1 /* 2 * linux/fs/namespace.c 3 * 4 * (C) Copyright Al Viro 2000, 2001 5 * Released under GPL v2. 6 * 7 * Based on code from fs/super.c, copyright Linus Torvalds and others. 8 * Heavily rewritten. 9 */ 10 11 #include <linux/syscalls.h> 12 #include <linux/export.h> 13 #include <linux/capability.h> 14 #include <linux/mnt_namespace.h> 15 #include <linux/user_namespace.h> 16 #include <linux/namei.h> 17 #include <linux/security.h> 18 #include <linux/cred.h> 19 #include <linux/idr.h> 20 #include <linux/init.h> /* init_rootfs */ 21 #include <linux/fs_struct.h> /* get_fs_root et.al. */ 22 #include <linux/fsnotify.h> /* fsnotify_vfsmount_delete */ 23 #include <linux/uaccess.h> 24 #include <linux/proc_ns.h> 25 #include <linux/magic.h> 26 #include <linux/bootmem.h> 27 #include <linux/task_work.h> 28 #include <linux/sched/task.h> 29 30 #include "pnode.h" 31 #include "internal.h" 32 33 /* Maximum number of mounts in a mount namespace */ 34 unsigned int sysctl_mount_max __read_mostly = 100000; 35 36 static unsigned int m_hash_mask __read_mostly; 37 static unsigned int m_hash_shift __read_mostly; 38 static unsigned int mp_hash_mask __read_mostly; 39 static unsigned int mp_hash_shift __read_mostly; 40 41 static __initdata unsigned long mhash_entries; 42 static int __init set_mhash_entries(char *str) 43 { 44 if (!str) 45 return 0; 46 mhash_entries = simple_strtoul(str, &str, 0); 47 return 1; 48 } 49 __setup("mhash_entries=", set_mhash_entries); 50 51 static __initdata unsigned long mphash_entries; 52 static int __init set_mphash_entries(char *str) 53 { 54 if (!str) 55 return 0; 56 mphash_entries = simple_strtoul(str, &str, 0); 57 return 1; 58 } 59 __setup("mphash_entries=", set_mphash_entries); 60 61 static u64 event; 62 static DEFINE_IDA(mnt_id_ida); 63 static DEFINE_IDA(mnt_group_ida); 64 static DEFINE_SPINLOCK(mnt_id_lock); 65 static int mnt_id_start = 0; 66 static int mnt_group_start = 1; 67 68 static struct hlist_head *mount_hashtable __read_mostly; 69 static struct hlist_head *mountpoint_hashtable __read_mostly; 70 static struct kmem_cache *mnt_cache __read_mostly; 71 static DECLARE_RWSEM(namespace_sem); 72 73 /* /sys/fs */ 74 struct kobject *fs_kobj; 75 EXPORT_SYMBOL_GPL(fs_kobj); 76 77 /* 78 * vfsmount lock may be taken for read to prevent changes to the 79 * vfsmount hash, ie. during mountpoint lookups or walking back 80 * up the tree. 81 * 82 * It should be taken for write in all cases where the vfsmount 83 * tree or hash is modified or when a vfsmount structure is modified. 84 */ 85 __cacheline_aligned_in_smp DEFINE_SEQLOCK(mount_lock); 86 87 static inline struct hlist_head *m_hash(struct vfsmount *mnt, struct dentry *dentry) 88 { 89 unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES); 90 tmp += ((unsigned long)dentry / L1_CACHE_BYTES); 91 tmp = tmp + (tmp >> m_hash_shift); 92 return &mount_hashtable[tmp & m_hash_mask]; 93 } 94 95 static inline struct hlist_head *mp_hash(struct dentry *dentry) 96 { 97 unsigned long tmp = ((unsigned long)dentry / L1_CACHE_BYTES); 98 tmp = tmp + (tmp >> mp_hash_shift); 99 return &mountpoint_hashtable[tmp & mp_hash_mask]; 100 } 101 102 static int mnt_alloc_id(struct mount *mnt) 103 { 104 int res; 105 106 retry: 107 ida_pre_get(&mnt_id_ida, GFP_KERNEL); 108 spin_lock(&mnt_id_lock); 109 res = ida_get_new_above(&mnt_id_ida, mnt_id_start, &mnt->mnt_id); 110 if (!res) 111 mnt_id_start = mnt->mnt_id + 1; 112 spin_unlock(&mnt_id_lock); 113 if (res == -EAGAIN) 114 goto retry; 115 116 return res; 117 } 118 119 static void mnt_free_id(struct mount *mnt) 120 { 121 int id = mnt->mnt_id; 122 spin_lock(&mnt_id_lock); 123 ida_remove(&mnt_id_ida, id); 124 if (mnt_id_start > id) 125 mnt_id_start = id; 126 spin_unlock(&mnt_id_lock); 127 } 128 129 /* 130 * Allocate a new peer group ID 131 * 132 * mnt_group_ida is protected by namespace_sem 133 */ 134 static int mnt_alloc_group_id(struct mount *mnt) 135 { 136 int res; 137 138 if (!ida_pre_get(&mnt_group_ida, GFP_KERNEL)) 139 return -ENOMEM; 140 141 res = ida_get_new_above(&mnt_group_ida, 142 mnt_group_start, 143 &mnt->mnt_group_id); 144 if (!res) 145 mnt_group_start = mnt->mnt_group_id + 1; 146 147 return res; 148 } 149 150 /* 151 * Release a peer group ID 152 */ 153 void mnt_release_group_id(struct mount *mnt) 154 { 155 int id = mnt->mnt_group_id; 156 ida_remove(&mnt_group_ida, id); 157 if (mnt_group_start > id) 158 mnt_group_start = id; 159 mnt->mnt_group_id = 0; 160 } 161 162 /* 163 * vfsmount lock must be held for read 164 */ 165 static inline void mnt_add_count(struct mount *mnt, int n) 166 { 167 #ifdef CONFIG_SMP 168 this_cpu_add(mnt->mnt_pcp->mnt_count, n); 169 #else 170 preempt_disable(); 171 mnt->mnt_count += n; 172 preempt_enable(); 173 #endif 174 } 175 176 /* 177 * vfsmount lock must be held for write 178 */ 179 unsigned int mnt_get_count(struct mount *mnt) 180 { 181 #ifdef CONFIG_SMP 182 unsigned int count = 0; 183 int cpu; 184 185 for_each_possible_cpu(cpu) { 186 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count; 187 } 188 189 return count; 190 #else 191 return mnt->mnt_count; 192 #endif 193 } 194 195 static void drop_mountpoint(struct fs_pin *p) 196 { 197 struct mount *m = container_of(p, struct mount, mnt_umount); 198 dput(m->mnt_ex_mountpoint); 199 pin_remove(p); 200 mntput(&m->mnt); 201 } 202 203 static struct mount *alloc_vfsmnt(const char *name) 204 { 205 struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL); 206 if (mnt) { 207 int err; 208 209 err = mnt_alloc_id(mnt); 210 if (err) 211 goto out_free_cache; 212 213 if (name) { 214 mnt->mnt_devname = kstrdup_const(name, GFP_KERNEL); 215 if (!mnt->mnt_devname) 216 goto out_free_id; 217 } 218 219 #ifdef CONFIG_SMP 220 mnt->mnt_pcp = alloc_percpu(struct mnt_pcp); 221 if (!mnt->mnt_pcp) 222 goto out_free_devname; 223 224 this_cpu_add(mnt->mnt_pcp->mnt_count, 1); 225 #else 226 mnt->mnt_count = 1; 227 mnt->mnt_writers = 0; 228 #endif 229 230 INIT_HLIST_NODE(&mnt->mnt_hash); 231 INIT_LIST_HEAD(&mnt->mnt_child); 232 INIT_LIST_HEAD(&mnt->mnt_mounts); 233 INIT_LIST_HEAD(&mnt->mnt_list); 234 INIT_LIST_HEAD(&mnt->mnt_expire); 235 INIT_LIST_HEAD(&mnt->mnt_share); 236 INIT_LIST_HEAD(&mnt->mnt_slave_list); 237 INIT_LIST_HEAD(&mnt->mnt_slave); 238 INIT_HLIST_NODE(&mnt->mnt_mp_list); 239 INIT_LIST_HEAD(&mnt->mnt_umounting); 240 init_fs_pin(&mnt->mnt_umount, drop_mountpoint); 241 } 242 return mnt; 243 244 #ifdef CONFIG_SMP 245 out_free_devname: 246 kfree_const(mnt->mnt_devname); 247 #endif 248 out_free_id: 249 mnt_free_id(mnt); 250 out_free_cache: 251 kmem_cache_free(mnt_cache, mnt); 252 return NULL; 253 } 254 255 /* 256 * Most r/o checks on a fs are for operations that take 257 * discrete amounts of time, like a write() or unlink(). 258 * We must keep track of when those operations start 259 * (for permission checks) and when they end, so that 260 * we can determine when writes are able to occur to 261 * a filesystem. 262 */ 263 /* 264 * __mnt_is_readonly: check whether a mount is read-only 265 * @mnt: the mount to check for its write status 266 * 267 * This shouldn't be used directly ouside of the VFS. 268 * It does not guarantee that the filesystem will stay 269 * r/w, just that it is right *now*. This can not and 270 * should not be used in place of IS_RDONLY(inode). 271 * mnt_want/drop_write() will _keep_ the filesystem 272 * r/w. 273 */ 274 int __mnt_is_readonly(struct vfsmount *mnt) 275 { 276 if (mnt->mnt_flags & MNT_READONLY) 277 return 1; 278 if (sb_rdonly(mnt->mnt_sb)) 279 return 1; 280 return 0; 281 } 282 EXPORT_SYMBOL_GPL(__mnt_is_readonly); 283 284 static inline void mnt_inc_writers(struct mount *mnt) 285 { 286 #ifdef CONFIG_SMP 287 this_cpu_inc(mnt->mnt_pcp->mnt_writers); 288 #else 289 mnt->mnt_writers++; 290 #endif 291 } 292 293 static inline void mnt_dec_writers(struct mount *mnt) 294 { 295 #ifdef CONFIG_SMP 296 this_cpu_dec(mnt->mnt_pcp->mnt_writers); 297 #else 298 mnt->mnt_writers--; 299 #endif 300 } 301 302 static unsigned int mnt_get_writers(struct mount *mnt) 303 { 304 #ifdef CONFIG_SMP 305 unsigned int count = 0; 306 int cpu; 307 308 for_each_possible_cpu(cpu) { 309 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers; 310 } 311 312 return count; 313 #else 314 return mnt->mnt_writers; 315 #endif 316 } 317 318 static int mnt_is_readonly(struct vfsmount *mnt) 319 { 320 if (mnt->mnt_sb->s_readonly_remount) 321 return 1; 322 /* Order wrt setting s_flags/s_readonly_remount in do_remount() */ 323 smp_rmb(); 324 return __mnt_is_readonly(mnt); 325 } 326 327 /* 328 * Most r/o & frozen checks on a fs are for operations that take discrete 329 * amounts of time, like a write() or unlink(). We must keep track of when 330 * those operations start (for permission checks) and when they end, so that we 331 * can determine when writes are able to occur to a filesystem. 332 */ 333 /** 334 * __mnt_want_write - get write access to a mount without freeze protection 335 * @m: the mount on which to take a write 336 * 337 * This tells the low-level filesystem that a write is about to be performed to 338 * it, and makes sure that writes are allowed (mnt it read-write) before 339 * returning success. This operation does not protect against filesystem being 340 * frozen. When the write operation is finished, __mnt_drop_write() must be 341 * called. This is effectively a refcount. 342 */ 343 int __mnt_want_write(struct vfsmount *m) 344 { 345 struct mount *mnt = real_mount(m); 346 int ret = 0; 347 348 preempt_disable(); 349 mnt_inc_writers(mnt); 350 /* 351 * The store to mnt_inc_writers must be visible before we pass 352 * MNT_WRITE_HOLD loop below, so that the slowpath can see our 353 * incremented count after it has set MNT_WRITE_HOLD. 354 */ 355 smp_mb(); 356 while (READ_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD) 357 cpu_relax(); 358 /* 359 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will 360 * be set to match its requirements. So we must not load that until 361 * MNT_WRITE_HOLD is cleared. 362 */ 363 smp_rmb(); 364 if (mnt_is_readonly(m)) { 365 mnt_dec_writers(mnt); 366 ret = -EROFS; 367 } 368 preempt_enable(); 369 370 return ret; 371 } 372 373 /** 374 * mnt_want_write - get write access to a mount 375 * @m: the mount on which to take a write 376 * 377 * This tells the low-level filesystem that a write is about to be performed to 378 * it, and makes sure that writes are allowed (mount is read-write, filesystem 379 * is not frozen) before returning success. When the write operation is 380 * finished, mnt_drop_write() must be called. This is effectively a refcount. 381 */ 382 int mnt_want_write(struct vfsmount *m) 383 { 384 int ret; 385 386 sb_start_write(m->mnt_sb); 387 ret = __mnt_want_write(m); 388 if (ret) 389 sb_end_write(m->mnt_sb); 390 return ret; 391 } 392 EXPORT_SYMBOL_GPL(mnt_want_write); 393 394 /** 395 * mnt_clone_write - get write access to a mount 396 * @mnt: the mount on which to take a write 397 * 398 * This is effectively like mnt_want_write, except 399 * it must only be used to take an extra write reference 400 * on a mountpoint that we already know has a write reference 401 * on it. This allows some optimisation. 402 * 403 * After finished, mnt_drop_write must be called as usual to 404 * drop the reference. 405 */ 406 int mnt_clone_write(struct vfsmount *mnt) 407 { 408 /* superblock may be r/o */ 409 if (__mnt_is_readonly(mnt)) 410 return -EROFS; 411 preempt_disable(); 412 mnt_inc_writers(real_mount(mnt)); 413 preempt_enable(); 414 return 0; 415 } 416 EXPORT_SYMBOL_GPL(mnt_clone_write); 417 418 /** 419 * __mnt_want_write_file - get write access to a file's mount 420 * @file: the file who's mount on which to take a write 421 * 422 * This is like __mnt_want_write, but it takes a file and can 423 * do some optimisations if the file is open for write already 424 */ 425 int __mnt_want_write_file(struct file *file) 426 { 427 if (!(file->f_mode & FMODE_WRITER)) 428 return __mnt_want_write(file->f_path.mnt); 429 else 430 return mnt_clone_write(file->f_path.mnt); 431 } 432 433 /** 434 * mnt_want_write_file_path - get write access to a file's mount 435 * @file: the file who's mount on which to take a write 436 * 437 * This is like mnt_want_write, but it takes a file and can 438 * do some optimisations if the file is open for write already 439 * 440 * Called by the vfs for cases when we have an open file at hand, but will do an 441 * inode operation on it (important distinction for files opened on overlayfs, 442 * since the file operations will come from the real underlying file, while 443 * inode operations come from the overlay). 