1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/fs/namespace.c 4 * 5 * (C) Copyright Al Viro 2000, 2001 6 * 7 * Based on code from fs/super.c, copyright Linus Torvalds and others. 8 * Heavily rewritten. 9 */ 10 11 #include <linux/syscalls.h> 12 #include <linux/export.h> 13 #include <linux/capability.h> 14 #include <linux/mnt_namespace.h> 15 #include <linux/user_namespace.h> 16 #include <linux/namei.h> 17 #include <linux/security.h> 18 #include <linux/cred.h> 19 #include <linux/idr.h> 20 #include <linux/init.h> /* init_rootfs */ 21 #include <linux/fs_struct.h> /* get_fs_root et.al. */ 22 #include <linux/fsnotify.h> /* fsnotify_vfsmount_delete */ 23 #include <linux/file.h> 24 #include <linux/uaccess.h> 25 #include <linux/proc_ns.h> 26 #include <linux/magic.h> 27 #include <linux/memblock.h> 28 #include <linux/task_work.h> 29 #include <linux/sched/task.h> 30 #include <uapi/linux/mount.h> 31 #include <linux/fs_context.h> 32 #include <linux/shmem_fs.h> 33 34 #include "pnode.h" 35 #include "internal.h" 36 37 /* Maximum number of mounts in a mount namespace */ 38 unsigned int sysctl_mount_max __read_mostly = 100000; 39 40 static unsigned int m_hash_mask __read_mostly; 41 static unsigned int m_hash_shift __read_mostly; 42 static unsigned int mp_hash_mask __read_mostly; 43 static unsigned int mp_hash_shift __read_mostly; 44 45 static __initdata unsigned long mhash_entries; 46 static int __init set_mhash_entries(char *str) 47 { 48 if (!str) 49 return 0; 50 mhash_entries = simple_strtoul(str, &str, 0); 51 return 1; 52 } 53 __setup("mhash_entries=", set_mhash_entries); 54 55 static __initdata unsigned long mphash_entries; 56 static int __init set_mphash_entries(char *str) 57 { 58 if (!str) 59 return 0; 60 mphash_entries = simple_strtoul(str, &str, 0); 61 return 1; 62 } 63 __setup("mphash_entries=", set_mphash_entries); 64 65 static u64 event; 66 static DEFINE_IDA(mnt_id_ida); 67 static DEFINE_IDA(mnt_group_ida); 68 69 static struct hlist_head *mount_hashtable __read_mostly; 70 static struct hlist_head *mountpoint_hashtable __read_mostly; 71 static struct kmem_cache *mnt_cache __read_mostly; 72 static DECLARE_RWSEM(namespace_sem); 73 static HLIST_HEAD(unmounted); /* protected by namespace_sem */ 74 static LIST_HEAD(ex_mountpoints); /* protected by namespace_sem */ 75 76 /* /sys/fs */ 77 struct kobject *fs_kobj; 78 EXPORT_SYMBOL_GPL(fs_kobj); 79 80 /* 81 * vfsmount lock may be taken for read to prevent changes to the 82 * vfsmount hash, ie. during mountpoint lookups or walking back 83 * up the tree. 84 * 85 * It should be taken for write in all cases where the vfsmount 86 * tree or hash is modified or when a vfsmount structure is modified. 87 */ 88 __cacheline_aligned_in_smp DEFINE_SEQLOCK(mount_lock); 89 90 static inline struct hlist_head *m_hash(struct vfsmount *mnt, struct dentry *dentry) 91 { 92 unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES); 93 tmp += ((unsigned long)dentry / L1_CACHE_BYTES); 94 tmp = tmp + (tmp >> m_hash_shift); 95 return &mount_hashtable[tmp & m_hash_mask]; 96 } 97 98 static inline struct hlist_head *mp_hash(struct dentry *dentry) 99 { 100 unsigned long tmp = ((unsigned long)dentry / L1_CACHE_BYTES); 101 tmp = tmp + (tmp >> mp_hash_shift); 102 return &mountpoint_hashtable[tmp & mp_hash_mask]; 103 } 104 105 static int mnt_alloc_id(struct mount *mnt) 106 { 107 int res = ida_alloc(&mnt_id_ida, GFP_KERNEL); 108 109 if (res < 0) 110 return res; 111 mnt->mnt_id = res; 112 return 0; 113 } 114 115 static void mnt_free_id(struct mount *mnt) 116 { 117 ida_free(&mnt_id_ida, mnt->mnt_id); 118 } 119 120 /* 121 * Allocate a new peer group ID 122 */ 123 static int mnt_alloc_group_id(struct mount *mnt) 124 { 125 int res = ida_alloc_min(&mnt_group_ida, 1, GFP_KERNEL); 126 127 if (res < 0) 128 return res; 129 mnt->mnt_group_id = res; 130 return 0; 131 } 132 133 /* 134 * Release a peer group ID 135 */ 136 void mnt_release_group_id(struct mount *mnt) 137 { 138 ida_free(&mnt_group_ida, mnt->mnt_group_id); 139 mnt->mnt_group_id = 0; 140 } 141 142 /* 143 * vfsmount lock must be held for read 144 */ 145 static inline void mnt_add_count(struct mount *mnt, int n) 146 { 147 #ifdef CONFIG_SMP 148 this_cpu_add(mnt->mnt_pcp->mnt_count, n); 149 #else 150 preempt_disable(); 151 mnt->mnt_count += n; 152 preempt_enable(); 153 #endif 154 } 155 156 /* 157 * vfsmount lock must be held for write 158 */ 159 int mnt_get_count(struct mount *mnt) 160 { 161 #ifdef CONFIG_SMP 162 int count = 0; 163 int cpu; 164 165 for_each_possible_cpu(cpu) { 166 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count; 167 } 168 169 return count; 170 #else 171 return mnt->mnt_count; 172 #endif 173 } 174 175 static struct mount *alloc_vfsmnt(const char *name) 176 { 177 struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL); 178 if (mnt) { 179 int err; 180 181 err = mnt_alloc_id(mnt); 182 if (err) 183 goto out_free_cache; 184 185 if (name) { 186 mnt->mnt_devname = kstrdup_const(name, GFP_KERNEL); 187 if (!mnt->mnt_devname) 188 goto out_free_id; 189 } 190 191 #ifdef CONFIG_SMP 192 mnt->mnt_pcp = alloc_percpu(struct mnt_pcp); 193 if (!mnt->mnt_pcp) 194 goto out_free_devname; 195 196 this_cpu_add(mnt->mnt_pcp->mnt_count, 1); 197 #else 198 mnt->mnt_count = 1; 199 mnt->mnt_writers = 0; 200 #endif 201 202 INIT_HLIST_NODE(&mnt->mnt_hash); 203 INIT_LIST_HEAD(&mnt->mnt_child); 204 INIT_LIST_HEAD(&mnt->mnt_mounts); 205 INIT_LIST_HEAD(&mnt->mnt_list); 206 INIT_LIST_HEAD(&mnt->mnt_expire); 207 INIT_LIST_HEAD(&mnt->mnt_share); 208 INIT_LIST_HEAD(&mnt->mnt_slave_list); 209 INIT_LIST_HEAD(&mnt->mnt_slave); 210 INIT_HLIST_NODE(&mnt->mnt_mp_list); 211 INIT_LIST_HEAD(&mnt->mnt_umounting); 212 INIT_HLIST_HEAD(&mnt->mnt_stuck_children); 213 } 214 return mnt; 215 216 #ifdef CONFIG_SMP 217 out_free_devname: 218 kfree_const(mnt->mnt_devname); 219 #endif 220 out_free_id: 221 mnt_free_id(mnt); 222 out_free_cache: 223 kmem_cache_free(mnt_cache, mnt); 224 return NULL; 225 } 226 227 /* 228 * Most r/o checks on a fs are for operations that take 229 * discrete amounts of time, like a write() or unlink(). 230 * We must keep track of when those operations start 231 * (for permission checks) and when they end, so that 232 * we can determine when writes are able to occur to 233 * a filesystem. 234 */ 235 /* 236 * __mnt_is_readonly: check whether a mount is read-only 237 * @mnt: the mount to check for its write status 238 * 239 * This shouldn't be used directly ouside of the VFS. 240 * It does not guarantee that the filesystem will stay 241 * r/w, just that it is right *now*. This can not and 242 * should not be used in place of IS_RDONLY(inode). 243 * mnt_want/drop_write() will _keep_ the filesystem 244 * r/w. 245 */ 246 bool __mnt_is_readonly(struct vfsmount *mnt) 247 { 248 return (mnt->mnt_flags & MNT_READONLY) || sb_rdonly(mnt->mnt_sb); 249 } 250 EXPORT_SYMBOL_GPL(__mnt_is_readonly); 251 252 static inline void mnt_inc_writers(struct mount *mnt) 253 { 254 #ifdef CONFIG_SMP 255 this_cpu_inc(mnt->mnt_pcp->mnt_writers); 256 #else 257 mnt->mnt_writers++; 258 #endif 259 } 260 261 static inline void mnt_dec_writers(struct mount *mnt) 262 { 263 #ifdef CONFIG_SMP 264 this_cpu_dec(mnt->mnt_pcp->mnt_writers); 265 #else 266 mnt->mnt_writers--; 267 #endif 268 } 269 270 static unsigned int mnt_get_writers(struct mount *mnt) 271 { 272 #ifdef CONFIG_SMP 273 unsigned int count = 0; 274 int cpu; 275 276 for_each_possible_cpu(cpu) { 277 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers; 278 } 279 280 return count; 281 #else 282 return mnt->mnt_writers; 283 #endif 284 } 285 286 static int mnt_is_readonly(struct vfsmount *mnt) 287 { 288 if (mnt->mnt_sb->s_readonly_remount) 289 return 1; 290 /* Order wrt setting s_flags/s_readonly_remount in do_remount() */ 291 smp_rmb(); 292 return __mnt_is_readonly(mnt); 293 } 294 295 /* 296 * Most r/o & frozen checks on a fs are for operations that take discrete 297 * amounts of time, like a write() or unlink(). We must keep track of when 298 * those operations start (for permission checks) and when they end, so that we 299 * can determine when writes are able to occur to a filesystem. 300 */ 301 /** 302 * __mnt_want_write - get write access to a mount without freeze protection 303 * @m: the mount on which to take a write 304 * 305 * This tells the low-level filesystem that a write is about to be performed to 306 * it, and makes sure that writes are allowed (mnt it read-write) before 307 * returning success. This operation does not protect against filesystem being 308 * frozen. When the write operation is finished, __mnt_drop_write() must be 309 * called. This is effectively a refcount. 310 */ 311 int __mnt_want_write(struct vfsmount *m) 312 { 313 struct mount *mnt = real_mount(m); 314 int ret = 0; 315 316 preempt_disable(); 317 mnt_inc_writers(mnt); 318 /* 319 * The store to mnt_inc_writers must be visible before we pass 320 * MNT_WRITE_HOLD loop below, so that the slowpath can see our 321 * incremented count after it has set MNT_WRITE_HOLD. 322 */ 323 smp_mb(); 324 while (READ_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD) 325 cpu_relax(); 326 /* 327 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will 328 * be set to match its requirements. So we must not load that until 329 * MNT_WRITE_HOLD is cleared. 330 */ 331 smp_rmb(); 332 if (mnt_is_readonly(m)) { 333 mnt_dec_writers(mnt); 334 ret = -EROFS; 335 } 336 preempt_enable(); 337 338 return ret; 339 } 340 341 /** 342 * mnt_want_write - get write access to a mount 343 * @m: the mount on which to take a write 344 * 345 * This tells the low-level filesystem that a write is about to be performed to 346 * it, and makes sure that writes are allowed (mount is read-write, filesystem 347 * is not frozen) before returning success. When the write operation is 348 * finished, mnt_drop_write() must be called. This is effectively a refcount. 349 */ 350 int mnt_want_write(struct vfsmount *m) 351 { 352 int ret; 353 354 sb_start_write(m->mnt_sb); 355 ret = __mnt_want_write(m); 356 if (ret) 357 sb_end_write(m->mnt_sb); 358 return ret; 359 } 360 EXPORT_SYMBOL_GPL(mnt_want_write); 361 362 /** 363 * mnt_clone_write - get write access to a mount 364 * @mnt: the mount on which to take a write 365 * 366 * This is effectively like mnt_want_write, except 367 * it must only be used to take an extra write reference 368 * on a mountpoint that we already know has a write reference 369 * on it. This allows some optimisation. 370 * 371 * After finished, mnt_drop_write must be called as usual to 372 * drop the reference. 373 */ 374 int mnt_clone_write(struct vfsmount *mnt) 375 { 376 /* superblock may be r/o */ 377 if (__mnt_is_readonly(mnt)) 378 return -EROFS; 379 preempt_disable(); 380 mnt_inc_writers(real_mount(mnt)); 381 preempt_enable(); 382 return 0; 383 } 384 EXPORT_SYMBOL_GPL(mnt_clone_write); 385 386 /** 387 * __mnt_want_write_file - get write access to a file's mount 388 * @file: the file who's mount on which to take a write 389 * 390 * This is like __mnt_want_write, but it takes a file and can 391 * do some optimisations if the file is open for write already 392 */ 393 int __mnt_want_write_file(struct file *file) 394 { 395 if (!(file->f_mode & FMODE_WRITER)) 396 return __mnt_want_write(file->f_path.mnt); 397 else 398 return mnt_clone_write(file->f_path.mnt); 399 } 400 401 /** 402 * mnt_want_write_file - get write access to a file's mount 403 * @file: the file who's mount on which to take a write 404 * 405 * This is like mnt_want_write, but it takes a file and can 406 * do some optimisations if the file is open for write already 407 */ 408 int mnt_want_write_file(struct file *file) 409 { 410 int ret; 411 412 sb_start_write(file_inode(file)->i_sb); 413 ret = __mnt_want_write_file(file); 414 if (ret) 415 sb_end_write(file_inode(file)->i_sb); 416 return ret; 417 } 418 EXPORT_SYMBOL_GPL(mnt_want_write_file); 419 420 /** 421 * __mnt_drop_write - give up write access to a mount 422 * @mnt: the mount on which to give up write access 423 * 424 * Tells the low-level filesystem that we are done 425 * performing writes to it. Must be matched with 426 * __mnt_want_write() call above. 427 */ 428 void __mnt_drop_write(struct vfsmount *mnt) 429 { 430 preempt_disable(); 431 mnt_dec_writers(real_mount(mnt)); 432 preempt_enable(); 433 } 434 435 /** 436 * mnt_drop_write - give up write access to a mount 437 * @mnt: the mount on which to give up write access 438 * 439 * Tells the low-level filesystem that we are done performing writes to it and 440 * also allows filesystem to be frozen again. Must be matched with 441 * mnt_want_write() call above. 442 */ 443 void mnt_drop_write(struct vfsmount *mnt) 444 { 445 __mnt_drop_write(mnt); 446 sb_end_write(mnt->mnt_sb); 447 } 448 EXPORT_SYMBOL_GPL(mnt_drop_write); 449 450 void __mnt_drop_write_file(struct file *file) 451 { 452 __mnt_drop_write(file->f_path.mnt); 453 } 454 455 void mnt_drop_write_file(struct file *file) 456 { 457 __mnt_drop_write_file(file); 458 sb_end_write(file_inode(file)->i_sb); 459 } 460 EXPORT_SYMBOL(mnt_drop_write_file); 461 462 static int mnt_make_readonly(struct mount *mnt) 463 { 464 int ret = 0; 465 466 lock_mount_hash(); 467 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD; 468 /* 469 * After storing MNT_WRITE_HOLD, we'll read the counters. This store 470 * should be visible before we do. 471 */ 472 smp_mb(); 473 474 /* 475 * With writers on hold, if this value is zero, then there are 476 * definitely no active writers (although held writers may subsequently 477 * increment the count, they'll have to wait, and decrement it after 478 * seeing MNT_READONLY). 479 * 480 * It is OK to have counter incremented on one CPU and decremented on 481 * another: the sum will add up correctly. The danger would be when we 482 * sum up each counter, if we read a counter before it is incremented, 483 * but then read another CPU's count which it has been subsequently 484 * decremented from -- we would see more decrements than we should. 485 * MNT_WRITE_HOLD protects against this scenario, because 486 * mnt_want_write first increments count, then smp_mb, then spins on 487 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while 488 * we're counting up here. 489 */ 490 if (mnt_get_writers(mnt) > 0) 491 ret = -EBUSY; 492 else 493 mnt->mnt.mnt_flags |= MNT_READONLY; 494 /* 495 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers 496 * that become unheld will see MNT_READONLY. 