1 /* 2 * linux/fs/namespace.c 3 * 4 * (C) Copyright Al Viro 2000, 2001 5 * Released under GPL v2. 6 * 7 * Based on code from fs/super.c, copyright Linus Torvalds and others. 8 * Heavily rewritten. 9 */ 10 11 #include <linux/syscalls.h> 12 #include <linux/export.h> 13 #include <linux/capability.h> 14 #include <linux/mnt_namespace.h> 15 #include <linux/user_namespace.h> 16 #include <linux/namei.h> 17 #include <linux/security.h> 18 #include <linux/idr.h> 19 #include <linux/init.h> /* init_rootfs */ 20 #include <linux/fs_struct.h> /* get_fs_root et.al. */ 21 #include <linux/fsnotify.h> /* fsnotify_vfsmount_delete */ 22 #include <linux/uaccess.h> 23 #include <linux/proc_ns.h> 24 #include <linux/magic.h> 25 #include <linux/bootmem.h> 26 #include <linux/task_work.h> 27 #include "pnode.h" 28 #include "internal.h" 29 30 static unsigned int m_hash_mask __read_mostly; 31 static unsigned int m_hash_shift __read_mostly; 32 static unsigned int mp_hash_mask __read_mostly; 33 static unsigned int mp_hash_shift __read_mostly; 34 35 static __initdata unsigned long mhash_entries; 36 static int __init set_mhash_entries(char *str) 37 { 38 if (!str) 39 return 0; 40 mhash_entries = simple_strtoul(str, &str, 0); 41 return 1; 42 } 43 __setup("mhash_entries=", set_mhash_entries); 44 45 static __initdata unsigned long mphash_entries; 46 static int __init set_mphash_entries(char *str) 47 { 48 if (!str) 49 return 0; 50 mphash_entries = simple_strtoul(str, &str, 0); 51 return 1; 52 } 53 __setup("mphash_entries=", set_mphash_entries); 54 55 static u64 event; 56 static DEFINE_IDA(mnt_id_ida); 57 static DEFINE_IDA(mnt_group_ida); 58 static DEFINE_SPINLOCK(mnt_id_lock); 59 static int mnt_id_start = 0; 60 static int mnt_group_start = 1; 61 62 static struct hlist_head *mount_hashtable __read_mostly; 63 static struct hlist_head *mountpoint_hashtable __read_mostly; 64 static struct kmem_cache *mnt_cache __read_mostly; 65 static DECLARE_RWSEM(namespace_sem); 66 67 /* /sys/fs */ 68 struct kobject *fs_kobj; 69 EXPORT_SYMBOL_GPL(fs_kobj); 70 71 /* 72 * vfsmount lock may be taken for read to prevent changes to the 73 * vfsmount hash, ie. during mountpoint lookups or walking back 74 * up the tree. 75 * 76 * It should be taken for write in all cases where the vfsmount 77 * tree or hash is modified or when a vfsmount structure is modified. 78 */ 79 __cacheline_aligned_in_smp DEFINE_SEQLOCK(mount_lock); 80 81 static inline struct hlist_head *m_hash(struct vfsmount *mnt, struct dentry *dentry) 82 { 83 unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES); 84 tmp += ((unsigned long)dentry / L1_CACHE_BYTES); 85 tmp = tmp + (tmp >> m_hash_shift); 86 return &mount_hashtable[tmp & m_hash_mask]; 87 } 88 89 static inline struct hlist_head *mp_hash(struct dentry *dentry) 90 { 91 unsigned long tmp = ((unsigned long)dentry / L1_CACHE_BYTES); 92 tmp = tmp + (tmp >> mp_hash_shift); 93 return &mountpoint_hashtable[tmp & mp_hash_mask]; 94 } 95 96 /* 97 * allocation is serialized by namespace_sem, but we need the spinlock to 98 * serialize with freeing. 99 */ 100 static int mnt_alloc_id(struct mount *mnt) 101 { 102 int res; 103 104 retry: 105 ida_pre_get(&mnt_id_ida, GFP_KERNEL); 106 spin_lock(&mnt_id_lock); 107 res = ida_get_new_above(&mnt_id_ida, mnt_id_start, &mnt->mnt_id); 108 if (!res) 109 mnt_id_start = mnt->mnt_id + 1; 110 spin_unlock(&mnt_id_lock); 111 if (res == -EAGAIN) 112 goto retry; 113 114 return res; 115 } 116 117 static void mnt_free_id(struct mount *mnt) 118 { 119 int id = mnt->mnt_id; 120 spin_lock(&mnt_id_lock); 121 ida_remove(&mnt_id_ida, id); 122 if (mnt_id_start > id) 123 mnt_id_start = id; 124 spin_unlock(&mnt_id_lock); 125 } 126 127 /* 128 * Allocate a new peer group ID 129 * 130 * mnt_group_ida is protected by namespace_sem 131 */ 132 static int mnt_alloc_group_id(struct mount *mnt) 133 { 134 int res; 135 136 if (!ida_pre_get(&mnt_group_ida, GFP_KERNEL)) 137 return -ENOMEM; 138 139 res = ida_get_new_above(&mnt_group_ida, 140 mnt_group_start, 141 &mnt->mnt_group_id); 142 if (!res) 143 mnt_group_start = mnt->mnt_group_id + 1; 144 145 return res; 146 } 147 148 /* 149 * Release a peer group ID 150 */ 151 void mnt_release_group_id(struct mount *mnt) 152 { 153 int id = mnt->mnt_group_id; 154 ida_remove(&mnt_group_ida, id); 155 if (mnt_group_start > id) 156 mnt_group_start = id; 157 mnt->mnt_group_id = 0; 158 } 159 160 /* 161 * vfsmount lock must be held for read 162 */ 163 static inline void mnt_add_count(struct mount *mnt, int n) 164 { 165 #ifdef CONFIG_SMP 166 this_cpu_add(mnt->mnt_pcp->mnt_count, n); 167 #else 168 preempt_disable(); 169 mnt->mnt_count += n; 170 preempt_enable(); 171 #endif 172 } 173 174 /* 175 * vfsmount lock must be held for write 176 */ 177 unsigned int mnt_get_count(struct mount *mnt) 178 { 179 #ifdef CONFIG_SMP 180 unsigned int count = 0; 181 int cpu; 182 183 for_each_possible_cpu(cpu) { 184 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count; 185 } 186 187 return count; 188 #else 189 return mnt->mnt_count; 190 #endif 191 } 192 193 static struct mount *alloc_vfsmnt(const char *name) 194 { 195 struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL); 196 if (mnt) { 197 int err; 198 199 err = mnt_alloc_id(mnt); 200 if (err) 201 goto out_free_cache; 202 203 if (name) { 204 mnt->mnt_devname = kstrdup(name, GFP_KERNEL); 205 if (!mnt->mnt_devname) 206 goto out_free_id; 207 } 208 209 #ifdef CONFIG_SMP 210 mnt->mnt_pcp = alloc_percpu(struct mnt_pcp); 211 if (!mnt->mnt_pcp) 212 goto out_free_devname; 213 214 this_cpu_add(mnt->mnt_pcp->mnt_count, 1); 215 #else 216 mnt->mnt_count = 1; 217 mnt->mnt_writers = 0; 218 #endif 219 220 INIT_HLIST_NODE(&mnt->mnt_hash); 221 INIT_LIST_HEAD(&mnt->mnt_child); 222 INIT_LIST_HEAD(&mnt->mnt_mounts); 223 INIT_LIST_HEAD(&mnt->mnt_list); 224 INIT_LIST_HEAD(&mnt->mnt_expire); 225 INIT_LIST_HEAD(&mnt->mnt_share); 226 INIT_LIST_HEAD(&mnt->mnt_slave_list); 227 INIT_LIST_HEAD(&mnt->mnt_slave); 228 INIT_HLIST_NODE(&mnt->mnt_mp_list); 229 #ifdef CONFIG_FSNOTIFY 230 INIT_HLIST_HEAD(&mnt->mnt_fsnotify_marks); 231 #endif 232 } 233 return mnt; 234 235 #ifdef CONFIG_SMP 236 out_free_devname: 237 kfree(mnt->mnt_devname); 238 #endif 239 out_free_id: 240 mnt_free_id(mnt); 241 out_free_cache: 242 kmem_cache_free(mnt_cache, mnt); 243 return NULL; 244 } 245 246 /* 247 * Most r/o checks on a fs are for operations that take 248 * discrete amounts of time, like a write() or unlink(). 249 * We must keep track of when those operations start 250 * (for permission checks) and when they end, so that 251 * we can determine when writes are able to occur to 252 * a filesystem. 253 */ 254 /* 255 * __mnt_is_readonly: check whether a mount is read-only 256 * @mnt: the mount to check for its write status 257 * 258 * This shouldn't be used directly ouside of the VFS. 259 * It does not guarantee that the filesystem will stay 260 * r/w, just that it is right *now*. This can not and 261 * should not be used in place of IS_RDONLY(inode). 262 * mnt_want/drop_write() will _keep_ the filesystem 263 * r/w. 264 */ 265 int __mnt_is_readonly(struct vfsmount *mnt) 266 { 267 if (mnt->mnt_flags & MNT_READONLY) 268 return 1; 269 if (mnt->mnt_sb->s_flags & MS_RDONLY) 270 return 1; 271 return 0; 272 } 273 EXPORT_SYMBOL_GPL(__mnt_is_readonly); 274 275 static inline void mnt_inc_writers(struct mount *mnt) 276 { 277 #ifdef CONFIG_SMP 278 this_cpu_inc(mnt->mnt_pcp->mnt_writers); 279 #else 280 mnt->mnt_writers++; 281 #endif 282 } 283 284 static inline void mnt_dec_writers(struct mount *mnt) 285 { 286 #ifdef CONFIG_SMP 287 this_cpu_dec(mnt->mnt_pcp->mnt_writers); 288 #else 289 mnt->mnt_writers--; 290 #endif 291 } 292 293 static unsigned int mnt_get_writers(struct mount *mnt) 294 { 295 #ifdef CONFIG_SMP 296 unsigned int count = 0; 297 int cpu; 298 299 for_each_possible_cpu(cpu) { 300 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers; 301 } 302 303 return count; 304 #else 305 return mnt->mnt_writers; 306 #endif 307 } 308 309 static int mnt_is_readonly(struct vfsmount *mnt) 310 { 311 if (mnt->mnt_sb->s_readonly_remount) 312 return 1; 313 /* Order wrt setting s_flags/s_readonly_remount in do_remount() */ 314 smp_rmb(); 315 return __mnt_is_readonly(mnt); 316 } 317 318 /* 319 * Most r/o & frozen checks on a fs are for operations that take discrete 320 * amounts of time, like a write() or unlink(). We must keep track of when 321 * those operations start (for permission checks) and when they end, so that we 322 * can determine when writes are able to occur to a filesystem. 323 */ 324 /** 325 * __mnt_want_write - get write access to a mount without freeze protection 326 * @m: the mount on which to take a write 327 * 328 * This tells the low-level filesystem that a write is about to be performed to 329 * it, and makes sure that writes are allowed (mnt it read-write) before 330 * returning success. This operation does not protect against filesystem being 331 * frozen. When the write operation is finished, __mnt_drop_write() must be 332 * called. This is effectively a refcount. 333 */ 334 int __mnt_want_write(struct vfsmount *m) 335 { 336 struct mount *mnt = real_mount(m); 337 int ret = 0; 338 339 preempt_disable(); 340 mnt_inc_writers(mnt); 341 /* 342 * The store to mnt_inc_writers must be visible before we pass 343 * MNT_WRITE_HOLD loop below, so that the slowpath can see our 344 * incremented count after it has set MNT_WRITE_HOLD. 345 */ 346 smp_mb(); 347 while (ACCESS_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD) 348 cpu_relax(); 349 /* 350 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will 351 * be set to match its requirements. So we must not load that until 352 * MNT_WRITE_HOLD is cleared. 353 */ 354 smp_rmb(); 355 if (mnt_is_readonly(m)) { 356 mnt_dec_writers(mnt); 357 ret = -EROFS; 358 } 359 preempt_enable(); 360 361 return ret; 362 } 363 364 /** 365 * mnt_want_write - get write access to a mount 366 * @m: the mount on which to take a write 367 * 368 * This tells the low-level filesystem that a write is about to be performed to 369 * it, and makes sure that writes are allowed (mount is read-write, filesystem 370 * is not frozen) before returning success. When the write operation is 371 * finished, mnt_drop_write() must be called. This is effectively a refcount. 372 */ 373 int mnt_want_write(struct vfsmount *m) 374 { 375 int ret; 376 377 sb_start_write(m->mnt_sb); 378 ret = __mnt_want_write(m); 379 if (ret) 380 sb_end_write(m->mnt_sb); 381 return ret; 382 } 383 EXPORT_SYMBOL_GPL(mnt_want_write); 384 385 /** 386 * mnt_clone_write - get write access to a mount 387 * @mnt: the mount on which to take a write 388 * 389 * This is effectively like mnt_want_write, except 390 * it must only be used to take an extra write reference 391 * on a mountpoint that we already know has a write reference 392 * on it. This allows some optimisation. 393 * 394 * After finished, mnt_drop_write must be called as usual to 395 * drop the reference. 396 */ 397 int mnt_clone_write(struct vfsmount *mnt) 398 { 399 /* superblock may be r/o */ 400 if (__mnt_is_readonly(mnt)) 401 return -EROFS; 402 preempt_disable(); 403 mnt_inc_writers(real_mount(mnt)); 404 preempt_enable(); 405 return 0; 406 } 407 EXPORT_SYMBOL_GPL(mnt_clone_write); 408 409 /** 410 * __mnt_want_write_file - get write access to a file's mount 411 * @file: the file who's mount on which to take a write 412 * 413 * This is like __mnt_want_write, but it takes a file and can 414 * do some optimisations if the file is open for write already 415 */ 416 int __mnt_want_write_file(struct file *file) 417 { 418 if (!