444 */ 445 int mnt_want_write_file_path(struct file *file) 446 { 447 int ret; 448 449 sb_start_write(file->f_path.mnt->mnt_sb); 450 ret = __mnt_want_write_file(file); 451 if (ret) 452 sb_end_write(file->f_path.mnt->mnt_sb); 453 return ret; 454 } 455 456 static inline int may_write_real(struct file *file) 457 { 458 struct dentry *dentry = file->f_path.dentry; 459 struct dentry *upperdentry; 460 461 /* Writable file? */ 462 if (file->f_mode & FMODE_WRITER) 463 return 0; 464 465 /* Not overlayfs? */ 466 if (likely(!(dentry->d_flags & DCACHE_OP_REAL))) 467 return 0; 468 469 /* File refers to upper, writable layer? */ 470 upperdentry = d_real(dentry, NULL, 0, D_REAL_UPPER); 471 if (upperdentry && 472 (file_inode(file) == d_inode(upperdentry) || 473 file_inode(file) == d_inode(dentry))) 474 return 0; 475 476 /* Lower layer: can't write to real file, sorry... */ 477 return -EPERM; 478 } 479 480 /** 481 * mnt_want_write_file - get write access to a file's mount 482 * @file: the file who's mount on which to take a write 483 * 484 * This is like mnt_want_write, but it takes a file and can 485 * do some optimisations if the file is open for write already 486 * 487 * Mostly called by filesystems from their ioctl operation before performing 488 * modification. On overlayfs this needs to check if the file is on a read-only 489 * lower layer and deny access in that case. 490 */ 491 int mnt_want_write_file(struct file *file) 492 { 493 int ret; 494 495 ret = may_write_real(file); 496 if (!ret) { 497 sb_start_write(file_inode(file)->i_sb); 498 ret = __mnt_want_write_file(file); 499 if (ret) 500 sb_end_write(file_inode(file)->i_sb); 501 } 502 return ret; 503 } 504 EXPORT_SYMBOL_GPL(mnt_want_write_file); 505 506 /** 507 * __mnt_drop_write - give up write access to a mount 508 * @mnt: the mount on which to give up write access 509 * 510 * Tells the low-level filesystem that we are done 511 * performing writes to it. Must be matched with 512 * __mnt_want_write() call above. 513 */ 514 void __mnt_drop_write(struct vfsmount *mnt) 515 { 516 preempt_disable(); 517 mnt_dec_writers(real_mount(mnt)); 518 preempt_enable(); 519 } 520 521 /** 522 * mnt_drop_write - give up write access to a mount 523 * @mnt: the mount on which to give up write access 524 * 525 * Tells the low-level filesystem that we are done performing writes to it and 526 * also allows filesystem to be frozen again. Must be matched with 527 * mnt_want_write() call above. 528 */ 529 void mnt_drop_write(struct vfsmount *mnt) 530 { 531 __mnt_drop_write(mnt); 532 sb_end_write(mnt->mnt_sb); 533 } 534 EXPORT_SYMBOL_GPL(mnt_drop_write); 535 536 void __mnt_drop_write_file(struct file *file) 537 { 538 __mnt_drop_write(file->f_path.mnt); 539 } 540 541 void mnt_drop_write_file_path(struct file *file) 542 { 543 mnt_drop_write(file->f_path.mnt); 544 } 545 546 void mnt_drop_write_file(struct file *file) 547 { 548 __mnt_drop_write(file->f_path.mnt); 549 sb_end_write(file_inode(file)->i_sb); 550 } 551 EXPORT_SYMBOL(mnt_drop_write_file); 552 553 static int mnt_make_readonly(struct mount *mnt) 554 { 555 int ret = 0; 556 557 lock_mount_hash(); 558 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD; 559 /* 560 * After storing MNT_WRITE_HOLD, we'll read the counters. This store 561 * should be visible before we do. 562 */ 563 smp_mb(); 564 565 /* 566 * With writers on hold, if this value is zero, then there are 567 * definitely no active writers (although held writers may subsequently 568 * increment the count, they'll have to wait, and decrement it after 569 * seeing MNT_READONLY). 570 * 571 * It is OK to have counter incremented on one CPU and decremented on 572 * another: the sum will add up correctly. The danger would be when we 573 * sum up each counter, if we read a counter before it is incremented, 574 * but then read another CPU's count which it has been subsequently 575 * decremented from -- we would see more decrements than we should. 576 * MNT_WRITE_HOLD protects against this scenario, because 577 * mnt_want_write first increments count, then smp_mb, then spins on 578 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while 579 * we're counting up here. 580 */ 581 if (mnt_get_writers(mnt) > 0) 582 ret = -EBUSY; 583 else 584 mnt->mnt.mnt_flags |= MNT_READONLY; 585 /* 586 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers 587 * that become unheld will see MNT_READONLY. 588 */ 589 smp_wmb(); 590 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD; 591 unlock_mount_hash(); 592 return ret; 593 } 594 595 static void __mnt_unmake_readonly(struct mount *mnt) 596 { 597 lock_mount_hash(); 598 mnt->mnt.mnt_flags &= ~MNT_READONLY; 599 unlock_mount_hash(); 600 } 601 602 int sb_prepare_remount_readonly(struct super_block *sb) 603 { 604 struct mount *mnt; 605 int err = 0; 606 607 /* Racy optimization. Recheck the counter under MNT_WRITE_HOLD */ 608 if (atomic_long_read(&sb->s_remove_count)) 609 return -EBUSY; 610 611 lock_mount_hash(); 612 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) { 613 if (!(mnt->mnt.mnt_flags & MNT_READONLY)) { 614 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD; 615 smp_mb(); 616 if (mnt_get_writers(mnt) > 0) { 617 err = -EBUSY; 618 break; 619 } 620 } 621 } 622 if (!err && atomic_long_read(&sb->s_remove_count)) 623 err = -EBUSY; 624 625 if (!err) { 626 sb->s_readonly_remount = 1; 627 smp_wmb(); 628 } 629 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) { 630 if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD) 631 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD; 632 } 633 unlock_mount_hash(); 634 635 return err; 636 } 637 638 static void free_vfsmnt(struct mount *mnt) 639 { 640 kfree_const(mnt->mnt_devname); 641 #ifdef CONFIG_SMP 642 free_percpu(mnt->mnt_pcp); 643 #endif 644 kmem_cache_free(mnt_cache, mnt); 645 } 646 647 static void delayed_free_vfsmnt(struct rcu_head *head) 648 { 649 free_vfsmnt(container_of(head, struct mount, mnt_rcu)); 650 } 651 652 /* call under rcu_read_lock */ 653 int __legitimize_mnt(struct vfsmount *bastard, unsigned seq) 654 { 655 struct mount *mnt; 656 if (read_seqretry(&mount_lock, seq)) 657 return 1; 658 if (bastard == NULL) 659 return 0; 660 mnt = real_mount(bastard); 661 mnt_add_count(mnt, 1); 662 if (likely(!read_seqretry(&mount_lock, seq))) 663 return 0; 664 if (bastard->mnt_flags & MNT_SYNC_UMOUNT) { 665 mnt_add_count(mnt, -1); 666 return 1; 667 } 668 return -1; 669 } 670 671 /* call under rcu_read_lock */ 672 bool legitimize_mnt(struct vfsmount *bastard, unsigned seq) 673 { 674 int res = __legitimize_mnt(bastard, seq); 675 if (likely(!res)) 676 return true; 677 if (unlikely(res < 0)) { 678 rcu_read_unlock(); 679 mntput(bastard); 680 rcu_read_lock(); 681 } 682 return false; 683 } 684 685 /* 686 * find the first mount at @dentry on vfsmount @mnt. 687 * call under rcu_read_lock() 688 */ 689 struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry) 690 { 691 struct hlist_head *head = m_hash(mnt, dentry); 692 struct mount *p; 693 694 hlist_for_each_entry_rcu(p, head, mnt_hash) 695 if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry) 696 return p; 697 return NULL; 698 } 699 700 /* 701 * lookup_mnt - Return the first child mount mounted at path 702 * 703 * "First" means first mounted chronologically. If you create the 704 * following mounts: 705 * 706 * mount /dev/sda1 /mnt 707 * mount /dev/sda2 /mnt 708 * mount /dev/sda3 /mnt 709 * 710 * Then lookup_mnt() on the base /mnt dentry in the root mount will 711 * return successively the root dentry and vfsmount of /dev/sda1, then 712 * /dev/sda2, then /dev/sda3, then NULL. 713 * 714 * lookup_mnt takes a reference to the found vfsmount. 715 */ 716 struct vfsmount *lookup_mnt(const struct path *path) 717 { 718 struct mount *child_mnt; 719 struct vfsmount *m; 720 unsigned seq; 721 722 rcu_read_lock(); 723 do { 724 seq = read_seqbegin(&mount_lock); 725 child_mnt = __lookup_mnt(path->mnt, path->dentry); 726 m = child_mnt ? &child_mnt->mnt : NULL; 727 } while (!legitimize_mnt(m, seq)); 728 rcu_read_unlock(); 729 return m; 730 } 731 732 /* 733 * __is_local_mountpoint - Test to see if dentry is a mountpoint in the 734 * current mount namespace. 735 * 736 * The common case is dentries are not mountpoints at all and that 737 * test is handled inline. For the slow case when we are actually 738 * dealing with a mountpoint of some kind, walk through all of the 739 * mounts in the current mount namespace and test to see if the dentry 740 * is a mountpoint. 741 * 742 * The mount_hashtable is not usable in the context because we 743 * need to identify all mounts that may be in the current mount 744 * namespace not just a mount that happens to have some specified 745 * parent mount. 746 */ 747 bool __is_local_mountpoint(struct dentry *dentry) 748 { 749 struct mnt_namespace *ns = current->nsproxy->mnt_ns; 750 struct mount *mnt; 751 bool is_covered = false; 752 753 if (!d_mountpoint(dentry)) 754 goto out; 755 756 down_read(&namespace_sem); 757 list_for_each_entry(mnt, &ns->list, mnt_list) { 758 is_covered = (mnt->mnt_mountpoint == dentry); 759 if (is_covered) 760 break; 761 } 762 up_read(&namespace_sem); 763 out: 764 return is_covered; 765 } 766 767 static struct mountpoint *lookup_mountpoint(struct dentry *dentry) 768 { 769 struct hlist_head *chain = mp_hash(dentry); 770 struct mountpoint *mp; 771 772 hlist_for_each_entry(mp, chain, m_hash) { 773 if (mp->m_dentry == dentry) { 774 /* might be worth a WARN_ON() */ 775 if (d_unlinked(dentry)) 776 return ERR_PTR(-ENOENT); 777 mp->m_count++; 778 return mp; 779 } 780 } 781 return NULL; 782 } 783 784 static struct mountpoint *get_mountpoint(struct dentry *dentry) 785 { 786 struct mountpoint *mp, *new = NULL; 787 int ret; 788 789 if (d_mountpoint(dentry)) { 790 mountpoint: 791 read_seqlock_excl(&mount_lock); 792 mp = lookup_mountpoint(dentry); 793 read_sequnlock_excl(&mount_lock); 794 if (mp) 795 goto done; 796 } 797 798 if (!new) 799 new = kmalloc(sizeof(struct mountpoint), GFP_KERNEL); 800 if (!new) 801 return ERR_PTR(-ENOMEM); 802 803 804 /* Exactly one processes may set d_mounted */ 805 ret = d_set_mounted(dentry); 806 807 /* Someone else set d_mounted? */ 808 if (ret == -EBUSY) 809 goto mountpoint; 810 811 /* The dentry is not available as a mountpoint? */ 812 mp = ERR_PTR(ret); 813 if (ret) 814 goto done; 815 816 /* Add the new mountpoint to the hash table */ 817 read_seqlock_excl(&mount_lock); 818 new->m_dentry = dentry; 819 new->m_count = 1; 820 hlist_add_head(&new->m_hash, mp_hash(dentry)); 821 INIT_HLIST_HEAD(&new->m_list); 822 read_sequnlock_excl(&mount_lock); 823 824 mp = new; 825 new = NULL; 826 done: 827 kfree(new); 828 return mp; 829 } 830 831 static void put_mountpoint(struct mountpoint *mp) 832 { 833 if (!