497 */ 498 smp_wmb(); 499 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD; 500 unlock_mount_hash(); 501 return ret; 502 } 503 504 static int __mnt_unmake_readonly(struct mount *mnt) 505 { 506 lock_mount_hash(); 507 mnt->mnt.mnt_flags &= ~MNT_READONLY; 508 unlock_mount_hash(); 509 return 0; 510 } 511 512 int sb_prepare_remount_readonly(struct super_block *sb) 513 { 514 struct mount *mnt; 515 int err = 0; 516 517 /* Racy optimization. Recheck the counter under MNT_WRITE_HOLD */ 518 if (atomic_long_read(&sb->s_remove_count)) 519 return -EBUSY; 520 521 lock_mount_hash(); 522 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) { 523 if (!(mnt->mnt.mnt_flags & MNT_READONLY)) { 524 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD; 525 smp_mb(); 526 if (mnt_get_writers(mnt) > 0) { 527 err = -EBUSY; 528 break; 529 } 530 } 531 } 532 if (!err && atomic_long_read(&sb->s_remove_count)) 533 err = -EBUSY; 534 535 if (!err) { 536 sb->s_readonly_remount = 1; 537 smp_wmb(); 538 } 539 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) { 540 if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD) 541 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD; 542 } 543 unlock_mount_hash(); 544 545 return err; 546 } 547 548 static void free_vfsmnt(struct mount *mnt) 549 { 550 kfree_const(mnt->mnt_devname); 551 #ifdef CONFIG_SMP 552 free_percpu(mnt->mnt_pcp); 553 #endif 554 kmem_cache_free(mnt_cache, mnt); 555 } 556 557 static void delayed_free_vfsmnt(struct rcu_head *head) 558 { 559 free_vfsmnt(container_of(head, struct mount, mnt_rcu)); 560 } 561 562 /* call under rcu_read_lock */ 563 int __legitimize_mnt(struct vfsmount *bastard, unsigned seq) 564 { 565 struct mount *mnt; 566 if (read_seqretry(&mount_lock, seq)) 567 return 1; 568 if (bastard == NULL) 569 return 0; 570 mnt = real_mount(bastard); 571 mnt_add_count(mnt, 1); 572 smp_mb(); // see mntput_no_expire() 573 if (likely(!read_seqretry(&mount_lock, seq))) 574 return 0; 575 if (bastard->mnt_flags & MNT_SYNC_UMOUNT) { 576 mnt_add_count(mnt, -1); 577 return 1; 578 } 579 lock_mount_hash(); 580 if (unlikely(bastard->mnt_flags & MNT_DOOMED)) { 581 mnt_add_count(mnt, -1); 582 unlock_mount_hash(); 583 return 1; 584 } 585 unlock_mount_hash(); 586 /* caller will mntput() */ 587 return -1; 588 } 589 590 /* call under rcu_read_lock */ 591 bool legitimize_mnt(struct vfsmount *bastard, unsigned seq) 592 { 593 int res = __legitimize_mnt(bastard, seq); 594 if (likely(!res)) 595 return true; 596 if (unlikely(res < 0)) { 597 rcu_read_unlock(); 598 mntput(bastard); 599 rcu_read_lock(); 600 } 601 return false; 602 } 603 604 /* 605 * find the first mount at @dentry on vfsmount @mnt. 606 * call under rcu_read_lock() 607 */ 608 struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry) 609 { 610 struct hlist_head *head = m_hash(mnt, dentry); 611 struct mount *p; 612 613 hlist_for_each_entry_rcu(p, head, mnt_hash) 614 if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry) 615 return p; 616 return NULL; 617 } 618 619 /* 620 * lookup_mnt - Return the first child mount mounted at path 621 * 622 * "First" means first mounted chronologically. If you create the 623 * following mounts: 624 * 625 * mount /dev/sda1 /mnt 626 * mount /dev/sda2 /mnt 627 * mount /dev/sda3 /mnt 628 * 629 * Then lookup_mnt() on the base /mnt dentry in the root mount will 630 * return successively the root dentry and vfsmount of /dev/sda1, then 631 * /dev/sda2, then /dev/sda3, then NULL. 632 * 633 * lookup_mnt takes a reference to the found vfsmount. 634 */ 635 struct vfsmount *lookup_mnt(const struct path *path) 636 { 637 struct mount *child_mnt; 638 struct vfsmount *m; 639 unsigned seq; 640 641 rcu_read_lock(); 642 do { 643 seq = read_seqbegin(&mount_lock); 644 child_mnt = __lookup_mnt(path->mnt, path->dentry); 645 m = child_mnt ? &child_mnt->mnt : NULL; 646 } while (!legitimize_mnt(m, seq)); 647 rcu_read_unlock(); 648 return m; 649 } 650 651 static inline void lock_ns_list(struct mnt_namespace *ns) 652 { 653 spin_lock(&ns->ns_lock); 654 } 655 656 static inline void unlock_ns_list(struct mnt_namespace *ns) 657 { 658 spin_unlock(&ns->ns_lock); 659 } 660 661 static inline bool mnt_is_cursor(struct mount *mnt) 662 { 663 return mnt->mnt.mnt_flags & MNT_CURSOR; 664 } 665 666 /* 667 * __is_local_mountpoint - Test to see if dentry is a mountpoint in the 668 * current mount namespace. 669 * 670 * The common case is dentries are not mountpoints at all and that 671 * test is handled inline. For the slow case when we are actually 672 * dealing with a mountpoint of some kind, walk through all of the 673 * mounts in the current mount namespace and test to see if the dentry 674 * is a mountpoint. 675 * 676 * The mount_hashtable is not usable in the context because we 677 * need to identify all mounts that may be in the current mount 678 * namespace not just a mount that happens to have some specified 679 * parent mount. 680 */ 681 bool __is_local_mountpoint(struct dentry *dentry) 682 { 683 struct mnt_namespace *ns = current->nsproxy->mnt_ns; 684 struct mount *mnt; 685 bool is_covered = false; 686 687 down_read(&namespace_sem); 688 lock_ns_list(ns); 689 list_for_each_entry(mnt, &ns->list, mnt_list) { 690 if (mnt_is_cursor(mnt)) 691 continue; 692 is_covered = (mnt->mnt_mountpoint == dentry); 693 if (is_covered) 694 break; 695 } 696 unlock_ns_list(ns); 697 up_read(&namespace_sem); 698 699 return is_covered; 700 } 701 702 static struct mountpoint *lookup_mountpoint(struct dentry *dentry) 703 { 704 struct hlist_head *chain = mp_hash(dentry); 705 struct mountpoint *mp; 706 707 hlist_for_each_entry(mp, chain, m_hash) { 708 if (mp->m_dentry == dentry) { 709 mp->m_count++; 710 return mp; 711 } 712 } 713 return NULL; 714 } 715 716 static struct mountpoint *get_mountpoint(struct dentry *dentry) 717 { 718 struct mountpoint *mp, *new = NULL; 719 int ret; 720 721 if (d_mountpoint(dentry)) { 722 /* might be worth a WARN_ON() */ 723 if (d_unlinked(dentry)) 724 return ERR_PTR(-ENOENT); 725 mountpoint: 726 read_seqlock_excl(&mount_lock); 727 mp = lookup_mountpoint(dentry); 728 read_sequnlock_excl(&mount_lock); 729 if (mp) 730 goto done; 731 } 732 733 if (!new) 734 new = kmalloc(sizeof(struct mountpoint), GFP_KERNEL); 735 if (!new) 736 return ERR_PTR(-ENOMEM); 737 738 739 /* Exactly one processes may set d_mounted */ 740 ret = d_set_mounted(dentry); 741 742 /* Someone else set d_mounted? */ 743 if (ret == -EBUSY) 744 goto mountpoint; 745 746 /* The dentry is not available as a mountpoint? */ 747 mp = ERR_PTR(ret); 748 if (ret) 749 goto done; 750 751 /* Add the new mountpoint to the hash table */ 752 read_seqlock_excl(&mount_lock); 753 new->m_dentry = dget(dentry); 754 new->m_count = 1; 755 hlist_add_head(&new->m_hash, mp_hash(dentry)); 756 INIT_HLIST_HEAD(&new->m_list); 757 read_sequnlock_excl(&mount_lock); 758 759 mp = new; 760 new = NULL; 761 done: 762 kfree(new); 763 return mp; 764 } 765 766 /* 767 * vfsmount lock must be held. Additionally, the caller is responsible 768 * for serializing calls for given disposal list. 769 */ 770 static void __put_mountpoint(struct mountpoint *mp, struct list_head *list) 771 { 772 if (!--mp->m_count) { 773 struct dentry *dentry = mp->m_dentry; 774 BUG_ON(!hlist_empty(&mp->m_list)); 775 spin_lock(&dentry->d_lock); 776 dentry->d_flags &= ~DCACHE_MOUNTED; 777 spin_unlock(&dentry->d_lock); 778 dput_to_list(dentry, list); 779 hlist_del(&mp->m_hash); 780 kfree(mp); 781 } 782 } 783 784 /* called with namespace_lock and vfsmount lock */ 785 static void put_mountpoint(struct mountpoint *mp) 786 { 787 __put_mountpoint(mp, &ex_mountpoints); 788 } 789 790 static inline int check_mnt(struct mount *mnt) 791 { 792 return mnt->mnt_ns == current->nsproxy->mnt_ns; 793 } 794 795 /* 796 * vfsmount lock must be held for write 797 */ 798 static void touch_mnt_namespace(struct mnt_namespace *ns) 799 { 800 if (ns) { 801 ns->event = ++event; 802 wake_up_interruptible(&ns->poll); 803 } 804 } 805 806 /* 807 * vfsmount lock must be held for write 808 */ 809 static void __touch_mnt_namespace(struct mnt_namespace *ns) 810 { 811 if (ns && ns->event != event) { 812 ns->event = event; 813 wake_up_interruptible(&ns->poll); 814 } 815 } 816 817 /* 818 * vfsmount lock must be held for write 819 */ 820 static struct mountpoint *unhash_mnt(struct mount *mnt) 821 { 822 struct mountpoint *mp; 823 mnt->mnt_parent = mnt; 824 mnt->mnt_mountpoint = mnt->mnt.mnt_root; 825 list_del_init(&mnt->mnt_child); 826 hlist_del_init_rcu(&mnt->mnt_hash); 827 hlist_del_init(&mnt->mnt_mp_list); 828 mp = mnt->mnt_mp; 829 mnt->mnt_mp = NULL; 830 return mp; 831 } 832 833 /* 834 * vfsmount lock must be held for write 835 */ 836 static void umount_mnt(struct mount *mnt) 837 { 838 put_mountpoint(unhash_mnt(mnt)); 839 } 840 841 /* 842 * vfsmount lock must be held for write 843 */ 844 void mnt_set_mountpoint(struct mount *mnt, 845 struct mountpoint *mp, 846 struct mount *child_mnt) 847 { 848 mp->m_count++; 849 mnt_add_count(mnt, 1); /* essentially, that's mntget */ 850 child_mnt->mnt_mountpoint = mp->m_dentry; 851 child_mnt->mnt_parent = mnt; 852 child_mnt->mnt_mp = mp; 853 hlist_add_head(&child_mnt->mnt_mp_list, &mp->m_list); 854 } 855 856 static void __attach_mnt(struct mount *mnt, struct mount *parent) 857 { 858 hlist_add_head_rcu(&mnt->mnt_hash, 859 m_hash(&parent->mnt, mnt->mnt_mountpoint)); 860 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts); 861 } 862 863 /* 864 * vfsmount lock must be held for write 865 */ 866 static void attach_mnt(struct mount *mnt, 867 struct mount *parent, 868 struct mountpoint *mp) 869 { 870 mnt_set_mountpoint(parent, mp, mnt); 871 __attach_mnt(mnt, parent); 872 } 873 874 void mnt_change_mountpoint(struct mount *parent, struct mountpoint *mp, struct mount *mnt) 875 { 876 struct mountpoint *old_mp = mnt->mnt_mp; 877 struct mount *old_parent = mnt->mnt_parent; 878 879 list_del_init(&mnt->mnt_child); 880 hlist_del_init(&mnt->mnt_mp_list); 881 hlist_del_init_rcu(&mnt->mnt_hash); 882 883 attach_mnt(mnt, parent, mp); 884 885 put_mountpoint(old_mp); 886 mnt_add_count(old_parent, -1); 887 } 888 889 /* 890 * vfsmount lock must be held for write 891 */ 892 static void commit_tree(struct mount *mnt) 893 { 894 struct mount *parent = mnt->mnt_parent; 895 struct mount *m; 896 LIST_HEAD(head); 897 struct mnt_namespace *n = parent->mnt_ns; 898 899 BUG_ON(parent == mnt); 900 901 list_add_tail(&head, &mnt->mnt_list); 902 list_for_each_entry(m, &head, mnt_list) 903 m->mnt_ns = n; 904 905 list_splice(&head, n->list.prev); 906 907 n->mounts += n->pending_mounts; 908 n->pending_mounts = 0; 909 910 __attach_mnt(mnt, parent); 911 touch_mnt_namespace(n); 912 } 913 914 static struct mount *next_mnt(struct mount *p, struct mount *root) 915 { 916 struct list_head *next = p->mnt_mounts.next; 917 if (next == &p->mnt_mounts) { 918 while (1) { 919 if (p == root) 920 return NULL; 921 next = p->mnt_child.next; 922 if (next != &p->mnt_parent->mnt_mounts) 923 break; 924 p = p->mnt_parent; 925 } 926 } 927 return list_entry(next, struct mount, mnt_child); 928 } 929 930 static struct mount *skip_mnt_tree(struct mount *p) 931 { 932 struct list_head *prev = p->mnt_mounts.prev; 933 while (prev != &p->mnt_mounts) { 934 p = list_entry(prev, struct mount, mnt_child); 935 prev = p->mnt_mounts.prev; 936 } 937 return p; 938 } 939 940 /** 941 * vfs_create_mount - Create a mount for a configured superblock 942 * @fc: The configuration context with the superblock attached 943 * 944 * Create a mount to an already configured superblock. If necessary, the 945 * caller should invoke vfs_get_tree() before calling this. 946 * 947 * Note that this does not attach the mount to anything. 948 */ 949 struct vfsmount *vfs_create_mount(struct fs_context *fc) 950 { 951 struct mount *mnt; 952 953 if (!fc->root) 954 return ERR_PTR(-EINVAL); 955 956 mnt = alloc_vfsmnt(fc->source ?: "none"); 957 if (!mnt) 958 return ERR_PTR(-ENOMEM); 959 960 if (fc->sb_flags & SB_KERNMOUNT) 961 mnt->mnt.mnt_flags = MNT_INTERNAL; 962 963 atomic_inc(&fc->root->d_sb->s_active); 964 mnt->mnt.mnt_sb = fc->root->d_sb; 965 mnt->mnt.mnt_root = dget(fc->root); 966 mnt->mnt_mountpoint = mnt->mnt.mnt_root; 967 mnt->mnt_parent = mnt; 968 969 lock_mount_hash(); 970 list_add_tail(&mnt->mnt_instance, &mnt->mnt.mnt_sb->s_mounts); 971 unlock_mount_hash(); 972 return &mnt->mnt; 973 } 974 EXPORT_SYMBOL(vfs_create_mount); 975 976 struct vfsmount *fc_mount(struct fs_context *fc) 977 { 978 int err = vfs_get_tree(fc); 979 if (!err) { 980 up_write(&fc->root->d_sb->s_umount); 981 return vfs_create_mount(fc); 982 } 983 return ERR_PTR(err); 984 } 985 EXPORT_SYMBOL(fc_mount); 986 987 struct vfsmount *vfs_kern_mount(struct file_system_type *type, 988 int flags, const char *name, 989 void *data) 990 { 991 struct fs_context *fc; 992 struct vfsmount *mnt; 993 int ret = 0; 994 995 if (!type) 996 return ERR_PTR(-EINVAL); 997 998 fc = fs_context_for_mount(type, flags); 999 if (IS_ERR(fc)) 1000 return ERR_CAST(fc); 1001 1002 if (name) 1003 ret = vfs_parse_fs_string(fc, "source", 1004 name, strlen(name)); 1005 if (!ret) 1006 ret = parse_monolithic_mount_data(fc, data); 1007 if (!ret) 1008 mnt = fc_mount(fc); 1009 else 1010 mnt = ERR_PTR(ret); 1011 1012 put_fs_context(fc); 1013 return mnt; 1014 } 1015 EXPORT_SYMBOL_GPL(vfs_kern_mount); 1016 1017 struct vfsmount * 1018 vfs_submount(const struct dentry *mountpoint, struct file_system_type *type, 1019 const char *name, void *data) 1020 { 1021 /* Until it is worked out how to pass the user namespace 1022 * through from the parent mount to the submount don't support 1023 * unprivileged mounts with submounts. 