xref: /openbmc/linux/fs/namespace.c (revision 8e9356c6)
1 /*
2  *  linux/fs/namespace.c
3  *
4  * (C) Copyright Al Viro 2000, 2001
5  *	Released under GPL v2.
6  *
7  * Based on code from fs/super.c, copyright Linus Torvalds and others.
8  * Heavily rewritten.
9  */
10 
11 #include <linux/syscalls.h>
12 #include <linux/export.h>
13 #include <linux/capability.h>
14 #include <linux/mnt_namespace.h>
15 #include <linux/user_namespace.h>
16 #include <linux/namei.h>
17 #include <linux/security.h>
18 #include <linux/idr.h>
19 #include <linux/acct.h>		/* acct_auto_close_mnt */
20 #include <linux/init.h>		/* init_rootfs */
21 #include <linux/fs_struct.h>	/* get_fs_root et.al. */
22 #include <linux/fsnotify.h>	/* fsnotify_vfsmount_delete */
23 #include <linux/uaccess.h>
24 #include <linux/proc_ns.h>
25 #include <linux/magic.h>
26 #include "pnode.h"
27 #include "internal.h"
28 
29 #define HASH_SHIFT ilog2(PAGE_SIZE / sizeof(struct list_head))
30 #define HASH_SIZE (1UL << HASH_SHIFT)
31 
32 static int event;
33 static DEFINE_IDA(mnt_id_ida);
34 static DEFINE_IDA(mnt_group_ida);
35 static DEFINE_SPINLOCK(mnt_id_lock);
36 static int mnt_id_start = 0;
37 static int mnt_group_start = 1;
38 
39 static struct list_head *mount_hashtable __read_mostly;
40 static struct list_head *mountpoint_hashtable __read_mostly;
41 static struct kmem_cache *mnt_cache __read_mostly;
42 static DECLARE_RWSEM(namespace_sem);
43 
44 /* /sys/fs */
45 struct kobject *fs_kobj;
46 EXPORT_SYMBOL_GPL(fs_kobj);
47 
48 /*
49  * vfsmount lock may be taken for read to prevent changes to the
50  * vfsmount hash, ie. during mountpoint lookups or walking back
51  * up the tree.
52  *
53  * It should be taken for write in all cases where the vfsmount
54  * tree or hash is modified or when a vfsmount structure is modified.
55  */
56 __cacheline_aligned_in_smp DEFINE_SEQLOCK(mount_lock);
57 
58 static inline unsigned long hash(struct vfsmount *mnt, struct dentry *dentry)
59 {
60 	unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
61 	tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
62 	tmp = tmp + (tmp >> HASH_SHIFT);
63 	return tmp & (HASH_SIZE - 1);
64 }
65 
66 /*
67  * allocation is serialized by namespace_sem, but we need the spinlock to
68  * serialize with freeing.
69  */
70 static int mnt_alloc_id(struct mount *mnt)
71 {
72 	int res;
73 
74 retry:
75 	ida_pre_get(&mnt_id_ida, GFP_KERNEL);
76 	spin_lock(&mnt_id_lock);
77 	res = ida_get_new_above(&mnt_id_ida, mnt_id_start, &mnt->mnt_id);
78 	if (!res)
79 		mnt_id_start = mnt->mnt_id + 1;
80 	spin_unlock(&mnt_id_lock);
81 	if (res == -EAGAIN)
82 		goto retry;
83 
84 	return res;
85 }
86 
87 static void mnt_free_id(struct mount *mnt)
88 {
89 	int id = mnt->mnt_id;
90 	spin_lock(&mnt_id_lock);
91 	ida_remove(&mnt_id_ida, id);
92 	if (mnt_id_start > id)
93 		mnt_id_start = id;
94 	spin_unlock(&mnt_id_lock);
95 }
96 
97 /*
98  * Allocate a new peer group ID
99  *
100  * mnt_group_ida is protected by namespace_sem
101  */
102 static int mnt_alloc_group_id(struct mount *mnt)
103 {
104 	int res;
105 
106 	if (!ida_pre_get(&mnt_group_ida, GFP_KERNEL))
107 		return -ENOMEM;
108 
109 	res = ida_get_new_above(&mnt_group_ida,
110 				mnt_group_start,
111 				&mnt->mnt_group_id);
112 	if (!res)
113 		mnt_group_start = mnt->mnt_group_id + 1;
114 
115 	return res;
116 }
117 
118 /*
119  * Release a peer group ID
120  */
121 void mnt_release_group_id(struct mount *mnt)
122 {
123 	int id = mnt->mnt_group_id;
124 	ida_remove(&mnt_group_ida, id);
125 	if (mnt_group_start > id)
126 		mnt_group_start = id;
127 	mnt->mnt_group_id = 0;
128 }
129 
130 /*
131  * vfsmount lock must be held for read
132  */
133 static inline void mnt_add_count(struct mount *mnt, int n)
134 {
135 #ifdef CONFIG_SMP
136 	this_cpu_add(mnt->mnt_pcp->mnt_count, n);
137 #else
138 	preempt_disable();
139 	mnt->mnt_count += n;
140 	preempt_enable();
141 #endif
142 }
143 
144 /*
145  * vfsmount lock must be held for write
146  */
147 unsigned int mnt_get_count(struct mount *mnt)
148 {
149 #ifdef CONFIG_SMP
150 	unsigned int count = 0;
151 	int cpu;
152 
153 	for_each_possible_cpu(cpu) {
154 		count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
155 	}
156 
157 	return count;
158 #else
159 	return mnt->mnt_count;
160 #endif
161 }
162 
163 static struct mount *alloc_vfsmnt(const char *name)
164 {
165 	struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
166 	if (mnt) {
167 		int err;
168 
169 		err = mnt_alloc_id(mnt);
170 		if (err)
171 			goto out_free_cache;
172 
173 		if (name) {
174 			mnt->mnt_devname = kstrdup(name, GFP_KERNEL);
175 			if (!mnt->mnt_devname)
176 				goto out_free_id;
177 		}
178 
179 #ifdef CONFIG_SMP
180 		mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
181 		if (!mnt->mnt_pcp)
182 			goto out_free_devname;
183 
184 		this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
185 #else
186 		mnt->mnt_count = 1;
187 		mnt->mnt_writers = 0;
188 #endif
189 
190 		INIT_LIST_HEAD(&mnt->mnt_hash);
191 		INIT_LIST_HEAD(&mnt->mnt_child);
192 		INIT_LIST_HEAD(&mnt->mnt_mounts);
193 		INIT_LIST_HEAD(&mnt->mnt_list);
194 		INIT_LIST_HEAD(&mnt->mnt_expire);
195 		INIT_LIST_HEAD(&mnt->mnt_share);
196 		INIT_LIST_HEAD(&mnt->mnt_slave_list);
197 		INIT_LIST_HEAD(&mnt->mnt_slave);
198 #ifdef CONFIG_FSNOTIFY
199 		INIT_HLIST_HEAD(&mnt->mnt_fsnotify_marks);
200 #endif
201 	}
202 	return mnt;
203 
204 #ifdef CONFIG_SMP
205 out_free_devname:
206 	kfree(mnt->mnt_devname);
207 #endif
208 out_free_id:
209 	mnt_free_id(mnt);
210 out_free_cache:
211 	kmem_cache_free(mnt_cache, mnt);
212 	return NULL;
213 }
214 
215 /*
216  * Most r/o checks on a fs are for operations that take
217  * discrete amounts of time, like a write() or unlink().
218  * We must keep track of when those operations start
219  * (for permission checks) and when they end, so that
220  * we can determine when writes are able to occur to
221  * a filesystem.
222  */
223 /*
224  * __mnt_is_readonly: check whether a mount is read-only
225  * @mnt: the mount to check for its write status
226  *
227  * This shouldn't be used directly ouside of the VFS.
228  * It does not guarantee that the filesystem will stay
229  * r/w, just that it is right *now*.  This can not and
230  * should not be used in place of IS_RDONLY(inode).
231  * mnt_want/drop_write() will _keep_ the filesystem
232  * r/w.
233  */
234 int __mnt_is_readonly(struct vfsmount *mnt)
235 {
236 	if (mnt->mnt_flags & MNT_READONLY)
237 		return 1;
238 	if (mnt->mnt_sb->s_flags & MS_RDONLY)
239 		return 1;
240 	return 0;
241 }
242 EXPORT_SYMBOL_GPL(__mnt_is_readonly);
243 
244 static inline void mnt_inc_writers(struct mount *mnt)
245 {
246 #ifdef CONFIG_SMP
247 	this_cpu_inc(mnt->mnt_pcp->mnt_writers);
248 #else
249 	mnt->mnt_writers++;
250 #endif
251 }
252 
253 static inline void mnt_dec_writers(struct mount *mnt)
254 {
255 #ifdef CONFIG_SMP
256 	this_cpu_dec(mnt->mnt_pcp->mnt_writers);
257 #else
258 	mnt->mnt_writers--;
259 #endif
260 }
261 
262 static unsigned int mnt_get_writers(struct mount *mnt)
263 {
264 #ifdef CONFIG_SMP
265 	unsigned int count = 0;
266 	int cpu;
267 
268 	for_each_possible_cpu(cpu) {
269 		count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
270 	}
271 
272 	return count;
273 #else
274 	return mnt->mnt_writers;
275 #endif
276 }
277 
278 static int mnt_is_readonly(struct vfsmount *mnt)
279 {
280 	if (mnt->mnt_sb->s_readonly_remount)
281 		return 1;
282 	/* Order wrt setting s_flags/s_readonly_remount in do_remount() */
283 	smp_rmb();
284 	return __mnt_is_readonly(mnt);
285 }
286 
287 /*
288  * Most r/o & frozen checks on a fs are for operations that take discrete
289  * amounts of time, like a write() or unlink().  We must keep track of when
290  * those operations start (for permission checks) and when they end, so that we
291  * can determine when writes are able to occur to a filesystem.
292  */
293 /**
294  * __mnt_want_write - get write access to a mount without freeze protection
295  * @m: the mount on which to take a write
296  *
297  * This tells the low-level filesystem that a write is about to be performed to
298  * it, and makes sure that writes are allowed (mnt it read-write) before
299  * returning success. This operation does not protect against filesystem being
300  * frozen. When the write operation is finished, __mnt_drop_write() must be
301  * called. This is effectively a refcount.
302  */
303 int __mnt_want_write(struct vfsmount *m)
304 {
305 	struct mount *mnt = real_mount(m);
306 	int ret = 0;
307 
308 	preempt_disable();
309 	mnt_inc_writers(mnt);
310 	/*
311 	 * The store to mnt_inc_writers must be visible before we pass
312 	 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
313 	 * incremented count after it has set MNT_WRITE_HOLD.
314 	 */
315 	smp_mb();
316 	while (ACCESS_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD)
317 		cpu_relax();
318 	/*
319 	 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
320 	 * be set to match its requirements. So we must not load that until
321 	 * MNT_WRITE_HOLD is cleared.
322 	 */
323 	smp_rmb();
324 	if (mnt_is_readonly(m)) {
325 		mnt_dec_writers(mnt);
326 		ret = -EROFS;
327 	}
328 	preempt_enable();
329 
330 	return ret;
331 }
332 
333 /**
334  * mnt_want_write - get write access to a mount
335  * @m: the mount on which to take a write
336  *
337  * This tells the low-level filesystem that a write is about to be performed to
338  * it, and makes sure that writes are allowed (mount is read-write, filesystem
339  * is not frozen) before returning success.  When the write operation is
340  * finished, mnt_drop_write() must be called.  This is effectively a refcount.
341  */
342 int mnt_want_write(struct vfsmount *m)
343 {
344 	int ret;
345 
346 	sb_start_write(m->mnt_sb);
347 	ret = __mnt_want_write(m);
348 	if (ret)
349 		sb_end_write(m->mnt_sb);
350 	return ret;
351 }
352 EXPORT_SYMBOL_GPL(mnt_want_write);
353 
354 /**
355  * mnt_clone_write - get write access to a mount
356  * @mnt: the mount on which to take a write
357  *
358  * This is effectively like mnt_want_write, except
359  * it must only be used to take an extra write reference
360  * on a mountpoint that we already know has a write reference
361  * on it. This allows some optimisation.
362  *
363  * After finished, mnt_drop_write must be called as usual to
364  * drop the reference.