--mp->m_count) { 834 struct dentry *dentry = mp->m_dentry; 835 BUG_ON(!hlist_empty(&mp->m_list)); 836 spin_lock(&dentry->d_lock); 837 dentry->d_flags &= ~DCACHE_MOUNTED; 838 spin_unlock(&dentry->d_lock); 839 hlist_del(&mp->m_hash); 840 kfree(mp); 841 } 842 } 843 844 static inline int check_mnt(struct mount *mnt) 845 { 846 return mnt->mnt_ns == current->nsproxy->mnt_ns; 847 } 848 849 /* 850 * vfsmount lock must be held for write 851 */ 852 static void touch_mnt_namespace(struct mnt_namespace *ns) 853 { 854 if (ns) { 855 ns->event = ++event; 856 wake_up_interruptible(&ns->poll); 857 } 858 } 859 860 /* 861 * vfsmount lock must be held for write 862 */ 863 static void __touch_mnt_namespace(struct mnt_namespace *ns) 864 { 865 if (ns && ns->event != event) { 866 ns->event = event; 867 wake_up_interruptible(&ns->poll); 868 } 869 } 870 871 /* 872 * vfsmount lock must be held for write 873 */ 874 static void unhash_mnt(struct mount *mnt) 875 { 876 mnt->mnt_parent = mnt; 877 mnt->mnt_mountpoint = mnt->mnt.mnt_root; 878 list_del_init(&mnt->mnt_child); 879 hlist_del_init_rcu(&mnt->mnt_hash); 880 hlist_del_init(&mnt->mnt_mp_list); 881 put_mountpoint(mnt->mnt_mp); 882 mnt->mnt_mp = NULL; 883 } 884 885 /* 886 * vfsmount lock must be held for write 887 */ 888 static void detach_mnt(struct mount *mnt, struct path *old_path) 889 { 890 old_path->dentry = mnt->mnt_mountpoint; 891 old_path->mnt = &mnt->mnt_parent->mnt; 892 unhash_mnt(mnt); 893 } 894 895 /* 896 * vfsmount lock must be held for write 897 */ 898 static void umount_mnt(struct mount *mnt) 899 { 900 /* old mountpoint will be dropped when we can do that */ 901 mnt->mnt_ex_mountpoint = mnt->mnt_mountpoint; 902 unhash_mnt(mnt); 903 } 904 905 /* 906 * vfsmount lock must be held for write 907 */ 908 void mnt_set_mountpoint(struct mount *mnt, 909 struct mountpoint *mp, 910 struct mount *child_mnt) 911 { 912 mp->m_count++; 913 mnt_add_count(mnt, 1); /* essentially, that's mntget */ 914 child_mnt->mnt_mountpoint = dget(mp->m_dentry); 915 child_mnt->mnt_parent = mnt; 916 child_mnt->mnt_mp = mp; 917 hlist_add_head(&child_mnt->mnt_mp_list, &mp->m_list); 918 } 919 920 static void __attach_mnt(struct mount *mnt, struct mount *parent) 921 { 922 hlist_add_head_rcu(&mnt->mnt_hash, 923 m_hash(&parent->mnt, mnt->mnt_mountpoint)); 924 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts); 925 } 926 927 /* 928 * vfsmount lock must be held for write 929 */ 930 static void attach_mnt(struct mount *mnt, 931 struct mount *parent, 932 struct mountpoint *mp) 933 { 934 mnt_set_mountpoint(parent, mp, mnt); 935 __attach_mnt(mnt, parent); 936 } 937 938 void mnt_change_mountpoint(struct mount *parent, struct mountpoint *mp, struct mount *mnt) 939 { 940 struct mountpoint *old_mp = mnt->mnt_mp; 941 struct dentry *old_mountpoint = mnt->mnt_mountpoint; 942 struct mount *old_parent = mnt->mnt_parent; 943 944 list_del_init(&mnt->mnt_child); 945 hlist_del_init(&mnt->mnt_mp_list); 946 hlist_del_init_rcu(&mnt->mnt_hash); 947 948 attach_mnt(mnt, parent, mp); 949 950 put_mountpoint(old_mp); 951 952 /* 953 * Safely avoid even the suggestion this code might sleep or 954 * lock the mount hash by taking advantage of the knowledge that 955 * mnt_change_mountpoint will not release the final reference 956 * to a mountpoint. 957 * 958 * During mounting, the mount passed in as the parent mount will 959 * continue to use the old mountpoint and during unmounting, the 960 * old mountpoint will continue to exist until namespace_unlock, 961 * which happens well after mnt_change_mountpoint. 962 */ 963 spin_lock(&old_mountpoint->d_lock); 964 old_mountpoint->d_lockref.count--; 965 spin_unlock(&old_mountpoint->d_lock); 966 967 mnt_add_count(old_parent, -1); 968 } 969 970 /* 971 * vfsmount lock must be held for write 972 */ 973 static void commit_tree(struct mount *mnt) 974 { 975 struct mount *parent = mnt->mnt_parent; 976 struct mount *m; 977 LIST_HEAD(head); 978 struct mnt_namespace *n = parent->mnt_ns; 979 980 BUG_ON(parent == mnt); 981 982 list_add_tail(&head, &mnt->mnt_list); 983 list_for_each_entry(m, &head, mnt_list) 984 m->mnt_ns = n; 985 986 list_splice(&head, n->list.prev); 987 988 n->mounts += n->pending_mounts; 989 n->pending_mounts = 0; 990 991 __attach_mnt(mnt, parent); 992 touch_mnt_namespace(n); 993 } 994 995 static struct mount *next_mnt(struct mount *p, struct mount *root) 996 { 997 struct list_head *next = p->mnt_mounts.next; 998 if (next == &p->mnt_mounts) { 999 while (1) { 1000 if (p == root) 1001 return NULL; 1002 next = p->mnt_child.next; 1003 if (next != &p->mnt_parent->mnt_mounts) 1004 break; 1005 p = p->mnt_parent; 1006 } 1007 } 1008 return list_entry(next, struct mount, mnt_child); 1009 } 1010 1011 static struct mount *skip_mnt_tree(struct mount *p) 1012 { 1013 struct list_head *prev = p->mnt_mounts.prev; 1014 while (prev != &p->mnt_mounts) { 1015 p = list_entry(prev, struct mount, mnt_child); 1016 prev = p->mnt_mounts.prev; 1017 } 1018 return p; 1019 } 1020 1021 struct vfsmount * 1022 vfs_kern_mount(struct file_system_type *type, int flags, const char *name, void *data) 1023 { 1024 struct mount *mnt; 1025 struct dentry *root; 1026 1027 if (!type) 1028 return ERR_PTR(-ENODEV); 1029 1030 mnt = alloc_vfsmnt(name); 1031 if (!mnt) 1032 return ERR_PTR(-ENOMEM); 1033 1034 if (flags & SB_KERNMOUNT) 1035 mnt->mnt.mnt_flags = MNT_INTERNAL; 1036 1037 root = mount_fs(type, flags, name, data); 1038 if (IS_ERR(root)) { 1039 mnt_free_id(mnt); 1040 free_vfsmnt(mnt); 1041 return ERR_CAST(root); 1042 } 1043 1044 mnt->mnt.mnt_root = root; 1045 mnt->mnt.mnt_sb = root->d_sb; 1046 mnt->mnt_mountpoint = mnt->mnt.mnt_root; 1047 mnt->mnt_parent = mnt; 1048 lock_mount_hash(); 1049 list_add_tail(&mnt->mnt_instance, &root->d_sb->s_mounts); 1050 unlock_mount_hash(); 1051 return &mnt->mnt; 1052 } 1053 EXPORT_SYMBOL_GPL(vfs_kern_mount); 1054 1055 struct vfsmount * 1056 vfs_submount(const struct dentry *mountpoint, struct file_system_type *type, 1057 const char *name, void *data) 1058 { 1059 /* Until it is worked out how to pass the user namespace 1060 * through from the parent mount to the submount don't support 1061 * unprivileged mounts with submounts. 1062 */ 1063 if (mountpoint->d_sb->s_user_ns != &init_user_ns) 1064 return ERR_PTR(-EPERM); 1065 1066 return vfs_kern_mount(type, SB_SUBMOUNT, name, data); 1067 } 1068 EXPORT_SYMBOL_GPL(vfs_submount); 1069 1070 static struct mount *clone_mnt(struct mount *old, struct dentry *root, 1071 int flag) 1072 { 1073 struct super_block *sb = old->mnt.mnt_sb; 1074 struct mount *mnt; 1075 int err; 1076 1077 mnt = alloc_vfsmnt(old->mnt_devname); 1078 if (!mnt) 1079 return ERR_PTR(-ENOMEM); 1080 1081 if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE)) 1082 mnt->mnt_group_id = 0; /* not a peer of original */ 1083 else 1084 mnt->mnt_group_id = old->mnt_group_id; 1085 1086 if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) { 1087 err = mnt_alloc_group_id(mnt); 1088 if (err) 1089 goto out_free; 1090 } 1091 1092 mnt->mnt.mnt_flags = old->mnt.mnt_flags; 1093 mnt->mnt.mnt_flags &= ~(MNT_WRITE_HOLD|MNT_MARKED|MNT_INTERNAL); 1094 /* Don't allow unprivileged users to change mount flags */ 1095 if (flag & CL_UNPRIVILEGED) { 1096 mnt->mnt.mnt_flags |= MNT_LOCK_ATIME; 1097 1098 if (mnt->mnt.mnt_flags & MNT_READONLY) 1099 mnt->mnt.mnt_flags |= MNT_LOCK_READONLY; 1100 1101 if (mnt->mnt.mnt_flags & MNT_NODEV) 1102 mnt->mnt.mnt_flags |= MNT_LOCK_NODEV; 1103 1104 if (mnt->mnt.mnt_flags & MNT_NOSUID) 1105 mnt->mnt.mnt_flags |= MNT_LOCK_NOSUID; 1106 1107 if (mnt->mnt.mnt_flags & MNT_NOEXEC) 1108 mnt->mnt.mnt_flags |= MNT_LOCK_NOEXEC; 1109 } 1110 1111 /* Don't allow unprivileged users to reveal what is under a mount */ 1112 if ((flag & CL_UNPRIVILEGED) && 1113 (!(flag & CL_EXPIRE) || list_empty(&old->mnt_expire))) 1114 mnt->mnt.mnt_flags |= MNT_LOCKED; 1115 1116 atomic_inc(&sb->s_active); 1117 mnt->mnt.mnt_sb = sb; 1118 mnt->mnt.mnt_root = dget(root); 1119 mnt->mnt_mountpoint = mnt->mnt.mnt_root; 1120 mnt->mnt_parent = mnt; 1121 lock_mount_hash(); 1122 list_add_tail(&mnt->mnt_instance, &sb->s_mounts); 1123 unlock_mount_hash(); 1124 1125 if ((flag & CL_SLAVE) || 1126 ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) { 1127 list_add(&mnt->mnt_slave, &old->mnt_slave_list); 1128 mnt->mnt_master = old; 1129 CLEAR_MNT_SHARED(mnt); 1130 } else if (!(flag & CL_PRIVATE)) { 1131 if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old)) 1132 list_add(&mnt->mnt_share, &old->mnt_share); 1133 if (IS_MNT_SLAVE(old)) 1134 list_add(&mnt->mnt_slave, &old->mnt_slave); 1135 mnt->mnt_master = old->mnt_master; 1136 } else { 1137 CLEAR_MNT_SHARED(mnt); 1138 } 1139 if (flag & CL_MAKE_SHARED) 1140 set_mnt_shared(mnt); 1141 1142 /* stick the duplicate mount on the same expiry list 1143 * as the original if that was on one */ 1144 if (flag & CL_EXPIRE) { 1145 if (!list_empty(&old->mnt_expire)) 1146 list_add(&mnt->mnt_expire, &old->mnt_expire); 1147 } 1148 1149 return mnt; 1150 1151 out_free: 1152 mnt_free_id(mnt); 1153 free_vfsmnt(mnt); 1154 return ERR_PTR(err); 1155 } 1156 1157 static void cleanup_mnt(struct mount *mnt) 1158 { 1159 /* 1160 * This probably indicates that somebody messed 1161 * up a mnt_want/drop_write() pair. If this 1162 * happens, the filesystem was probably unable 1163 * to make r/w->r/o transitions. 1164 */ 1165 /* 1166 * The locking used to deal with mnt_count decrement provides barriers, 1167 * so mnt_get_writers() below is safe. 1168 */ 1169 WARN_ON(mnt_get_writers(mnt)); 1170 if (unlikely(mnt->mnt_pins.first)) 1171 mnt_pin_kill(mnt); 1172 fsnotify_vfsmount_delete(&mnt->mnt); 1173 dput(mnt->mnt.mnt_root); 1174 deactivate_super(mnt->mnt.mnt_sb); 1175 mnt_free_id(mnt); 1176 call_rcu(&mnt->mnt_rcu, delayed_free_vfsmnt); 1177 } 1178 1179 static void __cleanup_mnt(struct rcu_head *head) 1180 { 1181 cleanup_mnt(container_of(head, struct mount, mnt_rcu)); 1182 } 1183 1184 static LLIST_HEAD(delayed_mntput_list); 1185 static void delayed_mntput(struct work_struct *unused) 1186 { 1187 struct llist_node *node = llist_del_all(&delayed_mntput_list); 1188 struct mount *m, *t; 1189 1190 llist_for_each_entry_safe(m, t, node, mnt_llist) 1191 cleanup_mnt(m); 1192 } 1193 static DECLARE_DELAYED_WORK(delayed_mntput_work, delayed_mntput); 1194 1195 static void mntput_no_expire(struct mount *mnt) 1196 { 1197 rcu_read_lock(); 1198 mnt_add_count(mnt, -1); 1199 if (likely(mnt->mnt_ns)) { /* shouldn't be the last one */ 1200 rcu_read_unlock(); 1201 return; 1202 } 1203 lock_mount_hash(); 1204 if (mnt_get_count(mnt)) { 1205 rcu_read_unlock(); 1206 unlock_mount_hash(); 1207 return; 1208 } 1209 if (unlikely(mnt->mnt.mnt_flags & MNT_DOOMED)) { 1210 rcu_read_unlock(); 1211 unlock_mount_hash(); 1212 return; 1213 } 1214 mnt->mnt.mnt_flags |= MNT_DOOMED; 1215 rcu_read_unlock(); 1216 1217 list_del(&mnt->mnt_instance); 1218 1219 if (unlikely(!list_empty(&mnt->mnt_mounts))) { 1220 struct mount *p, *tmp; 1221 list_for_each_entry_safe(p, tmp, &mnt->mnt_mounts, mnt_child) { 1222 umount_mnt(p); 1223 } 1224 } 1225 unlock_mount_hash(); 1226 1227 if (likely(!(mnt->mnt.mnt_flags & MNT_INTERNAL))) { 1228 struct task_struct *task = current; 1229 if (likely(!(task->flags & PF_KTHREAD))) { 1230 init_task_work(&mnt->mnt_rcu, __cleanup_mnt); 1231 if (!task_work_add(task, &mnt->mnt_rcu, true)) 1232 return; 1233 } 1234 if (llist_add(&mnt->mnt_llist, &delayed_mntput_list)) 1235 schedule_delayed_work(&delayed_mntput_work, 1); 1236 return; 1237 } 1238 cleanup_mnt(mnt); 1239 } 1240 1241 void mntput(struct vfsmount *mnt) 1242 { 1243 if (mnt) { 1244 struct mount *m = real_mount(mnt); 1245 /* avoid cacheline pingpong, hope gcc doesn't get "smart" */ 1246 if (unlikely(m->mnt_expiry_mark)) 1247 m->mnt_expiry_mark = 0; 1248 mntput_no_expire(m); 1249 } 1250 } 1251 EXPORT_SYMBOL(mntput); 1252 1253 struct vfsmount *mntget(struct vfsmount *mnt) 1254 { 1255 if (mnt) 1256 mnt_add_count(real_mount(mnt), 1); 1257 return mnt; 1258 } 1259 EXPORT_SYMBOL(mntget); 1260 1261 /* path_is_mountpoint() - Check if path is a mount in the current 1262 * namespace. 1263 * 1264 * d_mountpoint() can only be used reliably to establish if a dentry is 1265 * not mounted in any namespace and that common case is handled inline. 1266 * d_mountpoint() isn't aware of the possibility there may be multiple 1267 * mounts using a given dentry in a different namespace. This function 1268 * checks if the passed in path is a mountpoint rather than the dentry 1269 * alone. 