(file->f_mode & FMODE_WRITER)) 419 return __mnt_want_write(file->f_path.mnt); 420 else 421 return mnt_clone_write(file->f_path.mnt); 422 } 423 424 /** 425 * mnt_want_write_file - get write access to a file's mount 426 * @file: the file who's mount on which to take a write 427 * 428 * This is like mnt_want_write, but it takes a file and can 429 * do some optimisations if the file is open for write already 430 */ 431 int mnt_want_write_file(struct file *file) 432 { 433 int ret; 434 435 sb_start_write(file->f_path.mnt->mnt_sb); 436 ret = __mnt_want_write_file(file); 437 if (ret) 438 sb_end_write(file->f_path.mnt->mnt_sb); 439 return ret; 440 } 441 EXPORT_SYMBOL_GPL(mnt_want_write_file); 442 443 /** 444 * __mnt_drop_write - give up write access to a mount 445 * @mnt: the mount on which to give up write access 446 * 447 * Tells the low-level filesystem that we are done 448 * performing writes to it. Must be matched with 449 * __mnt_want_write() call above. 450 */ 451 void __mnt_drop_write(struct vfsmount *mnt) 452 { 453 preempt_disable(); 454 mnt_dec_writers(real_mount(mnt)); 455 preempt_enable(); 456 } 457 458 /** 459 * mnt_drop_write - give up write access to a mount 460 * @mnt: the mount on which to give up write access 461 * 462 * Tells the low-level filesystem that we are done performing writes to it and 463 * also allows filesystem to be frozen again. Must be matched with 464 * mnt_want_write() call above. 465 */ 466 void mnt_drop_write(struct vfsmount *mnt) 467 { 468 __mnt_drop_write(mnt); 469 sb_end_write(mnt->mnt_sb); 470 } 471 EXPORT_SYMBOL_GPL(mnt_drop_write); 472 473 void __mnt_drop_write_file(struct file *file) 474 { 475 __mnt_drop_write(file->f_path.mnt); 476 } 477 478 void mnt_drop_write_file(struct file *file) 479 { 480 mnt_drop_write(file->f_path.mnt); 481 } 482 EXPORT_SYMBOL(mnt_drop_write_file); 483 484 static int mnt_make_readonly(struct mount *mnt) 485 { 486 int ret = 0; 487 488 lock_mount_hash(); 489 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD; 490 /* 491 * After storing MNT_WRITE_HOLD, we'll read the counters. This store 492 * should be visible before we do. 493 */ 494 smp_mb(); 495 496 /* 497 * With writers on hold, if this value is zero, then there are 498 * definitely no active writers (although held writers may subsequently 499 * increment the count, they'll have to wait, and decrement it after 500 * seeing MNT_READONLY). 501 * 502 * It is OK to have counter incremented on one CPU and decremented on 503 * another: the sum will add up correctly. The danger would be when we 504 * sum up each counter, if we read a counter before it is incremented, 505 * but then read another CPU's count which it has been subsequently 506 * decremented from -- we would see more decrements than we should. 507 * MNT_WRITE_HOLD protects against this scenario, because 508 * mnt_want_write first increments count, then smp_mb, then spins on 509 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while 510 * we're counting up here. 511 */ 512 if (mnt_get_writers(mnt) > 0) 513 ret = -EBUSY; 514 else 515 mnt->mnt.mnt_flags |= MNT_READONLY; 516 /* 517 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers 518 * that become unheld will see MNT_READONLY. 519 */ 520 smp_wmb(); 521 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD; 522 unlock_mount_hash(); 523 return ret; 524 } 525 526 static void __mnt_unmake_readonly(struct mount *mnt) 527 { 528 lock_mount_hash(); 529 mnt->mnt.mnt_flags &= ~MNT_READONLY; 530 unlock_mount_hash(); 531 } 532 533 int sb_prepare_remount_readonly(struct super_block *sb) 534 { 535 struct mount *mnt; 536 int err = 0; 537 538 /* Racy optimization. Recheck the counter under MNT_WRITE_HOLD */ 539 if (atomic_long_read(&sb->s_remove_count)) 540 return -EBUSY; 541 542 lock_mount_hash(); 543 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) { 544 if (!(mnt->mnt.mnt_flags & MNT_READONLY)) { 545 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD; 546 smp_mb(); 547 if (mnt_get_writers(mnt) > 0) { 548 err = -EBUSY; 549 break; 550 } 551 } 552 } 553 if (!err && atomic_long_read(&sb->s_remove_count)) 554 err = -EBUSY; 555 556 if (!err) { 557 sb->s_readonly_remount = 1; 558 smp_wmb(); 559 } 560 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) { 561 if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD) 562 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD; 563 } 564 unlock_mount_hash(); 565 566 return err; 567 } 568 569 static void free_vfsmnt(struct mount *mnt) 570 { 571 kfree(mnt->mnt_devname); 572 #ifdef CONFIG_SMP 573 free_percpu(mnt->mnt_pcp); 574 #endif 575 kmem_cache_free(mnt_cache, mnt); 576 } 577 578 static void delayed_free_vfsmnt(struct rcu_head *head) 579 { 580 free_vfsmnt(container_of(head, struct mount, mnt_rcu)); 581 } 582 583 /* call under rcu_read_lock */ 584 bool legitimize_mnt(struct vfsmount *bastard, unsigned seq) 585 { 586 struct mount *mnt; 587 if (read_seqretry(&mount_lock, seq)) 588 return false; 589 if (bastard == NULL) 590 return true; 591 mnt = real_mount(bastard); 592 mnt_add_count(mnt, 1); 593 if (likely(!read_seqretry(&mount_lock, seq))) 594 return true; 595 if (bastard->mnt_flags & MNT_SYNC_UMOUNT) { 596 mnt_add_count(mnt, -1); 597 return false; 598 } 599 rcu_read_unlock(); 600 mntput(bastard); 601 rcu_read_lock(); 602 return false; 603 } 604 605 /* 606 * find the first mount at @dentry on vfsmount @mnt. 607 * call under rcu_read_lock() 608 */ 609 struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry) 610 { 611 struct hlist_head *head = m_hash(mnt, dentry); 612 struct mount *p; 613 614 hlist_for_each_entry_rcu(p, head, mnt_hash) 615 if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry) 616 return p; 617 return NULL; 618 } 619 620 /* 621 * find the last mount at @dentry on vfsmount @mnt. 622 * mount_lock must be held. 623 */ 624 struct mount *__lookup_mnt_last(struct vfsmount *mnt, struct dentry *dentry) 625 { 626 struct mount *p, *res; 627 res = p = __lookup_mnt(mnt, dentry); 628 if (!p) 629 goto out; 630 hlist_for_each_entry_continue(p, mnt_hash) { 631 if (&p->mnt_parent->mnt != mnt || p->mnt_mountpoint != dentry) 632 break; 633 res = p; 634 } 635 out: 636 return res; 637 } 638 639 /* 640 * lookup_mnt - Return the first child mount mounted at path 641 * 642 * "First" means first mounted chronologically. If you create the 643 * following mounts: 644 * 645 * mount /dev/sda1 /mnt 646 * mount /dev/sda2 /mnt 647 * mount /dev/sda3 /mnt 648 * 649 * Then lookup_mnt() on the base /mnt dentry in the root mount will 650 * return successively the root dentry and vfsmount of /dev/sda1, then 651 * /dev/sda2, then /dev/sda3, then NULL. 652 * 653 * lookup_mnt takes a reference to the found vfsmount. 654 */ 655 struct vfsmount *lookup_mnt(struct path *path) 656 { 657 struct mount *child_mnt; 658 struct vfsmount *m; 659 unsigned seq; 660 661 rcu_read_lock(); 662 do { 663 seq = read_seqbegin(&mount_lock); 664 child_mnt = __lookup_mnt(path->mnt, path->dentry); 665 m = child_mnt ? &child_mnt->mnt : NULL; 666 } while (!legitimize_mnt(m, seq)); 667 rcu_read_unlock(); 668 return m; 669 } 670 671 /* 672 * __is_local_mountpoint - Test to see if dentry is a mountpoint in the 673 * current mount namespace. 674 * 675 * The common case is dentries are not mountpoints at all and that 676 * test is handled inline. For the slow case when we are actually 677 * dealing with a mountpoint of some kind, walk through all of the 678 * mounts in the current mount namespace and test to see if the dentry 679 * is a mountpoint. 680 * 681 * The mount_hashtable is not usable in the context because we 682 * need to identify all mounts that may be in the current mount 683 * namespace not just a mount that happens to have some specified 684 * parent mount. 685 */ 686 bool __is_local_mountpoint(struct dentry *dentry) 687 { 688 struct mnt_namespace *ns = current->nsproxy->mnt_ns; 689 struct mount *mnt; 690 bool is_covered = false; 691 692 if (!d_mountpoint(dentry)) 693 goto out; 694 695 down_read(&namespace_sem); 696 list_for_each_entry(mnt, &ns->list, mnt_list) { 697 is_covered = (mnt->mnt_mountpoint == dentry); 698 if (is_covered) 699 break; 700 } 701 up_read(&namespace_sem); 702 out: 703 return is_covered; 704 } 705 706 static struct mountpoint *lookup_mountpoint(struct dentry *dentry) 707 { 708 struct hlist_head *chain = mp_hash(dentry); 709 struct mountpoint *mp; 710 711 hlist_for_each_entry(mp, chain, m_hash) { 712 if (mp->m_dentry == dentry) { 713 /* might be worth a WARN_ON() */ 714 if (d_unlinked(dentry)) 715 return ERR_PTR(-ENOENT); 716 mp->m_count++; 717 return mp; 718 } 719 } 720 return NULL; 721 } 722 723 static struct mountpoint *new_mountpoint(struct dentry *dentry) 724 { 725 struct hlist_head *chain = mp_hash(dentry); 726 struct mountpoint *mp; 727 int ret; 728 729 mp = kmalloc(sizeof(struct mountpoint), GFP_KERNEL); 730 if (!mp) 731 return ERR_PTR(-ENOMEM); 732 733 ret = d_set_mounted(dentry); 734 if (ret) { 735 kfree(mp); 736 return ERR_PTR(ret); 737 } 738 739 mp->m_dentry = dentry; 740 mp->m_count = 1; 741 hlist_add_head(&mp->m_hash, chain); 742 INIT_HLIST_HEAD(&mp->m_list); 743 return mp; 744 } 745 746 static void put_mountpoint(struct mountpoint *mp) 747 { 748 if (!--mp->m_count) { 749 struct dentry *dentry = mp->m_dentry; 750 BUG_ON(!hlist_empty(&mp->m_list)); 751 spin_lock(&dentry->d_lock); 752 dentry->d_flags &= ~DCACHE_MOUNTED; 753 spin_unlock(&dentry->d_lock); 754 hlist_del(&mp->m_hash); 755 kfree(mp); 756 } 757 } 758 759 static inline int check_mnt(struct mount *mnt) 760 { 761 return mnt->mnt_ns == current->nsproxy->mnt_ns; 762 } 763 764 /* 765 * vfsmount lock must be held for write 766 */ 767 static void touch_mnt_namespace(struct mnt_namespace *ns) 768 { 769 if (ns) { 770 ns->event = ++event; 771 wake_up_interruptible(&ns->poll); 772 } 773 } 774 775 /* 776 * vfsmount lock must be held for write 777 */ 778 static void __touch_mnt_namespace(struct mnt_namespace *ns) 779 { 780 if (ns && ns->event != event) { 781 ns->event = event; 782 wake_up_interruptible(&ns->poll); 783 } 784 } 785 786 /* 787 * vfsmount lock must be held for write 788 */ 789 static void detach_mnt(struct mount *mnt, struct path *old_path) 790 { 791 old_path->dentry = mnt->mnt_mountpoint; 792 old_path->mnt = &mnt->mnt_parent->mnt; 793 mnt->mnt_parent = mnt; 794 mnt->mnt_mountpoint = mnt->mnt.mnt_root; 795 list_del_init(&mnt->mnt_child); 796 hlist_del_init_rcu(&mnt->mnt_hash); 797 hlist_del_init(&mnt->mnt_mp_list); 798 put_mountpoint(mnt->mnt_mp); 799 mnt->mnt_mp = NULL; 800 } 801 802 /* 803 * vfsmount lock must be held for write 804 */ 805 void mnt_set_mountpoint(struct mount *mnt, 806 struct mountpoint *mp, 807 struct mount *child_mnt) 808 { 809 mp->m_count++; 810 mnt_add_count(mnt, 1); /* essentially, that's mntget */ 811 child_mnt->mnt_mountpoint = dget(mp->m_dentry); 812 child_mnt->mnt_parent = mnt; 813 child_mnt->mnt_mp = mp; 814 hlist_add_head(&child_mnt->mnt_mp_list, &mp->m_list); 815 } 816 817 /* 818 * vfsmount lock must be held for write 819 */ 820 static void attach_mnt(struct mount *mnt, 821 struct mount *parent, 822 struct mountpoint *mp) 823 { 824 