 #include "internal.h"
29 
30 static unsigned int m_hash_mask __read_mostly;
31 static unsigned int m_hash_shift __read_mostly;
32 static unsigned int mp_hash_mask __read_mostly;
33 static unsigned int mp_hash_shift __read_mostly;
34 
35 static __initdata unsigned long mhash_entries;
36 static int __init set_mhash_entries(char *str)
37 {
38 	if (!str)
39 		return 0;
40 	mhash_entries = simple_strtoul(str, &str, 0);
41 	return 1;
42 }
43 __setup("mhash_entries=", set_mhash_entries);
44 
45 static __initdata unsigned long mphash_entries;
46 static int __init set_mphash_entries(char *str)
47 {
48 	if (!str)
49 		return 0;
50 	mphash_entries = simple_strtoul(str, &str, 0);
51 	return 1;
52 }
53 __setup("mphash_entries=", set_mphash_entries);
54 
55 static u64 event;
56 static DEFINE_IDA(mnt_id_ida);
57 static DEFINE_IDA(mnt_group_ida);
58 static DEFINE_SPINLOCK(mnt_id_lock);
59 static int mnt_id_start = 0;
60 static int mnt_group_start = 1;
61 
62 static struct hlist_head *mount_hashtable __read_mostly;
63 static struct hlist_head *mountpoint_hashtable __read_mostly;
64 static struct kmem_cache *mnt_cache __read_mostly;
65 static DECLARE_RWSEM(namespace_sem);
66 
67 /* /sys/fs */
68 struct kobject *fs_kobj;
69 EXPORT_SYMBOL_GPL(fs_kobj);
70 
71 /*
72  * vfsmount lock may be taken for read to prevent changes to the
73  * vfsmount hash, ie. during mountpoint lookups or walking back
74  * up the tree.
75  *
76  * It should be taken for write in all cases where the vfsmount
77  * tree or hash is modified or when a vfsmount structure is modified.
78  */
79 __cacheline_aligned_in_smp DEFINE_SEQLOCK(mount_lock);
80 
81 static inline struct hlist_head *m_hash(struct vfsmount *mnt, struct dentry *dentry)
82 {
83 	unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
84 	tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
85 	tmp = tmp + (tmp >> m_hash_shift);
86 	return &mount_hashtable[tmp & m_hash_mask];
87 }
88 
89 static inline struct hlist_head *mp_hash(struct dentry *dentry)
90 {
91 	unsigned long tmp = ((unsigned long)dentry / L1_CACHE_BYTES);
92 	tmp = tmp + (tmp >> mp_hash_shift);
93 	return &mountpoint_hashtable[tmp & mp_hash_mask];
94 }
95 
96 /*
97  * allocation is serialized by namespace_sem, but we need the spinlock to
98  * serialize with freeing.
99  */
100 static int mnt_alloc_id(struct mount *mnt)
101 {
102 	int res;
103 
104 retry:
105 	ida_pre_get(&mnt_id_ida, GFP_KERNEL);
106 	spin_lock(&mnt_id_lock);
107 	res = ida_get_new_above(&mnt_id_ida, mnt_id_start, &mnt->mnt_id);
108 	if (!res)
109 		mnt_id_start = mnt->mnt_id + 1;
110 	spin_unlock(&mnt_id_lock);
111 	if (res == -EAGAIN)
112 		goto retry;
113 
114 	return res;
115 }
116 
117 static void mnt_free_id(struct mount *mnt)
118 {
119 	int id = mnt->mnt_id;
120 	spin_lock(&mnt_id_lock);
121 	ida_remove(&mnt_id_ida, id);
122 	if (mnt_id_start > id)
123 		mnt_id_start = id;
124 	spin_unlock(&mnt_id_lock);
125 }
126 
127 /*
128  * Allocate a new peer group ID
129  *
130  * mnt_group_ida is protected by namespace_sem
131  */
132 static int mnt_alloc_group_id(struct mount *mnt)
133 {
134 	int res;
135 
136 	if (!ida_pre_get(&mnt_group_ida, GFP_KERNEL))
137 		return -ENOMEM;
138 
139 	res = ida_get_new_above(&mnt_group_ida,
140 				mnt_group_start,
141 				&mnt->mnt_group_id);
142 	if (!res)
143 		mnt_group_start = mnt->mnt_group_id + 1;
144 
145 	return res;
146 }
147 
148 /*
149  * Release a peer group ID
150  */
151 void mnt_release_group_id(struct mount *mnt)
152 {
153 	int id = mnt->mnt_group_id;
154 	ida_remove(&mnt_group_ida, id);
155 	if (mnt_group_start > id)
156 		mnt_group_start = id;
157 	mnt->mnt_group_id = 0;
158 }
159 
160 /*
161  * vfsmount lock must be held for read
162  */
163 static inline void mnt_add_count(struct mount *mnt, int n)
164 {
165 #ifdef CONFIG_SMP
166 	this_cpu_add(mnt->mnt_pcp->mnt_count, n);
167 #else
168 	preempt_disable();
169 	mnt->mnt_count += n;
170 	preempt_enable();
171 #endif
172 }
173 
174 /*
175  * vfsmount lock must be held for write
176  */
177 unsigned int mnt_get_count(struct mount *mnt)
178 {
179 #ifdef CONFIG_SMP
180 	unsigned int count = 0;
181 	int cpu;
182 
183 	for_each_possible_cpu(cpu) {
184 		count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
185 	}
186 
187 	return count;
188 #else
189 	return mnt->mnt_count;
190 #endif
191 }
192 
193 static struct mount *alloc_vfsmnt(const char *name)
194 {
195 	struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
196 	if (mnt) {
197 		int err;
198 
199 		err = mnt_alloc_id(mnt);
200 		if (err)
201 			goto out_free_cache;
202 
203 		if (name) {
204 			mnt->mnt_devname = kstrdup(name, GFP_KERNEL);
205 			if (!mnt->mnt_devname)
206 				goto out_free_id;
207 		}
208 
209 #ifdef CONFIG_SMP
210 		mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
211 		if (!mnt->mnt_pcp)
212 			goto out_free_devname;
213 
214 		this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
215 #else
216 		mnt->mnt_count = 1;
217 		mnt->mnt_writers = 0;
218 #endif
219 
220 		INIT_HLIST_NODE(&mnt->mnt_hash);
221 		INIT_LIST_HEAD(&mnt->mnt_child);
222 		INIT_LIST_HEAD(&mnt->mnt_mounts);
223 		INIT_LIST_HEAD(&mnt->mnt_list);
224 		INIT_LIST_HEAD(&mnt->mnt_expire);
225 		INIT_LIST_HEAD(&mnt->mnt_share);
226 		INIT_LIST_HEAD(&mnt->mnt_slave_list);
227 		INIT_LIST_HEAD(&mnt->mnt_slave);
228 #ifdef CONFIG_FSNOTIFY
229 		INIT_HLIST_HEAD(&mnt->mnt_fsnotify_marks);
230 #endif
231 	}
232 	return mnt;
233 
234 #ifdef CONFIG_SMP
235 out_free_devname:
236 	kfree(mnt->mnt_devname);
237 #endif
238 out_free_id:
239 	mnt_free_id(mnt);
240 out_free_cache:
241 	kmem_cache_free(mnt_cache, mnt);
242 	return NULL;
243 }
244 
245 /*
246  * Most r/o checks on a fs are for operations that take
247  * discrete amounts of time, like a write() or unlink().
248  * We must keep track of when those operations start
249  * (for permission checks) and when they end, so that
250  * we can determine when writes are able to occur to
251  * a filesystem.
252  */
253 /*
254  * __mnt_is_readonly: check whether a mount is read-only
255  * @mnt: the mount to check for its write status
256  *
257  * This shouldn't be used directly ouside of the VFS.
258  * It does not guarantee that the filesystem will stay
259  * r/w, just that it is right *now*.  This can not and
260  * should not be used in place of IS_RDONLY(inode).
261  * mnt_want/drop_write() will _keep_ the filesystem
262  * r/w.
263  */
264 int __mnt_is_readonly(struct vfsmount *mnt)
265 {
266 	if (mnt->mnt_flags & MNT_READONLY)
267 		return 1;
268 	if (mnt->mnt_sb->s_flags & MS_RDONLY)
269 		return 1;
270 	return 0;
271 }
272 EXPORT_SYMBOL_GPL(__mnt_is_readonly);
273 
274 static inline void mnt_inc_writers(struct mount *mnt)
275 {
276 #ifdef CONFIG_SMP
277 	this_cpu_inc(mnt->mnt_pcp->mnt_writers);
278 #else
279 	mnt->mnt_writers++;
280 #endif
281 }
282 
283 static inline void mnt_dec_writers(struct mount *mnt)
284 {
285 #ifdef CONFIG_SMP
286 	this_cpu_dec(mnt->mnt_pcp->mnt_writers);
287 #else
288 	mnt->mnt_writers--;
289 #endif
290 }
291 
292 static unsigned int mnt_get_writers(struct mount *mnt)
293 {
294 #ifdef CONFIG_SMP
295 	unsigned int count = 0;
296 	int cpu;
297 
298 	for_each_possible_cpu(cpu) {
299 		count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
300 	}
301 
302 	return count;
303 #else
304 	return mnt->mnt_writers;
305 #endif
306 }
307 
308 static int mnt_is_readonly(struct vfsmount *mnt)
309 {
310 	if (mnt->mnt_sb->s_readonly_remount)
311 		return 1;
312 	/* Order wrt setting s_flags/s_readonly_remount in do_remount() */
313 	smp_rmb();
314 	return __mnt_is_readonly(mnt);
315 }
316 
317 /*
318  * Most r/o & frozen checks on a fs are for operations that take discrete
319  * amounts of time, like a write() or unlink().  We must keep track of when
320  * those operations start (for permission checks) and when they end, so that we
321  * can determine when writes are able to occur to a filesystem.
322  */
323 /**
324  * __mnt_want_write - get write access to a mount without freeze protection
325  * @m: the mount on which to take a write
326  *
327  * This tells the low-level filesystem that a write is about to be performed to
328  * it, and makes sure that writes are allowed (mnt it read-write) before
329  * returning success. This operation does not protect against filesystem being
330  * frozen. When the write operation is finished, __mnt_drop_write() must be
331  * called. This is effectively a refcount.
332  */
333 int __mnt_want_write(struct vfsmount *m)
334 {
335 	struct mount *mnt = real_mount(m);
336 	int ret = 0;
337 
338 	preempt_disable();
339 	mnt_inc_writers(mnt);
340 	/*
341 	 * The store to mnt_inc_writers must be visible before we pass
342 	 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
343 	 * incremented count after it has set MNT_WRITE_HOLD.
344 	 */
345 	smp_mb();
346 	while (ACCESS_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD)
347 		cpu_relax();
348 	/*
349 	 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
350 	 * be set to match its requirements. So we must not load that until
351 	 * MNT_WRITE_HOLD is cleared.
352 	 */
353 	smp_rmb();
354 	if (mnt_is_readonly(m)) {
355 		mnt_dec_writers(mnt);
356 		ret = -EROFS;
357 	}
358 	preempt_enable();
359 
360 	return ret;
361 }
362 
363 /**
364  * mnt_want_write - get write access to a mount
365  * @m: the mount on which to take a write
366  *
367  * This tells the low-level filesystem that a write is about to be performed to
368  * it, and makes sure that writes are allowed (mount is read-write, filesystem
369  * is not frozen) before returning success.  When the write operation is
370  * finished, mnt_drop_write() must be called.  This is effectively a refcount.
371  */
372 int mnt_want_write(struct vfsmount *m)
373 {
374 	int ret;
375 
376 	sb_start_write(m->mnt_sb);
377 	ret = __mnt_want_write(m);
378 	if (ret)
379 		sb_end_write(m->mnt_sb);
380 	return ret;
381 }
382 EXPORT_SYMBOL_GPL(mnt_want_write);
383 
384 /**
385  * mnt_clone_write - get write access to a mount
386  * @mnt: the mount on which to take a write
387  *
388  * This is effectively like mnt_want_write, except
389  * it must only be used to take an extra write reference
390  * on a mountpoint that we already know has a write reference
391  * on it. This allows some optimisation.
392  *
393  * After finished, mnt_drop_write must be called as usual to
394  * drop the reference.
395  */
396 int mnt_clone_write(struct vfsmount *mnt)
397 {
398 	/* superblock may be r/o */
399 	if (__mnt_is_readonly(mnt))
400 		return -EROFS;
401 	preempt_disable();
402 	mnt_inc_writers(real_mount(mnt));
403 	preempt_enable();
404 	return 0;
405 }
406 EXPORT_SYMBOL_GPL(mnt_clone_write);
407 
408 /**
409  * __mnt_want_write_file - get write access to a file's mount
410  * @file: the file who's mount on which to take a write
411  *
412  * This is like __mnt_want_write, but it takes a file and can
413  * do some optimisations if the file is open for write already
414  */
415 int __mnt_want_write_file(struct file *file)
416 {
417 	if (!(file->f_mode & FMODE_WRITER))
418 		return __mnt_want_write(file->f_path.mnt);
419 	else
420 		return mnt_clone_write(file->f_path.mnt);
421 }
422 
423 /**
424  * mnt_want_write_file - get write access to a file's mount
425  * @file: the file who's mount on which to take a write
426  *
427  * This is like mnt_want_write, but it takes a file and can
428  * do some optimisations if the file is open for write already
429  */
430 int mnt_want_write_file(struct file *file)
431 {
432 	int ret;
433 
434 	sb_start_write(file->f_path.mnt->mnt_sb);
435 	ret = __mnt_want_write_file(file);
436 	if (ret)
437 		sb_end_write(file->f_path.mnt->mnt_sb);
438 	return ret;
439 }
440 EXPORT_SYMBOL_GPL(mnt_want_write_file);
441 
442 /**
443  * __mnt_drop_write - give up write access to a mount
444  * @mnt: the mount on which to give up write access
445  *
446  * Tells the low-level filesystem that we are done
447  * performing writes to it.  Must be matched with
448  * __mnt_want_write() call above.