1270 */ 1271 bool path_is_mountpoint(const struct path *path) 1272 { 1273 unsigned seq; 1274 bool res; 1275 1276 if (!d_mountpoint(path->dentry)) 1277 return false; 1278 1279 rcu_read_lock(); 1280 do { 1281 seq = read_seqbegin(&mount_lock); 1282 res = __path_is_mountpoint(path); 1283 } while (read_seqretry(&mount_lock, seq)); 1284 rcu_read_unlock(); 1285 1286 return res; 1287 } 1288 EXPORT_SYMBOL(path_is_mountpoint); 1289 1290 struct vfsmount *mnt_clone_internal(const struct path *path) 1291 { 1292 struct mount *p; 1293 p = clone_mnt(real_mount(path->mnt), path->dentry, CL_PRIVATE); 1294 if (IS_ERR(p)) 1295 return ERR_CAST(p); 1296 p->mnt.mnt_flags |= MNT_INTERNAL; 1297 return &p->mnt; 1298 } 1299 1300 #ifdef CONFIG_PROC_FS 1301 /* iterator; we want it to have access to namespace_sem, thus here... */ 1302 static void *m_start(struct seq_file *m, loff_t *pos) 1303 { 1304 struct proc_mounts *p = m->private; 1305 1306 down_read(&namespace_sem); 1307 if (p->cached_event == p->ns->event) { 1308 void *v = p->cached_mount; 1309 if (*pos == p->cached_index) 1310 return v; 1311 if (*pos == p->cached_index + 1) { 1312 v = seq_list_next(v, &p->ns->list, &p->cached_index); 1313 return p->cached_mount = v; 1314 } 1315 } 1316 1317 p->cached_event = p->ns->event; 1318 p->cached_mount = seq_list_start(&p->ns->list, *pos); 1319 p->cached_index = *pos; 1320 return p->cached_mount; 1321 } 1322 1323 static void *m_next(struct seq_file *m, void *v, loff_t *pos) 1324 { 1325 struct proc_mounts *p = m->private; 1326 1327 p->cached_mount = seq_list_next(v, &p->ns->list, pos); 1328 p->cached_index = *pos; 1329 return p->cached_mount; 1330 } 1331 1332 static void m_stop(struct seq_file *m, void *v) 1333 { 1334 up_read(&namespace_sem); 1335 } 1336 1337 static int m_show(struct seq_file *m, void *v) 1338 { 1339 struct proc_mounts *p = m->private; 1340 struct mount *r = list_entry(v, struct mount, mnt_list); 1341 return p->show(m, &r->mnt); 1342 } 1343 1344 const struct seq_operations mounts_op = { 1345 .start = m_start, 1346 .next = m_next, 1347 .stop = m_stop, 1348 .show = m_show, 1349 }; 1350 #endif /* CONFIG_PROC_FS */ 1351 1352 /** 1353 * may_umount_tree - check if a mount tree is busy 1354 * @mnt: root of mount tree 1355 * 1356 * This is called to check if a tree of mounts has any 1357 * open files, pwds, chroots or sub mounts that are 1358 * busy. 1359 */ 1360 int may_umount_tree(struct vfsmount *m) 1361 { 1362 struct mount *mnt = real_mount(m); 1363 int actual_refs = 0; 1364 int minimum_refs = 0; 1365 struct mount *p; 1366 BUG_ON(!m); 1367 1368 /* write lock needed for mnt_get_count */ 1369 lock_mount_hash(); 1370 for (p = mnt; p; p = next_mnt(p, mnt)) { 1371 actual_refs += mnt_get_count(p); 1372 minimum_refs += 2; 1373 } 1374 unlock_mount_hash(); 1375 1376 if (actual_refs > minimum_refs) 1377 return 0; 1378 1379 return 1; 1380 } 1381 1382 EXPORT_SYMBOL(may_umount_tree); 1383 1384 /** 1385 * may_umount - check if a mount point is busy 1386 * @mnt: root of mount 1387 * 1388 * This is called to check if a mount point has any 1389 * open files, pwds, chroots or sub mounts. If the 1390 * mount has sub mounts this will return busy 1391 * regardless of whether the sub mounts are busy. 1392 * 1393 * Doesn't take quota and stuff into account. IOW, in some cases it will 1394 * give false negatives. The main reason why it's here is that we need 1395 * a non-destructive way to look for easily umountable filesystems. 1396 */ 1397 int may_umount(struct vfsmount *mnt) 1398 { 1399 int ret = 1; 1400 down_read(&namespace_sem); 1401 lock_mount_hash(); 1402 if (propagate_mount_busy(real_mount(mnt), 2)) 1403 ret = 0; 1404 unlock_mount_hash(); 1405 up_read(&namespace_sem); 1406 return ret; 1407 } 1408 1409 EXPORT_SYMBOL(may_umount); 1410 1411 static HLIST_HEAD(unmounted); /* protected by namespace_sem */ 1412 1413 static void namespace_unlock(void) 1414 { 1415 struct hlist_head head; 1416 1417 hlist_move_list(&unmounted, &head); 1418 1419 up_write(&namespace_sem); 1420 1421 if (likely(hlist_empty(&head))) 1422 return; 1423 1424 synchronize_rcu(); 1425 1426 group_pin_kill(&head); 1427 } 1428 1429 static inline void namespace_lock(void) 1430 { 1431 down_write(&namespace_sem); 1432 } 1433 1434 enum umount_tree_flags { 1435 UMOUNT_SYNC = 1, 1436 UMOUNT_PROPAGATE = 2, 1437 UMOUNT_CONNECTED = 4, 1438 }; 1439 1440 static bool disconnect_mount(struct mount *mnt, enum umount_tree_flags how) 1441 { 1442 /* Leaving mounts connected is only valid for lazy umounts */ 1443 if (how & UMOUNT_SYNC) 1444 return true; 1445 1446 /* A mount without a parent has nothing to be connected to */ 1447 if (!mnt_has_parent(mnt)) 1448 return true; 1449 1450 /* Because the reference counting rules change when mounts are 1451 * unmounted and connected, umounted mounts may not be 1452 * connected to mounted mounts. 1453 */ 1454 if (!(mnt->mnt_parent->mnt.mnt_flags & MNT_UMOUNT)) 1455 return true; 1456 1457 /* Has it been requested that the mount remain connected? */ 1458 if (how & UMOUNT_CONNECTED) 1459 return false; 1460 1461 /* Is the mount locked such that it needs to remain connected? */ 1462 if (IS_MNT_LOCKED(mnt)) 1463 return false; 1464 1465 /* By default disconnect the mount */ 1466 return true; 1467 } 1468 1469 /* 1470 * mount_lock must be held 1471 * namespace_sem must be held for write 1472 */ 1473 static void umount_tree(struct mount *mnt, enum umount_tree_flags how) 1474 { 1475 LIST_HEAD(tmp_list); 1476 struct mount *p; 1477 1478 if (how & UMOUNT_PROPAGATE) 1479 propagate_mount_unlock(mnt); 1480 1481 /* Gather the mounts to umount */ 1482 for (p = mnt; p; p = next_mnt(p, mnt)) { 1483 p->mnt.mnt_flags |= MNT_UMOUNT; 1484 list_move(&p->mnt_list, &tmp_list); 1485 } 1486 1487 /* Hide the mounts from mnt_mounts */ 1488 list_for_each_entry(p, &tmp_list, mnt_list) { 1489 list_del_init(&p->mnt_child); 1490 } 1491 1492 /* Add propogated mounts to the tmp_list */ 1493 if (how & UMOUNT_PROPAGATE) 1494 propagate_umount(&tmp_list); 1495 1496 while (!list_empty(&tmp_list)) { 1497 struct mnt_namespace *ns; 1498 bool disconnect; 1499 p = list_first_entry(&tmp_list, struct mount, mnt_list); 1500 list_del_init(&p->mnt_expire); 1501 list_del_init(&p->mnt_list); 1502 ns = p->mnt_ns; 1503 if (ns) { 1504 ns->mounts--; 1505 __touch_mnt_namespace(ns); 1506 } 1507 p->mnt_ns = NULL; 1508 if (how & UMOUNT_SYNC) 1509 p->mnt.mnt_flags |= MNT_SYNC_UMOUNT; 1510 1511 disconnect = disconnect_mount(p, how); 1512 1513 pin_insert_group(&p->mnt_umount, &p->mnt_parent->mnt, 1514 disconnect ? &unmounted : NULL); 1515 if (mnt_has_parent(p)) { 1516 mnt_add_count(p->mnt_parent, -1); 1517 if (!disconnect) { 1518 /* Don't forget about p */ 1519 list_add_tail(&p->mnt_child, &p->mnt_parent->mnt_mounts); 1520 } else { 1521 umount_mnt(p); 1522 } 1523 } 1524 change_mnt_propagation(p, MS_PRIVATE); 1525 } 1526 } 1527 1528 static void shrink_submounts(struct mount *mnt); 1529 1530 static int do_umount(struct mount *mnt, int flags) 1531 { 1532 struct super_block *sb = mnt->mnt.mnt_sb; 1533 int retval; 1534 1535 retval = security_sb_umount(&mnt->mnt, flags); 1536 if (retval) 1537 return retval; 1538 1539 /* 1540 * Allow userspace to request a mountpoint be expired rather than 1541 * unmounting unconditionally. Unmount only happens if: 1542 * (1) the mark is already set (the mark is cleared by mntput()) 1543 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount] 1544 */ 1545 if (flags & MNT_EXPIRE) { 1546 if (&mnt->mnt == current->fs->root.mnt || 1547 flags & (MNT_FORCE | MNT_DETACH)) 1548 return -EINVAL; 1549 1550 /* 1551 * probably don't strictly need the lock here if we examined 1552 * all race cases, but it's a slowpath. 1553 */ 1554 lock_mount_hash(); 1555 if (mnt_get_count(mnt) != 2) { 1556 unlock_mount_hash(); 1557 return -EBUSY; 1558 } 1559 unlock_mount_hash(); 1560 1561 if (!xchg(&mnt->mnt_expiry_mark, 1)) 1562 return -EAGAIN; 1563 } 1564 1565 /* 1566 * If we may have to abort operations to get out of this 1567 * mount, and they will themselves hold resources we must 1568 * allow the fs to do things. In the Unix tradition of 1569 * 'Gee thats tricky lets do it in userspace' the umount_begin 1570 * might fail to complete on the first run through as other tasks 1571 * must return, and the like. Thats for the mount program to worry 1572 * about for the moment. 1573 */ 1574 1575 if (flags & MNT_FORCE && sb->s_op->umount_begin) { 1576 sb->s_op->umount_begin(sb); 1577 } 1578 1579 /* 1580 * No sense to grab the lock for this test, but test itself looks 1581 * somewhat bogus. Suggestions for better replacement? 1582 * Ho-hum... In principle, we might treat that as umount + switch 1583 * to rootfs. GC would eventually take care of the old vfsmount. 1584 * Actually it makes sense, especially if rootfs would contain a 1585 * /reboot - static binary that would close all descriptors and 1586 * call reboot(9). Then init(8) could umount root and exec /reboot. 1587 */ 1588 if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) { 1589 /* 1590 * Special case for "unmounting" root ... 1591 * we just try to remount it readonly. 1592 */ 1593 if (!ns_capable(sb->s_user_ns, CAP_SYS_ADMIN)) 1594 return -EPERM; 1595 down_write(&sb->s_umount); 1596 if (!sb_rdonly(sb)) 1597 retval = do_remount_sb(sb, SB_RDONLY, NULL, 0); 1598 up_write(&sb->s_umount); 1599 return retval; 1600 } 1601 1602 namespace_lock(); 1603 lock_mount_hash(); 1604 event++; 1605 1606 if (flags & MNT_DETACH) { 1607 if (!list_empty(&mnt->mnt_list)) 1608 umount_tree(mnt, UMOUNT_PROPAGATE); 1609 retval = 0; 1610 } else { 1611 shrink_submounts(mnt); 1612 retval = -EBUSY; 1613 if (!propagate_mount_busy(mnt, 2)) { 1614 if (!list_empty(&mnt->mnt_list)) 1615 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC); 1616 retval = 0; 1617 } 1618 } 1619 unlock_mount_hash(); 1620 namespace_unlock(); 1621 return retval; 1622 } 1623 1624 /* 1625 * __detach_mounts - lazily unmount all mounts on the specified dentry 1626 * 1627 * During unlink, rmdir, and d_drop it is possible to loose the path 1628 * to an existing mountpoint, and wind up leaking the mount. 1629 * detach_mounts allows lazily unmounting those mounts instead of 1630 * leaking them. 1631 * 1632 * The caller may hold dentry->d_inode->i_mutex. 1633 */ 1634 void __detach_mounts(struct dentry *dentry) 1635 { 1636 struct mountpoint *mp; 1637 struct mount *mnt; 1638 1639 namespace_lock(); 1640 lock_mount_hash(); 1641 mp = lookup_mountpoint(dentry); 1642 if (IS_ERR_OR_NULL(mp)) 1643 goto out_unlock; 1644 1645 event++; 1646 while (!hlist_empty(&mp->m_list)) { 1647 mnt = hlist_entry(mp->m_list.first, struct mount, mnt_mp_list); 1648 if (mnt->mnt.mnt_flags & MNT_UMOUNT) { 1649 hlist_add_head(&mnt->mnt_umount.s_list, &unmounted); 1650 umount_mnt(mnt); 1651 } 1652 else umount_tree(mnt, UMOUNT_CONNECTED); 1653 } 1654 put_mountpoint(mp); 1655 out_unlock: 1656 unlock_mount_hash(); 1657 namespace_unlock(); 1658 } 1659 1660 /* 1661 * Is the caller allowed to modify his namespace? 1662 */ 1663 static inline bool may_mount(void) 1664 { 1665 return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN); 1666 } 1667 1668 static inline bool may_mandlock(void) 1669 { 1670 #ifndef CONFIG_MANDATORY_FILE_LOCKING 1671 return false; 1672 #endif 1673 return capable(CAP_SYS_ADMIN); 1674 } 1675 1676 /* 1677 * Now umount can handle mount points as well as block devices. 1678 * This is important for filesystems which use unnamed block devices. 1679 * 1680 * We now support a flag for forced unmount like the other 'big iron' 1681 * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD 1682 */ 1683 1684 int ksys_umount(char __user *name, int flags) 1685 { 1686 struct path path; 1687 struct mount *mnt; 1688 int retval; 1689 int lookup_flags = 0; 1690 1691 if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW)) 1692 return -EINVAL; 1693 1694 if (!may_mount()) 1695 return -EPERM; 1696 1697 if (!(flags & UMOUNT_NOFOLLOW)) 1698 lookup_flags |= LOOKUP_FOLLOW; 1699 1700 retval = user_path_mountpoint_at(AT_FDCWD, name, lookup_flags, &path); 1701 if (retval) 1702 goto out; 1703 mnt = real_mount(path.mnt); 1704 retval = -EINVAL; 1705 if (path.dentry != path.mnt->mnt_root) 1706 goto dput_and_out; 1707 if (!check_mnt(mnt)) 1708 goto dput_and_out; 1709 if (mnt->mnt.mnt_flags & MNT_LOCKED) 1710 goto dput_and_out; 1711 retval = -EPERM; 1712 if (flags & MNT_FORCE && !capable(CAP_SYS_ADMIN)) 1713 goto dput_and_out; 1714 1715 retval = do_umount(mnt, flags); 1716 dput_and_out: 1717 /* we mustn't call path_put() as that would clear mnt_expiry_mark */ 1718 dput(path.dentry); 1719 mntput_no_expire(mnt); 1720 out: 1721 return retval; 1722 } 1723 1724 SYSCALL_DEFINE2(umount, char __user *, name, int, flags) 1725 { 1726 return ksys_umount(name, flags); 1727 } 1728 1729 #ifdef __ARCH_WANT_SYS_OLDUMOUNT 1730 1731 /* 1732 * The 2.0 compatible umount. No flags. 1733 */ 1734 SYSCALL_DEFINE1(oldumount, char __user *, name) 1735 { 1736 return ksys_umount(name, 0); 1737 } 1738 1739 #endif 1740 1741 static bool is_mnt_ns_file(struct dentry *dentry) 1742 { 1743 /* Is this a proxy for a mount namespace? */ 1744 return dentry->d_op == &ns_dentry_operations && 1745 dentry->d_fsdata == &mntns_operations; 1746 } 1747 1748 struct mnt_namespace *to_mnt_ns(struct ns_common *ns) 1749 { 1750 return container_of(ns, struct mnt_namespace, ns); 1751 } 1752 1753 static bool mnt_ns_loop(struct dentry *dentry) 1754 { 1755 /* Could bind mounting the mount namespace inode cause a 1756 * mount namespace loop? 1757 */ 1758 struct mnt_namespace *mnt_ns; 1759 if (!is_mnt_ns_file(dentry)) 1760 return false; 1761 1762 mnt_ns = to_mnt_ns(get_proc_ns(dentry->d_inode)); 1763 return current->nsproxy->mnt_ns->seq >= mnt_ns->seq; 1764 } 1765 1766 struct mount *copy_tree(struct mount *mnt, struct dentry *dentry, 1767 int flag) 1768 { 1769 struct mount *res, *p, *q, *r, *parent; 1770 1771 if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(mnt)) 1772 return ERR_PTR(-EINVAL); 1773 1774 if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry)) 1775 return ERR_PTR(-EINVAL); 1776 1777 res = q = clone_mnt(mnt, dentry, flag); 1778 if (IS_ERR(q)) 1779 return q; 1780 1781 q->mnt_mountpoint = mnt->mnt_mountpoint; 1782 1783 p = mnt; 1784 list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) { 1785 struct mount *s; 1786 if (!is_subdir(r->mnt_mountpoint, dentry)) 1787 continue; 1788 1789 for (s = r; s; s = next_mnt(s, r)) { 1790 if (!