1 /* 2 * linux/fs/namespace.c 3 * 4 * (C) Copyright Al Viro 2000, 2001 5 * Released under GPL v2. 6 * 7 * Based on code from fs/super.c, copyright Linus Torvalds and others. 8 * Heavily rewritten. 9 */ 10 11 #include <linux/syscalls.h> 12 #include <linux/export.h> 13 #include <linux/capability.h> 14 #include <linux/mnt_namespace.h> 15 #include <linux/user_namespace.h> 16 #include <linux/namei.h> 17 #include <linux/security.h> 18 #include <linux/idr.h> 19 #include <linux/acct.h> /* acct_auto_close_mnt */ 20 #include <linux/ramfs.h> /* init_rootfs */ 21 #include <linux/fs_struct.h> /* get_fs_root et.al. */ 22 #include <linux/fsnotify.h> /* fsnotify_vfsmount_delete */ 23 #include <linux/uaccess.h> 24 #include <linux/proc_ns.h> 25 #include <linux/magic.h> 26 #include "pnode.h" 27 #include "internal.h" 28 29 #define HASH_SHIFT ilog2(PAGE_SIZE / sizeof(struct list_head)) 30 #define HASH_SIZE (1UL << HASH_SHIFT) 31 32 static int event; 33 static DEFINE_IDA(mnt_id_ida); 34 static DEFINE_IDA(mnt_group_ida); 35 static DEFINE_SPINLOCK(mnt_id_lock); 36 static int mnt_id_start = 0; 37 static int mnt_group_start = 1; 38 39 static struct list_head *mount_hashtable __read_mostly; 40 static struct list_head *mountpoint_hashtable __read_mostly; 41 static struct kmem_cache *mnt_cache __read_mostly; 42 static struct rw_semaphore namespace_sem; 43 44 /* /sys/fs */ 45 struct kobject *fs_kobj; 46 EXPORT_SYMBOL_GPL(fs_kobj); 47 48 /* 49 * vfsmount lock may be taken for read to prevent changes to the 50 * vfsmount hash, ie. during mountpoint lookups or walking back 51 * up the tree. 52 * 53 * It should be taken for write in all cases where the vfsmount 54 * tree or hash is modified or when a vfsmount structure is modified. 55 */ 56 DEFINE_BRLOCK(vfsmount_lock); 57 58 static inline unsigned long hash(struct vfsmount *mnt, struct dentry *dentry) 59 { 60 unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES); 61 tmp += ((unsigned long)dentry / L1_CACHE_BYTES); 62 tmp = tmp + (tmp >> HASH_SHIFT); 63 return tmp & (HASH_SIZE - 1); 64 } 65 66 #define MNT_WRITER_UNDERFLOW_LIMIT -(1<<16) 67 68 /* 69 * allocation is serialized by namespace_sem, but we need the spinlock to 70 * serialize with freeing. 71 */ 72 static int mnt_alloc_id(struct mount *mnt) 73 { 74 int res; 75 76 retry: 77 ida_pre_get(&mnt_id_ida, GFP_KERNEL); 78 spin_lock(&mnt_id_lock); 79 res = ida_get_new_above(&mnt_id_ida, mnt_id_start, &mnt->mnt_id); 80 if (!res) 81 mnt_id_start = mnt->mnt_id + 1; 82 spin_unlock(&mnt_id_lock); 83 if (res == -EAGAIN) 84 goto retry; 85 86 return res; 87 } 88 89 static void mnt_free_id(struct mount *mnt) 90 { 91 int id = mnt->mnt_id; 92 spin_lock(&mnt_id_lock); 93 ida_remove(&mnt_id_ida, id); 94 if (mnt_id_start > id) 95 mnt_id_start = id; 96 spin_unlock(&mnt_id_lock); 97 } 98 99 /* 100 * Allocate a new peer group ID 101 * 102 * mnt_group_ida is protected by namespace_sem 103 */ 104 static int mnt_alloc_group_id(struct mount *mnt) 105 { 106 int res; 107 108 if (!ida_pre_get(&mnt_group_ida, GFP_KERNEL)) 109 return -ENOMEM; 110 111 res = ida_get_new_above(&mnt_group_ida, 112 mnt_group_start, 113 &mnt->mnt_group_id); 114 if (!res) 115 mnt_group_start = mnt->mnt_group_id + 1; 116 117 return res; 118 } 119 120 /* 121 * Release a peer group ID 122 */ 123 void mnt_release_group_id(struct mount *mnt) 124 { 125 int id = mnt->mnt_group_id; 126 ida_remove(&mnt_group_ida, id); 127 if (mnt_group_start > id) 128 mnt_group_start = id; 129 mnt->mnt_group_id = 0; 130 } 131 132 /* 133 * vfsmount lock must be held for read 134 */ 135 static inline void mnt_add_count(struct mount *mnt, int n) 136 { 137 #ifdef CONFIG_SMP 138 this_cpu_add(mnt->mnt_pcp->mnt_count, n); 139 #else 140 preempt_disable(); 141 mnt->mnt_count += n; 142 preempt_enable(); 143 #endif 144 } 145 146 /* 147 * vfsmount lock must be held for write 148 */ 149 unsigned int mnt_get_count(struct mount *mnt) 150 { 151 #ifdef CONFIG_SMP 152 unsigned int count = 0; 153 int cpu; 154 155 for_each_possible_cpu(cpu) { 156 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count; 157 } 158 159 return count; 160 #else 161 return mnt->mnt_count; 162 #endif 163 } 164 165 static struct mount *alloc_vfsmnt(const char *name) 166 { 167 struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL); 168 if (mnt) { 169 int err; 170 171 err = mnt_alloc_id(mnt); 172 if (err) 173 goto out_free_cache; 174 175 if (name) { 176 mnt->mnt_devname = kstrdup(name, GFP_KERNEL); 177 if (!mnt->mnt_devname) 178 goto out_free_id; 179 } 180 181 #ifdef CONFIG_SMP 182 mnt->mnt_pcp = alloc_percpu(struct mnt_pcp); 183 if (!mnt->mnt_pcp) 184 goto out_free_devname; 185 186 this_cpu_add(mnt->mnt_pcp->mnt_count, 1); 187 #else 188 mnt->mnt_count = 1; 189 mnt->mnt_writers = 0; 190 #endif 191 192 INIT_LIST_HEAD(&mnt->mnt_hash); 193 INIT_LIST_HEAD(&mnt->mnt_child); 194 INIT_LIST_HEAD(&mnt->mnt_mounts); 195 INIT_LIST_HEAD(&mnt->mnt_list); 196 INIT_LIST_HEAD(&mnt->mnt_expire); 197 INIT_LIST_HEAD(&mnt->mnt_share); 198 INIT_LIST_HEAD(&mnt->mnt_slave_list); 199 INIT_LIST_HEAD(&mnt->mnt_slave); 200 #ifdef CONFIG_FSNOTIFY 201 INIT_HLIST_HEAD(&mnt->mnt_fsnotify_marks); 202 #endif 203 } 204 return mnt; 205 206 #ifdef CONFIG_SMP 207 out_free_devname: 208 kfree(mnt->mnt_devname); 209 #endif 210 out_free_id: 211 mnt_free_id(mnt); 212 out_free_cache: 213 kmem_cache_free(mnt_cache, mnt); 214 return NULL; 215 } 216 217 /* 218 * Most r/o checks on a fs are for operations that take 219 * discrete amounts of time, like a write() or unlink(). 