xref: /openbmc/linux/fs/namespace.c (revision 8fa5723aa7e053d498336b48448b292fc2e0458b)
1 /*
2  *  linux/fs/namespace.c
3  *
4  * (C) Copyright Al Viro 2000, 2001
5  *	Released under GPL v2.
6  *
7  * Based on code from fs/super.c, copyright Linus Torvalds and others.
8  * Heavily rewritten.
9  */
10 
11 #include <linux/syscalls.h>
12 #include <linux/slab.h>
13 #include <linux/sched.h>
14 #include <linux/smp_lock.h>
15 #include <linux/init.h>
16 #include <linux/kernel.h>
17 #include <linux/acct.h>
18 #include <linux/capability.h>
19 #include <linux/cpumask.h>
20 #include <linux/module.h>
21 #include <linux/sysfs.h>
22 #include <linux/seq_file.h>
23 #include <linux/mnt_namespace.h>
24 #include <linux/namei.h>
25 #include <linux/security.h>
26 #include <linux/mount.h>
27 #include <linux/ramfs.h>
28 #include <linux/log2.h>
29 #include <linux/idr.h>
30 #include <asm/uaccess.h>
31 #include <asm/unistd.h>
32 #include "pnode.h"
33 #include "internal.h"
34 
35 #define HASH_SHIFT ilog2(PAGE_SIZE / sizeof(struct list_head))
36 #define HASH_SIZE (1UL << HASH_SHIFT)
37 
38 /* spinlock for vfsmount related operations, inplace of dcache_lock */
39 __cacheline_aligned_in_smp DEFINE_SPINLOCK(vfsmount_lock);
40 
41 static int event;
42 static DEFINE_IDA(mnt_id_ida);
43 static DEFINE_IDA(mnt_group_ida);
44 
45 static struct list_head *mount_hashtable __read_mostly;
46 static struct kmem_cache *mnt_cache __read_mostly;
47 static struct rw_semaphore namespace_sem;
48 
49 /* /sys/fs */
50 struct kobject *fs_kobj;
51 EXPORT_SYMBOL_GPL(fs_kobj);
52 
53 static inline unsigned long hash(struct vfsmount *mnt, struct dentry *dentry)
54 {
55 	unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
56 	tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
57 	tmp = tmp + (tmp >> HASH_SHIFT);
58 	return tmp & (HASH_SIZE - 1);
59 }
60 
61 #define MNT_WRITER_UNDERFLOW_LIMIT -(1<<16)
62 
63 /* allocation is serialized by namespace_sem */
64 static int mnt_alloc_id(struct vfsmount *mnt)
65 {
66 	int res;
67 
68 retry:
69 	ida_pre_get(&mnt_id_ida, GFP_KERNEL);
70 	spin_lock(&vfsmount_lock);
71 	res = ida_get_new(&mnt_id_ida, &mnt->mnt_id);
72 	spin_unlock(&vfsmount_lock);
73 	if (res == -EAGAIN)
74 		goto retry;
75 
76 	return res;
77 }
78 
79 static void mnt_free_id(struct vfsmount *mnt)
80 {
81 	spin_lock(&vfsmount_lock);
82 	ida_remove(&mnt_id_ida, mnt->mnt_id);
83 	spin_unlock(&vfsmount_lock);
84 }
85 
86 /*
87  * Allocate a new peer group ID
88  *
89  * mnt_group_ida is protected by namespace_sem
90  */
91 static int mnt_alloc_group_id(struct vfsmount *mnt)
92 {
93 	if (!ida_pre_get(&mnt_group_ida, GFP_KERNEL))
94 		return -ENOMEM;
95 
96 	return ida_get_new_above(&mnt_group_ida, 1, &mnt->mnt_group_id);
97 }
98 
99 /*
100  * Release a peer group ID
101  */
102 void mnt_release_group_id(struct vfsmount *mnt)
103 {
104 	ida_remove(&mnt_group_ida, mnt->mnt_group_id);
105 	mnt->mnt_group_id = 0;
106 }
107 
108 struct vfsmount *alloc_vfsmnt(const char *name)
109 {
110 	struct vfsmount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
111 	if (mnt) {
112 		int err;
113 
114 		err = mnt_alloc_id(mnt);
115 		if (err)
116 			goto out_free_cache;
117 
118 		if (name) {
119 			mnt->mnt_devname = kstrdup(name, GFP_KERNEL);
120 			if (!mnt->mnt_devname)
121 				goto out_free_id;
122 		}
123 
124 		atomic_set(&mnt->mnt_count, 1);
125 		INIT_LIST_HEAD(&mnt->mnt_hash);
126 		INIT_LIST_HEAD(&mnt->mnt_child);
127 		INIT_LIST_HEAD(&mnt->mnt_mounts);
128 		INIT_LIST_HEAD(&mnt->mnt_list);
129 		INIT_LIST_HEAD(&mnt->mnt_expire);
130 		INIT_LIST_HEAD(&mnt->mnt_share);
131 		INIT_LIST_HEAD(&mnt->mnt_slave_list);
132 		INIT_LIST_HEAD(&mnt->mnt_slave);
133 		atomic_set(&mnt->__mnt_writers, 0);
134 	}
135 	return mnt;
136 
137 out_free_id:
138 	mnt_free_id(mnt);
139 out_free_cache:
140 	kmem_cache_free(mnt_cache, mnt);
141 	return NULL;
142 }
143 
144 /*
145  * Most r/o checks on a fs are for operations that take
146  * discrete amounts of time, like a write() or unlink().
147  * We must keep track of when those operations start
148  * (for permission checks) and when they end, so that
149  * we can determine when writes are able to occur to
150  * a filesystem.
151  */
152 /*
153  * __mnt_is_readonly: check whether a mount is read-only
154  * @mnt: the mount to check for its write status
155  *
156  * This shouldn't be used directly ouside of the VFS.
157  * It does not guarantee that the filesystem will stay
158  * r/w, just that it is right *now*.  This can not and
159  * should not be used in place of IS_RDONLY(inode).
160  * mnt_want/drop_write() will _keep_ the filesystem
161  * r/w.
162  */
163 int __mnt_is_readonly(struct vfsmount *mnt)
164 {
165 	if (mnt->mnt_flags & MNT_READONLY)
166 		return 1;
167 	if (mnt->mnt_sb->s_flags & MS_RDONLY)
168 		return 1;
169 	return 0;
170 }
171 EXPORT_SYMBOL_GPL(__mnt_is_readonly);
172 
173 struct mnt_writer {
174 	/*
175 	 * If holding multiple instances of this lock, they
176 	 * must be ordered by cpu number.
177 	 */
178 	spinlock_t lock;
179 	struct lock_class_key lock_class; /* compiles out with !lockdep */
180 	unsigned long count;
181 	struct vfsmount *mnt;
182 } ____cacheline_aligned_in_smp;
183 static DEFINE_PER_CPU(struct mnt_writer, mnt_writers);
184 
185 static int __init init_mnt_writers(void)
186 {
187 	int cpu;
188 	for_each_possible_cpu(cpu) {
189 		struct mnt_writer *writer = &per_cpu(mnt_writers, cpu);
190 		spin_lock_init(&writer->lock);
191 		lockdep_set_class(&writer->lock, &writer->lock_class);
192 		writer->count = 0;
193 	}
194 	return 0;
195 }
196 fs_initcall(init_mnt_writers);
197 
198 static void unlock_mnt_writers(void)
199 {
200 	int cpu;
201 	struct mnt_writer *cpu_writer;
202 
203 	for_each_possible_cpu(cpu) {
204 		cpu_writer = &per_cpu(mnt_writers, cpu);
205 		spin_unlock(&cpu_writer->lock);
206 	}
207 }
208 
209 static inline void __clear_mnt_count(struct mnt_writer *cpu_writer)
210 {
211 	if (!cpu_writer->mnt)
212 		return;
213 	/*
214 	 * This is in case anyone ever leaves an invalid,
215 	 * old ->mnt and a count of 0.
216 	 */
217 	if (!cpu_writer->count)
218 		return;
219 	atomic_add(cpu_writer->count, &cpu_writer->mnt->__mnt_writers);
220 	cpu_writer->count = 0;
221 }
222  /*
223  * must hold cpu_writer->lock
224  */
225 static inline void use_cpu_writer_for_mount(struct mnt_writer *cpu_writer,
226 					  struct vfsmount *mnt)
227 {
228 	if (cpu_writer->mnt == mnt)
229 		return;
230 	__clear_mnt_count(cpu_writer);
231 	cpu_writer->mnt = mnt;
232 }
233 
234 /*
235  * Most r/o checks on a fs are for operations that take
236  * discrete amounts of time, like a write() or unlink().
237  * We must keep track of when those operations start
238  * (for permission checks) and when they end, so that
239  * we can determine when writes are able to occur to
240  * a filesystem.
241  */
242 /**
243  * mnt_want_write - get write access to a mount
244  * @mnt: the mount on which to take a write
245  *
246  * This tells the low-level filesystem that a write is
247  * about to be performed to it, and makes sure that
248  * writes are allowed before returning success.  When
249  * the write operation is finished, mnt_drop_write()
250  * must be called.  This is effectively a refcount.
251  */
252 int mnt_want_write(struct vfsmount *mnt)
253 {
254 	int ret = 0;
255 	struct mnt_writer *cpu_writer;
256 
257 	cpu_writer = &get_cpu_var(mnt_writers);
258 	spin_lock(&cpu_writer->lock);
259 	if (__mnt_is_readonly(mnt)) {
260 		ret = -EROFS;
261 		goto out;
262 	}
263 	use_cpu_writer_for_mount(cpu_writer, mnt);
264 	cpu_writer->count++;
265 out:
266 	spin_unlock(&cpu_writer->lock);
267 	put_cpu_var(mnt_writers);
268 	return ret;
269 }
270 EXPORT_SYMBOL_GPL(mnt_want_write);
271 
272 static void lock_mnt_writers(void)
273 {
274 	int cpu;
275 	struct mnt_writer *cpu_writer;
276 
277 	for_each_possible_cpu(cpu) {
278 		cpu_writer = &per_cpu(mnt_writers, cpu);
279 		spin_lock(&cpu_writer->lock);
280 		__clear_mnt_count(cpu_writer);
281 		cpu_writer->mnt = NULL;
282 	}
283 }
284 
285 /*
286  * These per-cpu write counts are not guaranteed to have
287  * matched increments and decrements on any given cpu.
288  * A file open()ed for write on one cpu and close()d on
289  * another cpu will imbalance this count.  Make sure it
290  * does not get too far out of whack.
291  */
292 static void handle_write_count_underflow(struct vfsmount *mnt)
293 {
294 	if (atomic_read(&mnt->__mnt_writers) >=
295 	    MNT_WRITER_UNDERFLOW_LIMIT)
296 		return;
297 	/*
298 	 * It isn't necessary to hold all of the locks
299 	 * at the same time, but doing it this way makes
300 	 * us share a lot more code.