mnt_set_mountpoint(parent, mp, mnt); 825 hlist_add_head_rcu(&mnt->mnt_hash, m_hash(&parent->mnt, mp->m_dentry)); 826 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts); 827 } 828 829 static void attach_shadowed(struct mount *mnt, 830 struct mount *parent, 831 struct mount *shadows) 832 { 833 if (shadows) { 834 hlist_add_behind_rcu(&mnt->mnt_hash, &shadows->mnt_hash); 835 list_add(&mnt->mnt_child, &shadows->mnt_child); 836 } else { 837 hlist_add_head_rcu(&mnt->mnt_hash, 838 m_hash(&parent->mnt, mnt->mnt_mountpoint)); 839 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts); 840 } 841 } 842 843 /* 844 * vfsmount lock must be held for write 845 */ 846 static void commit_tree(struct mount *mnt, struct mount *shadows) 847 { 848 struct mount *parent = mnt->mnt_parent; 849 struct mount *m; 850 LIST_HEAD(head); 851 struct mnt_namespace *n = parent->mnt_ns; 852 853 BUG_ON(parent == mnt); 854 855 list_add_tail(&head, &mnt->mnt_list); 856 list_for_each_entry(m, &head, mnt_list) 857 m->mnt_ns = n; 858 859 list_splice(&head, n->list.prev); 860 861 attach_shadowed(mnt, parent, shadows); 862 touch_mnt_namespace(n); 863 } 864 865 static struct mount *next_mnt(struct mount *p, struct mount *root) 866 { 867 struct list_head *next = p->mnt_mounts.next; 868 if (next == &p->mnt_mounts) { 869 while (1) { 870 if (p == root) 871 return NULL; 872 next = p->mnt_child.next; 873 if (next != &p->mnt_parent->mnt_mounts) 874 break; 875 p = p->mnt_parent; 876 } 877 } 878 return list_entry(next, struct mount, mnt_child); 879 } 880 881 static struct mount *skip_mnt_tree(struct mount *p) 882 { 883 struct list_head *prev = p->mnt_mounts.prev; 884 while (prev != &p->mnt_mounts) { 885 p = list_entry(prev, struct mount, mnt_child); 886 prev = p->mnt_mounts.prev; 887 } 888 return p; 889 } 890 891 struct vfsmount * 892 vfs_kern_mount(struct file_system_type *type, int flags, const char *name, void *data) 893 { 894 struct mount *mnt; 895 struct dentry *root; 896 897 if (!type) 898 return ERR_PTR(-ENODEV); 899 900 mnt = alloc_vfsmnt(name); 901 if (!mnt) 902 return ERR_PTR(-ENOMEM); 903 904 if (flags & MS_KERNMOUNT) 905 mnt->mnt.mnt_flags = MNT_INTERNAL; 906 907 root = mount_fs(type, flags, name, data); 908 if (IS_ERR(root)) { 909 mnt_free_id(mnt); 910 free_vfsmnt(mnt); 911 return ERR_CAST(root); 912 } 913 914 mnt->mnt.mnt_root = root; 915 mnt->mnt.mnt_sb = root->d_sb; 916 mnt->mnt_mountpoint = mnt->mnt.mnt_root; 917 mnt->mnt_parent = mnt; 918 lock_mount_hash(); 919 list_add_tail(&mnt->mnt_instance, &root->d_sb->s_mounts); 920 unlock_mount_hash(); 921 return &mnt->mnt; 922 } 923 EXPORT_SYMBOL_GPL(vfs_kern_mount); 924 925 static struct mount *clone_mnt(struct mount *old, struct dentry *root, 926 int flag) 927 { 928 struct super_block *sb = old->mnt.mnt_sb; 929 struct mount *mnt; 930 int err; 931 932 mnt = alloc_vfsmnt(old->mnt_devname); 933 if (!mnt) 934 return ERR_PTR(-ENOMEM); 935 936 if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE)) 937 mnt->mnt_group_id = 0; /* not a peer of original */ 938 else 939 mnt->mnt_group_id = old->mnt_group_id; 940 941 if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) { 942 err = mnt_alloc_group_id(mnt); 943 if (err) 944 goto out_free; 945 } 946 947 mnt->mnt.mnt_flags = old->mnt.mnt_flags & ~(MNT_WRITE_HOLD|MNT_MARKED); 948 /* Don't allow unprivileged users to change mount flags */ 949 if (flag & CL_UNPRIVILEGED) { 950 mnt->mnt.mnt_flags |= MNT_LOCK_ATIME; 951 952 if (mnt->mnt.mnt_flags & MNT_READONLY) 953 mnt->mnt.mnt_flags |= MNT_LOCK_READONLY; 954 955 if (mnt->mnt.mnt_flags & MNT_NODEV) 956 mnt->mnt.mnt_flags |= MNT_LOCK_NODEV; 957 958 if (mnt->mnt.mnt_flags & MNT_NOSUID) 959 mnt->mnt.mnt_flags |= MNT_LOCK_NOSUID; 960 961 if (mnt->mnt.mnt_flags & MNT_NOEXEC) 962 mnt->mnt.mnt_flags |= MNT_LOCK_NOEXEC; 963 } 964 965 /* Don't allow unprivileged users to reveal what is under a mount */ 966 if ((flag & CL_UNPRIVILEGED) && 967 (!(flag & CL_EXPIRE) || list_empty(&old->mnt_expire))) 968 mnt->mnt.mnt_flags |= MNT_LOCKED; 969 970 atomic_inc(&sb->s_active); 971 mnt->mnt.mnt_sb = sb; 972 mnt->mnt.mnt_root = dget(root); 973 mnt->mnt_mountpoint = mnt->mnt.mnt_root; 974 mnt->mnt_parent = mnt; 975 lock_mount_hash(); 976 list_add_tail(&mnt->mnt_instance, &sb->s_mounts); 977 unlock_mount_hash(); 978 979 if ((flag & CL_SLAVE) || 980 ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) { 981 list_add(&mnt->mnt_slave, &old->mnt_slave_list); 982 mnt->mnt_master = old; 983 CLEAR_MNT_SHARED(mnt); 984 } else if (!(flag & CL_PRIVATE)) { 985 if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old)) 986 list_add(&mnt->mnt_share, &old->mnt_share); 987 if (IS_MNT_SLAVE(old)) 988 list_add(&mnt->mnt_slave, &old->mnt_slave); 989 mnt->mnt_master = old->mnt_master; 990 } 991 if (flag & CL_MAKE_SHARED) 992 set_mnt_shared(mnt); 993 994 /* stick the duplicate mount on the same expiry list 995 * as the original if that was on one */ 996 if (flag & CL_EXPIRE) { 997 if (!list_empty(&old->mnt_expire)) 998 list_add(&mnt->mnt_expire, &old->mnt_expire); 999 } 1000 1001 return mnt; 1002 1003 out_free: 1004 mnt_free_id(mnt); 1005 free_vfsmnt(mnt); 1006 return ERR_PTR(err); 1007 } 1008 1009 static void cleanup_mnt(struct mount *mnt) 1010 { 1011 /* 1012 * This probably indicates that somebody messed 1013 * up a mnt_want/drop_write() pair. If this 1014 * happens, the filesystem was probably unable 1015 * to make r/w->r/o transitions. 1016 */ 1017 /* 1018 * The locking used to deal with mnt_count decrement provides barriers, 1019 * so mnt_get_writers() below is safe. 1020 */ 1021 WARN_ON(mnt_get_writers(mnt)); 1022 if (unlikely(mnt->mnt_pins.first)) 1023 mnt_pin_kill(mnt); 1024 fsnotify_vfsmount_delete(&mnt->mnt); 1025 dput(mnt->mnt.mnt_root); 1026 deactivate_super(mnt->mnt.mnt_sb); 1027 mnt_free_id(mnt); 1028 call_rcu(&mnt->mnt_rcu, delayed_free_vfsmnt); 1029 } 1030 1031 static void __cleanup_mnt(struct rcu_head *head) 1032 { 1033 cleanup_mnt(container_of(head, struct mount, mnt_rcu)); 1034 } 1035 1036 static LLIST_HEAD(delayed_mntput_list); 1037 static void delayed_mntput(struct work_struct *unused) 1038 { 1039 struct llist_node *node = llist_del_all(&delayed_mntput_list); 1040 struct llist_node *next; 1041 1042 for (; node; node = next) { 1043 next = llist_next(node); 1044 cleanup_mnt(llist_entry(node, struct mount, mnt_llist)); 1045 } 1046 } 1047 static DECLARE_DELAYED_WORK(delayed_mntput_work, delayed_mntput); 1048 1049 static void mntput_no_expire(struct mount *mnt) 1050 { 1051 rcu_read_lock(); 1052 mnt_add_count(mnt, -1); 1053 if (likely(mnt->mnt_ns)) { /* shouldn't be the last one */ 1054 rcu_read_unlock(); 1055 return; 1056 } 1057 lock_mount_hash(); 1058 if (mnt_get_count(mnt)) { 1059 rcu_read_unlock(); 1060 unlock_mount_hash(); 1061 return; 1062 } 1063 if (unlikely(mnt->mnt.mnt_flags & MNT_DOOMED)) { 1064 rcu_read_unlock(); 1065 unlock_mount_hash(); 1066 return; 1067 } 1068 mnt->mnt.mnt_flags |= MNT_DOOMED; 1069 rcu_read_unlock(); 1070 1071 list_del(&mnt->mnt_instance); 1072 unlock_mount_hash(); 1073 1074 if (likely(!(mnt->mnt.mnt_flags & MNT_INTERNAL))) { 1075 struct task_struct *task = current; 1076 if (likely(!(task->flags & PF_KTHREAD))) { 1077 init_task_work(&mnt->mnt_rcu, __cleanup_mnt); 1078 if (!task_work_add(task, &mnt->mnt_rcu, true)) 1079 return; 1080 } 1081 if (llist_add(&mnt->mnt_llist, &delayed_mntput_list)) 1082 schedule_delayed_work(&delayed_mntput_work, 1); 1083 return; 1084 } 1085 cleanup_mnt(mnt); 1086 } 1087 1088 void mntput(struct vfsmount *mnt) 1089 { 1090 if (mnt) { 1091 struct mount *m = real_mount(mnt); 1092 /* avoid cacheline pingpong, hope gcc doesn't get "smart" */ 1093 if (unlikely(m->mnt_expiry_mark)) 1094 m->mnt_expiry_mark = 0; 1095 mntput_no_expire(m); 1096 } 1097 } 1098 EXPORT_SYMBOL(mntput); 1099 1100 struct vfsmount *mntget(struct vfsmount *mnt) 1101 { 1102 if (mnt) 1103 mnt_add_count(real_mount(mnt), 1); 1104 return mnt; 1105 } 1106 EXPORT_SYMBOL(mntget); 1107 1108 struct vfsmount *mnt_clone_internal(struct path *path) 1109 { 1110 struct mount *p; 1111 p = clone_mnt(real_mount(path->mnt), path->dentry, CL_PRIVATE); 1112 if (IS_ERR(p)) 1113 return ERR_CAST(p); 1114 p->mnt.mnt_flags |= MNT_INTERNAL; 1115 return &p->mnt; 1116 } 1117 1118 static inline void mangle(struct seq_file *m, const char *s) 1119 { 1120 seq_escape(m, s, " \t\n\\"); 1121 } 1122 1123 /* 1124 * Simple .show_options callback for filesystems which don't want to 1125 * implement more complex mount option showing. 1126 * 1127 * See also save_mount_options(). 1128 */ 1129 int generic_show_options(struct seq_file *m, struct dentry *root) 1130 { 1131 const char *options; 1132 1133 rcu_read_lock(); 1134 options = rcu_dereference(root->d_sb->s_options); 1135 1136 if (options != NULL && options[0]) { 1137 seq_putc(m, ','); 1138 mangle(m, options); 1139 } 1140 rcu_read_unlock(); 1141 1142 return 0; 1143 } 1144 EXPORT_SYMBOL(generic_show_options); 1145 1146 /* 1147 * If filesystem uses generic_show_options(), this function should be 1148 * called from the fill_super() callback. 1149 * 1150 * The .remount_fs callback usually needs to be handled in a special 1151 * way, to make sure, that previous options are not overwritten if the 1152 * remount fails. 1153 * 1154 * Also note, that if the filesystem's .remount_fs function doesn't 1155 * reset all options to their default value, but changes only newly 1156 * given options, then the displayed options will not reflect reality 1157 * any more. 1158 */ 1159 void save_mount_options(struct super_block *sb, char *options) 1160 { 1161 BUG_ON(sb->s_options); 1162 rcu_assign_pointer(sb->s_options, kstrdup(options, GFP_KERNEL)); 1163 } 1164 EXPORT_SYMBOL(save_mount_options); 1165 1166 void replace_mount_options(struct super_block *sb, char *options) 1167 { 1168 char *old = sb->s_options; 1169 rcu_assign_pointer(sb->s_options, options); 1170 if (old) { 1171 synchronize_rcu(); 1172 kfree(old); 1173 } 1174 } 1175 EXPORT_SYMBOL(replace_mount_options); 1176 1177 #ifdef CONFIG_PROC_FS 1178 /* iterator; we want it to have access to namespace_sem, thus here... */ 1179 static void *m_start(struct seq_file *m, loff_t *pos) 1180 { 1181 struct proc_mounts *p = proc_mounts(m); 1182 1183 down_read(&namespace_sem); 1184 if (p->cached_event == p->ns->event) { 1185 void *v = p->cached_mount; 1186 if (*pos == p->cached_index) 1187 return v; 1188 if (*pos == p->cached_index + 1) { 1189 v = seq_list_next(v, &p->ns->list, &p->cached_index); 1190 return p->cached_mount = v; 1191 } 1192 } 1193 1194 p->cached_event = p->ns->event; 1195 p->cached_mount = seq_list_start(&p->ns->list, *pos); 1196 p->cached_index = *pos; 1197 return p->cached_mount; 1198 } 1199 1200 static void *m_next(struct seq_file *m, void *v, loff_t *pos) 1201 { 1202 struct proc_mounts *p = proc_mounts(m); 1203 1204 p->cached_mount = seq_list_next(v, &p->ns->list, pos); 1205 p->cached_index = *pos; 1206 return p->cached_mount; 1207 } 1208 1209 static void m_stop(struct seq_file *m, void *v) 1210 { 1211 up_read(&namespace_sem); 1212 } 1213 1214 static int m_show(struct seq_file *m, void *v) 1215 { 1216 struct proc_mounts *p = proc_mounts(m); 1217 struct mount *r = list_entry(v, struct mount, mnt_list); 1218 return p->show(m, &r->mnt); 1219 } 1220 1221 const struct seq_operations mounts_op = { 1222 .start = m_start, 1223 .next = m_next, 1224 .stop = m_stop, 1225 .show = m_show, 1226 }; 1227 #endif /* CONFIG_PROC_FS */ 1228 1229 /** 1230 * may_umount_tree - check if a mount tree is busy 1231 * @mnt: root of mount tree 1232 * 1233 * This is called to check if a tree of mounts has any 1234 * open files, pwds, chroots or sub mounts that are 1235 * busy. 1236 */ 1237 int may_umount_tree(struct vfsmount *m) 1238 { 1239 struct mount *mnt = real_mount(m); 1240 int actual_refs = 0; 1241 int minimum_refs = 0; 1242 struct mount *p; 1243 BUG_ON(!m); 1244 1245 /* write lock needed for mnt_get_count */ 1246 lock_mount_hash(); 1247 for (p = mnt; p; p = next_mnt(p, mnt)) { 1248 actual_refs += mnt_get_count(p); 1249 minimum_refs += 2; 1250 } 1251 unlock_mount_hash(); 1252 1253 if (actual_refs > minimum_refs) 1254 return 0; 1255 1256 return 1; 1257 } 1258 1259 EXPORT_SYMBOL(may_umount_tree); 1260 1261 /** 1262 * may_umount - check if a mount point is busy 1263 * @mnt: root of mount 1264 * 1265 * This is called to check if a mount point has any 1266 * open files, pwds, chroots or sub mounts. If the 1267 * mount has sub mounts this will return busy 1268 * regardless of whether the sub mounts are busy. 1269 * 1270 * Doesn't take quota and stuff into account. IOW, in some cases it will 1271 * give false negatives. The main reason why it's here is that we need 1272 * a non-destructive way to look for easily umountable filesystems. 