xref: /openbmc/linux/fs/namespace.c (revision 8b036556)
1 /*
2  *  linux/fs/namespace.c
3  *
4  * (C) Copyright Al Viro 2000, 2001
5  *	Released under GPL v2.
6  *
7  * Based on code from fs/super.c, copyright Linus Torvalds and others.
8  * Heavily rewritten.
9  */
10 
11 #include <linux/syscalls.h>
12 #include <linux/export.h>
13 #include <linux/capability.h>
14 #include <linux/mnt_namespace.h>
15 #include <linux/user_namespace.h>
16 #include <linux/namei.h>
17 #include <linux/security.h>
18 #include <linux/idr.h>
19 #include <linux/init.h>		/* init_rootfs */
20 #include <linux/fs_struct.h>	/* get_fs_root et.al. */
21 #include <linux/fsnotify.h>	/* fsnotify_vfsmount_delete */
22 #include <linux/uaccess.h>
23 #include <linux/proc_ns.h>
24 #include <linux/magic.h>
25 #include <linux/bootmem.h>
26 #include <linux/task_work.h>
27 #include "pnode.h"
28 #include "internal.h"
29 
30 static unsigned int m_hash_mask __read_mostly;
31 static unsigned int m_hash_shift __read_mostly;
32 static unsigned int mp_hash_mask __read_mostly;
33 static unsigned int mp_hash_shift __read_mostly;
34 
35 static __initdata unsigned long mhash_entries;
36 static int __init set_mhash_entries(char *str)
37 {
38 	if (!str)
39 		return 0;
40 	mhash_entries = simple_strtoul(str, &str, 0);
41 	return 1;
42 }
43 __setup("mhash_entries=", set_mhash_entries);
44 
45 static __initdata unsigned long mphash_entries;
46 static int __init set_mphash_entries(char *str)
47 {
48 	if (!str)
49 		return 0;
50 	mphash_entries = simple_strtoul(str, &str, 0);
51 	return 1;
52 }
53 __setup("mphash_entries=", set_mphash_entries);
54 
55 static u64 event;
56 static DEFINE_IDA(mnt_id_ida);
57 static DEFINE_IDA(mnt_group_ida);
58 static DEFINE_SPINLOCK(mnt_id_lock);
59 static int mnt_id_start = 0;
60 static int mnt_group_start = 1;
61 
62 static struct hlist_head *mount_hashtable __read_mostly;
63 static struct hlist_head *mountpoint_hashtable __read_mostly;
64 static struct kmem_cache *mnt_cache __read_mostly;
65 static DECLARE_RWSEM(namespace_sem);
66 
67 /* /sys/fs */
68 struct kobject *fs_kobj;
69 EXPORT_SYMBOL_GPL(fs_kobj);
70 
71 /*
72  * vfsmount lock may be taken for read to prevent changes to the
73  * vfsmount hash, ie. during mountpoint lookups or walking back
74  * up the tree.
75  *
76  * It should be taken for write in all cases where the vfsmount
77  * tree or hash is modified or when a vfsmount structure is modified.
78  */
79 __cacheline_aligned_in_smp DEFINE_SEQLOCK(mount_lock);
80 
81 static inline struct hlist_head *m_hash(struct vfsmount *mnt, struct dentry *dentry)
82 {
83 	unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
84 	tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
85 	tmp = tmp + (tmp >> m_hash_shift);
86 	return &mount_hashtable[tmp & m_hash_mask];
87 }
88 
89 static inline struct hlist_head *mp_hash(struct dentry *dentry)
90 {
91 	unsigned long tmp = ((unsigned long)dentry / L1_CACHE_BYTES);
92 	tmp = tmp + (tmp >> mp_hash_shift);
93 	return &mountpoint_hashtable[tmp & mp_hash_mask];
94 }
95 
96 /*
97  * allocation is serialized by namespace_sem, but we need the spinlock to
98  * serialize with freeing.
99  */
100 static int mnt_alloc_id(struct mount *mnt)
101 {
102 	int res;
103 
104 retry:
105 	ida_pre_get(&mnt_id_ida, GFP_KERNEL);
106 	spin_lock(&mnt_id_lock);
107 	res = ida_get_new_above(&mnt_id_ida, mnt_id_start, &mnt->mnt_id);
108 	if (!res)
109 		mnt_id_start = mnt->mnt_id + 1;
110 	spin_unlock(&mnt_id_lock);
111 	if (res == -EAGAIN)
112 		goto retry;
113 
114 	return res;
115 }
116 
117 static void mnt_free_id(struct mount *mnt)
118 {
119 	int id = mnt->mnt_id;
120 	spin_lock(&mnt_id_lock);
121 	ida_remove(&mnt_id_ida, id);
122 	if (mnt_id_start > id)
123 		mnt_id_start = id;
124 	spin_unlock(&mnt_id_lock);
125 }
126 
127 /*
128  * Allocate a new peer group ID
129  *
130  * mnt_group_ida is protected by namespace_sem
131  */
132 static int mnt_alloc_group_id(struct mount *mnt)
133 {
134 	int res;
135 
136 	if (!ida_pre_get(&mnt_group_ida, GFP_KERNEL))
137 		return -ENOMEM;
138 
139 	res = ida_get_new_above(&mnt_group_ida,
140 				mnt_group_start,
141 				&mnt->mnt_group_id);
142 	if (!res)
143 		mnt_group_start = mnt->mnt_group_id + 1;
144 
145 	return res;
146 }
147 
148 /*
149  * Release a peer group ID
150  */
151 void mnt_release_group_id(struct mount *mnt)
152 {
153 	int id = mnt->mnt_group_id;
154 	ida_remove(&mnt_group_ida, id);
155 	if (mnt_group_start > id)
156 		mnt_group_start = id;
157 	mnt->mnt_group_id = 0;
158 }
159 
160 /*
161  * vfsmount lock must be held for read
162  */
163 static inline void mnt_add_count(struct mount *mnt, int n)
164 {
165 #ifdef CONFIG_SMP
166 	this_cpu_add(mnt->mnt_pcp->mnt_count, n);
167 #else
168 	preempt_disable();
169 	mnt->mnt_count += n;
170 	preempt_enable();
171 #endif
172 }
173 
174 /*
175  * vfsmount lock must be held for write
176  */
177 unsigned int mnt_get_count(struct mount *mnt)
178 {
179 #ifdef CONFIG_SMP
180 	unsigned int count = 0;
181 	int cpu;
182 
183 	for_each_possible_cpu(cpu) {
184 		count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
185 	}
186 
187 	return count;
188 #else
189 	return mnt->mnt_count;
190 #endif
191 }
192 
193 static void drop_mountpoint(struct fs_pin *p)
194 {
195 	struct mount *m = container_of(p, struct mount, mnt_umount);
196 	dput(m->mnt_ex_mountpoint);
197 	pin_remove(p);
198 	mntput(&m->mnt);
199 }
200 
201 static struct mount *alloc_vfsmnt(const char *name)
202 {
203 	struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
204 	if (mnt) {
205 		int err;
206 
207 		err = mnt_alloc_id(mnt);
208 		if (err)
209 			goto out_free_cache;
210 
211 		if (name) {
212 			mnt->mnt_devname = kstrdup_const(name, GFP_KERNEL);
213 			if (!mnt->mnt_devname)
214 				goto out_free_id;
215 		}
216 
217 #ifdef CONFIG_SMP
218 		mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
219 		if (!mnt->mnt_pcp)
220 			goto out_free_devname;
221 
222 		this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
223 #else
224 		mnt->mnt_count = 1;
225 		mnt->mnt_writers = 0;
226 #endif
227 
228 		INIT_HLIST_NODE(&mnt->mnt_hash);
229 		INIT_LIST_HEAD(&mnt->mnt_child);
230 		INIT_LIST_HEAD(&mnt->mnt_mounts);
231 		INIT_LIST_HEAD(&mnt->mnt_list);
232 		INIT_LIST_HEAD(&mnt->mnt_expire);
233 		INIT_LIST_HEAD(&mnt->mnt_share);
234 		INIT_LIST_HEAD(&mnt->mnt_slave_list);
235 		INIT_LIST_HEAD(&mnt->mnt_slave);
236 		INIT_HLIST_NODE(&mnt->mnt_mp_list);
237 #ifdef CONFIG_FSNOTIFY
238 		INIT_HLIST_HEAD(&mnt->mnt_fsnotify_marks);
239 #endif
240 		init_fs_pin(&mnt->mnt_umount, drop_mountpoint);
241 	}
242 	return mnt;
243 
244 #ifdef CONFIG_SMP
245 out_free_devname:
246 	kfree_const(mnt->mnt_devname);
247 #endif
248 out_free_id:
249 	mnt_free_id(mnt);
250 out_free_cache:
251 	kmem_cache_free(mnt_cache, mnt);
252 	return NULL;
253 }
254 
255 /*
256  * Most r/o checks on a fs are for operations that take
257  * discrete amounts of time, like a write() or unlink().
258  * We must keep track of when those operations start
259  * (for permission checks) and when they end, so that
260  * we can determine when writes are able to occur to
261  * a filesystem.
262  */
263 /*
264  * __mnt_is_readonly: check whether a mount is read-only
265  * @mnt: the mount to check for its write status
266  *
267  * This shouldn't be used directly ouside of the VFS.
268  * It does not guarantee that the filesystem will stay
269  * r/w, just that it is right *now*.  This can not and
270  * should not be used in place of IS_RDONLY(inode).
271  * mnt_want/drop_write() will _keep_ the filesystem
272  * r/w.
273  */
274 int __mnt_is_readonly(struct vfsmount *mnt)
275 {
276 	if (mnt->mnt_flags & MNT_READONLY)
277 		return 1;
278 	if (mnt->mnt_sb->s_flags & MS_RDONLY)
279 		return 1;
280 	return 0;
281 }
282 EXPORT_SYMBOL_GPL(__mnt_is_readonly);
283 
284 static inline void mnt_inc_writers(struct mount *mnt)
285 {
286 #ifdef CONFIG_SMP
287 	this_cpu_inc(mnt->mnt_pcp->mnt_writers);
288 #else
289 	mnt->mnt_writers++;
290 #endif
291 }
292 
293 static inline void mnt_dec_writers(struct mount *mnt)
294 {
295 #ifdef CONFIG_SMP
296 	this_cpu_dec(mnt->mnt_pcp->mnt_writers);
297 #else
298 	mnt->mnt_writers--;
299 #endif
300 }
301 
302 static unsigned int mnt_get_writers(struct mount *mnt)
303 {
304 #ifdef CONFIG_SMP
305 	unsigned int count = 0;
306 	int cpu;
307 
308 	for_each_possible_cpu(cpu) {
309 		count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
310 	}
311 
312 	return count;
313 #else
314 	return mnt->mnt_writers;
315 #endif
316 }
317 
318 static int mnt_is_readonly(struct vfsmount *mnt)
319 {
320 	if (mnt->mnt_sb->s_readonly_remount)
321 		return 1;
322 	/* Order wrt setting s_flags/s_readonly_remount in do_remount() */
323 	smp_rmb();
324 	return __mnt_is_readonly(mnt);
325 }
326 
327 /*
328  * Most r/o & frozen checks on a fs are for operations that take discrete
329  * amounts of time, like a write() or unlink().  We must keep track of when
330  * those operations start (for permission checks) and when they end, so that we
331  * can determine when writes are able to occur to a filesystem.
332  */
333 /**
334  * __mnt_want_write - get write access to a mount without freeze protection
335  * @m: the mount on which to take a write
336  *
337  * This tells the low-level filesystem that a write is about to be performed to
338  * it, and makes sure that writes are allowed (mnt it read-write) before
339  * returning success. This operation does not protect against filesystem being
340  * frozen. When the write operation is finished, __mnt_drop_write() must be
341  * called. This is effectively a refcount.
342  */
343 int __mnt_want_write(struct vfsmount *m)
344 {
345 	struct mount *mnt = real_mount(m);
346 	int ret = 0;
347 
348 	preempt_disable();
349 	mnt_inc_writers(mnt);
350 	/*
351 	 * The store to mnt_inc_writers must be visible before we pass
352 	 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
353 	 * incremented count after it has set MNT_WRITE_HOLD.
354 	 */
355 	smp_mb();
356 	while (ACCESS_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD)
357 		cpu_relax();
358 	/*
359 	 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
360 	 * be set to match its requirements. So we must not load that until
361 	 * MNT_WRITE_HOLD is cleared.
362 	 */
363 	smp_rmb();
364 	if (mnt_is_readonly(m)) {
365 		mnt_dec_writers(mnt);
366 		ret = -EROFS;
367 	}
368 	preempt_enable();
369 
370 	return ret;
371 }
372 
373 /**
374  * mnt_want_write - get write access to a mount
375  * @m: the mount on which to take a write
376  *
377  * This tells the low-level filesystem that a write is about to be performed to
378  * it, and makes sure that writes are allowed (mount is read-write, filesystem
379  * is not frozen) before returning success.  When the write operation is
380  * finished, mnt_drop_write() must be called.  This is effectively a refcount.
381  */
382 int mnt_want_write(struct vfsmount *m)
383 {
384 	int ret;
385 
386 	sb_start_write(m->mnt_sb);
387 	ret = __mnt_want_write(m);
388 	if (ret)
389 		sb_end_write(m->mnt_sb);
390 	return ret;
391 }
392 EXPORT_SYMBOL_GPL(mnt_want_write);
393 
394 /**
395  * mnt_clone_write - get write access to a mount
396  * @mnt: the mount on which to take a write
397  *
398  * This is effectively like mnt_want_write, except
399  * it must only be used to take an extra write reference
400  * on a mountpoint that we already know has a write reference
401  * on it. This allows some optimisation.
402  *
403  * After finished, mnt_drop_write must be called as usual to
404  * drop the reference.