301 	 */
302 	lock_mnt_writers();
303 	/*
304 	 * vfsmount_lock is for mnt_flags.
305 	 */
306 	spin_lock(&vfsmount_lock);
307 	/*
308 	 * If coalescing the per-cpu writer counts did not
309 	 * get us back to a positive writer count, we have
310 	 * a bug.
311 	 */
312 	if ((atomic_read(&mnt->__mnt_writers) < 0) &&
313 	    !(mnt->mnt_flags & MNT_IMBALANCED_WRITE_COUNT)) {
314 		WARN(1, KERN_DEBUG "leak detected on mount(%p) writers "
315 				"count: %d\n",
316 			mnt, atomic_read(&mnt->__mnt_writers));
317 		/* use the flag to keep the dmesg spam down */
318 		mnt->mnt_flags |= MNT_IMBALANCED_WRITE_COUNT;
319 	}
320 	spin_unlock(&vfsmount_lock);
321 	unlock_mnt_writers();
322 }
323 
324 /**
325  * mnt_drop_write - give up write access to a mount
326  * @mnt: the mount on which to give up write access
327  *
328  * Tells the low-level filesystem that we are done
329  * performing writes to it.  Must be matched with
330  * mnt_want_write() call above.
331  */
332 void mnt_drop_write(struct vfsmount *mnt)
333 {
334 	int must_check_underflow = 0;
335 	struct mnt_writer *cpu_writer;
336 
337 	cpu_writer = &get_cpu_var(mnt_writers);
338 	spin_lock(&cpu_writer->lock);
339 
340 	use_cpu_writer_for_mount(cpu_writer, mnt);
341 	if (cpu_writer->count > 0) {
342 		cpu_writer->count--;
343 	} else {
344 		must_check_underflow = 1;
345 		atomic_dec(&mnt->__mnt_writers);
346 	}
347 
348 	spin_unlock(&cpu_writer->lock);
349 	/*
350 	 * Logically, we could call this each time,
351 	 * but the __mnt_writers cacheline tends to
352 	 * be cold, and makes this expensive.
353 	 */
354 	if (must_check_underflow)
355 		handle_write_count_underflow(mnt);
356 	/*
357 	 * This could be done right after the spinlock
358 	 * is taken because the spinlock keeps us on
359 	 * the cpu, and disables preemption.  However,
360 	 * putting it here bounds the amount that
361 	 * __mnt_writers can underflow.  Without it,
362 	 * we could theoretically wrap __mnt_writers.
363 	 */
364 	put_cpu_var(mnt_writers);
365 }
366 EXPORT_SYMBOL_GPL(mnt_drop_write);
367 
368 static int mnt_make_readonly(struct vfsmount *mnt)
369 {
370 	int ret = 0;
371 
372 	lock_mnt_writers();
373 	/*
374 	 * With all the locks held, this value is stable
375 	 */
376 	if (atomic_read(&mnt->__mnt_writers) > 0) {
377 		ret = -EBUSY;
378 		goto out;
379 	}
380 	/*
381 	 * nobody can do a successful mnt_want_write() with all
382 	 * of the counts in MNT_DENIED_WRITE and the locks held.
383 	 */
384 	spin_lock(&vfsmount_lock);
385 	if (!ret)
386 		mnt->mnt_flags |= MNT_READONLY;
387 	spin_unlock(&vfsmount_lock);
388 out:
389 	unlock_mnt_writers();
390 	return ret;
391 }
392 
393 static void __mnt_unmake_readonly(struct vfsmount *mnt)
394 {
395 	spin_lock(&vfsmount_lock);
396 	mnt->mnt_flags &= ~MNT_READONLY;
397 	spin_unlock(&vfsmount_lock);
398 }
399 
400 int simple_set_mnt(struct vfsmount *mnt, struct super_block *sb)
401 {
402 	mnt->mnt_sb = sb;
403 	mnt->mnt_root = dget(sb->s_root);
404 	return 0;
405 }
406 
407 EXPORT_SYMBOL(simple_set_mnt);
408 
409 void free_vfsmnt(struct vfsmount *mnt)
410 {
411 	kfree(mnt->mnt_devname);
412 	mnt_free_id(mnt);
413 	kmem_cache_free(mnt_cache, mnt);
414 }
415 
416 /*
417  * find the first or last mount at @dentry on vfsmount @mnt depending on
418  * @dir. If @dir is set return the first mount else return the last mount.
419  */
420 struct vfsmount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry,
421 			      int dir)
422 {
423 	struct list_head *head = mount_hashtable + hash(mnt, dentry);
424 	struct list_head *tmp = head;
425 	struct vfsmount *p, *found = NULL;
426 
427 	for (;;) {
428 		tmp = dir ? tmp->next : tmp->prev;
429 		p = NULL;
430 		if (tmp == head)
431 			break;
432 		p = list_entry(tmp, struct vfsmount, mnt_hash);
433 		if (p->mnt_parent == mnt && p->mnt_mountpoint == dentry) {
434 			found = p;
435 			break;
436 		}
437 	}
438 	return found;
439 }
440 
441 /*
442  * lookup_mnt increments the ref count before returning
443  * the vfsmount struct.
444  */
445 struct vfsmount *lookup_mnt(struct vfsmount *mnt, struct dentry *dentry)
446 {
447 	struct vfsmount *child_mnt;
448 	spin_lock(&vfsmount_lock);
449 	if ((child_mnt = __lookup_mnt(mnt, dentry, 1)))
450 		mntget(child_mnt);
451 	spin_unlock(&vfsmount_lock);
452 	return child_mnt;
453 }
454 
455 static inline int check_mnt(struct vfsmount *mnt)
456 {
457 	return mnt->mnt_ns == current->nsproxy->mnt_ns;
458 }
459 
460 static void touch_mnt_namespace(struct mnt_namespace *ns)
461 {
462 	if (ns) {
463 		ns->event = ++event;
464 		wake_up_interruptible(&ns->poll);
465 	}
466 }
467 
468 static void __touch_mnt_namespace(struct mnt_namespace *ns)
469 {
470 	if (ns && ns->event != event) {
471 		ns->event = event;
472 		wake_up_interruptible(&ns->poll);
473 	}
474 }
475 
476 static void detach_mnt(struct vfsmount *mnt, struct path *old_path)
477 {
478 	old_path->dentry = mnt->mnt_mountpoint;
479 	old_path->mnt = mnt->mnt_parent;
480 	mnt->mnt_parent = mnt;
481 	mnt->mnt_mountpoint = mnt->mnt_root;
482 	list_del_init(&mnt->mnt_child);
483 	list_del_init(&mnt->mnt_hash);
484 	old_path->dentry->d_mounted--;
485 }
486 
487 void mnt_set_mountpoint(struct vfsmount *mnt, struct dentry *dentry,
488 			struct vfsmount *child_mnt)
489 {
490 	child_mnt->mnt_parent = mntget(mnt);
491 	child_mnt->mnt_mountpoint = dget(dentry);
492 	dentry->d_mounted++;
493 }
494 
495 static void attach_mnt(struct vfsmount *mnt, struct path *path)
496 {
497 	mnt_set_mountpoint(path->mnt, path->dentry, mnt);
498 	list_add_tail(&mnt->mnt_hash, mount_hashtable +
499 			hash(path->mnt, path->dentry));
500 	list_add_tail(&mnt->mnt_child, &path->mnt->mnt_mounts);
501 }
502 
503 /*
504  * the caller must hold vfsmount_lock
505  */
506 static void commit_tree(struct vfsmount *mnt)
507 {
508 	struct vfsmount *parent = mnt->mnt_parent;
509 	struct vfsmount *m;
510 	LIST_HEAD(head);
511 	struct mnt_namespace *n = parent->mnt_ns;
512 
513 	BUG_ON(parent == mnt);
514 
515 	list_add_tail(&head, &mnt->mnt_list);
516 	list_for_each_entry(m, &head, mnt_list)
517 		m->mnt_ns = n;
518 	list_splice(&head, n->list.prev);
519 
520 	list_add_tail(&mnt->mnt_hash, mount_hashtable +
521 				hash(parent, mnt->mnt_mountpoint));
522 	list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
523 	touch_mnt_namespace(n);
524 }
525 
526 static struct vfsmount *next_mnt(struct vfsmount *p, struct vfsmount *root)
527 {
528 	struct list_head *next = p->mnt_mounts.next;
529 	if (next == &p->mnt_mounts) {
530 		while (1) {
531 			if (p == root)
532 				return NULL;
533 			next = p->mnt_child.next;
534 			if (next != &p->mnt_parent->mnt_mounts)
535 				break;
536 			p = p->mnt_parent;
537 		}
538 	}
539 	return list_entry(next, struct vfsmount, mnt_child);
540 }
541 
542 static struct vfsmount *skip_mnt_tree(struct vfsmount *p)
543 {
544 	struct list_head *prev = p->mnt_mounts.prev;
545 	while (prev != &p->mnt_mounts) {
546 		p = list_entry(prev, struct vfsmount, mnt_child);
547 		prev = p->mnt_mounts.prev;
548 	}
549 	return p;
550 }
551 
552 static struct vfsmount *clone_mnt(struct vfsmount *old, struct dentry *root,
553 					int flag)
554 {
555 	struct super_block *sb = old->mnt_sb;
556 	struct vfsmount *mnt = alloc_vfsmnt(old->mnt_devname);
557 
558 	if (mnt) {
559 		if (flag & (CL_SLAVE | CL_PRIVATE))
560 			mnt->mnt_group_id = 0; /* not a peer of original */
561 		else
562 			mnt->mnt_group_id = old->mnt_group_id;
563 
564 		if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
565 			int err = mnt_alloc_group_id(mnt);
566 			if (err)
567 				goto out_free;
568 		}
569 
570 		mnt->mnt_flags = old->mnt_flags;
571 		atomic_inc(&sb->s_active);
572 		mnt->mnt_sb = sb;
573 		mnt->mnt_root = dget(root);
574 		mnt->mnt_mountpoint = mnt->mnt_root;
575 		mnt->mnt_parent = mnt;
576 
577 		if (flag & CL_SLAVE) {
578 			list_add(&mnt->mnt_slave, &old->mnt_slave_list);
579 			mnt->mnt_master = old;
580 			CLEAR_MNT_SHARED(mnt);
581 		} else if (!(flag & CL_PRIVATE)) {
582 			if ((flag & CL_PROPAGATION) || IS_MNT_SHARED(old))
583 				list_add(&mnt->mnt_share, &old->mnt_share);
584 			if (IS_MNT_SLAVE(old))
585 				list_add(&mnt->mnt_slave, &old->mnt_slave);
586 			mnt->mnt_master = old->mnt_master;
587 		}
588 		if (flag & CL_MAKE_SHARED)
589 			set_mnt_shared(mnt);
590 
591 		/* stick the duplicate mount on the same expiry list
592 		 * as the original if that was on one */
593 		if (flag & CL_EXPIRE) {
594 			if (!list_empty(&old->mnt_expire))
595 				list_add(&mnt->mnt_expire, &old->mnt_expire);
596 		}
597 	}
598 	return mnt;
599 
600  out_free:
601 	free_vfsmnt(mnt);
602 	return NULL;
603 }
604 
605 static inline void __mntput(struct vfsmount *mnt)
606 {
607 	int cpu;
608 	struct super_block *sb = mnt->mnt_sb;
609 	/*
610 	 * We don't have to hold all of the locks at the
611 	 * same time here because we know that we're the
612 	 * last reference to mnt and that no new writers
613 	 * can come in.