365  */
366 int mnt_clone_write(struct vfsmount *mnt)
367 {
368 	/* superblock may be r/o */
369 	if (__mnt_is_readonly(mnt))
370 		return -EROFS;
371 	preempt_disable();
372 	mnt_inc_writers(real_mount(mnt));
373 	preempt_enable();
374 	return 0;
375 }
376 EXPORT_SYMBOL_GPL(mnt_clone_write);
377 
378 /**
379  * __mnt_want_write_file - get write access to a file's mount
380  * @file: the file who's mount on which to take a write
381  *
382  * This is like __mnt_want_write, but it takes a file and can
383  * do some optimisations if the file is open for write already
384  */
385 int __mnt_want_write_file(struct file *file)
386 {
387 	struct inode *inode = file_inode(file);
388 
389 	if (!(file->f_mode & FMODE_WRITE) || special_file(inode->i_mode))
390 		return __mnt_want_write(file->f_path.mnt);
391 	else
392 		return mnt_clone_write(file->f_path.mnt);
393 }
394 
395 /**
396  * mnt_want_write_file - get write access to a file's mount
397  * @file: the file who's mount on which to take a write
398  *
399  * This is like mnt_want_write, but it takes a file and can
400  * do some optimisations if the file is open for write already
401  */
402 int mnt_want_write_file(struct file *file)
403 {
404 	int ret;
405 
406 	sb_start_write(file->f_path.mnt->mnt_sb);
407 	ret = __mnt_want_write_file(file);
408 	if (ret)
409 		sb_end_write(file->f_path.mnt->mnt_sb);
410 	return ret;
411 }
412 EXPORT_SYMBOL_GPL(mnt_want_write_file);
413 
414 /**
415  * __mnt_drop_write - give up write access to a mount
416  * @mnt: the mount on which to give up write access
417  *
418  * Tells the low-level filesystem that we are done
419  * performing writes to it.  Must be matched with
420  * __mnt_want_write() call above.
421  */
422 void __mnt_drop_write(struct vfsmount *mnt)
423 {
424 	preempt_disable();
425 	mnt_dec_writers(real_mount(mnt));
426 	preempt_enable();
427 }
428 
429 /**
430  * mnt_drop_write - give up write access to a mount
431  * @mnt: the mount on which to give up write access
432  *
433  * Tells the low-level filesystem that we are done performing writes to it and
434  * also allows filesystem to be frozen again.  Must be matched with
435  * mnt_want_write() call above.
436  */
437 void mnt_drop_write(struct vfsmount *mnt)
438 {
439 	__mnt_drop_write(mnt);
440 	sb_end_write(mnt->mnt_sb);
441 }
442 EXPORT_SYMBOL_GPL(mnt_drop_write);
443 
444 void __mnt_drop_write_file(struct file *file)
445 {
446 	__mnt_drop_write(file->f_path.mnt);
447 }
448 
449 void mnt_drop_write_file(struct file *file)
450 {
451 	mnt_drop_write(file->f_path.mnt);
452 }
453 EXPORT_SYMBOL(mnt_drop_write_file);
454 
455 static int mnt_make_readonly(struct mount *mnt)
456 {
457 	int ret = 0;
458 
459 	lock_mount_hash();
460 	mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
461 	/*
462 	 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
463 	 * should be visible before we do.
464 	 */
465 	smp_mb();
466 
467 	/*
468 	 * With writers on hold, if this value is zero, then there are
469 	 * definitely no active writers (although held writers may subsequently
470 	 * increment the count, they'll have to wait, and decrement it after
471 	 * seeing MNT_READONLY).
472 	 *
473 	 * It is OK to have counter incremented on one CPU and decremented on
474 	 * another: the sum will add up correctly. The danger would be when we
475 	 * sum up each counter, if we read a counter before it is incremented,
476 	 * but then read another CPU's count which it has been subsequently
477 	 * decremented from -- we would see more decrements than we should.
478 	 * MNT_WRITE_HOLD protects against this scenario, because
479 	 * mnt_want_write first increments count, then smp_mb, then spins on
480 	 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
481 	 * we're counting up here.
482 	 */
483 	if (mnt_get_writers(mnt) > 0)
484 		ret = -EBUSY;
485 	else
486 		mnt->mnt.mnt_flags |= MNT_READONLY;
487 	/*
488 	 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
489 	 * that become unheld will see MNT_READONLY.
490 	 */
491 	smp_wmb();
492 	mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
493 	unlock_mount_hash();
494 	return ret;
495 }
496 
497 static void __mnt_unmake_readonly(struct mount *mnt)
498 {
499 	lock_mount_hash();
500 	mnt->mnt.mnt_flags &= ~MNT_READONLY;
501 	unlock_mount_hash();
502 }
503 
504 int sb_prepare_remount_readonly(struct super_block *sb)
505 {
506 	struct mount *mnt;
507 	int err = 0;
508 
509 	/* Racy optimization.  Recheck the counter under MNT_WRITE_HOLD */
510 	if (atomic_long_read(&sb->s_remove_count))
511 		return -EBUSY;
512 
513 	lock_mount_hash();
514 	list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
515 		if (!(mnt->mnt.mnt_flags & MNT_READONLY)) {
516 			mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
517 			smp_mb();
518 			if (mnt_get_writers(mnt) > 0) {
519 				err = -EBUSY;
520 				break;
521 			}
522 		}
523 	}
524 	if (!err && atomic_long_read(&sb->s_remove_count))
525 		err = -EBUSY;
526 
527 	if (!err) {
528 		sb->s_readonly_remount = 1;
529 		smp_wmb();
530 	}
531 	list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
532 		if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
533 			mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
534 	}
535 	unlock_mount_hash();
536 
537 	return err;
538 }
539 
540 static void free_vfsmnt(struct mount *mnt)
541 {
542 	kfree(mnt->mnt_devname);
543 	mnt_free_id(mnt);
544 #ifdef CONFIG_SMP
545 	free_percpu(mnt->mnt_pcp);
546 #endif
547 	kmem_cache_free(mnt_cache, mnt);
548 }
549 
550 /* call under rcu_read_lock */
551 bool legitimize_mnt(struct vfsmount *bastard, unsigned seq)
552 {
553 	struct mount *mnt;
554 	if (read_seqretry(&mount_lock, seq))
555 		return false;
556 	if (bastard == NULL)
557 		return true;
558 	mnt = real_mount(bastard);
559 	mnt_add_count(mnt, 1);
560 	if (likely(!read_seqretry(&mount_lock, seq)))
561 		return true;
562 	if (bastard->mnt_flags & MNT_SYNC_UMOUNT) {
563 		mnt_add_count(mnt, -1);
564 		return false;
565 	}
566 	rcu_read_unlock();
567 	mntput(bastard);
568 	rcu_read_lock();
569 	return false;
570 }
571 
572 /*
573  * find the first mount at @dentry on vfsmount @mnt.
574  * call under rcu_read_lock()
575  */
576 struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry)
577 {
578 	struct list_head *head = mount_hashtable + hash(mnt, dentry);
579 	struct mount *p;
580 
581 	list_for_each_entry_rcu(p, head, mnt_hash)
582 		if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry)
583 			return p;
584 	return NULL;
585 }
586 
587 /*
588  * find the last mount at @dentry on vfsmount @mnt.
589  * mount_lock must be held.
590  */
591 struct mount *__lookup_mnt_last(struct vfsmount *mnt, struct dentry *dentry)
592 {
593 	struct list_head *head = mount_hashtable + hash(mnt, dentry);
594 	struct mount *p;
595 
596 	list_for_each_entry_reverse(p, head, mnt_hash)
597 		if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry)
598 			return p;
599 	return NULL;
600 }
601 
602 /*
603  * lookup_mnt - Return the first child mount mounted at path
604  *
605  * "First" means first mounted chronologically.  If you create the
606  * following mounts:
607  *
608  * mount /dev/sda1 /mnt
609  * mount /dev/sda2 /mnt
610  * mount /dev/sda3 /mnt
611  *
612  * Then lookup_mnt() on the base /mnt dentry in the root mount will
613  * return successively the root dentry and vfsmount of /dev/sda1, then
614  * /dev/sda2, then /dev/sda3, then NULL.
615  *
616  * lookup_mnt takes a reference to the found vfsmount.
617  */
618 struct vfsmount *lookup_mnt(struct path *path)
619 {
620 	struct mount *child_mnt;
621 	struct vfsmount *m;
622 	unsigned seq;
623 
624 	rcu_read_lock();
625 	do {
626 		seq = read_seqbegin(&mount_lock);
627 		child_mnt = __lookup_mnt(path->mnt, path->dentry);
628 		m = child_mnt ? &child_mnt->mnt : NULL;
629 	} while (!legitimize_mnt(m, seq));
630 	rcu_read_unlock();
631 	return m;
632 }
633 
634 static struct mountpoint *new_mountpoint(struct dentry *dentry)
635 {
636 	struct list_head *chain = mountpoint_hashtable + hash(NULL, dentry);
637 	struct mountpoint *mp;
638 	int ret;
639 
640 	list_for_each_entry(mp, chain, m_hash) {
641 		if (mp->m_dentry == dentry) {
642 			/* might be worth a WARN_ON() */
643 			if (d_unlinked(dentry))
644 				return ERR_PTR(-ENOENT);
645 			mp->m_count++;
646 			return mp;
647 		}
648 	}
649 
650 	mp = kmalloc(sizeof(struct mountpoint), GFP_KERNEL);
651 	if (!mp)
652 		return ERR_PTR(-ENOMEM);
653 
654 	ret = d_set_mounted(dentry);
655 	if (ret) {
656 		kfree(mp);
657 		return ERR_PTR(ret);
658 	}
659 
660 	mp->m_dentry = dentry;
661 	mp->m_count = 1;
662 	list_add(&mp->m_hash, chain);
663 	return mp;
664 }
665 
666 static void put_mountpoint(struct mountpoint *mp)
667 {
668 	if (!--mp->m_count) {
669 		struct dentry *dentry = mp->m_dentry;
670 		spin_lock(&dentry->d_lock);
671 		dentry->d_flags &= ~DCACHE_MOUNTED;
672 		spin_unlock(&dentry->d_lock);
673 		list_del(&mp->m_hash);
674 		kfree(mp);
675 	}
676 }
677 
678 static inline int check_mnt(struct mount *mnt)
679 {
680 	return mnt->mnt_ns == current->nsproxy->mnt_ns;
681 }
682 
683 /*
684  * vfsmount lock must be held for write
685  */
686 static void touch_mnt_namespace(struct mnt_namespace *ns)
687 {
688 	if (ns) {
689 		ns->event = ++event;
690 		wake_up_interruptible(&ns->poll);
691 	}
692 }
693 
694 /*
695  * vfsmount lock must be held for write
696  */
697 static void __touch_mnt_namespace(struct mnt_namespace *ns)
698 {
699 	if (ns && ns->event != event) {
700 		ns->event = event;
701 		wake_up_interruptible(&ns->poll);
702 	}
703 }
704 
705 /*
706  * vfsmount lock must be held for write
707  */
708 static void detach_mnt(struct mount *mnt, struct path *old_path)
709 {
710 	old_path->dentry = mnt->mnt_mountpoint;
711 	old_path->mnt = &mnt->mnt_parent->mnt;
712 	mnt->mnt_parent = mnt;
713 	mnt->mnt_mountpoint = mnt->mnt.mnt_root;
714 	list_del_init(&mnt->mnt_child);
715 	list_del_init(&mnt->mnt_hash);
716 	put_mountpoint(mnt->mnt_mp);
717 	mnt->mnt_mp = NULL;
718 }
719 
720 /*
721  * vfsmount lock must be held for write
722  */
723 void mnt_set_mountpoint(struct mount *mnt,
724 			struct mountpoint *mp,
725 			struct mount *child_mnt)
726 {
727 	mp->m_count++;
728 	mnt_add_count(mnt, 1);	/* essentially, that's mntget */
729 	child_mnt->mnt_mountpoint = dget(mp->m_dentry);
730 	child_mnt->mnt_parent = mnt;
731 	child_mnt->mnt_mp = mp;
732 }
733 
734 /*
735  * vfsmount lock must be held for write
736  */
737 static void attach_mnt(struct mount *mnt,
738 			struct mount *parent,
739 			struct mountpoint *mp)
740 {
741 	mnt_set_mountpoint(parent, mp, mnt);
742 	list_add_tail(&mnt->mnt_hash, mount_hashtable +
743 			hash(&parent->mnt, mp->m_dentry));
744 	list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
745 }
746 
747 /*
748  * vfsmount lock must be held for write
749  */
750 static void commit_tree(struct mount *mnt)
751 {
752 	struct mount *parent = mnt->mnt_parent;
753 	struct mount *m;
754 	LIST_HEAD(head);