405  */
406 int mnt_clone_write(struct vfsmount *mnt)
407 {
408 	/* superblock may be r/o */
409 	if (__mnt_is_readonly(mnt))
410 		return -EROFS;
411 	preempt_disable();
412 	mnt_inc_writers(real_mount(mnt));
413 	preempt_enable();
414 	return 0;
415 }
416 EXPORT_SYMBOL_GPL(mnt_clone_write);
417 
418 /**
419  * __mnt_want_write_file - get write access to a file's mount
420  * @file: the file who's mount on which to take a write
421  *
422  * This is like __mnt_want_write, but it takes a file and can
423  * do some optimisations if the file is open for write already
424  */
425 int __mnt_want_write_file(struct file *file)
426 {
427 	if (!(file->f_mode & FMODE_WRITER))
428 		return __mnt_want_write(file->f_path.mnt);
429 	else
430 		return mnt_clone_write(file->f_path.mnt);
431 }
432 
433 /**
434  * mnt_want_write_file - get write access to a file's mount
435  * @file: the file who's mount on which to take a write
436  *
437  * This is like mnt_want_write, but it takes a file and can
438  * do some optimisations if the file is open for write already
439  */
440 int mnt_want_write_file(struct file *file)
441 {
442 	int ret;
443 
444 	sb_start_write(file->f_path.mnt->mnt_sb);
445 	ret = __mnt_want_write_file(file);
446 	if (ret)
447 		sb_end_write(file->f_path.mnt->mnt_sb);
448 	return ret;
449 }
450 EXPORT_SYMBOL_GPL(mnt_want_write_file);
451 
452 /**
453  * __mnt_drop_write - give up write access to a mount
454  * @mnt: the mount on which to give up write access
455  *
456  * Tells the low-level filesystem that we are done
457  * performing writes to it.  Must be matched with
458  * __mnt_want_write() call above.
459  */
460 void __mnt_drop_write(struct vfsmount *mnt)
461 {
462 	preempt_disable();
463 	mnt_dec_writers(real_mount(mnt));
464 	preempt_enable();
465 }
466 
467 /**
468  * mnt_drop_write - give up write access to a mount
469  * @mnt: the mount on which to give up write access
470  *
471  * Tells the low-level filesystem that we are done performing writes to it and
472  * also allows filesystem to be frozen again.  Must be matched with
473  * mnt_want_write() call above.
474  */
475 void mnt_drop_write(struct vfsmount *mnt)
476 {
477 	__mnt_drop_write(mnt);
478 	sb_end_write(mnt->mnt_sb);
479 }
480 EXPORT_SYMBOL_GPL(mnt_drop_write);
481 
482 void __mnt_drop_write_file(struct file *file)
483 {
484 	__mnt_drop_write(file->f_path.mnt);
485 }
486 
487 void mnt_drop_write_file(struct file *file)
488 {
489 	mnt_drop_write(file->f_path.mnt);
490 }
491 EXPORT_SYMBOL(mnt_drop_write_file);
492 
493 static int mnt_make_readonly(struct mount *mnt)
494 {
495 	int ret = 0;
496 
497 	lock_mount_hash();
498 	mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
499 	/*
500 	 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
501 	 * should be visible before we do.
502 	 */
503 	smp_mb();
504 
505 	/*
506 	 * With writers on hold, if this value is zero, then there are
507 	 * definitely no active writers (although held writers may subsequently
508 	 * increment the count, they'll have to wait, and decrement it after
509 	 * seeing MNT_READONLY).
510 	 *
511 	 * It is OK to have counter incremented on one CPU and decremented on
512 	 * another: the sum will add up correctly. The danger would be when we
513 	 * sum up each counter, if we read a counter before it is incremented,
514 	 * but then read another CPU's count which it has been subsequently
515 	 * decremented from -- we would see more decrements than we should.
516 	 * MNT_WRITE_HOLD protects against this scenario, because
517 	 * mnt_want_write first increments count, then smp_mb, then spins on
518 	 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
519 	 * we're counting up here.
520 	 */
521 	if (mnt_get_writers(mnt) > 0)
522 		ret = -EBUSY;
523 	else
524 		mnt->mnt.mnt_flags |= MNT_READONLY;
525 	/*
526 	 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
527 	 * that become unheld will see MNT_READONLY.
528 	 */
529 	smp_wmb();
530 	mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
531 	unlock_mount_hash();
532 	return ret;
533 }
534 
535 static void __mnt_unmake_readonly(struct mount *mnt)
536 {
537 	lock_mount_hash();
538 	mnt->mnt.mnt_flags &= ~MNT_READONLY;
539 	unlock_mount_hash();
540 }
541 
542 int sb_prepare_remount_readonly(struct super_block *sb)
543 {
544 	struct mount *mnt;
545 	int err = 0;
546 
547 	/* Racy optimization.  Recheck the counter under MNT_WRITE_HOLD */
548 	if (atomic_long_read(&sb->s_remove_count))
549 		return -EBUSY;
550 
551 	lock_mount_hash();
552 	list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
553 		if (!(mnt->mnt.mnt_flags & MNT_READONLY)) {
554 			mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
555 			smp_mb();
556 			if (mnt_get_writers(mnt) > 0) {
557 				err = -EBUSY;
558 				break;
559 			}
560 		}
561 	}
562 	if (!err && atomic_long_read(&sb->s_remove_count))
563 		err = -EBUSY;
564 
565 	if (!err) {
566 		sb->s_readonly_remount = 1;
567 		smp_wmb();
568 	}
569 	list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
570 		if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
571 			mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
572 	}
573 	unlock_mount_hash();
574 
575 	return err;
576 }
577 
578 static void free_vfsmnt(struct mount *mnt)
579 {
580 	kfree_const(mnt->mnt_devname);
581 #ifdef CONFIG_SMP
582 	free_percpu(mnt->mnt_pcp);
583 #endif
584 	kmem_cache_free(mnt_cache, mnt);
585 }
586 
587 static void delayed_free_vfsmnt(struct rcu_head *head)
588 {
589 	free_vfsmnt(container_of(head, struct mount, mnt_rcu));
590 }
591 
592 /* call under rcu_read_lock */
593 bool legitimize_mnt(struct vfsmount *bastard, unsigned seq)
594 {
595 	struct mount *mnt;
596 	if (read_seqretry(&mount_lock, seq))
597 		return false;
598 	if (bastard == NULL)
599 		return true;
600 	mnt = real_mount(bastard);
601 	mnt_add_count(mnt, 1);
602 	if (likely(!read_seqretry(&mount_lock, seq)))
603 		return true;
604 	if (bastard->mnt_flags & MNT_SYNC_UMOUNT) {
605 		mnt_add_count(mnt, -1);
606 		return false;
607 	}
608 	rcu_read_unlock();
609 	mntput(bastard);
610 	rcu_read_lock();
611 	return false;
612 }
613 
614 /*
615  * find the first mount at @dentry on vfsmount @mnt.
616  * call under rcu_read_lock()
617  */
618 struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry)
619 {
620 	struct hlist_head *head = m_hash(mnt, dentry);
621 	struct mount *p;
622 
623 	hlist_for_each_entry_rcu(p, head, mnt_hash)
624 		if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry)
625 			return p;
626 	return NULL;
627 }
628 
629 /*
630  * find the last mount at @dentry on vfsmount @mnt.
631  * mount_lock must be held.
632  */
633 struct mount *__lookup_mnt_last(struct vfsmount *mnt, struct dentry *dentry)
634 {
635 	struct mount *p, *res;
636 	res = p = __lookup_mnt(mnt, dentry);
637 	if (!p)
638 		goto out;
639 	hlist_for_each_entry_continue(p, mnt_hash) {
640 		if (&p->mnt_parent->mnt != mnt || p->mnt_mountpoint != dentry)
641 			break;
642 		res = p;
643 	}
644 out:
645 	return res;
646 }
647 
648 /*
649  * lookup_mnt - Return the first child mount mounted at path
650  *
651  * "First" means first mounted chronologically.  If you create the
652  * following mounts:
653  *
654  * mount /dev/sda1 /mnt
655  * mount /dev/sda2 /mnt
656  * mount /dev/sda3 /mnt
657  *
658  * Then lookup_mnt() on the base /mnt dentry in the root mount will
659  * return successively the root dentry and vfsmount of /dev/sda1, then
660  * /dev/sda2, then /dev/sda3, then NULL.
661  *
662  * lookup_mnt takes a reference to the found vfsmount.
663  */
664 struct vfsmount *lookup_mnt(struct path *path)
665 {
666 	struct mount *child_mnt;
667 	struct vfsmount *m;
668 	unsigned seq;
669 
670 	rcu_read_lock();
671 	do {
672 		seq = read_seqbegin(&mount_lock);
673 		child_mnt = __lookup_mnt(path->mnt, path->dentry);
674 		m = child_mnt ? &child_mnt->mnt : NULL;
675 	} while (!legitimize_mnt(m, seq));
676 	rcu_read_unlock();
677 	return m;
678 }
679 
680 /*
681  * __is_local_mountpoint - Test to see if dentry is a mountpoint in the
682  *                         current mount namespace.
683  *
684  * The common case is dentries are not mountpoints at all and that
685  * test is handled inline.  For the slow case when we are actually
686  * dealing with a mountpoint of some kind, walk through all of the
687  * mounts in the current mount namespace and test to see if the dentry
688  * is a mountpoint.
689  *
690  * The mount_hashtable is not usable in the context because we
691  * need to identify all mounts that may be in the current mount
692  * namespace not just a mount that happens to have some specified
693  * parent mount.
694  */
695 bool __is_local_mountpoint(struct dentry *dentry)
696 {
697 	struct mnt_namespace *ns = current->nsproxy->mnt_ns;
698 	struct mount *mnt;
699 	bool is_covered = false;
700 
701 	if (!d_mountpoint(dentry))
702 		goto out;
703 
704 	down_read(&namespace_sem);
705 	list_for_each_entry(mnt, &ns->list, mnt_list) {
706 		is_covered = (mnt->mnt_mountpoint == dentry);
707 		if (is_covered)
708 			break;
709 	}
710 	up_read(&namespace_sem);
711 out:
712 	return is_covered;
713 }
714 
715 static struct mountpoint *lookup_mountpoint(struct dentry *dentry)
716 {
717 	struct hlist_head *chain = mp_hash(dentry);
718 	struct mountpoint *mp;
719 
720 	hlist_for_each_entry(mp, chain, m_hash) {
721 		if (mp->m_dentry == dentry) {
722 			/* might be worth a WARN_ON() */
723 			if (d_unlinked(dentry))
724 				return ERR_PTR(-ENOENT);
725 			mp->m_count++;
726 			return mp;
727 		}
728 	}
729 	return NULL;
730 }
731 
732 static struct mountpoint *new_mountpoint(struct dentry *dentry)
733 {
734 	struct hlist_head *chain = mp_hash(dentry);
735 	struct mountpoint *mp;
736 	int ret;
737 
738 	mp = kmalloc(sizeof(struct mountpoint), GFP_KERNEL);
739 	if (!mp)
740 		return ERR_PTR(-ENOMEM);
741 
742 	ret = d_set_mounted(dentry);
743 	if (ret) {
744 		kfree(mp);
745 		return ERR_PTR(ret);
746 	}
747 
748 	mp->m_dentry = dentry;
749 	mp->m_count = 1;
750 	hlist_add_head(&mp->m_hash, chain);
751 	INIT_HLIST_HEAD(&mp->m_list);
752 	return mp;
753 }
754 
755 static void put_mountpoint(struct mountpoint *mp)
756 {
757 	if (!--mp->m_count) {
758 		struct dentry *dentry = mp->m_dentry;
759 		BUG_ON(!hlist_empty(&mp->m_list));
760 		spin_lock(&dentry->d_lock);
761 		dentry->d_flags &= ~DCACHE_MOUNTED;
762 		spin_unlock(&dentry->d_lock);
763 		hlist_del(&mp->m_hash);
764 		kfree(mp);
765 	}
766 }
767 
768 static inline int check_mnt(struct mount *mnt)
769 {
770 	return mnt->mnt_ns == current->nsproxy->mnt_ns;
771 }
772 
773 /*
774  * vfsmount lock must be held for write
775  */
776 static void touch_mnt_namespace(struct mnt_namespace *ns)
777 {
778 	if (ns) {
779 		ns->event = ++event;
780 		wake_up_interruptible(&ns->poll);
781 	}
782 }
783 
784 /*
785  * vfsmount lock must be held for write
786  */
787 static void __touch_mnt_namespace(struct mnt_namespace *ns)
788 {
789 	if (ns && ns->event != event) {
790 		ns->event = event;
791 		wake_up_interruptible(&ns->poll);
792 	}
793 }
794 
795 /*
796  * vfsmount lock must be held for write
797  */
798 static void detach_mnt(struct mount *mnt, struct path *old_path)
799 {
800 	old_path->dentry = mnt->mnt_mountpoint;
801 	old_path->mnt = &mnt->mnt_parent->mnt;
802 	mnt->mnt_parent = mnt;
803 	mnt->mnt_mountpoint = mnt->mnt.mnt_root;
804 	list_del_init(&mnt->mnt_child);
805 	hlist_del_init_rcu(&mnt->mnt_hash);
806 	hlist_del_init(&mnt->mnt_mp_list);
807 	put_mountpoint(mnt->mnt_mp);
808 	mnt->mnt_mp = NULL;
809 }
810 
811 /*
812  * vfsmount lock must be held for write
813  */
814 void mnt_set_mountpoint(struct mount *mnt,
815 			struct mountpoint *mp,
816 			struct mount *child_mnt)
817 {
818 	mp->m_count++;
819 	mnt_add_count(mnt, 1);	/* essentially, that's mntget */
820 	child_mnt->mnt_mountpoint = dget(mp->m_dentry);
821 	child_mnt->mnt_parent = mnt;
822 	child_mnt->mnt_mp = mp;
823 	hlist_add_head(&child_mnt->mnt_mp_list, &mp->m_list);
824 }
825 
826 /*
827  * vfsmount lock must be held for write
828  */
829 static void attach_mnt(struct mount *mnt,
830 			struct mount *parent,