220 * We must keep track of when those operations start 221 * (for permission checks) and when they end, so that 222 * we can determine when writes are able to occur to 223 * a filesystem. 224 */ 225 /* 226 * __mnt_is_readonly: check whether a mount is read-only 227 * @mnt: the mount to check for its write status 228 * 229 * This shouldn't be used directly ouside of the VFS. 230 * It does not guarantee that the filesystem will stay 231 * r/w, just that it is right *now*. This can not and 232 * should not be used in place of IS_RDONLY(inode). 233 * mnt_want/drop_write() will _keep_ the filesystem 234 * r/w. 235 */ 236 int __mnt_is_readonly(struct vfsmount *mnt) 237 { 238 if (mnt->mnt_flags & MNT_READONLY) 239 return 1; 240 if (mnt->mnt_sb->s_flags & MS_RDONLY) 241 return 1; 242 return 0; 243 } 244 EXPORT_SYMBOL_GPL(__mnt_is_readonly); 245 246 static inline void mnt_inc_writers(struct mount *mnt) 247 { 248 #ifdef CONFIG_SMP 249 this_cpu_inc(mnt->mnt_pcp->mnt_writers); 250 #else 251 mnt->mnt_writers++; 252 #endif 253 } 254 255 static inline void mnt_dec_writers(struct mount *mnt) 256 { 257 #ifdef CONFIG_SMP 258 this_cpu_dec(mnt->mnt_pcp->mnt_writers); 259 #else 260 mnt->mnt_writers--; 261 #endif 262 } 263 264 static unsigned int mnt_get_writers(struct mount *mnt) 265 { 266 #ifdef CONFIG_SMP 267 unsigned int count = 0; 268 int cpu; 269 270 for_each_possible_cpu(cpu) { 271 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers; 272 } 273 274 return count; 275 #else 276 return mnt->mnt_writers; 277 #endif 278 } 279 280 static int mnt_is_readonly(struct vfsmount *mnt) 281 { 282 if (mnt->mnt_sb->s_readonly_remount) 283 return 1; 284 /* Order wrt setting s_flags/s_readonly_remount in do_remount() */ 285 smp_rmb(); 286 return __mnt_is_readonly(mnt); 287 } 288 289 /* 290 * Most r/o & frozen checks on a fs are for operations that take discrete 291 * amounts of time, like a write() or unlink(). We must keep track of when 292 * those operations start (for permission checks) and when they end, so that we 293 * can determine when writes are able to occur to a filesystem. 294 */ 295 /** 296 * __mnt_want_write - get write access to a mount without freeze protection 297 * @m: the mount on which to take a write 298 * 299 * This tells the low-level filesystem that a write is about to be performed to 300 * it, and makes sure that writes are allowed (mnt it read-write) before 301 * returning success. This operation does not protect against filesystem being 302 * frozen. When the write operation is finished, __mnt_drop_write() must be 303 * called. This is effectively a refcount. 304 */ 305 int __mnt_want_write(struct vfsmount *m) 306 { 307 struct mount *mnt = real_mount(m); 308 int ret = 0; 309 310 preempt_disable(); 311 mnt_inc_writers(mnt); 312 /* 313 * The store to mnt_inc_writers must be visible before we pass 314 * MNT_WRITE_HOLD loop below, so that the slowpath can see our 315 * incremented count after it has set MNT_WRITE_HOLD. 316 */ 317 smp_mb(); 318 while (ACCESS_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD) 319 cpu_relax(); 320 /* 321 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will 322 * be set to match its requirements. So we must not load that until 323 * MNT_WRITE_HOLD is cleared. 324 */ 325 smp_rmb(); 326 if (mnt_is_readonly(m)) { 327 mnt_dec_writers(mnt); 328 ret = -EROFS; 329 } 330 preempt_enable(); 331 332 return ret; 333 } 334 335 /** 336 * mnt_want_write - get write access to a mount 337 * @m: the mount on which to take a write 338 * 339 * This tells the low-level filesystem that a write is about to be performed to 340 * it, and makes sure that writes are allowed (mount is read-write, filesystem 341 * is not frozen) before returning success. When the write operation is 342 * finished, mnt_drop_write() must be called. This is effectively a refcount. 343 */ 344 int mnt_want_write(struct vfsmount *m) 345 { 346 int ret; 347 348 sb_start_write(m->mnt_sb); 349 ret = __mnt_want_write(m); 350 if (ret) 351 sb_end_write(m->mnt_sb); 352 return ret; 353 } 354 EXPORT_SYMBOL_GPL(mnt_want_write); 355 356 /** 357 * mnt_clone_write - get write access to a mount 358 * @mnt: the mount on which to take a write 359 * 360 * This is effectively like mnt_want_write, except 361 * it must only be used to take an extra write reference 362 * on a mountpoint that we already know has a write reference 363 * on it. This allows some optimisation. 