614 	 */
615 	for_each_possible_cpu(cpu) {
616 		struct mnt_writer *cpu_writer = &per_cpu(mnt_writers, cpu);
617 		if (cpu_writer->mnt != mnt)
618 			continue;
619 		spin_lock(&cpu_writer->lock);
620 		atomic_add(cpu_writer->count, &mnt->__mnt_writers);
621 		cpu_writer->count = 0;
622 		/*
623 		 * Might as well do this so that no one
624 		 * ever sees the pointer and expects
625 		 * it to be valid.
626 		 */
627 		cpu_writer->mnt = NULL;
628 		spin_unlock(&cpu_writer->lock);
629 	}
630 	/*
631 	 * This probably indicates that somebody messed
632 	 * up a mnt_want/drop_write() pair.  If this
633 	 * happens, the filesystem was probably unable
634 	 * to make r/w->r/o transitions.
635 	 */
636 	WARN_ON(atomic_read(&mnt->__mnt_writers));
637 	dput(mnt->mnt_root);
638 	free_vfsmnt(mnt);
639 	deactivate_super(sb);
640 }
641 
642 void mntput_no_expire(struct vfsmount *mnt)
643 {
644 repeat:
645 	if (atomic_dec_and_lock(&mnt->mnt_count, &vfsmount_lock)) {
646 		if (likely(!mnt->mnt_pinned)) {
647 			spin_unlock(&vfsmount_lock);
648 			__mntput(mnt);
649 			return;
650 		}
651 		atomic_add(mnt->mnt_pinned + 1, &mnt->mnt_count);
652 		mnt->mnt_pinned = 0;
653 		spin_unlock(&vfsmount_lock);
654 		acct_auto_close_mnt(mnt);
655 		security_sb_umount_close(mnt);
656 		goto repeat;
657 	}
658 }
659 
660 EXPORT_SYMBOL(mntput_no_expire);
661 
662 void mnt_pin(struct vfsmount *mnt)
663 {
664 	spin_lock(&vfsmount_lock);
665 	mnt->mnt_pinned++;
666 	spin_unlock(&vfsmount_lock);
667 }
668 
669 EXPORT_SYMBOL(mnt_pin);
670 
671 void mnt_unpin(struct vfsmount *mnt)
672 {
673 	spin_lock(&vfsmount_lock);
674 	if (mnt->mnt_pinned) {
675 		atomic_inc(&mnt->mnt_count);
676 		mnt->mnt_pinned--;
677 	}
678 	spin_unlock(&vfsmount_lock);
679 }
680 
681 EXPORT_SYMBOL(mnt_unpin);
682 
683 static inline void mangle(struct seq_file *m, const char *s)
684 {
685 	seq_escape(m, s, " \t\n\\");
686 }
687 
688 /*
689  * Simple .show_options callback for filesystems which don't want to
690  * implement more complex mount option showing.
691  *
692  * See also save_mount_options().
693  */
694 int generic_show_options(struct seq_file *m, struct vfsmount *mnt)
695 {
696 	const char *options = mnt->mnt_sb->s_options;
697 
698 	if (options != NULL && options[0]) {
699 		seq_putc(m, ',');
700 		mangle(m, options);
701 	}
702 
703 	return 0;
704 }
705 EXPORT_SYMBOL(generic_show_options);
706 
707 /*
708  * If filesystem uses generic_show_options(), this function should be
709  * called from the fill_super() callback.
710  *
711  * The .remount_fs callback usually needs to be handled in a special
712  * way, to make sure, that previous options are not overwritten if the
713  * remount fails.
714  *
715  * Also note, that if the filesystem's .remount_fs function doesn't
716  * reset all options to their default value, but changes only newly
717  * given options, then the displayed options will not reflect reality
718  * any more.
719  */
720 void save_mount_options(struct super_block *sb, char *options)
721 {
722 	kfree(sb->s_options);
723 	sb->s_options = kstrdup(options, GFP_KERNEL);
724 }
725 EXPORT_SYMBOL(save_mount_options);
726 
727 #ifdef CONFIG_PROC_FS
728 /* iterator */
729 static void *m_start(struct seq_file *m, loff_t *pos)
730 {
731 	struct proc_mounts *p = m->private;
732 
733 	down_read(&namespace_sem);
734 	return seq_list_start(&p->ns->list, *pos);
735 }
736 
737 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
738 {
739 	struct proc_mounts *p = m->private;
740 
741 	return seq_list_next(v, &p->ns->list, pos);
742 }
743 
744 static void m_stop(struct seq_file *m, void *v)
745 {
746 	up_read(&namespace_sem);
747 }
748 
749 struct proc_fs_info {
750 	int flag;
751 	const char *str;
752 };
753 
754 static int show_sb_opts(struct seq_file *m, struct super_block *sb)
755 {
756 	static const struct proc_fs_info fs_info[] = {
757 		{ MS_SYNCHRONOUS, ",sync" },
758 		{ MS_DIRSYNC, ",dirsync" },
759 		{ MS_MANDLOCK, ",mand" },
760 		{ 0, NULL }
761 	};
762 	const struct proc_fs_info *fs_infop;
763 
764 	for (fs_infop = fs_info; fs_infop->flag; fs_infop++) {
765 		if (sb->s_flags & fs_infop->flag)
766 			seq_puts(m, fs_infop->str);
767 	}
768 
769 	return security_sb_show_options(m, sb);
770 }
771 
772 static void show_mnt_opts(struct seq_file *m, struct vfsmount *mnt)
773 {
774 	static const struct proc_fs_info mnt_info[] = {
775 		{ MNT_NOSUID, ",nosuid" },
776 		{ MNT_NODEV, ",nodev" },
777 		{ MNT_NOEXEC, ",noexec" },
778 		{ MNT_NOATIME, ",noatime" },
779 		{ MNT_NODIRATIME, ",nodiratime" },
780 		{ MNT_RELATIME, ",relatime" },
781 		{ 0, NULL }
782 	};
783 	const struct proc_fs_info *fs_infop;
784 
785 	for (fs_infop = mnt_info; fs_infop->flag; fs_infop++) {
786 		if (mnt->mnt_flags & fs_infop->flag)
787 			seq_puts(m, fs_infop->str);
788 	}
789 }
790 
791 static void show_type(struct seq_file *m, struct super_block *sb)
792 {
793 	mangle(m, sb->s_type->name);
794 	if (sb->s_subtype && sb->s_subtype[0]) {
795 		seq_putc(m, '.');
796 		mangle(m, sb->s_subtype);
797 	}
798 }
799 
800 static int show_vfsmnt(struct seq_file *m, void *v)
801 {
802 	struct vfsmount *mnt = list_entry(v, struct vfsmount, mnt_list);
803 	int err = 0;
804 	struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt };
805 
806 	mangle(m, mnt->mnt_devname ? mnt->mnt_devname : "none");
807 	seq_putc(m, ' ');
808 	seq_path(m, &mnt_path, " \t\n\\");
809 	seq_putc(m, ' ');
810 	show_type(m, mnt->mnt_sb);
811 	seq_puts(m, __mnt_is_readonly(mnt) ? " ro" : " rw");
812 	err = show_sb_opts(m, mnt->mnt_sb);
813 	if (err)
814 		goto out;
815 	show_mnt_opts(m, mnt);
816 	if (mnt->mnt_sb->s_op->show_options)
817 		err = mnt->mnt_sb->s_op->show_options(m, mnt);
818 	seq_puts(m, " 0 0\n");
819 out:
820 	return err;
821 }
822 
823 const struct seq_operations mounts_op = {
824 	.start	= m_start,
825 	.next	= m_next,
826 	.stop	= m_stop,
827 	.show	= show_vfsmnt
828 };
829 
830 static int show_mountinfo(struct seq_file *m, void *v)
831 {
832 	struct proc_mounts *p = m->private;
833 	struct vfsmount *mnt = list_entry(v, struct vfsmount, mnt_list);
834 	struct super_block *sb = mnt->mnt_sb;
835 	struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt };
836 	struct path root = p->root;
837 	int err = 0;
838 
839 	seq_printf(m, "%i %i %u:%u ", mnt->mnt_id, mnt->mnt_parent->mnt_id,
840 		   MAJOR(sb->s_dev), MINOR(sb->s_dev));
841 	seq_dentry(m, mnt->mnt_root, " \t\n\\");
842 	seq_putc(m, ' ');
843 	seq_path_root(m, &mnt_path, &root, " \t\n\\");
844 	if (root.mnt != p->root.mnt || root.dentry != p->root.dentry) {
845 		/*
846 		 * Mountpoint is outside root, discard that one.  Ugly,
847 		 * but less so than trying to do that in iterator in a
848 		 * race-free way (due to renames).