831 			struct mountpoint *mp)
832 {
833 	mnt_set_mountpoint(parent, mp, mnt);
834 	hlist_add_head_rcu(&mnt->mnt_hash, m_hash(&parent->mnt, mp->m_dentry));
835 	list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
836 }
837 
838 static void attach_shadowed(struct mount *mnt,
839 			struct mount *parent,
840 			struct mount *shadows)
841 {
842 	if (shadows) {
843 		hlist_add_behind_rcu(&mnt->mnt_hash, &shadows->mnt_hash);
844 		list_add(&mnt->mnt_child, &shadows->mnt_child);
845 	} else {
846 		hlist_add_head_rcu(&mnt->mnt_hash,
847 				m_hash(&parent->mnt, mnt->mnt_mountpoint));
848 		list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
849 	}
850 }
851 
852 /*
853  * vfsmount lock must be held for write
854  */
855 static void commit_tree(struct mount *mnt, struct mount *shadows)
856 {
857 	struct mount *parent = mnt->mnt_parent;
858 	struct mount *m;
859 	LIST_HEAD(head);
860 	struct mnt_namespace *n = parent->mnt_ns;
861 
862 	BUG_ON(parent == mnt);
863 
864 	list_add_tail(&head, &mnt->mnt_list);
865 	list_for_each_entry(m, &head, mnt_list)
866 		m->mnt_ns = n;
867 
868 	list_splice(&head, n->list.prev);
869 
870 	attach_shadowed(mnt, parent, shadows);
871 	touch_mnt_namespace(n);
872 }
873 
874 static struct mount *next_mnt(struct mount *p, struct mount *root)
875 {
876 	struct list_head *next = p->mnt_mounts.next;
877 	if (next == &p->mnt_mounts) {
878 		while (1) {
879 			if (p == root)
880 				return NULL;
881 			next = p->mnt_child.next;
882 			if (next != &p->mnt_parent->mnt_mounts)
883 				break;
884 			p = p->mnt_parent;
885 		}
886 	}
887 	return list_entry(next, struct mount, mnt_child);
888 }
889 
890 static struct mount *skip_mnt_tree(struct mount *p)
891 {
892 	struct list_head *prev = p->mnt_mounts.prev;
893 	while (prev != &p->mnt_mounts) {
894 		p = list_entry(prev, struct mount, mnt_child);
895 		prev = p->mnt_mounts.prev;
896 	}
897 	return p;
898 }
899 
900 struct vfsmount *
901 vfs_kern_mount(struct file_system_type *type, int flags, const char *name, void *data)
902 {
903 	struct mount *mnt;
904 	struct dentry *root;
905 
906 	if (!type)
907 		return ERR_PTR(-ENODEV);
908 
909 	mnt = alloc_vfsmnt(name);
910 	if (!mnt)
911 		return ERR_PTR(-ENOMEM);
912 
913 	if (flags & MS_KERNMOUNT)
914 		mnt->mnt.mnt_flags = MNT_INTERNAL;
915 
916 	root = mount_fs(type, flags, name, data);
917 	if (IS_ERR(root)) {
918 		mnt_free_id(mnt);
919 		free_vfsmnt(mnt);
920 		return ERR_CAST(root);
921 	}
922 
923 	mnt->mnt.mnt_root = root;
924 	mnt->mnt.mnt_sb = root->d_sb;
925 	mnt->mnt_mountpoint = mnt->mnt.mnt_root;
926 	mnt->mnt_parent = mnt;
927 	lock_mount_hash();
928 	list_add_tail(&mnt->mnt_instance, &root->d_sb->s_mounts);
929 	unlock_mount_hash();
930 	return &mnt->mnt;
931 }
932 EXPORT_SYMBOL_GPL(vfs_kern_mount);
933 
934 static struct mount *clone_mnt(struct mount *old, struct dentry *root,
935 					int flag)
936 {
937 	struct super_block *sb = old->mnt.mnt_sb;
938 	struct mount *mnt;
939 	int err;
940 
941 	mnt = alloc_vfsmnt(old->mnt_devname);
942 	if (!mnt)
943 		return ERR_PTR(-ENOMEM);
944 
945 	if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE))
946 		mnt->mnt_group_id = 0; /* not a peer of original */
947 	else
948 		mnt->mnt_group_id = old->mnt_group_id;
949 
950 	if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
951 		err = mnt_alloc_group_id(mnt);
952 		if (err)
953 			goto out_free;
954 	}
955 
956 	mnt->mnt.mnt_flags = old->mnt.mnt_flags & ~(MNT_WRITE_HOLD|MNT_MARKED);
957 	/* Don't allow unprivileged users to change mount flags */
958 	if (flag & CL_UNPRIVILEGED) {
959 		mnt->mnt.mnt_flags |= MNT_LOCK_ATIME;
960 
961 		if (mnt->mnt.mnt_flags & MNT_READONLY)
962 			mnt->mnt.mnt_flags |= MNT_LOCK_READONLY;
963 
964 		if (mnt->mnt.mnt_flags & MNT_NODEV)
965 			mnt->mnt.mnt_flags |= MNT_LOCK_NODEV;
966 
967 		if (mnt->mnt.mnt_flags & MNT_NOSUID)
968 			mnt->mnt.mnt_flags |= MNT_LOCK_NOSUID;
969 
970 		if (mnt->mnt.mnt_flags & MNT_NOEXEC)
971 			mnt->mnt.mnt_flags |= MNT_LOCK_NOEXEC;
972 	}
973 
974 	/* Don't allow unprivileged users to reveal what is under a mount */
975 	if ((flag & CL_UNPRIVILEGED) &&
976 	    (!(flag & CL_EXPIRE) || list_empty(&old->mnt_expire)))
977 		mnt->mnt.mnt_flags |= MNT_LOCKED;
978 
979 	atomic_inc(&sb->s_active);
980 	mnt->mnt.mnt_sb = sb;
981 	mnt->mnt.mnt_root = dget(root);
982 	mnt->mnt_mountpoint = mnt->mnt.mnt_root;
983 	mnt->mnt_parent = mnt;
984 	lock_mount_hash();
985 	list_add_tail(&mnt->mnt_instance, &sb->s_mounts);
986 	unlock_mount_hash();
987 
988 	if ((flag & CL_SLAVE) ||
989 	    ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) {
990 		list_add(&mnt->mnt_slave, &old->mnt_slave_list);
991 		mnt->mnt_master = old;
992 		CLEAR_MNT_SHARED(mnt);
993 	} else if (!(flag & CL_PRIVATE)) {
994 		if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
995 			list_add(&mnt->mnt_share, &old->mnt_share);
996 		if (IS_MNT_SLAVE(old))
997 			list_add(&mnt->mnt_slave, &old->mnt_slave);
998 		mnt->mnt_master = old->mnt_master;
999 	}
1000 	if (flag & CL_MAKE_SHARED)
1001 		set_mnt_shared(mnt);
1002 
1003 	/* stick the duplicate mount on the same expiry list
1004 	 * as the original if that was on one */
1005 	if (flag & CL_EXPIRE) {
1006 		if (!list_empty(&old->mnt_expire))
1007 			list_add(&mnt->mnt_expire, &old->mnt_expire);
1008 	}
1009 
1010 	return mnt;
1011 
1012  out_free:
1013 	mnt_free_id(mnt);
1014 	free_vfsmnt(mnt);
1015 	return ERR_PTR(err);
1016 }
1017 
1018 static void cleanup_mnt(struct mount *mnt)
1019 {
1020 	/*
1021 	 * This probably indicates that somebody messed
1022 	 * up a mnt_want/drop_write() pair.  If this
1023 	 * happens, the filesystem was probably unable
1024 	 * to make r/w->r/o transitions.
1025 	 */
1026 	/*
1027 	 * The locking used to deal with mnt_count decrement provides barriers,
1028 	 * so mnt_get_writers() below is safe.
1029 	 */
1030 	WARN_ON(mnt_get_writers(mnt));
1031 	if (unlikely(mnt->mnt_pins.first))
1032 		mnt_pin_kill(mnt);
1033 	fsnotify_vfsmount_delete(&mnt->mnt);
1034 	dput(mnt->mnt.mnt_root);
1035 	deactivate_super(mnt->mnt.mnt_sb);
1036 	mnt_free_id(mnt);
1037 	call_rcu(&mnt->mnt_rcu, delayed_free_vfsmnt);
1038 }
1039 
1040 static void __cleanup_mnt(struct rcu_head *head)
1041 {
1042 	cleanup_mnt(container_of(head, struct mount, mnt_rcu));
1043 }
1044 
1045 static LLIST_HEAD(delayed_mntput_list);
1046 static void delayed_mntput(struct work_struct *unused)
1047 {
1048 	struct llist_node *node = llist_del_all(&delayed_mntput_list);
1049 	struct llist_node *next;
1050 
1051 	for (; node; node = next) {
1052 		next = llist_next(node);
1053 		cleanup_mnt(llist_entry(node, struct mount, mnt_llist));
1054 	}
1055 }
1056 static DECLARE_DELAYED_WORK(delayed_mntput_work, delayed_mntput);
1057 
1058 static void mntput_no_expire(struct mount *mnt)
1059 {
1060 	rcu_read_lock();
1061 	mnt_add_count(mnt, -1);
1062 	if (likely(mnt->mnt_ns)) { /* shouldn't be the last one */
1063 		rcu_read_unlock();
1064 		return;
1065 	}
1066 	lock_mount_hash();
1067 	if (mnt_get_count(mnt)) {
1068 		rcu_read_unlock();
1069 		unlock_mount_hash();
1070 		return;
1071 	}
1072 	if (unlikely(mnt->mnt.mnt_flags & MNT_DOOMED)) {
1073 		rcu_read_unlock();
1074 		unlock_mount_hash();
1075 		return;
1076 	}
1077 	mnt->mnt.mnt_flags |= MNT_DOOMED;
1078 	rcu_read_unlock();
1079 
1080 	list_del(&mnt->mnt_instance);
1081 	unlock_mount_hash();
1082 
1083 	if (likely(!(mnt->mnt.mnt_flags & MNT_INTERNAL))) {
1084 		struct task_struct *task = current;
1085 		if (likely(!(task->flags & PF_KTHREAD))) {
1086 			init_task_work(&mnt->mnt_rcu, __cleanup_mnt);
1087 			if (!task_work_add(task, &mnt->mnt_rcu, true))
1088 				return;
1089 		}
1090 		if (llist_add(&mnt->mnt_llist, &delayed_mntput_list))
1091 			schedule_delayed_work(&delayed_mntput_work, 1);
1092 		return;
1093 	}
1094 	cleanup_mnt(mnt);
1095 }
1096 
1097 void mntput(struct vfsmount *mnt)
1098 {
1099 	if (mnt) {
1100 		struct mount *m = real_mount(mnt);
1101 		/* avoid cacheline pingpong, hope gcc doesn't get "smart" */
1102 		if (unlikely(m->mnt_expiry_mark))
1103 			m->mnt_expiry_mark = 0;
1104 		mntput_no_expire(m);
1105 	}
1106 }
1107 EXPORT_SYMBOL(mntput);
1108 
1109 struct vfsmount *mntget(struct vfsmount *mnt)
1110 {
1111 	if (mnt)
1112 		mnt_add_count(real_mount(mnt), 1);
1113 	return mnt;
1114 }
1115 EXPORT_SYMBOL(mntget);
1116 
1117 struct vfsmount *mnt_clone_internal(struct path *path)
1118 {
1119 	struct mount *p;
1120 	p = clone_mnt(real_mount(path->mnt), path->dentry, CL_PRIVATE);
1121 	if (IS_ERR(p))
1122 		return ERR_CAST(p);
1123 	p->mnt.mnt_flags |= MNT_INTERNAL;
1124 	return &p->mnt;
1125 }
1126 
1127 static inline void mangle(struct seq_file *m, const char *s)
1128 {
1129 	seq_escape(m, s, " \t\n\\");
1130 }
1131 
1132 /*
1133  * Simple .show_options callback for filesystems which don't want to
1134  * implement more complex mount option showing.
1135  *
1136  * See also save_mount_options().
1137  */
1138 int generic_show_options(struct seq_file *m, struct dentry *root)
1139 {
1140 	const char *options;
1141 
1142 	rcu_read_lock();
1143 	options = rcu_dereference(root->d_sb->s_options);
1144 
1145 	if (options != NULL && options[0]) {
1146 		seq_putc(m, ',');
1147 		mangle(m, options);
1148 	}
1149 	rcu_read_unlock();
1150 
1151 	return 0;
1152 }
1153 EXPORT_SYMBOL(generic_show_options);
1154 
1155 /*
1156  * If filesystem uses generic_show_options(), this function should be
1157  * called from the fill_super() callback.
1158  *
1159  * The .remount_fs callback usually needs to be handled in a special
1160  * way, to make sure, that previous options are not overwritten if the
1161  * remount fails.
1162  *
1163  * Also note, that if the filesystem's .remount_fs function doesn't
1164  * reset all options to their default value, but changes only newly
1165  * given options, then the displayed options will not reflect reality
1166  * any more.
1167  */
1168 void save_mount_options(struct super_block *sb, char *options)
1169 {
1170 	BUG_ON(sb->s_options);
1171 	rcu_assign_pointer(sb->s_options, kstrdup(options, GFP_KERNEL));
1172 }
1173 EXPORT_SYMBOL(save_mount_options);
1174 
1175 void replace_mount_options(struct super_block *sb, char *options)
1176 {
1177 	char *old = sb->s_options;
1178 	rcu_assign_pointer(sb->s_options, options);
1179 	if (old) {
1180 		synchronize_rcu();
1181 		kfree(old);
1182 	}
1183 }
1184 EXPORT_SYMBOL(replace_mount_options);
1185 
1186 #ifdef CONFIG_PROC_FS
1187 /* iterator; we want it to have access to namespace_sem, thus here... */
1188 static void *m_start(struct seq_file *m, loff_t *pos)
1189 {
1190 	struct proc_mounts *p = proc_mounts(m);
1191 
1192 	down_read(&namespace_sem);
1193 	if (p->cached_event == p->ns->event) {
1194 		void *v = p->cached_mount;
1195 		if (*pos == p->cached_index)
1196 			return v;
1197 		if (*pos == p->cached_index + 1) {
1198 			v = seq_list_next(v, &p->ns->list, &p->cached_index);
1199 			return p->cached_mount = v;
1200 		}
1201 	}
1202 
1203 	p->cached_event = p->ns->event;
1204 	p->cached_mount = seq_list_start(&p->ns->list, *pos);
1205 	p->cached_index = *pos;
1206 	return p->cached_mount;
1207 }
1208 
1209 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
1210 {
1211 	struct proc_mounts *p = proc_mounts(m);
1212 
1213 	p->cached_mount = seq_list_next(v, &p->ns->list, pos);
1214 	p->cached_index = *pos;
1215 	return p->cached_mount;
1216 }
1217 
1218 static void m_stop(struct seq_file *m, void *v)
1219 {
1220 	up_read(&namespace_sem);
1221 }
1222 
1223 static int m_show(struct seq_file *m, void *v)
1224 {
1225 	struct proc_mounts *p = proc_mounts(m);
1226 	struct mount *r = list_entry(v, struct mount, mnt_list);
1227 	return p->show(m, &r->mnt);
1228 }
1229 
1230 const struct seq_operations mounts_op = {
1231 	.start	= m_start,
1232 	.next	= m_next,
1233 	.stop	= m_stop,
1234 	.show	= m_show,
1235 };
1236 #endif  /* CONFIG_PROC_FS */
1237 
1238 /**
1239  * may_umount_tree - check if a mount tree is busy
1240  * @mnt: root of mount tree
1241  *
1242  * This is called to check if a tree of mounts has any
1243  * open files, pwds, chroots or sub mounts that are
1244  * busy.