1273 */ 1274 int may_umount(struct vfsmount *mnt) 1275 { 1276 int ret = 1; 1277 down_read(&namespace_sem); 1278 lock_mount_hash(); 1279 if (propagate_mount_busy(real_mount(mnt), 2)) 1280 ret = 0; 1281 unlock_mount_hash(); 1282 up_read(&namespace_sem); 1283 return ret; 1284 } 1285 1286 EXPORT_SYMBOL(may_umount); 1287 1288 static HLIST_HEAD(unmounted); /* protected by namespace_sem */ 1289 1290 static void namespace_unlock(void) 1291 { 1292 struct mount *mnt; 1293 struct hlist_head head = unmounted; 1294 1295 if (likely(hlist_empty(&head))) { 1296 up_write(&namespace_sem); 1297 return; 1298 } 1299 1300 head.first->pprev = &head.first; 1301 INIT_HLIST_HEAD(&unmounted); 1302 1303 /* undo decrements we'd done in umount_tree() */ 1304 hlist_for_each_entry(mnt, &head, mnt_hash) 1305 if (mnt->mnt_ex_mountpoint.mnt) 1306 mntget(mnt->mnt_ex_mountpoint.mnt); 1307 1308 up_write(&namespace_sem); 1309 1310 synchronize_rcu(); 1311 1312 while (!hlist_empty(&head)) { 1313 mnt = hlist_entry(head.first, struct mount, mnt_hash); 1314 hlist_del_init(&mnt->mnt_hash); 1315 if (mnt->mnt_ex_mountpoint.mnt) 1316 path_put(&mnt->mnt_ex_mountpoint); 1317 mntput(&mnt->mnt); 1318 } 1319 } 1320 1321 static inline void namespace_lock(void) 1322 { 1323 down_write(&namespace_sem); 1324 } 1325 1326 /* 1327 * mount_lock must be held 1328 * namespace_sem must be held for write 1329 * how = 0 => just this tree, don't propagate 1330 * how = 1 => propagate; we know that nobody else has reference to any victims 1331 * how = 2 => lazy umount 1332 */ 1333 void umount_tree(struct mount *mnt, int how) 1334 { 1335 HLIST_HEAD(tmp_list); 1336 struct mount *p; 1337 struct mount *last = NULL; 1338 1339 for (p = mnt; p; p = next_mnt(p, mnt)) { 1340 hlist_del_init_rcu(&p->mnt_hash); 1341 hlist_add_head(&p->mnt_hash, &tmp_list); 1342 } 1343 1344 hlist_for_each_entry(p, &tmp_list, mnt_hash) 1345 list_del_init(&p->mnt_child); 1346 1347 if (how) 1348 propagate_umount(&tmp_list); 1349 1350 hlist_for_each_entry(p, &tmp_list, mnt_hash) { 1351 list_del_init(&p->mnt_expire); 1352 list_del_init(&p->mnt_list); 1353 __touch_mnt_namespace(p->mnt_ns); 1354 p->mnt_ns = NULL; 1355 if (how < 2) 1356 p->mnt.mnt_flags |= MNT_SYNC_UMOUNT; 1357 if (mnt_has_parent(p)) { 1358 hlist_del_init(&p->mnt_mp_list); 1359 put_mountpoint(p->mnt_mp); 1360 mnt_add_count(p->mnt_parent, -1); 1361 /* move the reference to mountpoint into ->mnt_ex_mountpoint */ 1362 p->mnt_ex_mountpoint.dentry = p->mnt_mountpoint; 1363 p->mnt_ex_mountpoint.mnt = &p->mnt_parent->mnt; 1364 p->mnt_mountpoint = p->mnt.mnt_root; 1365 p->mnt_parent = p; 1366 p->mnt_mp = NULL; 1367 } 1368 change_mnt_propagation(p, MS_PRIVATE); 1369 last = p; 1370 } 1371 if (last) { 1372 last->mnt_hash.next = unmounted.first; 1373 if (unmounted.first) 1374 unmounted.first->pprev = &last->mnt_hash.next; 1375 unmounted.first = tmp_list.first; 1376 unmounted.first->pprev = &unmounted.first; 1377 } 1378 } 1379 1380 static void shrink_submounts(struct mount *mnt); 1381 1382 static int do_umount(struct mount *mnt, int flags) 1383 { 1384 struct super_block *sb = mnt->mnt.mnt_sb; 1385 int retval; 1386 1387 retval = security_sb_umount(&mnt->mnt, flags); 1388 if (retval) 1389 return retval; 1390 1391 /* 1392 * Allow userspace to request a mountpoint be expired rather than 1393 * unmounting unconditionally. Unmount only happens if: 1394 * (1) the mark is already set (the mark is cleared by mntput()) 1395 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount] 1396 */ 1397 if (flags & MNT_EXPIRE) { 1398 if (&mnt->mnt == current->fs->root.mnt || 1399 flags & (MNT_FORCE | MNT_DETACH)) 1400 return -EINVAL; 1401 1402 /* 1403 * probably don't strictly need the lock here if we examined 1404 * all race cases, but it's a slowpath. 1405 */ 1406 lock_mount_hash(); 1407 if (mnt_get_count(mnt) != 2) { 1408 unlock_mount_hash(); 1409 return -EBUSY; 1410 } 1411 unlock_mount_hash(); 1412 1413 if (!xchg(&mnt->mnt_expiry_mark, 1)) 1414 return -EAGAIN; 1415 } 1416 1417 /* 1418 * If we may have to abort operations to get out of this 1419 * mount, and they will themselves hold resources we must 1420 * allow the fs to do things. In the Unix tradition of 1421 * 'Gee thats tricky lets do it in userspace' the umount_begin 1422 * might fail to complete on the first run through as other tasks 1423 * must return, and the like. Thats for the mount program to worry 1424 * about for the moment. 1425 */ 1426 1427 if (flags & MNT_FORCE && sb->s_op->umount_begin) { 1428 sb->s_op->umount_begin(sb); 1429 } 1430 1431 /* 1432 * No sense to grab the lock for this test, but test itself looks 1433 * somewhat bogus. Suggestions for better replacement? 1434 * Ho-hum... In principle, we might treat that as umount + switch 1435 * to rootfs. GC would eventually take care of the old vfsmount. 1436 * Actually it makes sense, especially if rootfs would contain a 1437 * /reboot - static binary that would close all descriptors and 1438 * call reboot(9). Then init(8) could umount root and exec /reboot. 1439 */ 1440 if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) { 1441 /* 1442 * Special case for "unmounting" root ... 1443 * we just try to remount it readonly. 1444 */ 1445 if (!capable(CAP_SYS_ADMIN)) 1446 return -EPERM; 1447 down_write(&sb->s_umount); 1448 if (!(sb->s_flags & MS_RDONLY)) 1449 retval = do_remount_sb(sb, MS_RDONLY, NULL, 0); 1450 up_write(&sb->s_umount); 1451 return retval; 1452 } 1453 1454 namespace_lock(); 1455 lock_mount_hash(); 1456 event++; 1457 1458 if (flags & MNT_DETACH) { 1459 if (!list_empty(&mnt->mnt_list)) 1460 umount_tree(mnt, 2); 1461 retval = 0; 1462 } else { 1463 shrink_submounts(mnt); 1464 retval = -EBUSY; 1465 if (!propagate_mount_busy(mnt, 2)) { 1466 if (!list_empty(&mnt->mnt_list)) 1467 umount_tree(mnt, 1); 1468 retval = 0; 1469 } 1470 } 1471 unlock_mount_hash(); 1472 namespace_unlock(); 1473 return retval; 1474 } 1475 1476 /* 1477 * __detach_mounts - lazily unmount all mounts on the specified dentry 1478 * 1479 * During unlink, rmdir, and d_drop it is possible to loose the path 1480 * to an existing mountpoint, and wind up leaking the mount. 1481 * detach_mounts allows lazily unmounting those mounts instead of 1482 * leaking them. 1483 * 1484 * The caller may hold dentry->d_inode->i_mutex. 1485 */ 1486 void __detach_mounts(struct dentry *dentry) 1487 { 1488 struct mountpoint *mp; 1489 struct mount *mnt; 1490 1491 namespace_lock(); 1492 mp = lookup_mountpoint(dentry); 1493 if (!mp) 1494 goto out_unlock; 1495 1496 lock_mount_hash(); 1497 while (!hlist_empty(&mp->m_list)) { 1498 mnt = hlist_entry(mp->m_list.first, struct mount, mnt_mp_list); 1499 umount_tree(mnt, 2); 1500 } 1501 unlock_mount_hash(); 1502 put_mountpoint(mp); 1503 out_unlock: 1504 namespace_unlock(); 1505 } 1506 1507 /* 1508 * Is the caller allowed to modify his namespace? 1509 */ 1510 static inline bool may_mount(void) 1511 { 1512 return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN); 1513 } 1514 1515 /* 1516 * Now umount can handle mount points as well as block devices. 1517 * This is important for filesystems which use unnamed block devices. 1518 * 1519 * We now support a flag for forced unmount like the other 'big iron' 1520 * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD 1521 */ 1522 1523 SYSCALL_DEFINE2(umount, char __user *, name, int, flags) 1524 { 1525 struct path path; 1526 struct mount *mnt; 1527 int retval; 1528 int lookup_flags = 0; 1529 1530 if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW)) 1531 return -EINVAL; 1532 1533 if (!may_mount()) 1534 return -EPERM; 1535 1536 if (!(flags & UMOUNT_NOFOLLOW)) 1537 lookup_flags |= LOOKUP_FOLLOW; 1538 1539 retval = user_path_mountpoint_at(AT_FDCWD, name, lookup_flags, &path); 1540 if (retval) 1541 goto out; 1542 mnt = real_mount(path.mnt); 1543 retval = -EINVAL; 1544 if (path.dentry != path.mnt->mnt_root) 1545 goto dput_and_out; 1546 if (!check_mnt(mnt)) 1547 goto dput_and_out; 1548 if (mnt->mnt.mnt_flags & MNT_LOCKED) 1549 goto dput_and_out; 1550 retval = -EPERM; 1551 if (flags & MNT_FORCE && !capable(CAP_SYS_ADMIN)) 1552 goto dput_and_out; 1553 1554 retval = do_umount(mnt, flags); 1555 dput_and_out: 1556 /* we mustn't call path_put() as that would clear mnt_expiry_mark */ 1557 dput(path.dentry); 1558 mntput_no_expire(mnt); 1559 out: 1560 return retval; 1561 } 1562 1563 #ifdef __ARCH_WANT_SYS_OLDUMOUNT 1564 1565 /* 1566 * The 2.0 compatible umount. No flags. 1567 */ 1568 SYSCALL_DEFINE1(oldumount, char __user *, name) 1569 { 1570 return sys_umount(name, 0); 1571 } 1572 1573 #endif 1574 1575 static bool is_mnt_ns_file(struct dentry *dentry) 1576 { 1577 /* Is this a proxy for a mount namespace? */ 1578 return dentry->d_op == &ns_dentry_operations && 1579 dentry->d_fsdata == &mntns_operations; 1580 } 1581 1582 struct mnt_namespace *to_mnt_ns(struct ns_common *ns) 1583 { 1584 return container_of(ns, struct mnt_namespace, ns); 1585 } 1586 1587 static bool mnt_ns_loop(struct dentry *dentry) 1588 { 1589 /* Could bind mounting the mount namespace inode cause a 1590 * mount namespace loop? 1591 */ 1592 struct mnt_namespace *mnt_ns; 1593 if (!is_mnt_ns_file(dentry)) 1594 return false; 1595 1596 mnt_ns = to_mnt_ns(get_proc_ns(dentry->d_inode)); 1597 return current->nsproxy->mnt_ns->seq >= mnt_ns->seq; 1598 } 1599 1600 struct mount *copy_tree(struct mount *mnt, struct dentry *dentry, 1601 int flag) 1602 { 1603 struct mount *res, *p, *q, *r, *parent; 1604 1605 if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(mnt)) 1606 return ERR_PTR(-EINVAL); 1607 1608 if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry)) 1609 return ERR_PTR(-EINVAL); 1610 1611 res = q = clone_mnt(mnt, dentry, flag); 1612 if (IS_ERR(q)) 1613 return q; 1614 1615 q->mnt_mountpoint = mnt->mnt_mountpoint; 1616 1617 p = mnt; 1618 list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) { 1619 struct mount *s; 1620 if (!is_subdir(r->mnt_mountpoint, dentry)) 1621 continue; 1622 1623 for (s = r; s; s = next_mnt(s, r)) { 1624 struct mount *t = NULL; 1625 if (!