849 		 */
850 		return SEQ_SKIP;
851 	}
852 	seq_puts(m, mnt->mnt_flags & MNT_READONLY ? " ro" : " rw");
853 	show_mnt_opts(m, mnt);
854 
855 	/* Tagged fields ("foo:X" or "bar") */
856 	if (IS_MNT_SHARED(mnt))
857 		seq_printf(m, " shared:%i", mnt->mnt_group_id);
858 	if (IS_MNT_SLAVE(mnt)) {
859 		int master = mnt->mnt_master->mnt_group_id;
860 		int dom = get_dominating_id(mnt, &p->root);
861 		seq_printf(m, " master:%i", master);
862 		if (dom && dom != master)
863 			seq_printf(m, " propagate_from:%i", dom);
864 	}
865 	if (IS_MNT_UNBINDABLE(mnt))
866 		seq_puts(m, " unbindable");
867 
868 	/* Filesystem specific data */
869 	seq_puts(m, " - ");
870 	show_type(m, sb);
871 	seq_putc(m, ' ');
872 	mangle(m, mnt->mnt_devname ? mnt->mnt_devname : "none");
873 	seq_puts(m, sb->s_flags & MS_RDONLY ? " ro" : " rw");
874 	err = show_sb_opts(m, sb);
875 	if (err)
876 		goto out;
877 	if (sb->s_op->show_options)
878 		err = sb->s_op->show_options(m, mnt);
879 	seq_putc(m, '\n');
880 out:
881 	return err;
882 }
883 
884 const struct seq_operations mountinfo_op = {
885 	.start	= m_start,
886 	.next	= m_next,
887 	.stop	= m_stop,
888 	.show	= show_mountinfo,
889 };
890 
891 static int show_vfsstat(struct seq_file *m, void *v)
892 {
893 	struct vfsmount *mnt = list_entry(v, struct vfsmount, mnt_list);
894 	struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt };
895 	int err = 0;
896 
897 	/* device */
898 	if (mnt->mnt_devname) {
899 		seq_puts(m, "device ");
900 		mangle(m, mnt->mnt_devname);
901 	} else
902 		seq_puts(m, "no device");
903 
904 	/* mount point */
905 	seq_puts(m, " mounted on ");
906 	seq_path(m, &mnt_path, " \t\n\\");
907 	seq_putc(m, ' ');
908 
909 	/* file system type */
910 	seq_puts(m, "with fstype ");
911 	show_type(m, mnt->mnt_sb);
912 
913 	/* optional statistics */
914 	if (mnt->mnt_sb->s_op->show_stats) {
915 		seq_putc(m, ' ');
916 		err = mnt->mnt_sb->s_op->show_stats(m, mnt);
917 	}
918 
919 	seq_putc(m, '\n');
920 	return err;
921 }
922 
923 const struct seq_operations mountstats_op = {
924 	.start	= m_start,
925 	.next	= m_next,
926 	.stop	= m_stop,
927 	.show	= show_vfsstat,
928 };
929 #endif  /* CONFIG_PROC_FS */
930 
931 /**
932  * may_umount_tree - check if a mount tree is busy
933  * @mnt: root of mount tree
934  *
935  * This is called to check if a tree of mounts has any
936  * open files, pwds, chroots or sub mounts that are
937  * busy.
938  */
939 int may_umount_tree(struct vfsmount *mnt)
940 {
941 	int actual_refs = 0;
942 	int minimum_refs = 0;
943 	struct vfsmount *p;
944 
945 	spin_lock(&vfsmount_lock);
946 	for (p = mnt; p; p = next_mnt(p, mnt)) {
947 		actual_refs += atomic_read(&p->mnt_count);
948 		minimum_refs += 2;
949 	}
950 	spin_unlock(&vfsmount_lock);
951 
952 	if (actual_refs > minimum_refs)
953 		return 0;
954 
955 	return 1;
956 }
957 
958 EXPORT_SYMBOL(may_umount_tree);
959 
960 /**
961  * may_umount - check if a mount point is busy
962  * @mnt: root of mount
963  *
964  * This is called to check if a mount point has any
965  * open files, pwds, chroots or sub mounts. If the
966  * mount has sub mounts this will return busy
967  * regardless of whether the sub mounts are busy.
968  *
969  * Doesn't take quota and stuff into account. IOW, in some cases it will
970  * give false negatives. The main reason why it's here is that we need
971  * a non-destructive way to look for easily umountable filesystems.
972  */
973 int may_umount(struct vfsmount *mnt)
974 {
975 	int ret = 1;
976 	spin_lock(&vfsmount_lock);
977 	if (propagate_mount_busy(mnt, 2))
978 		ret = 0;
979 	spin_unlock(&vfsmount_lock);
980 	return ret;
981 }
982 
983 EXPORT_SYMBOL(may_umount);
984 
985 void release_mounts(struct list_head *head)
986 {
987 	struct vfsmount *mnt;
988 	while (!list_empty(head)) {
989 		mnt = list_first_entry(head, struct vfsmount, mnt_hash);
990 		list_del_init(&mnt->mnt_hash);
991 		if (mnt->mnt_parent != mnt) {
992 			struct dentry *dentry;
993 			struct vfsmount *m;
994 			spin_lock(&vfsmount_lock);
995 			dentry = mnt->mnt_mountpoint;
996 			m = mnt->mnt_parent;
997 			mnt->mnt_mountpoint = mnt->mnt_root;
998 			mnt->mnt_parent = mnt;
999 			m->mnt_ghosts--;
1000 			spin_unlock(&vfsmount_lock);
1001 			dput(dentry);
1002 			mntput(m);
1003 		}
1004 		mntput(mnt);
1005 	}
1006 }
1007 
1008 void umount_tree(struct vfsmount *mnt, int propagate, struct list_head *kill)
1009 {
1010 	struct vfsmount *p;
1011 
1012 	for (p = mnt; p; p = next_mnt(p, mnt))
1013 		list_move(&p->mnt_hash, kill);
1014 
1015 	if (propagate)
1016 		propagate_umount(kill);
1017 
1018 	list_for_each_entry(p, kill, mnt_hash) {
1019 		list_del_init(&p->mnt_expire);
1020 		list_del_init(&p->mnt_list);
1021 		__touch_mnt_namespace(p->mnt_ns);
1022 		p->mnt_ns = NULL;
1023 		list_del_init(&p->mnt_child);
1024 		if (p->mnt_parent != p) {
1025 			p->mnt_parent->mnt_ghosts++;
1026 			p->mnt_mountpoint->d_mounted--;
1027 		}
1028 		change_mnt_propagation(p, MS_PRIVATE);
1029 	}
1030 }
1031 
1032 static void shrink_submounts(struct vfsmount *mnt, struct list_head *umounts);
1033 
1034 static int do_umount(struct vfsmount *mnt, int flags)
1035 {
1036 	struct super_block *sb = mnt->mnt_sb;
1037 	int retval;
1038 	LIST_HEAD(umount_list);
1039 
1040 	retval = security_sb_umount(mnt, flags);
1041 	if (retval)
1042 		return retval;
1043 
1044 	/*
1045 	 * Allow userspace to request a mountpoint be expired rather than
1046 	 * unmounting unconditionally. Unmount only happens if:
1047 	 *  (1) the mark is already set (the mark is cleared by mntput())
1048 	 *  (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1049 	 */
1050 	if (flags & MNT_EXPIRE) {
1051 		if (mnt == current->fs->root.mnt ||
1052 		    flags & (MNT_FORCE | MNT_DETACH))
1053 			return -EINVAL;
1054 
1055 		if (atomic_read(&mnt->mnt_count) != 2)
1056 			return -EBUSY;
1057 
1058 		if (!xchg(&mnt->mnt_expiry_mark, 1))
1059 			return -EAGAIN;
1060 	}
1061 
1062 	/*
1063 	 * If we may have to abort operations to get out of this
1064 	 * mount, and they will themselves hold resources we must
1065 	 * allow the fs to do things. In the Unix tradition of
1066 	 * 'Gee thats tricky lets do it in userspace' the umount_begin
1067 	 * might fail to complete on the first run through as other tasks
1068 	 * must return, and the like. Thats for the mount program to worry
1069 	 * about for the moment.
1070 	 */
1071 
1072 	if (flags & MNT_FORCE && sb->s_op->umount_begin) {
1073 		lock_kernel();
1074 		sb->s_op->umount_begin(sb);
1075 		unlock_kernel();
1076 	}
1077 
1078 	/*
1079 	 * No sense to grab the lock for this test, but test itself looks
1080 	 * somewhat bogus. Suggestions for better replacement?
1081 	 * Ho-hum... In principle, we might treat that as umount + switch
1082 	 * to rootfs. GC would eventually take care of the old vfsmount.
1083 	 * Actually it makes sense, especially if rootfs would contain a
1084 	 * /reboot - static binary that would close all descriptors and
1085 	 * call reboot(9). Then init(8) could umount root and exec /reboot.
1086 	 */
1087 	if (mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1088 		/*
1089 		 * Special case for "unmounting" root ...
1090 		 * we just try to remount it readonly.
1091 		 */
1092 		down_write(&sb->s_umount);
1093 		if (!(sb->s_flags & MS_RDONLY)) {
1094 			lock_kernel();
1095 			retval = do_remount_sb(sb, MS_RDONLY, NULL, 0);
1096 			unlock_kernel();
1097 		}
1098 		up_write(&sb->s_umount);
1099 		return retval;
1100 	}
1101 
1102 	down_write(&namespace_sem);
1103 	spin_lock(&vfsmount_lock);
1104 	event++;
1105 
1106 	if (!(flags & MNT_DETACH))
1107 		shrink_submounts(mnt, &umount_list);
1108 
1109 	retval = -EBUSY;
1110 	if (flags & MNT_DETACH || !propagate_mount_busy(mnt, 2)) {
1111 		if (!list_empty(&mnt->mnt_list))
1112 			umount_tree(mnt, 1, &umount_list);
1113 		retval = 0;
1114 	}
1115 	spin_unlock(&vfsmount_lock);
1116 	if (retval)
1117 		security_sb_umount_busy(mnt);
1118 	up_write(&namespace_sem);
1119 	release_mounts(&umount_list);
1120 	return retval;
1121 }
1122 
1123 /*
1124  * Now umount can handle mount points as well as block devices.
1125  * This is important for filesystems which use unnamed block devices.
1126  *
1127  * We now support a flag for forced unmount like the other 'big iron'
1128  * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
1129  */
1130 
1131 asmlinkage long sys_umount(char __user * name, int flags)
1132 {
1133 	struct path path;
1134 	int retval;
1135 
1136 	retval = user_path(name, &path);
1137 	if (retval)
1138 		goto out;
1139 	retval = -EINVAL;
1140 	if (path.dentry != path.mnt->mnt_root)
1141 		goto dput_and_out;
1142 	if (!check_mnt(path.mnt))
1143 		goto dput_and_out;
1144 
1145 	retval = -EPERM;
1146 	if (!capable(CAP_SYS_ADMIN))
1147 		goto dput_and_out;
1148 
1149 	retval = do_umount(path.mnt, flags);
1150 dput_and_out:
1151 	/* we mustn't call path_put() as that would clear mnt_expiry_mark */
1152 	dput(path.dentry);
1153 	mntput_no_expire(path.mnt);
1154 out:
1155 	return retval;
1156 }
1157 
1158 #ifdef __ARCH_WANT_SYS_OLDUMOUNT
1159 
1160 /*
1161  *	The 2.0 compatible umount. No flags.