449  */
450 void __mnt_drop_write(struct vfsmount *mnt)
451 {
452 	preempt_disable();
453 	mnt_dec_writers(real_mount(mnt));
454 	preempt_enable();
455 }
456 
457 /**
458  * mnt_drop_write - give up write access to a mount
459  * @mnt: the mount on which to give up write access
460  *
461  * Tells the low-level filesystem that we are done performing writes to it and
462  * also allows filesystem to be frozen again.  Must be matched with
463  * mnt_want_write() call above.
464  */
465 void mnt_drop_write(struct vfsmount *mnt)
466 {
467 	__mnt_drop_write(mnt);
468 	sb_end_write(mnt->mnt_sb);
469 }
470 EXPORT_SYMBOL_GPL(mnt_drop_write);
471 
472 void __mnt_drop_write_file(struct file *file)
473 {
474 	__mnt_drop_write(file->f_path.mnt);
475 }
476 
477 void mnt_drop_write_file(struct file *file)
478 {
479 	mnt_drop_write(file->f_path.mnt);
480 }
481 EXPORT_SYMBOL(mnt_drop_write_file);
482 
483 static int mnt_make_readonly(struct mount *mnt)
484 {
485 	int ret = 0;
486 
487 	lock_mount_hash();
488 	mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
489 	/*
490 	 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
491 	 * should be visible before we do.
492 	 */
493 	smp_mb();
494 
495 	/*
496 	 * With writers on hold, if this value is zero, then there are
497 	 * definitely no active writers (although held writers may subsequently
498 	 * increment the count, they'll have to wait, and decrement it after
499 	 * seeing MNT_READONLY).
500 	 *
501 	 * It is OK to have counter incremented on one CPU and decremented on
502 	 * another: the sum will add up correctly. The danger would be when we
503 	 * sum up each counter, if we read a counter before it is incremented,
504 	 * but then read another CPU's count which it has been subsequently
505 	 * decremented from -- we would see more decrements than we should.
506 	 * MNT_WRITE_HOLD protects against this scenario, because
507 	 * mnt_want_write first increments count, then smp_mb, then spins on
508 	 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
509 	 * we're counting up here.
510 	 */
511 	if (mnt_get_writers(mnt) > 0)
512 		ret = -EBUSY;
513 	else
514 		mnt->mnt.mnt_flags |= MNT_READONLY;
515 	/*
516 	 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
517 	 * that become unheld will see MNT_READONLY.
518 	 */
519 	smp_wmb();
520 	mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
521 	unlock_mount_hash();
522 	return ret;
523 }
524 
525 static void __mnt_unmake_readonly(struct mount *mnt)
526 {
527 	lock_mount_hash();
528 	mnt->mnt.mnt_flags &= ~MNT_READONLY;
529 	unlock_mount_hash();
530 }
531 
532 int sb_prepare_remount_readonly(struct super_block *sb)
533 {
534 	struct mount *mnt;
535 	int err = 0;
536 
537 	/* Racy optimization.  Recheck the counter under MNT_WRITE_HOLD */
538 	if (atomic_long_read(&sb->s_remove_count))
539 		return -EBUSY;
540 
541 	lock_mount_hash();
542 	list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
543 		if (!(mnt->mnt.mnt_flags & MNT_READONLY)) {
544 			mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
545 			smp_mb();
546 			if (mnt_get_writers(mnt) > 0) {
547 				err = -EBUSY;
548 				break;
549 			}
550 		}
551 	}
552 	if (!err && atomic_long_read(&sb->s_remove_count))
553 		err = -EBUSY;
554 
555 	if (!err) {
556 		sb->s_readonly_remount = 1;
557 		smp_wmb();
558 	}
559 	list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
560 		if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
561 			mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
562 	}
563 	unlock_mount_hash();
564 
565 	return err;
566 }
567 
568 static void free_vfsmnt(struct mount *mnt)
569 {
570 	kfree(mnt->mnt_devname);
571 #ifdef CONFIG_SMP
572 	free_percpu(mnt->mnt_pcp);
573 #endif
574 	kmem_cache_free(mnt_cache, mnt);
575 }
576 
577 static void delayed_free_vfsmnt(struct rcu_head *head)
578 {
579 	free_vfsmnt(container_of(head, struct mount, mnt_rcu));
580 }
581 
582 /* call under rcu_read_lock */
583 bool legitimize_mnt(struct vfsmount *bastard, unsigned seq)
584 {
585 	struct mount *mnt;
586 	if (read_seqretry(&mount_lock, seq))
587 		return false;
588 	if (bastard == NULL)
589 		return true;
590 	mnt = real_mount(bastard);
591 	mnt_add_count(mnt, 1);
592 	if (likely(!read_seqretry(&mount_lock, seq)))
593 		return true;
594 	if (bastard->mnt_flags & MNT_SYNC_UMOUNT) {
595 		mnt_add_count(mnt, -1);
596 		return false;
597 	}
598 	rcu_read_unlock();
599 	mntput(bastard);
600 	rcu_read_lock();
601 	return false;
602 }
603 
604 /*
605  * find the first mount at @dentry on vfsmount @mnt.
606  * call under rcu_read_lock()
607  */
608 struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry)
609 {
610 	struct hlist_head *head = m_hash(mnt, dentry);
611 	struct mount *p;
612 
613 	hlist_for_each_entry_rcu(p, head, mnt_hash)
614 		if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry)
615 			return p;
616 	return NULL;
617 }
618 
619 /*
620  * find the last mount at @dentry on vfsmount @mnt.
621  * mount_lock must be held.
622  */
623 struct mount *__lookup_mnt_last(struct vfsmount *mnt, struct dentry *dentry)
624 {
625 	struct mount *p, *res;
626 	res = p = __lookup_mnt(mnt, dentry);
627 	if (!p)
628 		goto out;
629 	hlist_for_each_entry_continue(p, mnt_hash) {
630 		if (&p->mnt_parent->mnt != mnt || p->mnt_mountpoint != dentry)
631 			break;
632 		res = p;
633 	}
634 out:
635 	return res;
636 }
637 
638 /*
639  * lookup_mnt - Return the first child mount mounted at path
640  *
641  * "First" means first mounted chronologically.  If you create the
642  * following mounts:
643  *
644  * mount /dev/sda1 /mnt
645  * mount /dev/sda2 /mnt
646  * mount /dev/sda3 /mnt
647  *
648  * Then lookup_mnt() on the base /mnt dentry in the root mount will
649  * return successively the root dentry and vfsmount of /dev/sda1, then
650  * /dev/sda2, then /dev/sda3, then NULL.
651  *
652  * lookup_mnt takes a reference to the found vfsmount.
653  */
654 struct vfsmount *lookup_mnt(struct path *path)
655 {
656 	struct mount *child_mnt;
657 	struct vfsmount *m;
658 	unsigned seq;
659 
660 	rcu_read_lock();
661 	do {
662 		seq = read_seqbegin(&mount_lock);
663 		child_mnt = __lookup_mnt(path->mnt, path->dentry);
664 		m = child_mnt ? &child_mnt->mnt : NULL;
665 	} while (!legitimize_mnt(m, seq));
666 	rcu_read_unlock();
667 	return m;
668 }
669 
670 static struct mountpoint *new_mountpoint(struct dentry *dentry)
671 {
672 	struct hlist_head *chain = mp_hash(dentry);
673 	struct mountpoint *mp;
674 	int ret;
675 
676 	hlist_for_each_entry(mp, chain, m_hash) {
677 		if (mp->m_dentry == dentry) {
678 			/* might be worth a WARN_ON() */
679 			if (d_unlinked(dentry))
680 				return ERR_PTR(-ENOENT);
681 			mp->m_count++;
682 			return mp;
683 		}
684 	}
685 
686 	mp = kmalloc(sizeof(struct mountpoint), GFP_KERNEL);
687 	if (!mp)
688 		return ERR_PTR(-ENOMEM);
689 
690 	ret = d_set_mounted(dentry);
691 	if (ret) {
692 		kfree(mp);
693 		return ERR_PTR(ret);
694 	}
695 
696 	mp->m_dentry = dentry;
697 	mp->m_count = 1;
698 	hlist_add_head(&mp->m_hash, chain);
699 	return mp;
700 }
701 
702 static void put_mountpoint(struct mountpoint *mp)
703 {
704 	if (!--mp->m_count) {
705 		struct dentry *dentry = mp->m_dentry;
706 		spin_lock(&dentry->d_lock);
707 		dentry->d_flags &= ~DCACHE_MOUNTED;
708 		spin_unlock(&dentry->d_lock);
709 		hlist_del(&mp->m_hash);
710 		kfree(mp);
711 	}
712 }
713 
714 static inline int check_mnt(struct mount *mnt)
715 {
716 	return mnt->mnt_ns == current->nsproxy->mnt_ns;
717 }
718 
719 /*
720  * vfsmount lock must be held for write
721  */
722 static void touch_mnt_namespace(struct mnt_namespace *ns)
723 {
724 	if (ns) {
725 		ns->event = ++event;
726 		wake_up_interruptible(&ns->poll);
727 	}
728 }
729 
730 /*
731  * vfsmount lock must be held for write
732  */
733 static void __touch_mnt_namespace(struct mnt_namespace *ns)
734 {
735 	if (ns && ns->event != event) {
736 		ns->event = event;
737 		wake_up_interruptible(&ns->poll);
738 	}
739 }
740 
741 /*
742  * vfsmount lock must be held for write
743  */
744 static void detach_mnt(struct mount *mnt, struct path *old_path)
745 {
746 	old_path->dentry = mnt->mnt_mountpoint;
747 	old_path->mnt = &mnt->mnt_parent->mnt;
748 	mnt->mnt_parent = mnt;
749 	mnt->mnt_mountpoint = mnt->mnt.mnt_root;
750 	list_del_init(&mnt->mnt_child);
751 	hlist_del_init_rcu(&mnt->mnt_hash);
752 	put_mountpoint(mnt->mnt_mp);
753 	mnt->mnt_mp = NULL;
754 }
755 
756 /*
757  * vfsmount lock must be held for write
758  */
759 void mnt_set_mountpoint(struct mount *mnt,
760 			struct mountpoint *mp,
761 			struct mount *child_mnt)
762 {
763 	mp->m_count++;
764 	mnt_add_count(mnt, 1);	/* essentially, that's mntget */
765 	child_mnt->mnt_mountpoint = dget(mp->m_dentry);
766 	child_mnt->mnt_parent = mnt;
767 	child_mnt->mnt_mp = mp;
768 }
769 
770 /*
771  * vfsmount lock must be held for write
772  */
773 static void attach_mnt(struct mount *mnt,
774 			struct mount *parent,
775 			struct mountpoint *mp)
776 {
777 	mnt_set_mountpoint(parent, mp, mnt);
778 	hlist_add_head_rcu(&mnt->mnt_hash, m_hash(&parent->mnt, mp->m_dentry));
779 	list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
780 }
781 
782 /*
783  * vfsmount lock must be held for write
784  */
785 static void commit_tree(struct mount *mnt, struct mount *shadows)
786 {
787 	struct mount *parent = mnt->mnt_parent;
788 	struct mount *m;
789 	LIST_HEAD(head);
790 	struct mnt_namespace *n = parent->mnt_ns;
791 
792 	BUG_ON(parent == mnt);
793 
794 	list_add_tail(&head, &mnt->mnt_list);
795 	list_for_each_entry(m, &head, mnt_list)
796 		m->mnt_ns = n;
797 
798 	list_splice(&head, n->list.prev);
799 
800 	if (shadows)
801 		hlist_add_after_rcu(&shadows->mnt_hash, &mnt->mnt_hash);
802 	else
803 		hlist_add_head_rcu(&mnt->mnt_hash,
804 				m_hash(&parent->mnt, mnt->mnt_mountpoint));
805 	list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
806 	touch_mnt_namespace(n);
807 }
808 
809 static struct mount *next_mnt(struct mount *p, struct mount *root)
810 {
811 	struct list_head *next = p->mnt_mounts.next;
812 	if (next == &p->mnt_mounts) {
813 		while (1) {
814 			if (p == root)
815 				return NULL;
816 			next = p->mnt_child.next;
817 			if (next != &p->mnt_parent->mnt_mounts)
818 				break;
819 			p = p->mnt_parent;