755 	struct mnt_namespace *n = parent->mnt_ns;
756 
757 	BUG_ON(parent == mnt);
758 
759 	list_add_tail(&head, &mnt->mnt_list);
760 	list_for_each_entry(m, &head, mnt_list)
761 		m->mnt_ns = n;
762 
763 	list_splice(&head, n->list.prev);
764 
765 	list_add_tail(&mnt->mnt_hash, mount_hashtable +
766 				hash(&parent->mnt, mnt->mnt_mountpoint));
767 	list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
768 	touch_mnt_namespace(n);
769 }
770 
771 static struct mount *next_mnt(struct mount *p, struct mount *root)
772 {
773 	struct list_head *next = p->mnt_mounts.next;
774 	if (next == &p->mnt_mounts) {
775 		while (1) {
776 			if (p == root)
777 				return NULL;
778 			next = p->mnt_child.next;
779 			if (next != &p->mnt_parent->mnt_mounts)
780 				break;
781 			p = p->mnt_parent;
782 		}
783 	}
784 	return list_entry(next, struct mount, mnt_child);
785 }
786 
787 static struct mount *skip_mnt_tree(struct mount *p)
788 {
789 	struct list_head *prev = p->mnt_mounts.prev;
790 	while (prev != &p->mnt_mounts) {
791 		p = list_entry(prev, struct mount, mnt_child);
792 		prev = p->mnt_mounts.prev;
793 	}
794 	return p;
795 }
796 
797 struct vfsmount *
798 vfs_kern_mount(struct file_system_type *type, int flags, const char *name, void *data)
799 {
800 	struct mount *mnt;
801 	struct dentry *root;
802 
803 	if (!type)
804 		return ERR_PTR(-ENODEV);
805 
806 	mnt = alloc_vfsmnt(name);
807 	if (!mnt)
808 		return ERR_PTR(-ENOMEM);
809 
810 	if (flags & MS_KERNMOUNT)
811 		mnt->mnt.mnt_flags = MNT_INTERNAL;
812 
813 	root = mount_fs(type, flags, name, data);
814 	if (IS_ERR(root)) {
815 		free_vfsmnt(mnt);
816 		return ERR_CAST(root);
817 	}
818 
819 	mnt->mnt.mnt_root = root;
820 	mnt->mnt.mnt_sb = root->d_sb;
821 	mnt->mnt_mountpoint = mnt->mnt.mnt_root;
822 	mnt->mnt_parent = mnt;
823 	lock_mount_hash();
824 	list_add_tail(&mnt->mnt_instance, &root->d_sb->s_mounts);
825 	unlock_mount_hash();
826 	return &mnt->mnt;
827 }
828 EXPORT_SYMBOL_GPL(vfs_kern_mount);
829 
830 static struct mount *clone_mnt(struct mount *old, struct dentry *root,
831 					int flag)
832 {
833 	struct super_block *sb = old->mnt.mnt_sb;
834 	struct mount *mnt;
835 	int err;
836 
837 	mnt = alloc_vfsmnt(old->mnt_devname);
838 	if (!mnt)
839 		return ERR_PTR(-ENOMEM);
840 
841 	if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE))
842 		mnt->mnt_group_id = 0; /* not a peer of original */
843 	else
844 		mnt->mnt_group_id = old->mnt_group_id;
845 
846 	if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
847 		err = mnt_alloc_group_id(mnt);
848 		if (err)
849 			goto out_free;
850 	}
851 
852 	mnt->mnt.mnt_flags = old->mnt.mnt_flags & ~MNT_WRITE_HOLD;
853 	/* Don't allow unprivileged users to change mount flags */
854 	if ((flag & CL_UNPRIVILEGED) && (mnt->mnt.mnt_flags & MNT_READONLY))
855 		mnt->mnt.mnt_flags |= MNT_LOCK_READONLY;
856 
857 	/* Don't allow unprivileged users to reveal what is under a mount */
858 	if ((flag & CL_UNPRIVILEGED) && list_empty(&old->mnt_expire))
859 		mnt->mnt.mnt_flags |= MNT_LOCKED;
860 
861 	atomic_inc(&sb->s_active);
862 	mnt->mnt.mnt_sb = sb;
863 	mnt->mnt.mnt_root = dget(root);
864 	mnt->mnt_mountpoint = mnt->mnt.mnt_root;
865 	mnt->mnt_parent = mnt;
866 	lock_mount_hash();
867 	list_add_tail(&mnt->mnt_instance, &sb->s_mounts);
868 	unlock_mount_hash();
869 
870 	if ((flag & CL_SLAVE) ||
871 	    ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) {
872 		list_add(&mnt->mnt_slave, &old->mnt_slave_list);
873 		mnt->mnt_master = old;
874 		CLEAR_MNT_SHARED(mnt);
875 	} else if (!(flag & CL_PRIVATE)) {
876 		if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
877 			list_add(&mnt->mnt_share, &old->mnt_share);
878 		if (IS_MNT_SLAVE(old))
879 			list_add(&mnt->mnt_slave, &old->mnt_slave);
880 		mnt->mnt_master = old->mnt_master;
881 	}
882 	if (flag & CL_MAKE_SHARED)
883 		set_mnt_shared(mnt);
884 
885 	/* stick the duplicate mount on the same expiry list
886 	 * as the original if that was on one */
887 	if (flag & CL_EXPIRE) {
888 		if (!list_empty(&old->mnt_expire))
889 			list_add(&mnt->mnt_expire, &old->mnt_expire);
890 	}
891 
892 	return mnt;
893 
894  out_free:
895 	free_vfsmnt(mnt);
896 	return ERR_PTR(err);
897 }
898 
899 static void delayed_free(struct rcu_head *head)
900 {
901 	struct mount *mnt = container_of(head, struct mount, mnt_rcu);
902 	kfree(mnt->mnt_devname);
903 #ifdef CONFIG_SMP
904 	free_percpu(mnt->mnt_pcp);
905 #endif
906 	kmem_cache_free(mnt_cache, mnt);
907 }
908 
909 static void mntput_no_expire(struct mount *mnt)
910 {
911 put_again:
912 	rcu_read_lock();
913 	mnt_add_count(mnt, -1);
914 	if (likely(mnt->mnt_ns)) { /* shouldn't be the last one */
915 		rcu_read_unlock();
916 		return;
917 	}
918 	lock_mount_hash();
919 	if (mnt_get_count(mnt)) {
920 		rcu_read_unlock();
921 		unlock_mount_hash();
922 		return;
923 	}
924 	if (unlikely(mnt->mnt_pinned)) {
925 		mnt_add_count(mnt, mnt->mnt_pinned + 1);
926 		mnt->mnt_pinned = 0;
927 		rcu_read_unlock();
928 		unlock_mount_hash();
929 		acct_auto_close_mnt(&mnt->mnt);
930 		goto put_again;
931 	}
932 	if (unlikely(mnt->mnt.mnt_flags & MNT_DOOMED)) {
933 		rcu_read_unlock();
934 		unlock_mount_hash();
935 		return;
936 	}
937 	mnt->mnt.mnt_flags |= MNT_DOOMED;
938 	rcu_read_unlock();
939 
940 	list_del(&mnt->mnt_instance);
941 	unlock_mount_hash();
942 
943 	/*
944 	 * This probably indicates that somebody messed
945 	 * up a mnt_want/drop_write() pair.  If this
946 	 * happens, the filesystem was probably unable
947 	 * to make r/w->r/o transitions.
948 	 */
949 	/*
950 	 * The locking used to deal with mnt_count decrement provides barriers,
951 	 * so mnt_get_writers() below is safe.
952 	 */
953 	WARN_ON(mnt_get_writers(mnt));
954 	fsnotify_vfsmount_delete(&mnt->mnt);
955 	dput(mnt->mnt.mnt_root);
956 	deactivate_super(mnt->mnt.mnt_sb);
957 	mnt_free_id(mnt);
958 	call_rcu(&mnt->mnt_rcu, delayed_free);
959 }
960 
961 void mntput(struct vfsmount *mnt)
962 {
963 	if (mnt) {
964 		struct mount *m = real_mount(mnt);
965 		/* avoid cacheline pingpong, hope gcc doesn't get "smart" */
966 		if (unlikely(m->mnt_expiry_mark))
967 			m->mnt_expiry_mark = 0;
968 		mntput_no_expire(m);
969 	}
970 }
971 EXPORT_SYMBOL(mntput);
972 
973 struct vfsmount *mntget(struct vfsmount *mnt)
974 {
975 	if (mnt)
976 		mnt_add_count(real_mount(mnt), 1);
977 	return mnt;
978 }
979 EXPORT_SYMBOL(mntget);
980 
981 void mnt_pin(struct vfsmount *mnt)
982 {
983 	lock_mount_hash();
984 	real_mount(mnt)->mnt_pinned++;
985 	unlock_mount_hash();
986 }
987 EXPORT_SYMBOL(mnt_pin);
988 
989 void mnt_unpin(struct vfsmount *m)
990 {
991 	struct mount *mnt = real_mount(m);
992 	lock_mount_hash();
993 	if (mnt->mnt_pinned) {
994 		mnt_add_count(mnt, 1);
995 		mnt->mnt_pinned--;
996 	}
997 	unlock_mount_hash();
998 }
999 EXPORT_SYMBOL(mnt_unpin);
1000 
1001 static inline void mangle(struct seq_file *m, const char *s)
1002 {
1003 	seq_escape(m, s, " \t\n\\");
1004 }
1005 
1006 /*
1007  * Simple .show_options callback for filesystems which don't want to
1008  * implement more complex mount option showing.
1009  *
1010  * See also save_mount_options().
1011  */
1012 int generic_show_options(struct seq_file *m, struct dentry *root)
1013 {
1014 	const char *options;
1015 
1016 	rcu_read_lock();
1017 	options = rcu_dereference(root->d_sb->s_options);
1018 
1019 	if (options != NULL && options[0]) {
1020 		seq_putc(m, ',');
1021 		mangle(m, options);
1022 	}
1023 	rcu_read_unlock();
1024 
1025 	return 0;
1026 }
1027 EXPORT_SYMBOL(generic_show_options);
1028 
1029 /*
1030  * If filesystem uses generic_show_options(), this function should be
1031  * called from the fill_super() callback.
1032  *
1033  * The .remount_fs callback usually needs to be handled in a special
1034  * way, to make sure, that previous options are not overwritten if the
1035  * remount fails.
1036  *
1037  * Also note, that if the filesystem's .remount_fs function doesn't
1038  * reset all options to their default value, but changes only newly
1039  * given options, then the displayed options will not reflect reality
1040  * any more.
1041  */
1042 void save_mount_options(struct super_block *sb, char *options)
1043 {
1044 	BUG_ON(sb->s_options);
1045 	rcu_assign_pointer(sb->s_options, kstrdup(options, GFP_KERNEL));
1046 }
1047 EXPORT_SYMBOL(save_mount_options);
1048 
1049 void replace_mount_options(struct super_block *sb, char *options)
1050 {
1051 	char *old = sb->s_options;
1052 	rcu_assign_pointer(sb->s_options, options);
1053 	if (old) {
1054 		synchronize_rcu();
1055 		kfree(old);
1056 	}
1057 }
1058 EXPORT_SYMBOL(replace_mount_options);
1059 
1060 #ifdef CONFIG_PROC_FS
1061 /* iterator; we want it to have access to namespace_sem, thus here... */
1062 static void *m_start(struct seq_file *m, loff_t *pos)
1063 {
1064 	struct proc_mounts *p = proc_mounts(m);
1065 
1066 	down_read(&namespace_sem);
1067 	return seq_list_start(&p->ns->list, *pos);
1068 }
1069 
1070 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
1071 {
1072 	struct proc_mounts *p = proc_mounts(m);
1073 
1074 	return seq_list_next(v, &p->ns->list, pos);
1075 }
1076 
1077 static void m_stop(struct seq_file *m, void *v)
1078 {
1079 	up_read(&namespace_sem);
1080 }
1081 
1082 static int m_show(struct seq_file *m, void *v)
1083 {
1084 	struct proc_mounts *p = proc_mounts(m);
1085 	struct mount *r = list_entry(v, struct mount, mnt_list);
1086 	return p->show(m, &r->mnt);
1087 }
1088 
1089 const struct seq_operations mounts_op = {
1090 	.start	= m_start,
1091 	.next	= m_next,
1092 	.stop	= m_stop,
1093 	.show	= m_show,
1094 };
1095 #endif  /* CONFIG_PROC_FS */
1096 
1097 /**
1098  * may_umount_tree - check if a mount tree is busy
1099  * @mnt: root of mount tree
1100  *
1101  * This is called to check if a tree of mounts has any
1102  * open files, pwds, chroots or sub mounts that are
1103  * busy.
1104  */
1105 int may_umount_tree(struct vfsmount *m)
1106 {
1107 	struct mount *mnt = real_mount(m);
1108 	int actual_refs = 0;
1109 	int minimum_refs = 0;
1110 	struct mount *p;
1111 	BUG_ON(!m);
1112 
1113 	/* write lock needed for mnt_get_count */
1114 	lock_mount_hash();
1115 	for (p = mnt; p; p = next_mnt(p, mnt)) {
1116 		actual_refs += mnt_get_count(p);
1117 		minimum_refs += 2;
1118 	}
1119 	unlock_mount_hash();
1120 
1121 	if (actual_refs > minimum_refs)
1122 		return 0;
1123 
1124 	return 1;
1125 }
1126 
1127 EXPORT_SYMBOL(may_umount_tree);
1128 
1129 /**
1130  * may_umount - check if a mount point is busy
1131  * @mnt: root of mount
1132  *
1133  * This is called to check if a mount point has any
1134  * open files, pwds, chroots or sub mounts. If the
1135  * mount has sub mounts this will return busy
1136  * regardless of whether the sub mounts are busy.
1137  *
1138  * Doesn't take quota and stuff into account. IOW, in some cases it will
1139  * give false negatives. The main reason why it's here is that we need
1140  * a non-destructive way to look for easily umountable filesystems.