1024 */ 1025 if (mountpoint->d_sb->s_user_ns != &init_user_ns) 1026 return ERR_PTR(-EPERM); 1027 1028 return vfs_kern_mount(type, SB_SUBMOUNT, name, data); 1029 } 1030 EXPORT_SYMBOL_GPL(vfs_submount); 1031 1032 static struct mount *clone_mnt(struct mount *old, struct dentry *root, 1033 int flag) 1034 { 1035 struct super_block *sb = old->mnt.mnt_sb; 1036 struct mount *mnt; 1037 int err; 1038 1039 mnt = alloc_vfsmnt(old->mnt_devname); 1040 if (!mnt) 1041 return ERR_PTR(-ENOMEM); 1042 1043 if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE)) 1044 mnt->mnt_group_id = 0; /* not a peer of original */ 1045 else 1046 mnt->mnt_group_id = old->mnt_group_id; 1047 1048 if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) { 1049 err = mnt_alloc_group_id(mnt); 1050 if (err) 1051 goto out_free; 1052 } 1053 1054 mnt->mnt.mnt_flags = old->mnt.mnt_flags; 1055 mnt->mnt.mnt_flags &= ~(MNT_WRITE_HOLD|MNT_MARKED|MNT_INTERNAL); 1056 1057 atomic_inc(&sb->s_active); 1058 mnt->mnt.mnt_sb = sb; 1059 mnt->mnt.mnt_root = dget(root); 1060 mnt->mnt_mountpoint = mnt->mnt.mnt_root; 1061 mnt->mnt_parent = mnt; 1062 lock_mount_hash(); 1063 list_add_tail(&mnt->mnt_instance, &sb->s_mounts); 1064 unlock_mount_hash(); 1065 1066 if ((flag & CL_SLAVE) || 1067 ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) { 1068 list_add(&mnt->mnt_slave, &old->mnt_slave_list); 1069 mnt->mnt_master = old; 1070 CLEAR_MNT_SHARED(mnt); 1071 } else if (!(flag & CL_PRIVATE)) { 1072 if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old)) 1073 list_add(&mnt->mnt_share, &old->mnt_share); 1074 if (IS_MNT_SLAVE(old)) 1075 list_add(&mnt->mnt_slave, &old->mnt_slave); 1076 mnt->mnt_master = old->mnt_master; 1077 } else { 1078 CLEAR_MNT_SHARED(mnt); 1079 } 1080 if (flag & CL_MAKE_SHARED) 1081 set_mnt_shared(mnt); 1082 1083 /* stick the duplicate mount on the same expiry list 1084 * as the original if that was on one */ 1085 if (flag & CL_EXPIRE) { 1086 if (!list_empty(&old->mnt_expire)) 1087 list_add(&mnt->mnt_expire, &old->mnt_expire); 1088 } 1089 1090 return mnt; 1091 1092 out_free: 1093 mnt_free_id(mnt); 1094 free_vfsmnt(mnt); 1095 return ERR_PTR(err); 1096 } 1097 1098 static void cleanup_mnt(struct mount *mnt) 1099 { 1100 struct hlist_node *p; 1101 struct mount *m; 1102 /* 1103 * The warning here probably indicates that somebody messed 1104 * up a mnt_want/drop_write() pair. If this happens, the 1105 * filesystem was probably unable to make r/w->r/o transitions. 1106 * The locking used to deal with mnt_count decrement provides barriers, 1107 * so mnt_get_writers() below is safe. 1108 */ 1109 WARN_ON(mnt_get_writers(mnt)); 1110 if (unlikely(mnt->mnt_pins.first)) 1111 mnt_pin_kill(mnt); 1112 hlist_for_each_entry_safe(m, p, &mnt->mnt_stuck_children, mnt_umount) { 1113 hlist_del(&m->mnt_umount); 1114 mntput(&m->mnt); 1115 } 1116 fsnotify_vfsmount_delete(&mnt->mnt); 1117 dput(mnt->mnt.mnt_root); 1118 deactivate_super(mnt->mnt.mnt_sb); 1119 mnt_free_id(mnt); 1120 call_rcu(&mnt->mnt_rcu, delayed_free_vfsmnt); 1121 } 1122 1123 static void __cleanup_mnt(struct rcu_head *head) 1124 { 1125 cleanup_mnt(container_of(head, struct mount, mnt_rcu)); 1126 } 1127 1128 static LLIST_HEAD(delayed_mntput_list); 1129 static void delayed_mntput(struct work_struct *unused) 1130 { 1131 struct llist_node *node = llist_del_all(&delayed_mntput_list); 1132 struct mount *m, *t; 1133 1134 llist_for_each_entry_safe(m, t, node, mnt_llist) 1135 cleanup_mnt(m); 1136 } 1137 static DECLARE_DELAYED_WORK(delayed_mntput_work, delayed_mntput); 1138 1139 static void mntput_no_expire(struct mount *mnt) 1140 { 1141 LIST_HEAD(list); 1142 int count; 1143 1144 rcu_read_lock(); 1145 if (likely(READ_ONCE(mnt->mnt_ns))) { 1146 /* 1147 * Since we don't do lock_mount_hash() here, 1148 * ->mnt_ns can change under us. However, if it's 1149 * non-NULL, then there's a reference that won't 1150 * be dropped until after an RCU delay done after 1151 * turning ->mnt_ns NULL. So if we observe it 1152 * non-NULL under rcu_read_lock(), the reference 1153 * we are dropping is not the final one. 1154 */ 1155 mnt_add_count(mnt, -1); 1156 rcu_read_unlock(); 1157 return; 1158 } 1159 lock_mount_hash(); 1160 /* 1161 * make sure that if __legitimize_mnt() has not seen us grab 1162 * mount_lock, we'll see their refcount increment here. 1163 */ 1164 smp_mb(); 1165 mnt_add_count(mnt, -1); 1166 count = mnt_get_count(mnt); 1167 if (count != 0) { 1168 WARN_ON(count < 0); 1169 rcu_read_unlock(); 1170 unlock_mount_hash(); 1171 return; 1172 } 1173 if (unlikely(mnt->mnt.mnt_flags & MNT_DOOMED)) { 1174 rcu_read_unlock(); 1175 unlock_mount_hash(); 1176 return; 1177 } 1178 mnt->mnt.mnt_flags |= MNT_DOOMED; 1179 rcu_read_unlock(); 1180 1181 list_del(&mnt->mnt_instance); 1182 1183 if (unlikely(!list_empty(&mnt->mnt_mounts))) { 1184 struct mount *p, *tmp; 1185 list_for_each_entry_safe(p, tmp, &mnt->mnt_mounts, mnt_child) { 1186 __put_mountpoint(unhash_mnt(p), &list); 1187 hlist_add_head(&p->mnt_umount, &mnt->mnt_stuck_children); 1188 } 1189 } 1190 unlock_mount_hash(); 1191 shrink_dentry_list(&list); 1192 1193 if (likely(!(mnt->mnt.mnt_flags & MNT_INTERNAL))) { 1194 struct task_struct *task = current; 1195 if (likely(!(task->flags & PF_KTHREAD))) { 1196 init_task_work(&mnt->mnt_rcu, __cleanup_mnt); 1197 if (!task_work_add(task, &mnt->mnt_rcu, TWA_RESUME)) 1198 return; 1199 } 1200 if (llist_add(&mnt->mnt_llist, &delayed_mntput_list)) 1201 schedule_delayed_work(&delayed_mntput_work, 1); 1202 return; 1203 } 1204 cleanup_mnt(mnt); 1205 } 1206 1207 void mntput(struct vfsmount *mnt) 1208 { 1209 if (mnt) { 1210 struct mount *m = real_mount(mnt); 1211 /* avoid cacheline pingpong, hope gcc doesn't get "smart" */ 1212 if (unlikely(m->mnt_expiry_mark)) 1213 m->mnt_expiry_mark = 0; 1214 mntput_no_expire(m); 1215 } 1216 } 1217 EXPORT_SYMBOL(mntput); 1218 1219 struct vfsmount *mntget(struct vfsmount *mnt) 1220 { 1221 if (mnt) 1222 mnt_add_count(real_mount(mnt), 1); 1223 return mnt; 1224 } 1225 EXPORT_SYMBOL(mntget); 1226 1227 /* path_is_mountpoint() - Check if path is a mount in the current 1228 * namespace. 1229 * 1230 * d_mountpoint() can only be used reliably to establish if a dentry is 1231 * not mounted in any namespace and that common case is handled inline. 1232 * d_mountpoint() isn't aware of the possibility there may be multiple 1233 * mounts using a given dentry in a different namespace. This function 1234 * checks if the passed in path is a mountpoint rather than the dentry 1235 * alone. 1236 */ 1237 bool path_is_mountpoint(const struct path *path) 1238 { 1239 unsigned seq; 1240 bool res; 1241 1242 if (!d_mountpoint(path->dentry)) 1243 return false; 1244 1245 rcu_read_lock(); 1246 do { 1247 seq = read_seqbegin(&mount_lock); 1248 res = __path_is_mountpoint(path); 1249 } while (read_seqretry(&mount_lock, seq)); 1250 rcu_read_unlock(); 1251 1252 return res; 1253 } 1254 EXPORT_SYMBOL(path_is_mountpoint); 1255 1256 struct vfsmount *mnt_clone_internal(const struct path *path) 1257 { 1258 struct mount *p; 1259 p = clone_mnt(real_mount(path->mnt), path->dentry, CL_PRIVATE); 1260 if (IS_ERR(p)) 1261 return ERR_CAST(p); 1262 p->mnt.mnt_flags |= MNT_INTERNAL; 1263 return &p->mnt; 1264 } 1265 1266 #ifdef CONFIG_PROC_FS 1267 static struct mount *mnt_list_next(struct mnt_namespace *ns, 1268 struct list_head *p) 1269 { 1270 struct mount *mnt, *ret = NULL; 1271 1272 lock_ns_list(ns); 1273 list_for_each_continue(p, &ns->list) { 1274 mnt = list_entry(p, typeof(*mnt), mnt_list); 1275 if (!mnt_is_cursor(mnt)) { 1276 ret = mnt; 1277 break; 1278 } 1279 } 1280 unlock_ns_list(ns); 1281 1282 return ret; 1283 } 1284 1285 /* iterator; we want it to have access to namespace_sem, thus here... */ 1286 static void *m_start(struct seq_file *m, loff_t *pos) 1287 { 1288 struct proc_mounts *p = m->private; 1289 struct list_head *prev; 1290 1291 down_read(&namespace_sem); 1292 if (!*pos) { 1293 prev = &p->ns->list; 1294 } else { 1295 prev = &p->cursor.mnt_list; 1296 1297 /* Read after we'd reached the end? */ 1298 if (list_empty(prev)) 1299 return NULL; 1300 } 1301 1302 return mnt_list_next(p->ns, prev); 1303 } 1304 1305 static void *m_next(struct seq_file *m, void *v, loff_t *pos) 1306 { 1307 struct proc_mounts *p = m->private; 1308 struct mount *mnt = v; 1309 1310 ++*pos; 1311 return mnt_list_next(p->ns, &mnt->mnt_list); 1312 } 1313 1314 static void m_stop(struct seq_file *m, void *v) 1315 { 1316 struct proc_mounts *p = m->private; 1317 struct mount *mnt = v; 1318 1319 lock_ns_list(p->ns); 1320 if (mnt) 1321 list_move_tail(&p->cursor.mnt_list, &mnt->mnt_list); 1322 else 1323 list_del_init(&p->cursor.mnt_list); 1324 unlock_ns_list(p->ns); 1325 up_read(&namespace_sem); 1326 } 1327 1328 static int m_show(struct seq_file *m, void *v) 1329 { 1330 struct proc_mounts *p = m->private; 1331 struct mount *r = v; 1332 return p->show(m, &r->mnt); 1333 } 1334 1335 const struct seq_operations mounts_op = { 1336 .start = m_start, 1337 .next = m_next, 1338 .stop = m_stop, 1339 .show = m_show, 1340 }; 1341 1342 void mnt_cursor_del(struct mnt_namespace *ns, struct mount *cursor) 1343 { 1344 down_read(&namespace_sem); 1345 lock_ns_list(ns); 1346 list_del(&cursor->mnt_list); 1347 unlock_ns_list(ns); 1348 up_read(&namespace_sem); 1349 } 1350 #endif /* CONFIG_PROC_FS */ 1351 1352 /** 1353 * may_umount_tree - check if a mount tree is busy 1354 * @mnt: root of mount tree 1355 * 1356 * This is called to check if a tree of mounts has any 1357 * open files, pwds, chroots or sub mounts that are 1358 * busy. 1359 */ 1360 int may_umount_tree(struct vfsmount *m) 1361 { 1362 struct mount *mnt = real_mount(m); 1363 int actual_refs = 0; 1364 int minimum_refs = 0; 1365 struct mount *p; 1366 BUG_ON(!m); 1367 1368 /* write lock needed for mnt_get_count */ 1369 lock_mount_hash(); 1370 for (p = mnt; p; p = next_mnt(p, mnt)) { 1371 actual_refs += mnt_get_count(p); 1372 minimum_refs += 2; 1373 } 1374 unlock_mount_hash(); 1375 1376 if (actual_refs > minimum_refs) 1377 return 0; 1378 1379 return 1; 1380 } 1381 1382 EXPORT_SYMBOL(may_umount_tree); 1383 1384 /** 1385 * may_umount - check if a mount point is busy 1386 * @mnt: root of mount 1387 * 1388 * This is called to check if a mount point has any 1389 * open files, pwds, chroots or sub mounts. If the 1390 * mount has sub mounts this will return busy 1391 * regardless of whether the sub mounts are busy. 1392 * 1393 * Doesn't take quota and stuff into account. IOW, in some cases it will 1394 * give false negatives. The main reason why it's here is that we need 1395 * a non-destructive way to look for easily umountable filesystems. 1396 */ 1397 int may_umount(struct vfsmount *mnt) 1398 { 1399 int ret = 1; 1400 down_read(&namespace_sem); 1401 lock_mount_hash(); 1402 if (propagate_mount_busy(real_mount(mnt), 2)) 1403 ret = 0; 1404 unlock_mount_hash(); 1405 up_read(&namespace_sem); 1406 return ret; 1407 } 1408 1409 EXPORT_SYMBOL(may_umount); 1410 1411 static void namespace_unlock(void) 1412 { 1413 struct hlist_head head; 1414 struct hlist_node *p; 1415 struct mount *m; 1416 LIST_HEAD(list); 1417 1418 hlist_move_list(&unmounted, &head); 1419 list_splice_init(&ex_mountpoints, &list); 1420 1421 up_write(&namespace_sem); 1422 1423 shrink_dentry_list(&list); 1424 1425 if (likely(hlist_empty(&head))) 1426 return; 1427 1428 synchronize_rcu_expedited(); 1429 1430 hlist_for_each_entry_safe(m, p, &head, mnt_umount) { 1431 hlist_del(&m->mnt_umount); 1432 mntput(&m->mnt); 1433 } 1434 } 1435 1436 static inline void namespace_lock(void) 1437 { 1438 down_write(&namespace_sem); 1439 } 1440 1441 enum umount_tree_flags { 1442 UMOUNT_SYNC = 1, 1443 UMOUNT_PROPAGATE = 2, 1444 UMOUNT_CONNECTED = 4, 1445 }; 1446 1447 static bool disconnect_mount(struct mount *mnt, enum umount_tree_flags how) 1448 { 1449 /* Leaving mounts connected is only valid for lazy umounts */ 1450 if (how & UMOUNT_SYNC) 1451 return true; 1452 1453 /* A mount without a parent has nothing to be connected to */ 1454 if (!mnt_has_parent(mnt)) 1455 return true; 1456 1457 /* Because the reference counting rules change when mounts are 1458 * unmounted and connected, umounted mounts may not be 1459 * connected to mounted mounts. 1460 */ 1461 if (!(mnt->mnt_parent->mnt.mnt_flags & MNT_UMOUNT)) 1462 return true; 1463 1464 /* Has it been requested that the mount remain connected? */ 1465 if (how & UMOUNT_CONNECTED) 1466 return false; 1467 1468 /* Is the mount locked such that it needs to remain connected? */ 1469 if (IS_MNT_LOCKED(mnt)) 1470 return false; 1471 1472 /* By default disconnect the mount */ 1473 return true; 1474 } 1475 1476 /* 1477 * mount_lock must be held 1478 * namespace_sem must be held for write 1479 */ 1480 static void umount_tree(struct mount *mnt, enum umount_tree_flags how) 1481 { 1482 LIST_HEAD(tmp_list); 1483 struct mount *p; 1484 1485 if (how & UMOUNT_PROPAGATE) 1486 propagate_mount_unlock(mnt); 1487 1488 /* Gather the mounts to umount */ 1489 for (p = mnt; p; p = next_mnt(p, mnt)) { 1490 p->mnt.mnt_flags |= MNT_UMOUNT; 1491 list_move(&p->mnt_list, &tmp_list); 1492 } 1493 1494 /* Hide the mounts from mnt_mounts */ 1495 list_for_each_entry(p, &tmp_list, mnt_list) { 1496 list_del_init(&p->mnt_child); 1497 } 1498 1499 /* Add propogated mounts to the tmp_list */ 1500 if (how & UMOUNT_PROPAGATE) 1501 propagate_umount(&tmp_list); 1502 1503 while (!list_empty(&tmp_list)) { 1504 struct mnt_namespace *ns; 1505 bool disconnect; 1506 p = list_first_entry(&tmp_list, struct mount, mnt_list); 1507 list_del_init(&p->mnt_expire); 1508 list_del_init(&p->mnt_list); 1509 ns = p->mnt_ns; 1510 if (ns) { 1511 ns->mounts--; 1512 __touch_mnt_namespace(ns); 1513 } 1514 p->mnt_ns = NULL; 1515 if (how & UMOUNT_SYNC) 1516 p->mnt.mnt_flags |= MNT_SYNC_UMOUNT; 1517 1518 disconnect = disconnect_mount(p, how); 1519 if (mnt_has_parent(p)) { 1520 mnt_add_count(p->mnt_parent, -1); 1521 if (!disconnect) { 1522 /* Don't forget about p */ 1523 list_add_tail(&p->mnt_child, &p->mnt_parent->mnt_mounts); 1524 } else { 1525 umount_mnt(p); 1526 } 1527 } 1528 change_mnt_propagation(p, MS_PRIVATE); 1529 if (disconnect) 1530 hlist_add_head(&p->mnt_umount, &unmounted); 1531 } 1532 } 1533 1534 static void shrink_submounts(struct mount *mnt); 1535 1536 static int do_umount_root(struct super_block *sb) 1537 { 1538 int ret = 0; 1539 1540 down_write(&sb->s_umount); 1541 if (!sb_rdonly(sb)) { 1542 struct fs_context *fc; 1543 1544 fc = fs_context_for_reconfigure(sb->s_root, SB_RDONLY, 1545 SB_RDONLY); 1546 if (IS_ERR(fc)) { 1547 ret = PTR_ERR(fc); 1548 } else { 1549 ret = parse_monolithic_mount_data(fc, NULL); 1550 if (!ret) 1551 ret = reconfigure_super(fc); 1552 put_fs_context(fc); 1553 } 1554 } 1555 up_write(&sb->s_umount); 1556 return ret; 1557 } 1558 1559 static int do_umount(struct mount *mnt, int flags) 1560 { 1561 struct super_block *sb = mnt->mnt.mnt_sb; 1562 int retval; 1563 1564 retval = security_sb_umount(&mnt->mnt, flags); 1565 if (retval) 1566 return retval; 1567 1568 /* 1569 * Allow userspace to request a mountpoint be expired rather than 1570 * unmounting unconditionally. Unmount only happens if: 1571 * (1) the mark is already set (the mark is cleared by mntput()) 1572 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount] 1573 */ 1574 if (flags & MNT_EXPIRE) { 1575 if (&mnt->mnt == current->fs->root.mnt || 1576 flags & (MNT_FORCE | MNT_DETACH)) 1577 return -EINVAL; 1578 1579 /* 1580 * probably don't strictly need the lock here if we examined 1581 * all race cases, but it's a slowpath. 