820 		}
821 	}
822 	return list_entry(next, struct mount, mnt_child);
823 }
824 
825 static struct mount *skip_mnt_tree(struct mount *p)
826 {
827 	struct list_head *prev = p->mnt_mounts.prev;
828 	while (prev != &p->mnt_mounts) {
829 		p = list_entry(prev, struct mount, mnt_child);
830 		prev = p->mnt_mounts.prev;
831 	}
832 	return p;
833 }
834 
835 struct vfsmount *
836 vfs_kern_mount(struct file_system_type *type, int flags, const char *name, void *data)
837 {
838 	struct mount *mnt;
839 	struct dentry *root;
840 
841 	if (!type)
842 		return ERR_PTR(-ENODEV);
843 
844 	mnt = alloc_vfsmnt(name);
845 	if (!mnt)
846 		return ERR_PTR(-ENOMEM);
847 
848 	if (flags & MS_KERNMOUNT)
849 		mnt->mnt.mnt_flags = MNT_INTERNAL;
850 
851 	root = mount_fs(type, flags, name, data);
852 	if (IS_ERR(root)) {
853 		mnt_free_id(mnt);
854 		free_vfsmnt(mnt);
855 		return ERR_CAST(root);
856 	}
857 
858 	mnt->mnt.mnt_root = root;
859 	mnt->mnt.mnt_sb = root->d_sb;
860 	mnt->mnt_mountpoint = mnt->mnt.mnt_root;
861 	mnt->mnt_parent = mnt;
862 	lock_mount_hash();
863 	list_add_tail(&mnt->mnt_instance, &root->d_sb->s_mounts);
864 	unlock_mount_hash();
865 	return &mnt->mnt;
866 }
867 EXPORT_SYMBOL_GPL(vfs_kern_mount);
868 
869 static struct mount *clone_mnt(struct mount *old, struct dentry *root,
870 					int flag)
871 {
872 	struct super_block *sb = old->mnt.mnt_sb;
873 	struct mount *mnt;
874 	int err;
875 
876 	mnt = alloc_vfsmnt(old->mnt_devname);
877 	if (!mnt)
878 		return ERR_PTR(-ENOMEM);
879 
880 	if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE))
881 		mnt->mnt_group_id = 0; /* not a peer of original */
882 	else
883 		mnt->mnt_group_id = old->mnt_group_id;
884 
885 	if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
886 		err = mnt_alloc_group_id(mnt);
887 		if (err)
888 			goto out_free;
889 	}
890 
891 	mnt->mnt.mnt_flags = old->mnt.mnt_flags & ~(MNT_WRITE_HOLD|MNT_MARKED);
892 	/* Don't allow unprivileged users to change mount flags */
893 	if ((flag & CL_UNPRIVILEGED) && (mnt->mnt.mnt_flags & MNT_READONLY))
894 		mnt->mnt.mnt_flags |= MNT_LOCK_READONLY;
895 
896 	/* Don't allow unprivileged users to reveal what is under a mount */
897 	if ((flag & CL_UNPRIVILEGED) && list_empty(&old->mnt_expire))
898 		mnt->mnt.mnt_flags |= MNT_LOCKED;
899 
900 	atomic_inc(&sb->s_active);
901 	mnt->mnt.mnt_sb = sb;
902 	mnt->mnt.mnt_root = dget(root);
903 	mnt->mnt_mountpoint = mnt->mnt.mnt_root;
904 	mnt->mnt_parent = mnt;
905 	lock_mount_hash();
906 	list_add_tail(&mnt->mnt_instance, &sb->s_mounts);
907 	unlock_mount_hash();
908 
909 	if ((flag & CL_SLAVE) ||
910 	    ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) {
911 		list_add(&mnt->mnt_slave, &old->mnt_slave_list);
912 		mnt->mnt_master = old;
913 		CLEAR_MNT_SHARED(mnt);
914 	} else if (!(flag & CL_PRIVATE)) {
915 		if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
916 			list_add(&mnt->mnt_share, &old->mnt_share);
917 		if (IS_MNT_SLAVE(old))
918 			list_add(&mnt->mnt_slave, &old->mnt_slave);
919 		mnt->mnt_master = old->mnt_master;
920 	}
921 	if (flag & CL_MAKE_SHARED)
922 		set_mnt_shared(mnt);
923 
924 	/* stick the duplicate mount on the same expiry list
925 	 * as the original if that was on one */
926 	if (flag & CL_EXPIRE) {
927 		if (!list_empty(&old->mnt_expire))
928 			list_add(&mnt->mnt_expire, &old->mnt_expire);
929 	}
930 
931 	return mnt;
932 
933  out_free:
934 	mnt_free_id(mnt);
935 	free_vfsmnt(mnt);
936 	return ERR_PTR(err);
937 }
938 
939 static void mntput_no_expire(struct mount *mnt)
940 {
941 put_again:
942 	rcu_read_lock();
943 	mnt_add_count(mnt, -1);
944 	if (likely(mnt->mnt_ns)) { /* shouldn't be the last one */
945 		rcu_read_unlock();
946 		return;
947 	}
948 	lock_mount_hash();
949 	if (mnt_get_count(mnt)) {
950 		rcu_read_unlock();
951 		unlock_mount_hash();
952 		return;
953 	}
954 	if (unlikely(mnt->mnt_pinned)) {
955 		mnt_add_count(mnt, mnt->mnt_pinned + 1);
956 		mnt->mnt_pinned = 0;
957 		rcu_read_unlock();
958 		unlock_mount_hash();
959 		acct_auto_close_mnt(&mnt->mnt);
960 		goto put_again;
961 	}
962 	if (unlikely(mnt->mnt.mnt_flags & MNT_DOOMED)) {
963 		rcu_read_unlock();
964 		unlock_mount_hash();
965 		return;
966 	}
967 	mnt->mnt.mnt_flags |= MNT_DOOMED;
968 	rcu_read_unlock();
969 
970 	list_del(&mnt->mnt_instance);
971 	unlock_mount_hash();
972 
973 	/*
974 	 * This probably indicates that somebody messed
975 	 * up a mnt_want/drop_write() pair.  If this
976 	 * happens, the filesystem was probably unable
977 	 * to make r/w->r/o transitions.
978 	 */
979 	/*
980 	 * The locking used to deal with mnt_count decrement provides barriers,
981 	 * so mnt_get_writers() below is safe.
982 	 */
983 	WARN_ON(mnt_get_writers(mnt));
984 	fsnotify_vfsmount_delete(&mnt->mnt);
985 	dput(mnt->mnt.mnt_root);
986 	deactivate_super(mnt->mnt.mnt_sb);
987 	mnt_free_id(mnt);
988 	call_rcu(&mnt->mnt_rcu, delayed_free_vfsmnt);
989 }
990 
991 void mntput(struct vfsmount *mnt)
992 {
993 	if (mnt) {
994 		struct mount *m = real_mount(mnt);
995 		/* avoid cacheline pingpong, hope gcc doesn't get "smart" */
996 		if (unlikely(m->mnt_expiry_mark))
997 			m->mnt_expiry_mark = 0;
998 		mntput_no_expire(m);
999 	}
1000 }
1001 EXPORT_SYMBOL(mntput);
1002 
1003 struct vfsmount *mntget(struct vfsmount *mnt)
1004 {
1005 	if (mnt)
1006 		mnt_add_count(real_mount(mnt), 1);
1007 	return mnt;
1008 }
1009 EXPORT_SYMBOL(mntget);
1010 
1011 void mnt_pin(struct vfsmount *mnt)
1012 {
1013 	lock_mount_hash();
1014 	real_mount(mnt)->mnt_pinned++;
1015 	unlock_mount_hash();
1016 }
1017 EXPORT_SYMBOL(mnt_pin);
1018 
1019 void mnt_unpin(struct vfsmount *m)
1020 {
1021 	struct mount *mnt = real_mount(m);
1022 	lock_mount_hash();
1023 	if (mnt->mnt_pinned) {
1024 		mnt_add_count(mnt, 1);
1025 		mnt->mnt_pinned--;
1026 	}
1027 	unlock_mount_hash();
1028 }
1029 EXPORT_SYMBOL(mnt_unpin);
1030 
1031 static inline void mangle(struct seq_file *m, const char *s)
1032 {
1033 	seq_escape(m, s, " \t\n\\");
1034 }
1035 
1036 /*
1037  * Simple .show_options callback for filesystems which don't want to
1038  * implement more complex mount option showing.
1039  *
1040  * See also save_mount_options().
1041  */
1042 int generic_show_options(struct seq_file *m, struct dentry *root)
1043 {
1044 	const char *options;
1045 
1046 	rcu_read_lock();
1047 	options = rcu_dereference(root->d_sb->s_options);
1048 
1049 	if (options != NULL && options[0]) {
1050 		seq_putc(m, ',');
1051 		mangle(m, options);
1052 	}
1053 	rcu_read_unlock();
1054 
1055 	return 0;
1056 }
1057 EXPORT_SYMBOL(generic_show_options);
1058 
1059 /*
1060  * If filesystem uses generic_show_options(), this function should be
1061  * called from the fill_super() callback.
1062  *
1063  * The .remount_fs callback usually needs to be handled in a special
1064  * way, to make sure, that previous options are not overwritten if the
1065  * remount fails.
1066  *
1067  * Also note, that if the filesystem's .remount_fs function doesn't
1068  * reset all options to their default value, but changes only newly
1069  * given options, then the displayed options will not reflect reality
1070  * any more.
1071  */
1072 void save_mount_options(struct super_block *sb, char *options)
1073 {
1074 	BUG_ON(sb->s_options);
1075 	rcu_assign_pointer(sb->s_options, kstrdup(options, GFP_KERNEL));
1076 }
1077 EXPORT_SYMBOL(save_mount_options);
1078 
1079 void replace_mount_options(struct super_block *sb, char *options)
1080 {
1081 	char *old = sb->s_options;
1082 	rcu_assign_pointer(sb->s_options, options);
1083 	if (old) {
1084 		synchronize_rcu();
1085 		kfree(old);
1086 	}
1087 }
1088 EXPORT_SYMBOL(replace_mount_options);
1089 
1090 #ifdef CONFIG_PROC_FS
1091 /* iterator; we want it to have access to namespace_sem, thus here... */
1092 static void *m_start(struct seq_file *m, loff_t *pos)
1093 {
1094 	struct proc_mounts *p = proc_mounts(m);
1095 
1096 	down_read(&namespace_sem);
1097 	if (p->cached_event == p->ns->event) {
1098 		void *v = p->cached_mount;
1099 		if (*pos == p->cached_index)
1100 			return v;
1101 		if (*pos == p->cached_index + 1) {
1102 			v = seq_list_next(v, &p->ns->list, &p->cached_index);
1103 			return p->cached_mount = v;
1104 		}
1105 	}
1106 
1107 	p->cached_event = p->ns->event;
1108 	p->cached_mount = seq_list_start(&p->ns->list, *pos);
1109 	p->cached_index = *pos;
1110 	return p->cached_mount;
1111 }
1112 
1113 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
1114 {
1115 	struct proc_mounts *p = proc_mounts(m);
1116 
1117 	p->cached_mount = seq_list_next(v, &p->ns->list, pos);
1118 	p->cached_index = *pos;
1119 	return p->cached_mount;
1120 }
1121 
1122 static void m_stop(struct seq_file *m, void *v)
1123 {
1124 	up_read(&namespace_sem);
1125 }
1126 
1127 static int m_show(struct seq_file *m, void *v)
1128 {
1129 	struct proc_mounts *p = proc_mounts(m);
1130 	struct mount *r = list_entry(v, struct mount, mnt_list);
1131 	return p->show(m, &r->mnt);
1132 }
1133 
1134 const struct seq_operations mounts_op = {
1135 	.start	= m_start,
1136 	.next	= m_next,
1137 	.stop	= m_stop,
1138 	.show	= m_show,
1139 };
1140 #endif  /* CONFIG_PROC_FS */
1141 
1142 /**
1143  * may_umount_tree - check if a mount tree is busy
1144  * @mnt: root of mount tree
1145  *
1146  * This is called to check if a tree of mounts has any
1147  * open files, pwds, chroots or sub mounts that are
1148  * busy.
1149  */
1150 int may_umount_tree(struct vfsmount *m)
1151 {
1152 	struct mount *mnt = real_mount(m);
1153 	int actual_refs = 0;
1154 	int minimum_refs = 0;
1155 	struct mount *p;
1156 	BUG_ON(!m);
1157 
1158 	/* write lock needed for mnt_get_count */
1159 	lock_mount_hash();
1160 	for (p = mnt; p; p = next_mnt(p, mnt)) {
1161 		actual_refs += mnt_get_count(p);
1162 		minimum_refs += 2;
1163 	}
1164 	unlock_mount_hash();
1165 
1166 	if (actual_refs > minimum_refs)
1167 		return 0;
1168 
1169 	return 1;
1170 }
1171 
1172 EXPORT_SYMBOL(may_umount_tree);
1173 
1174 /**
1175  * may_umount - check if a mount point is busy
1176  * @mnt: root of mount
1177  *
1178  * This is called to check if a mount point has any
1179  * open files, pwds, chroots or sub mounts. If the
1180  * mount has sub mounts this will return busy
1181  * regardless of whether the sub mounts are busy.