1141  */
1142 int may_umount(struct vfsmount *mnt)
1143 {
1144 	int ret = 1;
1145 	down_read(&namespace_sem);
1146 	lock_mount_hash();
1147 	if (propagate_mount_busy(real_mount(mnt), 2))
1148 		ret = 0;
1149 	unlock_mount_hash();
1150 	up_read(&namespace_sem);
1151 	return ret;
1152 }
1153 
1154 EXPORT_SYMBOL(may_umount);
1155 
1156 static LIST_HEAD(unmounted);	/* protected by namespace_sem */
1157 
1158 static void namespace_unlock(void)
1159 {
1160 	struct mount *mnt;
1161 	LIST_HEAD(head);
1162 
1163 	if (likely(list_empty(&unmounted))) {
1164 		up_write(&namespace_sem);
1165 		return;
1166 	}
1167 
1168 	list_splice_init(&unmounted, &head);
1169 	up_write(&namespace_sem);
1170 
1171 	synchronize_rcu();
1172 
1173 	while (!list_empty(&head)) {
1174 		mnt = list_first_entry(&head, struct mount, mnt_hash);
1175 		list_del_init(&mnt->mnt_hash);
1176 		if (mnt->mnt_ex_mountpoint.mnt)
1177 			path_put(&mnt->mnt_ex_mountpoint);
1178 		mntput(&mnt->mnt);
1179 	}
1180 }
1181 
1182 static inline void namespace_lock(void)
1183 {
1184 	down_write(&namespace_sem);
1185 }
1186 
1187 /*
1188  * mount_lock must be held
1189  * namespace_sem must be held for write
1190  * how = 0 => just this tree, don't propagate
1191  * how = 1 => propagate; we know that nobody else has reference to any victims
1192  * how = 2 => lazy umount
1193  */
1194 void umount_tree(struct mount *mnt, int how)
1195 {
1196 	LIST_HEAD(tmp_list);
1197 	struct mount *p;
1198 
1199 	for (p = mnt; p; p = next_mnt(p, mnt))
1200 		list_move(&p->mnt_hash, &tmp_list);
1201 
1202 	if (how)
1203 		propagate_umount(&tmp_list);
1204 
1205 	list_for_each_entry(p, &tmp_list, mnt_hash) {
1206 		list_del_init(&p->mnt_expire);
1207 		list_del_init(&p->mnt_list);
1208 		__touch_mnt_namespace(p->mnt_ns);
1209 		p->mnt_ns = NULL;
1210 		if (how < 2)
1211 			p->mnt.mnt_flags |= MNT_SYNC_UMOUNT;
1212 		list_del_init(&p->mnt_child);
1213 		if (mnt_has_parent(p)) {
1214 			put_mountpoint(p->mnt_mp);
1215 			/* move the reference to mountpoint into ->mnt_ex_mountpoint */
1216 			p->mnt_ex_mountpoint.dentry = p->mnt_mountpoint;
1217 			p->mnt_ex_mountpoint.mnt = &p->mnt_parent->mnt;
1218 			p->mnt_mountpoint = p->mnt.mnt_root;
1219 			p->mnt_parent = p;
1220 			p->mnt_mp = NULL;
1221 		}
1222 		change_mnt_propagation(p, MS_PRIVATE);
1223 	}
1224 	list_splice(&tmp_list, &unmounted);
1225 }
1226 
1227 static void shrink_submounts(struct mount *mnt);
1228 
1229 static int do_umount(struct mount *mnt, int flags)
1230 {
1231 	struct super_block *sb = mnt->mnt.mnt_sb;
1232 	int retval;
1233 
1234 	retval = security_sb_umount(&mnt->mnt, flags);
1235 	if (retval)
1236 		return retval;
1237 
1238 	/*
1239 	 * Allow userspace to request a mountpoint be expired rather than
1240 	 * unmounting unconditionally. Unmount only happens if:
1241 	 *  (1) the mark is already set (the mark is cleared by mntput())
1242 	 *  (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1243 	 */
1244 	if (flags & MNT_EXPIRE) {
1245 		if (&mnt->mnt == current->fs->root.mnt ||
1246 		    flags & (MNT_FORCE | MNT_DETACH))
1247 			return -EINVAL;
1248 
1249 		/*
1250 		 * probably don't strictly need the lock here if we examined
1251 		 * all race cases, but it's a slowpath.
1252 		 */
1253 		lock_mount_hash();
1254 		if (mnt_get_count(mnt) != 2) {
1255 			unlock_mount_hash();
1256 			return -EBUSY;
1257 		}
1258 		unlock_mount_hash();
1259 
1260 		if (!xchg(&mnt->mnt_expiry_mark, 1))
1261 			return -EAGAIN;
1262 	}
1263 
1264 	/*
1265 	 * If we may have to abort operations to get out of this
1266 	 * mount, and they will themselves hold resources we must
1267 	 * allow the fs to do things. In the Unix tradition of
1268 	 * 'Gee thats tricky lets do it in userspace' the umount_begin
1269 	 * might fail to complete on the first run through as other tasks
1270 	 * must return, and the like. Thats for the mount program to worry
1271 	 * about for the moment.
1272 	 */
1273 
1274 	if (flags & MNT_FORCE && sb->s_op->umount_begin) {
1275 		sb->s_op->umount_begin(sb);
1276 	}
1277 
1278 	/*
1279 	 * No sense to grab the lock for this test, but test itself looks
1280 	 * somewhat bogus. Suggestions for better replacement?
1281 	 * Ho-hum... In principle, we might treat that as umount + switch
1282 	 * to rootfs. GC would eventually take care of the old vfsmount.
1283 	 * Actually it makes sense, especially if rootfs would contain a
1284 	 * /reboot - static binary that would close all descriptors and
1285 	 * call reboot(9). Then init(8) could umount root and exec /reboot.
1286 	 */
1287 	if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1288 		/*
1289 		 * Special case for "unmounting" root ...
1290 		 * we just try to remount it readonly.
1291 		 */
1292 		down_write(&sb->s_umount);
1293 		if (!(sb->s_flags & MS_RDONLY))
1294 			retval = do_remount_sb(sb, MS_RDONLY, NULL, 0);
1295 		up_write(&sb->s_umount);
1296 		return retval;
1297 	}
1298 
1299 	namespace_lock();
1300 	lock_mount_hash();
1301 	event++;
1302 
1303 	if (flags & MNT_DETACH) {
1304 		if (!list_empty(&mnt->mnt_list))
1305 			umount_tree(mnt, 2);
1306 		retval = 0;
1307 	} else {
1308 		shrink_submounts(mnt);
1309 		retval = -EBUSY;
1310 		if (!propagate_mount_busy(mnt, 2)) {
1311 			if (!list_empty(&mnt->mnt_list))
1312 				umount_tree(mnt, 1);
1313 			retval = 0;
1314 		}
1315 	}
1316 	unlock_mount_hash();
1317 	namespace_unlock();
1318 	return retval;
1319 }
1320 
1321 /*
1322  * Is the caller allowed to modify his namespace?
1323  */
1324 static inline bool may_mount(void)
1325 {
1326 	return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN);
1327 }
1328 
1329 /*
1330  * Now umount can handle mount points as well as block devices.
1331  * This is important for filesystems which use unnamed block devices.
1332  *
1333  * We now support a flag for forced unmount like the other 'big iron'
1334  * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
1335  */
1336 
1337 SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
1338 {
1339 	struct path path;
1340 	struct mount *mnt;
1341 	int retval;
1342 	int lookup_flags = 0;
1343 
1344 	if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
1345 		return -EINVAL;
1346 
1347 	if (!may_mount())
1348 		return -EPERM;
1349 
1350 	if (!(flags & UMOUNT_NOFOLLOW))
1351 		lookup_flags |= LOOKUP_FOLLOW;
1352 
1353 	retval = user_path_mountpoint_at(AT_FDCWD, name, lookup_flags, &path);
1354 	if (retval)
1355 		goto out;
1356 	mnt = real_mount(path.mnt);
1357 	retval = -EINVAL;
1358 	if (path.dentry != path.mnt->mnt_root)
1359 		goto dput_and_out;
1360 	if (!check_mnt(mnt))
1361 		goto dput_and_out;
1362 	if (mnt->mnt.mnt_flags & MNT_LOCKED)
1363 		goto dput_and_out;
1364 
1365 	retval = do_umount(mnt, flags);
1366 dput_and_out:
1367 	/* we mustn't call path_put() as that would clear mnt_expiry_mark */
1368 	dput(path.dentry);
1369 	mntput_no_expire(mnt);
1370 out:
1371 	return retval;
1372 }
1373 
1374 #ifdef __ARCH_WANT_SYS_OLDUMOUNT
1375 
1376 /*
1377  *	The 2.0 compatible umount. No flags.
1378  */
1379 SYSCALL_DEFINE1(oldumount, char __user *, name)
1380 {
1381 	return sys_umount(name, 0);
1382 }
1383 
1384 #endif
1385 
1386 static bool is_mnt_ns_file(struct dentry *dentry)
1387 {
1388 	/* Is this a proxy for a mount namespace? */
1389 	struct inode *inode = dentry->d_inode;
1390 	struct proc_ns *ei;
1391 
1392 	if (!proc_ns_inode(inode))
1393 		return false;
1394 
1395 	ei = get_proc_ns(inode);
1396 	if (ei->ns_ops != &mntns_operations)
1397 		return false;
1398 
1399 	return true;
1400 }
1401 
1402 static bool mnt_ns_loop(struct dentry *dentry)
1403 {
1404 	/* Could bind mounting the mount namespace inode cause a
1405 	 * mount namespace loop?
1406 	 */
1407 	struct mnt_namespace *mnt_ns;
1408 	if (!is_mnt_ns_file(dentry))
1409 		return false;
1410 
1411 	mnt_ns = get_proc_ns(dentry->d_inode)->ns;
1412 	return current->nsproxy->mnt_ns->seq >= mnt_ns->seq;
1413 }
1414 
1415 struct mount *copy_tree(struct mount *mnt, struct dentry *dentry,
1416 					int flag)
1417 {
1418 	struct mount *res, *p, *q, *r, *parent;
1419 
1420 	if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(mnt))
1421 		return ERR_PTR(-EINVAL);
1422 
1423 	if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry))
1424 		return ERR_PTR(-EINVAL);
1425 
1426 	res = q = clone_mnt(mnt, dentry, flag);
1427 	if (IS_ERR(q))
1428 		return q;
1429 
1430 	q->mnt.mnt_flags &= ~MNT_LOCKED;
1431 	q->mnt_mountpoint = mnt->mnt_mountpoint;
1432 
1433 	p = mnt;
1434 	list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
1435 		struct mount *s;
1436 		if (!is_subdir(r->mnt_mountpoint, dentry))
1437 			continue;
1438 
1439 		for (s = r; s; s = next_mnt(s, r)) {
1440 			if (!(flag & CL_COPY_UNBINDABLE) &&
1441 			    IS_MNT_UNBINDABLE(s)) {
1442 				s = skip_mnt_tree(s);
1443 				continue;
1444 			}
1445 			if (!(flag & CL_COPY_MNT_NS_FILE) &&
1446 			    is_mnt_ns_file(s->mnt.mnt_root)) {
1447 				s = skip_mnt_tree(s);
1448 				continue;
1449 			}
1450 			while (p != s->mnt_parent) {
1451 				p = p->mnt_parent;
1452 				q = q->mnt_parent;
1453 			}
1454 			p = s;
1455 			parent = q;
1456 			q = clone_mnt(p, p->mnt.mnt_root, flag);
1457 			if (IS_ERR(q))
1458 				goto out;
1459 			lock_mount_hash();
1460 			list_add_tail(&q->mnt_list, &res->mnt_list);
1461 			attach_mnt(q, parent, p->mnt_mp);
1462 			unlock_mount_hash();
1463 		}
1464 	}
1465 	return res;
1466 out:
1467 	if (res) {
1468 		lock_mount_hash();
1469 		umount_tree(res, 0);
1470 		unlock_mount_hash();
1471 	}
1472 	return q;
1473 }
1474 
1475 /* Caller should check returned pointer for errors */
1476 
1477 struct vfsmount *collect_mounts(struct path *path)
1478 {
1479 	struct mount *tree;
1480 	namespace_lock();
1481 	tree = copy_tree(real_mount(path->mnt), path->dentry,
1482 			 CL_COPY_ALL | CL_PRIVATE);
1483 	namespace_unlock();
1484 	if (IS_ERR(tree))
1485 		return ERR_CAST(tree);
1486 	return &tree->mnt;
1487 }
1488 
1489 void drop_collected_mounts(struct vfsmount *mnt)
1490 {
1491 	namespace_lock();
1492 	lock_mount_hash();
1493 	umount_tree(real_mount(mnt), 0);
1494 	unlock_mount_hash();
1495 	namespace_unlock();
1496 }
1497 
1498 int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
1499 		   struct vfsmount *root)
1500 {
1501 	struct mount *mnt;
1502 	int res = f(root, arg);
1503 	if (res)
1504 		return res;
1505 	list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) {
1506 		res = f(&mnt->mnt, arg);
1507 		if (res)
1508 			return res;
1509 	}
1510 	return 0;
1511 }
1512 
1513 static void cleanup_group_ids(struct mount *mnt, struct mount *end)
1514 {
1515 	struct mount *p;
1516 
1517 	for (p = mnt; p != end; p = next_mnt(p, mnt)) {
1518 		if (p->mnt_group_id && !IS_MNT_SHARED(p))
1519 			mnt_release_group_id(p);
1520 	}
1521 }
1522 
1523 static int invent_group_ids(struct mount *mnt, bool recurse)
1524 {
1525 	struct mount *p;
1526 
1527 	for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
1528 		if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
1529 			int err = mnt_alloc_group_id(p);
1530 			if (err) {
1531 				cleanup_group_ids(mnt, p);
1532 				return err;
1533 			}
1534 		}
1535 	}
1536 
1537 	return 0;
1538 }
1539 
1540 /*
1541  *  @source_mnt : mount tree to be attached
1542  *  @nd         : place the mount tree @source_mnt is attached
1543  *  @parent_nd  : if non-null, detach the source_mnt from its parent and
1544  *  		   store the parent mount and mountpoint dentry.