1162  */
1163 asmlinkage long sys_oldumount(char __user * name)
1164 {
1165 	return sys_umount(name, 0);
1166 }
1167 
1168 #endif
1169 
1170 static int mount_is_safe(struct path *path)
1171 {
1172 	if (capable(CAP_SYS_ADMIN))
1173 		return 0;
1174 	return -EPERM;
1175 #ifdef notyet
1176 	if (S_ISLNK(path->dentry->d_inode->i_mode))
1177 		return -EPERM;
1178 	if (path->dentry->d_inode->i_mode & S_ISVTX) {
1179 		if (current->uid != path->dentry->d_inode->i_uid)
1180 			return -EPERM;
1181 	}
1182 	if (inode_permission(path->dentry->d_inode, MAY_WRITE))
1183 		return -EPERM;
1184 	return 0;
1185 #endif
1186 }
1187 
1188 struct vfsmount *copy_tree(struct vfsmount *mnt, struct dentry *dentry,
1189 					int flag)
1190 {
1191 	struct vfsmount *res, *p, *q, *r, *s;
1192 	struct path path;
1193 
1194 	if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(mnt))
1195 		return NULL;
1196 
1197 	res = q = clone_mnt(mnt, dentry, flag);
1198 	if (!q)
1199 		goto Enomem;
1200 	q->mnt_mountpoint = mnt->mnt_mountpoint;
1201 
1202 	p = mnt;
1203 	list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
1204 		if (!is_subdir(r->mnt_mountpoint, dentry))
1205 			continue;
1206 
1207 		for (s = r; s; s = next_mnt(s, r)) {
1208 			if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(s)) {
1209 				s = skip_mnt_tree(s);
1210 				continue;
1211 			}
1212 			while (p != s->mnt_parent) {
1213 				p = p->mnt_parent;
1214 				q = q->mnt_parent;
1215 			}
1216 			p = s;
1217 			path.mnt = q;
1218 			path.dentry = p->mnt_mountpoint;
1219 			q = clone_mnt(p, p->mnt_root, flag);
1220 			if (!q)
1221 				goto Enomem;
1222 			spin_lock(&vfsmount_lock);
1223 			list_add_tail(&q->mnt_list, &res->mnt_list);
1224 			attach_mnt(q, &path);
1225 			spin_unlock(&vfsmount_lock);
1226 		}
1227 	}
1228 	return res;
1229 Enomem:
1230 	if (res) {
1231 		LIST_HEAD(umount_list);
1232 		spin_lock(&vfsmount_lock);
1233 		umount_tree(res, 0, &umount_list);
1234 		spin_unlock(&vfsmount_lock);
1235 		release_mounts(&umount_list);
1236 	}
1237 	return NULL;
1238 }
1239 
1240 struct vfsmount *collect_mounts(struct vfsmount *mnt, struct dentry *dentry)
1241 {
1242 	struct vfsmount *tree;
1243 	down_write(&namespace_sem);
1244 	tree = copy_tree(mnt, dentry, CL_COPY_ALL | CL_PRIVATE);
1245 	up_write(&namespace_sem);
1246 	return tree;
1247 }
1248 
1249 void drop_collected_mounts(struct vfsmount *mnt)
1250 {
1251 	LIST_HEAD(umount_list);
1252 	down_write(&namespace_sem);
1253 	spin_lock(&vfsmount_lock);
1254 	umount_tree(mnt, 0, &umount_list);
1255 	spin_unlock(&vfsmount_lock);
1256 	up_write(&namespace_sem);
1257 	release_mounts(&umount_list);
1258 }
1259 
1260 static void cleanup_group_ids(struct vfsmount *mnt, struct vfsmount *end)
1261 {
1262 	struct vfsmount *p;
1263 
1264 	for (p = mnt; p != end; p = next_mnt(p, mnt)) {
1265 		if (p->mnt_group_id && !IS_MNT_SHARED(p))
1266 			mnt_release_group_id(p);
1267 	}
1268 }
1269 
1270 static int invent_group_ids(struct vfsmount *mnt, bool recurse)
1271 {
1272 	struct vfsmount *p;
1273 
1274 	for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
1275 		if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
1276 			int err = mnt_alloc_group_id(p);
1277 			if (err) {
1278 				cleanup_group_ids(mnt, p);
1279 				return err;
1280 			}
1281 		}
1282 	}
1283 
1284 	return 0;
1285 }
1286 
1287 /*
1288  *  @source_mnt : mount tree to be attached
1289  *  @nd         : place the mount tree @source_mnt is attached
1290  *  @parent_nd  : if non-null, detach the source_mnt from its parent and
1291  *  		   store the parent mount and mountpoint dentry.
1292  *  		   (done when source_mnt is moved)
1293  *
1294  *  NOTE: in the table below explains the semantics when a source mount
1295  *  of a given type is attached to a destination mount of a given type.
1296  * ---------------------------------------------------------------------------
1297  * |         BIND MOUNT OPERATION                                            |
1298  * |**************************************************************************
1299  * | source-->| shared        |       private  |       slave    | unbindable |
1300  * | dest     |               |                |                |            |
1301  * |   |      |               |                |                |            |
1302  * |   v      |               |                |                |            |
1303  * |**************************************************************************
1304  * |  shared  | shared (++)   |     shared (+) |     shared(+++)|  invalid   |
1305  * |          |               |                |                |            |
1306  * |non-shared| shared (+)    |      private   |      slave (*) |  invalid   |
1307  * ***************************************************************************
1308  * A bind operation clones the source mount and mounts the clone on the
1309  * destination mount.
1310  *
1311  * (++)  the cloned mount is propagated to all the mounts in the propagation
1312  * 	 tree of the destination mount and the cloned mount is added to
1313  * 	 the peer group of the source mount.
1314  * (+)   the cloned mount is created under the destination mount and is marked
1315  *       as shared. The cloned mount is added to the peer group of the source
1316  *       mount.
1317  * (+++) the mount is propagated to all the mounts in the propagation tree
1318  *       of the destination mount and the cloned mount is made slave
1319  *       of the same master as that of the source mount. The cloned mount
1320  *       is marked as 'shared and slave'.
1321  * (*)   the cloned mount is made a slave of the same master as that of the
1322  * 	 source mount.
1323  *
1324  * ---------------------------------------------------------------------------
1325  * |         		MOVE MOUNT OPERATION                                 |
1326  * |**************************************************************************
1327  * | source-->| shared        |       private  |       slave    | unbindable |
1328  * | dest     |               |                |                |            |
1329  * |   |      |               |                |                |            |
1330  * |   v      |               |                |                |            |
1331  * |**************************************************************************
1332  * |  shared  | shared (+)    |     shared (+) |    shared(+++) |  invalid   |
1333  * |          |               |                |                |            |
1334  * |non-shared| shared (+*)   |      private   |    slave (*)   | unbindable |
1335  * ***************************************************************************
1336  *
1337  * (+)  the mount is moved to the destination. And is then propagated to
1338  * 	all the mounts in the propagation tree of the destination mount.
1339  * (+*)  the mount is moved to the destination.
1340  * (+++)  the mount is moved to the destination and is then propagated to
1341  * 	all the mounts belonging to the destination mount's propagation tree.
1342  * 	the mount is marked as 'shared and slave'.
1343  * (*)	the mount continues to be a slave at the new location.
1344  *
1345  * if the source mount is a tree, the operations explained above is
1346  * applied to each mount in the tree.
1347  * Must be called without spinlocks held, since this function can sleep
1348  * in allocations.
1349  */
1350 static int attach_recursive_mnt(struct vfsmount *source_mnt,
1351 			struct path *path, struct path *parent_path)
1352 {
1353 	LIST_HEAD(tree_list);
1354 	struct vfsmount *dest_mnt = path->mnt;
1355 	struct dentry *dest_dentry = path->dentry;
1356 	struct vfsmount *child, *p;
1357 	int err;
1358 
1359 	if (IS_MNT_SHARED(dest_mnt)) {
1360 		err = invent_group_ids(source_mnt, true);
1361 		if (err)
1362 			goto out;
1363 	}
1364 	err = propagate_mnt(dest_mnt, dest_dentry, source_mnt, &tree_list);
1365 	if (err)
1366 		goto out_cleanup_ids;
1367 
1368 	if (IS_MNT_SHARED(dest_mnt)) {
1369 		for (p = source_mnt; p; p = next_mnt(p, source_mnt))
1370 			set_mnt_shared(p);
1371 	}
1372 
1373 	spin_lock(&vfsmount_lock);
1374 	if (parent_path) {
1375 		detach_mnt(source_mnt, parent_path);
1376 		attach_mnt(source_mnt, path);
1377 		touch_mnt_namespace(current->nsproxy->mnt_ns);
1378 	} else {
1379 		mnt_set_mountpoint(dest_mnt, dest_dentry, source_mnt);
1380 		commit_tree(source_mnt);
1381 	}
1382 
1383 	list_for_each_entry_safe(child, p, &tree_list, mnt_hash) {
1384 		list_del_init(&child->mnt_hash);
1385 		commit_tree(child);
1386 	}
1387 	spin_unlock(&vfsmount_lock);
1388 	return 0;
1389 
1390  out_cleanup_ids:
1391 	if (IS_MNT_SHARED(dest_mnt))
1392 		cleanup_group_ids(source_mnt, NULL);
1393  out:
1394 	return err;
1395 }
1396 
1397 static int graft_tree(struct vfsmount *mnt, struct path *path)
1398 {
1399 	int err;
1400 	if (mnt->mnt_sb->s_flags & MS_NOUSER)
1401 		return -EINVAL;
1402 
1403 	if (S_ISDIR(path->dentry->d_inode->i_mode) !=
1404 	      S_ISDIR(mnt->mnt_root->d_inode->i_mode))
1405 		return -ENOTDIR;
1406 
1407 	err = -ENOENT;
1408 	mutex_lock(&path->dentry->d_inode->i_mutex);
1409 	if (IS_DEADDIR(path->dentry->d_inode))
1410 		goto out_unlock;
1411 
1412 	err = security_sb_check_sb(mnt, path);
1413 	if (err)
1414 		goto out_unlock;
1415 
1416 	err = -ENOENT;
1417 	if (IS_ROOT(path->dentry) || !d_unhashed(path->dentry))
1418 		err = attach_recursive_mnt(mnt, path, NULL);
1419 out_unlock:
1420 	mutex_unlock(&path->dentry->d_inode->i_mutex);
1421 	if (!err)
1422 		security_sb_post_addmount(mnt, path);
1423 	return err;
1424 }
1425 
1426 /*
1427  * recursively change the type of the mountpoint.
1428  */
1429 static int do_change_type(struct path *path, int flag)
1430 {
1431 	struct vfsmount *m, *mnt = path->mnt;
1432 	int recurse = flag & MS_REC;
1433 	int type = flag & ~MS_REC;
1434 	int err = 0;
1435 
1436 	if (!capable(CAP_SYS_ADMIN))
1437 		return -EPERM;
1438 
1439 	if (path->dentry != path->mnt->mnt_root)
1440 		return -EINVAL;
1441 
1442 	down_write(&namespace_sem);
1443 	if (type == MS_SHARED) {
1444 		err = invent_group_ids(mnt, recurse);
1445 		if (err)
1446 			goto out_unlock;
1447 	}
1448 
1449 	spin_lock(&vfsmount_lock);
1450 	for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
1451 		change_mnt_propagation(m, type);
1452 	spin_unlock(&vfsmount_lock);
1453 
1454  out_unlock:
1455 	up_write(&namespace_sem);
1456 	return err;
1457 }
1458 
1459 /*
1460  * do loopback mount.