1182  *
1183  * Doesn't take quota and stuff into account. IOW, in some cases it will
1184  * give false negatives. The main reason why it's here is that we need
1185  * a non-destructive way to look for easily umountable filesystems.
1186  */
1187 int may_umount(struct vfsmount *mnt)
1188 {
1189 	int ret = 1;
1190 	down_read(&namespace_sem);
1191 	lock_mount_hash();
1192 	if (propagate_mount_busy(real_mount(mnt), 2))
1193 		ret = 0;
1194 	unlock_mount_hash();
1195 	up_read(&namespace_sem);
1196 	return ret;
1197 }
1198 
1199 EXPORT_SYMBOL(may_umount);
1200 
1201 static HLIST_HEAD(unmounted);	/* protected by namespace_sem */
1202 
1203 static void namespace_unlock(void)
1204 {
1205 	struct mount *mnt;
1206 	struct hlist_head head = unmounted;
1207 
1208 	if (likely(hlist_empty(&head))) {
1209 		up_write(&namespace_sem);
1210 		return;
1211 	}
1212 
1213 	head.first->pprev = &head.first;
1214 	INIT_HLIST_HEAD(&unmounted);
1215 
1216 	up_write(&namespace_sem);
1217 
1218 	synchronize_rcu();
1219 
1220 	while (!hlist_empty(&head)) {
1221 		mnt = hlist_entry(head.first, struct mount, mnt_hash);
1222 		hlist_del_init(&mnt->mnt_hash);
1223 		if (mnt->mnt_ex_mountpoint.mnt)
1224 			path_put(&mnt->mnt_ex_mountpoint);
1225 		mntput(&mnt->mnt);
1226 	}
1227 }
1228 
1229 static inline void namespace_lock(void)
1230 {
1231 	down_write(&namespace_sem);
1232 }
1233 
1234 /*
1235  * mount_lock must be held
1236  * namespace_sem must be held for write
1237  * how = 0 => just this tree, don't propagate
1238  * how = 1 => propagate; we know that nobody else has reference to any victims
1239  * how = 2 => lazy umount
1240  */
1241 void umount_tree(struct mount *mnt, int how)
1242 {
1243 	HLIST_HEAD(tmp_list);
1244 	struct mount *p;
1245 	struct mount *last = NULL;
1246 
1247 	for (p = mnt; p; p = next_mnt(p, mnt)) {
1248 		hlist_del_init_rcu(&p->mnt_hash);
1249 		hlist_add_head(&p->mnt_hash, &tmp_list);
1250 	}
1251 
1252 	if (how)
1253 		propagate_umount(&tmp_list);
1254 
1255 	hlist_for_each_entry(p, &tmp_list, mnt_hash) {
1256 		list_del_init(&p->mnt_expire);
1257 		list_del_init(&p->mnt_list);
1258 		__touch_mnt_namespace(p->mnt_ns);
1259 		p->mnt_ns = NULL;
1260 		if (how < 2)
1261 			p->mnt.mnt_flags |= MNT_SYNC_UMOUNT;
1262 		list_del_init(&p->mnt_child);
1263 		if (mnt_has_parent(p)) {
1264 			put_mountpoint(p->mnt_mp);
1265 			/* move the reference to mountpoint into ->mnt_ex_mountpoint */
1266 			p->mnt_ex_mountpoint.dentry = p->mnt_mountpoint;
1267 			p->mnt_ex_mountpoint.mnt = &p->mnt_parent->mnt;
1268 			p->mnt_mountpoint = p->mnt.mnt_root;
1269 			p->mnt_parent = p;
1270 			p->mnt_mp = NULL;
1271 		}
1272 		change_mnt_propagation(p, MS_PRIVATE);
1273 		last = p;
1274 	}
1275 	if (last) {
1276 		last->mnt_hash.next = unmounted.first;
1277 		unmounted.first = tmp_list.first;
1278 		unmounted.first->pprev = &unmounted.first;
1279 	}
1280 }
1281 
1282 static void shrink_submounts(struct mount *mnt);
1283 
1284 static int do_umount(struct mount *mnt, int flags)
1285 {
1286 	struct super_block *sb = mnt->mnt.mnt_sb;
1287 	int retval;
1288 
1289 	retval = security_sb_umount(&mnt->mnt, flags);
1290 	if (retval)
1291 		return retval;
1292 
1293 	/*
1294 	 * Allow userspace to request a mountpoint be expired rather than
1295 	 * unmounting unconditionally. Unmount only happens if:
1296 	 *  (1) the mark is already set (the mark is cleared by mntput())
1297 	 *  (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1298 	 */
1299 	if (flags & MNT_EXPIRE) {
1300 		if (&mnt->mnt == current->fs->root.mnt ||
1301 		    flags & (MNT_FORCE | MNT_DETACH))
1302 			return -EINVAL;
1303 
1304 		/*
1305 		 * probably don't strictly need the lock here if we examined
1306 		 * all race cases, but it's a slowpath.
1307 		 */
1308 		lock_mount_hash();
1309 		if (mnt_get_count(mnt) != 2) {
1310 			unlock_mount_hash();
1311 			return -EBUSY;
1312 		}
1313 		unlock_mount_hash();
1314 
1315 		if (!xchg(&mnt->mnt_expiry_mark, 1))
1316 			return -EAGAIN;
1317 	}
1318 
1319 	/*
1320 	 * If we may have to abort operations to get out of this
1321 	 * mount, and they will themselves hold resources we must
1322 	 * allow the fs to do things. In the Unix tradition of
1323 	 * 'Gee thats tricky lets do it in userspace' the umount_begin
1324 	 * might fail to complete on the first run through as other tasks
1325 	 * must return, and the like. Thats for the mount program to worry
1326 	 * about for the moment.
1327 	 */
1328 
1329 	if (flags & MNT_FORCE && sb->s_op->umount_begin) {
1330 		sb->s_op->umount_begin(sb);
1331 	}
1332 
1333 	/*
1334 	 * No sense to grab the lock for this test, but test itself looks
1335 	 * somewhat bogus. Suggestions for better replacement?
1336 	 * Ho-hum... In principle, we might treat that as umount + switch
1337 	 * to rootfs. GC would eventually take care of the old vfsmount.
1338 	 * Actually it makes sense, especially if rootfs would contain a
1339 	 * /reboot - static binary that would close all descriptors and
1340 	 * call reboot(9). Then init(8) could umount root and exec /reboot.
1341 	 */
1342 	if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1343 		/*
1344 		 * Special case for "unmounting" root ...
1345 		 * we just try to remount it readonly.
1346 		 */
1347 		down_write(&sb->s_umount);
1348 		if (!(sb->s_flags & MS_RDONLY))
1349 			retval = do_remount_sb(sb, MS_RDONLY, NULL, 0);
1350 		up_write(&sb->s_umount);
1351 		return retval;
1352 	}
1353 
1354 	namespace_lock();
1355 	lock_mount_hash();
1356 	event++;
1357 
1358 	if (flags & MNT_DETACH) {
1359 		if (!list_empty(&mnt->mnt_list))
1360 			umount_tree(mnt, 2);
1361 		retval = 0;
1362 	} else {
1363 		shrink_submounts(mnt);
1364 		retval = -EBUSY;
1365 		if (!propagate_mount_busy(mnt, 2)) {
1366 			if (!list_empty(&mnt->mnt_list))
1367 				umount_tree(mnt, 1);
1368 			retval = 0;
1369 		}
1370 	}
1371 	unlock_mount_hash();
1372 	namespace_unlock();
1373 	return retval;
1374 }
1375 
1376 /*
1377  * Is the caller allowed to modify his namespace?
1378  */
1379 static inline bool may_mount(void)
1380 {
1381 	return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN);
1382 }
1383 
1384 /*
1385  * Now umount can handle mount points as well as block devices.
1386  * This is important for filesystems which use unnamed block devices.
1387  *
1388  * We now support a flag for forced unmount like the other 'big iron'
1389  * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
1390  */
1391 
1392 SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
1393 {
1394 	struct path path;
1395 	struct mount *mnt;
1396 	int retval;
1397 	int lookup_flags = 0;
1398 
1399 	if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
1400 		return -EINVAL;
1401 
1402 	if (!may_mount())
1403 		return -EPERM;
1404 
1405 	if (!(flags & UMOUNT_NOFOLLOW))
1406 		lookup_flags |= LOOKUP_FOLLOW;
1407 
1408 	retval = user_path_mountpoint_at(AT_FDCWD, name, lookup_flags, &path);
1409 	if (retval)
1410 		goto out;
1411 	mnt = real_mount(path.mnt);
1412 	retval = -EINVAL;
1413 	if (path.dentry != path.mnt->mnt_root)
1414 		goto dput_and_out;
1415 	if (!check_mnt(mnt))
1416 		goto dput_and_out;
1417 	if (mnt->mnt.mnt_flags & MNT_LOCKED)
1418 		goto dput_and_out;
1419 
1420 	retval = do_umount(mnt, flags);
1421 dput_and_out:
1422 	/* we mustn't call path_put() as that would clear mnt_expiry_mark */
1423 	dput(path.dentry);
1424 	mntput_no_expire(mnt);
1425 out:
1426 	return retval;
1427 }
1428 
1429 #ifdef __ARCH_WANT_SYS_OLDUMOUNT
1430 
1431 /*
1432  *	The 2.0 compatible umount. No flags.
1433  */
1434 SYSCALL_DEFINE1(oldumount, char __user *, name)
1435 {
1436 	return sys_umount(name, 0);
1437 }
1438 
1439 #endif
1440 
1441 static bool is_mnt_ns_file(struct dentry *dentry)
1442 {
1443 	/* Is this a proxy for a mount namespace? */
1444 	struct inode *inode = dentry->d_inode;
1445 	struct proc_ns *ei;
1446 
1447 	if (!proc_ns_inode(inode))
1448 		return false;
1449 
1450 	ei = get_proc_ns(inode);
1451 	if (ei->ns_ops != &mntns_operations)
1452 		return false;
1453 
1454 	return true;
1455 }
1456 
1457 static bool mnt_ns_loop(struct dentry *dentry)
1458 {
1459 	/* Could bind mounting the mount namespace inode cause a
1460 	 * mount namespace loop?
1461 	 */
1462 	struct mnt_namespace *mnt_ns;
1463 	if (!is_mnt_ns_file(dentry))
1464 		return false;
1465 
1466 	mnt_ns = get_proc_ns(dentry->d_inode)->ns;
1467 	return current->nsproxy->mnt_ns->seq >= mnt_ns->seq;
1468 }
1469 
1470 struct mount *copy_tree(struct mount *mnt, struct dentry *dentry,
1471 					int flag)
1472 {
1473 	struct mount *res, *p, *q, *r, *parent;
1474 
1475 	if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(mnt))
1476 		return ERR_PTR(-EINVAL);
1477 
1478 	if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry))
1479 		return ERR_PTR(-EINVAL);
1480 
1481 	res = q = clone_mnt(mnt, dentry, flag);
1482 	if (IS_ERR(q))
1483 		return q;
1484 
1485 	q->mnt.mnt_flags &= ~MNT_LOCKED;
1486 	q->mnt_mountpoint = mnt->mnt_mountpoint;
1487 
1488 	p = mnt;
1489 	list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
1490 		struct mount *s;
1491 		if (!is_subdir(r->mnt_mountpoint, dentry))
1492 			continue;
1493 
1494 		for (s = r; s; s = next_mnt(s, r)) {
1495 			if (!(flag & CL_COPY_UNBINDABLE) &&
1496 			    IS_MNT_UNBINDABLE(s)) {
1497 				s = skip_mnt_tree(s);
1498 				continue;
1499 			}
1500 			if (!(flag & CL_COPY_MNT_NS_FILE) &&
1501 			    is_mnt_ns_file(s->mnt.mnt_root)) {
1502 				s = skip_mnt_tree(s);
1503 				continue;
1504 			}
1505 			while (p != s->mnt_parent) {
1506 				p = p->mnt_parent;
1507 				q = q->mnt_parent;
1508 			}
1509 			p = s;
1510 			parent = q;
1511 			q = clone_mnt(p, p->mnt.mnt_root, flag);
1512 			if (IS_ERR(q))
1513 				goto out;
1514 			lock_mount_hash();
1515 			list_add_tail(&q->mnt_list, &res->mnt_list);
1516 			attach_mnt(q, parent, p->mnt_mp);
1517 			unlock_mount_hash();
1518 		}
1519 	}
1520 	return res;
1521 out:
1522 	if (res) {
1523 		lock_mount_hash();
1524 		umount_tree(res, 0);
1525 		unlock_mount_hash();
1526 	}
1527 	return q;
1528 }
1529 
1530 /* Caller should check returned pointer for errors */
1531 
1532 struct vfsmount *collect_mounts(struct path *path)
1533 {
1534 	struct mount *tree;
1535 	namespace_lock();
1536 	tree = copy_tree(real_mount(path->mnt), path->dentry,
1537 			 CL_COPY_ALL | CL_PRIVATE);
1538 	namespace_unlock();
1539 	if (IS_ERR(tree))
1540 		return ERR_CAST(tree);
1541 	return &tree->mnt;
1542 }
1543 
1544 void drop_collected_mounts(struct vfsmount *mnt)
1545 {
1546 	namespace_lock();
1547 	lock_mount_hash();
1548 	umount_tree(real_mount(mnt), 0);
1549 	unlock_mount_hash();
1550 	namespace_unlock();
1551 }
1552 
1553 int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
1554 		   struct vfsmount *root)
1555 {
1556 	struct mount *mnt;
1557 	int res = f(root, arg);
1558 	if (res)
1559 		return res;
1560 	list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) {
1561 		res = f(&mnt->mnt, arg);
1562 		if (res)
1563 			return res;
1564 	}
1565 	return 0;
1566 }
1567 
1568 static void cleanup_group_ids(struct mount *mnt, struct mount *end)
1569 {
1570 	struct mount *p;
1571 
1572 	for (p = mnt; p != end; p = next_mnt(p, mnt)) {
1573 		if (p->mnt_group_id && !IS_MNT_SHARED(p))
1574 			mnt_release_group_id(p);
1575 	}
1576 }
1577 
1578 static int invent_group_ids(struct mount *mnt, bool recurse)
1579 {
1580 	struct mount *p;
1581 
1582 	for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
1583 		if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
1584 			int err = mnt_alloc_group_id(p);
1585 			if (err) {
1586 				cleanup_group_ids(mnt, p);
1587 				return err;
1588 			}
1589 		}
1590 	}
1591 
1592 	return 0;
1593 }
1594 
1595 /*
1596  *  @source_mnt : mount tree to be attached
1597  *  @nd         : place the mount tree @source_mnt is attached
1598  *  @parent_nd  : if non-null, detach the source_mnt from its parent and
1599  *  		   store the parent mount and mountpoint dentry.