1545  *  		   (done when source_mnt is moved)
1546  *
1547  *  NOTE: in the table below explains the semantics when a source mount
1548  *  of a given type is attached to a destination mount of a given type.
1549  * ---------------------------------------------------------------------------
1550  * |         BIND MOUNT OPERATION                                            |
1551  * |**************************************************************************
1552  * | source-->| shared        |       private  |       slave    | unbindable |
1553  * | dest     |               |                |                |            |
1554  * |   |      |               |                |                |            |
1555  * |   v      |               |                |                |            |
1556  * |**************************************************************************
1557  * |  shared  | shared (++)   |     shared (+) |     shared(+++)|  invalid   |
1558  * |          |               |                |                |            |
1559  * |non-shared| shared (+)    |      private   |      slave (*) |  invalid   |
1560  * ***************************************************************************
1561  * A bind operation clones the source mount and mounts the clone on the
1562  * destination mount.
1563  *
1564  * (++)  the cloned mount is propagated to all the mounts in the propagation
1565  * 	 tree of the destination mount and the cloned mount is added to
1566  * 	 the peer group of the source mount.
1567  * (+)   the cloned mount is created under the destination mount and is marked
1568  *       as shared. The cloned mount is added to the peer group of the source
1569  *       mount.
1570  * (+++) the mount is propagated to all the mounts in the propagation tree
1571  *       of the destination mount and the cloned mount is made slave
1572  *       of the same master as that of the source mount. The cloned mount
1573  *       is marked as 'shared and slave'.
1574  * (*)   the cloned mount is made a slave of the same master as that of the
1575  * 	 source mount.
1576  *
1577  * ---------------------------------------------------------------------------
1578  * |         		MOVE MOUNT OPERATION                                 |
1579  * |**************************************************************************
1580  * | source-->| shared        |       private  |       slave    | unbindable |
1581  * | dest     |               |                |                |            |
1582  * |   |      |               |                |                |            |
1583  * |   v      |               |                |                |            |
1584  * |**************************************************************************
1585  * |  shared  | shared (+)    |     shared (+) |    shared(+++) |  invalid   |
1586  * |          |               |                |                |            |
1587  * |non-shared| shared (+*)   |      private   |    slave (*)   | unbindable |
1588  * ***************************************************************************
1589  *
1590  * (+)  the mount is moved to the destination. And is then propagated to
1591  * 	all the mounts in the propagation tree of the destination mount.
1592  * (+*)  the mount is moved to the destination.
1593  * (+++)  the mount is moved to the destination and is then propagated to
1594  * 	all the mounts belonging to the destination mount's propagation tree.
1595  * 	the mount is marked as 'shared and slave'.
1596  * (*)	the mount continues to be a slave at the new location.
1597  *
1598  * if the source mount is a tree, the operations explained above is
1599  * applied to each mount in the tree.
1600  * Must be called without spinlocks held, since this function can sleep
1601  * in allocations.
1602  */
1603 static int attach_recursive_mnt(struct mount *source_mnt,
1604 			struct mount *dest_mnt,
1605 			struct mountpoint *dest_mp,
1606 			struct path *parent_path)
1607 {
1608 	LIST_HEAD(tree_list);
1609 	struct mount *child, *p;
1610 	int err;
1611 
1612 	if (IS_MNT_SHARED(dest_mnt)) {
1613 		err = invent_group_ids(source_mnt, true);
1614 		if (err)
1615 			goto out;
1616 	}
1617 	err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list);
1618 	if (err)
1619 		goto out_cleanup_ids;
1620 
1621 	lock_mount_hash();
1622 
1623 	if (IS_MNT_SHARED(dest_mnt)) {
1624 		for (p = source_mnt; p; p = next_mnt(p, source_mnt))
1625 			set_mnt_shared(p);
1626 	}
1627 	if (parent_path) {
1628 		detach_mnt(source_mnt, parent_path);
1629 		attach_mnt(source_mnt, dest_mnt, dest_mp);
1630 		touch_mnt_namespace(source_mnt->mnt_ns);
1631 	} else {
1632 		mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt);
1633 		commit_tree(source_mnt);
1634 	}
1635 
1636 	list_for_each_entry_safe(child, p, &tree_list, mnt_hash) {
1637 		list_del_init(&child->mnt_hash);
1638 		commit_tree(child);
1639 	}
1640 	unlock_mount_hash();
1641 
1642 	return 0;
1643 
1644  out_cleanup_ids:
1645 	if (IS_MNT_SHARED(dest_mnt))
1646 		cleanup_group_ids(source_mnt, NULL);
1647  out:
1648 	return err;
1649 }
1650 
1651 static struct mountpoint *lock_mount(struct path *path)
1652 {
1653 	struct vfsmount *mnt;
1654 	struct dentry *dentry = path->dentry;
1655 retry:
1656 	mutex_lock(&dentry->d_inode->i_mutex);
1657 	if (unlikely(cant_mount(dentry))) {
1658 		mutex_unlock(&dentry->d_inode->i_mutex);
1659 		return ERR_PTR(-ENOENT);
1660 	}
1661 	namespace_lock();
1662 	mnt = lookup_mnt(path);
1663 	if (likely(!mnt)) {
1664 		struct mountpoint *mp = new_mountpoint(dentry);
1665 		if (IS_ERR(mp)) {
1666 			namespace_unlock();
1667 			mutex_unlock(&dentry->d_inode->i_mutex);
1668 			return mp;
1669 		}
1670 		return mp;
1671 	}
1672 	namespace_unlock();
1673 	mutex_unlock(&path->dentry->d_inode->i_mutex);
1674 	path_put(path);
1675 	path->mnt = mnt;
1676 	dentry = path->dentry = dget(mnt->mnt_root);
1677 	goto retry;
1678 }
1679 
1680 static void unlock_mount(struct mountpoint *where)
1681 {
1682 	struct dentry *dentry = where->m_dentry;
1683 	put_mountpoint(where);
1684 	namespace_unlock();
1685 	mutex_unlock(&dentry->d_inode->i_mutex);
1686 }
1687 
1688 static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp)
1689 {
1690 	if (mnt->mnt.mnt_sb->s_flags & MS_NOUSER)
1691 		return -EINVAL;
1692 
1693 	if (S_ISDIR(mp->m_dentry->d_inode->i_mode) !=
1694 	      S_ISDIR(mnt->mnt.mnt_root->d_inode->i_mode))
1695 		return -ENOTDIR;
1696 
1697 	return attach_recursive_mnt(mnt, p, mp, NULL);
1698 }
1699 
1700 /*
1701  * Sanity check the flags to change_mnt_propagation.
1702  */
1703 
1704 static int flags_to_propagation_type(int flags)
1705 {
1706 	int type = flags & ~(MS_REC | MS_SILENT);
1707 
1708 	/* Fail if any non-propagation flags are set */
1709 	if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
1710 		return 0;
1711 	/* Only one propagation flag should be set */
1712 	if (!is_power_of_2(type))
1713 		return 0;
1714 	return type;
1715 }
1716 
1717 /*
1718  * recursively change the type of the mountpoint.
1719  */
1720 static int do_change_type(struct path *path, int flag)
1721 {
1722 	struct mount *m;
1723 	struct mount *mnt = real_mount(path->mnt);
1724 	int recurse = flag & MS_REC;
1725 	int type;
1726 	int err = 0;
1727 
1728 	if (path->dentry != path->mnt->mnt_root)
1729 		return -EINVAL;
1730 
1731 	type = flags_to_propagation_type(flag);
1732 	if (!type)
1733 		return -EINVAL;
1734 
1735 	namespace_lock();
1736 	if (type == MS_SHARED) {
1737 		err = invent_group_ids(mnt, recurse);
1738 		if (err)
1739 			goto out_unlock;
1740 	}
1741 
1742 	lock_mount_hash();
1743 	for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
1744 		change_mnt_propagation(m, type);
1745 	unlock_mount_hash();
1746 
1747  out_unlock:
1748 	namespace_unlock();
1749 	return err;
1750 }
1751 
1752 static bool has_locked_children(struct mount *mnt, struct dentry *dentry)
1753 {
1754 	struct mount *child;
1755 	list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
1756 		if (!is_subdir(child->mnt_mountpoint, dentry))
1757 			continue;
1758 
1759 		if (child->mnt.mnt_flags & MNT_LOCKED)
1760 			return true;
1761 	}
1762 	return false;
1763 }
1764 
1765 /*
1766  * do loopback mount.
1767  */
1768 static int do_loopback(struct path *path, const char *old_name,
1769 				int recurse)
1770 {
1771 	struct path old_path;
1772 	struct mount *mnt = NULL, *old, *parent;
1773 	struct mountpoint *mp;
1774 	int err;
1775 	if (!old_name || !*old_name)
1776 		return -EINVAL;
1777 	err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
1778 	if (err)
1779 		return err;
1780 
1781 	err = -EINVAL;
1782 	if (mnt_ns_loop(old_path.dentry))
1783 		goto out;
1784 
1785 	mp = lock_mount(path);
1786 	err = PTR_ERR(mp);
1787 	if (IS_ERR(mp))
1788 		goto out;
1789 
1790 	old = real_mount(old_path.mnt);
1791 	parent = real_mount(path->mnt);
1792 
1793 	err = -EINVAL;
1794 	if (IS_MNT_UNBINDABLE(old))
1795 		goto out2;
1796 
1797 	if (!check_mnt(parent) || !check_mnt(old))
1798 		goto out2;
1799 
1800 	if (!recurse && has_locked_children(old, old_path.dentry))
1801 		goto out2;
1802 
1803 	if (recurse)
1804 		mnt = copy_tree(old, old_path.dentry, CL_COPY_MNT_NS_FILE);
1805 	else
1806 		mnt = clone_mnt(old, old_path.dentry, 0);
1807 
1808 	if (IS_ERR(mnt)) {
1809 		err = PTR_ERR(mnt);
1810 		goto out2;
1811 	}
1812 
1813 	mnt->mnt.mnt_flags &= ~MNT_LOCKED;
1814 
1815 	err = graft_tree(mnt, parent, mp);
1816 	if (err) {
1817 		lock_mount_hash();
1818 		umount_tree(mnt, 0);
1819 		unlock_mount_hash();
1820 	}
1821 out2:
1822 	unlock_mount(mp);
1823 out:
1824 	path_put(&old_path);
1825 	return err;
1826 }
1827 
1828 static int change_mount_flags(struct vfsmount *mnt, int ms_flags)
1829 {
1830 	int error = 0;
1831 	int readonly_request = 0;
1832 
1833 	if (ms_flags & MS_RDONLY)
1834 		readonly_request = 1;
1835 	if (readonly_request == __mnt_is_readonly(mnt))
1836 		return 0;
1837 
1838 	if (mnt->mnt_flags & MNT_LOCK_READONLY)
1839 		return -EPERM;
1840 
1841 	if (readonly_request)
1842 		error = mnt_make_readonly(real_mount(mnt));
1843 	else
1844 		__mnt_unmake_readonly(real_mount(mnt));
1845 	return error;
1846 }
1847 
1848 /*
1849  * change filesystem flags. dir should be a physical root of filesystem.
1850  * If you've mounted a non-root directory somewhere and want to do remount
1851  * on it - tough luck.