364 * 365 * After finished, mnt_drop_write must be called as usual to 366 * drop the reference. 367 */ 368 int mnt_clone_write(struct vfsmount *mnt) 369 { 370 /* superblock may be r/o */ 371 if (__mnt_is_readonly(mnt)) 372 return -EROFS; 373 preempt_disable(); 374 mnt_inc_writers(real_mount(mnt)); 375 preempt_enable(); 376 return 0; 377 } 378 EXPORT_SYMBOL_GPL(mnt_clone_write); 379 380 /** 381 * __mnt_want_write_file - get write access to a file's mount 382 * @file: the file who's mount on which to take a write 383 * 384 * This is like __mnt_want_write, but it takes a file and can 385 * do some optimisations if the file is open for write already 386 */ 387 int __mnt_want_write_file(struct file *file) 388 { 389 struct inode *inode = file_inode(file); 390 391 if (!(file->f_mode & FMODE_WRITE) || special_file(inode->i_mode)) 392 return __mnt_want_write(file->f_path.mnt); 393 else 394 return mnt_clone_write(file->f_path.mnt); 395 } 396 397 /** 398 * mnt_want_write_file - get write access to a file's mount 399 * @file: the file who's mount on which to take a write 400 * 401 * This is like mnt_want_write, but it takes a file and can 402 * do some optimisations if the file is open for write already 403 */ 404 int mnt_want_write_file(struct file *file) 405 { 406 int ret; 407 408 sb_start_write(file->f_path.mnt->mnt_sb); 409 ret = __mnt_want_write_file(file); 410 if (ret) 411 sb_end_write(file->f_path.mnt->mnt_sb); 412 return ret; 413 } 414 EXPORT_SYMBOL_GPL(mnt_want_write_file); 415 416 /** 417 * __mnt_drop_write - give up write access to a mount 418 * @mnt: the mount on which to give up write access 419 * 420 * Tells the low-level filesystem that we are done 421 * performing writes to it. Must be matched with 422 * __mnt_want_write() call above. 423 */ 424 void __mnt_drop_write(struct vfsmount *mnt) 425 { 426 preempt_disable(); 427 mnt_dec_writers(real_mount(mnt)); 428 preempt_enable(); 429 } 430 431 /** 432 * mnt_drop_write - give up write access to a mount 433 * @mnt: the mount on which to give up write access 434 * 435 * Tells the low-level filesystem that we are done performing writes to it and 436 * also allows filesystem to be frozen again. Must be matched with 437 * mnt_want_write() call above. 438 */ 439 void mnt_drop_write(struct vfsmount *mnt) 440 { 441 __mnt_drop_write(mnt); 442 sb_end_write(mnt->mnt_sb); 443 } 444 EXPORT_SYMBOL_GPL(mnt_drop_write); 445 446 void __mnt_drop_write_file(struct file *file) 447 { 448 __mnt_drop_write(file->f_path.mnt); 449 } 450 451 void mnt_drop_write_file(struct file *file) 452 { 453 mnt_drop_write(file->f_path.mnt); 454 } 455 EXPORT_SYMBOL(mnt_drop_write_file); 456 457 static int mnt_make_readonly(struct mount *mnt) 458 { 459 int ret = 0; 460 461 br_write_lock(&vfsmount_lock); 462 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD; 463 /* 464 * After storing MNT_WRITE_HOLD, we'll read the counters. This store 465 * should be visible before we do. 466 */ 467 smp_mb(); 468 469 /* 470 * With writers on hold, if this value is zero, then there are 471 * definitely no active writers (although held writers may subsequently 472 * increment the count, they'll have to wait, and decrement it after 473 * seeing MNT_READONLY). 474 * 475 * It is OK to have counter incremented on one CPU and decremented on 476 * another: the sum will add up correctly. The danger would be when we 477 * sum up each counter, if we read a counter before it is incremented, 478 * but then read another CPU's count which it has been subsequently 479 * decremented from -- we would see more decrements than we should. 480 * MNT_WRITE_HOLD protects against this scenario, because 481 * mnt_want_write first increments count, then smp_mb, then spins on 482 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while 483 * we're counting up here. 484 */ 485 if (mnt_get_writers(mnt) > 0) 486 ret = -EBUSY; 487 else 488 mnt->mnt.mnt_flags |= MNT_READONLY; 489 /* 490 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers 491 * that become unheld will see MNT_READONLY. 492 */ 493 smp_wmb(); 494 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD; 495 br_write_unlock(&vfsmount_lock); 496 return ret; 497 } 498 499 static void __mnt_unmake_readonly(struct mount *mnt) 500 { 501 br_write_lock(&vfsmount_lock); 502 mnt->mnt.mnt_flags &= ~MNT_READONLY; 503 br_write_unlock(&vfsmount_lock); 504 } 505 506 int sb_prepare_remount_readonly(struct super_block *sb) 507 { 508 struct mount *mnt; 509 int err = 0; 510 511 /* Racy optimization. Recheck the counter under MNT_WRITE_HOLD */ 512 if (atomic_long_read(&sb->s_remove_count)) 513 return -EBUSY; 514 515 br_write_lock(&vfsmount_lock); 516 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) { 517 if (!