1582 */ 1583 lock_mount_hash(); 1584 if (mnt_get_count(mnt) != 2) { 1585 unlock_mount_hash(); 1586 return -EBUSY; 1587 } 1588 unlock_mount_hash(); 1589 1590 if (!xchg(&mnt->mnt_expiry_mark, 1)) 1591 return -EAGAIN; 1592 } 1593 1594 /* 1595 * If we may have to abort operations to get out of this 1596 * mount, and they will themselves hold resources we must 1597 * allow the fs to do things. In the Unix tradition of 1598 * 'Gee thats tricky lets do it in userspace' the umount_begin 1599 * might fail to complete on the first run through as other tasks 1600 * must return, and the like. Thats for the mount program to worry 1601 * about for the moment. 1602 */ 1603 1604 if (flags & MNT_FORCE && sb->s_op->umount_begin) { 1605 sb->s_op->umount_begin(sb); 1606 } 1607 1608 /* 1609 * No sense to grab the lock for this test, but test itself looks 1610 * somewhat bogus. Suggestions for better replacement? 1611 * Ho-hum... In principle, we might treat that as umount + switch 1612 * to rootfs. GC would eventually take care of the old vfsmount. 1613 * Actually it makes sense, especially if rootfs would contain a 1614 * /reboot - static binary that would close all descriptors and 1615 * call reboot(9). Then init(8) could umount root and exec /reboot. 1616 */ 1617 if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) { 1618 /* 1619 * Special case for "unmounting" root ... 1620 * we just try to remount it readonly. 1621 */ 1622 if (!ns_capable(sb->s_user_ns, CAP_SYS_ADMIN)) 1623 return -EPERM; 1624 return do_umount_root(sb); 1625 } 1626 1627 namespace_lock(); 1628 lock_mount_hash(); 1629 1630 /* Recheck MNT_LOCKED with the locks held */ 1631 retval = -EINVAL; 1632 if (mnt->mnt.mnt_flags & MNT_LOCKED) 1633 goto out; 1634 1635 event++; 1636 if (flags & MNT_DETACH) { 1637 if (!list_empty(&mnt->mnt_list)) 1638 umount_tree(mnt, UMOUNT_PROPAGATE); 1639 retval = 0; 1640 } else { 1641 shrink_submounts(mnt); 1642 retval = -EBUSY; 1643 if (!propagate_mount_busy(mnt, 2)) { 1644 if (!list_empty(&mnt->mnt_list)) 1645 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC); 1646 retval = 0; 1647 } 1648 } 1649 out: 1650 unlock_mount_hash(); 1651 namespace_unlock(); 1652 return retval; 1653 } 1654 1655 /* 1656 * __detach_mounts - lazily unmount all mounts on the specified dentry 1657 * 1658 * During unlink, rmdir, and d_drop it is possible to loose the path 1659 * to an existing mountpoint, and wind up leaking the mount. 1660 * detach_mounts allows lazily unmounting those mounts instead of 1661 * leaking them. 1662 * 1663 * The caller may hold dentry->d_inode->i_mutex. 1664 */ 1665 void __detach_mounts(struct dentry *dentry) 1666 { 1667 struct mountpoint *mp; 1668 struct mount *mnt; 1669 1670 namespace_lock(); 1671 lock_mount_hash(); 1672 mp = lookup_mountpoint(dentry); 1673 if (!mp) 1674 goto out_unlock; 1675 1676 event++; 1677 while (!hlist_empty(&mp->m_list)) { 1678 mnt = hlist_entry(mp->m_list.first, struct mount, mnt_mp_list); 1679 if (mnt->mnt.mnt_flags & MNT_UMOUNT) { 1680 umount_mnt(mnt); 1681 hlist_add_head(&mnt->mnt_umount, &unmounted); 1682 } 1683 else umount_tree(mnt, UMOUNT_CONNECTED); 1684 } 1685 put_mountpoint(mp); 1686 out_unlock: 1687 unlock_mount_hash(); 1688 namespace_unlock(); 1689 } 1690 1691 /* 1692 * Is the caller allowed to modify his namespace? 1693 */ 1694 static inline bool may_mount(void) 1695 { 1696 return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN); 1697 } 1698 1699 #ifdef CONFIG_MANDATORY_FILE_LOCKING 1700 static inline bool may_mandlock(void) 1701 { 1702 return capable(CAP_SYS_ADMIN); 1703 } 1704 #else 1705 static inline bool may_mandlock(void) 1706 { 1707 pr_warn("VFS: \"mand\" mount option not supported"); 1708 return false; 1709 } 1710 #endif 1711 1712 static int can_umount(const struct path *path, int flags) 1713 { 1714 struct mount *mnt = real_mount(path->mnt); 1715 1716 if (!may_mount()) 1717 return -EPERM; 1718 if (path->dentry != path->mnt->mnt_root) 1719 return -EINVAL; 1720 if (!check_mnt(mnt)) 1721 return -EINVAL; 1722 if (mnt->mnt.mnt_flags & MNT_LOCKED) /* Check optimistically */ 1723 return -EINVAL; 1724 if (flags & MNT_FORCE && !capable(CAP_SYS_ADMIN)) 1725 return -EPERM; 1726 return 0; 1727 } 1728 1729 // caller is responsible for flags being sane 1730 int path_umount(struct path *path, int flags) 1731 { 1732 struct mount *mnt = real_mount(path->mnt); 1733 int ret; 1734 1735 ret = can_umount(path, flags); 1736 if (!ret) 1737 ret = do_umount(mnt, flags); 1738 1739 /* we mustn't call path_put() as that would clear mnt_expiry_mark */ 1740 dput(path->dentry); 1741 mntput_no_expire(mnt); 1742 return ret; 1743 } 1744 1745 static int ksys_umount(char __user *name, int flags) 1746 { 1747 int lookup_flags = LOOKUP_MOUNTPOINT; 1748 struct path path; 1749 int ret; 1750 1751 // basic validity checks done first 1752 if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW)) 1753 return -EINVAL; 1754 1755 if (!(flags & UMOUNT_NOFOLLOW)) 1756 lookup_flags |= LOOKUP_FOLLOW; 1757 ret = user_path_at(AT_FDCWD, name, lookup_flags, &path); 1758 if (ret) 1759 return ret; 1760 return path_umount(&path, flags); 1761 } 1762 1763 SYSCALL_DEFINE2(umount, char __user *, name, int, flags) 1764 { 1765 return ksys_umount(name, flags); 1766 } 1767 1768 #ifdef __ARCH_WANT_SYS_OLDUMOUNT 1769 1770 /* 1771 * The 2.0 compatible umount. No flags. 1772 */ 1773 SYSCALL_DEFINE1(oldumount, char __user *, name) 1774 { 1775 return ksys_umount(name, 0); 1776 } 1777 1778 #endif 1779 1780 static bool is_mnt_ns_file(struct dentry *dentry) 1781 { 1782 /* Is this a proxy for a mount namespace? */ 1783 return dentry->d_op == &ns_dentry_operations && 1784 dentry->d_fsdata == &mntns_operations; 1785 } 1786 1787 static struct mnt_namespace *to_mnt_ns(struct ns_common *ns) 1788 { 1789 return container_of(ns, struct mnt_namespace, ns); 1790 } 1791 1792 struct ns_common *from_mnt_ns(struct mnt_namespace *mnt) 1793 { 1794 return &mnt->ns; 1795 } 1796 1797 static bool mnt_ns_loop(struct dentry *dentry) 1798 { 1799 /* Could bind mounting the mount namespace inode cause a 1800 * mount namespace loop? 1801 */ 1802 struct mnt_namespace *mnt_ns; 1803 if (!is_mnt_ns_file(dentry)) 1804 return false; 1805 1806 mnt_ns = to_mnt_ns(get_proc_ns(dentry->d_inode)); 1807 return current->nsproxy->mnt_ns->seq >= mnt_ns->seq; 1808 } 1809 1810 struct mount *copy_tree(struct mount *mnt, struct dentry *dentry, 1811 int flag) 1812 { 1813 struct mount *res, *p, *q, *r, *parent; 1814 1815 if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(mnt)) 1816 return ERR_PTR(-EINVAL); 1817 1818 if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry)) 1819 return ERR_PTR(-EINVAL); 1820 1821 res = q = clone_mnt(mnt, dentry, flag); 1822 if (IS_ERR(q)) 1823 return q; 1824 1825 q->mnt_mountpoint = mnt->mnt_mountpoint; 1826 1827 p = mnt; 1828 list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) { 1829 struct mount *s; 1830 if (!is_subdir(r->mnt_mountpoint, dentry)) 1831 continue; 1832 1833 for (s = r; s; s = next_mnt(s, r)) { 1834 if (!(flag & CL_COPY_UNBINDABLE) && 1835 IS_MNT_UNBINDABLE(s)) { 1836 if (s->mnt.mnt_flags & MNT_LOCKED) { 1837 /* Both unbindable and locked. */ 1838 q = ERR_PTR(-EPERM); 1839 goto out; 1840 } else { 1841 s = skip_mnt_tree(s); 1842 continue; 1843 } 1844 } 1845 if (!(flag & CL_COPY_MNT_NS_FILE) && 1846 is_mnt_ns_file(s->mnt.mnt_root)) { 1847 s = skip_mnt_tree(s); 1848 continue; 1849 } 1850 while (p != s->mnt_parent) { 1851 p = p->mnt_parent; 1852 q = q->mnt_parent; 1853 } 1854 p = s; 1855 parent = q; 1856 q = clone_mnt(p, p->mnt.mnt_root, flag); 1857 if (IS_ERR(q)) 1858 goto out; 1859 lock_mount_hash(); 1860 list_add_tail(&q->mnt_list, &res->mnt_list); 1861 attach_mnt(q, parent, p->mnt_mp); 1862 unlock_mount_hash(); 1863 } 1864 } 1865 return res; 1866 out: 1867 if (res) { 1868 lock_mount_hash(); 1869 umount_tree(res, UMOUNT_SYNC); 1870 unlock_mount_hash(); 1871 } 1872 return q; 1873 } 1874 1875 /* Caller should check returned pointer for errors */ 1876 1877 struct vfsmount *collect_mounts(const struct path *path) 1878 { 1879 struct mount *tree; 1880 namespace_lock(); 1881 if (!check_mnt(real_mount(path->mnt))) 1882 tree = ERR_PTR(-EINVAL); 1883 else 1884 tree = copy_tree(real_mount(path->mnt), path->dentry, 1885 CL_COPY_ALL | CL_PRIVATE); 1886 namespace_unlock(); 1887 if (IS_ERR(tree)) 1888 return ERR_CAST(tree); 1889 return &tree->mnt; 1890 } 1891 1892 static void free_mnt_ns(struct mnt_namespace *); 1893 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *, bool); 1894 1895 void dissolve_on_fput(struct vfsmount *mnt) 1896 { 1897 struct mnt_namespace *ns; 1898 namespace_lock(); 1899 lock_mount_hash(); 1900 ns = real_mount(mnt)->mnt_ns; 1901 if (ns) { 1902 if (is_anon_ns(ns)) 1903 umount_tree(real_mount(mnt), UMOUNT_CONNECTED); 1904 else 1905 ns = NULL; 1906 } 1907 unlock_mount_hash(); 1908 namespace_unlock(); 1909 if (ns) 1910 free_mnt_ns(ns); 1911 } 1912 1913 void drop_collected_mounts(struct vfsmount *mnt) 1914 { 1915 namespace_lock(); 1916 lock_mount_hash(); 1917 umount_tree(real_mount(mnt), 0); 1918 unlock_mount_hash(); 1919 namespace_unlock(); 1920 } 1921 1922 /** 1923 * clone_private_mount - create a private clone of a path 1924 * 1925 * This creates a new vfsmount, which will be the clone of @path. The new will 1926 * not be attached anywhere in the namespace and will be private (i.e. changes 1927 * to the originating mount won't be propagated into this). 1928 * 1929 * Release with mntput(). 1930 */ 1931 struct vfsmount *clone_private_mount(const struct path *path) 1932 { 1933 struct mount *old_mnt = real_mount(path->mnt); 1934 struct mount *new_mnt; 1935 1936 if (IS_MNT_UNBINDABLE(old_mnt)) 1937 return ERR_PTR(-EINVAL); 1938 1939 new_mnt = clone_mnt(old_mnt, path->dentry, CL_PRIVATE); 1940 if (IS_ERR(new_mnt)) 1941 return ERR_CAST(new_mnt); 1942 1943 /* Longterm mount to be removed by kern_unmount*() */ 1944 new_mnt->mnt_ns = MNT_NS_INTERNAL; 1945 1946 return &new_mnt->mnt; 1947 } 1948 EXPORT_SYMBOL_GPL(clone_private_mount); 1949 1950 int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg, 1951 struct vfsmount *root) 1952 { 1953 struct mount *mnt; 1954 int res = f(root, arg); 1955 if (res) 1956 return res; 1957 list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) { 1958 res = f(&mnt->mnt, arg); 1959 if (res) 1960 return res; 1961 } 1962 return 0; 1963 } 1964 1965 static void lock_mnt_tree(struct mount *mnt) 1966 { 1967 struct mount *p; 1968 1969 for (p = mnt; p; p = next_mnt(p, mnt)) { 1970 int flags = p->mnt.mnt_flags; 1971 /* Don't allow unprivileged users to change mount flags */ 1972 flags |= MNT_LOCK_ATIME; 1973 1974 if (flags & MNT_READONLY) 1975 flags |= MNT_LOCK_READONLY; 1976 1977 if (flags & MNT_NODEV) 1978 flags |= MNT_LOCK_NODEV; 1979 1980 if (flags & MNT_NOSUID) 1981 flags |= MNT_LOCK_NOSUID; 1982 1983 if (flags & MNT_NOEXEC) 1984 flags |= MNT_LOCK_NOEXEC; 1985 /* Don't allow unprivileged users to reveal what is under a mount */ 1986 if (list_empty(&p->mnt_expire)) 1987 flags |= MNT_LOCKED; 1988 p->mnt.mnt_flags = flags; 1989 } 1990 } 1991 1992 static void cleanup_group_ids(struct mount *mnt, struct mount *end) 1993 { 1994 struct mount *p; 1995 1996 for (p = mnt; p != end; p = next_mnt(p, mnt)) { 1997 if (p->mnt_group_id && !IS_MNT_SHARED(p)) 1998 mnt_release_group_id(p); 1999 } 2000 } 2001 2002 static int invent_group_ids(struct mount *mnt, bool recurse) 2003 { 2004 struct mount *p; 2005 2006 for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) { 2007 if (!p->mnt_group_id && !IS_MNT_SHARED(p)) { 2008 int err = mnt_alloc_group_id(p); 2009 if (err) { 2010 cleanup_group_ids(mnt, p); 2011 return err; 2012 } 2013 } 2014 } 2015 2016 return 0; 2017 } 2018 2019 int count_mounts(struct mnt_namespace *ns, struct mount *mnt) 2020 { 2021 unsigned int max = READ_ONCE(sysctl_mount_max); 2022 unsigned int mounts = 0, old, pending, sum; 2023 struct mount *p; 2024 2025 for (p = mnt; p; p = next_mnt(p, mnt)) 2026 mounts++; 2027 2028 old = ns->mounts; 2029 pending = ns->pending_mounts; 2030 sum = old + pending; 2031 if ((old > sum) || 2032 (pending > sum) || 2033 (max < sum) || 2034 (mounts > (max - sum))) 2035 return -ENOSPC; 2036 2037 ns->pending_mounts = pending + mounts; 2038 return 0; 2039 } 2040 2041 /* 2042 * @source_mnt : mount tree to be attached 2043 * @nd : place the mount tree @source_mnt is attached 2044 * @parent_nd : if non-null, detach the source_mnt from its parent and 2045 * store the parent mount and mountpoint dentry. 2046 * (done when source_mnt is moved) 2047 * 2048 * NOTE: in the table below explains the semantics when a source mount 2049 * of a given type is attached to a destination mount of a given type. 2050 * --------------------------------------------------------------------------- 2051 * | BIND MOUNT OPERATION | 2052 * |************************************************************************** 2053 * | source-->| shared | private | slave | unbindable | 2054 * | dest | | | | | 2055 * | | | | | | | 2056 * | v | | | | | 2057 * |************************************************************************** 2058 * | shared | shared (++) | shared (+) | shared(+++)| invalid | 2059 * | | | | | | 2060 * |non-shared| shared (+) | private | slave (*) | invalid | 2061 * *************************************************************************** 2062 * A bind operation clones the source mount and mounts the clone on the 2063 * destination mount. 2064 * 2065 * (++) the cloned mount is propagated to all the mounts in the propagation 2066 * tree of the destination mount and the cloned mount is added to 2067 * the peer group of the source mount. 2068 * (+) the cloned mount is created under the destination mount and is marked 2069 * as shared. The cloned mount is added to the peer group of the source 2070 * mount. 