(flag & CL_COPY_UNBINDABLE) && 1626 IS_MNT_UNBINDABLE(s)) { 1627 s = skip_mnt_tree(s); 1628 continue; 1629 } 1630 if (!(flag & CL_COPY_MNT_NS_FILE) && 1631 is_mnt_ns_file(s->mnt.mnt_root)) { 1632 s = skip_mnt_tree(s); 1633 continue; 1634 } 1635 while (p != s->mnt_parent) { 1636 p = p->mnt_parent; 1637 q = q->mnt_parent; 1638 } 1639 p = s; 1640 parent = q; 1641 q = clone_mnt(p, p->mnt.mnt_root, flag); 1642 if (IS_ERR(q)) 1643 goto out; 1644 lock_mount_hash(); 1645 list_add_tail(&q->mnt_list, &res->mnt_list); 1646 mnt_set_mountpoint(parent, p->mnt_mp, q); 1647 if (!list_empty(&parent->mnt_mounts)) { 1648 t = list_last_entry(&parent->mnt_mounts, 1649 struct mount, mnt_child); 1650 if (t->mnt_mp != p->mnt_mp) 1651 t = NULL; 1652 } 1653 attach_shadowed(q, parent, t); 1654 unlock_mount_hash(); 1655 } 1656 } 1657 return res; 1658 out: 1659 if (res) { 1660 lock_mount_hash(); 1661 umount_tree(res, 0); 1662 unlock_mount_hash(); 1663 } 1664 return q; 1665 } 1666 1667 /* Caller should check returned pointer for errors */ 1668 1669 struct vfsmount *collect_mounts(struct path *path) 1670 { 1671 struct mount *tree; 1672 namespace_lock(); 1673 tree = copy_tree(real_mount(path->mnt), path->dentry, 1674 CL_COPY_ALL | CL_PRIVATE); 1675 namespace_unlock(); 1676 if (IS_ERR(tree)) 1677 return ERR_CAST(tree); 1678 return &tree->mnt; 1679 } 1680 1681 void drop_collected_mounts(struct vfsmount *mnt) 1682 { 1683 namespace_lock(); 1684 lock_mount_hash(); 1685 umount_tree(real_mount(mnt), 0); 1686 unlock_mount_hash(); 1687 namespace_unlock(); 1688 } 1689 1690 /** 1691 * clone_private_mount - create a private clone of a path 1692 * 1693 * This creates a new vfsmount, which will be the clone of @path. The new will 1694 * not be attached anywhere in the namespace and will be private (i.e. changes 1695 * to the originating mount won't be propagated into this). 1696 * 1697 * Release with mntput(). 1698 */ 1699 struct vfsmount *clone_private_mount(struct path *path) 1700 { 1701 struct mount *old_mnt = real_mount(path->mnt); 1702 struct mount *new_mnt; 1703 1704 if (IS_MNT_UNBINDABLE(old_mnt)) 1705 return ERR_PTR(-EINVAL); 1706 1707 down_read(&namespace_sem); 1708 new_mnt = clone_mnt(old_mnt, path->dentry, CL_PRIVATE); 1709 up_read(&namespace_sem); 1710 if (IS_ERR(new_mnt)) 1711 return ERR_CAST(new_mnt); 1712 1713 return &new_mnt->mnt; 1714 } 1715 EXPORT_SYMBOL_GPL(clone_private_mount); 1716 1717 int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg, 1718 struct vfsmount *root) 1719 { 1720 struct mount *mnt; 1721 int res = f(root, arg); 1722 if (res) 1723 return res; 1724 list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) { 1725 res = f(&mnt->mnt, arg); 1726 if (res) 1727 return res; 1728 } 1729 return 0; 1730 } 1731 1732 static void cleanup_group_ids(struct mount *mnt, struct mount *end) 1733 { 1734 struct mount *p; 1735 1736 for (p = mnt; p != end; p = next_mnt(p, mnt)) { 1737 if (p->mnt_group_id && !IS_MNT_SHARED(p)) 1738 mnt_release_group_id(p); 1739 } 1740 } 1741 1742 static int invent_group_ids(struct mount *mnt, bool recurse) 1743 { 1744 struct mount *p; 1745 1746 for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) { 1747 if (!p->mnt_group_id && !IS_MNT_SHARED(p)) { 1748 int err = mnt_alloc_group_id(p); 1749 if (err) { 1750 cleanup_group_ids(mnt, p); 1751 return err; 1752 } 1753 } 1754 } 1755 1756 return 0; 1757 } 1758 1759 /* 1760 * @source_mnt : mount tree to be attached 1761 * @nd : place the mount tree @source_mnt is attached 1762 * @parent_nd : if non-null, detach the source_mnt from its parent and 1763 * store the parent mount and mountpoint dentry. 1764 * (done when source_mnt is moved) 1765 * 1766 * NOTE: in the table below explains the semantics when a source mount 1767 * of a given type is attached to a destination mount of a given type. 1768 * --------------------------------------------------------------------------- 1769 * | BIND MOUNT OPERATION | 1770 * |************************************************************************** 1771 * | source-->| shared | private | slave | unbindable | 1772 * | dest | | | | | 1773 * | | | | | | | 1774 * | v | | | | | 1775 * |************************************************************************** 1776 * | shared | shared (++) | shared (+) | shared(+++)| invalid | 1777 * | | | | | | 1778 * |non-shared| shared (+) | private | slave (*) | invalid | 1779 * *************************************************************************** 1780 * A bind operation clones the source mount and mounts the clone on the 1781 * destination mount. 1782 * 1783 * (++) the cloned mount is propagated to all the mounts in the propagation 1784 * tree of the destination mount and the cloned mount is added to 1785 * the peer group of the source mount. 1786 * (+) the cloned mount is created under the destination mount and is marked 1787 * as shared. The cloned mount is added to the peer group of the source 1788 * mount. 1789 * (+++) the mount is propagated to all the mounts in the propagation tree 1790 * of the destination mount and the cloned mount is made slave 1791 * of the same master as that of the source mount. The cloned mount 1792 * is marked as 'shared and slave'. 1793 * (*) the cloned mount is made a slave of the same master as that of the 1794 * source mount. 1795 * 1796 * --------------------------------------------------------------------------- 1797 * | MOVE MOUNT OPERATION | 1798 * |************************************************************************** 1799 * | source-->| shared | private | slave | unbindable | 1800 * | dest | | | | | 1801 * | | | | | | | 1802 * | v | | | | | 1803 * |************************************************************************** 1804 * | shared | shared (+) | shared (+) | shared(+++) | invalid | 1805 * | | | | | | 1806 * |non-shared| shared (+*) | private | slave (*) | unbindable | 1807 * *************************************************************************** 1808 * 1809 * (+) the mount is moved to the destination. And is then propagated to 1810 * all the mounts in the propagation tree of the destination mount. 1811 * (+*) the mount is moved to the destination. 1812 * (+++) the mount is moved to the destination and is then propagated to 1813 * all the mounts belonging to the destination mount's propagation tree. 1814 * the mount is marked as 'shared and slave'. 1815 * (*) the mount continues to be a slave at the new location. 1816 * 1817 * if the source mount is a tree, the operations explained above is 1818 * applied to each mount in the tree. 1819 * Must be called without spinlocks held, since this function can sleep 1820 * in allocations. 1821 */ 1822 static int attach_recursive_mnt(struct mount *source_mnt, 1823 struct mount *dest_mnt, 1824 struct mountpoint *dest_mp, 1825 struct path *parent_path) 1826 { 1827 HLIST_HEAD(tree_list); 1828 struct mount *child, *p; 1829 struct hlist_node *n; 1830 int err; 1831 1832 if (IS_MNT_SHARED(dest_mnt)) { 1833 err = invent_group_ids(source_mnt, true); 1834 if (err) 1835 goto out; 1836 err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list); 1837 lock_mount_hash(); 1838 if (err) 1839 goto out_cleanup_ids; 1840 for (p = source_mnt; p; p = next_mnt(p, source_mnt)) 1841 set_mnt_shared(p); 1842 } else { 1843 lock_mount_hash(); 1844 } 1845 if (parent_path) { 1846 detach_mnt(source_mnt, parent_path); 1847 attach_mnt(source_mnt, dest_mnt, dest_mp); 1848 touch_mnt_namespace(source_mnt->mnt_ns); 1849 } else { 1850 mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt); 1851 commit_tree(source_mnt, NULL); 1852 } 1853 1854 hlist_for_each_entry_safe(child, n, &tree_list, mnt_hash) { 1855 struct mount *q; 1856 hlist_del_init(&child->mnt_hash); 1857 q = __lookup_mnt_last(&child->mnt_parent->mnt, 1858 child->mnt_mountpoint); 1859 commit_tree(child, q); 1860 } 1861 unlock_mount_hash(); 1862 1863 return 0; 1864 1865 out_cleanup_ids: 1866 while (!hlist_empty(&tree_list)) { 1867 child = hlist_entry(tree_list.first, struct mount, mnt_hash); 1868 umount_tree(child, 0); 1869 } 1870 unlock_mount_hash(); 1871 cleanup_group_ids(source_mnt, NULL); 1872 out: 1873 return err; 1874 } 1875 1876 static struct mountpoint *lock_mount(struct path *path) 1877 { 1878 struct vfsmount *mnt; 1879 struct dentry *dentry = path->dentry; 1880 retry: 1881 mutex_lock(&dentry->d_inode->i_mutex); 1882 if (unlikely(cant_mount(dentry))) { 1883 mutex_unlock(&dentry->d_inode->i_mutex); 1884 return ERR_PTR(-ENOENT); 1885 } 1886 namespace_lock(); 1887 mnt = lookup_mnt(path); 1888 if (likely(!mnt)) { 1889 struct mountpoint *mp = lookup_mountpoint(dentry); 1890 if (!mp) 1891 mp = new_mountpoint(dentry); 1892 if (IS_ERR(mp)) { 1893 namespace_unlock(); 1894 mutex_unlock(&dentry->d_inode->i_mutex); 1895 return mp; 1896 } 1897 return mp; 1898 } 1899 namespace_unlock(); 1900 mutex_unlock(&path->dentry->d_inode->i_mutex); 1901 path_put(path); 1902 path->mnt = mnt; 1903 dentry = path->dentry = dget(mnt->mnt_root); 1904 goto retry; 1905 } 1906 1907 static void unlock_mount(struct mountpoint *where) 1908 { 1909 struct dentry *dentry = where->m_dentry; 1910 put_mountpoint(where); 1911 namespace_unlock(); 1912 mutex_unlock(&dentry->d_inode->i_mutex); 1913 } 1914 1915 static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp) 1916 { 1917 if (mnt->mnt.mnt_sb->s_flags & MS_NOUSER) 1918 return -EINVAL; 1919 1920 if (S_ISDIR(mp->m_dentry->d_inode->i_mode) != 1921 S_ISDIR(mnt->mnt.mnt_root->d_inode->i_mode)) 1922 return -ENOTDIR; 1923 1924 return attach_recursive_mnt(mnt, p, mp, NULL); 1925 } 1926 1927 /* 1928 * Sanity check the flags to change_mnt_propagation. 1929 */ 1930 1931 static int flags_to_propagation_type(int flags) 1932 { 1933 int type = flags & ~(MS_REC | MS_SILENT); 1934 1935 /* Fail if any non-propagation flags are set */ 1936 if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE)) 1937 return 0; 1938 /* Only one propagation flag should be set */ 1939 if (!is_power_of_2(type)) 1940 return 0; 1941 return type; 1942 } 1943 1944 /* 1945 * recursively change the type of the mountpoint. 1946 */ 1947 static int do_change_type(struct path *path, int flag) 1948 { 1949 struct mount *m; 1950 struct mount *mnt = real_mount(path->mnt); 1951 int recurse = flag & MS_REC; 1952 int type; 1953 int err = 0; 1954 1955 if (path->dentry != path->mnt->mnt_root) 1956 return -EINVAL; 1957 1958 type = flags_to_propagation_type(flag); 1959 if (!type) 1960 return -EINVAL; 1961 1962 namespace_lock(); 1963 if (type == MS_SHARED) { 1964 err = invent_group_ids(mnt, recurse); 1965 if (err) 1966 goto out_unlock; 1967 } 1968 1969 lock_mount_hash(); 1970 for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL)) 1971 change_mnt_propagation(m, type); 1972 unlock_mount_hash(); 1973 1974 out_unlock: 1975 namespace_unlock(); 1976 return err; 1977 } 1978 1979 static bool has_locked_children(struct mount *mnt, struct dentry *dentry) 1980 { 1981 struct mount *child; 1982 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) { 1983 if (!is_subdir(child->mnt_mountpoint, dentry)) 1984 continue; 1985 1986 if (child->mnt.mnt_flags & MNT_LOCKED) 1987 return true; 1988 } 1989 return false; 1990 } 1991 1992 /* 1993 * do loopback mount. 