1852  */
1853 static int do_remount(struct path *path, int flags, int mnt_flags,
1854 		      void *data)
1855 {
1856 	int err;
1857 	struct super_block *sb = path->mnt->mnt_sb;
1858 	struct mount *mnt = real_mount(path->mnt);
1859 
1860 	if (!check_mnt(mnt))
1861 		return -EINVAL;
1862 
1863 	if (path->dentry != path->mnt->mnt_root)
1864 		return -EINVAL;
1865 
1866 	err = security_sb_remount(sb, data);
1867 	if (err)
1868 		return err;
1869 
1870 	down_write(&sb->s_umount);
1871 	if (flags & MS_BIND)
1872 		err = change_mount_flags(path->mnt, flags);
1873 	else if (!capable(CAP_SYS_ADMIN))
1874 		err = -EPERM;
1875 	else
1876 		err = do_remount_sb(sb, flags, data, 0);
1877 	if (!err) {
1878 		lock_mount_hash();
1879 		mnt_flags |= mnt->mnt.mnt_flags & MNT_PROPAGATION_MASK;
1880 		mnt->mnt.mnt_flags = mnt_flags;
1881 		touch_mnt_namespace(mnt->mnt_ns);
1882 		unlock_mount_hash();
1883 	}
1884 	up_write(&sb->s_umount);
1885 	return err;
1886 }
1887 
1888 static inline int tree_contains_unbindable(struct mount *mnt)
1889 {
1890 	struct mount *p;
1891 	for (p = mnt; p; p = next_mnt(p, mnt)) {
1892 		if (IS_MNT_UNBINDABLE(p))
1893 			return 1;
1894 	}
1895 	return 0;
1896 }
1897 
1898 static int do_move_mount(struct path *path, const char *old_name)
1899 {
1900 	struct path old_path, parent_path;
1901 	struct mount *p;
1902 	struct mount *old;
1903 	struct mountpoint *mp;
1904 	int err;
1905 	if (!old_name || !*old_name)
1906 		return -EINVAL;
1907 	err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
1908 	if (err)
1909 		return err;
1910 
1911 	mp = lock_mount(path);
1912 	err = PTR_ERR(mp);
1913 	if (IS_ERR(mp))
1914 		goto out;
1915 
1916 	old = real_mount(old_path.mnt);
1917 	p = real_mount(path->mnt);
1918 
1919 	err = -EINVAL;
1920 	if (!check_mnt(p) || !check_mnt(old))
1921 		goto out1;
1922 
1923 	if (old->mnt.mnt_flags & MNT_LOCKED)
1924 		goto out1;
1925 
1926 	err = -EINVAL;
1927 	if (old_path.dentry != old_path.mnt->mnt_root)
1928 		goto out1;
1929 
1930 	if (!mnt_has_parent(old))
1931 		goto out1;
1932 
1933 	if (S_ISDIR(path->dentry->d_inode->i_mode) !=
1934 	      S_ISDIR(old_path.dentry->d_inode->i_mode))
1935 		goto out1;
1936 	/*
1937 	 * Don't move a mount residing in a shared parent.
1938 	 */
1939 	if (IS_MNT_SHARED(old->mnt_parent))
1940 		goto out1;
1941 	/*
1942 	 * Don't move a mount tree containing unbindable mounts to a destination
1943 	 * mount which is shared.
1944 	 */
1945 	if (IS_MNT_SHARED(p) && tree_contains_unbindable(old))
1946 		goto out1;
1947 	err = -ELOOP;
1948 	for (; mnt_has_parent(p); p = p->mnt_parent)
1949 		if (p == old)
1950 			goto out1;
1951 
1952 	err = attach_recursive_mnt(old, real_mount(path->mnt), mp, &parent_path);
1953 	if (err)
1954 		goto out1;
1955 
1956 	/* if the mount is moved, it should no longer be expire
1957 	 * automatically */
1958 	list_del_init(&old->mnt_expire);
1959 out1:
1960 	unlock_mount(mp);
1961 out:
1962 	if (!err)
1963 		path_put(&parent_path);
1964 	path_put(&old_path);
1965 	return err;
1966 }
1967 
1968 static struct vfsmount *fs_set_subtype(struct vfsmount *mnt, const char *fstype)
1969 {
1970 	int err;
1971 	const char *subtype = strchr(fstype, '.');
1972 	if (subtype) {
1973 		subtype++;
1974 		err = -EINVAL;
1975 		if (!subtype[0])
1976 			goto err;
1977 	} else
1978 		subtype = "";
1979 
1980 	mnt->mnt_sb->s_subtype = kstrdup(subtype, GFP_KERNEL);
1981 	err = -ENOMEM;
1982 	if (!mnt->mnt_sb->s_subtype)
1983 		goto err;
1984 	return mnt;
1985 
1986  err:
1987 	mntput(mnt);
1988 	return ERR_PTR(err);
1989 }
1990 
1991 /*
1992  * add a mount into a namespace's mount tree
1993  */
1994 static int do_add_mount(struct mount *newmnt, struct path *path, int mnt_flags)
1995 {
1996 	struct mountpoint *mp;
1997 	struct mount *parent;
1998 	int err;
1999 
2000 	mnt_flags &= ~(MNT_SHARED | MNT_WRITE_HOLD | MNT_INTERNAL | MNT_DOOMED | MNT_SYNC_UMOUNT);
2001 
2002 	mp = lock_mount(path);
2003 	if (IS_ERR(mp))
2004 		return PTR_ERR(mp);
2005 
2006 	parent = real_mount(path->mnt);
2007 	err = -EINVAL;
2008 	if (unlikely(!check_mnt(parent))) {
2009 		/* that's acceptable only for automounts done in private ns */
2010 		if (!(mnt_flags & MNT_SHRINKABLE))
2011 			goto unlock;
2012 		/* ... and for those we'd better have mountpoint still alive */
2013 		if (!parent->mnt_ns)
2014 			goto unlock;
2015 	}
2016 
2017 	/* Refuse the same filesystem on the same mount point */
2018 	err = -EBUSY;
2019 	if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb &&
2020 	    path->mnt->mnt_root == path->dentry)
2021 		goto unlock;
2022 
2023 	err = -EINVAL;
2024 	if (S_ISLNK(newmnt->mnt.mnt_root->d_inode->i_mode))
2025 		goto unlock;
2026 
2027 	newmnt->mnt.mnt_flags = mnt_flags;
2028 	err = graft_tree(newmnt, parent, mp);
2029 
2030 unlock:
2031 	unlock_mount(mp);
2032 	return err;
2033 }
2034 
2035 /*
2036  * create a new mount for userspace and request it to be added into the
2037  * namespace's tree
2038  */
2039 static int do_new_mount(struct path *path, const char *fstype, int flags,
2040 			int mnt_flags, const char *name, void *data)
2041 {
2042 	struct file_system_type *type;
2043 	struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns;
2044 	struct vfsmount *mnt;
2045 	int err;
2046 
2047 	if (!fstype)
2048 		return -EINVAL;
2049 
2050 	type = get_fs_type(fstype);
2051 	if (!type)
2052 		return -ENODEV;
2053 
2054 	if (user_ns != &init_user_ns) {
2055 		if (!(type->fs_flags & FS_USERNS_MOUNT)) {
2056 			put_filesystem(type);
2057 			return -EPERM;
2058 		}
2059 		/* Only in special cases allow devices from mounts
2060 		 * created outside the initial user namespace.
2061 		 */
2062 		if (!(type->fs_flags & FS_USERNS_DEV_MOUNT)) {
2063 			flags |= MS_NODEV;
2064 			mnt_flags |= MNT_NODEV;
2065 		}
2066 	}
2067 
2068 	mnt = vfs_kern_mount(type, flags, name, data);
2069 	if (!IS_ERR(mnt) && (type->fs_flags & FS_HAS_SUBTYPE) &&
2070 	    !mnt->mnt_sb->s_subtype)
2071 		mnt = fs_set_subtype(mnt, fstype);
2072 
2073 	put_filesystem(type);
2074 	if (IS_ERR(mnt))
2075 		return PTR_ERR(mnt);
2076 
2077 	err = do_add_mount(real_mount(mnt), path, mnt_flags);
2078 	if (err)
2079 		mntput(mnt);
2080 	return err;
2081 }
2082 
2083 int finish_automount(struct vfsmount *m, struct path *path)
2084 {
2085 	struct mount *mnt = real_mount(m);
2086 	int err;
2087 	/* The new mount record should have at least 2 refs to prevent it being
2088 	 * expired before we get a chance to add it
2089 	 */
2090 	BUG_ON(mnt_get_count(mnt) < 2);
2091 
2092 	if (m->mnt_sb == path->mnt->mnt_sb &&
2093 	    m->mnt_root == path->dentry) {
2094 		err = -ELOOP;
2095 		goto fail;
2096 	}
2097 
2098 	err = do_add_mount(mnt, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
2099 	if (!err)
2100 		return 0;
2101 fail:
2102 	/* remove m from any expiration list it may be on */
2103 	if (!list_empty(&mnt->mnt_expire)) {
2104 		namespace_lock();
2105 		list_del_init(&mnt->mnt_expire);
2106 		namespace_unlock();
2107 	}
2108 	mntput(m);
2109 	mntput(m);
2110 	return err;
2111 }
2112 
2113 /**
2114  * mnt_set_expiry - Put a mount on an expiration list
2115  * @mnt: The mount to list.
2116  * @expiry_list: The list to add the mount to.
2117  */
2118 void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
2119 {
2120 	namespace_lock();
2121 
2122 	list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
2123 
2124 	namespace_unlock();
2125 }
2126 EXPORT_SYMBOL(mnt_set_expiry);
2127 
2128 /*
2129  * process a list of expirable mountpoints with the intent of discarding any
2130  * mountpoints that aren't in use and haven't been touched since last we came
2131  * here
2132  */
2133 void mark_mounts_for_expiry(struct list_head *mounts)
2134 {
2135 	struct mount *mnt, *next;
2136 	LIST_HEAD(graveyard);
2137 
2138 	if (list_empty(mounts))
2139 		return;
2140 
2141 	namespace_lock();
2142 	lock_mount_hash();
2143 
2144 	/* extract from the expiration list every vfsmount that matches the
2145 	 * following criteria:
2146 	 * - only referenced by its parent vfsmount
2147 	 * - still marked for expiry (marked on the last call here; marks are
2148 	 *   cleared by mntput())
2149 	 */
2150 	list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
2151 		if (!xchg(&mnt->mnt_expiry_mark, 1) ||
2152 			propagate_mount_busy(mnt, 1))
2153 			continue;
2154 		list_move(&mnt->mnt_expire, &graveyard);
2155 	}
2156 	while (!list_empty(&graveyard)) {
2157 		mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
2158 		touch_mnt_namespace(mnt->mnt_ns);
2159 		umount_tree(mnt, 1);
2160 	}
2161 	unlock_mount_hash();
2162 	namespace_unlock();
2163 }
2164 
2165 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
2166 
2167 /*
2168  * Ripoff of 'select_parent()'
2169  *
2170  * search the list of submounts for a given mountpoint, and move any
2171  * shrinkable submounts to the 'graveyard' list.
2172  */
2173 static int select_submounts(struct mount *parent, struct list_head *graveyard)
2174 {
2175 	struct mount *this_parent = parent;
2176 	struct list_head *next;
2177 	int found = 0;
2178 
2179 repeat:
2180 	next = this_parent->mnt_mounts.next;
2181 resume:
2182 	while (next != &this_parent->mnt_mounts) {
2183 		struct list_head *tmp = next;
2184 		struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
2185 
2186 		next = tmp->next;
2187 		if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
2188 			continue;
2189 		/*
2190 		 * Descend a level if the d_mounts list is non-empty.
2191 		 */
2192 		if (!list_empty(&mnt->mnt_mounts)) {
2193 			this_parent = mnt;
2194 			goto repeat;
2195 		}
2196 
2197 		if (!propagate_mount_busy(mnt, 1)) {
2198 			list_move_tail(&mnt->mnt_expire, graveyard);
2199 			found++;
2200 		}
2201 	}
2202 	/*
2203 	 * All done at this level ... ascend and resume the search
2204 	 */
2205 	if (this_parent != parent) {
2206 		next = this_parent->mnt_child.next;
2207 		this_parent = this_parent->mnt_parent;
2208 		goto resume;
2209 	}
2210 	return found;
2211 }
2212 
2213 /*
2214  * process a list of expirable mountpoints with the intent of discarding any
2215  * submounts of a specific parent mountpoint
2216  *
2217  * mount_lock must be held for write
2218  */
2219 static void shrink_submounts(struct mount *mnt)
2220 {
2221 	LIST_HEAD(graveyard);
2222 	struct mount *m;
2223 
2224 	/* extract submounts of 'mountpoint' from the expiration list */
2225 	while (select_submounts(mnt, &graveyard)) {
2226 		while (!list_empty(&graveyard)) {
2227 			m = list_first_entry(&graveyard, struct mount,
2228 						mnt_expire);
2229 			touch_mnt_namespace(m->mnt_ns);
2230 			umount_tree(m, 1);
2231 		}
2232 	}
2233 }
2234 
2235 /*
2236  * Some copy_from_user() implementations do not return the exact number of
2237  * bytes remaining to copy on a fault.  But copy_mount_options() requires that.
2238  * Note that this function differs from copy_from_user() in that it will oops
2239  * on bad values of `to', rather than returning a short copy.