(mnt->mnt.mnt_flags & MNT_READONLY)) { 518 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD; 519 smp_mb(); 520 if (mnt_get_writers(mnt) > 0) { 521 err = -EBUSY; 522 break; 523 } 524 } 525 } 526 if (!err && atomic_long_read(&sb->s_remove_count)) 527 err = -EBUSY; 528 529 if (!err) { 530 sb->s_readonly_remount = 1; 531 smp_wmb(); 532 } 533 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) { 534 if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD) 535 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD; 536 } 537 br_write_unlock(&vfsmount_lock); 538 539 return err; 540 } 541 542 static void free_vfsmnt(struct mount *mnt) 543 { 544 kfree(mnt->mnt_devname); 545 mnt_free_id(mnt); 546 #ifdef CONFIG_SMP 547 free_percpu(mnt->mnt_pcp); 548 #endif 549 kmem_cache_free(mnt_cache, mnt); 550 } 551 552 /* 553 * find the first or last mount at @dentry on vfsmount @mnt depending on 554 * @dir. If @dir is set return the first mount else return the last mount. 555 * vfsmount_lock must be held for read or write. 556 */ 557 struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry, 558 int dir) 559 { 560 struct list_head *head = mount_hashtable + hash(mnt, dentry); 561 struct list_head *tmp = head; 562 struct mount *p, *found = NULL; 563 564 for (;;) { 565 tmp = dir ? tmp->next : tmp->prev; 566 p = NULL; 567 if (tmp == head) 568 break; 569 p = list_entry(tmp, struct mount, mnt_hash); 570 if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry) { 571 found = p; 572 break; 573 } 574 } 575 return found; 576 } 577 578 /* 579 * lookup_mnt - Return the first child mount mounted at path 580 * 581 * "First" means first mounted chronologically. If you create the 582 * following mounts: 583 * 584 * mount /dev/sda1 /mnt 585 * mount /dev/sda2 /mnt 586 * mount /dev/sda3 /mnt 587 * 588 * Then lookup_mnt() on the base /mnt dentry in the root mount will 589 * return successively the root dentry and vfsmount of /dev/sda1, then 590 * /dev/sda2, then /dev/sda3, then NULL. 591 * 592 * lookup_mnt takes a reference to the found vfsmount. 593 */ 594 struct vfsmount *lookup_mnt(struct path *path) 595 { 596 struct mount *child_mnt; 597 598 br_read_lock(&vfsmount_lock); 599 child_mnt = __lookup_mnt(path->mnt, path->dentry, 1); 600 if (child_mnt) { 601 mnt_add_count(child_mnt, 1); 602 br_read_unlock(&vfsmount_lock); 603 return &child_mnt->mnt; 604 } else { 605 br_read_unlock(&vfsmount_lock); 606 return NULL; 607 } 608 } 609 610 static struct mountpoint *new_mountpoint(struct dentry *dentry) 611 { 612 struct list_head *chain = mountpoint_hashtable + hash(NULL, dentry); 613 struct mountpoint *mp; 614 615 list_for_each_entry(mp, chain, m_hash) { 616 if (mp->m_dentry == dentry) { 617 /* might be worth a WARN_ON() */ 618 if (d_unlinked(dentry)) 619 return ERR_PTR(-ENOENT); 620 mp->m_count++; 621 return mp; 622 } 623 } 624 625 mp = kmalloc(sizeof(struct mountpoint), GFP_KERNEL); 626 if (!mp) 627 return ERR_PTR(-ENOMEM); 628 629 spin_lock(&dentry->d_lock); 630 if (d_unlinked(dentry)) { 631 spin_unlock(&dentry->d_lock); 632 kfree(mp); 633 return ERR_PTR(-ENOENT); 634 } 635 dentry->d_flags |= DCACHE_MOUNTED; 636 spin_unlock(&dentry->d_lock); 637 mp->m_dentry = dentry; 638 mp->m_count = 1; 639 list_add(&mp->m_hash, chain); 640 return mp; 641 } 642 643 static void put_mountpoint(struct mountpoint *mp) 644 { 645 if (!--mp->m_count) { 646 struct dentry *dentry = mp->m_dentry; 647 spin_lock(&dentry->d_lock); 648 dentry->d_flags &= ~DCACHE_MOUNTED; 649 spin_unlock(&dentry->d_lock); 650 list_del(&mp->m_hash); 651 kfree(mp); 652 } 653 } 654 655 static inline int check_mnt(struct mount *mnt) 656 { 657 return mnt->mnt_ns == current->nsproxy->mnt_ns; 658 } 659 660 /* 661 * vfsmount lock must be held for write 662 */ 663 static void touch_mnt_namespace(struct mnt_namespace *ns) 664 { 665 if (ns) { 666 ns->event = ++event; 667 wake_up_interruptible(&ns->poll); 668 } 669 } 670 671 /* 672 * vfsmount lock must be held for write 673 */ 674 static void __touch_mnt_namespace(struct mnt_namespace *ns) 675 { 676 if (ns && ns->event != event) { 677 ns->event = event; 678 wake_up_interruptible(&ns->poll); 679 } 680 } 681 682 /* 683 * vfsmount lock must be held for write 684 */ 685 static void detach_mnt(struct mount *mnt, struct path *old_path) 686 { 687 old_path->dentry = mnt->mnt_mountpoint; 688 old_path->mnt = &mnt->mnt_parent->mnt; 689 mnt->mnt_parent = mnt; 690 mnt->mnt_mountpoint = mnt->mnt.mnt_root; 691 list_del_init(&mnt->mnt_child); 692 list_del_init(&mnt->mnt_hash); 693 put_mountpoint(mnt->mnt_mp); 694 mnt->mnt_mp = NULL; 695 } 696 697 /* 698 * vfsmount lock must be held for write 699 */ 700 void mnt_set_mountpoint(struct mount *mnt, 701 struct mountpoint *mp, 702 struct mount *child_mnt) 703 { 704 mp->m_count++; 705 mnt_add_count(mnt, 1); /* essentially, that's mntget */ 706 child_mnt->mnt_mountpoint = dget(mp->m_dentry); 707 child_mnt->mnt_parent = mnt; 708 child_mnt->mnt_mp = mp; 709 } 710 711 /* 712 * vfsmount lock must be held for write 713 */ 714 static void attach_mnt(struct mount *mnt, 715 