1600  *  		   (done when source_mnt is moved)
1601  *
1602  *  NOTE: in the table below explains the semantics when a source mount
1603  *  of a given type is attached to a destination mount of a given type.
1604  * ---------------------------------------------------------------------------
1605  * |         BIND MOUNT OPERATION                                            |
1606  * |**************************************************************************
1607  * | source-->| shared        |       private  |       slave    | unbindable |
1608  * | dest     |               |                |                |            |
1609  * |   |      |               |                |                |            |
1610  * |   v      |               |                |                |            |
1611  * |**************************************************************************
1612  * |  shared  | shared (++)   |     shared (+) |     shared(+++)|  invalid   |
1613  * |          |               |                |                |            |
1614  * |non-shared| shared (+)    |      private   |      slave (*) |  invalid   |
1615  * ***************************************************************************
1616  * A bind operation clones the source mount and mounts the clone on the
1617  * destination mount.
1618  *
1619  * (++)  the cloned mount is propagated to all the mounts in the propagation
1620  * 	 tree of the destination mount and the cloned mount is added to
1621  * 	 the peer group of the source mount.
1622  * (+)   the cloned mount is created under the destination mount and is marked
1623  *       as shared. The cloned mount is added to the peer group of the source
1624  *       mount.
1625  * (+++) the mount is propagated to all the mounts in the propagation tree
1626  *       of the destination mount and the cloned mount is made slave
1627  *       of the same master as that of the source mount. The cloned mount
1628  *       is marked as 'shared and slave'.
1629  * (*)   the cloned mount is made a slave of the same master as that of the
1630  * 	 source mount.
1631  *
1632  * ---------------------------------------------------------------------------
1633  * |         		MOVE MOUNT OPERATION                                 |
1634  * |**************************************************************************
1635  * | source-->| shared        |       private  |       slave    | unbindable |
1636  * | dest     |               |                |                |            |
1637  * |   |      |               |                |                |            |
1638  * |   v      |               |                |                |            |
1639  * |**************************************************************************
1640  * |  shared  | shared (+)    |     shared (+) |    shared(+++) |  invalid   |
1641  * |          |               |                |                |            |
1642  * |non-shared| shared (+*)   |      private   |    slave (*)   | unbindable |
1643  * ***************************************************************************
1644  *
1645  * (+)  the mount is moved to the destination. And is then propagated to
1646  * 	all the mounts in the propagation tree of the destination mount.
1647  * (+*)  the mount is moved to the destination.
1648  * (+++)  the mount is moved to the destination and is then propagated to
1649  * 	all the mounts belonging to the destination mount's propagation tree.
1650  * 	the mount is marked as 'shared and slave'.
1651  * (*)	the mount continues to be a slave at the new location.
1652  *
1653  * if the source mount is a tree, the operations explained above is
1654  * applied to each mount in the tree.
1655  * Must be called without spinlocks held, since this function can sleep
1656  * in allocations.
1657  */
1658 static int attach_recursive_mnt(struct mount *source_mnt,
1659 			struct mount *dest_mnt,
1660 			struct mountpoint *dest_mp,
1661 			struct path *parent_path)
1662 {
1663 	HLIST_HEAD(tree_list);
1664 	struct mount *child, *p;
1665 	struct hlist_node *n;
1666 	int err;
1667 
1668 	if (IS_MNT_SHARED(dest_mnt)) {
1669 		err = invent_group_ids(source_mnt, true);
1670 		if (err)
1671 			goto out;
1672 		err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list);
1673 		lock_mount_hash();
1674 		if (err)
1675 			goto out_cleanup_ids;
1676 		for (p = source_mnt; p; p = next_mnt(p, source_mnt))
1677 			set_mnt_shared(p);
1678 	} else {
1679 		lock_mount_hash();
1680 	}
1681 	if (parent_path) {
1682 		detach_mnt(source_mnt, parent_path);
1683 		attach_mnt(source_mnt, dest_mnt, dest_mp);
1684 		touch_mnt_namespace(source_mnt->mnt_ns);
1685 	} else {
1686 		mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt);
1687 		commit_tree(source_mnt, NULL);
1688 	}
1689 
1690 	hlist_for_each_entry_safe(child, n, &tree_list, mnt_hash) {
1691 		struct mount *q;
1692 		hlist_del_init(&child->mnt_hash);
1693 		q = __lookup_mnt_last(&child->mnt_parent->mnt,
1694 				      child->mnt_mountpoint);
1695 		commit_tree(child, q);
1696 	}
1697 	unlock_mount_hash();
1698 
1699 	return 0;
1700 
1701  out_cleanup_ids:
1702 	while (!hlist_empty(&tree_list)) {
1703 		child = hlist_entry(tree_list.first, struct mount, mnt_hash);
1704 		umount_tree(child, 0);
1705 	}
1706 	unlock_mount_hash();
1707 	cleanup_group_ids(source_mnt, NULL);
1708  out:
1709 	return err;
1710 }
1711 
1712 static struct mountpoint *lock_mount(struct path *path)
1713 {
1714 	struct vfsmount *mnt;
1715 	struct dentry *dentry = path->dentry;
1716 retry:
1717 	mutex_lock(&dentry->d_inode->i_mutex);
1718 	if (unlikely(cant_mount(dentry))) {
1719 		mutex_unlock(&dentry->d_inode->i_mutex);
1720 		return ERR_PTR(-ENOENT);
1721 	}
1722 	namespace_lock();
1723 	mnt = lookup_mnt(path);
1724 	if (likely(!mnt)) {
1725 		struct mountpoint *mp = new_mountpoint(dentry);
1726 		if (IS_ERR(mp)) {
1727 			namespace_unlock();
1728 			mutex_unlock(&dentry->d_inode->i_mutex);
1729 			return mp;
1730 		}
1731 		return mp;
1732 	}
1733 	namespace_unlock();
1734 	mutex_unlock(&path->dentry->d_inode->i_mutex);
1735 	path_put(path);
1736 	path->mnt = mnt;
1737 	dentry = path->dentry = dget(mnt->mnt_root);
1738 	goto retry;
1739 }
1740 
1741 static void unlock_mount(struct mountpoint *where)
1742 {
1743 	struct dentry *dentry = where->m_dentry;
1744 	put_mountpoint(where);
1745 	namespace_unlock();
1746 	mutex_unlock(&dentry->d_inode->i_mutex);
1747 }
1748 
1749 static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp)
1750 {
1751 	if (mnt->mnt.mnt_sb->s_flags & MS_NOUSER)
1752 		return -EINVAL;
1753 
1754 	if (S_ISDIR(mp->m_dentry->d_inode->i_mode) !=
1755 	      S_ISDIR(mnt->mnt.mnt_root->d_inode->i_mode))
1756 		return -ENOTDIR;
1757 
1758 	return attach_recursive_mnt(mnt, p, mp, NULL);
1759 }
1760 
1761 /*
1762  * Sanity check the flags to change_mnt_propagation.
1763  */
1764 
1765 static int flags_to_propagation_type(int flags)
1766 {
1767 	int type = flags & ~(MS_REC | MS_SILENT);
1768 
1769 	/* Fail if any non-propagation flags are set */
1770 	if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
1771 		return 0;
1772 	/* Only one propagation flag should be set */
1773 	if (!is_power_of_2(type))
1774 		return 0;
1775 	return type;
1776 }
1777 
1778 /*
1779  * recursively change the type of the mountpoint.
1780  */
1781 static int do_change_type(struct path *path, int flag)
1782 {
1783 	struct mount *m;
1784 	struct mount *mnt = real_mount(path->mnt);
1785 	int recurse = flag & MS_REC;
1786 	int type;
1787 	int err = 0;
1788 
1789 	if (path->dentry != path->mnt->mnt_root)
1790 		return -EINVAL;
1791 
1792 	type = flags_to_propagation_type(flag);
1793 	if (!type)
1794 		return -EINVAL;
1795 
1796 	namespace_lock();
1797 	if (type == MS_SHARED) {
1798 		err = invent_group_ids(mnt, recurse);
1799 		if (err)
1800 			goto out_unlock;
1801 	}
1802 
1803 	lock_mount_hash();
1804 	for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
1805 		change_mnt_propagation(m, type);
1806 	unlock_mount_hash();
1807 
1808  out_unlock:
1809 	namespace_unlock();
1810 	return err;
1811 }
1812 
1813 static bool has_locked_children(struct mount *mnt, struct dentry *dentry)
1814 {
1815 	struct mount *child;
1816 	list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
1817 		if (!is_subdir(child->mnt_mountpoint, dentry))
1818 			continue;
1819 
1820 		if (child->mnt.mnt_flags & MNT_LOCKED)
1821 			return true;
1822 	}
1823 	return false;
1824 }
1825 
1826 /*
1827  * do loopback mount.
1828  */
1829 static int do_loopback(struct path *path, const char *old_name,
1830 				int recurse)
1831 {
1832 	struct path old_path;
1833 	struct mount *mnt = NULL, *old, *parent;
1834 	struct mountpoint *mp;
1835 	int err;
1836 	if (!old_name || !*old_name)
1837 		return -EINVAL;
1838 	err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
1839 	if (err)
1840 		return err;
1841 
1842 	err = -EINVAL;
1843 	if (mnt_ns_loop(old_path.dentry))
1844 		goto out;
1845 
1846 	mp = lock_mount(path);
1847 	err = PTR_ERR(mp);
1848 	if (IS_ERR(mp))
1849 		goto out;
1850 
1851 	old = real_mount(old_path.mnt);
1852 	parent = real_mount(path->mnt);
1853 
1854 	err = -EINVAL;
1855 	if (IS_MNT_UNBINDABLE(old))
1856 		goto out2;
1857 
1858 	if (!check_mnt(parent) || !check_mnt(old))
1859 		goto out2;
1860 
1861 	if (!recurse && has_locked_children(old, old_path.dentry))
1862 		goto out2;
1863 
1864 	if (recurse)
1865 		mnt = copy_tree(old, old_path.dentry, CL_COPY_MNT_NS_FILE);
1866 	else
1867 		mnt = clone_mnt(old, old_path.dentry, 0);
1868 
1869 	if (IS_ERR(mnt)) {
1870 		err = PTR_ERR(mnt);
1871 		goto out2;
1872 	}
1873 
1874 	mnt->mnt.mnt_flags &= ~MNT_LOCKED;
1875 
1876 	err = graft_tree(mnt, parent, mp);
1877 	if (err) {
1878 		lock_mount_hash();
1879 		umount_tree(mnt, 0);
1880 		unlock_mount_hash();
1881 	}
1882 out2:
1883 	unlock_mount(mp);
1884 out:
1885 	path_put(&old_path);
1886 	return err;
1887 }
1888 
1889 static int change_mount_flags(struct vfsmount *mnt, int ms_flags)
1890 {
1891 	int error = 0;
1892 	int readonly_request = 0;
1893 
1894 	if (ms_flags & MS_RDONLY)
1895 		readonly_request = 1;
1896 	if (readonly_request == __mnt_is_readonly(mnt))
1897 		return 0;
1898 
1899 	if (mnt->mnt_flags & MNT_LOCK_READONLY)
1900 		return -EPERM;
1901 
1902 	if (readonly_request)
1903 		error = mnt_make_readonly(real_mount(mnt));
1904 	else
1905 		__mnt_unmake_readonly(real_mount(mnt));
1906 	return error;
1907 }
1908 
1909 /*
1910  * change filesystem flags. dir should be a physical root of filesystem.
1911  * If you've mounted a non-root directory somewhere and want to do remount
1912  * on it - tough luck.