1461  */
1462 static int do_loopback(struct path *path, char *old_name,
1463 				int recurse)
1464 {
1465 	struct path old_path;
1466 	struct vfsmount *mnt = NULL;
1467 	int err = mount_is_safe(path);
1468 	if (err)
1469 		return err;
1470 	if (!old_name || !*old_name)
1471 		return -EINVAL;
1472 	err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
1473 	if (err)
1474 		return err;
1475 
1476 	down_write(&namespace_sem);
1477 	err = -EINVAL;
1478 	if (IS_MNT_UNBINDABLE(old_path.mnt))
1479 		goto out;
1480 
1481 	if (!check_mnt(path->mnt) || !check_mnt(old_path.mnt))
1482 		goto out;
1483 
1484 	err = -ENOMEM;
1485 	if (recurse)
1486 		mnt = copy_tree(old_path.mnt, old_path.dentry, 0);
1487 	else
1488 		mnt = clone_mnt(old_path.mnt, old_path.dentry, 0);
1489 
1490 	if (!mnt)
1491 		goto out;
1492 
1493 	err = graft_tree(mnt, path);
1494 	if (err) {
1495 		LIST_HEAD(umount_list);
1496 		spin_lock(&vfsmount_lock);
1497 		umount_tree(mnt, 0, &umount_list);
1498 		spin_unlock(&vfsmount_lock);
1499 		release_mounts(&umount_list);
1500 	}
1501 
1502 out:
1503 	up_write(&namespace_sem);
1504 	path_put(&old_path);
1505 	return err;
1506 }
1507 
1508 static int change_mount_flags(struct vfsmount *mnt, int ms_flags)
1509 {
1510 	int error = 0;
1511 	int readonly_request = 0;
1512 
1513 	if (ms_flags & MS_RDONLY)
1514 		readonly_request = 1;
1515 	if (readonly_request == __mnt_is_readonly(mnt))
1516 		return 0;
1517 
1518 	if (readonly_request)
1519 		error = mnt_make_readonly(mnt);
1520 	else
1521 		__mnt_unmake_readonly(mnt);
1522 	return error;
1523 }
1524 
1525 /*
1526  * change filesystem flags. dir should be a physical root of filesystem.
1527  * If you've mounted a non-root directory somewhere and want to do remount
1528  * on it - tough luck.
1529  */
1530 static int do_remount(struct path *path, int flags, int mnt_flags,
1531 		      void *data)
1532 {
1533 	int err;
1534 	struct super_block *sb = path->mnt->mnt_sb;
1535 
1536 	if (!capable(CAP_SYS_ADMIN))
1537 		return -EPERM;
1538 
1539 	if (!check_mnt(path->mnt))
1540 		return -EINVAL;
1541 
1542 	if (path->dentry != path->mnt->mnt_root)
1543 		return -EINVAL;
1544 
1545 	down_write(&sb->s_umount);
1546 	if (flags & MS_BIND)
1547 		err = change_mount_flags(path->mnt, flags);
1548 	else
1549 		err = do_remount_sb(sb, flags, data, 0);
1550 	if (!err)
1551 		path->mnt->mnt_flags = mnt_flags;
1552 	up_write(&sb->s_umount);
1553 	if (!err) {
1554 		security_sb_post_remount(path->mnt, flags, data);
1555 
1556 		spin_lock(&vfsmount_lock);
1557 		touch_mnt_namespace(path->mnt->mnt_ns);
1558 		spin_unlock(&vfsmount_lock);
1559 	}
1560 	return err;
1561 }
1562 
1563 static inline int tree_contains_unbindable(struct vfsmount *mnt)
1564 {
1565 	struct vfsmount *p;
1566 	for (p = mnt; p; p = next_mnt(p, mnt)) {
1567 		if (IS_MNT_UNBINDABLE(p))
1568 			return 1;
1569 	}
1570 	return 0;
1571 }
1572 
1573 static int do_move_mount(struct path *path, char *old_name)
1574 {
1575 	struct path old_path, parent_path;
1576 	struct vfsmount *p;
1577 	int err = 0;
1578 	if (!capable(CAP_SYS_ADMIN))
1579 		return -EPERM;
1580 	if (!old_name || !*old_name)
1581 		return -EINVAL;
1582 	err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
1583 	if (err)
1584 		return err;
1585 
1586 	down_write(&namespace_sem);
1587 	while (d_mountpoint(path->dentry) &&
1588 	       follow_down(&path->mnt, &path->dentry))
1589 		;
1590 	err = -EINVAL;
1591 	if (!check_mnt(path->mnt) || !check_mnt(old_path.mnt))
1592 		goto out;
1593 
1594 	err = -ENOENT;
1595 	mutex_lock(&path->dentry->d_inode->i_mutex);
1596 	if (IS_DEADDIR(path->dentry->d_inode))
1597 		goto out1;
1598 
1599 	if (!IS_ROOT(path->dentry) && d_unhashed(path->dentry))
1600 		goto out1;
1601 
1602 	err = -EINVAL;
1603 	if (old_path.dentry != old_path.mnt->mnt_root)
1604 		goto out1;
1605 
1606 	if (old_path.mnt == old_path.mnt->mnt_parent)
1607 		goto out1;
1608 
1609 	if (S_ISDIR(path->dentry->d_inode->i_mode) !=
1610 	      S_ISDIR(old_path.dentry->d_inode->i_mode))
1611 		goto out1;
1612 	/*
1613 	 * Don't move a mount residing in a shared parent.
1614 	 */
1615 	if (old_path.mnt->mnt_parent &&
1616 	    IS_MNT_SHARED(old_path.mnt->mnt_parent))
1617 		goto out1;
1618 	/*
1619 	 * Don't move a mount tree containing unbindable mounts to a destination
1620 	 * mount which is shared.
1621 	 */
1622 	if (IS_MNT_SHARED(path->mnt) &&
1623 	    tree_contains_unbindable(old_path.mnt))
1624 		goto out1;
1625 	err = -ELOOP;
1626 	for (p = path->mnt; p->mnt_parent != p; p = p->mnt_parent)
1627 		if (p == old_path.mnt)
1628 			goto out1;
1629 
1630 	err = attach_recursive_mnt(old_path.mnt, path, &parent_path);
1631 	if (err)
1632 		goto out1;
1633 
1634 	/* if the mount is moved, it should no longer be expire
1635 	 * automatically */
1636 	list_del_init(&old_path.mnt->mnt_expire);
1637 out1:
1638 	mutex_unlock(&path->dentry->d_inode->i_mutex);
1639 out:
1640 	up_write(&namespace_sem);
1641 	if (!err)
1642 		path_put(&parent_path);
1643 	path_put(&old_path);
1644 	return err;
1645 }
1646 
1647 /*
1648  * create a new mount for userspace and request it to be added into the
1649  * namespace's tree
1650  */
1651 static int do_new_mount(struct path *path, char *type, int flags,
1652 			int mnt_flags, char *name, void *data)
1653 {
1654 	struct vfsmount *mnt;
1655 
1656 	if (!type || !memchr(type, 0, PAGE_SIZE))
1657 		return -EINVAL;
1658 
1659 	/* we need capabilities... */
1660 	if (!capable(CAP_SYS_ADMIN))
1661 		return -EPERM;
1662 
1663 	mnt = do_kern_mount(type, flags, name, data);
1664 	if (IS_ERR(mnt))
1665 		return PTR_ERR(mnt);
1666 
1667 	return do_add_mount(mnt, path, mnt_flags, NULL);
1668 }
1669 
1670 /*
1671  * add a mount into a namespace's mount tree
1672  * - provide the option of adding the new mount to an expiration list
1673  */
1674 int do_add_mount(struct vfsmount *newmnt, struct path *path,
1675 		 int mnt_flags, struct list_head *fslist)
1676 {
1677 	int err;
1678 
1679 	down_write(&namespace_sem);
1680 	/* Something was mounted here while we slept */
1681 	while (d_mountpoint(path->dentry) &&
1682 	       follow_down(&path->mnt, &path->dentry))
1683 		;
1684 	err = -EINVAL;
1685 	if (!check_mnt(path->mnt))
1686 		goto unlock;
1687 
1688 	/* Refuse the same filesystem on the same mount point */
1689 	err = -EBUSY;
1690 	if (path->mnt->mnt_sb == newmnt->mnt_sb &&
1691 	    path->mnt->mnt_root == path->dentry)
1692 		goto unlock;
1693 
1694 	err = -EINVAL;
1695 	if (S_ISLNK(newmnt->mnt_root->d_inode->i_mode))
1696 		goto unlock;
1697 
1698 	newmnt->mnt_flags = mnt_flags;
1699 	if ((err = graft_tree(newmnt, path)))
1700 		goto unlock;
1701 
1702 	if (fslist) /* add to the specified expiration list */
1703 		list_add_tail(&newmnt->mnt_expire, fslist);
1704 
1705 	up_write(&namespace_sem);
1706 	return 0;
1707 
1708 unlock:
1709 	up_write(&namespace_sem);
1710 	mntput(newmnt);
1711 	return err;
1712 }
1713 
1714 EXPORT_SYMBOL_GPL(do_add_mount);
1715 
1716 /*
1717  * process a list of expirable mountpoints with the intent of discarding any
1718  * mountpoints that aren't in use and haven't been touched since last we came
1719  * here
1720  */
1721 void mark_mounts_for_expiry(struct list_head *mounts)
1722 {
1723 	struct vfsmount *mnt, *next;
1724 	LIST_HEAD(graveyard);
1725 	LIST_HEAD(umounts);
1726 
1727 	if (list_empty(mounts))
1728 		return;
1729 
1730 	down_write(&namespace_sem);
1731 	spin_lock(&vfsmount_lock);
1732 
1733 	/* extract from the expiration list every vfsmount that matches the
1734 	 * following criteria:
1735 	 * - only referenced by its parent vfsmount
1736 	 * - still marked for expiry (marked on the last call here; marks are
1737 	 *   cleared by mntput())
1738 	 */
1739 	list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
1740 		if (!xchg(&mnt->mnt_expiry_mark, 1) ||
1741 			propagate_mount_busy(mnt, 1))
1742 			continue;
1743 		list_move(&mnt->mnt_expire, &graveyard);
1744 	}
1745 	while (!list_empty(&graveyard)) {
1746 		mnt = list_first_entry(&graveyard, struct vfsmount, mnt_expire);
1747 		touch_mnt_namespace(mnt->mnt_ns);
1748 		umount_tree(mnt, 1, &umounts);
1749 	}
1750 	spin_unlock(&vfsmount_lock);
1751 	up_write(&namespace_sem);
1752 
1753 	release_mounts(&umounts);
1754 }
1755 
1756 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
1757 
1758 /*
1759  * Ripoff of 'select_parent()'
1760  *
1761  * search the list of submounts for a given mountpoint, and move any
1762  * shrinkable submounts to the 'graveyard' list.