2071 * (+++) the mount is propagated to all the mounts in the propagation tree 2072 * of the destination mount and the cloned mount is made slave 2073 * of the same master as that of the source mount. The cloned mount 2074 * is marked as 'shared and slave'. 2075 * (*) the cloned mount is made a slave of the same master as that of the 2076 * source mount. 2077 * 2078 * --------------------------------------------------------------------------- 2079 * | MOVE MOUNT OPERATION | 2080 * |************************************************************************** 2081 * | source-->| shared | private | slave | unbindable | 2082 * | dest | | | | | 2083 * | | | | | | | 2084 * | v | | | | | 2085 * |************************************************************************** 2086 * | shared | shared (+) | shared (+) | shared(+++) | invalid | 2087 * | | | | | | 2088 * |non-shared| shared (+*) | private | slave (*) | unbindable | 2089 * *************************************************************************** 2090 * 2091 * (+) the mount is moved to the destination. And is then propagated to 2092 * all the mounts in the propagation tree of the destination mount. 2093 * (+*) the mount is moved to the destination. 2094 * (+++) the mount is moved to the destination and is then propagated to 2095 * all the mounts belonging to the destination mount's propagation tree. 2096 * the mount is marked as 'shared and slave'. 2097 * (*) the mount continues to be a slave at the new location. 2098 * 2099 * if the source mount is a tree, the operations explained above is 2100 * applied to each mount in the tree. 2101 * Must be called without spinlocks held, since this function can sleep 2102 * in allocations. 2103 */ 2104 static int attach_recursive_mnt(struct mount *source_mnt, 2105 struct mount *dest_mnt, 2106 struct mountpoint *dest_mp, 2107 bool moving) 2108 { 2109 struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns; 2110 HLIST_HEAD(tree_list); 2111 struct mnt_namespace *ns = dest_mnt->mnt_ns; 2112 struct mountpoint *smp; 2113 struct mount *child, *p; 2114 struct hlist_node *n; 2115 int err; 2116 2117 /* Preallocate a mountpoint in case the new mounts need 2118 * to be tucked under other mounts. 2119 */ 2120 smp = get_mountpoint(source_mnt->mnt.mnt_root); 2121 if (IS_ERR(smp)) 2122 return PTR_ERR(smp); 2123 2124 /* Is there space to add these mounts to the mount namespace? */ 2125 if (!moving) { 2126 err = count_mounts(ns, source_mnt); 2127 if (err) 2128 goto out; 2129 } 2130 2131 if (IS_MNT_SHARED(dest_mnt)) { 2132 err = invent_group_ids(source_mnt, true); 2133 if (err) 2134 goto out; 2135 err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list); 2136 lock_mount_hash(); 2137 if (err) 2138 goto out_cleanup_ids; 2139 for (p = source_mnt; p; p = next_mnt(p, source_mnt)) 2140 set_mnt_shared(p); 2141 } else { 2142 lock_mount_hash(); 2143 } 2144 if (moving) { 2145 unhash_mnt(source_mnt); 2146 attach_mnt(source_mnt, dest_mnt, dest_mp); 2147 touch_mnt_namespace(source_mnt->mnt_ns); 2148 } else { 2149 if (source_mnt->mnt_ns) { 2150 /* move from anon - the caller will destroy */ 2151 list_del_init(&source_mnt->mnt_ns->list); 2152 } 2153 mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt); 2154 commit_tree(source_mnt); 2155 } 2156 2157 hlist_for_each_entry_safe(child, n, &tree_list, mnt_hash) { 2158 struct mount *q; 2159 hlist_del_init(&child->mnt_hash); 2160 q = __lookup_mnt(&child->mnt_parent->mnt, 2161 child->mnt_mountpoint); 2162 if (q) 2163 mnt_change_mountpoint(child, smp, q); 2164 /* Notice when we are propagating across user namespaces */ 2165 if (child->mnt_parent->mnt_ns->user_ns != user_ns) 2166 lock_mnt_tree(child); 2167 child->mnt.mnt_flags &= ~MNT_LOCKED; 2168 commit_tree(child); 2169 } 2170 put_mountpoint(smp); 2171 unlock_mount_hash(); 2172 2173 return 0; 2174 2175 out_cleanup_ids: 2176 while (!hlist_empty(&tree_list)) { 2177 child = hlist_entry(tree_list.first, struct mount, mnt_hash); 2178 child->mnt_parent->mnt_ns->pending_mounts = 0; 2179 umount_tree(child, UMOUNT_SYNC); 2180 } 2181 unlock_mount_hash(); 2182 cleanup_group_ids(source_mnt, NULL); 2183 out: 2184 ns->pending_mounts = 0; 2185 2186 read_seqlock_excl(&mount_lock); 2187 put_mountpoint(smp); 2188 read_sequnlock_excl(&mount_lock); 2189 2190 return err; 2191 } 2192 2193 static struct mountpoint *lock_mount(struct path *path) 2194 { 2195 struct vfsmount *mnt; 2196 struct dentry *dentry = path->dentry; 2197 retry: 2198 inode_lock(dentry->d_inode); 2199 if (unlikely(cant_mount(dentry))) { 2200 inode_unlock(dentry->d_inode); 2201 return ERR_PTR(-ENOENT); 2202 } 2203 namespace_lock(); 2204 mnt = lookup_mnt(path); 2205 if (likely(!mnt)) { 2206 struct mountpoint *mp = get_mountpoint(dentry); 2207 if (IS_ERR(mp)) { 2208 namespace_unlock(); 2209 inode_unlock(dentry->d_inode); 2210 return mp; 2211 } 2212 return mp; 2213 } 2214 namespace_unlock(); 2215 inode_unlock(path->dentry->d_inode); 2216 path_put(path); 2217 path->mnt = mnt; 2218 dentry = path->dentry = dget(mnt->mnt_root); 2219 goto retry; 2220 } 2221 2222 static void unlock_mount(struct mountpoint *where) 2223 { 2224 struct dentry *dentry = where->m_dentry; 2225 2226 read_seqlock_excl(&mount_lock); 2227 put_mountpoint(where); 2228 read_sequnlock_excl(&mount_lock); 2229 2230 namespace_unlock(); 2231 inode_unlock(dentry->d_inode); 2232 } 2233 2234 static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp) 2235 { 2236 if (mnt->mnt.mnt_sb->s_flags & SB_NOUSER) 2237 return -EINVAL; 2238 2239 if (d_is_dir(mp->m_dentry) != 2240 d_is_dir(mnt->mnt.mnt_root)) 2241 return -ENOTDIR; 2242 2243 return attach_recursive_mnt(mnt, p, mp, false); 2244 } 2245 2246 /* 2247 * Sanity check the flags to change_mnt_propagation. 2248 */ 2249 2250 static int flags_to_propagation_type(int ms_flags) 2251 { 2252 int type = ms_flags & ~(MS_REC | MS_SILENT); 2253 2254 /* Fail if any non-propagation flags are set */ 2255 if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE)) 2256 return 0; 2257 /* Only one propagation flag should be set */ 2258 if (!is_power_of_2(type)) 2259 return 0; 2260 return type; 2261 } 2262 2263 /* 2264 * recursively change the type of the mountpoint. 2265 */ 2266 static int do_change_type(struct path *path, int ms_flags) 2267 { 2268 struct mount *m; 2269 struct mount *mnt = real_mount(path->mnt); 2270 int recurse = ms_flags & MS_REC; 2271 int type; 2272 int err = 0; 2273 2274 if (path->dentry != path->mnt->mnt_root) 2275 return -EINVAL; 2276 2277 type = flags_to_propagation_type(ms_flags); 2278 if (!type) 2279 return -EINVAL; 2280 2281 namespace_lock(); 2282 if (type == MS_SHARED) { 2283 err = invent_group_ids(mnt, recurse); 2284 if (err) 2285 goto out_unlock; 2286 } 2287 2288 lock_mount_hash(); 2289 for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL)) 2290 change_mnt_propagation(m, type); 2291 unlock_mount_hash(); 2292 2293 out_unlock: 2294 namespace_unlock(); 2295 return err; 2296 } 2297 2298 static bool has_locked_children(struct mount *mnt, struct dentry *dentry) 2299 { 2300 struct mount *child; 2301 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) { 2302 if (!is_subdir(child->mnt_mountpoint, dentry)) 2303 continue; 2304 2305 if (child->mnt.mnt_flags & MNT_LOCKED) 2306 return true; 2307 } 2308 return false; 2309 } 2310 2311 static struct mount *__do_loopback(struct path *old_path, int recurse) 2312 { 2313 struct mount *mnt = ERR_PTR(-EINVAL), *old = real_mount(old_path->mnt); 2314 2315 if (IS_MNT_UNBINDABLE(old)) 2316 return mnt; 2317 2318 if (!check_mnt(old) && old_path->dentry->d_op != &ns_dentry_operations) 2319 return mnt; 2320 2321 if (!recurse && has_locked_children(old, old_path->dentry)) 2322 return mnt; 2323 2324 if (recurse) 2325 mnt = copy_tree(old, old_path->dentry, CL_COPY_MNT_NS_FILE); 2326 else 2327 mnt = clone_mnt(old, old_path->dentry, 0); 2328 2329 if (!IS_ERR(mnt)) 2330 mnt->mnt.mnt_flags &= ~MNT_LOCKED; 2331 2332 return mnt; 2333 } 2334 2335 /* 2336 * do loopback mount. 2337 */ 2338 static int do_loopback(struct path *path, const char *old_name, 2339 int recurse) 2340 { 2341 struct path old_path; 2342 struct mount *mnt = NULL, *parent; 2343 struct mountpoint *mp; 2344 int err; 2345 if (!old_name || !*old_name) 2346 return -EINVAL; 2347 err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path); 2348 if (err) 2349 return err; 2350 2351 err = -EINVAL; 2352 if (mnt_ns_loop(old_path.dentry)) 2353 goto out; 2354 2355 mp = lock_mount(path); 2356 if (IS_ERR(mp)) { 2357 err = PTR_ERR(mp); 2358 goto out; 2359 } 2360 2361 parent = real_mount(path->mnt); 2362 if (!check_mnt(parent)) 2363 goto out2; 2364 2365 mnt = __do_loopback(&old_path, recurse); 2366 if (IS_ERR(mnt)) { 2367 err = PTR_ERR(mnt); 2368 goto out2; 2369 } 2370 2371 err = graft_tree(mnt, parent, mp); 2372 if (err) { 2373 lock_mount_hash(); 2374 umount_tree(mnt, UMOUNT_SYNC); 2375 unlock_mount_hash(); 2376 } 2377 out2: 2378 unlock_mount(mp); 2379 out: 2380 path_put(&old_path); 2381 return err; 2382 } 2383 2384 static struct file *open_detached_copy(struct path *path, bool recursive) 2385 { 2386 struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns; 2387 struct mnt_namespace *ns = alloc_mnt_ns(user_ns, true); 2388 struct mount *mnt, *p; 2389 struct file *file; 2390 2391 if (IS_ERR(ns)) 2392 return ERR_CAST(ns); 2393 2394 namespace_lock(); 2395 mnt = __do_loopback(path, recursive); 2396 if (IS_ERR(mnt)) { 2397 namespace_unlock(); 2398 free_mnt_ns(ns); 2399 return ERR_CAST(mnt); 2400 } 2401 2402 lock_mount_hash(); 2403 for (p = mnt; p; p = next_mnt(p, mnt)) { 2404 p->mnt_ns = ns; 2405 ns->mounts++; 2406 } 2407 ns->root = mnt; 2408 list_add_tail(&ns->list, &mnt->mnt_list); 2409 mntget(&mnt->mnt); 2410 unlock_mount_hash(); 2411 namespace_unlock(); 2412 2413 mntput(path->mnt); 2414 path->mnt = &mnt->mnt; 2415 file = dentry_open(path, O_PATH, current_cred()); 2416 if (IS_ERR(file)) 2417 dissolve_on_fput(path->mnt); 2418 else 2419 file->f_mode |= FMODE_NEED_UNMOUNT; 2420 return file; 2421 } 2422 2423 SYSCALL_DEFINE3(open_tree, int, dfd, const char __user *, filename, unsigned, flags) 2424 { 2425 struct file *file; 2426 struct path path; 2427 int lookup_flags = LOOKUP_AUTOMOUNT | LOOKUP_FOLLOW; 2428 bool detached = flags & OPEN_TREE_CLONE; 2429 int error; 2430 int fd; 2431 2432 BUILD_BUG_ON(OPEN_TREE_CLOEXEC != O_CLOEXEC); 2433 2434 if (flags & ~(AT_EMPTY_PATH | AT_NO_AUTOMOUNT | AT_RECURSIVE | 2435 AT_SYMLINK_NOFOLLOW | OPEN_TREE_CLONE | 2436 OPEN_TREE_CLOEXEC)) 2437 return -EINVAL; 2438 2439 if ((flags & (AT_RECURSIVE | OPEN_TREE_CLONE)) == AT_RECURSIVE) 2440 return -EINVAL; 2441 2442 if (flags & AT_NO_AUTOMOUNT) 2443 lookup_flags &= ~LOOKUP_AUTOMOUNT; 2444 if (flags & AT_SYMLINK_NOFOLLOW) 2445 lookup_flags &= ~LOOKUP_FOLLOW; 2446 if (flags & AT_EMPTY_PATH) 2447 lookup_flags |= LOOKUP_EMPTY; 2448 2449 if (detached && !may_mount()) 2450 return -EPERM; 2451 2452 fd = get_unused_fd_flags(flags & O_CLOEXEC); 2453 if (fd < 0) 2454 return fd; 2455 2456 error = user_path_at(dfd, filename, lookup_flags, &path); 2457 if (unlikely(error)) { 2458 file = ERR_PTR(error); 2459 } else { 2460 if (detached) 2461 file = open_detached_copy(&path, flags & AT_RECURSIVE); 2462 else 2463 file = dentry_open(&path, O_PATH, current_cred()); 2464 path_put(&path); 2465 } 2466 if (IS_ERR(file)) { 2467 put_unused_fd(fd); 2468 return PTR_ERR(file); 2469 } 2470 fd_install(fd, file); 2471 return fd; 2472 } 2473 2474 /* 2475 * Don't allow locked mount flags to be cleared. 2476 * 2477 * No locks need to be held here while testing the various MNT_LOCK 2478 * flags because those flags can never be cleared once they are set. 2479 */ 2480 static bool can_change_locked_flags(struct mount *mnt, unsigned int mnt_flags) 2481 { 2482 unsigned int fl = mnt->mnt.mnt_flags; 2483 2484 if ((fl & MNT_LOCK_READONLY) && 2485 !(mnt_flags & MNT_READONLY)) 2486 return false; 2487 2488 if ((fl & MNT_LOCK_NODEV) && 2489 !(mnt_flags & MNT_NODEV)) 2490 return false; 2491 2492 if ((fl & MNT_LOCK_NOSUID) && 2493 !(mnt_flags & MNT_NOSUID)) 2494 return false; 2495 2496 if ((fl & MNT_LOCK_NOEXEC) && 2497 !(mnt_flags & MNT_NOEXEC)) 2498 return false; 2499 2500 if ((fl & MNT_LOCK_ATIME) && 2501 ((fl & MNT_ATIME_MASK) != (mnt_flags & MNT_ATIME_MASK))) 2502 return false; 2503 2504 return true; 2505 } 2506 2507 static int change_mount_ro_state(struct mount *mnt, unsigned int mnt_flags) 2508 { 2509 bool readonly_request = (mnt_flags & MNT_READONLY); 2510 2511 if (readonly_request == __mnt_is_readonly(&mnt->mnt)) 2512 return 0; 2513 2514 if (readonly_request) 2515 return mnt_make_readonly(mnt); 2516 2517 return __mnt_unmake_readonly(mnt); 2518 } 2519 2520 /* 2521 * Update the user-settable attributes on a mount. The caller must hold 2522 * sb->s_umount for writing. 2523 */ 2524 static void set_mount_attributes(struct mount *mnt, unsigned int mnt_flags) 2525 { 2526 lock_mount_hash(); 2527 mnt_flags |= mnt->mnt.mnt_flags & ~MNT_USER_SETTABLE_MASK; 2528 mnt->mnt.mnt_flags = mnt_flags; 2529 touch_mnt_namespace(mnt->mnt_ns); 2530 unlock_mount_hash(); 2531 } 2532 2533 static void mnt_warn_timestamp_expiry(struct path *mountpoint, struct vfsmount *mnt) 2534 { 2535 struct super_block *sb = mnt->mnt_sb; 2536 2537 if (!__mnt_is_readonly(mnt) && 2538 (ktime_get_real_seconds() + TIME_UPTIME_SEC_MAX > sb->s_time_max)) { 2539 char *buf = (char *)__get_free_page(GFP_KERNEL); 2540 char *mntpath = buf ? d_path(mountpoint, buf, PAGE_SIZE) : ERR_PTR(-ENOMEM); 2541 struct tm tm; 2542 2543 time64_to_tm(sb->s_time_max, 0, &tm); 2544 2545 pr_warn("%s filesystem being %s at %s supports timestamps until %04ld (0x%llx)\n", 2546 sb->s_type->name, 2547 is_mounted(mnt) ? "remounted" : "mounted", 2548 mntpath, 2549 tm.tm_year+1900, (unsigned long long)sb->s_time_max); 2550 2551 free_page((unsigned long)buf); 2552 } 2553 } 2554 2555 /* 2556 * Handle reconfiguration of the mountpoint only without alteration of the 2557 * superblock it refers to. This is triggered by specifying MS_REMOUNT|MS_BIND 2558 * to mount(2). 2559 */ 2560 static int do_reconfigure_mnt(struct path *path, unsigned int mnt_flags) 2561 { 2562 struct super_block *sb = path->mnt->mnt_sb; 2563 struct mount *mnt = real_mount(path->mnt); 2564 int ret; 2565 2566 if (!check_mnt(mnt)) 2567 return -EINVAL; 2568 2569 if (path->dentry != mnt->mnt.mnt_root) 2570 return -EINVAL; 2571 2572 if (!can_change_locked_flags(mnt, mnt_flags)) 2573 return -EPERM; 2574 2575 down_write(&sb->s_umount); 2576 ret = change_mount_ro_state(mnt, mnt_flags); 2577 if (ret == 0) 2578 set_mount_attributes(mnt, mnt_flags); 2579 up_write(&sb->s_umount); 2580 2581 mnt_warn_timestamp_expiry(path, &mnt->mnt); 2582 2583 return ret; 2584 } 2585 2586 /* 2587 * change filesystem flags. dir should be a physical root of filesystem. 