2240  */
2241 static long exact_copy_from_user(void *to, const void __user * from,
2242 				 unsigned long n)
2243 {
2244 	char *t = to;
2245 	const char __user *f = from;
2246 	char c;
2247 
2248 	if (!access_ok(VERIFY_READ, from, n))
2249 		return n;
2250 
2251 	while (n) {
2252 		if (__get_user(c, f)) {
2253 			memset(t, 0, n);
2254 			break;
2255 		}
2256 		*t++ = c;
2257 		f++;
2258 		n--;
2259 	}
2260 	return n;
2261 }
2262 
2263 int copy_mount_options(const void __user * data, unsigned long *where)
2264 {
2265 	int i;
2266 	unsigned long page;
2267 	unsigned long size;
2268 
2269 	*where = 0;
2270 	if (!data)
2271 		return 0;
2272 
2273 	if (!(page = __get_free_page(GFP_KERNEL)))
2274 		return -ENOMEM;
2275 
2276 	/* We only care that *some* data at the address the user
2277 	 * gave us is valid.  Just in case, we'll zero
2278 	 * the remainder of the page.
2279 	 */
2280 	/* copy_from_user cannot cross TASK_SIZE ! */
2281 	size = TASK_SIZE - (unsigned long)data;
2282 	if (size > PAGE_SIZE)
2283 		size = PAGE_SIZE;
2284 
2285 	i = size - exact_copy_from_user((void *)page, data, size);
2286 	if (!i) {
2287 		free_page(page);
2288 		return -EFAULT;
2289 	}
2290 	if (i != PAGE_SIZE)
2291 		memset((char *)page + i, 0, PAGE_SIZE - i);
2292 	*where = page;
2293 	return 0;
2294 }
2295 
2296 int copy_mount_string(const void __user *data, char **where)
2297 {
2298 	char *tmp;
2299 
2300 	if (!data) {
2301 		*where = NULL;
2302 		return 0;
2303 	}
2304 
2305 	tmp = strndup_user(data, PAGE_SIZE);
2306 	if (IS_ERR(tmp))
2307 		return PTR_ERR(tmp);
2308 
2309 	*where = tmp;
2310 	return 0;
2311 }
2312 
2313 /*
2314  * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
2315  * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
2316  *
2317  * data is a (void *) that can point to any structure up to
2318  * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
2319  * information (or be NULL).
2320  *
2321  * Pre-0.97 versions of mount() didn't have a flags word.
2322  * When the flags word was introduced its top half was required
2323  * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
2324  * Therefore, if this magic number is present, it carries no information
2325  * and must be discarded.
2326  */
2327 long do_mount(const char *dev_name, const char *dir_name,
2328 		const char *type_page, unsigned long flags, void *data_page)
2329 {
2330 	struct path path;
2331 	int retval = 0;
2332 	int mnt_flags = 0;
2333 
2334 	/* Discard magic */
2335 	if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
2336 		flags &= ~MS_MGC_MSK;
2337 
2338 	/* Basic sanity checks */
2339 
2340 	if (!dir_name || !*dir_name || !memchr(dir_name, 0, PAGE_SIZE))
2341 		return -EINVAL;
2342 
2343 	if (data_page)
2344 		((char *)data_page)[PAGE_SIZE - 1] = 0;
2345 
2346 	/* ... and get the mountpoint */
2347 	retval = kern_path(dir_name, LOOKUP_FOLLOW, &path);
2348 	if (retval)
2349 		return retval;
2350 
2351 	retval = security_sb_mount(dev_name, &path,
2352 				   type_page, flags, data_page);
2353 	if (!retval && !may_mount())
2354 		retval = -EPERM;
2355 	if (retval)
2356 		goto dput_out;
2357 
2358 	/* Default to relatime unless overriden */
2359 	if (!(flags & MS_NOATIME))
2360 		mnt_flags |= MNT_RELATIME;
2361 
2362 	/* Separate the per-mountpoint flags */
2363 	if (flags & MS_NOSUID)
2364 		mnt_flags |= MNT_NOSUID;
2365 	if (flags & MS_NODEV)
2366 		mnt_flags |= MNT_NODEV;
2367 	if (flags & MS_NOEXEC)
2368 		mnt_flags |= MNT_NOEXEC;
2369 	if (flags & MS_NOATIME)
2370 		mnt_flags |= MNT_NOATIME;
2371 	if (flags & MS_NODIRATIME)
2372 		mnt_flags |= MNT_NODIRATIME;
2373 	if (flags & MS_STRICTATIME)
2374 		mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
2375 	if (flags & MS_RDONLY)
2376 		mnt_flags |= MNT_READONLY;
2377 
2378 	flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE | MS_BORN |
2379 		   MS_NOATIME | MS_NODIRATIME | MS_RELATIME| MS_KERNMOUNT |
2380 		   MS_STRICTATIME);
2381 
2382 	if (flags & MS_REMOUNT)
2383 		retval = do_remount(&path, flags & ~MS_REMOUNT, mnt_flags,
2384 				    data_page);
2385 	else if (flags & MS_BIND)
2386 		retval = do_loopback(&path, dev_name, flags & MS_REC);
2387 	else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2388 		retval = do_change_type(&path, flags);
2389 	else if (flags & MS_MOVE)
2390 		retval = do_move_mount(&path, dev_name);
2391 	else
2392 		retval = do_new_mount(&path, type_page, flags, mnt_flags,
2393 				      dev_name, data_page);
2394 dput_out:
2395 	path_put(&path);
2396 	return retval;
2397 }
2398 
2399 static void free_mnt_ns(struct mnt_namespace *ns)
2400 {
2401 	proc_free_inum(ns->proc_inum);
2402 	put_user_ns(ns->user_ns);
2403 	kfree(ns);
2404 }
2405 
2406 /*
2407  * Assign a sequence number so we can detect when we attempt to bind
2408  * mount a reference to an older mount namespace into the current
2409  * mount namespace, preventing reference counting loops.  A 64bit
2410  * number incrementing at 10Ghz will take 12,427 years to wrap which
2411  * is effectively never, so we can ignore the possibility.
2412  */
2413 static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1);
2414 
2415 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns)
2416 {
2417 	struct mnt_namespace *new_ns;
2418 	int ret;
2419 
2420 	new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
2421 	if (!new_ns)
2422 		return ERR_PTR(-ENOMEM);
2423 	ret = proc_alloc_inum(&new_ns->proc_inum);
2424 	if (ret) {
2425 		kfree(new_ns);
2426 		return ERR_PTR(ret);
2427 	}
2428 	new_ns->seq = atomic64_add_return(1, &mnt_ns_seq);
2429 	atomic_set(&new_ns->count, 1);
2430 	new_ns->root = NULL;
2431 	INIT_LIST_HEAD(&new_ns->list);
2432 	init_waitqueue_head(&new_ns->poll);
2433 	new_ns->event = 0;
2434 	new_ns->user_ns = get_user_ns(user_ns);
2435 	return new_ns;
2436 }
2437 
2438 struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
2439 		struct user_namespace *user_ns, struct fs_struct *new_fs)
2440 {
2441 	struct mnt_namespace *new_ns;
2442 	struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
2443 	struct mount *p, *q;
2444 	struct mount *old;
2445 	struct mount *new;
2446 	int copy_flags;
2447 
2448 	BUG_ON(!ns);
2449 
2450 	if (likely(!(flags & CLONE_NEWNS))) {
2451 		get_mnt_ns(ns);
2452 		return ns;
2453 	}
2454 
2455 	old = ns->root;
2456 
2457 	new_ns = alloc_mnt_ns(user_ns);
2458 	if (IS_ERR(new_ns))
2459 		return new_ns;
2460 
2461 	namespace_lock();
2462 	/* First pass: copy the tree topology */
2463 	copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE;
2464 	if (user_ns != ns->user_ns)
2465 		copy_flags |= CL_SHARED_TO_SLAVE | CL_UNPRIVILEGED;
2466 	new = copy_tree(old, old->mnt.mnt_root, copy_flags);
2467 	if (IS_ERR(new)) {
2468 		namespace_unlock();
2469 		free_mnt_ns(new_ns);
2470 		return ERR_CAST(new);
2471 	}
2472 	new_ns->root = new;
2473 	list_add_tail(&new_ns->list, &new->mnt_list);
2474 
2475 	/*
2476 	 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
2477 	 * as belonging to new namespace.  We have already acquired a private
2478 	 * fs_struct, so tsk->fs->lock is not needed.
2479 	 */
2480 	p = old;
2481 	q = new;
2482 	while (p) {
2483 		q->mnt_ns = new_ns;
2484 		if (new_fs) {
2485 			if (&p->mnt == new_fs->root.mnt) {
2486 				new_fs->root.mnt = mntget(&q->mnt);
2487 				rootmnt = &p->mnt;
2488 			}
2489 			if (&p->mnt == new_fs->pwd.mnt) {
2490 				new_fs->pwd.mnt = mntget(&q->mnt);
2491 				pwdmnt = &p->mnt;
2492 			}
2493 		}
2494 		p = next_mnt(p, old);
2495 		q = next_mnt(q, new);
2496 		if (!q)
2497 			break;
2498 		while (p->mnt.mnt_root != q->mnt.mnt_root)
2499 			p = next_mnt(p, old);
2500 	}
2501 	namespace_unlock();
2502 
2503 	if (rootmnt)
2504 		mntput(rootmnt);
2505 	if (pwdmnt)
2506 		mntput(pwdmnt);
2507 
2508 	return new_ns;
2509 }
2510 
2511 /**
2512  * create_mnt_ns - creates a private namespace and adds a root filesystem
2513  * @mnt: pointer to the new root filesystem mountpoint
2514  */
2515 static struct mnt_namespace *create_mnt_ns(struct vfsmount *m)
2516 {
2517 	struct mnt_namespace *new_ns = alloc_mnt_ns(&init_user_ns);
2518 	if (!IS_ERR(new_ns)) {
2519 		struct mount *mnt = real_mount(m);
2520 		mnt->mnt_ns = new_ns;
2521 		new_ns->root = mnt;
2522 		list_add(&mnt->mnt_list, &new_ns->list);
2523 	} else {
2524 		mntput(m);
2525 	}
2526 	return new_ns;
2527 }
2528 
2529 struct dentry *mount_subtree(struct vfsmount *mnt, const char *name)
2530 {
2531 	struct mnt_namespace *ns;
2532 	struct super_block *s;
2533 	struct path path;
2534 	int err;
2535 
2536 	ns = create_mnt_ns(mnt);
2537 	if (IS_ERR(ns))
2538 		return ERR_CAST(ns);
2539 
2540 	err = vfs_path_lookup(mnt->mnt_root, mnt,
2541 			name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
2542 
2543 	put_mnt_ns(ns);
2544 
2545 	if (err)
2546 		return ERR_PTR(err);
2547 
2548 	/* trade a vfsmount reference for active sb one */
2549 	s = path.mnt->mnt_sb;
2550 	atomic_inc(&s->s_active);
2551 	mntput(path.mnt);
2552 	/* lock the sucker */
2553 	down_write(&s->s_umount);
2554 	/* ... and return the root of (sub)tree on it */
2555 	return path.dentry;
2556 }
2557 EXPORT_SYMBOL(mount_subtree);
2558 
2559 SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
2560 		char __user *, type, unsigned long, flags, void __user *, data)
2561 {
2562 	int ret;
2563 	char *kernel_type;
2564 	struct filename *kernel_dir;
2565 	char *kernel_dev;
2566 	unsigned long data_page;
2567 
2568 	ret = copy_mount_string(type, &kernel_type);
2569 	if (ret < 0)
2570 		goto out_type;
2571 
2572 	kernel_dir = getname(dir_name);
2573 	if (IS_ERR(kernel_dir)) {
2574 		ret = PTR_ERR(kernel_dir);
2575 		goto out_dir;
2576 	}
2577 
2578 	ret = copy_mount_string(dev_name, &kernel_dev);
2579 	if (ret < 0)
2580 		goto out_dev;
2581 
2582 	ret = copy_mount_options(data, &data_page);
2583 	if (ret < 0)
2584 		goto out_data;
2585 
2586 	ret = do_mount(kernel_dev, kernel_dir->name, kernel_type, flags,
2587 		(void *) data_page);
2588 
2589 	free_page(data_page);
2590 out_data:
2591 	kfree(kernel_dev);
2592 out_dev:
2593 	putname(kernel_dir);
2594 out_dir:
2595 	kfree(kernel_type);
2596 out_type:
2597 	return ret;
2598 }
2599 
2600 /*
2601  * Return true if path is reachable from root
2602  *
2603  * namespace_sem or mount_lock is held
2604  */
2605 bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
2606 			 const struct path *root)
2607 {
2608 	while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
2609 		dentry = mnt->mnt_mountpoint;
2610 		mnt = mnt->mnt_parent;
2611 	}
2612 	return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
2613 }
2614 
2615 int path_is_under(struct path *path1, struct path *path2)
2616 {
2617 	int res;
2618 	read_seqlock_excl(&mount_lock);
2619 	res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
2620 	read_sequnlock_excl(&mount_lock);
2621 	return res;
2622 }
2623 EXPORT_SYMBOL(path_is_under);
2624 
2625 /*
2626  * pivot_root Semantics:
2627  * Moves the root file system of the current process to the directory put_old,
2628  * makes new_root as the new root file system of the current process, and sets
2629  * root/cwd of all processes which had them on the current root to new_root.