(flag & CL_COPY_UNBINDABLE) && 1791 IS_MNT_UNBINDABLE(s)) { 1792 s = skip_mnt_tree(s); 1793 continue; 1794 } 1795 if (!(flag & CL_COPY_MNT_NS_FILE) && 1796 is_mnt_ns_file(s->mnt.mnt_root)) { 1797 s = skip_mnt_tree(s); 1798 continue; 1799 } 1800 while (p != s->mnt_parent) { 1801 p = p->mnt_parent; 1802 q = q->mnt_parent; 1803 } 1804 p = s; 1805 parent = q; 1806 q = clone_mnt(p, p->mnt.mnt_root, flag); 1807 if (IS_ERR(q)) 1808 goto out; 1809 lock_mount_hash(); 1810 list_add_tail(&q->mnt_list, &res->mnt_list); 1811 attach_mnt(q, parent, p->mnt_mp); 1812 unlock_mount_hash(); 1813 } 1814 } 1815 return res; 1816 out: 1817 if (res) { 1818 lock_mount_hash(); 1819 umount_tree(res, UMOUNT_SYNC); 1820 unlock_mount_hash(); 1821 } 1822 return q; 1823 } 1824 1825 /* Caller should check returned pointer for errors */ 1826 1827 struct vfsmount *collect_mounts(const struct path *path) 1828 { 1829 struct mount *tree; 1830 namespace_lock(); 1831 if (!check_mnt(real_mount(path->mnt))) 1832 tree = ERR_PTR(-EINVAL); 1833 else 1834 tree = copy_tree(real_mount(path->mnt), path->dentry, 1835 CL_COPY_ALL | CL_PRIVATE); 1836 namespace_unlock(); 1837 if (IS_ERR(tree)) 1838 return ERR_CAST(tree); 1839 return &tree->mnt; 1840 } 1841 1842 void drop_collected_mounts(struct vfsmount *mnt) 1843 { 1844 namespace_lock(); 1845 lock_mount_hash(); 1846 umount_tree(real_mount(mnt), UMOUNT_SYNC); 1847 unlock_mount_hash(); 1848 namespace_unlock(); 1849 } 1850 1851 /** 1852 * clone_private_mount - create a private clone of a path 1853 * 1854 * This creates a new vfsmount, which will be the clone of @path. The new will 1855 * not be attached anywhere in the namespace and will be private (i.e. changes 1856 * to the originating mount won't be propagated into this). 1857 * 1858 * Release with mntput(). 1859 */ 1860 struct vfsmount *clone_private_mount(const struct path *path) 1861 { 1862 struct mount *old_mnt = real_mount(path->mnt); 1863 struct mount *new_mnt; 1864 1865 if (IS_MNT_UNBINDABLE(old_mnt)) 1866 return ERR_PTR(-EINVAL); 1867 1868 new_mnt = clone_mnt(old_mnt, path->dentry, CL_PRIVATE); 1869 if (IS_ERR(new_mnt)) 1870 return ERR_CAST(new_mnt); 1871 1872 return &new_mnt->mnt; 1873 } 1874 EXPORT_SYMBOL_GPL(clone_private_mount); 1875 1876 int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg, 1877 struct vfsmount *root) 1878 { 1879 struct mount *mnt; 1880 int res = f(root, arg); 1881 if (res) 1882 return res; 1883 list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) { 1884 res = f(&mnt->mnt, arg); 1885 if (res) 1886 return res; 1887 } 1888 return 0; 1889 } 1890 1891 static void cleanup_group_ids(struct mount *mnt, struct mount *end) 1892 { 1893 struct mount *p; 1894 1895 for (p = mnt; p != end; p = next_mnt(p, mnt)) { 1896 if (p->mnt_group_id && !IS_MNT_SHARED(p)) 1897 mnt_release_group_id(p); 1898 } 1899 } 1900 1901 static int invent_group_ids(struct mount *mnt, bool recurse) 1902 { 1903 struct mount *p; 1904 1905 for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) { 1906 if (!p->mnt_group_id && !IS_MNT_SHARED(p)) { 1907 int err = mnt_alloc_group_id(p); 1908 if (err) { 1909 cleanup_group_ids(mnt, p); 1910 return err; 1911 } 1912 } 1913 } 1914 1915 return 0; 1916 } 1917 1918 int count_mounts(struct mnt_namespace *ns, struct mount *mnt) 1919 { 1920 unsigned int max = READ_ONCE(sysctl_mount_max); 1921 unsigned int mounts = 0, old, pending, sum; 1922 struct mount *p; 1923 1924 for (p = mnt; p; p = next_mnt(p, mnt)) 1925 mounts++; 1926 1927 old = ns->mounts; 1928 pending = ns->pending_mounts; 1929 sum = old + pending; 1930 if ((old > sum) || 1931 (pending > sum) || 1932 (max < sum) || 1933 (mounts > (max - sum))) 1934 return -ENOSPC; 1935 1936 ns->pending_mounts = pending + mounts; 1937 return 0; 1938 } 1939 1940 /* 1941 * @source_mnt : mount tree to be attached 1942 * @nd : place the mount tree @source_mnt is attached 1943 * @parent_nd : if non-null, detach the source_mnt from its parent and 1944 * store the parent mount and mountpoint dentry. 1945 * (done when source_mnt is moved) 1946 * 1947 * NOTE: in the table below explains the semantics when a source mount 1948 * of a given type is attached to a destination mount of a given type. 1949 * --------------------------------------------------------------------------- 1950 * | BIND MOUNT OPERATION | 1951 * |************************************************************************** 1952 * | source-->| shared | private | slave | unbindable | 1953 * | dest | | | | | 1954 * | | | | | | | 1955 * | v | | | | | 1956 * |************************************************************************** 1957 * | shared | shared (++) | shared (+) | shared(+++)| invalid | 1958 * | | | | | | 1959 * |non-shared| shared (+) | private | slave (*) | invalid | 1960 * *************************************************************************** 1961 * A bind operation clones the source mount and mounts the clone on the 1962 * destination mount. 1963 * 1964 * (++) the cloned mount is propagated to all the mounts in the propagation 1965 * tree of the destination mount and the cloned mount is added to 1966 * the peer group of the source mount. 1967 * (+) the cloned mount is created under the destination mount and is marked 1968 * as shared. The cloned mount is added to the peer group of the source 1969 * mount. 1970 * (+++) the mount is propagated to all the mounts in the propagation tree 1971 * of the destination mount and the cloned mount is made slave 1972 * of the same master as that of the source mount. The cloned mount 1973 * is marked as 'shared and slave'. 1974 * (*) the cloned mount is made a slave of the same master as that of the 1975 * source mount. 1976 * 1977 * --------------------------------------------------------------------------- 1978 * | MOVE MOUNT OPERATION | 1979 * |************************************************************************** 1980 * | source-->| shared | private | slave | unbindable | 1981 * | dest | | | | | 1982 * | | | | | | | 1983 * | v | | | | | 1984 * |************************************************************************** 1985 * | shared | shared (+) | shared (+) | shared(+++) | invalid | 1986 * | | | | | | 1987 * |non-shared| shared (+*) | private | slave (*) | unbindable | 1988 * *************************************************************************** 1989 * 1990 * (+) the mount is moved to the destination. And is then propagated to 1991 * all the mounts in the propagation tree of the destination mount. 1992 * (+*) the mount is moved to the destination. 1993 * (+++) the mount is moved to the destination and is then propagated to 1994 * all the mounts belonging to the destination mount's propagation tree. 1995 * the mount is marked as 'shared and slave'. 1996 * (*) the mount continues to be a slave at the new location. 1997 * 1998 * if the source mount is a tree, the operations explained above is 1999 * applied to each mount in the tree. 2000 * Must be called without spinlocks held, since this function can sleep 2001 * in allocations. 2002 */ 2003 static int attach_recursive_mnt(struct mount *source_mnt, 2004 struct mount *dest_mnt, 2005 struct mountpoint *dest_mp, 2006 struct path *parent_path) 2007 { 2008 HLIST_HEAD(tree_list); 2009 struct mnt_namespace *ns = dest_mnt->mnt_ns; 2010 struct mountpoint *smp; 2011 struct mount *child, *p; 2012 struct hlist_node *n; 2013 int err; 2014 2015 /* Preallocate a mountpoint in case the new mounts need 2016 * to be tucked under other mounts. 2017 */ 2018 smp = get_mountpoint(source_mnt->mnt.mnt_root); 2019 if (IS_ERR(smp)) 2020 return PTR_ERR(smp); 2021 2022 /* Is there space to add these mounts to the mount namespace? */ 2023 if (!parent_path) { 2024 err = count_mounts(ns, source_mnt); 2025 if (err) 2026 goto out; 2027 } 2028 2029 if (IS_MNT_SHARED(dest_mnt)) { 2030 err = invent_group_ids(source_mnt, true); 2031 if (err) 2032 goto out; 2033 err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list); 2034 lock_mount_hash(); 2035 if (err) 2036 goto out_cleanup_ids; 2037 for (p = source_mnt; p; p = next_mnt(p, source_mnt)) 2038 set_mnt_shared(p); 2039 } else { 2040 lock_mount_hash(); 2041 } 2042 if (parent_path) { 2043 detach_mnt(source_mnt, parent_path); 2044 attach_mnt(source_mnt, dest_mnt, dest_mp); 2045 touch_mnt_namespace(source_mnt->mnt_ns); 2046 } else { 2047 mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt); 2048 commit_tree(source_mnt); 2049 } 2050 2051 hlist_for_each_entry_safe(child, n, &tree_list, mnt_hash) { 2052 struct mount *q; 2053 hlist_del_init(&child->mnt_hash); 2054 q = __lookup_mnt(&child->mnt_parent->mnt, 2055 child->mnt_mountpoint); 2056 if (q) 2057 mnt_change_mountpoint(child, smp, q); 2058 commit_tree(child); 2059 } 2060 put_mountpoint(smp); 2061 unlock_mount_hash(); 2062 2063 return 0; 2064 2065 out_cleanup_ids: 2066 while (!hlist_empty(&tree_list)) { 2067 child = hlist_entry(tree_list.first, struct mount, mnt_hash); 2068 child->mnt_parent->mnt_ns->pending_mounts = 0; 2069 umount_tree(child, UMOUNT_SYNC); 2070 } 2071 unlock_mount_hash(); 2072 cleanup_group_ids(source_mnt, NULL); 2073 out: 2074 ns->pending_mounts = 0; 2075 2076 read_seqlock_excl(&mount_lock); 2077 put_mountpoint(smp); 2078 read_sequnlock_excl(&mount_lock); 2079 2080 return err; 2081 } 2082 2083 static struct mountpoint *lock_mount(struct path *path) 2084 { 2085 struct vfsmount *mnt; 2086 struct dentry *dentry = path->dentry; 2087 retry: 2088 inode_lock(dentry->d_inode); 2089 if (unlikely(cant_mount(dentry))) { 2090 inode_unlock(dentry->d_inode); 2091 return ERR_PTR(-ENOENT); 2092 } 2093 namespace_lock(); 2094 mnt = lookup_mnt(path); 2095 if (likely(!mnt)) { 2096 struct mountpoint *mp = get_mountpoint(dentry); 2097 if (IS_ERR(mp)) { 2098 namespace_unlock(); 2099 inode_unlock(dentry->d_inode); 2100 return mp; 2101 } 2102 return mp; 2103 } 2104 namespace_unlock(); 2105 inode_unlock(path->dentry->d_inode); 2106 path_put(path); 2107 path->mnt = mnt; 2108 dentry = path->dentry = dget(mnt->mnt_root); 2109 goto retry; 2110 } 2111 2112 static void unlock_mount(struct mountpoint *where) 2113 { 2114 struct dentry *dentry = where->m_dentry; 2115 2116 read_seqlock_excl(&mount_lock); 2117 put_mountpoint(where); 2118 read_sequnlock_excl(&mount_lock); 2119 2120 namespace_unlock(); 2121 inode_unlock(dentry->d_inode); 2122 } 2123 2124 static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp) 2125 { 2126 if (mnt->mnt.mnt_sb->s_flags & SB_NOUSER) 2127 return -EINVAL; 2128 2129 if (d_is_dir(mp->m_dentry) != 2130 d_is_dir(mnt->mnt.mnt_root)) 2131 return -ENOTDIR; 2132 2133 return attach_recursive_mnt(mnt, p, mp, NULL); 2134 } 2135 2136 /* 2137 * Sanity check the flags to change_mnt_propagation. 2138 */ 2139 2140 static int flags_to_propagation_type(int ms_flags) 2141 { 2142 int type = ms_flags & ~(MS_REC | MS_SILENT); 2143 2144 /* Fail if any non-propagation flags are set */ 2145 if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE)) 2146 return 0; 2147 /* Only one propagation flag should be set */ 2148 if (!is_power_of_2(type)) 2149 return 0; 2150 return type; 2151 } 2152 2153 /* 2154 * recursively change the type of the mountpoint. 2155 */ 2156 static int do_change_type(struct path *path, int ms_flags) 2157 { 2158 struct mount *m; 2159 struct mount *mnt = real_mount(path->mnt); 2160 int recurse = ms_flags & MS_REC; 2161 int type; 2162 int err = 0; 2163 2164 if (path->dentry != path->mnt->mnt_root) 2165 return -EINVAL; 2166 2167 type = flags_to_propagation_type(ms_flags); 2168 if (!type) 2169 return -EINVAL; 2170 2171 namespace_lock(); 2172 if (type == MS_SHARED) { 2173 err = invent_group_ids(mnt, recurse); 2174 if (err) 2175 goto out_unlock; 2176 } 2177 2178 lock_mount_hash(); 2179 for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL)) 2180 change_mnt_propagation(m, type); 2181 unlock_mount_hash(); 2182 2183 out_unlock: 2184 namespace_unlock(); 2185 return err; 2186 } 2187 2188 static bool has_locked_children(struct mount *mnt, struct dentry *dentry) 2189 { 2190 struct mount *child; 2191 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) { 2192 if (!is_subdir(child->mnt_mountpoint, dentry)) 2193 continue; 2194 2195 if (child->mnt.mnt_flags & MNT_LOCKED) 2196 return true; 2197 } 2198 return false; 2199 } 2200 2201 /* 2202 * do loopback mount. 