1245  */
1246 int may_umount_tree(struct vfsmount *m)
1247 {
1248 	struct mount *mnt = real_mount(m);
1249 	int actual_refs = 0;
1250 	int minimum_refs = 0;
1251 	struct mount *p;
1252 	BUG_ON(!m);
1253 
1254 	/* write lock needed for mnt_get_count */
1255 	lock_mount_hash();
1256 	for (p = mnt; p; p = next_mnt(p, mnt)) {
1257 		actual_refs += mnt_get_count(p);
1258 		minimum_refs += 2;
1259 	}
1260 	unlock_mount_hash();
1261 
1262 	if (actual_refs > minimum_refs)
1263 		return 0;
1264 
1265 	return 1;
1266 }
1267 
1268 EXPORT_SYMBOL(may_umount_tree);
1269 
1270 /**
1271  * may_umount - check if a mount point is busy
1272  * @mnt: root of mount
1273  *
1274  * This is called to check if a mount point has any
1275  * open files, pwds, chroots or sub mounts. If the
1276  * mount has sub mounts this will return busy
1277  * regardless of whether the sub mounts are busy.
1278  *
1279  * Doesn't take quota and stuff into account. IOW, in some cases it will
1280  * give false negatives. The main reason why it's here is that we need
1281  * a non-destructive way to look for easily umountable filesystems.
1282  */
1283 int may_umount(struct vfsmount *mnt)
1284 {
1285 	int ret = 1;
1286 	down_read(&namespace_sem);
1287 	lock_mount_hash();
1288 	if (propagate_mount_busy(real_mount(mnt), 2))
1289 		ret = 0;
1290 	unlock_mount_hash();
1291 	up_read(&namespace_sem);
1292 	return ret;
1293 }
1294 
1295 EXPORT_SYMBOL(may_umount);
1296 
1297 static HLIST_HEAD(unmounted);	/* protected by namespace_sem */
1298 
1299 static void namespace_unlock(void)
1300 {
1301 	struct hlist_head head = unmounted;
1302 
1303 	if (likely(hlist_empty(&head))) {
1304 		up_write(&namespace_sem);
1305 		return;
1306 	}
1307 
1308 	head.first->pprev = &head.first;
1309 	INIT_HLIST_HEAD(&unmounted);
1310 	up_write(&namespace_sem);
1311 
1312 	synchronize_rcu();
1313 
1314 	group_pin_kill(&head);
1315 }
1316 
1317 static inline void namespace_lock(void)
1318 {
1319 	down_write(&namespace_sem);
1320 }
1321 
1322 /*
1323  * mount_lock must be held
1324  * namespace_sem must be held for write
1325  * how = 0 => just this tree, don't propagate
1326  * how = 1 => propagate; we know that nobody else has reference to any victims
1327  * how = 2 => lazy umount
1328  */
1329 void umount_tree(struct mount *mnt, int how)
1330 {
1331 	HLIST_HEAD(tmp_list);
1332 	struct mount *p;
1333 
1334 	for (p = mnt; p; p = next_mnt(p, mnt)) {
1335 		hlist_del_init_rcu(&p->mnt_hash);
1336 		hlist_add_head(&p->mnt_hash, &tmp_list);
1337 	}
1338 
1339 	hlist_for_each_entry(p, &tmp_list, mnt_hash)
1340 		list_del_init(&p->mnt_child);
1341 
1342 	if (how)
1343 		propagate_umount(&tmp_list);
1344 
1345 	while (!hlist_empty(&tmp_list)) {
1346 		p = hlist_entry(tmp_list.first, struct mount, mnt_hash);
1347 		hlist_del_init_rcu(&p->mnt_hash);
1348 		list_del_init(&p->mnt_expire);
1349 		list_del_init(&p->mnt_list);
1350 		__touch_mnt_namespace(p->mnt_ns);
1351 		p->mnt_ns = NULL;
1352 		if (how < 2)
1353 			p->mnt.mnt_flags |= MNT_SYNC_UMOUNT;
1354 
1355 		pin_insert_group(&p->mnt_umount, &p->mnt_parent->mnt, &unmounted);
1356 		if (mnt_has_parent(p)) {
1357 			hlist_del_init(&p->mnt_mp_list);
1358 			put_mountpoint(p->mnt_mp);
1359 			mnt_add_count(p->mnt_parent, -1);
1360 			/* old mountpoint will be dropped when we can do that */
1361 			p->mnt_ex_mountpoint = p->mnt_mountpoint;
1362 			p->mnt_mountpoint = p->mnt.mnt_root;
1363 			p->mnt_parent = p;
1364 			p->mnt_mp = NULL;
1365 		}
1366 		change_mnt_propagation(p, MS_PRIVATE);
1367 	}
1368 }
1369 
1370 static void shrink_submounts(struct mount *mnt);
1371 
1372 static int do_umount(struct mount *mnt, int flags)
1373 {
1374 	struct super_block *sb = mnt->mnt.mnt_sb;
1375 	int retval;
1376 
1377 	retval = security_sb_umount(&mnt->mnt, flags);
1378 	if (retval)
1379 		return retval;
1380 
1381 	/*
1382 	 * Allow userspace to request a mountpoint be expired rather than
1383 	 * unmounting unconditionally. Unmount only happens if:
1384 	 *  (1) the mark is already set (the mark is cleared by mntput())
1385 	 *  (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1386 	 */
1387 	if (flags & MNT_EXPIRE) {
1388 		if (&mnt->mnt == current->fs->root.mnt ||
1389 		    flags & (MNT_FORCE | MNT_DETACH))
1390 			return -EINVAL;
1391 
1392 		/*
1393 		 * probably don't strictly need the lock here if we examined
1394 		 * all race cases, but it's a slowpath.
1395 		 */
1396 		lock_mount_hash();
1397 		if (mnt_get_count(mnt) != 2) {
1398 			unlock_mount_hash();
1399 			return -EBUSY;
1400 		}
1401 		unlock_mount_hash();
1402 
1403 		if (!xchg(&mnt->mnt_expiry_mark, 1))
1404 			return -EAGAIN;
1405 	}
1406 
1407 	/*
1408 	 * If we may have to abort operations to get out of this
1409 	 * mount, and they will themselves hold resources we must
1410 	 * allow the fs to do things. In the Unix tradition of
1411 	 * 'Gee thats tricky lets do it in userspace' the umount_begin
1412 	 * might fail to complete on the first run through as other tasks
1413 	 * must return, and the like. Thats for the mount program to worry
1414 	 * about for the moment.
1415 	 */
1416 
1417 	if (flags & MNT_FORCE && sb->s_op->umount_begin) {
1418 		sb->s_op->umount_begin(sb);
1419 	}
1420 
1421 	/*
1422 	 * No sense to grab the lock for this test, but test itself looks
1423 	 * somewhat bogus. Suggestions for better replacement?
1424 	 * Ho-hum... In principle, we might treat that as umount + switch
1425 	 * to rootfs. GC would eventually take care of the old vfsmount.
1426 	 * Actually it makes sense, especially if rootfs would contain a
1427 	 * /reboot - static binary that would close all descriptors and
1428 	 * call reboot(9). Then init(8) could umount root and exec /reboot.
1429 	 */
1430 	if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1431 		/*
1432 		 * Special case for "unmounting" root ...
1433 		 * we just try to remount it readonly.
1434 		 */
1435 		if (!capable(CAP_SYS_ADMIN))
1436 			return -EPERM;
1437 		down_write(&sb->s_umount);
1438 		if (!(sb->s_flags & MS_RDONLY))
1439 			retval = do_remount_sb(sb, MS_RDONLY, NULL, 0);
1440 		up_write(&sb->s_umount);
1441 		return retval;
1442 	}
1443 
1444 	namespace_lock();
1445 	lock_mount_hash();
1446 	event++;
1447 
1448 	if (flags & MNT_DETACH) {
1449 		if (!list_empty(&mnt->mnt_list))
1450 			umount_tree(mnt, 2);
1451 		retval = 0;
1452 	} else {
1453 		shrink_submounts(mnt);
1454 		retval = -EBUSY;
1455 		if (!propagate_mount_busy(mnt, 2)) {
1456 			if (!list_empty(&mnt->mnt_list))
1457 				umount_tree(mnt, 1);
1458 			retval = 0;
1459 		}
1460 	}
1461 	unlock_mount_hash();
1462 	namespace_unlock();
1463 	return retval;
1464 }
1465 
1466 /*
1467  * __detach_mounts - lazily unmount all mounts on the specified dentry
1468  *
1469  * During unlink, rmdir, and d_drop it is possible to loose the path
1470  * to an existing mountpoint, and wind up leaking the mount.
1471  * detach_mounts allows lazily unmounting those mounts instead of
1472  * leaking them.
1473  *
1474  * The caller may hold dentry->d_inode->i_mutex.
1475  */
1476 void __detach_mounts(struct dentry *dentry)
1477 {
1478 	struct mountpoint *mp;
1479 	struct mount *mnt;
1480 
1481 	namespace_lock();
1482 	mp = lookup_mountpoint(dentry);
1483 	if (!mp)
1484 		goto out_unlock;
1485 
1486 	lock_mount_hash();
1487 	while (!hlist_empty(&mp->m_list)) {
1488 		mnt = hlist_entry(mp->m_list.first, struct mount, mnt_mp_list);
1489 		umount_tree(mnt, 2);
1490 	}
1491 	unlock_mount_hash();
1492 	put_mountpoint(mp);
1493 out_unlock:
1494 	namespace_unlock();
1495 }
1496 
1497 /*
1498  * Is the caller allowed to modify his namespace?
1499  */
1500 static inline bool may_mount(void)
1501 {
1502 	return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN);
1503 }
1504 
1505 /*
1506  * Now umount can handle mount points as well as block devices.
1507  * This is important for filesystems which use unnamed block devices.
1508  *
1509  * We now support a flag for forced unmount like the other 'big iron'
1510  * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
1511  */
1512 
1513 SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
1514 {
1515 	struct path path;
1516 	struct mount *mnt;
1517 	int retval;
1518 	int lookup_flags = 0;
1519 
1520 	if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
1521 		return -EINVAL;
1522 
1523 	if (!may_mount())
1524 		return -EPERM;
1525 
1526 	if (!(flags & UMOUNT_NOFOLLOW))
1527 		lookup_flags |= LOOKUP_FOLLOW;
1528 
1529 	retval = user_path_mountpoint_at(AT_FDCWD, name, lookup_flags, &path);
1530 	if (retval)
1531 		goto out;
1532 	mnt = real_mount(path.mnt);
1533 	retval = -EINVAL;
1534 	if (path.dentry != path.mnt->mnt_root)
1535 		goto dput_and_out;
1536 	if (!check_mnt(mnt))
1537 		goto dput_and_out;
1538 	if (mnt->mnt.mnt_flags & MNT_LOCKED)
1539 		goto dput_and_out;
1540 	retval = -EPERM;
1541 	if (flags & MNT_FORCE && !capable(CAP_SYS_ADMIN))
1542 		goto dput_and_out;
1543 
1544 	retval = do_umount(mnt, flags);
1545 dput_and_out:
1546 	/* we mustn't call path_put() as that would clear mnt_expiry_mark */
1547 	dput(path.dentry);
1548 	mntput_no_expire(mnt);
1549 out:
1550 	return retval;
1551 }
1552 
1553 #ifdef __ARCH_WANT_SYS_OLDUMOUNT
1554 
1555 /*
1556  *	The 2.0 compatible umount. No flags.
1557  */
1558 SYSCALL_DEFINE1(oldumount, char __user *, name)
1559 {
1560 	return sys_umount(name, 0);
1561 }
1562 
1563 #endif
1564 
1565 static bool is_mnt_ns_file(struct dentry *dentry)
1566 {
1567 	/* Is this a proxy for a mount namespace? */
1568 	return dentry->d_op == &ns_dentry_operations &&
1569 	       dentry->d_fsdata == &mntns_operations;
1570 }
1571 
1572 struct mnt_namespace *to_mnt_ns(struct ns_common *ns)
1573 {
1574 	return container_of(ns, struct mnt_namespace, ns);
1575 }
1576 
1577 static bool mnt_ns_loop(struct dentry *dentry)
1578 {
1579 	/* Could bind mounting the mount namespace inode cause a
1580 	 * mount namespace loop?