struct mount *parent, 716 struct mountpoint *mp) 717 { 718 mnt_set_mountpoint(parent, mp, mnt); 719 list_add_tail(&mnt->mnt_hash, mount_hashtable + 720 hash(&parent->mnt, mp->m_dentry)); 721 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts); 722 } 723 724 /* 725 * vfsmount lock must be held for write 726 */ 727 static void commit_tree(struct mount *mnt) 728 { 729 struct mount *parent = mnt->mnt_parent; 730 struct mount *m; 731 LIST_HEAD(head); 732 struct mnt_namespace *n = parent->mnt_ns; 733 734 BUG_ON(parent == mnt); 735 736 list_add_tail(&head, &mnt->mnt_list); 737 list_for_each_entry(m, &head, mnt_list) 738 m->mnt_ns = n; 739 740 list_splice(&head, n->list.prev); 741 742 list_add_tail(&mnt->mnt_hash, mount_hashtable + 743 hash(&parent->mnt, mnt->mnt_mountpoint)); 744 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts); 745 touch_mnt_namespace(n); 746 } 747 748 static struct mount *next_mnt(struct mount *p, struct mount *root) 749 { 750 struct list_head *next = p->mnt_mounts.next; 751 if (next == &p->mnt_mounts) { 752 while (1) { 753 if (p == root) 754 return NULL; 755 next = p->mnt_child.next; 756 if (next != &p->mnt_parent->mnt_mounts) 757 break; 758 p = p->mnt_parent; 759 } 760 } 761 return list_entry(next, struct mount, mnt_child); 762 } 763 764 static struct mount *skip_mnt_tree(struct mount *p) 765 { 766 struct list_head *prev = p->mnt_mounts.prev; 767 while (prev != &p->mnt_mounts) { 768 p = list_entry(prev, struct mount, mnt_child); 769 prev = p->mnt_mounts.prev; 770 } 771 return p; 772 } 773 774 struct vfsmount * 775 vfs_kern_mount(struct file_system_type *type, int flags, const char *name, void *data) 776 { 777 struct mount *mnt; 778 struct dentry *root; 779 780 if (!type) 781 return ERR_PTR(-ENODEV); 782 783 mnt = alloc_vfsmnt(name); 784 if (!mnt) 785 return ERR_PTR(-ENOMEM); 786 787 if (flags & MS_KERNMOUNT) 788 mnt->mnt.mnt_flags = MNT_INTERNAL; 789 790 root = mount_fs(type, flags, name, data); 791 if (IS_ERR(root)) { 792 free_vfsmnt(mnt); 793 return ERR_CAST(root); 794 } 795 796 mnt->mnt.mnt_root = root; 797 mnt->mnt.mnt_sb = root->d_sb; 798 mnt->mnt_mountpoint = mnt->mnt.mnt_root; 799 mnt->mnt_parent = mnt; 800 br_write_lock(&vfsmount_lock); 801 list_add_tail(&mnt->mnt_instance, &root->d_sb->s_mounts); 802 br_write_unlock(&vfsmount_lock); 803 return &mnt->mnt; 804 } 805 EXPORT_SYMBOL_GPL(vfs_kern_mount); 806 807 static struct mount *clone_mnt(struct mount *old, struct dentry *root, 808 int flag) 809 { 810 struct super_block *sb = old->mnt.mnt_sb; 811 struct mount *mnt; 812 int err; 813 814 mnt = alloc_vfsmnt(old->mnt_devname); 815 if (!mnt) 816 return ERR_PTR(-ENOMEM); 817 818 if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE)) 819 mnt->mnt_group_id = 0; /* not a peer of original */ 820 else 821 mnt->mnt_group_id = old->mnt_group_id; 822 823 if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) { 824 err = mnt_alloc_group_id(mnt); 825 if (err) 826 goto out_free; 827 } 828 829 mnt->mnt.mnt_flags = old->mnt.mnt_flags & ~MNT_WRITE_HOLD; 830 /* Don't allow unprivileged users to change mount flags */ 831 if ((flag & CL_UNPRIVILEGED) && (mnt->mnt.mnt_flags & MNT_READONLY)) 832 mnt->mnt.mnt_flags |= MNT_LOCK_READONLY; 833 834 atomic_inc(&sb->s_active); 835 mnt->mnt.mnt_sb = sb; 836 mnt->mnt.mnt_root = dget(root); 837 mnt->mnt_mountpoint = mnt->mnt.mnt_root; 838 mnt->mnt_parent = mnt; 839 br_write_lock(&vfsmount_lock); 840 list_add_tail(&mnt->mnt_instance, &sb->s_mounts); 841 br_write_unlock(&vfsmount_lock); 842 843 if ((flag & CL_SLAVE) || 844 ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) { 845 list_add(&mnt->mnt_slave, &old->mnt_slave_list); 846 mnt->mnt_master = old; 847 CLEAR_MNT_SHARED(mnt); 848 } else if (!(flag & CL_PRIVATE)) { 849 if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old)) 850 list_add(&mnt->mnt_share, &old->mnt_share); 851 if (IS_MNT_SLAVE(old)) 852 list_add(&mnt->mnt_slave, &old->mnt_slave); 853 mnt->mnt_master = old->mnt_master; 854 } 855 if (flag & CL_MAKE_SHARED) 856 set_mnt_shared(mnt); 857 858 /* stick the duplicate mount on the same expiry list 859 * as the original if that was on one */ 860 if (flag & CL_EXPIRE) { 861 if (!list_empty(&old->mnt_expire)) 862 list_add(&mnt->mnt_expire, &old->mnt_expire); 863 } 864 865 return mnt; 866 867 out_free: 868 free_vfsmnt(mnt); 869 return ERR_PTR(err); 870 } 871 872 static inline void mntfree(struct mount *mnt) 873 { 874 struct vfsmount *m = &mnt->mnt; 875 struct super_block *sb = m->mnt_sb; 876 877 /* 878 * This probably indicates that somebody messed 879 * up a mnt_want/drop_write() pair. If this 880 * happens, the filesystem was probably unable 881 * to make r/w->r/o transitions. 