1763  */
1764 static int select_submounts(struct vfsmount *parent, struct list_head *graveyard)
1765 {
1766 	struct vfsmount *this_parent = parent;
1767 	struct list_head *next;
1768 	int found = 0;
1769 
1770 repeat:
1771 	next = this_parent->mnt_mounts.next;
1772 resume:
1773 	while (next != &this_parent->mnt_mounts) {
1774 		struct list_head *tmp = next;
1775 		struct vfsmount *mnt = list_entry(tmp, struct vfsmount, mnt_child);
1776 
1777 		next = tmp->next;
1778 		if (!(mnt->mnt_flags & MNT_SHRINKABLE))
1779 			continue;
1780 		/*
1781 		 * Descend a level if the d_mounts list is non-empty.
1782 		 */
1783 		if (!list_empty(&mnt->mnt_mounts)) {
1784 			this_parent = mnt;
1785 			goto repeat;
1786 		}
1787 
1788 		if (!propagate_mount_busy(mnt, 1)) {
1789 			list_move_tail(&mnt->mnt_expire, graveyard);
1790 			found++;
1791 		}
1792 	}
1793 	/*
1794 	 * All done at this level ... ascend and resume the search
1795 	 */
1796 	if (this_parent != parent) {
1797 		next = this_parent->mnt_child.next;
1798 		this_parent = this_parent->mnt_parent;
1799 		goto resume;
1800 	}
1801 	return found;
1802 }
1803 
1804 /*
1805  * process a list of expirable mountpoints with the intent of discarding any
1806  * submounts of a specific parent mountpoint
1807  */
1808 static void shrink_submounts(struct vfsmount *mnt, struct list_head *umounts)
1809 {
1810 	LIST_HEAD(graveyard);
1811 	struct vfsmount *m;
1812 
1813 	/* extract submounts of 'mountpoint' from the expiration list */
1814 	while (select_submounts(mnt, &graveyard)) {
1815 		while (!list_empty(&graveyard)) {
1816 			m = list_first_entry(&graveyard, struct vfsmount,
1817 						mnt_expire);
1818 			touch_mnt_namespace(mnt->mnt_ns);
1819 			umount_tree(mnt, 1, umounts);
1820 		}
1821 	}
1822 }
1823 
1824 /*
1825  * Some copy_from_user() implementations do not return the exact number of
1826  * bytes remaining to copy on a fault.  But copy_mount_options() requires that.
1827  * Note that this function differs from copy_from_user() in that it will oops
1828  * on bad values of `to', rather than returning a short copy.
1829  */
1830 static long exact_copy_from_user(void *to, const void __user * from,
1831 				 unsigned long n)
1832 {
1833 	char *t = to;
1834 	const char __user *f = from;
1835 	char c;
1836 
1837 	if (!access_ok(VERIFY_READ, from, n))
1838 		return n;
1839 
1840 	while (n) {
1841 		if (__get_user(c, f)) {
1842 			memset(t, 0, n);
1843 			break;
1844 		}
1845 		*t++ = c;
1846 		f++;
1847 		n--;
1848 	}
1849 	return n;
1850 }
1851 
1852 int copy_mount_options(const void __user * data, unsigned long *where)
1853 {
1854 	int i;
1855 	unsigned long page;
1856 	unsigned long size;
1857 
1858 	*where = 0;
1859 	if (!data)
1860 		return 0;
1861 
1862 	if (!(page = __get_free_page(GFP_KERNEL)))
1863 		return -ENOMEM;
1864 
1865 	/* We only care that *some* data at the address the user
1866 	 * gave us is valid.  Just in case, we'll zero
1867 	 * the remainder of the page.
1868 	 */
1869 	/* copy_from_user cannot cross TASK_SIZE ! */
1870 	size = TASK_SIZE - (unsigned long)data;
1871 	if (size > PAGE_SIZE)
1872 		size = PAGE_SIZE;
1873 
1874 	i = size - exact_copy_from_user((void *)page, data, size);
1875 	if (!i) {
1876 		free_page(page);
1877 		return -EFAULT;
1878 	}
1879 	if (i != PAGE_SIZE)
1880 		memset((char *)page + i, 0, PAGE_SIZE - i);
1881 	*where = page;
1882 	return 0;
1883 }
1884 
1885 /*
1886  * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
1887  * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
1888  *
1889  * data is a (void *) that can point to any structure up to
1890  * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
1891  * information (or be NULL).
1892  *
1893  * Pre-0.97 versions of mount() didn't have a flags word.
1894  * When the flags word was introduced its top half was required
1895  * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
1896  * Therefore, if this magic number is present, it carries no information
1897  * and must be discarded.
1898  */
1899 long do_mount(char *dev_name, char *dir_name, char *type_page,
1900 		  unsigned long flags, void *data_page)
1901 {
1902 	struct path path;
1903 	int retval = 0;
1904 	int mnt_flags = 0;
1905 
1906 	/* Discard magic */
1907 	if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
1908 		flags &= ~MS_MGC_MSK;
1909 
1910 	/* Basic sanity checks */
1911 
1912 	if (!dir_name || !*dir_name || !memchr(dir_name, 0, PAGE_SIZE))
1913 		return -EINVAL;
1914 	if (dev_name && !memchr(dev_name, 0, PAGE_SIZE))
1915 		return -EINVAL;
1916 
1917 	if (data_page)
1918 		((char *)data_page)[PAGE_SIZE - 1] = 0;
1919 
1920 	/* Separate the per-mountpoint flags */
1921 	if (flags & MS_NOSUID)
1922 		mnt_flags |= MNT_NOSUID;
1923 	if (flags & MS_NODEV)
1924 		mnt_flags |= MNT_NODEV;
1925 	if (flags & MS_NOEXEC)
1926 		mnt_flags |= MNT_NOEXEC;
1927 	if (flags & MS_NOATIME)
1928 		mnt_flags |= MNT_NOATIME;
1929 	if (flags & MS_NODIRATIME)
1930 		mnt_flags |= MNT_NODIRATIME;
1931 	if (flags & MS_RELATIME)
1932 		mnt_flags |= MNT_RELATIME;
1933 	if (flags & MS_RDONLY)
1934 		mnt_flags |= MNT_READONLY;
1935 
1936 	flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE |
1937 		   MS_NOATIME | MS_NODIRATIME | MS_RELATIME| MS_KERNMOUNT);
1938 
1939 	/* ... and get the mountpoint */
1940 	retval = kern_path(dir_name, LOOKUP_FOLLOW, &path);
1941 	if (retval)
1942 		return retval;
1943 
1944 	retval = security_sb_mount(dev_name, &path,
1945 				   type_page, flags, data_page);
1946 	if (retval)
1947 		goto dput_out;
1948 
1949 	if (flags & MS_REMOUNT)
1950 		retval = do_remount(&path, flags & ~MS_REMOUNT, mnt_flags,
1951 				    data_page);
1952 	else if (flags & MS_BIND)
1953 		retval = do_loopback(&path, dev_name, flags & MS_REC);
1954 	else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
1955 		retval = do_change_type(&path, flags);
1956 	else if (flags & MS_MOVE)
1957 		retval = do_move_mount(&path, dev_name);
1958 	else
1959 		retval = do_new_mount(&path, type_page, flags, mnt_flags,
1960 				      dev_name, data_page);
1961 dput_out:
1962 	path_put(&path);
1963 	return retval;
1964 }
1965 
1966 /*
1967  * Allocate a new namespace structure and populate it with contents
1968  * copied from the namespace of the passed in task structure.
1969  */
1970 static struct mnt_namespace *dup_mnt_ns(struct mnt_namespace *mnt_ns,
1971 		struct fs_struct *fs)
1972 {
1973 	struct mnt_namespace *new_ns;
1974 	struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
1975 	struct vfsmount *p, *q;
1976 
1977 	new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
1978 	if (!new_ns)
1979 		return ERR_PTR(-ENOMEM);
1980 
1981 	atomic_set(&new_ns->count, 1);
1982 	INIT_LIST_HEAD(&new_ns->list);
1983 	init_waitqueue_head(&new_ns->poll);
1984 	new_ns->event = 0;
1985 
1986 	down_write(&namespace_sem);
1987 	/* First pass: copy the tree topology */
1988 	new_ns->root = copy_tree(mnt_ns->root, mnt_ns->root->mnt_root,
1989 					CL_COPY_ALL | CL_EXPIRE);
1990 	if (!new_ns->root) {
1991 		up_write(&namespace_sem);
1992 		kfree(new_ns);
1993 		return ERR_PTR(-ENOMEM);;
1994 	}
1995 	spin_lock(&vfsmount_lock);
1996 	list_add_tail(&new_ns->list, &new_ns->root->mnt_list);
1997 	spin_unlock(&vfsmount_lock);
1998 
1999 	/*
2000 	 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
2001 	 * as belonging to new namespace.  We have already acquired a private
2002 	 * fs_struct, so tsk->fs->lock is not needed.
2003 	 */
2004 	p = mnt_ns->root;
2005 	q = new_ns->root;
2006 	while (p) {
2007 		q->mnt_ns = new_ns;
2008 		if (fs) {
2009 			if (p == fs->root.mnt) {
2010 				rootmnt = p;
2011 				fs->root.mnt = mntget(q);
2012 			}
2013 			if (p == fs->pwd.mnt) {
2014 				pwdmnt = p;
2015 				fs->pwd.mnt = mntget(q);
2016 			}
2017 		}
2018 		p = next_mnt(p, mnt_ns->root);
2019 		q = next_mnt(q, new_ns->root);
2020 	}
2021 	up_write(&namespace_sem);
2022 
2023 	if (rootmnt)
2024 		mntput(rootmnt);
2025 	if (pwdmnt)
2026 		mntput(pwdmnt);
2027 
2028 	return new_ns;
2029 }
2030 
2031 struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
2032 		struct fs_struct *new_fs)
2033 {
2034 	struct mnt_namespace *new_ns;
2035 
2036 	BUG_ON(!ns);
2037 	get_mnt_ns(ns);
2038 
2039 	if (!(flags & CLONE_NEWNS))
2040 		return ns;
2041 
2042 	new_ns = dup_mnt_ns(ns, new_fs);
2043 
2044 	put_mnt_ns(ns);
2045 	return new_ns;
2046 }
2047 
2048 asmlinkage long sys_mount(char __user * dev_name, char __user * dir_name,
2049 			  char __user * type, unsigned long flags,
2050 			  void __user * data)
2051 {
2052 	int retval;
2053 	unsigned long data_page;
2054 	unsigned long type_page;
2055 	unsigned long dev_page;
2056 	char *dir_page;
2057 
2058 	retval = copy_mount_options(type, &type_page);
2059 	if (retval < 0)
2060 		return retval;
2061 
2062 	dir_page = getname(dir_name);
2063 	retval = PTR_ERR(dir_page);
2064 	if (IS_ERR(dir_page))
2065 		goto out1;
2066 
2067 	retval = copy_mount_options(dev_name, &dev_page);
2068 	if (retval < 0)
2069 		goto out2;
2070 
2071 	retval = copy_mount_options(data, &data_page);
2072 	if (retval < 0)
2073 		goto out3;
2074 
2075 	lock_kernel();
2076 	retval = do_mount((char *)dev_page, dir_page, (char *)type_page,
2077 			  flags, (void *)data_page);
2078 	unlock_kernel();
2079 	free_page(data_page);
2080 
2081 out3:
2082 	free_page(dev_page);
2083 out2:
2084 	putname(dir_page);
2085 out1:
2086 	free_page(type_page);
2087 	return retval;
2088 }
2089 
2090 /*
2091  * Replace the fs->{rootmnt,root} with {mnt,dentry}. Put the old values.