1581 	 */
1582 	struct mnt_namespace *mnt_ns;
1583 	if (!is_mnt_ns_file(dentry))
1584 		return false;
1585 
1586 	mnt_ns = to_mnt_ns(get_proc_ns(dentry->d_inode));
1587 	return current->nsproxy->mnt_ns->seq >= mnt_ns->seq;
1588 }
1589 
1590 struct mount *copy_tree(struct mount *mnt, struct dentry *dentry,
1591 					int flag)
1592 {
1593 	struct mount *res, *p, *q, *r, *parent;
1594 
1595 	if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(mnt))
1596 		return ERR_PTR(-EINVAL);
1597 
1598 	if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry))
1599 		return ERR_PTR(-EINVAL);
1600 
1601 	res = q = clone_mnt(mnt, dentry, flag);
1602 	if (IS_ERR(q))
1603 		return q;
1604 
1605 	q->mnt_mountpoint = mnt->mnt_mountpoint;
1606 
1607 	p = mnt;
1608 	list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
1609 		struct mount *s;
1610 		if (!is_subdir(r->mnt_mountpoint, dentry))
1611 			continue;
1612 
1613 		for (s = r; s; s = next_mnt(s, r)) {
1614 			struct mount *t = NULL;
1615 			if (!(flag & CL_COPY_UNBINDABLE) &&
1616 			    IS_MNT_UNBINDABLE(s)) {
1617 				s = skip_mnt_tree(s);
1618 				continue;
1619 			}
1620 			if (!(flag & CL_COPY_MNT_NS_FILE) &&
1621 			    is_mnt_ns_file(s->mnt.mnt_root)) {
1622 				s = skip_mnt_tree(s);
1623 				continue;
1624 			}
1625 			while (p != s->mnt_parent) {
1626 				p = p->mnt_parent;
1627 				q = q->mnt_parent;
1628 			}
1629 			p = s;
1630 			parent = q;
1631 			q = clone_mnt(p, p->mnt.mnt_root, flag);
1632 			if (IS_ERR(q))
1633 				goto out;
1634 			lock_mount_hash();
1635 			list_add_tail(&q->mnt_list, &res->mnt_list);
1636 			mnt_set_mountpoint(parent, p->mnt_mp, q);
1637 			if (!list_empty(&parent->mnt_mounts)) {
1638 				t = list_last_entry(&parent->mnt_mounts,
1639 					struct mount, mnt_child);
1640 				if (t->mnt_mp != p->mnt_mp)
1641 					t = NULL;
1642 			}
1643 			attach_shadowed(q, parent, t);
1644 			unlock_mount_hash();
1645 		}
1646 	}
1647 	return res;
1648 out:
1649 	if (res) {
1650 		lock_mount_hash();
1651 		umount_tree(res, 0);
1652 		unlock_mount_hash();
1653 	}
1654 	return q;
1655 }
1656 
1657 /* Caller should check returned pointer for errors */
1658 
1659 struct vfsmount *collect_mounts(struct path *path)
1660 {
1661 	struct mount *tree;
1662 	namespace_lock();
1663 	tree = copy_tree(real_mount(path->mnt), path->dentry,
1664 			 CL_COPY_ALL | CL_PRIVATE);
1665 	namespace_unlock();
1666 	if (IS_ERR(tree))
1667 		return ERR_CAST(tree);
1668 	return &tree->mnt;
1669 }
1670 
1671 void drop_collected_mounts(struct vfsmount *mnt)
1672 {
1673 	namespace_lock();
1674 	lock_mount_hash();
1675 	umount_tree(real_mount(mnt), 0);
1676 	unlock_mount_hash();
1677 	namespace_unlock();
1678 }
1679 
1680 /**
1681  * clone_private_mount - create a private clone of a path
1682  *
1683  * This creates a new vfsmount, which will be the clone of @path.  The new will
1684  * not be attached anywhere in the namespace and will be private (i.e. changes
1685  * to the originating mount won't be propagated into this).
1686  *
1687  * Release with mntput().
1688  */
1689 struct vfsmount *clone_private_mount(struct path *path)
1690 {
1691 	struct mount *old_mnt = real_mount(path->mnt);
1692 	struct mount *new_mnt;
1693 
1694 	if (IS_MNT_UNBINDABLE(old_mnt))
1695 		return ERR_PTR(-EINVAL);
1696 
1697 	down_read(&namespace_sem);
1698 	new_mnt = clone_mnt(old_mnt, path->dentry, CL_PRIVATE);
1699 	up_read(&namespace_sem);
1700 	if (IS_ERR(new_mnt))
1701 		return ERR_CAST(new_mnt);
1702 
1703 	return &new_mnt->mnt;
1704 }
1705 EXPORT_SYMBOL_GPL(clone_private_mount);
1706 
1707 int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
1708 		   struct vfsmount *root)
1709 {
1710 	struct mount *mnt;
1711 	int res = f(root, arg);
1712 	if (res)
1713 		return res;
1714 	list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) {
1715 		res = f(&mnt->mnt, arg);
1716 		if (res)
1717 			return res;
1718 	}
1719 	return 0;
1720 }
1721 
1722 static void cleanup_group_ids(struct mount *mnt, struct mount *end)
1723 {
1724 	struct mount *p;
1725 
1726 	for (p = mnt; p != end; p = next_mnt(p, mnt)) {
1727 		if (p->mnt_group_id && !IS_MNT_SHARED(p))
1728 			mnt_release_group_id(p);
1729 	}
1730 }
1731 
1732 static int invent_group_ids(struct mount *mnt, bool recurse)
1733 {
1734 	struct mount *p;
1735 
1736 	for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
1737 		if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
1738 			int err = mnt_alloc_group_id(p);
1739 			if (err) {
1740 				cleanup_group_ids(mnt, p);
1741 				return err;
1742 			}
1743 		}
1744 	}
1745 
1746 	return 0;
1747 }
1748 
1749 /*
1750  *  @source_mnt : mount tree to be attached
1751  *  @nd         : place the mount tree @source_mnt is attached
1752  *  @parent_nd  : if non-null, detach the source_mnt from its parent and
1753  *  		   store the parent mount and mountpoint dentry.
1754  *  		   (done when source_mnt is moved)
1755  *
1756  *  NOTE: in the table below explains the semantics when a source mount
1757  *  of a given type is attached to a destination mount of a given type.
1758  * ---------------------------------------------------------------------------
1759  * |         BIND MOUNT OPERATION                                            |
1760  * |**************************************************************************
1761  * | source-->| shared        |       private  |       slave    | unbindable |
1762  * | dest     |               |                |                |            |
1763  * |   |      |               |                |                |            |
1764  * |   v      |               |                |                |            |
1765  * |**************************************************************************
1766  * |  shared  | shared (++)   |     shared (+) |     shared(+++)|  invalid   |
1767  * |          |               |                |                |            |
1768  * |non-shared| shared (+)    |      private   |      slave (*) |  invalid   |
1769  * ***************************************************************************
1770  * A bind operation clones the source mount and mounts the clone on the
1771  * destination mount.
1772  *
1773  * (++)  the cloned mount is propagated to all the mounts in the propagation
1774  * 	 tree of the destination mount and the cloned mount is added to
1775  * 	 the peer group of the source mount.
1776  * (+)   the cloned mount is created under the destination mount and is marked
1777  *       as shared. The cloned mount is added to the peer group of the source
1778  *       mount.
1779  * (+++) the mount is propagated to all the mounts in the propagation tree
1780  *       of the destination mount and the cloned mount is made slave
1781  *       of the same master as that of the source mount. The cloned mount
1782  *       is marked as 'shared and slave'.
1783  * (*)   the cloned mount is made a slave of the same master as that of the
1784  * 	 source mount.
1785  *
1786  * ---------------------------------------------------------------------------
1787  * |         		MOVE MOUNT OPERATION                                 |
1788  * |**************************************************************************
1789  * | source-->| shared        |       private  |       slave    | unbindable |
1790  * | dest     |               |                |                |            |
1791  * |   |      |               |                |                |            |
1792  * |   v      |               |                |                |            |
1793  * |**************************************************************************
1794  * |  shared  | shared (+)    |     shared (+) |    shared(+++) |  invalid   |
1795  * |          |               |                |                |            |
1796  * |non-shared| shared (+*)   |      private   |    slave (*)   | unbindable |
1797  * ***************************************************************************
1798  *
1799  * (+)  the mount is moved to the destination. And is then propagated to
1800  * 	all the mounts in the propagation tree of the destination mount.
1801  * (+*)  the mount is moved to the destination.
1802  * (+++)  the mount is moved to the destination and is then propagated to
1803  * 	all the mounts belonging to the destination mount's propagation tree.
1804  * 	the mount is marked as 'shared and slave'.
1805  * (*)	the mount continues to be a slave at the new location.
1806  *
1807  * if the source mount is a tree, the operations explained above is
1808  * applied to each mount in the tree.
1809  * Must be called without spinlocks held, since this function can sleep
1810  * in allocations.
1811  */
1812 static int attach_recursive_mnt(struct mount *source_mnt,
1813 			struct mount *dest_mnt,
1814 			struct mountpoint *dest_mp,
1815 			struct path *parent_path)
1816 {
1817 	HLIST_HEAD(tree_list);
1818 	struct mount *child, *p;
1819 	struct hlist_node *n;
1820 	int err;
1821 
1822 	if (IS_MNT_SHARED(dest_mnt)) {
1823 		err = invent_group_ids(source_mnt, true);
1824 		if (err)
1825 			goto out;
1826 		err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list);
1827 		lock_mount_hash();
1828 		if (err)
1829 			goto out_cleanup_ids;
1830 		for (p = source_mnt; p; p = next_mnt(p, source_mnt))
1831 			set_mnt_shared(p);
1832 	} else {
1833 		lock_mount_hash();
1834 	}
1835 	if (parent_path) {
1836 		detach_mnt(source_mnt, parent_path);
1837 		attach_mnt(source_mnt, dest_mnt, dest_mp);
1838 		touch_mnt_namespace(source_mnt->mnt_ns);
1839 	} else {
1840 		mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt);
1841 		commit_tree(source_mnt, NULL);
1842 	}
1843 
1844 	hlist_for_each_entry_safe(child, n, &tree_list, mnt_hash) {
1845 		struct mount *q;
1846 		hlist_del_init(&child->mnt_hash);
1847 		q = __lookup_mnt_last(&child->mnt_parent->mnt,
1848 				      child->mnt_mountpoint);
1849 		commit_tree(child, q);
1850 	}
1851 	unlock_mount_hash();
1852 
1853 	return 0;
1854 
1855  out_cleanup_ids:
1856 	while (!hlist_empty(&tree_list)) {
1857 		child = hlist_entry(tree_list.first, struct mount, mnt_hash);
1858 		umount_tree(child, 0);
1859 	}
1860 	unlock_mount_hash();
1861 	cleanup_group_ids(source_mnt, NULL);
1862  out:
1863 	return err;
1864 }
1865 
1866 static struct mountpoint *lock_mount(struct path *path)
1867 {
1868 	struct vfsmount *mnt;
1869 	struct dentry *dentry = path->dentry;
1870 retry:
1871 	mutex_lock(&dentry->d_inode->i_mutex);
1872 	if (unlikely(cant_mount(dentry))) {
1873 		mutex_unlock(&dentry->d_inode->i_mutex);
1874 		return ERR_PTR(-ENOENT);
1875 	}
1876 	namespace_lock();
1877 	mnt = lookup_mnt(path);
1878 	if (likely(!mnt)) {
1879 		struct mountpoint *mp = lookup_mountpoint(dentry);
1880 		if (!mp)
1881 			mp = new_mountpoint(dentry);
1882 		if (IS_ERR(mp)) {
1883 			namespace_unlock();
1884 			mutex_unlock(&dentry->d_inode->i_mutex);
1885 			return mp;
1886 		}
1887 		return mp;
1888 	}
1889 	namespace_unlock();
1890 	mutex_unlock(&path->dentry->d_inode->i_mutex);
1891 	path_put(path);
1892 	path->mnt = mnt;
1893 	dentry = path->dentry = dget(mnt->mnt_root);
1894 	goto retry;
1895 }
1896 
1897 static void unlock_mount(struct mountpoint *where)
1898 {
1899 	struct dentry *dentry = where->m_dentry;
1900 	put_mountpoint(where);
1901 	namespace_unlock();
1902 	mutex_unlock(&dentry->d_inode->i_mutex);
1903 }
1904 
1905 static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp)
1906 {
1907 	if (mnt->mnt.mnt_sb->s_flags & MS_NOUSER)
1908 		return -EINVAL;
1909 
1910 	if (d_is_dir(mp->m_dentry) !=
1911 	      d_is_dir(mnt->mnt.mnt_root))
1912 		return -ENOTDIR;
1913 
1914 	return attach_recursive_mnt(mnt, p, mp, NULL);
1915 }
1916 
1917 /*
1918  * Sanity check the flags to change_mnt_propagation.
1919  */
1920 
1921 static int flags_to_propagation_type(int flags)
1922 {
1923 	int type = flags & ~(MS_REC | MS_SILENT);
1924 
1925 	/* Fail if any non-propagation flags are set */
1926 	if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
1927 		return 0;
1928 	/* Only one propagation flag should be set */
1929 	if (!is_power_of_2(type))
1930 		return 0;
1931 	return type;
1932 }
1933 
1934 /*
1935  * recursively change the type of the mountpoint.
1936  */
1937 static int do_change_type(struct path *path, int flag)
1938 {
1939 	struct mount *m;
1940 	struct mount *mnt = real_mount(path->mnt);
1941 	int recurse = flag & MS_REC;
1942 	int type;
1943 	int err = 0;
1944 
1945 	if (path->dentry != path->mnt->mnt_root)
1946 		return -EINVAL;
1947 
1948 	type = flags_to_propagation_type(flag);
1949 	if (!type)
1950 		return -EINVAL;
1951 
1952 	namespace_lock();
1953 	if (type == MS_SHARED) {
1954 		err = invent_group_ids(mnt, recurse);
1955 		if (err)
1956 			goto out_unlock;
1957 	}
1958 
1959 	lock_mount_hash();
1960 	for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
1961 		change_mnt_propagation(m, type);
1962 	unlock_mount_hash();
1963 
1964  out_unlock:
1965 	namespace_unlock();
1966 	return err;
1967 }
1968 
1969 static bool has_locked_children(struct mount *mnt, struct dentry *dentry)
1970 {
1971 	struct mount *child;
1972 	list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
1973 		if (!is_subdir(child->mnt_mountpoint, dentry))
1974 			continue;
1975 
1976 		if (child->mnt.mnt_flags & MNT_LOCKED)
1977 			return true;
1978 	}
1979 	return false;
1980 }
1981 
1982 /*
1983  * do loopback mount.