2588 * If you've mounted a non-root directory somewhere and want to do remount 2589 * on it - tough luck. 2590 */ 2591 static int do_remount(struct path *path, int ms_flags, int sb_flags, 2592 int mnt_flags, void *data) 2593 { 2594 int err; 2595 struct super_block *sb = path->mnt->mnt_sb; 2596 struct mount *mnt = real_mount(path->mnt); 2597 struct fs_context *fc; 2598 2599 if (!check_mnt(mnt)) 2600 return -EINVAL; 2601 2602 if (path->dentry != path->mnt->mnt_root) 2603 return -EINVAL; 2604 2605 if (!can_change_locked_flags(mnt, mnt_flags)) 2606 return -EPERM; 2607 2608 fc = fs_context_for_reconfigure(path->dentry, sb_flags, MS_RMT_MASK); 2609 if (IS_ERR(fc)) 2610 return PTR_ERR(fc); 2611 2612 fc->oldapi = true; 2613 err = parse_monolithic_mount_data(fc, data); 2614 if (!err) { 2615 down_write(&sb->s_umount); 2616 err = -EPERM; 2617 if (ns_capable(sb->s_user_ns, CAP_SYS_ADMIN)) { 2618 err = reconfigure_super(fc); 2619 if (!err) 2620 set_mount_attributes(mnt, mnt_flags); 2621 } 2622 up_write(&sb->s_umount); 2623 } 2624 2625 mnt_warn_timestamp_expiry(path, &mnt->mnt); 2626 2627 put_fs_context(fc); 2628 return err; 2629 } 2630 2631 static inline int tree_contains_unbindable(struct mount *mnt) 2632 { 2633 struct mount *p; 2634 for (p = mnt; p; p = next_mnt(p, mnt)) { 2635 if (IS_MNT_UNBINDABLE(p)) 2636 return 1; 2637 } 2638 return 0; 2639 } 2640 2641 /* 2642 * Check that there aren't references to earlier/same mount namespaces in the 2643 * specified subtree. Such references can act as pins for mount namespaces 2644 * that aren't checked by the mount-cycle checking code, thereby allowing 2645 * cycles to be made. 2646 */ 2647 static bool check_for_nsfs_mounts(struct mount *subtree) 2648 { 2649 struct mount *p; 2650 bool ret = false; 2651 2652 lock_mount_hash(); 2653 for (p = subtree; p; p = next_mnt(p, subtree)) 2654 if (mnt_ns_loop(p->mnt.mnt_root)) 2655 goto out; 2656 2657 ret = true; 2658 out: 2659 unlock_mount_hash(); 2660 return ret; 2661 } 2662 2663 static int do_move_mount(struct path *old_path, struct path *new_path) 2664 { 2665 struct mnt_namespace *ns; 2666 struct mount *p; 2667 struct mount *old; 2668 struct mount *parent; 2669 struct mountpoint *mp, *old_mp; 2670 int err; 2671 bool attached; 2672 2673 mp = lock_mount(new_path); 2674 if (IS_ERR(mp)) 2675 return PTR_ERR(mp); 2676 2677 old = real_mount(old_path->mnt); 2678 p = real_mount(new_path->mnt); 2679 parent = old->mnt_parent; 2680 attached = mnt_has_parent(old); 2681 old_mp = old->mnt_mp; 2682 ns = old->mnt_ns; 2683 2684 err = -EINVAL; 2685 /* The mountpoint must be in our namespace. */ 2686 if (!check_mnt(p)) 2687 goto out; 2688 2689 /* The thing moved must be mounted... */ 2690 if (!is_mounted(&old->mnt)) 2691 goto out; 2692 2693 /* ... and either ours or the root of anon namespace */ 2694 if (!(attached ? check_mnt(old) : is_anon_ns(ns))) 2695 goto out; 2696 2697 if (old->mnt.mnt_flags & MNT_LOCKED) 2698 goto out; 2699 2700 if (old_path->dentry != old_path->mnt->mnt_root) 2701 goto out; 2702 2703 if (d_is_dir(new_path->dentry) != 2704 d_is_dir(old_path->dentry)) 2705 goto out; 2706 /* 2707 * Don't move a mount residing in a shared parent. 2708 */ 2709 if (attached && IS_MNT_SHARED(parent)) 2710 goto out; 2711 /* 2712 * Don't move a mount tree containing unbindable mounts to a destination 2713 * mount which is shared. 2714 */ 2715 if (IS_MNT_SHARED(p) && tree_contains_unbindable(old)) 2716 goto out; 2717 err = -ELOOP; 2718 if (!check_for_nsfs_mounts(old)) 2719 goto out; 2720 for (; mnt_has_parent(p); p = p->mnt_parent) 2721 if (p == old) 2722 goto out; 2723 2724 err = attach_recursive_mnt(old, real_mount(new_path->mnt), mp, 2725 attached); 2726 if (err) 2727 goto out; 2728 2729 /* if the mount is moved, it should no longer be expire 2730 * automatically */ 2731 list_del_init(&old->mnt_expire); 2732 if (attached) 2733 put_mountpoint(old_mp); 2734 out: 2735 unlock_mount(mp); 2736 if (!err) { 2737 if (attached) 2738 mntput_no_expire(parent); 2739 else 2740 free_mnt_ns(ns); 2741 } 2742 return err; 2743 } 2744 2745 static int do_move_mount_old(struct path *path, const char *old_name) 2746 { 2747 struct path old_path; 2748 int err; 2749 2750 if (!old_name || !*old_name) 2751 return -EINVAL; 2752 2753 err = kern_path(old_name, LOOKUP_FOLLOW, &old_path); 2754 if (err) 2755 return err; 2756 2757 err = do_move_mount(&old_path, path); 2758 path_put(&old_path); 2759 return err; 2760 } 2761 2762 /* 2763 * add a mount into a namespace's mount tree 2764 */ 2765 static int do_add_mount(struct mount *newmnt, struct mountpoint *mp, 2766 struct path *path, int mnt_flags) 2767 { 2768 struct mount *parent = real_mount(path->mnt); 2769 2770 mnt_flags &= ~MNT_INTERNAL_FLAGS; 2771 2772 if (unlikely(!check_mnt(parent))) { 2773 /* that's acceptable only for automounts done in private ns */ 2774 if (!(mnt_flags & MNT_SHRINKABLE)) 2775 return -EINVAL; 2776 /* ... and for those we'd better have mountpoint still alive */ 2777 if (!parent->mnt_ns) 2778 return -EINVAL; 2779 } 2780 2781 /* Refuse the same filesystem on the same mount point */ 2782 if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb && 2783 path->mnt->mnt_root == path->dentry) 2784 return -EBUSY; 2785 2786 if (d_is_symlink(newmnt->mnt.mnt_root)) 2787 return -EINVAL; 2788 2789 newmnt->mnt.mnt_flags = mnt_flags; 2790 return graft_tree(newmnt, parent, mp); 2791 } 2792 2793 static bool mount_too_revealing(const struct super_block *sb, int *new_mnt_flags); 2794 2795 /* 2796 * Create a new mount using a superblock configuration and request it 2797 * be added to the namespace tree. 2798 */ 2799 static int do_new_mount_fc(struct fs_context *fc, struct path *mountpoint, 2800 unsigned int mnt_flags) 2801 { 2802 struct vfsmount *mnt; 2803 struct mountpoint *mp; 2804 struct super_block *sb = fc->root->d_sb; 2805 int error; 2806 2807 error = security_sb_kern_mount(sb); 2808 if (!error && mount_too_revealing(sb, &mnt_flags)) 2809 error = -EPERM; 2810 2811 if (unlikely(error)) { 2812 fc_drop_locked(fc); 2813 return error; 2814 } 2815 2816 up_write(&sb->s_umount); 2817 2818 mnt = vfs_create_mount(fc); 2819 if (IS_ERR(mnt)) 2820 return PTR_ERR(mnt); 2821 2822 mnt_warn_timestamp_expiry(mountpoint, mnt); 2823 2824 mp = lock_mount(mountpoint); 2825 if (IS_ERR(mp)) { 2826 mntput(mnt); 2827 return PTR_ERR(mp); 2828 } 2829 error = do_add_mount(real_mount(mnt), mp, mountpoint, mnt_flags); 2830 unlock_mount(mp); 2831 if (error < 0) 2832 mntput(mnt); 2833 return error; 2834 } 2835 2836 /* 2837 * create a new mount for userspace and request it to be added into the 2838 * namespace's tree 2839 */ 2840 static int do_new_mount(struct path *path, const char *fstype, int sb_flags, 2841 int mnt_flags, const char *name, void *data) 2842 { 2843 struct file_system_type *type; 2844 struct fs_context *fc; 2845 const char *subtype = NULL; 2846 int err = 0; 2847 2848 if (!fstype) 2849 return -EINVAL; 2850 2851 type = get_fs_type(fstype); 2852 if (!type) 2853 return -ENODEV; 2854 2855 if (type->fs_flags & FS_HAS_SUBTYPE) { 2856 subtype = strchr(fstype, '.'); 2857 if (subtype) { 2858 subtype++; 2859 if (!*subtype) { 2860 put_filesystem(type); 2861 return -EINVAL; 2862 } 2863 } 2864 } 2865 2866 fc = fs_context_for_mount(type, sb_flags); 2867 put_filesystem(type); 2868 if (IS_ERR(fc)) 2869 return PTR_ERR(fc); 2870 2871 if (subtype) 2872 err = vfs_parse_fs_string(fc, "subtype", 2873 subtype, strlen(subtype)); 2874 if (!err && name) 2875 err = vfs_parse_fs_string(fc, "source", name, strlen(name)); 2876 if (!err) 2877 err = parse_monolithic_mount_data(fc, data); 2878 if (!err && !mount_capable(fc)) 2879 err = -EPERM; 2880 if (!err) 2881 err = vfs_get_tree(fc); 2882 if (!err) 2883 err = do_new_mount_fc(fc, path, mnt_flags); 2884 2885 put_fs_context(fc); 2886 return err; 2887 } 2888 2889 int finish_automount(struct vfsmount *m, struct path *path) 2890 { 2891 struct dentry *dentry = path->dentry; 2892 struct mountpoint *mp; 2893 struct mount *mnt; 2894 int err; 2895 2896 if (!m) 2897 return 0; 2898 if (IS_ERR(m)) 2899 return PTR_ERR(m); 2900 2901 mnt = real_mount(m); 2902 /* The new mount record should have at least 2 refs to prevent it being 2903 * expired before we get a chance to add it 2904 */ 2905 BUG_ON(mnt_get_count(mnt) < 2); 2906 2907 if (m->mnt_sb == path->mnt->mnt_sb && 2908 m->mnt_root == dentry) { 2909 err = -ELOOP; 2910 goto discard; 2911 } 2912 2913 /* 2914 * we don't want to use lock_mount() - in this case finding something 2915 * that overmounts our mountpoint to be means "quitely drop what we've 2916 * got", not "try to mount it on top". 2917 */ 2918 inode_lock(dentry->d_inode); 2919 namespace_lock(); 2920 if (unlikely(cant_mount(dentry))) { 2921 err = -ENOENT; 2922 goto discard_locked; 2923 } 2924 rcu_read_lock(); 2925 if (unlikely(__lookup_mnt(path->mnt, dentry))) { 2926 rcu_read_unlock(); 2927 err = 0; 2928 goto discard_locked; 2929 } 2930 rcu_read_unlock(); 2931 mp = get_mountpoint(dentry); 2932 if (IS_ERR(mp)) { 2933 err = PTR_ERR(mp); 2934 goto discard_locked; 2935 } 2936 2937 err = do_add_mount(mnt, mp, path, path->mnt->mnt_flags | MNT_SHRINKABLE); 2938 unlock_mount(mp); 2939 if (unlikely(err)) 2940 goto discard; 2941 mntput(m); 2942 return 0; 2943 2944 discard_locked: 2945 namespace_unlock(); 2946 inode_unlock(dentry->d_inode); 2947 discard: 2948 /* remove m from any expiration list it may be on */ 2949 if (!list_empty(&mnt->mnt_expire)) { 2950 namespace_lock(); 2951 list_del_init(&mnt->mnt_expire); 2952 namespace_unlock(); 2953 } 2954 mntput(m); 2955 mntput(m); 2956 return err; 2957 } 2958 2959 /** 2960 * mnt_set_expiry - Put a mount on an expiration list 2961 * @mnt: The mount to list. 2962 * @expiry_list: The list to add the mount to. 2963 */ 2964 void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list) 2965 { 2966 namespace_lock(); 2967 2968 list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list); 2969 2970 namespace_unlock(); 2971 } 2972 EXPORT_SYMBOL(mnt_set_expiry); 2973 2974 /* 2975 * process a list of expirable mountpoints with the intent of discarding any 2976 * mountpoints that aren't in use and haven't been touched since last we came 2977 * here 2978 */ 2979 void mark_mounts_for_expiry(struct list_head *mounts) 2980 { 2981 struct mount *mnt, *next; 2982 LIST_HEAD(graveyard); 2983 2984 if (list_empty(mounts)) 2985 return; 2986 2987 namespace_lock(); 2988 lock_mount_hash(); 2989 2990 /* extract from the expiration list every vfsmount that matches the 2991 * following criteria: 2992 * - only referenced by its parent vfsmount 2993 * - still marked for expiry (marked on the last call here; marks are 2994 * cleared by mntput()) 2995 */ 2996 list_for_each_entry_safe(mnt, next, mounts, mnt_expire) { 2997 if (!xchg(&mnt->mnt_expiry_mark, 1) || 2998 propagate_mount_busy(mnt, 1)) 2999 continue; 3000 list_move(&mnt->mnt_expire, &graveyard); 3001 } 3002 while (!list_empty(&graveyard)) { 3003 mnt = list_first_entry(&graveyard, struct mount, mnt_expire); 3004 touch_mnt_namespace(mnt->mnt_ns); 3005 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC); 3006 } 3007 unlock_mount_hash(); 3008 namespace_unlock(); 3009 } 3010 3011 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry); 3012 3013 /* 3014 * Ripoff of 'select_parent()' 3015 * 3016 * search the list of submounts for a given mountpoint, and move any 3017 * shrinkable submounts to the 'graveyard' list. 3018 */ 3019 static int select_submounts(struct mount *parent, struct list_head *graveyard) 3020 { 3021 struct mount *this_parent = parent; 3022 struct list_head *next; 3023 int found = 0; 3024 3025 repeat: 3026 next = this_parent->mnt_mounts.next; 3027 resume: 3028 while (next != &this_parent->mnt_mounts) { 3029 struct list_head *tmp = next; 3030 struct mount *mnt = list_entry(tmp, struct mount, mnt_child); 3031 3032 next = tmp->next; 3033 if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE)) 3034 continue; 3035 /* 3036 * Descend a level if the d_mounts list is non-empty. 3037 */ 3038 if (!list_empty(&mnt->mnt_mounts)) { 3039 this_parent = mnt; 3040 goto repeat; 3041 } 3042 3043 if (!propagate_mount_busy(mnt, 1)) { 3044 list_move_tail(&mnt->mnt_expire, graveyard); 3045 found++; 3046 } 3047 } 3048 /* 3049 * All done at this level ... ascend and resume the search 3050 */ 3051 if (this_parent != parent) { 3052 next = this_parent->mnt_child.next; 3053 this_parent = this_parent->mnt_parent; 3054 goto resume; 3055 } 3056 return found; 3057 } 3058 3059 /* 3060 * process a list of expirable mountpoints with the intent of discarding any 3061 * submounts of a specific parent mountpoint 3062 * 3063 * mount_lock must be held for write 3064 */ 3065 static void shrink_submounts(struct mount *mnt) 3066 { 3067 LIST_HEAD(graveyard); 3068 struct mount *m; 3069 3070 /* extract submounts of 'mountpoint' from the expiration list */ 3071 while (select_submounts(mnt, &graveyard)) { 3072 while (!list_empty(&graveyard)) { 3073 m = list_first_entry(&graveyard, struct mount, 3074 mnt_expire); 3075 touch_mnt_namespace(m->mnt_ns); 3076 umount_tree(m, UMOUNT_PROPAGATE|UMOUNT_SYNC); 3077 } 3078 } 3079 } 3080 3081 static void *copy_mount_options(const void __user * data) 3082 { 3083 char *copy; 3084 unsigned left, offset; 3085 3086 if (!data) 3087 return NULL; 3088 3089 copy = kmalloc(PAGE_SIZE, GFP_KERNEL); 3090 if (!copy) 3091 return ERR_PTR(-ENOMEM); 3092 3093 left = copy_from_user(copy, data, PAGE_SIZE); 3094 3095 /* 3096 * Not all architectures have an exact copy_from_user(). Resort to 3097 * byte at a time. 3098 */ 3099 offset = PAGE_SIZE - left; 3100 while (left) { 3101 char c; 3102 if (get_user(c, (const char __user *)data + offset)) 3103 break; 3104 copy[offset] = c; 3105 left--; 3106 offset++; 3107 } 3108 3109 if (left == PAGE_SIZE) { 3110 kfree(copy); 3111 return ERR_PTR(-EFAULT); 3112 } 3113 3114 return copy; 3115 } 3116 3117 static char *copy_mount_string(const void __user *data) 3118 { 3119 return data ? strndup_user(data, PATH_MAX) : NULL; 3120 } 3121 3122 /* 3123 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to 3124 * be given to the mount() call (ie: read-only, no-dev, no-suid etc). 