882 */ 883 /* 884 * The locking used to deal with mnt_count decrement provides barriers, 885 * so mnt_get_writers() below is safe. 886 */ 887 WARN_ON(mnt_get_writers(mnt)); 888 fsnotify_vfsmount_delete(m); 889 dput(m->mnt_root); 890 free_vfsmnt(mnt); 891 deactivate_super(sb); 892 } 893 894 static void mntput_no_expire(struct mount *mnt) 895 { 896 put_again: 897 #ifdef CONFIG_SMP 898 br_read_lock(&vfsmount_lock); 899 if (likely(mnt->mnt_ns)) { 900 /* shouldn't be the last one */ 901 mnt_add_count(mnt, -1); 902 br_read_unlock(&vfsmount_lock); 903 return; 904 } 905 br_read_unlock(&vfsmount_lock); 906 907 br_write_lock(&vfsmount_lock); 908 mnt_add_count(mnt, -1); 909 if (mnt_get_count(mnt)) { 910 br_write_unlock(&vfsmount_lock); 911 return; 912 } 913 #else 914 mnt_add_count(mnt, -1); 915 if (likely(mnt_get_count(mnt))) 916 return; 917 br_write_lock(&vfsmount_lock); 918 #endif 919 if (unlikely(mnt->mnt_pinned)) { 920 mnt_add_count(mnt, mnt->mnt_pinned + 1); 921 mnt->mnt_pinned = 0; 922 br_write_unlock(&vfsmount_lock); 923 acct_auto_close_mnt(&mnt->mnt); 924 goto put_again; 925 } 926 927 list_del(&mnt->mnt_instance); 928 br_write_unlock(&vfsmount_lock); 929 mntfree(mnt); 930 } 931 932 void mntput(struct vfsmount *mnt) 933 { 934 if (mnt) { 935 struct mount *m = real_mount(mnt); 936 /* avoid cacheline pingpong, hope gcc doesn't get "smart" */ 937 if (unlikely(m->mnt_expiry_mark)) 938 m->mnt_expiry_mark = 0; 939 mntput_no_expire(m); 940 } 941 } 942 EXPORT_SYMBOL(mntput); 943 944 struct vfsmount *mntget(struct vfsmount *mnt) 945 { 946 if (mnt) 947 mnt_add_count(real_mount(mnt), 1); 948 return mnt; 949 } 950 EXPORT_SYMBOL(mntget); 951 952 void mnt_pin(struct vfsmount *mnt) 953 { 954 br_write_lock(&vfsmount_lock); 955 real_mount(mnt)->mnt_pinned++; 956 br_write_unlock(&vfsmount_lock); 957 } 958 EXPORT_SYMBOL(mnt_pin); 959 960 void mnt_unpin(struct vfsmount *m) 961 { 962 struct mount *mnt = real_mount(m); 963 br_write_lock(&vfsmount_lock); 964 if (mnt->mnt_pinned) { 965 mnt_add_count(mnt, 1); 966 mnt->mnt_pinned--; 967 } 968 br_write_unlock(&vfsmount_lock); 969 } 970 EXPORT_SYMBOL(mnt_unpin); 971 972 static inline void mangle(struct seq_file *m, const char *s) 973 { 974 seq_escape(m, s, " \t\n\\"); 975 } 976 977 /* 978 * Simple .show_options callback for filesystems which don't want to 979 * implement more complex mount option showing. 980 * 981 * See also save_mount_options(). 982 */ 983 int generic_show_options(struct seq_file *m, struct dentry *root) 984 { 985 const char *options; 986 987 rcu_read_lock(); 988 options = rcu_dereference(root->d_sb->s_options); 989 990 if (options != NULL && options[0]) { 991 seq_putc(m, ','); 992 mangle(m, options); 993 } 994 rcu_read_unlock(); 995 996 return 0; 997 } 998 EXPORT_SYMBOL(generic_show_options); 999 1000 /* 1001 * If filesystem uses generic_show_options(), this function should be 1002 * called from the fill_super() callback. 1003 * 1004 * The .remount_fs callback usually needs to be handled in a special 1005 * way, to make sure, that previous options are not overwritten if the 1006 * remount fails. 1007 * 1008 * Also note, that if the filesystem's .remount_fs function doesn't 1009 * reset all options to their default value, but changes only newly 1010 * given options, then the displayed options will not reflect reality 1011 * any more. 1012 */ 1013 void save_mount_options(struct super_block *sb, char *options) 1014 { 1015 BUG_ON(sb->s_options); 1016 rcu_assign_pointer(sb->s_options, kstrdup(options, GFP_KERNEL)); 1017 } 1018 EXPORT_SYMBOL(save_mount_options); 1019 1020 void replace_mount_options(struct super_block *sb, char *options) 1021 { 1022 char *old = sb->s_options; 1023 rcu_assign_pointer(sb->s_options, options); 1024 if (old) { 1025 synchronize_rcu(); 1026 kfree(old); 1027 } 1028 } 1029 EXPORT_SYMBOL(replace_mount_options); 1030 1031 #ifdef CONFIG_PROC_FS 1032 /* iterator; we want it to have access to namespace_sem, thus here... */ 1033 static void *m_start(struct seq_file *m, loff_t *pos) 1034 { 1035 struct proc_mounts *p = proc_mounts(m); 1036 1037 down_read(&namespace_sem); 1038 return seq_list_start(&p->ns->list, *pos); 1039 } 1040 1041 static void *m_next(struct seq_file *m, void *v, loff_t *pos) 1042 { 1043 struct proc_mounts *p = proc_mounts(m); 1044 1045 return seq_list_next(v, &p->ns->list, pos); 1046 } 1047 1048 static void m_stop(struct seq_file *m, void *v) 1049 { 1050 up_read(&namespace_sem); 1051 } 1052 1053 static int m_show(struct seq_file *m, void *v) 1054 { 1055 struct proc_mounts *p = proc_mounts(m); 1056 struct mount *r = list_entry(v, struct mount, mnt_list); 1057 return p->show(m, &r->mnt); 1058 } 1059 1060 const struct seq_operations mounts_op = { 1061 .start = m_start, 1062 .next = m_next, 1063 .stop = m_stop, 1064 .show = m_show, 1065 }; 1066 #endif /* CONFIG_PROC_FS */ 1067 1068 /** 1069 * may_umount_tree - check if a mount tree is busy 1070 * @mnt: root of mount tree 1071 * 1072 * This is called to check if a tree of mounts has any 1073 * open files, pwds, chroots or sub mounts that are 1074 * busy. 1075 */ 1076 int may_umount_tree(struct vfsmount *m) 1077 { 1078 struct mount *mnt = real_mount(m); 1079 int actual_refs = 0; 1080 int minimum_refs = 0; 1081 struct mount *p; 1082 BUG_ON(!m); 1083 1084 /* write lock needed for mnt_get_count */ 1085 br_write_lock(&vfsmount_lock); 1086 for (p = mnt; p; p = next_mnt(p, mnt)) { 1087 actual_refs += mnt_get_count(p); 1088 minimum_refs += 2; 1089 } 1090 br_write_unlock(&vfsmount_lock); 1091 1092 if (actual_refs > minimum_refs) 1093 return 0; 1094 1095 return 1; 1096 } 1097 1098 EXPORT_SYMBOL(may_umount_tree); 1099 1100 /** 1101 * may_umount - check if a mount point is busy 1102 * @mnt: root of mount 1103 * 1104 * This is called to check if a mount point has any 1105 * open files, pwds, chroots or sub mounts. If the 1106 * mount has sub mounts this will return busy 1107 * regardless of whether the sub mounts are busy. 1108 * 1109 * Doesn't take quota and stuff into account. IOW, in some cases it will 1110 * give false negatives. The main reason why it's here is that we need 1111 * a non-destructive way to look for easily umountable filesystems. 1112 */ 1113 int may_umount(struct vfsmount *mnt) 1114 { 1115 int ret = 1; 1116 down_read(&namespace_sem); 1117 br_write_lock(&vfsmount_lock); 1118 if (propagate_mount_busy(real_mount(mnt), 2)) 1119 ret = 0; 1120 br_write_unlock(&vfsmount_lock); 1121 up_read(&namespace_sem); 1122 return ret; 1123 } 1124 1125 EXPORT_SYMBOL(may_umount); 1126 1127 static LIST_HEAD(unmounted); /* protected by namespace_sem */ 1128 1129 static void namespace_unlock(void) 1130 { 1131 struct mount *mnt; 1132 LIST_HEAD(head); 1133 1134 if (likely(list_empty(&unmounted))) { 1135 up_write(&namespace_sem); 1136 return; 1137 } 1138 1139 list_splice_init(&unmounted, &head); 1140 up_write(&namespace_sem); 1141 1142 while (!list_empty(&head)) { 1143 mnt = list_first_entry(&head, struct mount, mnt_hash); 1144 list_del_init(&mnt->mnt_hash); 1145 if (mnt_has_parent(mnt)) { 1146 struct dentry *dentry; 1147 struct mount *m; 1148 1149 br_write_lock(&vfsmount_lock); 1150 dentry = mnt->mnt_mountpoint; 1151 m = mnt->mnt_parent; 1152 mnt->mnt_mountpoint = mnt->mnt.mnt_root; 1153 mnt->mnt_parent = mnt; 1154 m->mnt_ghosts--; 1155 br_write_unlock(&vfsmount_lock); 1156 dput(dentry); 1157 mntput(&m->mnt); 1158 } 1159 mntput(&mnt->mnt); 1160 } 1161 } 1162 1163 static inline void namespace_lock(void) 1164 { 1165 down_write(&namespace_sem); 1166 } 1167 1168 /* 1169 * vfsmount lock must be held for write 1170 * namespace_sem must be held for write 1171 */ 1172 void umount_tree(struct mount *mnt, int propagate) 1173 { 1174 LIST_HEAD(tmp_list); 1175 struct mount *p; 1176 1177 for (p = mnt; p; p = next_mnt(p, mnt)) 1178 list_move(&p->mnt_hash, &tmp_list); 1179 1180 if (propagate) 1181 propagate_umount(&tmp_list); 1182 1183 list_for_each_entry(p, &tmp_list, mnt_hash) { 1184 list_del_init(&p->mnt_expire); 1185 list_del_init(&p->mnt_list); 1186 __touch_mnt_namespace(p->mnt_ns); 1187 p->mnt_ns = NULL; 1188 list_del_init(&p->mnt_child); 1189 if (mnt_has_parent(p)) { 1190 p->mnt_parent->mnt_ghosts++; 1191 put_mountpoint(p->mnt_mp); 1192 p->mnt_mp = NULL; 1193 } 1194 change_mnt_propagation(p, MS_PRIVATE); 1195 } 1196 list_splice(&tmp_list, &unmounted); 1197 } 1198 1199 static void shrink_submounts(struct mount *mnt); 1200 1201 static int do_umount(struct mount *mnt, int flags) 1202 { 1203 struct super_block *sb = mnt->mnt.mnt_sb; 1204 int retval; 1205 1206 retval = security_sb_umount(&mnt->mnt, flags); 1207 if (retval) 1208 return retval; 1209 1210 /* 1211 * Allow userspace to request a mountpoint be expired rather than 1212 * unmounting unconditionally. Unmount only happens if: 1213 * (1) the mark is already set (the mark is cleared by mntput()) 1214 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount] 1215 */ 1216 if (flags & MNT_EXPIRE) { 1217 if (&mnt->mnt == current->fs->root.mnt || 1218 flags & (MNT_FORCE | MNT_DETACH)) 1219 return -EINVAL; 1220 1221 /* 1222 * probably don't strictly need the lock here if we examined 1223 * all race cases, but it's a slowpath. 1224 */ 1225 br_write_lock(&vfsmount_lock); 1226 if (mnt_get_count(mnt) != 2) { 1227 br_write_unlock(&vfsmount_lock); 1228 return -EBUSY; 1229 } 1230 br_write_unlock(&vfsmount_lock); 1231 1232 if (!xchg(&mnt->mnt_expiry_mark, 1)) 1233 return -EAGAIN; 1234 } 1235 1236 /* 1237 * If we may have to abort operations to get out of this 1238 * mount, and they will themselves hold resources we must 1239 * allow the fs to do things. In the Unix tradition of 1240 * 'Gee thats tricky lets do it in userspace' the umount_begin 1241 * might fail to complete on the first run through as other tasks 1242 * must return, and the like. Thats for the mount program to worry 1243 * about for the moment. 1244 */ 1245 1246 if (flags & MNT_FORCE && sb->s_op->umount_begin) { 1247 sb->s_op->umount_begin(sb); 1248 } 1249 1250 /* 1251 * No sense to grab the lock for this test, but test itself looks 1252 * somewhat bogus. Suggestions for better replacement? 