1984  */
1985 static int do_loopback(struct path *path, const char *old_name,
1986 				int recurse)
1987 {
1988 	struct path old_path;
1989 	struct mount *mnt = NULL, *old, *parent;
1990 	struct mountpoint *mp;
1991 	int err;
1992 	if (!old_name || !*old_name)
1993 		return -EINVAL;
1994 	err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
1995 	if (err)
1996 		return err;
1997 
1998 	err = -EINVAL;
1999 	if (mnt_ns_loop(old_path.dentry))
2000 		goto out;
2001 
2002 	mp = lock_mount(path);
2003 	err = PTR_ERR(mp);
2004 	if (IS_ERR(mp))
2005 		goto out;
2006 
2007 	old = real_mount(old_path.mnt);
2008 	parent = real_mount(path->mnt);
2009 
2010 	err = -EINVAL;
2011 	if (IS_MNT_UNBINDABLE(old))
2012 		goto out2;
2013 
2014 	if (!check_mnt(parent))
2015 		goto out2;
2016 
2017 	if (!check_mnt(old) && old_path.dentry->d_op != &ns_dentry_operations)
2018 		goto out2;
2019 
2020 	if (!recurse && has_locked_children(old, old_path.dentry))
2021 		goto out2;
2022 
2023 	if (recurse)
2024 		mnt = copy_tree(old, old_path.dentry, CL_COPY_MNT_NS_FILE);
2025 	else
2026 		mnt = clone_mnt(old, old_path.dentry, 0);
2027 
2028 	if (IS_ERR(mnt)) {
2029 		err = PTR_ERR(mnt);
2030 		goto out2;
2031 	}
2032 
2033 	mnt->mnt.mnt_flags &= ~MNT_LOCKED;
2034 
2035 	err = graft_tree(mnt, parent, mp);
2036 	if (err) {
2037 		lock_mount_hash();
2038 		umount_tree(mnt, 0);
2039 		unlock_mount_hash();
2040 	}
2041 out2:
2042 	unlock_mount(mp);
2043 out:
2044 	path_put(&old_path);
2045 	return err;
2046 }
2047 
2048 static int change_mount_flags(struct vfsmount *mnt, int ms_flags)
2049 {
2050 	int error = 0;
2051 	int readonly_request = 0;
2052 
2053 	if (ms_flags & MS_RDONLY)
2054 		readonly_request = 1;
2055 	if (readonly_request == __mnt_is_readonly(mnt))
2056 		return 0;
2057 
2058 	if (readonly_request)
2059 		error = mnt_make_readonly(real_mount(mnt));
2060 	else
2061 		__mnt_unmake_readonly(real_mount(mnt));
2062 	return error;
2063 }
2064 
2065 /*
2066  * change filesystem flags. dir should be a physical root of filesystem.
2067  * If you've mounted a non-root directory somewhere and want to do remount
2068  * on it - tough luck.
2069  */
2070 static int do_remount(struct path *path, int flags, int mnt_flags,
2071 		      void *data)
2072 {
2073 	int err;
2074 	struct super_block *sb = path->mnt->mnt_sb;
2075 	struct mount *mnt = real_mount(path->mnt);
2076 
2077 	if (!check_mnt(mnt))
2078 		return -EINVAL;
2079 
2080 	if (path->dentry != path->mnt->mnt_root)
2081 		return -EINVAL;
2082 
2083 	/* Don't allow changing of locked mnt flags.
2084 	 *
2085 	 * No locks need to be held here while testing the various
2086 	 * MNT_LOCK flags because those flags can never be cleared
2087 	 * once they are set.
2088 	 */
2089 	if ((mnt->mnt.mnt_flags & MNT_LOCK_READONLY) &&
2090 	    !(mnt_flags & MNT_READONLY)) {
2091 		return -EPERM;
2092 	}
2093 	if ((mnt->mnt.mnt_flags & MNT_LOCK_NODEV) &&
2094 	    !(mnt_flags & MNT_NODEV)) {
2095 		/* Was the nodev implicitly added in mount? */
2096 		if ((mnt->mnt_ns->user_ns != &init_user_ns) &&
2097 		    !(sb->s_type->fs_flags & FS_USERNS_DEV_MOUNT)) {
2098 			mnt_flags |= MNT_NODEV;
2099 		} else {
2100 			return -EPERM;
2101 		}
2102 	}
2103 	if ((mnt->mnt.mnt_flags & MNT_LOCK_NOSUID) &&
2104 	    !(mnt_flags & MNT_NOSUID)) {
2105 		return -EPERM;
2106 	}
2107 	if ((mnt->mnt.mnt_flags & MNT_LOCK_NOEXEC) &&
2108 	    !(mnt_flags & MNT_NOEXEC)) {
2109 		return -EPERM;
2110 	}
2111 	if ((mnt->mnt.mnt_flags & MNT_LOCK_ATIME) &&
2112 	    ((mnt->mnt.mnt_flags & MNT_ATIME_MASK) != (mnt_flags & MNT_ATIME_MASK))) {
2113 		return -EPERM;
2114 	}
2115 
2116 	err = security_sb_remount(sb, data);
2117 	if (err)
2118 		return err;
2119 
2120 	down_write(&sb->s_umount);
2121 	if (flags & MS_BIND)
2122 		err = change_mount_flags(path->mnt, flags);
2123 	else if (!capable(CAP_SYS_ADMIN))
2124 		err = -EPERM;
2125 	else
2126 		err = do_remount_sb(sb, flags, data, 0);
2127 	if (!err) {
2128 		lock_mount_hash();
2129 		mnt_flags |= mnt->mnt.mnt_flags & ~MNT_USER_SETTABLE_MASK;
2130 		mnt->mnt.mnt_flags = mnt_flags;
2131 		touch_mnt_namespace(mnt->mnt_ns);
2132 		unlock_mount_hash();
2133 	}
2134 	up_write(&sb->s_umount);
2135 	return err;
2136 }
2137 
2138 static inline int tree_contains_unbindable(struct mount *mnt)
2139 {
2140 	struct mount *p;
2141 	for (p = mnt; p; p = next_mnt(p, mnt)) {
2142 		if (IS_MNT_UNBINDABLE(p))
2143 			return 1;
2144 	}
2145 	return 0;
2146 }
2147 
2148 static int do_move_mount(struct path *path, const char *old_name)
2149 {
2150 	struct path old_path, parent_path;
2151 	struct mount *p;
2152 	struct mount *old;
2153 	struct mountpoint *mp;
2154 	int err;
2155 	if (!old_name || !*old_name)
2156 		return -EINVAL;
2157 	err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
2158 	if (err)
2159 		return err;
2160 
2161 	mp = lock_mount(path);
2162 	err = PTR_ERR(mp);
2163 	if (IS_ERR(mp))
2164 		goto out;
2165 
2166 	old = real_mount(old_path.mnt);
2167 	p = real_mount(path->mnt);
2168 
2169 	err = -EINVAL;
2170 	if (!check_mnt(p) || !check_mnt(old))
2171 		goto out1;
2172 
2173 	if (old->mnt.mnt_flags & MNT_LOCKED)
2174 		goto out1;
2175 
2176 	err = -EINVAL;
2177 	if (old_path.dentry != old_path.mnt->mnt_root)
2178 		goto out1;
2179 
2180 	if (!mnt_has_parent(old))
2181 		goto out1;
2182 
2183 	if (d_is_dir(path->dentry) !=
2184 	      d_is_dir(old_path.dentry))
2185 		goto out1;
2186 	/*
2187 	 * Don't move a mount residing in a shared parent.
2188 	 */
2189 	if (IS_MNT_SHARED(old->mnt_parent))
2190 		goto out1;
2191 	/*
2192 	 * Don't move a mount tree containing unbindable mounts to a destination
2193 	 * mount which is shared.
2194 	 */
2195 	if (IS_MNT_SHARED(p) && tree_contains_unbindable(old))
2196 		goto out1;
2197 	err = -ELOOP;
2198 	for (; mnt_has_parent(p); p = p->mnt_parent)
2199 		if (p == old)
2200 			goto out1;
2201 
2202 	err = attach_recursive_mnt(old, real_mount(path->mnt), mp, &parent_path);
2203 	if (err)
2204 		goto out1;
2205 
2206 	/* if the mount is moved, it should no longer be expire
2207 	 * automatically */
2208 	list_del_init(&old->mnt_expire);
2209 out1:
2210 	unlock_mount(mp);
2211 out:
2212 	if (!err)
2213 		path_put(&parent_path);
2214 	path_put(&old_path);
2215 	return err;
2216 }
2217 
2218 static struct vfsmount *fs_set_subtype(struct vfsmount *mnt, const char *fstype)
2219 {
2220 	int err;
2221 	const char *subtype = strchr(fstype, '.');
2222 	if (subtype) {
2223 		subtype++;
2224 		err = -EINVAL;
2225 		if (!subtype[0])
2226 			goto err;
2227 	} else
2228 		subtype = "";
2229 
2230 	mnt->mnt_sb->s_subtype = kstrdup(subtype, GFP_KERNEL);
2231 	err = -ENOMEM;
2232 	if (!mnt->mnt_sb->s_subtype)
2233 		goto err;
2234 	return mnt;
2235 
2236  err:
2237 	mntput(mnt);
2238 	return ERR_PTR(err);
2239 }
2240 
2241 /*
2242  * add a mount into a namespace's mount tree
2243  */
2244 static int do_add_mount(struct mount *newmnt, struct path *path, int mnt_flags)
2245 {
2246 	struct mountpoint *mp;
2247 	struct mount *parent;
2248 	int err;
2249 
2250 	mnt_flags &= ~MNT_INTERNAL_FLAGS;
2251 
2252 	mp = lock_mount(path);
2253 	if (IS_ERR(mp))
2254 		return PTR_ERR(mp);
2255 
2256 	parent = real_mount(path->mnt);
2257 	err = -EINVAL;
2258 	if (unlikely(!check_mnt(parent))) {
2259 		/* that's acceptable only for automounts done in private ns */
2260 		if (!(mnt_flags & MNT_SHRINKABLE))
2261 			goto unlock;
2262 		/* ... and for those we'd better have mountpoint still alive */
2263 		if (!parent->mnt_ns)
2264 			goto unlock;
2265 	}
2266 
2267 	/* Refuse the same filesystem on the same mount point */
2268 	err = -EBUSY;
2269 	if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb &&
2270 	    path->mnt->mnt_root == path->dentry)
2271 		goto unlock;
2272 
2273 	err = -EINVAL;
2274 	if (d_is_symlink(newmnt->mnt.mnt_root))
2275 		goto unlock;
2276 
2277 	newmnt->mnt.mnt_flags = mnt_flags;
2278 	err = graft_tree(newmnt, parent, mp);
2279 
2280 unlock:
2281 	unlock_mount(mp);
2282 	return err;
2283 }
2284 
2285 /*
2286  * create a new mount for userspace and request it to be added into the
2287  * namespace's tree
2288  */
2289 static int do_new_mount(struct path *path, const char *fstype, int flags,
2290 			int mnt_flags, const char *name, void *data)
2291 {
2292 	struct file_system_type *type;
2293 	struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns;
2294 	struct vfsmount *mnt;
2295 	int err;
2296 
2297 	if (!fstype)
2298 		return -EINVAL;
2299 
2300 	type = get_fs_type(fstype);
2301 	if (!type)
2302 		return -ENODEV;
2303 
2304 	if (user_ns != &init_user_ns) {
2305 		if (!(type->fs_flags & FS_USERNS_MOUNT)) {
2306 			put_filesystem(type);
2307 			return -EPERM;
2308 		}
2309 		/* Only in special cases allow devices from mounts
2310 		 * created outside the initial user namespace.
2311 		 */
2312 		if (!(type->fs_flags & FS_USERNS_DEV_MOUNT)) {
2313 			flags |= MS_NODEV;
2314 			mnt_flags |= MNT_NODEV | MNT_LOCK_NODEV;
2315 		}
2316 	}
2317 
2318 	mnt = vfs_kern_mount(type, flags, name, data);
2319 	if (!IS_ERR(mnt) && (type->fs_flags & FS_HAS_SUBTYPE) &&
2320 	    !mnt->mnt_sb->s_subtype)
2321 		mnt = fs_set_subtype(mnt, fstype);
2322 
2323 	put_filesystem(type);
2324 	if (IS_ERR(mnt))
2325 		return PTR_ERR(mnt);
2326 
2327 	err = do_add_mount(real_mount(mnt), path, mnt_flags);
2328 	if (err)
2329 		mntput(mnt);
2330 	return err;
2331 }
2332 
2333 int finish_automount(struct vfsmount *m, struct path *path)
2334 {
2335 	struct mount *mnt = real_mount(m);
2336 	int err;
2337 	/* The new mount record should have at least 2 refs to prevent it being
2338 	 * expired before we get a chance to add it
2339 	 */
2340 	BUG_ON(mnt_get_count(mnt) < 2);
2341 
2342 	if (m->mnt_sb == path->mnt->mnt_sb &&
2343 	    m->mnt_root == path->dentry) {
2344 		err = -ELOOP;
2345 		goto fail;
2346 	}
2347 
2348 	err = do_add_mount(mnt, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
2349 	if (!err)
2350 		return 0;
2351 fail:
2352 	/* remove m from any expiration list it may be on */
2353 	if (!list_empty(&mnt->mnt_expire)) {
2354 		namespace_lock();
2355 		list_del_init(&mnt->mnt_expire);
2356 		namespace_unlock();
2357 	}
2358 	mntput(m);
2359 	mntput(m);
2360 	return err;
2361 }
2362 
2363 /**
2364  * mnt_set_expiry - Put a mount on an expiration list
2365  * @mnt: The mount to list.
2366  * @expiry_list: The list to add the mount to.
2367  */
2368 void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
2369 {
2370 	namespace_lock();
2371 
2372 	list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
2373 
2374 	namespace_unlock();
2375 }
2376 EXPORT_SYMBOL(mnt_set_expiry);
2377 
2378 /*
2379  * process a list of expirable mountpoints with the intent of discarding any
2380  * mountpoints that aren't in use and haven't been touched since last we came
2381  * here
2382  */
2383 void mark_mounts_for_expiry(struct list_head *mounts)
2384 {
2385 	struct mount *mnt, *next;
2386 	LIST_HEAD(graveyard);
2387 
2388 	if (list_empty(mounts))
2389 		return;
2390 
2391 	namespace_lock();
2392 	lock_mount_hash();
2393 
2394 	/* extract from the expiration list every vfsmount that matches the
2395 	 * following criteria:
2396 	 * - only referenced by its parent vfsmount
2397 	 * - still marked for expiry (marked on the last call here; marks are
2398 	 *   cleared by mntput())
2399 	 */
2400 	list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
2401 		if (!xchg(&mnt->mnt_expiry_mark, 1) ||
2402 			propagate_mount_busy(mnt, 1))
2403 			continue;
2404 		list_move(&mnt->mnt_expire, &graveyard);
2405 	}
2406 	while (!list_empty(&graveyard)) {
2407 		mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
2408 		touch_mnt_namespace(mnt->mnt_ns);
2409 		umount_tree(mnt, 1);
2410 	}
2411 	unlock_mount_hash();
2412 	namespace_unlock();
2413 }
2414 
2415 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
2416 
2417 /*
2418  * Ripoff of 'select_parent()'
2419  *
2420  * search the list of submounts for a given mountpoint, and move any
2421  * shrinkable submounts to the 'graveyard' list.