2203 */ 2204 static int do_loopback(struct path *path, const char *old_name, 2205 int recurse) 2206 { 2207 struct path old_path; 2208 struct mount *mnt = NULL, *old, *parent; 2209 struct mountpoint *mp; 2210 int err; 2211 if (!old_name || !*old_name) 2212 return -EINVAL; 2213 err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path); 2214 if (err) 2215 return err; 2216 2217 err = -EINVAL; 2218 if (mnt_ns_loop(old_path.dentry)) 2219 goto out; 2220 2221 mp = lock_mount(path); 2222 err = PTR_ERR(mp); 2223 if (IS_ERR(mp)) 2224 goto out; 2225 2226 old = real_mount(old_path.mnt); 2227 parent = real_mount(path->mnt); 2228 2229 err = -EINVAL; 2230 if (IS_MNT_UNBINDABLE(old)) 2231 goto out2; 2232 2233 if (!check_mnt(parent)) 2234 goto out2; 2235 2236 if (!check_mnt(old) && old_path.dentry->d_op != &ns_dentry_operations) 2237 goto out2; 2238 2239 if (!recurse && has_locked_children(old, old_path.dentry)) 2240 goto out2; 2241 2242 if (recurse) 2243 mnt = copy_tree(old, old_path.dentry, CL_COPY_MNT_NS_FILE); 2244 else 2245 mnt = clone_mnt(old, old_path.dentry, 0); 2246 2247 if (IS_ERR(mnt)) { 2248 err = PTR_ERR(mnt); 2249 goto out2; 2250 } 2251 2252 mnt->mnt.mnt_flags &= ~MNT_LOCKED; 2253 2254 err = graft_tree(mnt, parent, mp); 2255 if (err) { 2256 lock_mount_hash(); 2257 umount_tree(mnt, UMOUNT_SYNC); 2258 unlock_mount_hash(); 2259 } 2260 out2: 2261 unlock_mount(mp); 2262 out: 2263 path_put(&old_path); 2264 return err; 2265 } 2266 2267 static int change_mount_flags(struct vfsmount *mnt, int ms_flags) 2268 { 2269 int error = 0; 2270 int readonly_request = 0; 2271 2272 if (ms_flags & MS_RDONLY) 2273 readonly_request = 1; 2274 if (readonly_request == __mnt_is_readonly(mnt)) 2275 return 0; 2276 2277 if (readonly_request) 2278 error = mnt_make_readonly(real_mount(mnt)); 2279 else 2280 __mnt_unmake_readonly(real_mount(mnt)); 2281 return error; 2282 } 2283 2284 /* 2285 * change filesystem flags. dir should be a physical root of filesystem. 2286 * If you've mounted a non-root directory somewhere and want to do remount 2287 * on it - tough luck. 2288 */ 2289 static int do_remount(struct path *path, int ms_flags, int sb_flags, 2290 int mnt_flags, void *data) 2291 { 2292 int err; 2293 struct super_block *sb = path->mnt->mnt_sb; 2294 struct mount *mnt = real_mount(path->mnt); 2295 2296 if (!check_mnt(mnt)) 2297 return -EINVAL; 2298 2299 if (path->dentry != path->mnt->mnt_root) 2300 return -EINVAL; 2301 2302 /* Don't allow changing of locked mnt flags. 2303 * 2304 * No locks need to be held here while testing the various 2305 * MNT_LOCK flags because those flags can never be cleared 2306 * once they are set. 2307 */ 2308 if ((mnt->mnt.mnt_flags & MNT_LOCK_READONLY) && 2309 !(mnt_flags & MNT_READONLY)) { 2310 return -EPERM; 2311 } 2312 if ((mnt->mnt.mnt_flags & MNT_LOCK_NODEV) && 2313 !(mnt_flags & MNT_NODEV)) { 2314 return -EPERM; 2315 } 2316 if ((mnt->mnt.mnt_flags & MNT_LOCK_NOSUID) && 2317 !(mnt_flags & MNT_NOSUID)) { 2318 return -EPERM; 2319 } 2320 if ((mnt->mnt.mnt_flags & MNT_LOCK_NOEXEC) && 2321 !(mnt_flags & MNT_NOEXEC)) { 2322 return -EPERM; 2323 } 2324 if ((mnt->mnt.mnt_flags & MNT_LOCK_ATIME) && 2325 ((mnt->mnt.mnt_flags & MNT_ATIME_MASK) != (mnt_flags & MNT_ATIME_MASK))) { 2326 return -EPERM; 2327 } 2328 2329 err = security_sb_remount(sb, data); 2330 if (err) 2331 return err; 2332 2333 down_write(&sb->s_umount); 2334 if (ms_flags & MS_BIND) 2335 err = change_mount_flags(path->mnt, ms_flags); 2336 else if (!ns_capable(sb->s_user_ns, CAP_SYS_ADMIN)) 2337 err = -EPERM; 2338 else 2339 err = do_remount_sb(sb, sb_flags, data, 0); 2340 if (!err) { 2341 lock_mount_hash(); 2342 mnt_flags |= mnt->mnt.mnt_flags & ~MNT_USER_SETTABLE_MASK; 2343 mnt->mnt.mnt_flags = mnt_flags; 2344 touch_mnt_namespace(mnt->mnt_ns); 2345 unlock_mount_hash(); 2346 } 2347 up_write(&sb->s_umount); 2348 return err; 2349 } 2350 2351 static inline int tree_contains_unbindable(struct mount *mnt) 2352 { 2353 struct mount *p; 2354 for (p = mnt; p; p = next_mnt(p, mnt)) { 2355 if (IS_MNT_UNBINDABLE(p)) 2356 return 1; 2357 } 2358 return 0; 2359 } 2360 2361 static int do_move_mount(struct path *path, const char *old_name) 2362 { 2363 struct path old_path, parent_path; 2364 struct mount *p; 2365 struct mount *old; 2366 struct mountpoint *mp; 2367 int err; 2368 if (!old_name || !*old_name) 2369 return -EINVAL; 2370 err = kern_path(old_name, LOOKUP_FOLLOW, &old_path); 2371 if (err) 2372 return err; 2373 2374 mp = lock_mount(path); 2375 err = PTR_ERR(mp); 2376 if (IS_ERR(mp)) 2377 goto out; 2378 2379 old = real_mount(old_path.mnt); 2380 p = real_mount(path->mnt); 2381 2382 err = -EINVAL; 2383 if (!check_mnt(p) || !check_mnt(old)) 2384 goto out1; 2385 2386 if (old->mnt.mnt_flags & MNT_LOCKED) 2387 goto out1; 2388 2389 err = -EINVAL; 2390 if (old_path.dentry != old_path.mnt->mnt_root) 2391 goto out1; 2392 2393 if (!mnt_has_parent(old)) 2394 goto out1; 2395 2396 if (d_is_dir(path->dentry) != 2397 d_is_dir(old_path.dentry)) 2398 goto out1; 2399 /* 2400 * Don't move a mount residing in a shared parent. 2401 */ 2402 if (IS_MNT_SHARED(old->mnt_parent)) 2403 goto out1; 2404 /* 2405 * Don't move a mount tree containing unbindable mounts to a destination 2406 * mount which is shared. 2407 */ 2408 if (IS_MNT_SHARED(p) && tree_contains_unbindable(old)) 2409 goto out1; 2410 err = -ELOOP; 2411 for (; mnt_has_parent(p); p = p->mnt_parent) 2412 if (p == old) 2413 goto out1; 2414 2415 err = attach_recursive_mnt(old, real_mount(path->mnt), mp, &parent_path); 2416 if (err) 2417 goto out1; 2418 2419 /* if the mount is moved, it should no longer be expire 2420 * automatically */ 2421 list_del_init(&old->mnt_expire); 2422 out1: 2423 unlock_mount(mp); 2424 out: 2425 if (!err) 2426 path_put(&parent_path); 2427 path_put(&old_path); 2428 return err; 2429 } 2430 2431 static struct vfsmount *fs_set_subtype(struct vfsmount *mnt, const char *fstype) 2432 { 2433 int err; 2434 const char *subtype = strchr(fstype, '.'); 2435 if (subtype) { 2436 subtype++; 2437 err = -EINVAL; 2438 if (!subtype[0]) 2439 goto err; 2440 } else 2441 subtype = ""; 2442 2443 mnt->mnt_sb->s_subtype = kstrdup(subtype, GFP_KERNEL); 2444 err = -ENOMEM; 2445 if (!mnt->mnt_sb->s_subtype) 2446 goto err; 2447 return mnt; 2448 2449 err: 2450 mntput(mnt); 2451 return ERR_PTR(err); 2452 } 2453 2454 /* 2455 * add a mount into a namespace's mount tree 2456 */ 2457 static int do_add_mount(struct mount *newmnt, struct path *path, int mnt_flags) 2458 { 2459 struct mountpoint *mp; 2460 struct mount *parent; 2461 int err; 2462 2463 mnt_flags &= ~MNT_INTERNAL_FLAGS; 2464 2465 mp = lock_mount(path); 2466 if (IS_ERR(mp)) 2467 return PTR_ERR(mp); 2468 2469 parent = real_mount(path->mnt); 2470 err = -EINVAL; 2471 if (unlikely(!check_mnt(parent))) { 2472 /* that's acceptable only for automounts done in private ns */ 2473 if (!(mnt_flags & MNT_SHRINKABLE)) 2474 goto unlock; 2475 /* ... and for those we'd better have mountpoint still alive */ 2476 if (!parent->mnt_ns) 2477 goto unlock; 2478 } 2479 2480 /* Refuse the same filesystem on the same mount point */ 2481 err = -EBUSY; 2482 if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb && 2483 path->mnt->mnt_root == path->dentry) 2484 goto unlock; 2485 2486 err = -EINVAL; 2487 if (d_is_symlink(newmnt->mnt.mnt_root)) 2488 goto unlock; 2489 2490 newmnt->mnt.mnt_flags = mnt_flags; 2491 err = graft_tree(newmnt, parent, mp); 2492 2493 unlock: 2494 unlock_mount(mp); 2495 return err; 2496 } 2497 2498 static bool mount_too_revealing(struct vfsmount *mnt, int *new_mnt_flags); 2499 2500 /* 2501 * create a new mount for userspace and request it to be added into the 2502 * namespace's tree 2503 */ 2504 static int do_new_mount(struct path *path, const char *fstype, int sb_flags, 2505 int mnt_flags, const char *name, void *data) 2506 { 2507 struct file_system_type *type; 2508 struct vfsmount *mnt; 2509 int err; 2510 2511 if (!fstype) 2512 return -EINVAL; 2513 2514 type = get_fs_type(fstype); 2515 if (!type) 2516 return -ENODEV; 2517 2518 mnt = vfs_kern_mount(type, sb_flags, name, data); 2519 if (!IS_ERR(mnt) && (type->fs_flags & FS_HAS_SUBTYPE) && 2520 !mnt->mnt_sb->s_subtype) 2521 mnt = fs_set_subtype(mnt, fstype); 2522 2523 put_filesystem(type); 2524 if (IS_ERR(mnt)) 2525 return PTR_ERR(mnt); 2526 2527 if (mount_too_revealing(mnt, &mnt_flags)) { 2528 mntput(mnt); 2529 return -EPERM; 2530 } 2531 2532 err = do_add_mount(real_mount(mnt), path, mnt_flags); 2533 if (err) 2534 mntput(mnt); 2535 return err; 2536 } 2537 2538 int finish_automount(struct vfsmount *m, struct path *path) 2539 { 2540 struct mount *mnt = real_mount(m); 2541 int err; 2542 /* The new mount record should have at least 2 refs to prevent it being 2543 * expired before we get a chance to add it 2544 */ 2545 BUG_ON(mnt_get_count(mnt) < 2); 2546 2547 if (m->mnt_sb == path->mnt->mnt_sb && 2548 m->mnt_root == path->dentry) { 2549 err = -ELOOP; 2550 goto fail; 2551 } 2552 2553 err = do_add_mount(mnt, path, path->mnt->mnt_flags | MNT_SHRINKABLE); 2554 if (!err) 2555 return 0; 2556 fail: 2557 /* remove m from any expiration list it may be on */ 2558 if (!list_empty(&mnt->mnt_expire)) { 2559 namespace_lock(); 2560 list_del_init(&mnt->mnt_expire); 2561 namespace_unlock(); 2562 } 2563 mntput(m); 2564 mntput(m); 2565 return err; 2566 } 2567 2568 /** 2569 * mnt_set_expiry - Put a mount on an expiration list 2570 * @mnt: The mount to list. 2571 * @expiry_list: The list to add the mount to. 2572 */ 2573 void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list) 2574 { 2575 namespace_lock(); 2576 2577 list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list); 2578 2579 namespace_unlock(); 2580 } 2581 EXPORT_SYMBOL(mnt_set_expiry); 2582 2583 /* 2584 * process a list of expirable mountpoints with the intent of discarding any 2585 * mountpoints that aren't in use and haven't been touched since last we came 2586 * here 2587 */ 2588 void mark_mounts_for_expiry(struct list_head *mounts) 2589 { 2590 struct mount *mnt, *next; 2591 LIST_HEAD(graveyard); 2592 2593 if (list_empty(mounts)) 2594 return; 2595 2596 namespace_lock(); 2597 lock_mount_hash(); 2598 2599 /* extract from the expiration list every vfsmount that matches the 2600 * following criteria: 2601 * - only referenced by its parent vfsmount 2602 * - still marked for expiry (marked on the last call here; marks are 2603 * cleared by mntput()) 2604 */ 2605 list_for_each_entry_safe(mnt, next, mounts, mnt_expire) { 2606 if (!xchg(&mnt->mnt_expiry_mark, 1) || 2607 propagate_mount_busy(mnt, 1)) 2608 continue; 2609 list_move(&mnt->mnt_expire, &graveyard); 2610 } 2611 while (!list_empty(&graveyard)) { 2612 mnt = list_first_entry(&graveyard, struct mount, mnt_expire); 2613 touch_mnt_namespace(mnt->mnt_ns); 2614 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC); 2615 } 2616 unlock_mount_hash(); 2617 namespace_unlock(); 2618 } 2619 2620 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry); 2621 2622 /* 2623 * Ripoff of 'select_parent()' 2624 * 2625 * search the list of submounts for a given mountpoint, and move any 2626 * shrinkable submounts to the 'graveyard' list. 2627 */ 2628 static int select_submounts(struct mount *parent, struct list_head *graveyard) 2629 { 2630 struct mount *this_parent = parent; 2631 struct list_head *next; 2632 int found = 0; 2633 2634 repeat: 2635 next = this_parent->mnt_mounts.next; 2636 resume: 2637 while (next != &this_parent->mnt_mounts) { 2638 struct list_head *tmp = next; 2639 struct mount *mnt = list_entry(tmp, struct mount, mnt_child); 2640 2641 next = tmp->next; 2642 if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE)) 2643 continue; 2644 /* 2645 * Descend a level if the d_mounts list is non-empty. 