1913  */
1914 static int do_remount(struct path *path, int flags, int mnt_flags,
1915 		      void *data)
1916 {
1917 	int err;
1918 	struct super_block *sb = path->mnt->mnt_sb;
1919 	struct mount *mnt = real_mount(path->mnt);
1920 
1921 	if (!check_mnt(mnt))
1922 		return -EINVAL;
1923 
1924 	if (path->dentry != path->mnt->mnt_root)
1925 		return -EINVAL;
1926 
1927 	err = security_sb_remount(sb, data);
1928 	if (err)
1929 		return err;
1930 
1931 	down_write(&sb->s_umount);
1932 	if (flags & MS_BIND)
1933 		err = change_mount_flags(path->mnt, flags);
1934 	else if (!capable(CAP_SYS_ADMIN))
1935 		err = -EPERM;
1936 	else
1937 		err = do_remount_sb(sb, flags, data, 0);
1938 	if (!err) {
1939 		lock_mount_hash();
1940 		mnt_flags |= mnt->mnt.mnt_flags & MNT_PROPAGATION_MASK;
1941 		mnt->mnt.mnt_flags = mnt_flags;
1942 		touch_mnt_namespace(mnt->mnt_ns);
1943 		unlock_mount_hash();
1944 	}
1945 	up_write(&sb->s_umount);
1946 	return err;
1947 }
1948 
1949 static inline int tree_contains_unbindable(struct mount *mnt)
1950 {
1951 	struct mount *p;
1952 	for (p = mnt; p; p = next_mnt(p, mnt)) {
1953 		if (IS_MNT_UNBINDABLE(p))
1954 			return 1;
1955 	}
1956 	return 0;
1957 }
1958 
1959 static int do_move_mount(struct path *path, const char *old_name)
1960 {
1961 	struct path old_path, parent_path;
1962 	struct mount *p;
1963 	struct mount *old;
1964 	struct mountpoint *mp;
1965 	int err;
1966 	if (!old_name || !*old_name)
1967 		return -EINVAL;
1968 	err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
1969 	if (err)
1970 		return err;
1971 
1972 	mp = lock_mount(path);
1973 	err = PTR_ERR(mp);
1974 	if (IS_ERR(mp))
1975 		goto out;
1976 
1977 	old = real_mount(old_path.mnt);
1978 	p = real_mount(path->mnt);
1979 
1980 	err = -EINVAL;
1981 	if (!check_mnt(p) || !check_mnt(old))
1982 		goto out1;
1983 
1984 	if (old->mnt.mnt_flags & MNT_LOCKED)
1985 		goto out1;
1986 
1987 	err = -EINVAL;
1988 	if (old_path.dentry != old_path.mnt->mnt_root)
1989 		goto out1;
1990 
1991 	if (!mnt_has_parent(old))
1992 		goto out1;
1993 
1994 	if (S_ISDIR(path->dentry->d_inode->i_mode) !=
1995 	      S_ISDIR(old_path.dentry->d_inode->i_mode))
1996 		goto out1;
1997 	/*
1998 	 * Don't move a mount residing in a shared parent.
1999 	 */
2000 	if (IS_MNT_SHARED(old->mnt_parent))
2001 		goto out1;
2002 	/*
2003 	 * Don't move a mount tree containing unbindable mounts to a destination
2004 	 * mount which is shared.
2005 	 */
2006 	if (IS_MNT_SHARED(p) && tree_contains_unbindable(old))
2007 		goto out1;
2008 	err = -ELOOP;
2009 	for (; mnt_has_parent(p); p = p->mnt_parent)
2010 		if (p == old)
2011 			goto out1;
2012 
2013 	err = attach_recursive_mnt(old, real_mount(path->mnt), mp, &parent_path);
2014 	if (err)
2015 		goto out1;
2016 
2017 	/* if the mount is moved, it should no longer be expire
2018 	 * automatically */
2019 	list_del_init(&old->mnt_expire);
2020 out1:
2021 	unlock_mount(mp);
2022 out:
2023 	if (!err)
2024 		path_put(&parent_path);
2025 	path_put(&old_path);
2026 	return err;
2027 }
2028 
2029 static struct vfsmount *fs_set_subtype(struct vfsmount *mnt, const char *fstype)
2030 {
2031 	int err;
2032 	const char *subtype = strchr(fstype, '.');
2033 	if (subtype) {
2034 		subtype++;
2035 		err = -EINVAL;
2036 		if (!subtype[0])
2037 			goto err;
2038 	} else
2039 		subtype = "";
2040 
2041 	mnt->mnt_sb->s_subtype = kstrdup(subtype, GFP_KERNEL);
2042 	err = -ENOMEM;
2043 	if (!mnt->mnt_sb->s_subtype)
2044 		goto err;
2045 	return mnt;
2046 
2047  err:
2048 	mntput(mnt);
2049 	return ERR_PTR(err);
2050 }
2051 
2052 /*
2053  * add a mount into a namespace's mount tree
2054  */
2055 static int do_add_mount(struct mount *newmnt, struct path *path, int mnt_flags)
2056 {
2057 	struct mountpoint *mp;
2058 	struct mount *parent;
2059 	int err;
2060 
2061 	mnt_flags &= ~MNT_INTERNAL_FLAGS;
2062 
2063 	mp = lock_mount(path);
2064 	if (IS_ERR(mp))
2065 		return PTR_ERR(mp);
2066 
2067 	parent = real_mount(path->mnt);
2068 	err = -EINVAL;
2069 	if (unlikely(!check_mnt(parent))) {
2070 		/* that's acceptable only for automounts done in private ns */
2071 		if (!(mnt_flags & MNT_SHRINKABLE))
2072 			goto unlock;
2073 		/* ... and for those we'd better have mountpoint still alive */
2074 		if (!parent->mnt_ns)
2075 			goto unlock;
2076 	}
2077 
2078 	/* Refuse the same filesystem on the same mount point */
2079 	err = -EBUSY;
2080 	if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb &&
2081 	    path->mnt->mnt_root == path->dentry)
2082 		goto unlock;
2083 
2084 	err = -EINVAL;
2085 	if (S_ISLNK(newmnt->mnt.mnt_root->d_inode->i_mode))
2086 		goto unlock;
2087 
2088 	newmnt->mnt.mnt_flags = mnt_flags;
2089 	err = graft_tree(newmnt, parent, mp);
2090 
2091 unlock:
2092 	unlock_mount(mp);
2093 	return err;
2094 }
2095 
2096 /*
2097  * create a new mount for userspace and request it to be added into the
2098  * namespace's tree
2099  */
2100 static int do_new_mount(struct path *path, const char *fstype, int flags,
2101 			int mnt_flags, const char *name, void *data)
2102 {
2103 	struct file_system_type *type;
2104 	struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns;
2105 	struct vfsmount *mnt;
2106 	int err;
2107 
2108 	if (!fstype)
2109 		return -EINVAL;
2110 
2111 	type = get_fs_type(fstype);
2112 	if (!type)
2113 		return -ENODEV;
2114 
2115 	if (user_ns != &init_user_ns) {
2116 		if (!(type->fs_flags & FS_USERNS_MOUNT)) {
2117 			put_filesystem(type);
2118 			return -EPERM;
2119 		}
2120 		/* Only in special cases allow devices from mounts
2121 		 * created outside the initial user namespace.
2122 		 */
2123 		if (!(type->fs_flags & FS_USERNS_DEV_MOUNT)) {
2124 			flags |= MS_NODEV;
2125 			mnt_flags |= MNT_NODEV;
2126 		}
2127 	}
2128 
2129 	mnt = vfs_kern_mount(type, flags, name, data);
2130 	if (!IS_ERR(mnt) && (type->fs_flags & FS_HAS_SUBTYPE) &&
2131 	    !mnt->mnt_sb->s_subtype)
2132 		mnt = fs_set_subtype(mnt, fstype);
2133 
2134 	put_filesystem(type);
2135 	if (IS_ERR(mnt))
2136 		return PTR_ERR(mnt);
2137 
2138 	err = do_add_mount(real_mount(mnt), path, mnt_flags);
2139 	if (err)
2140 		mntput(mnt);
2141 	return err;
2142 }
2143 
2144 int finish_automount(struct vfsmount *m, struct path *path)
2145 {
2146 	struct mount *mnt = real_mount(m);
2147 	int err;
2148 	/* The new mount record should have at least 2 refs to prevent it being
2149 	 * expired before we get a chance to add it
2150 	 */
2151 	BUG_ON(mnt_get_count(mnt) < 2);
2152 
2153 	if (m->mnt_sb == path->mnt->mnt_sb &&
2154 	    m->mnt_root == path->dentry) {
2155 		err = -ELOOP;
2156 		goto fail;
2157 	}
2158 
2159 	err = do_add_mount(mnt, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
2160 	if (!err)
2161 		return 0;
2162 fail:
2163 	/* remove m from any expiration list it may be on */
2164 	if (!list_empty(&mnt->mnt_expire)) {
2165 		namespace_lock();
2166 		list_del_init(&mnt->mnt_expire);
2167 		namespace_unlock();
2168 	}
2169 	mntput(m);
2170 	mntput(m);
2171 	return err;
2172 }
2173 
2174 /**
2175  * mnt_set_expiry - Put a mount on an expiration list
2176  * @mnt: The mount to list.
2177  * @expiry_list: The list to add the mount to.
2178  */
2179 void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
2180 {
2181 	namespace_lock();
2182 
2183 	list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
2184 
2185 	namespace_unlock();
2186 }
2187 EXPORT_SYMBOL(mnt_set_expiry);
2188 
2189 /*
2190  * process a list of expirable mountpoints with the intent of discarding any
2191  * mountpoints that aren't in use and haven't been touched since last we came
2192  * here
2193  */
2194 void mark_mounts_for_expiry(struct list_head *mounts)
2195 {
2196 	struct mount *mnt, *next;
2197 	LIST_HEAD(graveyard);
2198 
2199 	if (list_empty(mounts))
2200 		return;
2201 
2202 	namespace_lock();
2203 	lock_mount_hash();
2204 
2205 	/* extract from the expiration list every vfsmount that matches the
2206 	 * following criteria:
2207 	 * - only referenced by its parent vfsmount
2208 	 * - still marked for expiry (marked on the last call here; marks are
2209 	 *   cleared by mntput())
2210 	 */
2211 	list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
2212 		if (!xchg(&mnt->mnt_expiry_mark, 1) ||
2213 			propagate_mount_busy(mnt, 1))
2214 			continue;
2215 		list_move(&mnt->mnt_expire, &graveyard);
2216 	}
2217 	while (!list_empty(&graveyard)) {
2218 		mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
2219 		touch_mnt_namespace(mnt->mnt_ns);
2220 		umount_tree(mnt, 1);
2221 	}
2222 	unlock_mount_hash();
2223 	namespace_unlock();
2224 }
2225 
2226 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
2227 
2228 /*
2229  * Ripoff of 'select_parent()'
2230  *
2231  * search the list of submounts for a given mountpoint, and move any
2232  * shrinkable submounts to the 'graveyard' list.
2233  */
2234 static int select_submounts(struct mount *parent, struct list_head *graveyard)
2235 {
2236 	struct mount *this_parent = parent;
2237 	struct list_head *next;
2238 	int found = 0;
2239 
2240 repeat:
2241 	next = this_parent->mnt_mounts.next;
2242 resume:
2243 	while (next != &this_parent->mnt_mounts) {
2244 		struct list_head *tmp = next;
2245 		struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
2246 
2247 		next = tmp->next;
2248 		if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
2249 			continue;
2250 		/*
2251 		 * Descend a level if the d_mounts list is non-empty.
2252 		 */
2253 		if (!list_empty(&mnt->mnt_mounts)) {
2254 			this_parent = mnt;
2255 			goto repeat;
2256 		}
2257 
2258 		if (!propagate_mount_busy(mnt, 1)) {
2259 			list_move_tail(&mnt->mnt_expire, graveyard);
2260 			found++;
2261 		}
2262 	}
2263 	/*
2264 	 * All done at this level ... ascend and resume the search
2265 	 */
2266 	if (this_parent != parent) {
2267 		next = this_parent->mnt_child.next;
2268 		this_parent = this_parent->mnt_parent;
2269 		goto resume;
2270 	}
2271 	return found;
2272 }
2273 
2274 /*
2275  * process a list of expirable mountpoints with the intent of discarding any
2276  * submounts of a specific parent mountpoint
2277  *
2278  * mount_lock must be held for write
2279  */
2280 static void shrink_submounts(struct mount *mnt)
2281 {
2282 	LIST_HEAD(graveyard);
2283 	struct mount *m;
2284 
2285 	/* extract submounts of 'mountpoint' from the expiration list */
2286 	while (select_submounts(mnt, &graveyard)) {
2287 		while (!list_empty(&graveyard)) {
2288 			m = list_first_entry(&graveyard, struct mount,
2289 						mnt_expire);
2290 			touch_mnt_namespace(m->mnt_ns);
2291 			umount_tree(m, 1);
2292 		}
2293 	}
2294 }
2295 
2296 /*
2297  * Some copy_from_user() implementations do not return the exact number of
2298  * bytes remaining to copy on a fault.  But copy_mount_options() requires that.