3125 * 3126 * data is a (void *) that can point to any structure up to 3127 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent 3128 * information (or be NULL). 3129 * 3130 * Pre-0.97 versions of mount() didn't have a flags word. 3131 * When the flags word was introduced its top half was required 3132 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9. 3133 * Therefore, if this magic number is present, it carries no information 3134 * and must be discarded. 3135 */ 3136 int path_mount(const char *dev_name, struct path *path, 3137 const char *type_page, unsigned long flags, void *data_page) 3138 { 3139 unsigned int mnt_flags = 0, sb_flags; 3140 int ret; 3141 3142 /* Discard magic */ 3143 if ((flags & MS_MGC_MSK) == MS_MGC_VAL) 3144 flags &= ~MS_MGC_MSK; 3145 3146 /* Basic sanity checks */ 3147 if (data_page) 3148 ((char *)data_page)[PAGE_SIZE - 1] = 0; 3149 3150 if (flags & MS_NOUSER) 3151 return -EINVAL; 3152 3153 ret = security_sb_mount(dev_name, path, type_page, flags, data_page); 3154 if (ret) 3155 return ret; 3156 if (!may_mount()) 3157 return -EPERM; 3158 if ((flags & SB_MANDLOCK) && !may_mandlock()) 3159 return -EPERM; 3160 3161 /* Default to relatime unless overriden */ 3162 if (!(flags & MS_NOATIME)) 3163 mnt_flags |= MNT_RELATIME; 3164 3165 /* Separate the per-mountpoint flags */ 3166 if (flags & MS_NOSUID) 3167 mnt_flags |= MNT_NOSUID; 3168 if (flags & MS_NODEV) 3169 mnt_flags |= MNT_NODEV; 3170 if (flags & MS_NOEXEC) 3171 mnt_flags |= MNT_NOEXEC; 3172 if (flags & MS_NOATIME) 3173 mnt_flags |= MNT_NOATIME; 3174 if (flags & MS_NODIRATIME) 3175 mnt_flags |= MNT_NODIRATIME; 3176 if (flags & MS_STRICTATIME) 3177 mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME); 3178 if (flags & MS_RDONLY) 3179 mnt_flags |= MNT_READONLY; 3180 if (flags & MS_NOSYMFOLLOW) 3181 mnt_flags |= MNT_NOSYMFOLLOW; 3182 3183 /* The default atime for remount is preservation */ 3184 if ((flags & MS_REMOUNT) && 3185 ((flags & (MS_NOATIME | MS_NODIRATIME | MS_RELATIME | 3186 MS_STRICTATIME)) == 0)) { 3187 mnt_flags &= ~MNT_ATIME_MASK; 3188 mnt_flags |= path->mnt->mnt_flags & MNT_ATIME_MASK; 3189 } 3190 3191 sb_flags = flags & (SB_RDONLY | 3192 SB_SYNCHRONOUS | 3193 SB_MANDLOCK | 3194 SB_DIRSYNC | 3195 SB_SILENT | 3196 SB_POSIXACL | 3197 SB_LAZYTIME | 3198 SB_I_VERSION); 3199 3200 if ((flags & (MS_REMOUNT | MS_BIND)) == (MS_REMOUNT | MS_BIND)) 3201 return do_reconfigure_mnt(path, mnt_flags); 3202 if (flags & MS_REMOUNT) 3203 return do_remount(path, flags, sb_flags, mnt_flags, data_page); 3204 if (flags & MS_BIND) 3205 return do_loopback(path, dev_name, flags & MS_REC); 3206 if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE)) 3207 return do_change_type(path, flags); 3208 if (flags & MS_MOVE) 3209 return do_move_mount_old(path, dev_name); 3210 3211 return do_new_mount(path, type_page, sb_flags, mnt_flags, dev_name, 3212 data_page); 3213 } 3214 3215 long do_mount(const char *dev_name, const char __user *dir_name, 3216 const char *type_page, unsigned long flags, void *data_page) 3217 { 3218 struct path path; 3219 int ret; 3220 3221 ret = user_path_at(AT_FDCWD, dir_name, LOOKUP_FOLLOW, &path); 3222 if (ret) 3223 return ret; 3224 ret = path_mount(dev_name, &path, type_page, flags, data_page); 3225 path_put(&path); 3226 return ret; 3227 } 3228 3229 static struct ucounts *inc_mnt_namespaces(struct user_namespace *ns) 3230 { 3231 return inc_ucount(ns, current_euid(), UCOUNT_MNT_NAMESPACES); 3232 } 3233 3234 static void dec_mnt_namespaces(struct ucounts *ucounts) 3235 { 3236 dec_ucount(ucounts, UCOUNT_MNT_NAMESPACES); 3237 } 3238 3239 static void free_mnt_ns(struct mnt_namespace *ns) 3240 { 3241 if (!is_anon_ns(ns)) 3242 ns_free_inum(&ns->ns); 3243 dec_mnt_namespaces(ns->ucounts); 3244 put_user_ns(ns->user_ns); 3245 kfree(ns); 3246 } 3247 3248 /* 3249 * Assign a sequence number so we can detect when we attempt to bind 3250 * mount a reference to an older mount namespace into the current 3251 * mount namespace, preventing reference counting loops. A 64bit 3252 * number incrementing at 10Ghz will take 12,427 years to wrap which 3253 * is effectively never, so we can ignore the possibility. 3254 */ 3255 static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1); 3256 3257 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns, bool anon) 3258 { 3259 struct mnt_namespace *new_ns; 3260 struct ucounts *ucounts; 3261 int ret; 3262 3263 ucounts = inc_mnt_namespaces(user_ns); 3264 if (!ucounts) 3265 return ERR_PTR(-ENOSPC); 3266 3267 new_ns = kzalloc(sizeof(struct mnt_namespace), GFP_KERNEL); 3268 if (!new_ns) { 3269 dec_mnt_namespaces(ucounts); 3270 return ERR_PTR(-ENOMEM); 3271 } 3272 if (!anon) { 3273 ret = ns_alloc_inum(&new_ns->ns); 3274 if (ret) { 3275 kfree(new_ns); 3276 dec_mnt_namespaces(ucounts); 3277 return ERR_PTR(ret); 3278 } 3279 } 3280 new_ns->ns.ops = &mntns_operations; 3281 if (!anon) 3282 new_ns->seq = atomic64_add_return(1, &mnt_ns_seq); 3283 refcount_set(&new_ns->ns.count, 1); 3284 INIT_LIST_HEAD(&new_ns->list); 3285 init_waitqueue_head(&new_ns->poll); 3286 spin_lock_init(&new_ns->ns_lock); 3287 new_ns->user_ns = get_user_ns(user_ns); 3288 new_ns->ucounts = ucounts; 3289 return new_ns; 3290 } 3291 3292 __latent_entropy 3293 struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns, 3294 struct user_namespace *user_ns, struct fs_struct *new_fs) 3295 { 3296 struct mnt_namespace *new_ns; 3297 struct vfsmount *rootmnt = NULL, *pwdmnt = NULL; 3298 struct mount *p, *q; 3299 struct mount *old; 3300 struct mount *new; 3301 int copy_flags; 3302 3303 BUG_ON(!ns); 3304 3305 if (likely(!(flags & CLONE_NEWNS))) { 3306 get_mnt_ns(ns); 3307 return ns; 3308 } 3309 3310 old = ns->root; 3311 3312 new_ns = alloc_mnt_ns(user_ns, false); 3313 if (IS_ERR(new_ns)) 3314 return new_ns; 3315 3316 namespace_lock(); 3317 /* First pass: copy the tree topology */ 3318 copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE; 3319 if (user_ns != ns->user_ns) 3320 copy_flags |= CL_SHARED_TO_SLAVE; 3321 new = copy_tree(old, old->mnt.mnt_root, copy_flags); 3322 if (IS_ERR(new)) { 3323 namespace_unlock(); 3324 free_mnt_ns(new_ns); 3325 return ERR_CAST(new); 3326 } 3327 if (user_ns != ns->user_ns) { 3328 lock_mount_hash(); 3329 lock_mnt_tree(new); 3330 unlock_mount_hash(); 3331 } 3332 new_ns->root = new; 3333 list_add_tail(&new_ns->list, &new->mnt_list); 3334 3335 /* 3336 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts 3337 * as belonging to new namespace. We have already acquired a private 3338 * fs_struct, so tsk->fs->lock is not needed. 3339 */ 3340 p = old; 3341 q = new; 3342 while (p) { 3343 q->mnt_ns = new_ns; 3344 new_ns->mounts++; 3345 if (new_fs) { 3346 if (&p->mnt == new_fs->root.mnt) { 3347 new_fs->root.mnt = mntget(&q->mnt); 3348 rootmnt = &p->mnt; 3349 } 3350 if (&p->mnt == new_fs->pwd.mnt) { 3351 new_fs->pwd.mnt = mntget(&q->mnt); 3352 pwdmnt = &p->mnt; 3353 } 3354 } 3355 p = next_mnt(p, old); 3356 q = next_mnt(q, new); 3357 if (!q) 3358 break; 3359 while (p->mnt.mnt_root != q->mnt.mnt_root) 3360 p = next_mnt(p, old); 3361 } 3362 namespace_unlock(); 3363 3364 if (rootmnt) 3365 mntput(rootmnt); 3366 if (pwdmnt) 3367 mntput(pwdmnt); 3368 3369 return new_ns; 3370 } 3371 3372 struct dentry *mount_subtree(struct vfsmount *m, const char *name) 3373 { 3374 struct mount *mnt = real_mount(m); 3375 struct mnt_namespace *ns; 3376 struct super_block *s; 3377 struct path path; 3378 int err; 3379 3380 ns = alloc_mnt_ns(&init_user_ns, true); 3381 if (IS_ERR(ns)) { 3382 mntput(m); 3383 return ERR_CAST(ns); 3384 } 3385 mnt->mnt_ns = ns; 3386 ns->root = mnt; 3387 ns->mounts++; 3388 list_add(&mnt->mnt_list, &ns->list); 3389 3390 err = vfs_path_lookup(m->mnt_root, m, 3391 name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path); 3392 3393 put_mnt_ns(ns); 3394 3395 if (err) 3396 return ERR_PTR(err); 3397 3398 /* trade a vfsmount reference for active sb one */ 3399 s = path.mnt->mnt_sb; 3400 atomic_inc(&s->s_active); 3401 mntput(path.mnt); 3402 /* lock the sucker */ 3403 down_write(&s->s_umount); 3404 /* ... and return the root of (sub)tree on it */ 3405 return path.dentry; 3406 } 3407 EXPORT_SYMBOL(mount_subtree); 3408 3409 SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name, 3410 char __user *, type, unsigned long, flags, void __user *, data) 3411 { 3412 int ret; 3413 char *kernel_type; 3414 char *kernel_dev; 3415 void *options; 3416 3417 kernel_type = copy_mount_string(type); 3418 ret = PTR_ERR(kernel_type); 3419 if (IS_ERR(kernel_type)) 3420 goto out_type; 3421 3422 kernel_dev = copy_mount_string(dev_name); 3423 ret = PTR_ERR(kernel_dev); 3424 if (IS_ERR(kernel_dev)) 3425 goto out_dev; 3426 3427 options = copy_mount_options(data); 3428 ret = PTR_ERR(options); 3429 if (IS_ERR(options)) 3430 goto out_data; 3431 3432 ret = do_mount(kernel_dev, dir_name, kernel_type, flags, options); 3433 3434 kfree(options); 3435 out_data: 3436 kfree(kernel_dev); 3437 out_dev: 3438 kfree(kernel_type); 3439 out_type: 3440 return ret; 3441 } 3442 3443 /* 3444 * Create a kernel mount representation for a new, prepared superblock 3445 * (specified by fs_fd) and attach to an open_tree-like file descriptor. 3446 */ 3447 SYSCALL_DEFINE3(fsmount, int, fs_fd, unsigned int, flags, 3448 unsigned int, attr_flags) 3449 { 3450 struct mnt_namespace *ns; 3451 struct fs_context *fc; 3452 struct file *file; 3453 struct path newmount; 3454 struct mount *mnt; 3455 struct fd f; 3456 unsigned int mnt_flags = 0; 3457 long ret; 3458 3459 if (!may_mount()) 3460 return -EPERM; 3461 3462 if ((flags & ~(FSMOUNT_CLOEXEC)) != 0) 3463 return -EINVAL; 3464 3465 if (attr_flags & ~(MOUNT_ATTR_RDONLY | 3466 MOUNT_ATTR_NOSUID | 3467 MOUNT_ATTR_NODEV | 3468 MOUNT_ATTR_NOEXEC | 3469 MOUNT_ATTR__ATIME | 3470 MOUNT_ATTR_NODIRATIME)) 3471 return -EINVAL; 3472 3473 if (attr_flags & MOUNT_ATTR_RDONLY) 3474 mnt_flags |= MNT_READONLY; 3475 if (attr_flags & MOUNT_ATTR_NOSUID) 3476 mnt_flags |= MNT_NOSUID; 3477 if (attr_flags & MOUNT_ATTR_NODEV) 3478 mnt_flags |= MNT_NODEV; 3479 if (attr_flags & MOUNT_ATTR_NOEXEC) 3480 mnt_flags |= MNT_NOEXEC; 3481 if (attr_flags & MOUNT_ATTR_NODIRATIME) 3482 mnt_flags |= MNT_NODIRATIME; 3483 3484 switch (attr_flags & MOUNT_ATTR__ATIME) { 3485 case MOUNT_ATTR_STRICTATIME: 3486 break; 3487 case MOUNT_ATTR_NOATIME: 3488 mnt_flags |= MNT_NOATIME; 3489 break; 3490 case MOUNT_ATTR_RELATIME: 3491 mnt_flags |= MNT_RELATIME; 3492 break; 3493 default: 3494 return -EINVAL; 3495 } 3496 3497 f = fdget(fs_fd); 3498 if (!f.file) 3499 return -EBADF; 3500 3501 ret = -EINVAL; 3502 if (f.file->f_op != &fscontext_fops) 3503 goto err_fsfd; 3504 3505 fc = f.file->private_data; 3506 3507 ret = mutex_lock_interruptible(&fc->uapi_mutex); 3508 if (ret < 0) 3509 goto err_fsfd; 3510 3511 /* There must be a valid superblock or we can't mount it */ 3512 ret = -EINVAL; 3513 if (!fc->root) 3514 goto err_unlock; 3515 3516 ret = -EPERM; 3517 if (mount_too_revealing(fc->root->d_sb, &mnt_flags)) { 3518 pr_warn("VFS: Mount too revealing\n"); 3519 goto err_unlock; 3520 } 3521 3522 ret = -EBUSY; 3523 if (fc->phase != FS_CONTEXT_AWAITING_MOUNT) 3524 goto err_unlock; 3525 3526 ret = -EPERM; 3527 if ((fc->sb_flags & SB_MANDLOCK) && !may_mandlock()) 3528 goto err_unlock; 3529 3530 newmount.mnt = vfs_create_mount(fc); 3531 if (IS_ERR(newmount.mnt)) { 3532 ret = PTR_ERR(newmount.mnt); 3533 goto err_unlock; 3534 } 3535 newmount.dentry = dget(fc->root); 3536 newmount.mnt->mnt_flags = mnt_flags; 3537 3538 /* We've done the mount bit - now move the file context into more or 3539 * less the same state as if we'd done an fspick(). We don't want to 3540 * do any memory allocation or anything like that at this point as we 3541 * don't want to have to handle any errors incurred. 3542 */ 3543 vfs_clean_context(fc); 3544 3545 ns = alloc_mnt_ns(current->nsproxy->mnt_ns->user_ns, true); 3546 if (IS_ERR(ns)) { 3547 ret = PTR_ERR(ns); 3548 goto err_path; 3549 } 3550 mnt = real_mount(newmount.mnt); 3551 mnt->mnt_ns = ns; 3552 ns->root = mnt; 3553 ns->mounts = 1; 3554 list_add(&mnt->mnt_list, &ns->list); 3555 mntget(newmount.mnt); 3556 3557 /* Attach to an apparent O_PATH fd with a note that we need to unmount 3558 * it, not just simply put it. 3559 */ 3560 file = dentry_open(&newmount, O_PATH, fc->cred); 3561 if (IS_ERR(file)) { 3562 dissolve_on_fput(newmount.mnt); 3563 ret = PTR_ERR(file); 3564 goto err_path; 3565 } 3566 file->f_mode |= FMODE_NEED_UNMOUNT; 3567 3568 ret = get_unused_fd_flags((flags & FSMOUNT_CLOEXEC) ? O_CLOEXEC : 0); 3569 if (ret >= 0) 3570 fd_install(ret, file); 3571 else 3572 fput(file); 3573 3574 err_path: 3575 path_put(&newmount); 3576 err_unlock: 3577 mutex_unlock(&fc->uapi_mutex); 3578 err_fsfd: 3579 fdput(f); 3580 return ret; 3581 } 3582 3583 /* 3584 * Move a mount from one place to another. In combination with 3585 * fsopen()/fsmount() this is used to install a new mount and in combination 3586 * with open_tree(OPEN_TREE_CLONE [| AT_RECURSIVE]) it can be used to copy 3587 * a mount subtree. 3588 * 3589 * Note the flags value is a combination of MOVE_MOUNT_* flags. 3590 */ 3591 SYSCALL_DEFINE5(move_mount, 3592 int, from_dfd, const char __user *, from_pathname, 3593 int, to_dfd, const char __user *, to_pathname, 3594 unsigned int, flags) 3595 { 3596 struct path from_path, to_path; 3597 unsigned int lflags; 3598 int ret = 0; 3599 3600 if (!may_mount()) 3601 return -EPERM; 3602 3603 if (flags & ~MOVE_MOUNT__MASK) 3604 return -EINVAL; 3605 3606 /* If someone gives a pathname, they aren't permitted to move 3607 * from an fd that requires unmount as we can't get at the flag 3608 * to clear it afterwards. 