2646 */ 2647 if (!list_empty(&mnt->mnt_mounts)) { 2648 this_parent = mnt; 2649 goto repeat; 2650 } 2651 2652 if (!propagate_mount_busy(mnt, 1)) { 2653 list_move_tail(&mnt->mnt_expire, graveyard); 2654 found++; 2655 } 2656 } 2657 /* 2658 * All done at this level ... ascend and resume the search 2659 */ 2660 if (this_parent != parent) { 2661 next = this_parent->mnt_child.next; 2662 this_parent = this_parent->mnt_parent; 2663 goto resume; 2664 } 2665 return found; 2666 } 2667 2668 /* 2669 * process a list of expirable mountpoints with the intent of discarding any 2670 * submounts of a specific parent mountpoint 2671 * 2672 * mount_lock must be held for write 2673 */ 2674 static void shrink_submounts(struct mount *mnt) 2675 { 2676 LIST_HEAD(graveyard); 2677 struct mount *m; 2678 2679 /* extract submounts of 'mountpoint' from the expiration list */ 2680 while (select_submounts(mnt, &graveyard)) { 2681 while (!list_empty(&graveyard)) { 2682 m = list_first_entry(&graveyard, struct mount, 2683 mnt_expire); 2684 touch_mnt_namespace(m->mnt_ns); 2685 umount_tree(m, UMOUNT_PROPAGATE|UMOUNT_SYNC); 2686 } 2687 } 2688 } 2689 2690 /* 2691 * Some copy_from_user() implementations do not return the exact number of 2692 * bytes remaining to copy on a fault. But copy_mount_options() requires that. 2693 * Note that this function differs from copy_from_user() in that it will oops 2694 * on bad values of `to', rather than returning a short copy. 2695 */ 2696 static long exact_copy_from_user(void *to, const void __user * from, 2697 unsigned long n) 2698 { 2699 char *t = to; 2700 const char __user *f = from; 2701 char c; 2702 2703 if (!access_ok(VERIFY_READ, from, n)) 2704 return n; 2705 2706 while (n) { 2707 if (__get_user(c, f)) { 2708 memset(t, 0, n); 2709 break; 2710 } 2711 *t++ = c; 2712 f++; 2713 n--; 2714 } 2715 return n; 2716 } 2717 2718 void *copy_mount_options(const void __user * data) 2719 { 2720 int i; 2721 unsigned long size; 2722 char *copy; 2723 2724 if (!data) 2725 return NULL; 2726 2727 copy = kmalloc(PAGE_SIZE, GFP_KERNEL); 2728 if (!copy) 2729 return ERR_PTR(-ENOMEM); 2730 2731 /* We only care that *some* data at the address the user 2732 * gave us is valid. Just in case, we'll zero 2733 * the remainder of the page. 2734 */ 2735 /* copy_from_user cannot cross TASK_SIZE ! */ 2736 size = TASK_SIZE - (unsigned long)data; 2737 if (size > PAGE_SIZE) 2738 size = PAGE_SIZE; 2739 2740 i = size - exact_copy_from_user(copy, data, size); 2741 if (!i) { 2742 kfree(copy); 2743 return ERR_PTR(-EFAULT); 2744 } 2745 if (i != PAGE_SIZE) 2746 memset(copy + i, 0, PAGE_SIZE - i); 2747 return copy; 2748 } 2749 2750 char *copy_mount_string(const void __user *data) 2751 { 2752 return data ? strndup_user(data, PAGE_SIZE) : NULL; 2753 } 2754 2755 /* 2756 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to 2757 * be given to the mount() call (ie: read-only, no-dev, no-suid etc). 2758 * 2759 * data is a (void *) that can point to any structure up to 2760 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent 2761 * information (or be NULL). 2762 * 2763 * Pre-0.97 versions of mount() didn't have a flags word. 2764 * When the flags word was introduced its top half was required 2765 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9. 2766 * Therefore, if this magic number is present, it carries no information 2767 * and must be discarded. 2768 */ 2769 long do_mount(const char *dev_name, const char __user *dir_name, 2770 const char *type_page, unsigned long flags, void *data_page) 2771 { 2772 struct path path; 2773 unsigned int mnt_flags = 0, sb_flags; 2774 int retval = 0; 2775 2776 /* Discard magic */ 2777 if ((flags & MS_MGC_MSK) == MS_MGC_VAL) 2778 flags &= ~MS_MGC_MSK; 2779 2780 /* Basic sanity checks */ 2781 if (data_page) 2782 ((char *)data_page)[PAGE_SIZE - 1] = 0; 2783 2784 if (flags & MS_NOUSER) 2785 return -EINVAL; 2786 2787 /* ... and get the mountpoint */ 2788 retval = user_path(dir_name, &path); 2789 if (retval) 2790 return retval; 2791 2792 retval = security_sb_mount(dev_name, &path, 2793 type_page, flags, data_page); 2794 if (!retval && !may_mount()) 2795 retval = -EPERM; 2796 if (!retval && (flags & SB_MANDLOCK) && !may_mandlock()) 2797 retval = -EPERM; 2798 if (retval) 2799 goto dput_out; 2800 2801 /* Default to relatime unless overriden */ 2802 if (!(flags & MS_NOATIME)) 2803 mnt_flags |= MNT_RELATIME; 2804 2805 /* Separate the per-mountpoint flags */ 2806 if (flags & MS_NOSUID) 2807 mnt_flags |= MNT_NOSUID; 2808 if (flags & MS_NODEV) 2809 mnt_flags |= MNT_NODEV; 2810 if (flags & MS_NOEXEC) 2811 mnt_flags |= MNT_NOEXEC; 2812 if (flags & MS_NOATIME) 2813 mnt_flags |= MNT_NOATIME; 2814 if (flags & MS_NODIRATIME) 2815 mnt_flags |= MNT_NODIRATIME; 2816 if (flags & MS_STRICTATIME) 2817 mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME); 2818 if (flags & MS_RDONLY) 2819 mnt_flags |= MNT_READONLY; 2820 2821 /* The default atime for remount is preservation */ 2822 if ((flags & MS_REMOUNT) && 2823 ((flags & (MS_NOATIME | MS_NODIRATIME | MS_RELATIME | 2824 MS_STRICTATIME)) == 0)) { 2825 mnt_flags &= ~MNT_ATIME_MASK; 2826 mnt_flags |= path.mnt->mnt_flags & MNT_ATIME_MASK; 2827 } 2828 2829 sb_flags = flags & (SB_RDONLY | 2830 SB_SYNCHRONOUS | 2831 SB_MANDLOCK | 2832 SB_DIRSYNC | 2833 SB_SILENT | 2834 SB_POSIXACL | 2835 SB_LAZYTIME | 2836 SB_I_VERSION); 2837 2838 if (flags & MS_REMOUNT) 2839 retval = do_remount(&path, flags, sb_flags, mnt_flags, 2840 data_page); 2841 else if (flags & MS_BIND) 2842 retval = do_loopback(&path, dev_name, flags & MS_REC); 2843 else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE)) 2844 retval = do_change_type(&path, flags); 2845 else if (flags & MS_MOVE) 2846 retval = do_move_mount(&path, dev_name); 2847 else 2848 retval = do_new_mount(&path, type_page, sb_flags, mnt_flags, 2849 dev_name, data_page); 2850 dput_out: 2851 path_put(&path); 2852 return retval; 2853 } 2854 2855 static struct ucounts *inc_mnt_namespaces(struct user_namespace *ns) 2856 { 2857 return inc_ucount(ns, current_euid(), UCOUNT_MNT_NAMESPACES); 2858 } 2859 2860 static void dec_mnt_namespaces(struct ucounts *ucounts) 2861 { 2862 dec_ucount(ucounts, UCOUNT_MNT_NAMESPACES); 2863 } 2864 2865 static void free_mnt_ns(struct mnt_namespace *ns) 2866 { 2867 ns_free_inum(&ns->ns); 2868 dec_mnt_namespaces(ns->ucounts); 2869 put_user_ns(ns->user_ns); 2870 kfree(ns); 2871 } 2872 2873 /* 2874 * Assign a sequence number so we can detect when we attempt to bind 2875 * mount a reference to an older mount namespace into the current 2876 * mount namespace, preventing reference counting loops. A 64bit 2877 * number incrementing at 10Ghz will take 12,427 years to wrap which 2878 * is effectively never, so we can ignore the possibility. 2879 */ 2880 static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1); 2881 2882 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns) 2883 { 2884 struct mnt_namespace *new_ns; 2885 struct ucounts *ucounts; 2886 int ret; 2887 2888 ucounts = inc_mnt_namespaces(user_ns); 2889 if (!ucounts) 2890 return ERR_PTR(-ENOSPC); 2891 2892 new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL); 2893 if (!new_ns) { 2894 dec_mnt_namespaces(ucounts); 2895 return ERR_PTR(-ENOMEM); 2896 } 2897 ret = ns_alloc_inum(&new_ns->ns); 2898 if (ret) { 2899 kfree(new_ns); 2900 dec_mnt_namespaces(ucounts); 2901 return ERR_PTR(ret); 2902 } 2903 new_ns->ns.ops = &mntns_operations; 2904 new_ns->seq = atomic64_add_return(1, &mnt_ns_seq); 2905 atomic_set(&new_ns->count, 1); 2906 new_ns->root = NULL; 2907 INIT_LIST_HEAD(&new_ns->list); 2908 init_waitqueue_head(&new_ns->poll); 2909 new_ns->event = 0; 2910 new_ns->user_ns = get_user_ns(user_ns); 2911 new_ns->ucounts = ucounts; 2912 new_ns->mounts = 0; 2913 new_ns->pending_mounts = 0; 2914 return new_ns; 2915 } 2916 2917 __latent_entropy 2918 struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns, 2919 struct user_namespace *user_ns, struct fs_struct *new_fs) 2920 { 2921 struct mnt_namespace *new_ns; 2922 struct vfsmount *rootmnt = NULL, *pwdmnt = NULL; 2923 struct mount *p, *q; 2924 struct mount *old; 2925 struct mount *new; 2926 int copy_flags; 2927 2928 BUG_ON(!ns); 2929 2930 if (likely(!(flags & CLONE_NEWNS))) { 2931 get_mnt_ns(ns); 2932 return ns; 2933 } 2934 2935 old = ns->root; 2936 2937 new_ns = alloc_mnt_ns(user_ns); 2938 if (IS_ERR(new_ns)) 2939 return new_ns; 2940 2941 namespace_lock(); 2942 /* First pass: copy the tree topology */ 2943 copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE; 2944 if (user_ns != ns->user_ns) 2945 copy_flags |= CL_SHARED_TO_SLAVE | CL_UNPRIVILEGED; 2946 new = copy_tree(old, old->mnt.mnt_root, copy_flags); 2947 if (IS_ERR(new)) { 2948 namespace_unlock(); 2949 free_mnt_ns(new_ns); 2950 return ERR_CAST(new); 2951 } 2952 new_ns->root = new; 2953 list_add_tail(&new_ns->list, &new->mnt_list); 2954 2955 /* 2956 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts 2957 * as belonging to new namespace. We have already acquired a private 2958 * fs_struct, so tsk->fs->lock is not needed. 2959 */ 2960 p = old; 2961 q = new; 2962 while (p) { 2963 q->mnt_ns = new_ns; 2964 new_ns->mounts++; 2965 if (new_fs) { 2966 if (&p->mnt == new_fs->root.mnt) { 2967 new_fs->root.mnt = mntget(&q->mnt); 2968 rootmnt = &p->mnt; 2969 } 2970 if (&p->mnt == new_fs->pwd.mnt) { 2971 new_fs->pwd.mnt = mntget(&q->mnt); 2972 pwdmnt = &p->mnt; 2973 } 2974 } 2975 p = next_mnt(p, old); 2976 q = next_mnt(q, new); 2977 if (!q) 2978 break; 2979 while (p->mnt.mnt_root != q->mnt.mnt_root) 2980 p = next_mnt(p, old); 2981 } 2982 namespace_unlock(); 2983 2984 if (rootmnt) 2985 mntput(rootmnt); 2986 if (pwdmnt) 2987 mntput(pwdmnt); 2988 2989 return new_ns; 2990 } 2991 2992 /** 2993 * create_mnt_ns - creates a private namespace and adds a root filesystem 2994 * @mnt: pointer to the new root filesystem mountpoint 2995 */ 2996 static struct mnt_namespace *create_mnt_ns(struct vfsmount *m) 2997 { 2998 struct mnt_namespace *new_ns = alloc_mnt_ns(&init_user_ns); 2999 if (!IS_ERR(new_ns)) { 3000 struct mount *mnt = real_mount(m); 3001 mnt->mnt_ns = new_ns; 3002 new_ns->root = mnt; 3003 new_ns->mounts++; 3004 list_add(&mnt->mnt_list, &new_ns->list); 3005 } else { 3006 mntput(m); 3007 } 3008 return new_ns; 3009 } 3010 3011 struct dentry *mount_subtree(struct vfsmount *mnt, const char *name) 3012 { 3013 struct mnt_namespace *ns; 3014 struct super_block *s; 3015 struct path path; 3016 int err; 3017 3018 ns = create_mnt_ns(mnt); 3019 if (IS_ERR(ns)) 3020 return ERR_CAST(ns); 3021 3022 err = vfs_path_lookup(mnt->mnt_root, mnt, 3023 name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path); 3024 3025 put_mnt_ns(ns); 3026 3027 if (err) 3028 return ERR_PTR(err); 3029 3030 /* trade a vfsmount reference for active sb one */ 3031 s = path.mnt->mnt_sb; 3032 atomic_inc(&s->s_active); 3033 mntput(path.mnt); 3034 /* lock the sucker */ 3035 down_write(&s->s_umount); 3036 /* ... and return the root of (sub)tree on it */ 3037 return path.dentry; 3038 } 3039 EXPORT_SYMBOL(mount_subtree); 3040 3041 int ksys_mount(char __user *dev_name, char __user *dir_name, char __user *type, 3042 unsigned long flags, void __user *data) 3043 { 3044 int ret; 3045 char *kernel_type; 3046 char *kernel_dev; 3047 void *options; 3048 3049 kernel_type = copy_mount_string(type); 3050 ret = PTR_ERR(kernel_type); 3051 if (IS_ERR(kernel_type)) 3052 goto out_type; 3053 3054 kernel_dev = copy_mount_string(dev_name); 3055 ret = PTR_ERR(kernel_dev); 3056 if (IS_ERR(kernel_dev)) 3057 goto out_dev; 3058 3059 options = copy_mount_options(data); 3060 ret = PTR_ERR(options); 3061 if (IS_ERR(options)) 3062 goto out_data; 3063 3064 ret = do_mount(kernel_dev, dir_name, kernel_type, flags, options); 3065 3066 kfree(options); 3067 out_data: 3068 kfree(kernel_dev); 3069 out_dev: 3070 kfree(kernel_type); 3071 out_type: 3072 return ret; 3073 } 3074 3075 SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name, 3076 char __user *, type, unsigned long, flags, void __user *, data) 3077 { 3078 return ksys_mount(dev_name, dir_name, type, flags, data); 3079 } 3080 3081 /* 3082 * Return true if path is reachable from root 3083 * 3084 * namespace_sem or mount_lock is held 3085 */ 3086 bool is_path_reachable(struct mount *mnt, struct dentry *dentry, 3087 const struct path *root) 3088 { 3089 while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) { 3090 dentry = mnt->mnt_mountpoint; 3091 mnt = mnt->mnt_parent; 3092 } 3093 return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry); 3094 } 3095 3096 bool path_is_under(const struct path *path1, const struct path *path2) 3097 { 3098 bool res; 3099 read_seqlock_excl(&mount_lock); 3100 res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2); 3101 read_sequnlock_excl(&mount_lock); 3102 return res; 3103 } 3104 EXPORT_SYMBOL(path_is_under); 3105 3106 /* 3107 * pivot_root Semantics: 3108 * Moves the root file system of the current process to the directory put_old, 3109 * makes new_root as the new root file system of the current process, and sets 3110 * root/cwd of all processes which had them on the current root to new_root. 3111 * 3112 * Restrictions: 3113 * The new_root and put_old must be directories, and must not be on the 3114 * same file system as the current process root. The put_old must be 3115 * underneath new_root, i.e. adding a non-zero number of /.. to the string 3116 * pointed to by put_old must yield the same directory as new_root. No other 3117 * file system may be mounted on put_old. After all, new_root is a mountpoint. 