2092  * It can block. Requires the big lock held.
2093  */
2094 void set_fs_root(struct fs_struct *fs, struct path *path)
2095 {
2096 	struct path old_root;
2097 
2098 	write_lock(&fs->lock);
2099 	old_root = fs->root;
2100 	fs->root = *path;
2101 	path_get(path);
2102 	write_unlock(&fs->lock);
2103 	if (old_root.dentry)
2104 		path_put(&old_root);
2105 }
2106 
2107 /*
2108  * Replace the fs->{pwdmnt,pwd} with {mnt,dentry}. Put the old values.
2109  * It can block. Requires the big lock held.
2110  */
2111 void set_fs_pwd(struct fs_struct *fs, struct path *path)
2112 {
2113 	struct path old_pwd;
2114 
2115 	write_lock(&fs->lock);
2116 	old_pwd = fs->pwd;
2117 	fs->pwd = *path;
2118 	path_get(path);
2119 	write_unlock(&fs->lock);
2120 
2121 	if (old_pwd.dentry)
2122 		path_put(&old_pwd);
2123 }
2124 
2125 static void chroot_fs_refs(struct path *old_root, struct path *new_root)
2126 {
2127 	struct task_struct *g, *p;
2128 	struct fs_struct *fs;
2129 
2130 	read_lock(&tasklist_lock);
2131 	do_each_thread(g, p) {
2132 		task_lock(p);
2133 		fs = p->fs;
2134 		if (fs) {
2135 			atomic_inc(&fs->count);
2136 			task_unlock(p);
2137 			if (fs->root.dentry == old_root->dentry
2138 			    && fs->root.mnt == old_root->mnt)
2139 				set_fs_root(fs, new_root);
2140 			if (fs->pwd.dentry == old_root->dentry
2141 			    && fs->pwd.mnt == old_root->mnt)
2142 				set_fs_pwd(fs, new_root);
2143 			put_fs_struct(fs);
2144 		} else
2145 			task_unlock(p);
2146 	} while_each_thread(g, p);
2147 	read_unlock(&tasklist_lock);
2148 }
2149 
2150 /*
2151  * pivot_root Semantics:
2152  * Moves the root file system of the current process to the directory put_old,
2153  * makes new_root as the new root file system of the current process, and sets
2154  * root/cwd of all processes which had them on the current root to new_root.
2155  *
2156  * Restrictions:
2157  * The new_root and put_old must be directories, and  must not be on the
2158  * same file  system as the current process root. The put_old  must  be
2159  * underneath new_root,  i.e. adding a non-zero number of /.. to the string
2160  * pointed to by put_old must yield the same directory as new_root. No other
2161  * file system may be mounted on put_old. After all, new_root is a mountpoint.
2162  *
2163  * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
2164  * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
2165  * in this situation.
2166  *
2167  * Notes:
2168  *  - we don't move root/cwd if they are not at the root (reason: if something
2169  *    cared enough to change them, it's probably wrong to force them elsewhere)
2170  *  - it's okay to pick a root that isn't the root of a file system, e.g.
2171  *    /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
2172  *    though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
2173  *    first.
2174  */
2175 asmlinkage long sys_pivot_root(const char __user * new_root,
2176 			       const char __user * put_old)
2177 {
2178 	struct vfsmount *tmp;
2179 	struct path new, old, parent_path, root_parent, root;
2180 	int error;
2181 
2182 	if (!capable(CAP_SYS_ADMIN))
2183 		return -EPERM;
2184 
2185 	error = user_path_dir(new_root, &new);
2186 	if (error)
2187 		goto out0;
2188 	error = -EINVAL;
2189 	if (!check_mnt(new.mnt))
2190 		goto out1;
2191 
2192 	error = user_path_dir(put_old, &old);
2193 	if (error)
2194 		goto out1;
2195 
2196 	error = security_sb_pivotroot(&old, &new);
2197 	if (error) {
2198 		path_put(&old);
2199 		goto out1;
2200 	}
2201 
2202 	read_lock(&current->fs->lock);
2203 	root = current->fs->root;
2204 	path_get(&current->fs->root);
2205 	read_unlock(&current->fs->lock);
2206 	down_write(&namespace_sem);
2207 	mutex_lock(&old.dentry->d_inode->i_mutex);
2208 	error = -EINVAL;
2209 	if (IS_MNT_SHARED(old.mnt) ||
2210 		IS_MNT_SHARED(new.mnt->mnt_parent) ||
2211 		IS_MNT_SHARED(root.mnt->mnt_parent))
2212 		goto out2;
2213 	if (!check_mnt(root.mnt))
2214 		goto out2;
2215 	error = -ENOENT;
2216 	if (IS_DEADDIR(new.dentry->d_inode))
2217 		goto out2;
2218 	if (d_unhashed(new.dentry) && !IS_ROOT(new.dentry))
2219 		goto out2;
2220 	if (d_unhashed(old.dentry) && !IS_ROOT(old.dentry))
2221 		goto out2;
2222 	error = -EBUSY;
2223 	if (new.mnt == root.mnt ||
2224 	    old.mnt == root.mnt)
2225 		goto out2; /* loop, on the same file system  */
2226 	error = -EINVAL;
2227 	if (root.mnt->mnt_root != root.dentry)
2228 		goto out2; /* not a mountpoint */
2229 	if (root.mnt->mnt_parent == root.mnt)
2230 		goto out2; /* not attached */
2231 	if (new.mnt->mnt_root != new.dentry)
2232 		goto out2; /* not a mountpoint */
2233 	if (new.mnt->mnt_parent == new.mnt)
2234 		goto out2; /* not attached */
2235 	/* make sure we can reach put_old from new_root */
2236 	tmp = old.mnt;
2237 	spin_lock(&vfsmount_lock);
2238 	if (tmp != new.mnt) {
2239 		for (;;) {
2240 			if (tmp->mnt_parent == tmp)
2241 				goto out3; /* already mounted on put_old */
2242 			if (tmp->mnt_parent == new.mnt)
2243 				break;
2244 			tmp = tmp->mnt_parent;
2245 		}
2246 		if (!is_subdir(tmp->mnt_mountpoint, new.dentry))
2247 			goto out3;
2248 	} else if (!is_subdir(old.dentry, new.dentry))
2249 		goto out3;
2250 	detach_mnt(new.mnt, &parent_path);
2251 	detach_mnt(root.mnt, &root_parent);
2252 	/* mount old root on put_old */
2253 	attach_mnt(root.mnt, &old);
2254 	/* mount new_root on / */
2255 	attach_mnt(new.mnt, &root_parent);
2256 	touch_mnt_namespace(current->nsproxy->mnt_ns);
2257 	spin_unlock(&vfsmount_lock);
2258 	chroot_fs_refs(&root, &new);
2259 	security_sb_post_pivotroot(&root, &new);
2260 	error = 0;
2261 	path_put(&root_parent);
2262 	path_put(&parent_path);
2263 out2:
2264 	mutex_unlock(&old.dentry->d_inode->i_mutex);
2265 	up_write(&namespace_sem);
2266 	path_put(&root);
2267 	path_put(&old);
2268 out1:
2269 	path_put(&new);
2270 out0:
2271 	return error;
2272 out3:
2273 	spin_unlock(&vfsmount_lock);
2274 	goto out2;
2275 }
2276 
2277 static void __init init_mount_tree(void)
2278 {
2279 	struct vfsmount *mnt;
2280 	struct mnt_namespace *ns;
2281 	struct path root;
2282 
2283 	mnt = do_kern_mount("rootfs", 0, "rootfs", NULL);
2284 	if (IS_ERR(mnt))
2285 		panic("Can't create rootfs");
2286 	ns = kmalloc(sizeof(*ns), GFP_KERNEL);
2287 	if (!ns)
2288 		panic("Can't allocate initial namespace");
2289 	atomic_set(&ns->count, 1);
2290 	INIT_LIST_HEAD(&ns->list);
2291 	init_waitqueue_head(&ns->poll);
2292 	ns->event = 0;
2293 	list_add(&mnt->mnt_list, &ns->list);
2294 	ns->root = mnt;
2295 	mnt->mnt_ns = ns;
2296 
2297 	init_task.nsproxy->mnt_ns = ns;
2298 	get_mnt_ns(ns);
2299 
2300 	root.mnt = ns->root;
2301 	root.dentry = ns->root->mnt_root;
2302 
2303 	set_fs_pwd(current->fs, &root);
2304 	set_fs_root(current->fs, &root);
2305 }
2306 
2307 void __init mnt_init(void)
2308 {
2309 	unsigned u;
2310 	int err;
2311 
2312 	init_rwsem(&namespace_sem);
2313 
2314 	mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct vfsmount),
2315 			0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
2316 
2317 	mount_hashtable = (struct list_head *)__get_free_page(GFP_ATOMIC);
2318 
2319 	if (!mount_hashtable)
2320 		panic("Failed to allocate mount hash table\n");
2321 
2322 	printk("Mount-cache hash table entries: %lu\n", HASH_SIZE);
2323 
2324 	for (u = 0; u < HASH_SIZE; u++)
2325 		INIT_LIST_HEAD(&mount_hashtable[u]);
2326 
2327 	err = sysfs_init();
2328 	if (err)
2329 		printk(KERN_WARNING "%s: sysfs_init error: %d\n",
2330 			__func__, err);
2331 	fs_kobj = kobject_create_and_add("fs", NULL);
2332 	if (!fs_kobj)
2333 		printk(KERN_WARNING "%s: kobj create error\n", __func__);
2334 	init_rootfs();
2335 	init_mount_tree();
2336 }
2337 
2338 void __put_mnt_ns(struct mnt_namespace *ns)
2339 {
2340 	struct vfsmount *root = ns->root;
2341 	LIST_HEAD(umount_list);
2342 	ns->root = NULL;
2343 	spin_unlock(&vfsmount_lock);
2344 	down_write(&namespace_sem);
2345 	spin_lock(&vfsmount_lock);
2346 	umount_tree(root, 0, &umount_list);
2347 	spin_unlock(&vfsmount_lock);
2348 	up_write(&namespace_sem);
2349 	release_mounts(&umount_list);
2350 	kfree(ns);
2351 }
2352