3609 */ 3610 lflags = 0; 3611 if (flags & MOVE_MOUNT_F_SYMLINKS) lflags |= LOOKUP_FOLLOW; 3612 if (flags & MOVE_MOUNT_F_AUTOMOUNTS) lflags |= LOOKUP_AUTOMOUNT; 3613 if (flags & MOVE_MOUNT_F_EMPTY_PATH) lflags |= LOOKUP_EMPTY; 3614 3615 ret = user_path_at(from_dfd, from_pathname, lflags, &from_path); 3616 if (ret < 0) 3617 return ret; 3618 3619 lflags = 0; 3620 if (flags & MOVE_MOUNT_T_SYMLINKS) lflags |= LOOKUP_FOLLOW; 3621 if (flags & MOVE_MOUNT_T_AUTOMOUNTS) lflags |= LOOKUP_AUTOMOUNT; 3622 if (flags & MOVE_MOUNT_T_EMPTY_PATH) lflags |= LOOKUP_EMPTY; 3623 3624 ret = user_path_at(to_dfd, to_pathname, lflags, &to_path); 3625 if (ret < 0) 3626 goto out_from; 3627 3628 ret = security_move_mount(&from_path, &to_path); 3629 if (ret < 0) 3630 goto out_to; 3631 3632 ret = do_move_mount(&from_path, &to_path); 3633 3634 out_to: 3635 path_put(&to_path); 3636 out_from: 3637 path_put(&from_path); 3638 return ret; 3639 } 3640 3641 /* 3642 * Return true if path is reachable from root 3643 * 3644 * namespace_sem or mount_lock is held 3645 */ 3646 bool is_path_reachable(struct mount *mnt, struct dentry *dentry, 3647 const struct path *root) 3648 { 3649 while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) { 3650 dentry = mnt->mnt_mountpoint; 3651 mnt = mnt->mnt_parent; 3652 } 3653 return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry); 3654 } 3655 3656 bool path_is_under(const struct path *path1, const struct path *path2) 3657 { 3658 bool res; 3659 read_seqlock_excl(&mount_lock); 3660 res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2); 3661 read_sequnlock_excl(&mount_lock); 3662 return res; 3663 } 3664 EXPORT_SYMBOL(path_is_under); 3665 3666 /* 3667 * pivot_root Semantics: 3668 * Moves the root file system of the current process to the directory put_old, 3669 * makes new_root as the new root file system of the current process, and sets 3670 * root/cwd of all processes which had them on the current root to new_root. 3671 * 3672 * Restrictions: 3673 * The new_root and put_old must be directories, and must not be on the 3674 * same file system as the current process root. The put_old must be 3675 * underneath new_root, i.e. adding a non-zero number of /.. to the string 3676 * pointed to by put_old must yield the same directory as new_root. No other 3677 * file system may be mounted on put_old. After all, new_root is a mountpoint. 3678 * 3679 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem. 3680 * See Documentation/filesystems/ramfs-rootfs-initramfs.rst for alternatives 3681 * in this situation. 3682 * 3683 * Notes: 3684 * - we don't move root/cwd if they are not at the root (reason: if something 3685 * cared enough to change them, it's probably wrong to force them elsewhere) 3686 * - it's okay to pick a root that isn't the root of a file system, e.g. 3687 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint, 3688 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root 3689 * first. 3690 */ 3691 SYSCALL_DEFINE2(pivot_root, const char __user *, new_root, 3692 const char __user *, put_old) 3693 { 3694 struct path new, old, root; 3695 struct mount *new_mnt, *root_mnt, *old_mnt, *root_parent, *ex_parent; 3696 struct mountpoint *old_mp, *root_mp; 3697 int error; 3698 3699 if (!may_mount()) 3700 return -EPERM; 3701 3702 error = user_path_at(AT_FDCWD, new_root, 3703 LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &new); 3704 if (error) 3705 goto out0; 3706 3707 error = user_path_at(AT_FDCWD, put_old, 3708 LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &old); 3709 if (error) 3710 goto out1; 3711 3712 error = security_sb_pivotroot(&old, &new); 3713 if (error) 3714 goto out2; 3715 3716 get_fs_root(current->fs, &root); 3717 old_mp = lock_mount(&old); 3718 error = PTR_ERR(old_mp); 3719 if (IS_ERR(old_mp)) 3720 goto out3; 3721 3722 error = -EINVAL; 3723 new_mnt = real_mount(new.mnt); 3724 root_mnt = real_mount(root.mnt); 3725 old_mnt = real_mount(old.mnt); 3726 ex_parent = new_mnt->mnt_parent; 3727 root_parent = root_mnt->mnt_parent; 3728 if (IS_MNT_SHARED(old_mnt) || 3729 IS_MNT_SHARED(ex_parent) || 3730 IS_MNT_SHARED(root_parent)) 3731 goto out4; 3732 if (!check_mnt(root_mnt) || !check_mnt(new_mnt)) 3733 goto out4; 3734 if (new_mnt->mnt.mnt_flags & MNT_LOCKED) 3735 goto out4; 3736 error = -ENOENT; 3737 if (d_unlinked(new.dentry)) 3738 goto out4; 3739 error = -EBUSY; 3740 if (new_mnt == root_mnt || old_mnt == root_mnt) 3741 goto out4; /* loop, on the same file system */ 3742 error = -EINVAL; 3743 if (root.mnt->mnt_root != root.dentry) 3744 goto out4; /* not a mountpoint */ 3745 if (!mnt_has_parent(root_mnt)) 3746 goto out4; /* not attached */ 3747 if (new.mnt->mnt_root != new.dentry) 3748 goto out4; /* not a mountpoint */ 3749 if (!mnt_has_parent(new_mnt)) 3750 goto out4; /* not attached */ 3751 /* make sure we can reach put_old from new_root */ 3752 if (!is_path_reachable(old_mnt, old.dentry, &new)) 3753 goto out4; 3754 /* make certain new is below the root */ 3755 if (!is_path_reachable(new_mnt, new.dentry, &root)) 3756 goto out4; 3757 lock_mount_hash(); 3758 umount_mnt(new_mnt); 3759 root_mp = unhash_mnt(root_mnt); /* we'll need its mountpoint */ 3760 if (root_mnt->mnt.mnt_flags & MNT_LOCKED) { 3761 new_mnt->mnt.mnt_flags |= MNT_LOCKED; 3762 root_mnt->mnt.mnt_flags &= ~MNT_LOCKED; 3763 } 3764 /* mount old root on put_old */ 3765 attach_mnt(root_mnt, old_mnt, old_mp); 3766 /* mount new_root on / */ 3767 attach_mnt(new_mnt, root_parent, root_mp); 3768 mnt_add_count(root_parent, -1); 3769 touch_mnt_namespace(current->nsproxy->mnt_ns); 3770 /* A moved mount should not expire automatically */ 3771 list_del_init(&new_mnt->mnt_expire); 3772 put_mountpoint(root_mp); 3773 unlock_mount_hash(); 3774 chroot_fs_refs(&root, &new); 3775 error = 0; 3776 out4: 3777 unlock_mount(old_mp); 3778 if (!error) 3779 mntput_no_expire(ex_parent); 3780 out3: 3781 path_put(&root); 3782 out2: 3783 path_put(&old); 3784 out1: 3785 path_put(&new); 3786 out0: 3787 return error; 3788 } 3789 3790 static void __init init_mount_tree(void) 3791 { 3792 struct vfsmount *mnt; 3793 struct mount *m; 3794 struct mnt_namespace *ns; 3795 struct path root; 3796 3797 mnt = vfs_kern_mount(&rootfs_fs_type, 0, "rootfs", NULL); 3798 if (IS_ERR(mnt)) 3799 panic("Can't create rootfs"); 3800 3801 ns = alloc_mnt_ns(&init_user_ns, false); 3802 if (IS_ERR(ns)) 3803 panic("Can't allocate initial namespace"); 3804 m = real_mount(mnt); 3805 m->mnt_ns = ns; 3806 ns->root = m; 3807 ns->mounts = 1; 3808 list_add(&m->mnt_list, &ns->list); 3809 init_task.nsproxy->mnt_ns = ns; 3810 get_mnt_ns(ns); 3811 3812 root.mnt = mnt; 3813 root.dentry = mnt->mnt_root; 3814 mnt->mnt_flags |= MNT_LOCKED; 3815 3816 set_fs_pwd(current->fs, &root); 3817 set_fs_root(current->fs, &root); 3818 } 3819 3820 void __init mnt_init(void) 3821 { 3822 int err; 3823 3824 mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount), 3825 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL); 3826 3827 mount_hashtable = alloc_large_system_hash("Mount-cache", 3828 sizeof(struct hlist_head), 3829 mhash_entries, 19, 3830 HASH_ZERO, 3831 &m_hash_shift, &m_hash_mask, 0, 0); 3832 mountpoint_hashtable = alloc_large_system_hash("Mountpoint-cache", 3833 sizeof(struct hlist_head), 3834 mphash_entries, 19, 3835 HASH_ZERO, 3836 &mp_hash_shift, &mp_hash_mask, 0, 0); 3837 3838 if (!mount_hashtable || !mountpoint_hashtable) 3839 panic("Failed to allocate mount hash table\n"); 3840 3841 kernfs_init(); 3842 3843 err = sysfs_init(); 3844 if (err) 3845 printk(KERN_WARNING "%s: sysfs_init error: %d\n", 3846 __func__, err); 3847 fs_kobj = kobject_create_and_add("fs", NULL); 3848 if (!fs_kobj) 3849 printk(KERN_WARNING "%s: kobj create error\n", __func__); 3850 shmem_init(); 3851 init_rootfs(); 3852 init_mount_tree(); 3853 } 3854 3855 void put_mnt_ns(struct mnt_namespace *ns) 3856 { 3857 if (!refcount_dec_and_test(&ns->ns.count)) 3858 return; 3859 drop_collected_mounts(&ns->root->mnt); 3860 free_mnt_ns(ns); 3861 } 3862 3863 struct vfsmount *kern_mount(struct file_system_type *type) 3864 { 3865 struct vfsmount *mnt; 3866 mnt = vfs_kern_mount(type, SB_KERNMOUNT, type->name, NULL); 3867 if (!IS_ERR(mnt)) { 3868 /* 3869 * it is a longterm mount, don't release mnt until 3870 * we unmount before file sys is unregistered 3871 */ 3872 real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL; 3873 } 3874 return mnt; 3875 } 3876 EXPORT_SYMBOL_GPL(kern_mount); 3877 3878 void kern_unmount(struct vfsmount *mnt) 3879 { 3880 /* release long term mount so mount point can be released */ 3881 if (!IS_ERR_OR_NULL(mnt)) { 3882 real_mount(mnt)->mnt_ns = NULL; 3883 synchronize_rcu(); /* yecchhh... */ 3884 mntput(mnt); 3885 } 3886 } 3887 EXPORT_SYMBOL(kern_unmount); 3888 3889 void kern_unmount_array(struct vfsmount *mnt[], unsigned int num) 3890 { 3891 unsigned int i; 3892 3893 for (i = 0; i < num; i++) 3894 if (mnt[i]) 3895 real_mount(mnt[i])->mnt_ns = NULL; 3896 synchronize_rcu_expedited(); 3897 for (i = 0; i < num; i++) 3898 mntput(mnt[i]); 3899 } 3900 EXPORT_SYMBOL(kern_unmount_array); 3901 3902 bool our_mnt(struct vfsmount *mnt) 3903 { 3904 return check_mnt(real_mount(mnt)); 3905 } 3906 3907 bool current_chrooted(void) 3908 { 3909 /* Does the current process have a non-standard root */ 3910 struct path ns_root; 3911 struct path fs_root; 3912 bool chrooted; 3913 3914 /* Find the namespace root */ 3915 ns_root.mnt = ¤t->nsproxy->mnt_ns->root->mnt; 3916 ns_root.dentry = ns_root.mnt->mnt_root; 3917 path_get(&ns_root); 3918 while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root)) 3919 ; 3920 3921 get_fs_root(current->fs, &fs_root); 3922 3923 chrooted = !path_equal(&fs_root, &ns_root); 3924 3925 path_put(&fs_root); 3926 path_put(&ns_root); 3927 3928 return chrooted; 3929 } 3930 3931 static bool mnt_already_visible(struct mnt_namespace *ns, 3932 const struct super_block *sb, 3933 int *new_mnt_flags) 3934 { 3935 int new_flags = *new_mnt_flags; 3936 struct mount *mnt; 3937 bool visible = false; 3938 3939 down_read(&namespace_sem); 3940 lock_ns_list(ns); 3941 list_for_each_entry(mnt, &ns->list, mnt_list) { 3942 struct mount *child; 3943 int mnt_flags; 3944 3945 if (mnt_is_cursor(mnt)) 3946 continue; 3947 3948 if (mnt->mnt.mnt_sb->s_type != sb->s_type) 3949 continue; 3950 3951 /* This mount is not fully visible if it's root directory 3952 * is not the root directory of the filesystem. 3953 */ 3954 if (mnt->mnt.mnt_root != mnt->mnt.mnt_sb->s_root) 3955 continue; 3956 3957 /* A local view of the mount flags */ 3958 mnt_flags = mnt->mnt.mnt_flags; 3959 3960 /* Don't miss readonly hidden in the superblock flags */ 3961 if (sb_rdonly(mnt->mnt.mnt_sb)) 3962 mnt_flags |= MNT_LOCK_READONLY; 3963 3964 /* Verify the mount flags are equal to or more permissive 3965 * than the proposed new mount. 3966 */ 3967 if ((mnt_flags & MNT_LOCK_READONLY) && 3968 !(new_flags & MNT_READONLY)) 3969 continue; 3970 if ((mnt_flags & MNT_LOCK_ATIME) && 3971 ((mnt_flags & MNT_ATIME_MASK) != (new_flags & MNT_ATIME_MASK))) 3972 continue; 3973 3974 /* This mount is not fully visible if there are any 3975 * locked child mounts that cover anything except for 3976 * empty directories. 3977 */ 3978 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) { 3979 struct inode *inode = child->mnt_mountpoint->d_inode; 3980 /* Only worry about locked mounts */ 3981 if (!(child->mnt.mnt_flags & MNT_LOCKED)) 3982 continue; 3983 /* Is the directory permanetly empty? */ 3984 if (!is_empty_dir_inode(inode)) 3985 goto next; 3986 } 3987 /* Preserve the locked attributes */ 3988 *new_mnt_flags |= mnt_flags & (MNT_LOCK_READONLY | \ 3989 MNT_LOCK_ATIME); 3990 visible = true; 3991 goto found; 3992 next: ; 3993 } 3994 found: 3995 unlock_ns_list(ns); 3996 up_read(&namespace_sem); 3997 return visible; 3998 } 3999 4000 static bool mount_too_revealing(const struct super_block *sb, int *new_mnt_flags) 4001 { 4002 const unsigned long required_iflags = SB_I_NOEXEC | SB_I_NODEV; 4003 struct mnt_namespace *ns = current->nsproxy->mnt_ns; 4004 unsigned long s_iflags; 4005 4006 if (ns->user_ns == &init_user_ns) 4007 return false; 4008 4009 /* Can this filesystem be too revealing? */ 4010 s_iflags = sb->s_iflags; 4011 if (!(s_iflags & SB_I_USERNS_VISIBLE)) 4012 return false; 4013 4014 if ((s_iflags & required_iflags) != required_iflags) { 4015 WARN_ONCE(1, "Expected s_iflags to contain 0x%lx\n", 4016 required_iflags); 4017 return true; 4018 } 4019 4020 return !mnt_already_visible(ns, sb, new_mnt_flags); 4021 } 4022 4023 bool mnt_may_suid(struct vfsmount *mnt) 4024 { 4025 /* 4026 * Foreign mounts (accessed via fchdir or through /proc 4027 * symlinks) are always treated as if they are nosuid. This 4028 * prevents namespaces from trusting potentially unsafe 4029 * suid/sgid bits, file caps, or security labels that originate 4030 * in other namespaces. 4031 */ 4032 return !(mnt->mnt_flags & MNT_NOSUID) && check_mnt(real_mount(mnt)) && 4033 current_in_userns(mnt->mnt_sb->s_user_ns); 4034 } 4035 4036 static struct ns_common *mntns_get(struct task_struct *task) 4037 { 4038 struct ns_common *ns = NULL; 4039 struct nsproxy *nsproxy; 4040 4041 task_lock(task); 4042 nsproxy = task->nsproxy; 4043 if (nsproxy) { 4044 ns = &nsproxy->mnt_ns->ns; 4045 get_mnt_ns(to_mnt_ns(ns)); 4046 } 4047 task_unlock(task); 4048 4049 return ns; 4050 } 4051 4052 static void mntns_put(struct ns_common *ns) 4053 { 4054 put_mnt_ns(to_mnt_ns(ns)); 4055 } 4056 4057 static int mntns_install(struct nsset *nsset, struct ns_common *ns) 4058 { 4059 struct nsproxy *nsproxy = nsset->nsproxy; 4060 struct fs_struct *fs = nsset->fs; 4061 struct mnt_namespace *mnt_ns = to_mnt_ns(ns), *old_mnt_ns; 4062 struct user_namespace *user_ns = nsset->cred->user_ns; 4063 struct path root; 4064 int err; 4065 4066 if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) || 4067 !ns_capable(user_ns, CAP_SYS_CHROOT) || 4068 !ns_capable(user_ns, CAP_SYS_ADMIN)) 4069 return -EPERM; 4070 4071 if (is_anon_ns(mnt_ns)) 4072 return -EINVAL; 4073 4074 if (fs->users != 1) 4075 return -EINVAL; 4076 4077 get_mnt_ns(mnt_ns); 4078 old_mnt_ns = nsproxy->mnt_ns; 4079 nsproxy->mnt_ns = mnt_ns; 4080 4081 /* Find the root */ 4082 err = vfs_path_lookup(mnt_ns->root->mnt.mnt_root, &mnt_ns->root->mnt, 4083 "/", LOOKUP_DOWN, &root); 4084 if (err) { 4085 /* revert to old namespace */ 4086 nsproxy->mnt_ns = old_mnt_ns; 4087 put_mnt_ns(mnt_ns); 4088 return err; 4089 } 4090 4091 put_mnt_ns(old_mnt_ns); 4092 4093 /* Update the pwd and root */ 4094 set_fs_pwd(fs, &root); 4095 set_fs_root(fs, &root); 4096 4097 path_put(&root); 4098 return 0; 4099 } 4100 4101 static struct user_namespace *mntns_owner(struct ns_common *ns) 4102 { 4103 return to_mnt_ns(ns)->user_ns; 4104 } 4105 4106 const struct proc_ns_operations mntns_operations = { 4107 .name = "mnt", 4108 .type = CLONE_NEWNS, 4109 .get = mntns_get, 4110 .put = mntns_put, 4111 .install = mntns_install, 4112 .owner = mntns_owner, 4113 }; 4114