3118 * 3119 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem. 3120 * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives 3121 * in this situation. 3122 * 3123 * Notes: 3124 * - we don't move root/cwd if they are not at the root (reason: if something 3125 * cared enough to change them, it's probably wrong to force them elsewhere) 3126 * - it's okay to pick a root that isn't the root of a file system, e.g. 3127 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint, 3128 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root 3129 * first. 3130 */ 3131 SYSCALL_DEFINE2(pivot_root, const char __user *, new_root, 3132 const char __user *, put_old) 3133 { 3134 struct path new, old, parent_path, root_parent, root; 3135 struct mount *new_mnt, *root_mnt, *old_mnt; 3136 struct mountpoint *old_mp, *root_mp; 3137 int error; 3138 3139 if (!may_mount()) 3140 return -EPERM; 3141 3142 error = user_path_dir(new_root, &new); 3143 if (error) 3144 goto out0; 3145 3146 error = user_path_dir(put_old, &old); 3147 if (error) 3148 goto out1; 3149 3150 error = security_sb_pivotroot(&old, &new); 3151 if (error) 3152 goto out2; 3153 3154 get_fs_root(current->fs, &root); 3155 old_mp = lock_mount(&old); 3156 error = PTR_ERR(old_mp); 3157 if (IS_ERR(old_mp)) 3158 goto out3; 3159 3160 error = -EINVAL; 3161 new_mnt = real_mount(new.mnt); 3162 root_mnt = real_mount(root.mnt); 3163 old_mnt = real_mount(old.mnt); 3164 if (IS_MNT_SHARED(old_mnt) || 3165 IS_MNT_SHARED(new_mnt->mnt_parent) || 3166 IS_MNT_SHARED(root_mnt->mnt_parent)) 3167 goto out4; 3168 if (!check_mnt(root_mnt) || !check_mnt(new_mnt)) 3169 goto out4; 3170 if (new_mnt->mnt.mnt_flags & MNT_LOCKED) 3171 goto out4; 3172 error = -ENOENT; 3173 if (d_unlinked(new.dentry)) 3174 goto out4; 3175 error = -EBUSY; 3176 if (new_mnt == root_mnt || old_mnt == root_mnt) 3177 goto out4; /* loop, on the same file system */ 3178 error = -EINVAL; 3179 if (root.mnt->mnt_root != root.dentry) 3180 goto out4; /* not a mountpoint */ 3181 if (!mnt_has_parent(root_mnt)) 3182 goto out4; /* not attached */ 3183 root_mp = root_mnt->mnt_mp; 3184 if (new.mnt->mnt_root != new.dentry) 3185 goto out4; /* not a mountpoint */ 3186 if (!mnt_has_parent(new_mnt)) 3187 goto out4; /* not attached */ 3188 /* make sure we can reach put_old from new_root */ 3189 if (!is_path_reachable(old_mnt, old.dentry, &new)) 3190 goto out4; 3191 /* make certain new is below the root */ 3192 if (!is_path_reachable(new_mnt, new.dentry, &root)) 3193 goto out4; 3194 root_mp->m_count++; /* pin it so it won't go away */ 3195 lock_mount_hash(); 3196 detach_mnt(new_mnt, &parent_path); 3197 detach_mnt(root_mnt, &root_parent); 3198 if (root_mnt->mnt.mnt_flags & MNT_LOCKED) { 3199 new_mnt->mnt.mnt_flags |= MNT_LOCKED; 3200 root_mnt->mnt.mnt_flags &= ~MNT_LOCKED; 3201 } 3202 /* mount old root on put_old */ 3203 attach_mnt(root_mnt, old_mnt, old_mp); 3204 /* mount new_root on / */ 3205 attach_mnt(new_mnt, real_mount(root_parent.mnt), root_mp); 3206 touch_mnt_namespace(current->nsproxy->mnt_ns); 3207 /* A moved mount should not expire automatically */ 3208 list_del_init(&new_mnt->mnt_expire); 3209 put_mountpoint(root_mp); 3210 unlock_mount_hash(); 3211 chroot_fs_refs(&root, &new); 3212 error = 0; 3213 out4: 3214 unlock_mount(old_mp); 3215 if (!error) { 3216 path_put(&root_parent); 3217 path_put(&parent_path); 3218 } 3219 out3: 3220 path_put(&root); 3221 out2: 3222 path_put(&old); 3223 out1: 3224 path_put(&new); 3225 out0: 3226 return error; 3227 } 3228 3229 static void __init init_mount_tree(void) 3230 { 3231 struct vfsmount *mnt; 3232 struct mnt_namespace *ns; 3233 struct path root; 3234 struct file_system_type *type; 3235 3236 type = get_fs_type("rootfs"); 3237 if (!type) 3238 panic("Can't find rootfs type"); 3239 mnt = vfs_kern_mount(type, 0, "rootfs", NULL); 3240 put_filesystem(type); 3241 if (IS_ERR(mnt)) 3242 panic("Can't create rootfs"); 3243 3244 ns = create_mnt_ns(mnt); 3245 if (IS_ERR(ns)) 3246 panic("Can't allocate initial namespace"); 3247 3248 init_task.nsproxy->mnt_ns = ns; 3249 get_mnt_ns(ns); 3250 3251 root.mnt = mnt; 3252 root.dentry = mnt->mnt_root; 3253 mnt->mnt_flags |= MNT_LOCKED; 3254 3255 set_fs_pwd(current->fs, &root); 3256 set_fs_root(current->fs, &root); 3257 } 3258 3259 void __init mnt_init(void) 3260 { 3261 int err; 3262 3263 mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount), 3264 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL); 3265 3266 mount_hashtable = alloc_large_system_hash("Mount-cache", 3267 sizeof(struct hlist_head), 3268 mhash_entries, 19, 3269 HASH_ZERO, 3270 &m_hash_shift, &m_hash_mask, 0, 0); 3271 mountpoint_hashtable = alloc_large_system_hash("Mountpoint-cache", 3272 sizeof(struct hlist_head), 3273 mphash_entries, 19, 3274 HASH_ZERO, 3275 &mp_hash_shift, &mp_hash_mask, 0, 0); 3276 3277 if (!mount_hashtable || !mountpoint_hashtable) 3278 panic("Failed to allocate mount hash table\n"); 3279 3280 kernfs_init(); 3281 3282 err = sysfs_init(); 3283 if (err) 3284 printk(KERN_WARNING "%s: sysfs_init error: %d\n", 3285 __func__, err); 3286 fs_kobj = kobject_create_and_add("fs", NULL); 3287 if (!fs_kobj) 3288 printk(KERN_WARNING "%s: kobj create error\n", __func__); 3289 init_rootfs(); 3290 init_mount_tree(); 3291 } 3292 3293 void put_mnt_ns(struct mnt_namespace *ns) 3294 { 3295 if (!atomic_dec_and_test(&ns->count)) 3296 return; 3297 drop_collected_mounts(&ns->root->mnt); 3298 free_mnt_ns(ns); 3299 } 3300 3301 struct vfsmount *kern_mount_data(struct file_system_type *type, void *data) 3302 { 3303 struct vfsmount *mnt; 3304 mnt = vfs_kern_mount(type, SB_KERNMOUNT, type->name, data); 3305 if (!IS_ERR(mnt)) { 3306 /* 3307 * it is a longterm mount, don't release mnt until 3308 * we unmount before file sys is unregistered 3309 */ 3310 real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL; 3311 } 3312 return mnt; 3313 } 3314 EXPORT_SYMBOL_GPL(kern_mount_data); 3315 3316 void kern_unmount(struct vfsmount *mnt) 3317 { 3318 /* release long term mount so mount point can be released */ 3319 if (!IS_ERR_OR_NULL(mnt)) { 3320 real_mount(mnt)->mnt_ns = NULL; 3321 synchronize_rcu(); /* yecchhh... */ 3322 mntput(mnt); 3323 } 3324 } 3325 EXPORT_SYMBOL(kern_unmount); 3326 3327 bool our_mnt(struct vfsmount *mnt) 3328 { 3329 return check_mnt(real_mount(mnt)); 3330 } 3331 3332 bool current_chrooted(void) 3333 { 3334 /* Does the current process have a non-standard root */ 3335 struct path ns_root; 3336 struct path fs_root; 3337 bool chrooted; 3338 3339 /* Find the namespace root */ 3340 ns_root.mnt = ¤t->nsproxy->mnt_ns->root->mnt; 3341 ns_root.dentry = ns_root.mnt->mnt_root; 3342 path_get(&ns_root); 3343 while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root)) 3344 ; 3345 3346 get_fs_root(current->fs, &fs_root); 3347 3348 chrooted = !path_equal(&fs_root, &ns_root); 3349 3350 path_put(&fs_root); 3351 path_put(&ns_root); 3352 3353 return chrooted; 3354 } 3355 3356 static bool mnt_already_visible(struct mnt_namespace *ns, struct vfsmount *new, 3357 int *new_mnt_flags) 3358 { 3359 int new_flags = *new_mnt_flags; 3360 struct mount *mnt; 3361 bool visible = false; 3362 3363 down_read(&namespace_sem); 3364 list_for_each_entry(mnt, &ns->list, mnt_list) { 3365 struct mount *child; 3366 int mnt_flags; 3367 3368 if (mnt->mnt.mnt_sb->s_type != new->mnt_sb->s_type) 3369 continue; 3370 3371 /* This mount is not fully visible if it's root directory 3372 * is not the root directory of the filesystem. 3373 */ 3374 if (mnt->mnt.mnt_root != mnt->mnt.mnt_sb->s_root) 3375 continue; 3376 3377 /* A local view of the mount flags */ 3378 mnt_flags = mnt->mnt.mnt_flags; 3379 3380 /* Don't miss readonly hidden in the superblock flags */ 3381 if (sb_rdonly(mnt->mnt.mnt_sb)) 3382 mnt_flags |= MNT_LOCK_READONLY; 3383 3384 /* Verify the mount flags are equal to or more permissive 3385 * than the proposed new mount. 3386 */ 3387 if ((mnt_flags & MNT_LOCK_READONLY) && 3388 !(new_flags & MNT_READONLY)) 3389 continue; 3390 if ((mnt_flags & MNT_LOCK_ATIME) && 3391 ((mnt_flags & MNT_ATIME_MASK) != (new_flags & MNT_ATIME_MASK))) 3392 continue; 3393 3394 /* This mount is not fully visible if there are any 3395 * locked child mounts that cover anything except for 3396 * empty directories. 3397 */ 3398 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) { 3399 struct inode *inode = child->mnt_mountpoint->d_inode; 3400 /* Only worry about locked mounts */ 3401 if (!(child->mnt.mnt_flags & MNT_LOCKED)) 3402 continue; 3403 /* Is the directory permanetly empty? */ 3404 if (!is_empty_dir_inode(inode)) 3405 goto next; 3406 } 3407 /* Preserve the locked attributes */ 3408 *new_mnt_flags |= mnt_flags & (MNT_LOCK_READONLY | \ 3409 MNT_LOCK_ATIME); 3410 visible = true; 3411 goto found; 3412 next: ; 3413 } 3414 found: 3415 up_read(&namespace_sem); 3416 return visible; 3417 } 3418 3419 static bool mount_too_revealing(struct vfsmount *mnt, int *new_mnt_flags) 3420 { 3421 const unsigned long required_iflags = SB_I_NOEXEC | SB_I_NODEV; 3422 struct mnt_namespace *ns = current->nsproxy->mnt_ns; 3423 unsigned long s_iflags; 3424 3425 if (ns->user_ns == &init_user_ns) 3426 return false; 3427 3428 /* Can this filesystem be too revealing? */ 3429 s_iflags = mnt->mnt_sb->s_iflags; 3430 if (!(s_iflags & SB_I_USERNS_VISIBLE)) 3431 return false; 3432 3433 if ((s_iflags & required_iflags) != required_iflags) { 3434 WARN_ONCE(1, "Expected s_iflags to contain 0x%lx\n", 3435 required_iflags); 3436 return true; 3437 } 3438 3439 return !mnt_already_visible(ns, mnt, new_mnt_flags); 3440 } 3441 3442 bool mnt_may_suid(struct vfsmount *mnt) 3443 { 3444 /* 3445 * Foreign mounts (accessed via fchdir or through /proc 3446 * symlinks) are always treated as if they are nosuid. This 3447 * prevents namespaces from trusting potentially unsafe 3448 * suid/sgid bits, file caps, or security labels that originate 3449 * in other namespaces. 3450 */ 3451 return !(mnt->mnt_flags & MNT_NOSUID) && check_mnt(real_mount(mnt)) && 3452 current_in_userns(mnt->mnt_sb->s_user_ns); 3453 } 3454 3455 static struct ns_common *mntns_get(struct task_struct *task) 3456 { 3457 struct ns_common *ns = NULL; 3458 struct nsproxy *nsproxy; 3459 3460 task_lock(task); 3461 nsproxy = task->nsproxy; 3462 if (nsproxy) { 3463 ns = &nsproxy->mnt_ns->ns; 3464 get_mnt_ns(to_mnt_ns(ns)); 3465 } 3466 task_unlock(task); 3467 3468 return ns; 3469 } 3470 3471 static void mntns_put(struct ns_common *ns) 3472 { 3473 put_mnt_ns(to_mnt_ns(ns)); 3474 } 3475 3476 static int mntns_install(struct nsproxy *nsproxy, struct ns_common *ns) 3477 { 3478 struct fs_struct *fs = current->fs; 3479 struct mnt_namespace *mnt_ns = to_mnt_ns(ns), *old_mnt_ns; 3480 struct path root; 3481 int err; 3482 3483 if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) || 3484 !ns_capable(current_user_ns(), CAP_SYS_CHROOT) || 3485 !ns_capable(current_user_ns(), CAP_SYS_ADMIN)) 3486 return -EPERM; 3487 3488 if (fs->users != 1) 3489 return -EINVAL; 3490 3491 get_mnt_ns(mnt_ns); 3492 old_mnt_ns = nsproxy->mnt_ns; 3493 nsproxy->mnt_ns = mnt_ns; 3494 3495 /* Find the root */ 3496 err = vfs_path_lookup(mnt_ns->root->mnt.mnt_root, &mnt_ns->root->mnt, 3497 "/", LOOKUP_DOWN, &root); 3498 if (err) { 3499 /* revert to old namespace */ 3500 nsproxy->mnt_ns = old_mnt_ns; 3501 put_mnt_ns(mnt_ns); 3502 return err; 3503 } 3504 3505 put_mnt_ns(old_mnt_ns); 3506 3507 /* Update the pwd and root */ 3508 set_fs_pwd(fs, &root); 3509 set_fs_root(fs, &root); 3510 3511 path_put(&root); 3512 return 0; 3513 } 3514 3515 static struct user_namespace *mntns_owner(struct ns_common *ns) 3516 { 3517 return to_mnt_ns(ns)->user_ns; 3518 } 3519 3520 const struct proc_ns_operations mntns_operations = { 3521 .name = "mnt", 3522 .type = CLONE_NEWNS, 3523 .get = mntns_get, 3524 .put = mntns_put, 3525 .install = mntns_install, 3526 .owner = mntns_owner, 3527 }; 3528