1994 */ 1995 static int do_loopback(struct path *path, const char *old_name, 1996 int recurse) 1997 { 1998 struct path old_path; 1999 struct mount *mnt = NULL, *old, *parent; 2000 struct mountpoint *mp; 2001 int err; 2002 if (!old_name || !*old_name) 2003 return -EINVAL; 2004 err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path); 2005 if (err) 2006 return err; 2007 2008 err = -EINVAL; 2009 if (mnt_ns_loop(old_path.dentry)) 2010 goto out; 2011 2012 mp = lock_mount(path); 2013 err = PTR_ERR(mp); 2014 if (IS_ERR(mp)) 2015 goto out; 2016 2017 old = real_mount(old_path.mnt); 2018 parent = real_mount(path->mnt); 2019 2020 err = -EINVAL; 2021 if (IS_MNT_UNBINDABLE(old)) 2022 goto out2; 2023 2024 if (!check_mnt(parent)) 2025 goto out2; 2026 2027 if (!check_mnt(old) && old_path.dentry->d_op != &ns_dentry_operations) 2028 goto out2; 2029 2030 if (!recurse && has_locked_children(old, old_path.dentry)) 2031 goto out2; 2032 2033 if (recurse) 2034 mnt = copy_tree(old, old_path.dentry, CL_COPY_MNT_NS_FILE); 2035 else 2036 mnt = clone_mnt(old, old_path.dentry, 0); 2037 2038 if (IS_ERR(mnt)) { 2039 err = PTR_ERR(mnt); 2040 goto out2; 2041 } 2042 2043 mnt->mnt.mnt_flags &= ~MNT_LOCKED; 2044 2045 err = graft_tree(mnt, parent, mp); 2046 if (err) { 2047 lock_mount_hash(); 2048 umount_tree(mnt, 0); 2049 unlock_mount_hash(); 2050 } 2051 out2: 2052 unlock_mount(mp); 2053 out: 2054 path_put(&old_path); 2055 return err; 2056 } 2057 2058 static int change_mount_flags(struct vfsmount *mnt, int ms_flags) 2059 { 2060 int error = 0; 2061 int readonly_request = 0; 2062 2063 if (ms_flags & MS_RDONLY) 2064 readonly_request = 1; 2065 if (readonly_request == __mnt_is_readonly(mnt)) 2066 return 0; 2067 2068 if (readonly_request) 2069 error = mnt_make_readonly(real_mount(mnt)); 2070 else 2071 __mnt_unmake_readonly(real_mount(mnt)); 2072 return error; 2073 } 2074 2075 /* 2076 * change filesystem flags. dir should be a physical root of filesystem. 2077 * If you've mounted a non-root directory somewhere and want to do remount 2078 * on it - tough luck. 2079 */ 2080 static int do_remount(struct path *path, int flags, int mnt_flags, 2081 void *data) 2082 { 2083 int err; 2084 struct super_block *sb = path->mnt->mnt_sb; 2085 struct mount *mnt = real_mount(path->mnt); 2086 2087 if (!check_mnt(mnt)) 2088 return -EINVAL; 2089 2090 if (path->dentry != path->mnt->mnt_root) 2091 return -EINVAL; 2092 2093 /* Don't allow changing of locked mnt flags. 2094 * 2095 * No locks need to be held here while testing the various 2096 * MNT_LOCK flags because those flags can never be cleared 2097 * once they are set. 2098 */ 2099 if ((mnt->mnt.mnt_flags & MNT_LOCK_READONLY) && 2100 !(mnt_flags & MNT_READONLY)) { 2101 return -EPERM; 2102 } 2103 if ((mnt->mnt.mnt_flags & MNT_LOCK_NODEV) && 2104 !(mnt_flags & MNT_NODEV)) { 2105 /* Was the nodev implicitly added in mount? */ 2106 if ((mnt->mnt_ns->user_ns != &init_user_ns) && 2107 !(sb->s_type->fs_flags & FS_USERNS_DEV_MOUNT)) { 2108 mnt_flags |= MNT_NODEV; 2109 } else { 2110 return -EPERM; 2111 } 2112 } 2113 if ((mnt->mnt.mnt_flags & MNT_LOCK_NOSUID) && 2114 !(mnt_flags & MNT_NOSUID)) { 2115 return -EPERM; 2116 } 2117 if ((mnt->mnt.mnt_flags & MNT_LOCK_NOEXEC) && 2118 !(mnt_flags & MNT_NOEXEC)) { 2119 return -EPERM; 2120 } 2121 if ((mnt->mnt.mnt_flags & MNT_LOCK_ATIME) && 2122 ((mnt->mnt.mnt_flags & MNT_ATIME_MASK) != (mnt_flags & MNT_ATIME_MASK))) { 2123 return -EPERM; 2124 } 2125 2126 err = security_sb_remount(sb, data); 2127 if (err) 2128 return err; 2129 2130 down_write(&sb->s_umount); 2131 if (flags & MS_BIND) 2132 err = change_mount_flags(path->mnt, flags); 2133 else if (!capable(CAP_SYS_ADMIN)) 2134 err = -EPERM; 2135 else 2136 err = do_remount_sb(sb, flags, data, 0); 2137 if (!err) { 2138 lock_mount_hash(); 2139 mnt_flags |= mnt->mnt.mnt_flags & ~MNT_USER_SETTABLE_MASK; 2140 mnt->mnt.mnt_flags = mnt_flags; 2141 touch_mnt_namespace(mnt->mnt_ns); 2142 unlock_mount_hash(); 2143 } 2144 up_write(&sb->s_umount); 2145 return err; 2146 } 2147 2148 static inline int tree_contains_unbindable(struct mount *mnt) 2149 { 2150 struct mount *p; 2151 for (p = mnt; p; p = next_mnt(p, mnt)) { 2152 if (IS_MNT_UNBINDABLE(p)) 2153 return 1; 2154 } 2155 return 0; 2156 } 2157 2158 static int do_move_mount(struct path *path, const char *old_name) 2159 { 2160 struct path old_path, parent_path; 2161 struct mount *p; 2162 struct mount *old; 2163 struct mountpoint *mp; 2164 int err; 2165 if (!old_name || !*old_name) 2166 return -EINVAL; 2167 err = kern_path(old_name, LOOKUP_FOLLOW, &old_path); 2168 if (err) 2169 return err; 2170 2171 mp = lock_mount(path); 2172 err = PTR_ERR(mp); 2173 if (IS_ERR(mp)) 2174 goto out; 2175 2176 old = real_mount(old_path.mnt); 2177 p = real_mount(path->mnt); 2178 2179 err = -EINVAL; 2180 if (!check_mnt(p) || !check_mnt(old)) 2181 goto out1; 2182 2183 if (old->mnt.mnt_flags & MNT_LOCKED) 2184 goto out1; 2185 2186 err = -EINVAL; 2187 if (old_path.dentry != old_path.mnt->mnt_root) 2188 goto out1; 2189 2190 if (!mnt_has_parent(old)) 2191 goto out1; 2192 2193 if (S_ISDIR(path->dentry->d_inode->i_mode) != 2194 S_ISDIR(old_path.dentry->d_inode->i_mode)) 2195 goto out1; 2196 /* 2197 * Don't move a mount residing in a shared parent. 2198 */ 2199 if (IS_MNT_SHARED(old->mnt_parent)) 2200 goto out1; 2201 /* 2202 * Don't move a mount tree containing unbindable mounts to a destination 2203 * mount which is shared. 2204 */ 2205 if (IS_MNT_SHARED(p) && tree_contains_unbindable(old)) 2206 goto out1; 2207 err = -ELOOP; 2208 for (; mnt_has_parent(p); p = p->mnt_parent) 2209 if (p == old) 2210 goto out1; 2211 2212 err = attach_recursive_mnt(old, real_mount(path->mnt), mp, &parent_path); 2213 if (err) 2214 goto out1; 2215 2216 /* if the mount is moved, it should no longer be expire 2217 * automatically */ 2218 list_del_init(&old->mnt_expire); 2219 out1: 2220 unlock_mount(mp); 2221 out: 2222 if (!err) 2223 path_put(&parent_path); 2224 path_put(&old_path); 2225 return err; 2226 } 2227 2228 static struct vfsmount *fs_set_subtype(struct vfsmount *mnt, const char *fstype) 2229 { 2230 int err; 2231 const char *subtype = strchr(fstype, '.'); 2232 if (subtype) { 2233 subtype++; 2234 err = -EINVAL; 2235 if (!subtype[0]) 2236 goto err; 2237 } else 2238 subtype = ""; 2239 2240 mnt->mnt_sb->s_subtype = kstrdup(subtype, GFP_KERNEL); 2241 err = -ENOMEM; 2242 if (!mnt->mnt_sb->s_subtype) 2243 goto err; 2244 return mnt; 2245 2246 err: 2247 mntput(mnt); 2248 return ERR_PTR(err); 2249 } 2250 2251 /* 2252 * add a mount into a namespace's mount tree 2253 */ 2254 static int do_add_mount(struct mount *newmnt, struct path *path, int mnt_flags) 2255 { 2256 struct mountpoint *mp; 2257 struct mount *parent; 2258 int err; 2259 2260 mnt_flags &= ~MNT_INTERNAL_FLAGS; 2261 2262 mp = lock_mount(path); 2263 if (IS_ERR(mp)) 2264 return PTR_ERR(mp); 2265 2266 parent = real_mount(path->mnt); 2267 err = -EINVAL; 2268 if (unlikely(!check_mnt(parent))) { 2269 /* that's acceptable only for automounts done in private ns */ 2270 if (!(mnt_flags & MNT_SHRINKABLE)) 2271 goto unlock; 2272 /* ... and for those we'd better have mountpoint still alive */ 2273 if (!parent->mnt_ns) 2274 goto unlock; 2275 } 2276 2277 /* Refuse the same filesystem on the same mount point */ 2278 err = -EBUSY; 2279 if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb && 2280 path->mnt->mnt_root == path->dentry) 2281 goto unlock; 2282 2283 err = -EINVAL; 2284 if (S_ISLNK(newmnt->mnt.mnt_root->d_inode->i_mode)) 2285 goto unlock; 2286 2287 newmnt->mnt.mnt_flags = mnt_flags; 2288 err = graft_tree(newmnt, parent, mp); 2289 2290 unlock: 2291 unlock_mount(mp); 2292 return err; 2293 } 2294 2295 /* 2296 * create a new mount for userspace and request it to be added into the 2297 * namespace's tree 2298 */ 2299 static int do_new_mount(struct path *path, const char *fstype, int flags, 2300 int mnt_flags, const char *name, void *data) 2301 { 2302 struct file_system_type *type; 2303 struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns; 2304 struct vfsmount *mnt; 2305 int err; 2306 2307 if (!fstype) 2308 return -EINVAL; 2309 2310 type = get_fs_type(fstype); 2311 if (!type) 2312 return -ENODEV; 2313 2314 if (user_ns != &init_user_ns) { 2315 if (!(type->fs_flags & FS_USERNS_MOUNT)) { 2316 put_filesystem(type); 2317 return -EPERM; 2318 } 2319 /* Only in special cases allow devices from mounts 2320 * created outside the initial user namespace. 2321 */ 2322 if (!(type->fs_flags & FS_USERNS_DEV_MOUNT)) { 2323 flags |= MS_NODEV; 2324 mnt_flags |= MNT_NODEV | MNT_LOCK_NODEV; 2325 } 2326 } 2327 2328 mnt = vfs_kern_mount(type, flags, name, data); 2329 if (!IS_ERR(mnt) && (type->fs_flags & FS_HAS_SUBTYPE) && 2330 !mnt->mnt_sb->s_subtype) 2331 mnt = fs_set_subtype(mnt, fstype); 2332 2333 put_filesystem(type); 2334 if (IS_ERR(mnt)) 2335 return PTR_ERR(mnt); 2336 2337 err = do_add_mount(real_mount(mnt), path, mnt_flags); 2338 if (err) 2339 mntput(mnt); 2340 return err; 2341 } 2342 2343 int finish_automount(struct vfsmount *m, struct path *path) 2344 { 2345 struct mount *mnt = real_mount(m); 2346 int err; 2347 /* The new mount record should have at least 2 refs to prevent it being 2348 * expired before we get a chance to add it 2349 */ 2350 BUG_ON(mnt_get_count(mnt) < 2); 2351 2352 if (m->mnt_sb == path->mnt->mnt_sb && 2353 m->mnt_root == path->dentry) { 2354 err = -ELOOP; 2355 goto fail; 2356 } 2357 2358 err = do_add_mount(mnt, path, path->mnt->mnt_flags | MNT_SHRINKABLE); 2359 if (!err) 2360 return 0; 2361 fail: 2362 /* remove m from any expiration list it may be on */ 2363 if (!list_empty(&mnt->mnt_expire)) { 2364 namespace_lock(); 2365 list_del_init(&mnt->mnt_expire); 2366 namespace_unlock(); 2367 } 2368 mntput(m); 2369 mntput(m); 2370 return err; 2371 } 2372 2373 /** 2374 * mnt_set_expiry - Put a mount on an expiration list 2375 * @mnt: The mount to list. 2376 * @expiry_list: The list to add the mount to. 2377 */ 2378 void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list) 2379 { 2380 namespace_lock(); 2381 2382 list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list); 2383 2384 namespace_unlock(); 2385 } 2386 EXPORT_SYMBOL(mnt_set_expiry); 2387 2388 /* 2389 * process a list of expirable mountpoints with the intent of discarding any 2390 * mountpoints that aren't in use and haven't been touched since last we came 2391 * here 2392 */ 2393 void mark_mounts_for_expiry(struct list_head *mounts) 2394 { 2395 struct mount *mnt, *next; 2396 LIST_HEAD(graveyard); 2397 2398 if (list_empty(mounts)) 2399 return; 2400 2401 namespace_lock(); 2402 lock_mount_hash(); 2403 2404 /* extract from the expiration list every vfsmount that matches the 2405 * following criteria: 2406 * - only referenced by its parent vfsmount 2407 * - still marked for expiry (marked on the last call here; marks are 2408 * cleared by mntput()) 2409 */ 2410 list_for_each_entry_safe(mnt, next, mounts, mnt_expire) { 2411 if (!xchg(&mnt->mnt_expiry_mark, 1) || 2412 propagate_mount_busy(mnt, 1)) 2413 continue; 2414 list_move(&mnt->mnt_expire, &graveyard); 2415 } 2416 while (!list_empty(&graveyard)) { 2417 mnt = list_first_entry(&graveyard, struct mount, mnt_expire); 2418 touch_mnt_namespace(mnt->mnt_ns); 2419 umount_tree(mnt, 1); 2420 } 2421 unlock_mount_hash(); 2422 namespace_unlock(); 2423 } 2424 2425 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry); 2426 2427 /* 2428 * Ripoff of 'select_parent()' 2429 * 2430 * search the list of submounts for a given mountpoint, and move any 2431 * shrinkable submounts to the 'graveyard' list. 2432 */ 2433 static int select_submounts(struct mount *parent, struct list_head *graveyard) 2434 { 2435 struct mount *this_parent = parent; 2436 struct list_head *next; 2437 int found = 0; 2438 2439 repeat: 2440 next = this_parent->mnt_mounts.next; 2441 resume: 2442 while (next != &this_parent->mnt_mounts) { 2443 struct list_head *tmp = next; 2444 struct mount *mnt = list_entry(tmp, struct mount, mnt_child); 2445 2446 next = tmp->next; 2447 if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE)) 2448 continue; 2449 /* 2450 * Descend a level if the d_mounts list is non-empty. 