2422  */
2423 static int select_submounts(struct mount *parent, struct list_head *graveyard)
2424 {
2425 	struct mount *this_parent = parent;
2426 	struct list_head *next;
2427 	int found = 0;
2428 
2429 repeat:
2430 	next = this_parent->mnt_mounts.next;
2431 resume:
2432 	while (next != &this_parent->mnt_mounts) {
2433 		struct list_head *tmp = next;
2434 		struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
2435 
2436 		next = tmp->next;
2437 		if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
2438 			continue;
2439 		/*
2440 		 * Descend a level if the d_mounts list is non-empty.
2441 		 */
2442 		if (!list_empty(&mnt->mnt_mounts)) {
2443 			this_parent = mnt;
2444 			goto repeat;
2445 		}
2446 
2447 		if (!propagate_mount_busy(mnt, 1)) {
2448 			list_move_tail(&mnt->mnt_expire, graveyard);
2449 			found++;
2450 		}
2451 	}
2452 	/*
2453 	 * All done at this level ... ascend and resume the search
2454 	 */
2455 	if (this_parent != parent) {
2456 		next = this_parent->mnt_child.next;
2457 		this_parent = this_parent->mnt_parent;
2458 		goto resume;
2459 	}
2460 	return found;
2461 }
2462 
2463 /*
2464  * process a list of expirable mountpoints with the intent of discarding any
2465  * submounts of a specific parent mountpoint
2466  *
2467  * mount_lock must be held for write
2468  */
2469 static void shrink_submounts(struct mount *mnt)
2470 {
2471 	LIST_HEAD(graveyard);
2472 	struct mount *m;
2473 
2474 	/* extract submounts of 'mountpoint' from the expiration list */
2475 	while (select_submounts(mnt, &graveyard)) {
2476 		while (!list_empty(&graveyard)) {
2477 			m = list_first_entry(&graveyard, struct mount,
2478 						mnt_expire);
2479 			touch_mnt_namespace(m->mnt_ns);
2480 			umount_tree(m, 1);
2481 		}
2482 	}
2483 }
2484 
2485 /*
2486  * Some copy_from_user() implementations do not return the exact number of
2487  * bytes remaining to copy on a fault.  But copy_mount_options() requires that.
2488  * Note that this function differs from copy_from_user() in that it will oops
2489  * on bad values of `to', rather than returning a short copy.
2490  */
2491 static long exact_copy_from_user(void *to, const void __user * from,
2492 				 unsigned long n)
2493 {
2494 	char *t = to;
2495 	const char __user *f = from;
2496 	char c;
2497 
2498 	if (!access_ok(VERIFY_READ, from, n))
2499 		return n;
2500 
2501 	while (n) {
2502 		if (__get_user(c, f)) {
2503 			memset(t, 0, n);
2504 			break;
2505 		}
2506 		*t++ = c;
2507 		f++;
2508 		n--;
2509 	}
2510 	return n;
2511 }
2512 
2513 int copy_mount_options(const void __user * data, unsigned long *where)
2514 {
2515 	int i;
2516 	unsigned long page;
2517 	unsigned long size;
2518 
2519 	*where = 0;
2520 	if (!data)
2521 		return 0;
2522 
2523 	if (!(page = __get_free_page(GFP_KERNEL)))
2524 		return -ENOMEM;
2525 
2526 	/* We only care that *some* data at the address the user
2527 	 * gave us is valid.  Just in case, we'll zero
2528 	 * the remainder of the page.
2529 	 */
2530 	/* copy_from_user cannot cross TASK_SIZE ! */
2531 	size = TASK_SIZE - (unsigned long)data;
2532 	if (size > PAGE_SIZE)
2533 		size = PAGE_SIZE;
2534 
2535 	i = size - exact_copy_from_user((void *)page, data, size);
2536 	if (!i) {
2537 		free_page(page);
2538 		return -EFAULT;
2539 	}
2540 	if (i != PAGE_SIZE)
2541 		memset((char *)page + i, 0, PAGE_SIZE - i);
2542 	*where = page;
2543 	return 0;
2544 }
2545 
2546 char *copy_mount_string(const void __user *data)
2547 {
2548 	return data ? strndup_user(data, PAGE_SIZE) : NULL;
2549 }
2550 
2551 /*
2552  * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
2553  * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
2554  *
2555  * data is a (void *) that can point to any structure up to
2556  * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
2557  * information (or be NULL).
2558  *
2559  * Pre-0.97 versions of mount() didn't have a flags word.
2560  * When the flags word was introduced its top half was required
2561  * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
2562  * Therefore, if this magic number is present, it carries no information
2563  * and must be discarded.
2564  */
2565 long do_mount(const char *dev_name, const char __user *dir_name,
2566 		const char *type_page, unsigned long flags, void *data_page)
2567 {
2568 	struct path path;
2569 	int retval = 0;
2570 	int mnt_flags = 0;
2571 
2572 	/* Discard magic */
2573 	if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
2574 		flags &= ~MS_MGC_MSK;
2575 
2576 	/* Basic sanity checks */
2577 	if (data_page)
2578 		((char *)data_page)[PAGE_SIZE - 1] = 0;
2579 
2580 	/* ... and get the mountpoint */
2581 	retval = user_path(dir_name, &path);
2582 	if (retval)
2583 		return retval;
2584 
2585 	retval = security_sb_mount(dev_name, &path,
2586 				   type_page, flags, data_page);
2587 	if (!retval && !may_mount())
2588 		retval = -EPERM;
2589 	if (retval)
2590 		goto dput_out;
2591 
2592 	/* Default to relatime unless overriden */
2593 	if (!(flags & MS_NOATIME))
2594 		mnt_flags |= MNT_RELATIME;
2595 
2596 	/* Separate the per-mountpoint flags */
2597 	if (flags & MS_NOSUID)
2598 		mnt_flags |= MNT_NOSUID;
2599 	if (flags & MS_NODEV)
2600 		mnt_flags |= MNT_NODEV;
2601 	if (flags & MS_NOEXEC)
2602 		mnt_flags |= MNT_NOEXEC;
2603 	if (flags & MS_NOATIME)
2604 		mnt_flags |= MNT_NOATIME;
2605 	if (flags & MS_NODIRATIME)
2606 		mnt_flags |= MNT_NODIRATIME;
2607 	if (flags & MS_STRICTATIME)
2608 		mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
2609 	if (flags & MS_RDONLY)
2610 		mnt_flags |= MNT_READONLY;
2611 
2612 	/* The default atime for remount is preservation */
2613 	if ((flags & MS_REMOUNT) &&
2614 	    ((flags & (MS_NOATIME | MS_NODIRATIME | MS_RELATIME |
2615 		       MS_STRICTATIME)) == 0)) {
2616 		mnt_flags &= ~MNT_ATIME_MASK;
2617 		mnt_flags |= path.mnt->mnt_flags & MNT_ATIME_MASK;
2618 	}
2619 
2620 	flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE | MS_BORN |
2621 		   MS_NOATIME | MS_NODIRATIME | MS_RELATIME| MS_KERNMOUNT |
2622 		   MS_STRICTATIME);
2623 
2624 	if (flags & MS_REMOUNT)
2625 		retval = do_remount(&path, flags & ~MS_REMOUNT, mnt_flags,
2626 				    data_page);
2627 	else if (flags & MS_BIND)
2628 		retval = do_loopback(&path, dev_name, flags & MS_REC);
2629 	else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2630 		retval = do_change_type(&path, flags);
2631 	else if (flags & MS_MOVE)
2632 		retval = do_move_mount(&path, dev_name);
2633 	else
2634 		retval = do_new_mount(&path, type_page, flags, mnt_flags,
2635 				      dev_name, data_page);
2636 dput_out:
2637 	path_put(&path);
2638 	return retval;
2639 }
2640 
2641 static void free_mnt_ns(struct mnt_namespace *ns)
2642 {
2643 	ns_free_inum(&ns->ns);
2644 	put_user_ns(ns->user_ns);
2645 	kfree(ns);
2646 }
2647 
2648 /*
2649  * Assign a sequence number so we can detect when we attempt to bind
2650  * mount a reference to an older mount namespace into the current
2651  * mount namespace, preventing reference counting loops.  A 64bit
2652  * number incrementing at 10Ghz will take 12,427 years to wrap which
2653  * is effectively never, so we can ignore the possibility.
2654  */
2655 static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1);
2656 
2657 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns)
2658 {
2659 	struct mnt_namespace *new_ns;
2660 	int ret;
2661 
2662 	new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
2663 	if (!new_ns)
2664 		return ERR_PTR(-ENOMEM);
2665 	ret = ns_alloc_inum(&new_ns->ns);
2666 	if (ret) {
2667 		kfree(new_ns);
2668 		return ERR_PTR(ret);
2669 	}
2670 	new_ns->ns.ops = &mntns_operations;
2671 	new_ns->seq = atomic64_add_return(1, &mnt_ns_seq);
2672 	atomic_set(&new_ns->count, 1);
2673 	new_ns->root = NULL;
2674 	INIT_LIST_HEAD(&new_ns->list);
2675 	init_waitqueue_head(&new_ns->poll);
2676 	new_ns->event = 0;
2677 	new_ns->user_ns = get_user_ns(user_ns);
2678 	return new_ns;
2679 }
2680 
2681 struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
2682 		struct user_namespace *user_ns, struct fs_struct *new_fs)
2683 {
2684 	struct mnt_namespace *new_ns;
2685 	struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
2686 	struct mount *p, *q;
2687 	struct mount *old;
2688 	struct mount *new;
2689 	int copy_flags;
2690 
2691 	BUG_ON(!ns);
2692 
2693 	if (likely(!(flags & CLONE_NEWNS))) {
2694 		get_mnt_ns(ns);
2695 		return ns;
2696 	}
2697 
2698 	old = ns->root;
2699 
2700 	new_ns = alloc_mnt_ns(user_ns);
2701 	if (IS_ERR(new_ns))
2702 		return new_ns;
2703 
2704 	namespace_lock();
2705 	/* First pass: copy the tree topology */
2706 	copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE;
2707 	if (user_ns != ns->user_ns)
2708 		copy_flags |= CL_SHARED_TO_SLAVE | CL_UNPRIVILEGED;
2709 	new = copy_tree(old, old->mnt.mnt_root, copy_flags);
2710 	if (IS_ERR(new)) {
2711 		namespace_unlock();
2712 		free_mnt_ns(new_ns);
2713 		return ERR_CAST(new);
2714 	}
2715 	new_ns->root = new;
2716 	list_add_tail(&new_ns->list, &new->mnt_list);
2717 
2718 	/*
2719 	 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
2720 	 * as belonging to new namespace.  We have already acquired a private
2721 	 * fs_struct, so tsk->fs->lock is not needed.
2722 	 */
2723 	p = old;
2724 	q = new;
2725 	while (p) {
2726 		q->mnt_ns = new_ns;
2727 		if (new_fs) {
2728 			if (&p->mnt == new_fs->root.mnt) {
2729 				new_fs->root.mnt = mntget(&q->mnt);
2730 				rootmnt = &p->mnt;
2731 			}
2732 			if (&p->mnt == new_fs->pwd.mnt) {
2733 				new_fs->pwd.mnt = mntget(&q->mnt);
2734 				pwdmnt = &p->mnt;
2735 			}
2736 		}
2737 		p = next_mnt(p, old);
2738 		q = next_mnt(q, new);
2739 		if (!q)
2740 			break;
2741 		while (p->mnt.mnt_root != q->mnt.mnt_root)
2742 			p = next_mnt(p, old);
2743 	}
2744 	namespace_unlock();
2745 
2746 	if (rootmnt)
2747 		mntput(rootmnt);
2748 	if (pwdmnt)
2749 		mntput(pwdmnt);
2750 
2751 	return new_ns;
2752 }
2753 
2754 /**
2755  * create_mnt_ns - creates a private namespace and adds a root filesystem
2756  * @mnt: pointer to the new root filesystem mountpoint
2757  */
2758 static struct mnt_namespace *create_mnt_ns(struct vfsmount *m)
2759 {
2760 	struct mnt_namespace *new_ns = alloc_mnt_ns(&init_user_ns);
2761 	if (!IS_ERR(new_ns)) {
2762 		struct mount *mnt = real_mount(m);
2763 		mnt->mnt_ns = new_ns;
2764 		new_ns->root = mnt;
2765 		list_add(&mnt->mnt_list, &new_ns->list);
2766 	} else {
2767 		mntput(m);
2768 	}
2769 	return new_ns;
2770 }
2771 
2772 struct dentry *mount_subtree(struct vfsmount *mnt, const char *name)
2773 {
2774 	struct mnt_namespace *ns;
2775 	struct super_block *s;
2776 	struct path path;
2777 	int err;
2778 
2779 	ns = create_mnt_ns(mnt);
2780 	if (IS_ERR(ns))
2781 		return ERR_CAST(ns);
2782 
2783 	err = vfs_path_lookup(mnt->mnt_root, mnt,
2784 			name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
2785 
2786 	put_mnt_ns(ns);
2787 
2788 	if (err)
2789 		return ERR_PTR(err);
2790 
2791 	/* trade a vfsmount reference for active sb one */
2792 	s = path.mnt->mnt_sb;
2793 	atomic_inc(&s->s_active);
2794 	mntput(path.mnt);
2795 	/* lock the sucker */
2796 	down_write(&s->s_umount);
2797 	/* ... and return the root of (sub)tree on it */
2798 	return path.dentry;
2799 }
2800 EXPORT_SYMBOL(mount_subtree);
2801 
2802 SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
2803 		char __user *, type, unsigned long, flags, void __user *, data)
2804 {
2805 	int ret;
2806 	char *kernel_type;
2807 	char *kernel_dev;
2808 	unsigned long data_page;
2809 
2810 	kernel_type = copy_mount_string(type);
2811 	ret = PTR_ERR(kernel_type);
2812 	if (IS_ERR(kernel_type))
2813 		goto out_type;
2814 
2815 	kernel_dev = copy_mount_string(dev_name);
2816 	ret = PTR_ERR(kernel_dev);
2817 	if (IS_ERR(kernel_dev))
2818 		goto out_dev;
2819 
2820 	ret = copy_mount_options(data, &data_page);
2821 	if (ret < 0)
2822 		goto out_data;
2823 
2824 	ret = do_mount(kernel_dev, dir_name, kernel_type, flags,
2825 		(void *) data_page);
2826 
2827 	free_page(data_page);
2828 out_data:
2829 	kfree(kernel_dev);
2830 out_dev:
2831 	kfree(kernel_type);
2832 out_type:
2833 	return ret;
2834 }
2835 
2836 /*
2837  * Return true if path is reachable from root
2838  *
2839  * namespace_sem or mount_lock is held
2840  */
2841 bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
2842 			 const struct path *root)
2843 {
2844 	while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
2845 		dentry = mnt->mnt_mountpoint;
2846 		mnt = mnt->mnt_parent;
2847 	}
2848 	return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
2849 }
2850 
2851 int path_is_under(struct path *path1, struct path *path2)
2852 {
2853 	int res;
2854 	read_seqlock_excl(&mount_lock);
2855 	res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
2856 	read_sequnlock_excl(&mount_lock);
2857 	return res;
2858 }
2859 EXPORT_SYMBOL(path_is_under);
2860 
2861 /*
2862  * pivot_root Semantics:
2863  * Moves the root file system of the current process to the directory put_old,
2864  * makes new_root as the new root file system of the current process, and sets
2865  * root/cwd of all processes which had them on the current root to new_root.