2630  *
2631  * Restrictions:
2632  * The new_root and put_old must be directories, and  must not be on the
2633  * same file  system as the current process root. The put_old  must  be
2634  * underneath new_root,  i.e. adding a non-zero number of /.. to the string
2635  * pointed to by put_old must yield the same directory as new_root. No other
2636  * file system may be mounted on put_old. After all, new_root is a mountpoint.
2637  *
2638  * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
2639  * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
2640  * in this situation.
2641  *
2642  * Notes:
2643  *  - we don't move root/cwd if they are not at the root (reason: if something
2644  *    cared enough to change them, it's probably wrong to force them elsewhere)
2645  *  - it's okay to pick a root that isn't the root of a file system, e.g.
2646  *    /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
2647  *    though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
2648  *    first.
2649  */
2650 SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
2651 		const char __user *, put_old)
2652 {
2653 	struct path new, old, parent_path, root_parent, root;
2654 	struct mount *new_mnt, *root_mnt, *old_mnt;
2655 	struct mountpoint *old_mp, *root_mp;
2656 	int error;
2657 
2658 	if (!may_mount())
2659 		return -EPERM;
2660 
2661 	error = user_path_dir(new_root, &new);
2662 	if (error)
2663 		goto out0;
2664 
2665 	error = user_path_dir(put_old, &old);
2666 	if (error)
2667 		goto out1;
2668 
2669 	error = security_sb_pivotroot(&old, &new);
2670 	if (error)
2671 		goto out2;
2672 
2673 	get_fs_root(current->fs, &root);
2674 	old_mp = lock_mount(&old);
2675 	error = PTR_ERR(old_mp);
2676 	if (IS_ERR(old_mp))
2677 		goto out3;
2678 
2679 	error = -EINVAL;
2680 	new_mnt = real_mount(new.mnt);
2681 	root_mnt = real_mount(root.mnt);
2682 	old_mnt = real_mount(old.mnt);
2683 	if (IS_MNT_SHARED(old_mnt) ||
2684 		IS_MNT_SHARED(new_mnt->mnt_parent) ||
2685 		IS_MNT_SHARED(root_mnt->mnt_parent))
2686 		goto out4;
2687 	if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
2688 		goto out4;
2689 	if (new_mnt->mnt.mnt_flags & MNT_LOCKED)
2690 		goto out4;
2691 	error = -ENOENT;
2692 	if (d_unlinked(new.dentry))
2693 		goto out4;
2694 	error = -EBUSY;
2695 	if (new_mnt == root_mnt || old_mnt == root_mnt)
2696 		goto out4; /* loop, on the same file system  */
2697 	error = -EINVAL;
2698 	if (root.mnt->mnt_root != root.dentry)
2699 		goto out4; /* not a mountpoint */
2700 	if (!mnt_has_parent(root_mnt))
2701 		goto out4; /* not attached */
2702 	root_mp = root_mnt->mnt_mp;
2703 	if (new.mnt->mnt_root != new.dentry)
2704 		goto out4; /* not a mountpoint */
2705 	if (!mnt_has_parent(new_mnt))
2706 		goto out4; /* not attached */
2707 	/* make sure we can reach put_old from new_root */
2708 	if (!is_path_reachable(old_mnt, old.dentry, &new))
2709 		goto out4;
2710 	root_mp->m_count++; /* pin it so it won't go away */
2711 	lock_mount_hash();
2712 	detach_mnt(new_mnt, &parent_path);
2713 	detach_mnt(root_mnt, &root_parent);
2714 	if (root_mnt->mnt.mnt_flags & MNT_LOCKED) {
2715 		new_mnt->mnt.mnt_flags |= MNT_LOCKED;
2716 		root_mnt->mnt.mnt_flags &= ~MNT_LOCKED;
2717 	}
2718 	/* mount old root on put_old */
2719 	attach_mnt(root_mnt, old_mnt, old_mp);
2720 	/* mount new_root on / */
2721 	attach_mnt(new_mnt, real_mount(root_parent.mnt), root_mp);
2722 	touch_mnt_namespace(current->nsproxy->mnt_ns);
2723 	unlock_mount_hash();
2724 	chroot_fs_refs(&root, &new);
2725 	put_mountpoint(root_mp);
2726 	error = 0;
2727 out4:
2728 	unlock_mount(old_mp);
2729 	if (!error) {
2730 		path_put(&root_parent);
2731 		path_put(&parent_path);
2732 	}
2733 out3:
2734 	path_put(&root);
2735 out2:
2736 	path_put(&old);
2737 out1:
2738 	path_put(&new);
2739 out0:
2740 	return error;
2741 }
2742 
2743 static void __init init_mount_tree(void)
2744 {
2745 	struct vfsmount *mnt;
2746 	struct mnt_namespace *ns;
2747 	struct path root;
2748 	struct file_system_type *type;
2749 
2750 	type = get_fs_type("rootfs");
2751 	if (!type)
2752 		panic("Can't find rootfs type");
2753 	mnt = vfs_kern_mount(type, 0, "rootfs", NULL);
2754 	put_filesystem(type);
2755 	if (IS_ERR(mnt))
2756 		panic("Can't create rootfs");
2757 
2758 	ns = create_mnt_ns(mnt);
2759 	if (IS_ERR(ns))
2760 		panic("Can't allocate initial namespace");
2761 
2762 	init_task.nsproxy->mnt_ns = ns;
2763 	get_mnt_ns(ns);
2764 
2765 	root.mnt = mnt;
2766 	root.dentry = mnt->mnt_root;
2767 
2768 	set_fs_pwd(current->fs, &root);
2769 	set_fs_root(current->fs, &root);
2770 }
2771 
2772 void __init mnt_init(void)
2773 {
2774 	unsigned u;
2775 	int err;
2776 
2777 	mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
2778 			0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
2779 
2780 	mount_hashtable = (struct list_head *)__get_free_page(GFP_ATOMIC);
2781 	mountpoint_hashtable = (struct list_head *)__get_free_page(GFP_ATOMIC);
2782 
2783 	if (!mount_hashtable || !mountpoint_hashtable)
2784 		panic("Failed to allocate mount hash table\n");
2785 
2786 	printk(KERN_INFO "Mount-cache hash table entries: %lu\n", HASH_SIZE);
2787 
2788 	for (u = 0; u < HASH_SIZE; u++)
2789 		INIT_LIST_HEAD(&mount_hashtable[u]);
2790 	for (u = 0; u < HASH_SIZE; u++)
2791 		INIT_LIST_HEAD(&mountpoint_hashtable[u]);
2792 
2793 	kernfs_init();
2794 
2795 	err = sysfs_init();
2796 	if (err)
2797 		printk(KERN_WARNING "%s: sysfs_init error: %d\n",
2798 			__func__, err);
2799 	fs_kobj = kobject_create_and_add("fs", NULL);
2800 	if (!fs_kobj)
2801 		printk(KERN_WARNING "%s: kobj create error\n", __func__);
2802 	init_rootfs();
2803 	init_mount_tree();
2804 }
2805 
2806 void put_mnt_ns(struct mnt_namespace *ns)
2807 {
2808 	if (!atomic_dec_and_test(&ns->count))
2809 		return;
2810 	drop_collected_mounts(&ns->root->mnt);
2811 	free_mnt_ns(ns);
2812 }
2813 
2814 struct vfsmount *kern_mount_data(struct file_system_type *type, void *data)
2815 {
2816 	struct vfsmount *mnt;
2817 	mnt = vfs_kern_mount(type, MS_KERNMOUNT, type->name, data);
2818 	if (!IS_ERR(mnt)) {
2819 		/*
2820 		 * it is a longterm mount, don't release mnt until
2821 		 * we unmount before file sys is unregistered
2822 		*/
2823 		real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
2824 	}
2825 	return mnt;
2826 }
2827 EXPORT_SYMBOL_GPL(kern_mount_data);
2828 
2829 void kern_unmount(struct vfsmount *mnt)
2830 {
2831 	/* release long term mount so mount point can be released */
2832 	if (!IS_ERR_OR_NULL(mnt)) {
2833 		real_mount(mnt)->mnt_ns = NULL;
2834 		synchronize_rcu();	/* yecchhh... */
2835 		mntput(mnt);
2836 	}
2837 }
2838 EXPORT_SYMBOL(kern_unmount);
2839 
2840 bool our_mnt(struct vfsmount *mnt)
2841 {
2842 	return check_mnt(real_mount(mnt));
2843 }
2844 
2845 bool current_chrooted(void)
2846 {
2847 	/* Does the current process have a non-standard root */
2848 	struct path ns_root;
2849 	struct path fs_root;
2850 	bool chrooted;
2851 
2852 	/* Find the namespace root */
2853 	ns_root.mnt = &current->nsproxy->mnt_ns->root->mnt;
2854 	ns_root.dentry = ns_root.mnt->mnt_root;
2855 	path_get(&ns_root);
2856 	while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root))
2857 		;
2858 
2859 	get_fs_root(current->fs, &fs_root);
2860 
2861 	chrooted = !path_equal(&fs_root, &ns_root);
2862 
2863 	path_put(&fs_root);
2864 	path_put(&ns_root);
2865 
2866 	return chrooted;
2867 }
2868 
2869 bool fs_fully_visible(struct file_system_type *type)
2870 {
2871 	struct mnt_namespace *ns = current->nsproxy->mnt_ns;
2872 	struct mount *mnt;
2873 	bool visible = false;
2874 
2875 	if (unlikely(!ns))
2876 		return false;
2877 
2878 	down_read(&namespace_sem);
2879 	list_for_each_entry(mnt, &ns->list, mnt_list) {
2880 		struct mount *child;
2881 		if (mnt->mnt.mnt_sb->s_type != type)
2882 			continue;
2883 
2884 		/* This mount is not fully visible if there are any child mounts
2885 		 * that cover anything except for empty directories.
2886 		 */
2887 		list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
2888 			struct inode *inode = child->mnt_mountpoint->d_inode;
2889 			if (!S_ISDIR(inode->i_mode))
2890 				goto next;
2891 			if (inode->i_nlink > 2)
2892 				goto next;
2893 		}
2894 		visible = true;
2895 		goto found;
2896 	next:	;
2897 	}
2898 found:
2899 	up_read(&namespace_sem);
2900 	return visible;
2901 }
2902 
2903 static void *mntns_get(struct task_struct *task)
2904 {
2905 	struct mnt_namespace *ns = NULL;
2906 	struct nsproxy *nsproxy;
2907 
2908 	rcu_read_lock();
2909 	nsproxy = task_nsproxy(task);
2910 	if (nsproxy) {
2911 		ns = nsproxy->mnt_ns;
2912 		get_mnt_ns(ns);
2913 	}
2914 	rcu_read_unlock();
2915 
2916 	return ns;
2917 }
2918 
2919 static void mntns_put(void *ns)
2920 {
2921 	put_mnt_ns(ns);
2922 }
2923 
2924 static int mntns_install(struct nsproxy *nsproxy, void *ns)
2925 {
2926 	struct fs_struct *fs = current->fs;
2927 	struct mnt_namespace *mnt_ns = ns;
2928 	struct path root;
2929 
2930 	if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) ||
2931 	    !ns_capable(current_user_ns(), CAP_SYS_CHROOT) ||
2932 	    !ns_capable(current_user_ns(), CAP_SYS_ADMIN))
2933 		return -EPERM;
2934 
2935 	if (fs->users != 1)
2936 		return -EINVAL;
2937 
2938 	get_mnt_ns(mnt_ns);
2939 	put_mnt_ns(nsproxy->mnt_ns);
2940 	nsproxy->mnt_ns = mnt_ns;
2941 
2942 	/* Find the root */
2943 	root.mnt    = &mnt_ns->root->mnt;
2944 	root.dentry = mnt_ns->root->mnt.mnt_root;
2945 	path_get(&root);
2946 	while(d_mountpoint(root.dentry) && follow_down_one(&root))
2947 		;
2948 
2949 	/* Update the pwd and root */
2950 	set_fs_pwd(fs, &root);
2951 	set_fs_root(fs, &root);
2952 
2953 	path_put(&root);
2954 	return 0;
2955 }
2956 
2957 static unsigned int mntns_inum(void *ns)
2958 {
2959 	struct mnt_namespace *mnt_ns = ns;
2960 	return mnt_ns->proc_inum;
2961 }
2962 
2963 const struct proc_ns_operations mntns_operations = {
2964 	.name		= "mnt",
2965 	.type		= CLONE_NEWNS,
2966 	.get		= mntns_get,
2967 	.put		= mntns_put,
2968 	.install	= mntns_install,
2969 	.inum		= mntns_inum,
2970 };
2971