2299  * Note that this function differs from copy_from_user() in that it will oops
2300  * on bad values of `to', rather than returning a short copy.
2301  */
2302 static long exact_copy_from_user(void *to, const void __user * from,
2303 				 unsigned long n)
2304 {
2305 	char *t = to;
2306 	const char __user *f = from;
2307 	char c;
2308 
2309 	if (!access_ok(VERIFY_READ, from, n))
2310 		return n;
2311 
2312 	while (n) {
2313 		if (__get_user(c, f)) {
2314 			memset(t, 0, n);
2315 			break;
2316 		}
2317 		*t++ = c;
2318 		f++;
2319 		n--;
2320 	}
2321 	return n;
2322 }
2323 
2324 int copy_mount_options(const void __user * data, unsigned long *where)
2325 {
2326 	int i;
2327 	unsigned long page;
2328 	unsigned long size;
2329 
2330 	*where = 0;
2331 	if (!data)
2332 		return 0;
2333 
2334 	if (!(page = __get_free_page(GFP_KERNEL)))
2335 		return -ENOMEM;
2336 
2337 	/* We only care that *some* data at the address the user
2338 	 * gave us is valid.  Just in case, we'll zero
2339 	 * the remainder of the page.
2340 	 */
2341 	/* copy_from_user cannot cross TASK_SIZE ! */
2342 	size = TASK_SIZE - (unsigned long)data;
2343 	if (size > PAGE_SIZE)
2344 		size = PAGE_SIZE;
2345 
2346 	i = size - exact_copy_from_user((void *)page, data, size);
2347 	if (!i) {
2348 		free_page(page);
2349 		return -EFAULT;
2350 	}
2351 	if (i != PAGE_SIZE)
2352 		memset((char *)page + i, 0, PAGE_SIZE - i);
2353 	*where = page;
2354 	return 0;
2355 }
2356 
2357 int copy_mount_string(const void __user *data, char **where)
2358 {
2359 	char *tmp;
2360 
2361 	if (!data) {
2362 		*where = NULL;
2363 		return 0;
2364 	}
2365 
2366 	tmp = strndup_user(data, PAGE_SIZE);
2367 	if (IS_ERR(tmp))
2368 		return PTR_ERR(tmp);
2369 
2370 	*where = tmp;
2371 	return 0;
2372 }
2373 
2374 /*
2375  * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
2376  * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
2377  *
2378  * data is a (void *) that can point to any structure up to
2379  * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
2380  * information (or be NULL).
2381  *
2382  * Pre-0.97 versions of mount() didn't have a flags word.
2383  * When the flags word was introduced its top half was required
2384  * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
2385  * Therefore, if this magic number is present, it carries no information
2386  * and must be discarded.
2387  */
2388 long do_mount(const char *dev_name, const char *dir_name,
2389 		const char *type_page, unsigned long flags, void *data_page)
2390 {
2391 	struct path path;
2392 	int retval = 0;
2393 	int mnt_flags = 0;
2394 
2395 	/* Discard magic */
2396 	if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
2397 		flags &= ~MS_MGC_MSK;
2398 
2399 	/* Basic sanity checks */
2400 
2401 	if (!dir_name || !*dir_name || !memchr(dir_name, 0, PAGE_SIZE))
2402 		return -EINVAL;
2403 
2404 	if (data_page)
2405 		((char *)data_page)[PAGE_SIZE - 1] = 0;
2406 
2407 	/* ... and get the mountpoint */
2408 	retval = kern_path(dir_name, LOOKUP_FOLLOW, &path);
2409 	if (retval)
2410 		return retval;
2411 
2412 	retval = security_sb_mount(dev_name, &path,
2413 				   type_page, flags, data_page);
2414 	if (!retval && !may_mount())
2415 		retval = -EPERM;
2416 	if (retval)
2417 		goto dput_out;
2418 
2419 	/* Default to relatime unless overriden */
2420 	if (!(flags & MS_NOATIME))
2421 		mnt_flags |= MNT_RELATIME;
2422 
2423 	/* Separate the per-mountpoint flags */
2424 	if (flags & MS_NOSUID)
2425 		mnt_flags |= MNT_NOSUID;
2426 	if (flags & MS_NODEV)
2427 		mnt_flags |= MNT_NODEV;
2428 	if (flags & MS_NOEXEC)
2429 		mnt_flags |= MNT_NOEXEC;
2430 	if (flags & MS_NOATIME)
2431 		mnt_flags |= MNT_NOATIME;
2432 	if (flags & MS_NODIRATIME)
2433 		mnt_flags |= MNT_NODIRATIME;
2434 	if (flags & MS_STRICTATIME)
2435 		mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
2436 	if (flags & MS_RDONLY)
2437 		mnt_flags |= MNT_READONLY;
2438 
2439 	flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE | MS_BORN |
2440 		   MS_NOATIME | MS_NODIRATIME | MS_RELATIME| MS_KERNMOUNT |
2441 		   MS_STRICTATIME);
2442 
2443 	if (flags & MS_REMOUNT)
2444 		retval = do_remount(&path, flags & ~MS_REMOUNT, mnt_flags,
2445 				    data_page);
2446 	else if (flags & MS_BIND)
2447 		retval = do_loopback(&path, dev_name, flags & MS_REC);
2448 	else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2449 		retval = do_change_type(&path, flags);
2450 	else if (flags & MS_MOVE)
2451 		retval = do_move_mount(&path, dev_name);
2452 	else
2453 		retval = do_new_mount(&path, type_page, flags, mnt_flags,
2454 				      dev_name, data_page);
2455 dput_out:
2456 	path_put(&path);
2457 	return retval;
2458 }
2459 
2460 static void free_mnt_ns(struct mnt_namespace *ns)
2461 {
2462 	proc_free_inum(ns->proc_inum);
2463 	put_user_ns(ns->user_ns);
2464 	kfree(ns);
2465 }
2466 
2467 /*
2468  * Assign a sequence number so we can detect when we attempt to bind
2469  * mount a reference to an older mount namespace into the current
2470  * mount namespace, preventing reference counting loops.  A 64bit
2471  * number incrementing at 10Ghz will take 12,427 years to wrap which
2472  * is effectively never, so we can ignore the possibility.
2473  */
2474 static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1);
2475 
2476 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns)
2477 {
2478 	struct mnt_namespace *new_ns;
2479 	int ret;
2480 
2481 	new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
2482 	if (!new_ns)
2483 		return ERR_PTR(-ENOMEM);
2484 	ret = proc_alloc_inum(&new_ns->proc_inum);
2485 	if (ret) {
2486 		kfree(new_ns);
2487 		return ERR_PTR(ret);
2488 	}
2489 	new_ns->seq = atomic64_add_return(1, &mnt_ns_seq);
2490 	atomic_set(&new_ns->count, 1);
2491 	new_ns->root = NULL;
2492 	INIT_LIST_HEAD(&new_ns->list);
2493 	init_waitqueue_head(&new_ns->poll);
2494 	new_ns->event = 0;
2495 	new_ns->user_ns = get_user_ns(user_ns);
2496 	return new_ns;
2497 }
2498 
2499 struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
2500 		struct user_namespace *user_ns, struct fs_struct *new_fs)
2501 {
2502 	struct mnt_namespace *new_ns;
2503 	struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
2504 	struct mount *p, *q;
2505 	struct mount *old;
2506 	struct mount *new;
2507 	int copy_flags;
2508 
2509 	BUG_ON(!ns);
2510 
2511 	if (likely(!(flags & CLONE_NEWNS))) {
2512 		get_mnt_ns(ns);
2513 		return ns;
2514 	}
2515 
2516 	old = ns->root;
2517 
2518 	new_ns = alloc_mnt_ns(user_ns);
2519 	if (IS_ERR(new_ns))
2520 		return new_ns;
2521 
2522 	namespace_lock();
2523 	/* First pass: copy the tree topology */
2524 	copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE;
2525 	if (user_ns != ns->user_ns)
2526 		copy_flags |= CL_SHARED_TO_SLAVE | CL_UNPRIVILEGED;
2527 	new = copy_tree(old, old->mnt.mnt_root, copy_flags);
2528 	if (IS_ERR(new)) {
2529 		namespace_unlock();
2530 		free_mnt_ns(new_ns);
2531 		return ERR_CAST(new);
2532 	}
2533 	new_ns->root = new;
2534 	list_add_tail(&new_ns->list, &new->mnt_list);
2535 
2536 	/*
2537 	 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
2538 	 * as belonging to new namespace.  We have already acquired a private
2539 	 * fs_struct, so tsk->fs->lock is not needed.
2540 	 */
2541 	p = old;
2542 	q = new;
2543 	while (p) {
2544 		q->mnt_ns = new_ns;
2545 		if (new_fs) {
2546 			if (&p->mnt == new_fs->root.mnt) {
2547 				new_fs->root.mnt = mntget(&q->mnt);
2548 				rootmnt = &p->mnt;
2549 			}
2550 			if (&p->mnt == new_fs->pwd.mnt) {
2551 				new_fs->pwd.mnt = mntget(&q->mnt);
2552 				pwdmnt = &p->mnt;
2553 			}
2554 		}
2555 		p = next_mnt(p, old);
2556 		q = next_mnt(q, new);
2557 		if (!q)
2558 			break;
2559 		while (p->mnt.mnt_root != q->mnt.mnt_root)
2560 			p = next_mnt(p, old);
2561 	}
2562 	namespace_unlock();
2563 
2564 	if (rootmnt)
2565 		mntput(rootmnt);
2566 	if (pwdmnt)
2567 		mntput(pwdmnt);
2568 
2569 	return new_ns;
2570 }
2571 
2572 /**
2573  * create_mnt_ns - creates a private namespace and adds a root filesystem
2574  * @mnt: pointer to the new root filesystem mountpoint
2575  */
2576 static struct mnt_namespace *create_mnt_ns(struct vfsmount *m)
2577 {
2578 	struct mnt_namespace *new_ns = alloc_mnt_ns(&init_user_ns);
2579 	if (!IS_ERR(new_ns)) {
2580 		struct mount *mnt = real_mount(m);
2581 		mnt->mnt_ns = new_ns;
2582 		new_ns->root = mnt;
2583 		list_add(&mnt->mnt_list, &new_ns->list);
2584 	} else {
2585 		mntput(m);
2586 	}
2587 	return new_ns;
2588 }
2589 
2590 struct dentry *mount_subtree(struct vfsmount *mnt, const char *name)
2591 {
2592 	struct mnt_namespace *ns;
2593 	struct super_block *s;
2594 	struct path path;
2595 	int err;
2596 
2597 	ns = create_mnt_ns(mnt);
2598 	if (IS_ERR(ns))
2599 		return ERR_CAST(ns);
2600 
2601 	err = vfs_path_lookup(mnt->mnt_root, mnt,
2602 			name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
2603 
2604 	put_mnt_ns(ns);
2605 
2606 	if (err)
2607 		return ERR_PTR(err);
2608 
2609 	/* trade a vfsmount reference for active sb one */
2610 	s = path.mnt->mnt_sb;
2611 	atomic_inc(&s->s_active);
2612 	mntput(path.mnt);
2613 	/* lock the sucker */
2614 	down_write(&s->s_umount);
2615 	/* ... and return the root of (sub)tree on it */
2616 	return path.dentry;
2617 }
2618 EXPORT_SYMBOL(mount_subtree);
2619 
2620 SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
2621 		char __user *, type, unsigned long, flags, void __user *, data)
2622 {
2623 	int ret;
2624 	char *kernel_type;
2625 	struct filename *kernel_dir;
2626 	char *kernel_dev;
2627 	unsigned long data_page;
2628 
2629 	ret = copy_mount_string(type, &kernel_type);
2630 	if (ret < 0)
2631 		goto out_type;
2632 
2633 	kernel_dir = getname(dir_name);
2634 	if (IS_ERR(kernel_dir)) {
2635 		ret = PTR_ERR(kernel_dir);
2636 		goto out_dir;
2637 	}
2638 
2639 	ret = copy_mount_string(dev_name, &kernel_dev);
2640 	if (ret < 0)
2641 		goto out_dev;
2642 
2643 	ret = copy_mount_options(data, &data_page);
2644 	if (ret < 0)
2645 		goto out_data;
2646 
2647 	ret = do_mount(kernel_dev, kernel_dir->name, kernel_type, flags,
2648 		(void *) data_page);
2649 
2650 	free_page(data_page);
2651 out_data:
2652 	kfree(kernel_dev);
2653 out_dev:
2654 	putname(kernel_dir);
2655 out_dir:
2656 	kfree(kernel_type);
2657 out_type:
2658 	return ret;
2659 }
2660 
2661 /*
2662  * Return true if path is reachable from root
2663  *
2664  * namespace_sem or mount_lock is held
2665  */
2666 bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
2667 			 const struct path *root)
2668 {
2669 	while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
2670 		dentry = mnt->mnt_mountpoint;
2671 		mnt = mnt->mnt_parent;
2672 	}
2673 	return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
2674 }
2675 
2676 int path_is_under(struct path *path1, struct path *path2)
2677 {
2678 	int res;
2679 	read_seqlock_excl(&mount_lock);
2680 	res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
2681 	read_sequnlock_excl(&mount_lock);
2682 	return res;
2683 }
2684 EXPORT_SYMBOL(path_is_under);
2685 
2686 /*
2687  * pivot_root Semantics:
2688  * Moves the root file system of the current process to the directory put_old,
2689  * makes new_root as the new root file system of the current process, and sets
2690  * root/cwd of all processes which had them on the current root to new_root.