2866  *
2867  * Restrictions:
2868  * The new_root and put_old must be directories, and  must not be on the
2869  * same file  system as the current process root. The put_old  must  be
2870  * underneath new_root,  i.e. adding a non-zero number of /.. to the string
2871  * pointed to by put_old must yield the same directory as new_root. No other
2872  * file system may be mounted on put_old. After all, new_root is a mountpoint.
2873  *
2874  * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
2875  * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
2876  * in this situation.
2877  *
2878  * Notes:
2879  *  - we don't move root/cwd if they are not at the root (reason: if something
2880  *    cared enough to change them, it's probably wrong to force them elsewhere)
2881  *  - it's okay to pick a root that isn't the root of a file system, e.g.
2882  *    /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
2883  *    though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
2884  *    first.
2885  */
2886 SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
2887 		const char __user *, put_old)
2888 {
2889 	struct path new, old, parent_path, root_parent, root;
2890 	struct mount *new_mnt, *root_mnt, *old_mnt;
2891 	struct mountpoint *old_mp, *root_mp;
2892 	int error;
2893 
2894 	if (!may_mount())
2895 		return -EPERM;
2896 
2897 	error = user_path_dir(new_root, &new);
2898 	if (error)
2899 		goto out0;
2900 
2901 	error = user_path_dir(put_old, &old);
2902 	if (error)
2903 		goto out1;
2904 
2905 	error = security_sb_pivotroot(&old, &new);
2906 	if (error)
2907 		goto out2;
2908 
2909 	get_fs_root(current->fs, &root);
2910 	old_mp = lock_mount(&old);
2911 	error = PTR_ERR(old_mp);
2912 	if (IS_ERR(old_mp))
2913 		goto out3;
2914 
2915 	error = -EINVAL;
2916 	new_mnt = real_mount(new.mnt);
2917 	root_mnt = real_mount(root.mnt);
2918 	old_mnt = real_mount(old.mnt);
2919 	if (IS_MNT_SHARED(old_mnt) ||
2920 		IS_MNT_SHARED(new_mnt->mnt_parent) ||
2921 		IS_MNT_SHARED(root_mnt->mnt_parent))
2922 		goto out4;
2923 	if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
2924 		goto out4;
2925 	if (new_mnt->mnt.mnt_flags & MNT_LOCKED)
2926 		goto out4;
2927 	error = -ENOENT;
2928 	if (d_unlinked(new.dentry))
2929 		goto out4;
2930 	error = -EBUSY;
2931 	if (new_mnt == root_mnt || old_mnt == root_mnt)
2932 		goto out4; /* loop, on the same file system  */
2933 	error = -EINVAL;
2934 	if (root.mnt->mnt_root != root.dentry)
2935 		goto out4; /* not a mountpoint */
2936 	if (!mnt_has_parent(root_mnt))
2937 		goto out4; /* not attached */
2938 	root_mp = root_mnt->mnt_mp;
2939 	if (new.mnt->mnt_root != new.dentry)
2940 		goto out4; /* not a mountpoint */
2941 	if (!mnt_has_parent(new_mnt))
2942 		goto out4; /* not attached */
2943 	/* make sure we can reach put_old from new_root */
2944 	if (!is_path_reachable(old_mnt, old.dentry, &new))
2945 		goto out4;
2946 	/* make certain new is below the root */
2947 	if (!is_path_reachable(new_mnt, new.dentry, &root))
2948 		goto out4;
2949 	root_mp->m_count++; /* pin it so it won't go away */
2950 	lock_mount_hash();
2951 	detach_mnt(new_mnt, &parent_path);
2952 	detach_mnt(root_mnt, &root_parent);
2953 	if (root_mnt->mnt.mnt_flags & MNT_LOCKED) {
2954 		new_mnt->mnt.mnt_flags |= MNT_LOCKED;
2955 		root_mnt->mnt.mnt_flags &= ~MNT_LOCKED;
2956 	}
2957 	/* mount old root on put_old */
2958 	attach_mnt(root_mnt, old_mnt, old_mp);
2959 	/* mount new_root on / */
2960 	attach_mnt(new_mnt, real_mount(root_parent.mnt), root_mp);
2961 	touch_mnt_namespace(current->nsproxy->mnt_ns);
2962 	/* A moved mount should not expire automatically */
2963 	list_del_init(&new_mnt->mnt_expire);
2964 	unlock_mount_hash();
2965 	chroot_fs_refs(&root, &new);
2966 	put_mountpoint(root_mp);
2967 	error = 0;
2968 out4:
2969 	unlock_mount(old_mp);
2970 	if (!error) {
2971 		path_put(&root_parent);
2972 		path_put(&parent_path);
2973 	}
2974 out3:
2975 	path_put(&root);
2976 out2:
2977 	path_put(&old);
2978 out1:
2979 	path_put(&new);
2980 out0:
2981 	return error;
2982 }
2983 
2984 static void __init init_mount_tree(void)
2985 {
2986 	struct vfsmount *mnt;
2987 	struct mnt_namespace *ns;
2988 	struct path root;
2989 	struct file_system_type *type;
2990 
2991 	type = get_fs_type("rootfs");
2992 	if (!type)
2993 		panic("Can't find rootfs type");
2994 	mnt = vfs_kern_mount(type, 0, "rootfs", NULL);
2995 	put_filesystem(type);
2996 	if (IS_ERR(mnt))
2997 		panic("Can't create rootfs");
2998 
2999 	ns = create_mnt_ns(mnt);
3000 	if (IS_ERR(ns))
3001 		panic("Can't allocate initial namespace");
3002 
3003 	init_task.nsproxy->mnt_ns = ns;
3004 	get_mnt_ns(ns);
3005 
3006 	root.mnt = mnt;
3007 	root.dentry = mnt->mnt_root;
3008 	mnt->mnt_flags |= MNT_LOCKED;
3009 
3010 	set_fs_pwd(current->fs, &root);
3011 	set_fs_root(current->fs, &root);
3012 }
3013 
3014 void __init mnt_init(void)
3015 {
3016 	unsigned u;
3017 	int err;
3018 
3019 	mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
3020 			0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
3021 
3022 	mount_hashtable = alloc_large_system_hash("Mount-cache",
3023 				sizeof(struct hlist_head),
3024 				mhash_entries, 19,
3025 				0,
3026 				&m_hash_shift, &m_hash_mask, 0, 0);
3027 	mountpoint_hashtable = alloc_large_system_hash("Mountpoint-cache",
3028 				sizeof(struct hlist_head),
3029 				mphash_entries, 19,
3030 				0,
3031 				&mp_hash_shift, &mp_hash_mask, 0, 0);
3032 
3033 	if (!mount_hashtable || !mountpoint_hashtable)
3034 		panic("Failed to allocate mount hash table\n");
3035 
3036 	for (u = 0; u <= m_hash_mask; u++)
3037 		INIT_HLIST_HEAD(&mount_hashtable[u]);
3038 	for (u = 0; u <= mp_hash_mask; u++)
3039 		INIT_HLIST_HEAD(&mountpoint_hashtable[u]);
3040 
3041 	kernfs_init();
3042 
3043 	err = sysfs_init();
3044 	if (err)
3045 		printk(KERN_WARNING "%s: sysfs_init error: %d\n",
3046 			__func__, err);
3047 	fs_kobj = kobject_create_and_add("fs", NULL);
3048 	if (!fs_kobj)
3049 		printk(KERN_WARNING "%s: kobj create error\n", __func__);
3050 	init_rootfs();
3051 	init_mount_tree();
3052 }
3053 
3054 void put_mnt_ns(struct mnt_namespace *ns)
3055 {
3056 	if (!atomic_dec_and_test(&ns->count))
3057 		return;
3058 	drop_collected_mounts(&ns->root->mnt);
3059 	free_mnt_ns(ns);
3060 }
3061 
3062 struct vfsmount *kern_mount_data(struct file_system_type *type, void *data)
3063 {
3064 	struct vfsmount *mnt;
3065 	mnt = vfs_kern_mount(type, MS_KERNMOUNT, type->name, data);
3066 	if (!IS_ERR(mnt)) {
3067 		/*
3068 		 * it is a longterm mount, don't release mnt until
3069 		 * we unmount before file sys is unregistered
3070 		*/
3071 		real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
3072 	}
3073 	return mnt;
3074 }
3075 EXPORT_SYMBOL_GPL(kern_mount_data);
3076 
3077 void kern_unmount(struct vfsmount *mnt)
3078 {
3079 	/* release long term mount so mount point can be released */
3080 	if (!IS_ERR_OR_NULL(mnt)) {
3081 		real_mount(mnt)->mnt_ns = NULL;
3082 		synchronize_rcu();	/* yecchhh... */
3083 		mntput(mnt);
3084 	}
3085 }
3086 EXPORT_SYMBOL(kern_unmount);
3087 
3088 bool our_mnt(struct vfsmount *mnt)
3089 {
3090 	return check_mnt(real_mount(mnt));
3091 }
3092 
3093 bool current_chrooted(void)
3094 {
3095 	/* Does the current process have a non-standard root */
3096 	struct path ns_root;
3097 	struct path fs_root;
3098 	bool chrooted;
3099 
3100 	/* Find the namespace root */
3101 	ns_root.mnt = &current->nsproxy->mnt_ns->root->mnt;
3102 	ns_root.dentry = ns_root.mnt->mnt_root;
3103 	path_get(&ns_root);
3104 	while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root))
3105 		;
3106 
3107 	get_fs_root(current->fs, &fs_root);
3108 
3109 	chrooted = !path_equal(&fs_root, &ns_root);
3110 
3111 	path_put(&fs_root);
3112 	path_put(&ns_root);
3113 
3114 	return chrooted;
3115 }
3116 
3117 bool fs_fully_visible(struct file_system_type *type)
3118 {
3119 	struct mnt_namespace *ns = current->nsproxy->mnt_ns;
3120 	struct mount *mnt;
3121 	bool visible = false;
3122 
3123 	if (unlikely(!ns))
3124 		return false;
3125 
3126 	down_read(&namespace_sem);
3127 	list_for_each_entry(mnt, &ns->list, mnt_list) {
3128 		struct mount *child;
3129 		if (mnt->mnt.mnt_sb->s_type != type)
3130 			continue;
3131 
3132 		/* This mount is not fully visible if there are any child mounts
3133 		 * that cover anything except for empty directories.
3134 		 */
3135 		list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
3136 			struct inode *inode = child->mnt_mountpoint->d_inode;
3137 			if (!S_ISDIR(inode->i_mode))
3138 				goto next;
3139 			if (inode->i_nlink > 2)
3140 				goto next;
3141 		}
3142 		visible = true;
3143 		goto found;
3144 	next:	;
3145 	}
3146 found:
3147 	up_read(&namespace_sem);
3148 	return visible;
3149 }
3150 
3151 static struct ns_common *mntns_get(struct task_struct *task)
3152 {
3153 	struct ns_common *ns = NULL;
3154 	struct nsproxy *nsproxy;
3155 
3156 	task_lock(task);
3157 	nsproxy = task->nsproxy;
3158 	if (nsproxy) {
3159 		ns = &nsproxy->mnt_ns->ns;
3160 		get_mnt_ns(to_mnt_ns(ns));
3161 	}
3162 	task_unlock(task);
3163 
3164 	return ns;
3165 }
3166 
3167 static void mntns_put(struct ns_common *ns)
3168 {
3169 	put_mnt_ns(to_mnt_ns(ns));
3170 }
3171 
3172 static int mntns_install(struct nsproxy *nsproxy, struct ns_common *ns)
3173 {
3174 	struct fs_struct *fs = current->fs;
3175 	struct mnt_namespace *mnt_ns = to_mnt_ns(ns);
3176 	struct path root;
3177 
3178 	if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) ||
3179 	    !ns_capable(current_user_ns(), CAP_SYS_CHROOT) ||
3180 	    !ns_capable(current_user_ns(), CAP_SYS_ADMIN))
3181 		return -EPERM;
3182 
3183 	if (fs->users != 1)
3184 		return -EINVAL;
3185 
3186 	get_mnt_ns(mnt_ns);
3187 	put_mnt_ns(nsproxy->mnt_ns);
3188 	nsproxy->mnt_ns = mnt_ns;
3189 
3190 	/* Find the root */
3191 	root.mnt    = &mnt_ns->root->mnt;
3192 	root.dentry = mnt_ns->root->mnt.mnt_root;
3193 	path_get(&root);
3194 	while(d_mountpoint(root.dentry) && follow_down_one(&root))
3195 		;
3196 
3197 	/* Update the pwd and root */
3198 	set_fs_pwd(fs, &root);
3199 	set_fs_root(fs, &root);
3200 
3201 	path_put(&root);
3202 	return 0;
3203 }
3204 
3205 const struct proc_ns_operations mntns_operations = {
3206 	.name		= "mnt",
3207 	.type		= CLONE_NEWNS,
3208 	.get		= mntns_get,
3209 	.put		= mntns_put,
3210 	.install	= mntns_install,
3211 };
3212