2451 */ 2452 if (!list_empty(&mnt->mnt_mounts)) { 2453 this_parent = mnt; 2454 goto repeat; 2455 } 2456 2457 if (!propagate_mount_busy(mnt, 1)) { 2458 list_move_tail(&mnt->mnt_expire, graveyard); 2459 found++; 2460 } 2461 } 2462 /* 2463 * All done at this level ... ascend and resume the search 2464 */ 2465 if (this_parent != parent) { 2466 next = this_parent->mnt_child.next; 2467 this_parent = this_parent->mnt_parent; 2468 goto resume; 2469 } 2470 return found; 2471 } 2472 2473 /* 2474 * process a list of expirable mountpoints with the intent of discarding any 2475 * submounts of a specific parent mountpoint 2476 * 2477 * mount_lock must be held for write 2478 */ 2479 static void shrink_submounts(struct mount *mnt) 2480 { 2481 LIST_HEAD(graveyard); 2482 struct mount *m; 2483 2484 /* extract submounts of 'mountpoint' from the expiration list */ 2485 while (select_submounts(mnt, &graveyard)) { 2486 while (!list_empty(&graveyard)) { 2487 m = list_first_entry(&graveyard, struct mount, 2488 mnt_expire); 2489 touch_mnt_namespace(m->mnt_ns); 2490 umount_tree(m, 1); 2491 } 2492 } 2493 } 2494 2495 /* 2496 * Some copy_from_user() implementations do not return the exact number of 2497 * bytes remaining to copy on a fault. But copy_mount_options() requires that. 2498 * Note that this function differs from copy_from_user() in that it will oops 2499 * on bad values of `to', rather than returning a short copy. 2500 */ 2501 static long exact_copy_from_user(void *to, const void __user * from, 2502 unsigned long n) 2503 { 2504 char *t = to; 2505 const char __user *f = from; 2506 char c; 2507 2508 if (!access_ok(VERIFY_READ, from, n)) 2509 return n; 2510 2511 while (n) { 2512 if (__get_user(c, f)) { 2513 memset(t, 0, n); 2514 break; 2515 } 2516 *t++ = c; 2517 f++; 2518 n--; 2519 } 2520 return n; 2521 } 2522 2523 int copy_mount_options(const void __user * data, unsigned long *where) 2524 { 2525 int i; 2526 unsigned long page; 2527 unsigned long size; 2528 2529 *where = 0; 2530 if (!data) 2531 return 0; 2532 2533 if (!(page = __get_free_page(GFP_KERNEL))) 2534 return -ENOMEM; 2535 2536 /* We only care that *some* data at the address the user 2537 * gave us is valid. Just in case, we'll zero 2538 * the remainder of the page. 2539 */ 2540 /* copy_from_user cannot cross TASK_SIZE ! */ 2541 size = TASK_SIZE - (unsigned long)data; 2542 if (size > PAGE_SIZE) 2543 size = PAGE_SIZE; 2544 2545 i = size - exact_copy_from_user((void *)page, data, size); 2546 if (!i) { 2547 free_page(page); 2548 return -EFAULT; 2549 } 2550 if (i != PAGE_SIZE) 2551 memset((char *)page + i, 0, PAGE_SIZE - i); 2552 *where = page; 2553 return 0; 2554 } 2555 2556 char *copy_mount_string(const void __user *data) 2557 { 2558 return data ? strndup_user(data, PAGE_SIZE) : NULL; 2559 } 2560 2561 /* 2562 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to 2563 * be given to the mount() call (ie: read-only, no-dev, no-suid etc). 2564 * 2565 * data is a (void *) that can point to any structure up to 2566 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent 2567 * information (or be NULL). 2568 * 2569 * Pre-0.97 versions of mount() didn't have a flags word. 2570 * When the flags word was introduced its top half was required 2571 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9. 2572 * Therefore, if this magic number is present, it carries no information 2573 * and must be discarded. 2574 */ 2575 long do_mount(const char *dev_name, const char __user *dir_name, 2576 const char *type_page, unsigned long flags, void *data_page) 2577 { 2578 struct path path; 2579 int retval = 0; 2580 int mnt_flags = 0; 2581 2582 /* Discard magic */ 2583 if ((flags & MS_MGC_MSK) == MS_MGC_VAL) 2584 flags &= ~MS_MGC_MSK; 2585 2586 /* Basic sanity checks */ 2587 if (data_page) 2588 ((char *)data_page)[PAGE_SIZE - 1] = 0; 2589 2590 /* ... and get the mountpoint */ 2591 retval = user_path(dir_name, &path); 2592 if (retval) 2593 return retval; 2594 2595 retval = security_sb_mount(dev_name, &path, 2596 type_page, flags, data_page); 2597 if (!retval && !may_mount()) 2598 retval = -EPERM; 2599 if (retval) 2600 goto dput_out; 2601 2602 /* Default to relatime unless overriden */ 2603 if (!(flags & MS_NOATIME)) 2604 mnt_flags |= MNT_RELATIME; 2605 2606 /* Separate the per-mountpoint flags */ 2607 if (flags & MS_NOSUID) 2608 mnt_flags |= MNT_NOSUID; 2609 if (flags & MS_NODEV) 2610 mnt_flags |= MNT_NODEV; 2611 if (flags & MS_NOEXEC) 2612 mnt_flags |= MNT_NOEXEC; 2613 if (flags & MS_NOATIME) 2614 mnt_flags |= MNT_NOATIME; 2615 if (flags & MS_NODIRATIME) 2616 mnt_flags |= MNT_NODIRATIME; 2617 if (flags & MS_STRICTATIME) 2618 mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME); 2619 if (flags & MS_RDONLY) 2620 mnt_flags |= MNT_READONLY; 2621 2622 /* The default atime for remount is preservation */ 2623 if ((flags & MS_REMOUNT) && 2624 ((flags & (MS_NOATIME | MS_NODIRATIME | MS_RELATIME | 2625 MS_STRICTATIME)) == 0)) { 2626 mnt_flags &= ~MNT_ATIME_MASK; 2627 mnt_flags |= path.mnt->mnt_flags & MNT_ATIME_MASK; 2628 } 2629 2630 flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE | MS_BORN | 2631 MS_NOATIME | MS_NODIRATIME | MS_RELATIME| MS_KERNMOUNT | 2632 MS_STRICTATIME); 2633 2634 if (flags & MS_REMOUNT) 2635 retval = do_remount(&path, flags & ~MS_REMOUNT, mnt_flags, 2636 data_page); 2637 else if (flags & MS_BIND) 2638 retval = do_loopback(&path, dev_name, flags & MS_REC); 2639 else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE)) 2640 retval = do_change_type(&path, flags); 2641 else if (flags & MS_MOVE) 2642 retval = do_move_mount(&path, dev_name); 2643 else 2644 retval = do_new_mount(&path, type_page, flags, mnt_flags, 2645 dev_name, data_page); 2646 dput_out: 2647 path_put(&path); 2648 return retval; 2649 } 2650 2651 static void free_mnt_ns(struct mnt_namespace *ns) 2652 { 2653 ns_free_inum(&ns->ns); 2654 put_user_ns(ns->user_ns); 2655 kfree(ns); 2656 } 2657 2658 /* 2659 * Assign a sequence number so we can detect when we attempt to bind 2660 * mount a reference to an older mount namespace into the current 2661 * mount namespace, preventing reference counting loops. A 64bit 2662 * number incrementing at 10Ghz will take 12,427 years to wrap which 2663 * is effectively never, so we can ignore the possibility. 2664 */ 2665 static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1); 2666 2667 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns) 2668 { 2669 struct mnt_namespace *new_ns; 2670 int ret; 2671 2672 new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL); 2673 if (!new_ns) 2674 return ERR_PTR(-ENOMEM); 2675 ret = ns_alloc_inum(&new_ns->ns); 2676 if (ret) { 2677 kfree(new_ns); 2678 return ERR_PTR(ret); 2679 } 2680 new_ns->ns.ops = &mntns_operations; 2681 new_ns->seq = atomic64_add_return(1, &mnt_ns_seq); 2682 atomic_set(&new_ns->count, 1); 2683 new_ns->root = NULL; 2684 INIT_LIST_HEAD(&new_ns->list); 2685 init_waitqueue_head(&new_ns->poll); 2686 new_ns->event = 0; 2687 new_ns->user_ns = get_user_ns(user_ns); 2688 return new_ns; 2689 } 2690 2691 struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns, 2692 struct user_namespace *user_ns, struct fs_struct *new_fs) 2693 { 2694 struct mnt_namespace *new_ns; 2695 struct vfsmount *rootmnt = NULL, *pwdmnt = NULL; 2696 struct mount *p, *q; 2697 struct mount *old; 2698 struct mount *new; 2699 int copy_flags; 2700 2701 BUG_ON(!ns); 2702 2703 if (likely(!(flags & CLONE_NEWNS))) { 2704 get_mnt_ns(ns); 2705 return ns; 2706 } 2707 2708 old = ns->root; 2709 2710 new_ns = alloc_mnt_ns(user_ns); 2711 if (IS_ERR(new_ns)) 2712 return new_ns; 2713 2714 namespace_lock(); 2715 /* First pass: copy the tree topology */ 2716 copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE; 2717 if (user_ns != ns->user_ns) 2718 copy_flags |= CL_SHARED_TO_SLAVE | CL_UNPRIVILEGED; 2719 new = copy_tree(old, old->mnt.mnt_root, copy_flags); 2720 if (IS_ERR(new)) { 2721 namespace_unlock(); 2722 free_mnt_ns(new_ns); 2723 return ERR_CAST(new); 2724 } 2725 new_ns->root = new; 2726 list_add_tail(&new_ns->list, &new->mnt_list); 2727 2728 /* 2729 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts 2730 * as belonging to new namespace. We have already acquired a private 2731 * fs_struct, so tsk->fs->lock is not needed. 2732 */ 2733 p = old; 2734 q = new; 2735 while (p) { 2736 q->mnt_ns = new_ns; 2737 if (new_fs) { 2738 if (&p->mnt == new_fs->root.mnt) { 2739 new_fs->root.mnt = mntget(&q->mnt); 2740 rootmnt = &p->mnt; 2741 } 2742 if (&p->mnt == new_fs->pwd.mnt) { 2743 new_fs->pwd.mnt = mntget(&q->mnt); 2744 pwdmnt = &p->mnt; 2745 } 2746 } 2747 p = next_mnt(p, old); 2748 q = next_mnt(q, new); 2749 if (!q) 2750 break; 2751 while (p->mnt.mnt_root != q->mnt.mnt_root) 2752 p = next_mnt(p, old); 2753 } 2754 namespace_unlock(); 2755 2756 if (rootmnt) 2757 mntput(rootmnt); 2758 if (pwdmnt) 2759 mntput(pwdmnt); 2760 2761 return new_ns; 2762 } 2763 2764 /** 2765 * create_mnt_ns - creates a private namespace and adds a root filesystem 2766 * @mnt: pointer to the new root filesystem mountpoint 2767 */ 2768 static struct mnt_namespace *create_mnt_ns(struct vfsmount *m) 2769 { 2770 struct mnt_namespace *new_ns = alloc_mnt_ns(&init_user_ns); 2771 if (!IS_ERR(new_ns)) { 2772 struct mount *mnt = real_mount(m); 2773 mnt->mnt_ns = new_ns; 2774 new_ns->root = mnt; 2775 list_add(&mnt->mnt_list, &new_ns->list); 2776 } else { 2777 mntput(m); 2778 } 2779 return new_ns; 2780 } 2781 2782 struct dentry *mount_subtree(struct vfsmount *mnt, const char *name) 2783 { 2784 struct mnt_namespace *ns; 2785 struct super_block *s; 2786 struct path path; 2787 int err; 2788 2789 ns = create_mnt_ns(mnt); 2790 if (IS_ERR(ns)) 2791 return ERR_CAST(ns); 2792 2793 err = vfs_path_lookup(mnt->mnt_root, mnt, 2794 name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path); 2795 2796 put_mnt_ns(ns); 2797 2798 if (err) 2799 return ERR_PTR(err); 2800 2801 /* trade a vfsmount reference for active sb one */ 2802 s = path.mnt->mnt_sb; 2803 atomic_inc(&s->s_active); 2804 mntput(path.mnt); 2805 /* lock the sucker */ 2806 down_write(&s->s_umount); 2807 /* ... and return the root of (sub)tree on it */ 2808 return path.dentry; 2809 } 2810 EXPORT_SYMBOL(mount_subtree); 2811 2812 SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name, 2813 char __user *, type, unsigned long, flags, void __user *, data) 2814 { 2815 int ret; 2816 char *kernel_type; 2817 char *kernel_dev; 2818 unsigned long data_page; 2819 2820 kernel_type = copy_mount_string(type); 2821 ret = PTR_ERR(kernel_type); 2822 if (IS_ERR(kernel_type)) 2823 goto out_type; 2824 2825 kernel_dev = copy_mount_string(dev_name); 2826 ret = PTR_ERR(kernel_dev); 2827 