2691  *
2692  * Restrictions:
2693  * The new_root and put_old must be directories, and  must not be on the
2694  * same file  system as the current process root. The put_old  must  be
2695  * underneath new_root,  i.e. adding a non-zero number of /.. to the string
2696  * pointed to by put_old must yield the same directory as new_root. No other
2697  * file system may be mounted on put_old. After all, new_root is a mountpoint.
2698  *
2699  * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
2700  * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
2701  * in this situation.
2702  *
2703  * Notes:
2704  *  - we don't move root/cwd if they are not at the root (reason: if something
2705  *    cared enough to change them, it's probably wrong to force them elsewhere)
2706  *  - it's okay to pick a root that isn't the root of a file system, e.g.
2707  *    /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
2708  *    though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
2709  *    first.
2710  */
2711 SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
2712 		const char __user *, put_old)
2713 {
2714 	struct path new, old, parent_path, root_parent, root;
2715 	struct mount *new_mnt, *root_mnt, *old_mnt;
2716 	struct mountpoint *old_mp, *root_mp;
2717 	int error;
2718 
2719 	if (!may_mount())
2720 		return -EPERM;
2721 
2722 	error = user_path_dir(new_root, &new);
2723 	if (error)
2724 		goto out0;
2725 
2726 	error = user_path_dir(put_old, &old);
2727 	if (error)
2728 		goto out1;
2729 
2730 	error = security_sb_pivotroot(&old, &new);
2731 	if (error)
2732 		goto out2;
2733 
2734 	get_fs_root(current->fs, &root);
2735 	old_mp = lock_mount(&old);
2736 	error = PTR_ERR(old_mp);
2737 	if (IS_ERR(old_mp))
2738 		goto out3;
2739 
2740 	error = -EINVAL;
2741 	new_mnt = real_mount(new.mnt);
2742 	root_mnt = real_mount(root.mnt);
2743 	old_mnt = real_mount(old.mnt);
2744 	if (IS_MNT_SHARED(old_mnt) ||
2745 		IS_MNT_SHARED(new_mnt->mnt_parent) ||
2746 		IS_MNT_SHARED(root_mnt->mnt_parent))
2747 		goto out4;
2748 	if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
2749 		goto out4;
2750 	if (new_mnt->mnt.mnt_flags & MNT_LOCKED)
2751 		goto out4;
2752 	error = -ENOENT;
2753 	if (d_unlinked(new.dentry))
2754 		goto out4;
2755 	error = -EBUSY;
2756 	if (new_mnt == root_mnt || old_mnt == root_mnt)
2757 		goto out4; /* loop, on the same file system  */
2758 	error = -EINVAL;
2759 	if (root.mnt->mnt_root != root.dentry)
2760 		goto out4; /* not a mountpoint */
2761 	if (!mnt_has_parent(root_mnt))
2762 		goto out4; /* not attached */
2763 	root_mp = root_mnt->mnt_mp;
2764 	if (new.mnt->mnt_root != new.dentry)
2765 		goto out4; /* not a mountpoint */
2766 	if (!mnt_has_parent(new_mnt))
2767 		goto out4; /* not attached */
2768 	/* make sure we can reach put_old from new_root */
2769 	if (!is_path_reachable(old_mnt, old.dentry, &new))
2770 		goto out4;
2771 	root_mp->m_count++; /* pin it so it won't go away */
2772 	lock_mount_hash();
2773 	detach_mnt(new_mnt, &parent_path);
2774 	detach_mnt(root_mnt, &root_parent);
2775 	if (root_mnt->mnt.mnt_flags & MNT_LOCKED) {
2776 		new_mnt->mnt.mnt_flags |= MNT_LOCKED;
2777 		root_mnt->mnt.mnt_flags &= ~MNT_LOCKED;
2778 	}
2779 	/* mount old root on put_old */
2780 	attach_mnt(root_mnt, old_mnt, old_mp);
2781 	/* mount new_root on / */
2782 	attach_mnt(new_mnt, real_mount(root_parent.mnt), root_mp);
2783 	touch_mnt_namespace(current->nsproxy->mnt_ns);
2784 	unlock_mount_hash();
2785 	chroot_fs_refs(&root, &new);
2786 	put_mountpoint(root_mp);
2787 	error = 0;
2788 out4:
2789 	unlock_mount(old_mp);
2790 	if (!error) {
2791 		path_put(&root_parent);
2792 		path_put(&parent_path);
2793 	}
2794 out3:
2795 	path_put(&root);
2796 out2:
2797 	path_put(&old);
2798 out1:
2799 	path_put(&new);
2800 out0:
2801 	return error;
2802 }
2803 
2804 static void __init init_mount_tree(void)
2805 {
2806 	struct vfsmount *mnt;
2807 	struct mnt_namespace *ns;
2808 	struct path root;
2809 	struct file_system_type *type;
2810 
2811 	type = get_fs_type("rootfs");
2812 	if (!type)
2813 		panic("Can't find rootfs type");
2814 	mnt = vfs_kern_mount(type, 0, "rootfs", NULL);
2815 	put_filesystem(type);
2816 	if (IS_ERR(mnt))
2817 		panic("Can't create rootfs");
2818 
2819 	ns = create_mnt_ns(mnt);
2820 	if (IS_ERR(ns))
2821 		panic("Can't allocate initial namespace");
2822 
2823 	init_task.nsproxy->mnt_ns = ns;
2824 	get_mnt_ns(ns);
2825 
2826 	root.mnt = mnt;
2827 	root.dentry = mnt->mnt_root;
2828 
2829 	set_fs_pwd(current->fs, &root);
2830 	set_fs_root(current->fs, &root);
2831 }
2832 
2833 void __init mnt_init(void)
2834 {
2835 	unsigned u;
2836 	int err;
2837 
2838 	mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
2839 			0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
2840 
2841 	mount_hashtable = alloc_large_system_hash("Mount-cache",
2842 				sizeof(struct hlist_head),
2843 				mhash_entries, 19,
2844 				0,
2845 				&m_hash_shift, &m_hash_mask, 0, 0);
2846 	mountpoint_hashtable = alloc_large_system_hash("Mountpoint-cache",
2847 				sizeof(struct hlist_head),
2848 				mphash_entries, 19,
2849 				0,
2850 				&mp_hash_shift, &mp_hash_mask, 0, 0);
2851 
2852 	if (!mount_hashtable || !mountpoint_hashtable)
2853 		panic("Failed to allocate mount hash table\n");
2854 
2855 	for (u = 0; u <= m_hash_mask; u++)
2856 		INIT_HLIST_HEAD(&mount_hashtable[u]);
2857 	for (u = 0; u <= mp_hash_mask; u++)
2858 		INIT_HLIST_HEAD(&mountpoint_hashtable[u]);
2859 
2860 	kernfs_init();
2861 
2862 	err = sysfs_init();
2863 	if (err)
2864 		printk(KERN_WARNING "%s: sysfs_init error: %d\n",
2865 			__func__, err);
2866 	fs_kobj = kobject_create_and_add("fs", NULL);
2867 	if (!fs_kobj)
2868 		printk(KERN_WARNING "%s: kobj create error\n", __func__);
2869 	init_rootfs();
2870 	init_mount_tree();
2871 }
2872 
2873 void put_mnt_ns(struct mnt_namespace *ns)
2874 {
2875 	if (!atomic_dec_and_test(&ns->count))
2876 		return;
2877 	drop_collected_mounts(&ns->root->mnt);
2878 	free_mnt_ns(ns);
2879 }
2880 
2881 struct vfsmount *kern_mount_data(struct file_system_type *type, void *data)
2882 {
2883 	struct vfsmount *mnt;
2884 	mnt = vfs_kern_mount(type, MS_KERNMOUNT, type->name, data);
2885 	if (!IS_ERR(mnt)) {
2886 		/*
2887 		 * it is a longterm mount, don't release mnt until
2888 		 * we unmount before file sys is unregistered
2889 		*/
2890 		real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
2891 	}
2892 	return mnt;
2893 }
2894 EXPORT_SYMBOL_GPL(kern_mount_data);
2895 
2896 void kern_unmount(struct vfsmount *mnt)
2897 {
2898 	/* release long term mount so mount point can be released */
2899 	if (!IS_ERR_OR_NULL(mnt)) {
2900 		real_mount(mnt)->mnt_ns = NULL;
2901 		synchronize_rcu();	/* yecchhh... */
2902 		mntput(mnt);
2903 	}
2904 }
2905 EXPORT_SYMBOL(kern_unmount);
2906 
2907 bool our_mnt(struct vfsmount *mnt)
2908 {
2909 	return check_mnt(real_mount(mnt));
2910 }
2911 
2912 bool current_chrooted(void)
2913 {
2914 	/* Does the current process have a non-standard root */
2915 	struct path ns_root;
2916 	struct path fs_root;
2917 	bool chrooted;
2918 
2919 	/* Find the namespace root */
2920 	ns_root.mnt = &current->nsproxy->mnt_ns->root->mnt;
2921 	ns_root.dentry = ns_root.mnt->mnt_root;
2922 	path_get(&ns_root);
2923 	while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root))
2924 		;
2925 
2926 	get_fs_root(current->fs, &fs_root);
2927 
2928 	chrooted = !path_equal(&fs_root, &ns_root);
2929 
2930 	path_put(&fs_root);
2931 	path_put(&ns_root);
2932 
2933 	return chrooted;
2934 }
2935 
2936 bool fs_fully_visible(struct file_system_type *type)
2937 {
2938 	struct mnt_namespace *ns = current->nsproxy->mnt_ns;
2939 	struct mount *mnt;
2940 	bool visible = false;
2941 
2942 	if (unlikely(!ns))
2943 		return false;
2944 
2945 	down_read(&namespace_sem);
2946 	list_for_each_entry(mnt, &ns->list, mnt_list) {
2947 		struct mount *child;
2948 		if (mnt->mnt.mnt_sb->s_type != type)
2949 			continue;
2950 
2951 		/* This mount is not fully visible if there are any child mounts
2952 		 * that cover anything except for empty directories.
2953 		 */
2954 		list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
2955 			struct inode *inode = child->mnt_mountpoint->d_inode;
2956 			if (!S_ISDIR(inode->i_mode))
2957 				goto next;
2958 			if (inode->i_nlink > 2)
2959 				goto next;
2960 		}
2961 		visible = true;
2962 		goto found;
2963 	next:	;
2964 	}
2965 found:
2966 	up_read(&namespace_sem);
2967 	return visible;
2968 }
2969 
2970 static void *mntns_get(struct task_struct *task)
2971 {
2972 	struct mnt_namespace *ns = NULL;
2973 	struct nsproxy *nsproxy;
2974 
2975 	rcu_read_lock();
2976 	nsproxy = task_nsproxy(task);
2977 	if (nsproxy) {
2978 		ns = nsproxy->mnt_ns;
2979 		get_mnt_ns(ns);
2980 	}
2981 	rcu_read_unlock();
2982 
2983 	return ns;
2984 }
2985 
2986 static void mntns_put(void *ns)
2987 {
2988 	put_mnt_ns(ns);
2989 }
2990 
2991 static int mntns_install(struct nsproxy *nsproxy, void *ns)
2992 {
2993 	struct fs_struct *fs = current->fs;
2994 	struct mnt_namespace *mnt_ns = ns;
2995 	struct path root;
2996 
2997 	if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) ||
2998 	    !ns_capable(current_user_ns(), CAP_SYS_CHROOT) ||
2999 	    !ns_capable(current_user_ns(), CAP_SYS_ADMIN))
3000 		return -EPERM;
3001 
3002 	if (fs->users != 1)
3003 		return -EINVAL;
3004 
3005 	get_mnt_ns(mnt_ns);
3006 	put_mnt_ns(nsproxy->mnt_ns);
3007 	nsproxy->mnt_ns = mnt_ns;
3008 
3009 	/* Find the root */
3010 	root.mnt    = &mnt_ns->root->mnt;
3011 	root.dentry = mnt_ns->root->mnt.mnt_root;
3012 	path_get(&root);
3013 	while(d_mountpoint(root.dentry) && follow_down_one(&root))
3014 		;
3015 
3016 	/* Update the pwd and root */
3017 	set_fs_pwd(fs, &root);
3018 	set_fs_root(fs, &root);
3019 
3020 	path_put(&root);
3021 	return 0;
3022 }
3023 
3024 static unsigned int mntns_inum(void *ns)
3025 {
3026 	struct mnt_namespace *mnt_ns = ns;
3027 	return mnt_ns->proc_inum;
3028 }
3029 
3030 const struct proc_ns_operations mntns_operations = {
3031 	.name		= "mnt",
3032 	.type		= CLONE_NEWNS,
3033 	.get		= mntns_get,
3034 	.put		= mntns_put,
3035 	.install	= mntns_install,
3036 	.inum		= mntns_inum,
3037 };
3038