if (IS_ERR(kernel_dev)) 2828 goto out_dev; 2829 2830 ret = copy_mount_options(data, &data_page); 2831 if (ret < 0) 2832 goto out_data; 2833 2834 ret = do_mount(kernel_dev, dir_name, kernel_type, flags, 2835 (void *) data_page); 2836 2837 free_page(data_page); 2838 out_data: 2839 kfree(kernel_dev); 2840 out_dev: 2841 kfree(kernel_type); 2842 out_type: 2843 return ret; 2844 } 2845 2846 /* 2847 * Return true if path is reachable from root 2848 * 2849 * namespace_sem or mount_lock is held 2850 */ 2851 bool is_path_reachable(struct mount *mnt, struct dentry *dentry, 2852 const struct path *root) 2853 { 2854 while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) { 2855 dentry = mnt->mnt_mountpoint; 2856 mnt = mnt->mnt_parent; 2857 } 2858 return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry); 2859 } 2860 2861 int path_is_under(struct path *path1, struct path *path2) 2862 { 2863 int res; 2864 read_seqlock_excl(&mount_lock); 2865 res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2); 2866 read_sequnlock_excl(&mount_lock); 2867 return res; 2868 } 2869 EXPORT_SYMBOL(path_is_under); 2870 2871 /* 2872 * pivot_root Semantics: 2873 * Moves the root file system of the current process to the directory put_old, 2874 * makes new_root as the new root file system of the current process, and sets 2875 * root/cwd of all processes which had them on the current root to new_root. 2876 * 2877 * Restrictions: 2878 * The new_root and put_old must be directories, and must not be on the 2879 * same file system as the current process root. The put_old must be 2880 * underneath new_root, i.e. adding a non-zero number of /.. to the string 2881 * pointed to by put_old must yield the same directory as new_root. No other 2882 * file system may be mounted on put_old. After all, new_root is a mountpoint. 2883 * 2884 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem. 2885 * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives 2886 * in this situation. 2887 * 2888 * Notes: 2889 * - we don't move root/cwd if they are not at the root (reason: if something 2890 * cared enough to change them, it's probably wrong to force them elsewhere) 2891 * - it's okay to pick a root that isn't the root of a file system, e.g. 2892 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint, 2893 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root 2894 * first. 2895 */ 2896 SYSCALL_DEFINE2(pivot_root, const char __user *, new_root, 2897 const char __user *, put_old) 2898 { 2899 struct path new, old, parent_path, root_parent, root; 2900 struct mount *new_mnt, *root_mnt, *old_mnt; 2901 struct mountpoint *old_mp, *root_mp; 2902 int error; 2903 2904 if (!may_mount()) 2905 return -EPERM; 2906 2907 error = user_path_dir(new_root, &new); 2908 if (error) 2909 goto out0; 2910 2911 error = user_path_dir(put_old, &old); 2912 if (error) 2913 goto out1; 2914 2915 error = security_sb_pivotroot(&old, &new); 2916 if (error) 2917 goto out2; 2918 2919 get_fs_root(current->fs, &root); 2920 old_mp = lock_mount(&old); 2921 error = PTR_ERR(old_mp); 2922 if (IS_ERR(old_mp)) 2923 goto out3; 2924 2925 error = -EINVAL; 2926 new_mnt = real_mount(new.mnt); 2927 root_mnt = real_mount(root.mnt); 2928 old_mnt = real_mount(old.mnt); 2929 if (IS_MNT_SHARED(old_mnt) || 2930 IS_MNT_SHARED(new_mnt->mnt_parent) || 2931 IS_MNT_SHARED(root_mnt->mnt_parent)) 2932 goto out4; 2933 if (!check_mnt(root_mnt) || !check_mnt(new_mnt)) 2934 goto out4; 2935 if (new_mnt->mnt.mnt_flags & MNT_LOCKED) 2936 goto out4; 2937 error = -ENOENT; 2938 if (d_unlinked(new.dentry)) 2939 goto out4; 2940 error = -EBUSY; 2941 if (new_mnt == root_mnt || old_mnt == root_mnt) 2942 goto out4; /* loop, on the same file system */ 2943 error = -EINVAL; 2944 if (root.mnt->mnt_root != root.dentry) 2945 goto out4; /* not a mountpoint */ 2946 if (!mnt_has_parent(root_mnt)) 2947 goto out4; /* not attached */ 2948 root_mp = root_mnt->mnt_mp; 2949 if (new.mnt->mnt_root != new.dentry) 2950 goto out4; /* not a mountpoint */ 2951 if (!mnt_has_parent(new_mnt)) 2952 goto out4; /* not attached */ 2953 /* make sure we can reach put_old from new_root */ 2954 if (!is_path_reachable(old_mnt, old.dentry, &new)) 2955 goto out4; 2956 /* make certain new is below the root */ 2957 if (!is_path_reachable(new_mnt, new.dentry, &root)) 2958 goto out4; 2959 root_mp->m_count++; /* pin it so it won't go away */ 2960 lock_mount_hash(); 2961 detach_mnt(new_mnt, &parent_path); 2962 detach_mnt(root_mnt, &root_parent); 2963 if (root_mnt->mnt.mnt_flags & MNT_LOCKED) { 2964 new_mnt->mnt.mnt_flags |= MNT_LOCKED; 2965 root_mnt->mnt.mnt_flags &= ~MNT_LOCKED; 2966 } 2967 /* mount old root on put_old */ 2968 attach_mnt(root_mnt, old_mnt, old_mp); 2969 /* mount new_root on / */ 2970 attach_mnt(new_mnt, real_mount(root_parent.mnt), root_mp); 2971 touch_mnt_namespace(current->nsproxy->mnt_ns); 2972 /* A moved mount should not expire automatically */ 2973 list_del_init(&new_mnt->mnt_expire); 2974 unlock_mount_hash(); 2975 chroot_fs_refs(&root, &new); 2976 put_mountpoint(root_mp); 2977 error = 0; 2978 out4: 2979 unlock_mount(old_mp); 2980 if (!error) { 2981 path_put(&root_parent); 2982 path_put(&parent_path); 2983 } 2984 out3: 2985 path_put(&root); 2986 out2: 2987 path_put(&old); 2988 out1: 2989 path_put(&new); 2990 out0: 2991 return error; 2992 } 2993 2994 static void __init init_mount_tree(void) 2995 { 2996 struct vfsmount *mnt; 2997 struct mnt_namespace *ns; 2998 struct path root; 2999 struct file_system_type *type; 3000 3001 type = get_fs_type("rootfs"); 3002 if (!type) 3003 panic("Can't find rootfs type"); 3004 mnt = vfs_kern_mount(type, 0, "rootfs", NULL); 3005 put_filesystem(type); 3006 if (IS_ERR(mnt)) 3007 panic("Can't create rootfs"); 3008 3009 ns = create_mnt_ns(mnt); 3010 if (IS_ERR(ns)) 3011 panic("Can't allocate initial namespace"); 3012 3013 init_task.nsproxy->mnt_ns = ns; 3014 get_mnt_ns(ns); 3015 3016 root.mnt = mnt; 3017 root.dentry = mnt->mnt_root; 3018 mnt->mnt_flags |= MNT_LOCKED; 3019 3020 set_fs_pwd(current->fs, &root); 3021 set_fs_root(current->fs, &root); 3022 } 3023 3024 void __init mnt_init(void) 3025 { 3026 unsigned u; 3027 int err; 3028 3029 mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount), 3030 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL); 3031 3032 mount_hashtable = alloc_large_system_hash("Mount-cache", 3033 sizeof(struct hlist_head), 3034 mhash_entries, 19, 3035 0, 3036 &m_hash_shift, &m_hash_mask, 0, 0); 3037 mountpoint_hashtable = alloc_large_system_hash("Mountpoint-cache", 3038 sizeof(struct hlist_head), 3039 mphash_entries, 19, 3040 0, 3041 &mp_hash_shift, &mp_hash_mask, 0, 0); 3042 3043 if (!mount_hashtable || !mountpoint_hashtable) 3044 panic("Failed to allocate mount hash table\n"); 3045 3046 for (u = 0; u <= m_hash_mask; u++) 3047 INIT_HLIST_HEAD(&mount_hashtable[u]); 3048 for (u = 0; u <= mp_hash_mask; u++) 3049 INIT_HLIST_HEAD(&mountpoint_hashtable[u]); 3050 3051 kernfs_init(); 3052 3053 err = sysfs_init(); 3054 if (err) 3055 printk(KERN_WARNING "%s: sysfs_init error: %d\n", 3056 __func__, err); 3057 fs_kobj = kobject_create_and_add("fs", NULL); 3058 if (!fs_kobj) 3059 printk(KERN_WARNING "%s: kobj create error\n", __func__); 3060 init_rootfs(); 3061 init_mount_tree(); 3062 } 3063 3064 void put_mnt_ns(struct mnt_namespace *ns) 3065 { 3066 if (!atomic_dec_and_test(&ns->count)) 3067 return; 3068 drop_collected_mounts(&ns->root->mnt); 3069 free_mnt_ns(ns); 3070 } 3071 3072 struct vfsmount *kern_mount_data(struct file_system_type *type, void *data) 3073 { 3074 struct vfsmount *mnt; 3075 mnt = vfs_kern_mount(type, MS_KERNMOUNT, type->name, data); 3076 if (!IS_ERR(mnt)) { 3077 /* 3078 * it is a longterm mount, don't release mnt until 3079 * we unmount before file sys is unregistered 3080 */ 3081 real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL; 3082 } 3083 return mnt; 3084 } 3085 EXPORT_SYMBOL_GPL(kern_mount_data); 3086 3087 void kern_unmount(struct vfsmount *mnt) 3088 { 3089 /* release long term mount so mount point can be released */ 3090 if (!IS_ERR_OR_NULL(mnt)) { 3091 real_mount(mnt)->mnt_ns = NULL; 3092 synchronize_rcu(); /* yecchhh... */ 3093 mntput(mnt); 3094 } 3095 } 3096 EXPORT_SYMBOL(kern_unmount); 3097 3098 bool our_mnt(struct vfsmount *mnt) 3099 { 3100 return check_mnt(real_mount(mnt)); 3101 } 3102 3103 bool current_chrooted(void) 3104 { 3105 /* Does the current process have a non-standard root */ 3106 struct path ns_root; 3107 struct path fs_root; 3108 bool chrooted; 3109 3110 /* Find the namespace root */ 3111 ns_root.mnt = ¤t->nsproxy->mnt_ns->root->mnt; 3112 ns_root.dentry = ns_root.mnt->mnt_root; 3113 path_get(&ns_root); 3114 while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root)) 3115 ; 3116 3117 get_fs_root(current->fs, &fs_root); 3118 3119 chrooted = !path_equal(&fs_root, &ns_root); 3120 3121 path_put(&fs_root); 3122 path_put(&ns_root); 3123 3124 return chrooted; 3125 } 3126 3127 bool fs_fully_visible(struct file_system_type *type) 3128 { 3129 struct mnt_namespace *ns = current->nsproxy->mnt_ns; 3130 struct mount *mnt; 3131 bool visible = false; 3132 3133 if (unlikely(!ns)) 3134 return false; 3135 3136 down_read(&namespace_sem); 3137 list_for_each_entry(mnt, &ns->list, mnt_list) { 3138 struct mount *child; 3139 if (mnt->mnt.mnt_sb->s_type != type) 3140 continue; 3141 3142 /* This mount is not fully visible if there are any child mounts 3143 * that cover anything except for empty directories. 3144 */ 3145 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) { 3146 struct inode *inode = child->mnt_mountpoint->d_inode; 3147 if (!S_ISDIR(inode->i_mode)) 3148 goto next; 3149 if (inode->i_nlink > 2) 3150 goto next; 3151 } 3152 visible = true; 3153 goto found; 3154 next: ; 3155 } 3156 found: 3157 up_read(&namespace_sem); 3158 return visible; 3159 } 3160 3161 static struct ns_common *mntns_get(struct task_struct *task) 3162 { 3163 struct ns_common *ns = NULL; 3164 struct nsproxy *nsproxy; 3165 3166 task_lock(task); 3167 nsproxy = task->nsproxy; 3168 if (nsproxy) { 3169 ns = &nsproxy->mnt_ns->ns; 3170 get_mnt_ns(to_mnt_ns(ns)); 3171 } 3172 task_unlock(task); 3173 3174 return ns; 3175 } 3176 3177 static void mntns_put(struct ns_common *ns) 3178 { 3179 put_mnt_ns(to_mnt_ns(ns)); 3180 } 3181 3182 static int mntns_install(struct nsproxy *nsproxy, struct ns_common *ns) 3183 { 3184 struct fs_struct *fs = current->fs; 3185 struct mnt_namespace *mnt_ns = to_mnt_ns(ns); 3186 struct path root; 3187 3188 if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) || 3189 !ns_capable(current_user_ns(), CAP_SYS_CHROOT) || 3190 !ns_capable(current_user_ns(), CAP_SYS_ADMIN)) 3191 return -EPERM; 3192 3193 if (fs->users != 1) 3194 return -EINVAL; 3195 3196 get_mnt_ns(mnt_ns); 3197 put_mnt_ns(nsproxy->mnt_ns); 3198 nsproxy->mnt_ns = mnt_ns; 3199 3200 /* Find the root */ 3201 root.mnt = &mnt_ns->root->mnt; 3202 root.dentry = mnt_ns->root->mnt.mnt_root; 3203 path_get(&root); 3204 while(d_mountpoint(root.dentry) && follow_down_one(&root)) 3205 ; 3206 3207 /* Update the pwd and root */ 3208 set_fs_pwd(fs, &root); 3209 set_fs_root(fs, &root); 3210 3211 path_put(&root); 3212 return 0; 3213 } 3214 3215 const struct proc_ns_operations mntns_operations = { 3216 .name = "mnt", 3217 .type = CLONE_NEWNS, 3218 .get = mntns_get, 3219 .put = mntns_put, 3220 .install = mntns_install, 3221 }; 3222