1253 * Ho-hum... In principle, we might treat that as umount + switch 1254 * to rootfs. GC would eventually take care of the old vfsmount. 1255 * Actually it makes sense, especially if rootfs would contain a 1256 * /reboot - static binary that would close all descriptors and 1257 * call reboot(9). Then init(8) could umount root and exec /reboot. 1258 */ 1259 if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) { 1260 /* 1261 * Special case for "unmounting" root ... 1262 * we just try to remount it readonly. 1263 */ 1264 down_write(&sb->s_umount); 1265 if (!(sb->s_flags & MS_RDONLY)) 1266 retval = do_remount_sb(sb, MS_RDONLY, NULL, 0); 1267 up_write(&sb->s_umount); 1268 return retval; 1269 } 1270 1271 namespace_lock(); 1272 br_write_lock(&vfsmount_lock); 1273 event++; 1274 1275 if (!(flags & MNT_DETACH)) 1276 shrink_submounts(mnt); 1277 1278 retval = -EBUSY; 1279 if (flags & MNT_DETACH || !propagate_mount_busy(mnt, 2)) { 1280 if (!list_empty(&mnt->mnt_list)) 1281 umount_tree(mnt, 1); 1282 retval = 0; 1283 } 1284 br_write_unlock(&vfsmount_lock); 1285 namespace_unlock(); 1286 return retval; 1287 } 1288 1289 /* 1290 * Is the caller allowed to modify his namespace? 1291 */ 1292 static inline bool may_mount(void) 1293 { 1294 return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN); 1295 } 1296 1297 /* 1298 * Now umount can handle mount points as well as block devices. 1299 * This is important for filesystems which use unnamed block devices. 1300 * 1301 * We now support a flag for forced unmount like the other 'big iron' 1302 * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD 1303 */ 1304 1305 SYSCALL_DEFINE2(umount, char __user *, name, int, flags) 1306 { 1307 struct path path; 1308 struct mount *mnt; 1309 int retval; 1310 int lookup_flags = 0; 1311 1312 if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW)) 1313 return -EINVAL; 1314 1315 if (!may_mount()) 1316 return -EPERM; 1317 1318 if (!(flags & UMOUNT_NOFOLLOW)) 1319 lookup_flags |= LOOKUP_FOLLOW; 1320 1321 retval = user_path_at(AT_FDCWD, name, lookup_flags, &path); 1322 if (retval) 1323 goto out; 1324 mnt = real_mount(path.mnt); 1325 retval = -EINVAL; 1326 if (path.dentry != path.mnt->mnt_root) 1327 goto dput_and_out; 1328 if (!check_mnt(mnt)) 1329 goto dput_and_out; 1330 1331 retval = do_umount(mnt, flags); 1332 dput_and_out: 1333 /* we mustn't call path_put() as that would clear mnt_expiry_mark */ 1334 dput(path.dentry); 1335 mntput_no_expire(mnt); 1336 out: 1337 return retval; 1338 } 1339 1340 #ifdef __ARCH_WANT_SYS_OLDUMOUNT 1341 1342 /* 1343 * The 2.0 compatible umount. No flags. 1344 */ 1345 SYSCALL_DEFINE1(oldumount, char __user *, name) 1346 { 1347 return sys_umount(name, 0); 1348 } 1349 1350 #endif 1351 1352 static bool mnt_ns_loop(struct path *path) 1353 { 1354 /* Could bind mounting the mount namespace inode cause a 1355 * mount namespace loop? 1356 */ 1357 struct inode *inode = path->dentry->d_inode; 1358 struct proc_ns *ei; 1359 struct mnt_namespace *mnt_ns; 1360 1361 if (!proc_ns_inode(inode)) 1362 return false; 1363 1364 ei = get_proc_ns(inode); 1365 if (ei->ns_ops != &mntns_operations) 1366 return false; 1367 1368 mnt_ns = ei->ns; 1369 return current->nsproxy->mnt_ns->seq >= mnt_ns->seq; 1370 } 1371 1372 struct mount *copy_tree(struct mount *mnt, struct dentry *dentry, 1373 int flag) 1374 { 1375 struct mount *res, *p, *q, *r, *parent; 1376 1377 if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(mnt)) 1378 return ERR_PTR(-EINVAL); 1379 1380 res = q = clone_mnt(mnt, dentry, flag); 1381 if (IS_ERR(q)) 1382 return q; 1383 1384 q->mnt_mountpoint = mnt->mnt_mountpoint; 1385 1386 p = mnt; 1387 list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) { 1388 struct mount *s; 1389 if (!is_subdir(r->mnt_mountpoint, dentry)) 1390 continue; 1391 1392 for (s = r; s; s = next_mnt(s, r)) { 1393 if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(s)) { 1394 s = skip_mnt_tree(s); 1395 continue; 1396 } 1397 while (p != s->mnt_parent) { 1398 p = p->mnt_parent; 1399 q = q->mnt_parent; 1400 } 1401 p = s; 1402 parent = q; 1403 q = clone_mnt(p, p->mnt.mnt_root, flag); 1404 if (IS_ERR(q)) 1405 goto out; 1406 br_write_lock(&vfsmount_lock); 1407 list_add_tail(&q->mnt_list, &res->mnt_list); 1408 attach_mnt(q, parent, p->mnt_mp); 1409 br_write_unlock(&vfsmount_lock); 1410 } 1411 } 1412 return res; 1413 out: 1414 if (res) { 1415 br_write_lock(&vfsmount_lock); 1416 umount_tree(res, 0); 1417 br_write_unlock(&vfsmount_lock); 1418 } 1419 return q; 1420 } 1421 1422 /* Caller should check returned pointer for errors */ 1423 1424 struct vfsmount *collect_mounts(struct path *path) 1425 { 1426 struct mount *tree; 1427 namespace_lock(); 1428 tree = copy_tree(real_mount(path->mnt), path->dentry, 1429 CL_COPY_ALL | CL_PRIVATE); 1430 namespace_unlock(); 1431 if (IS_ERR(tree)) 1432 return ERR_CAST(tree); 1433 return &tree->mnt; 1434 } 1435 1436 void drop_collected_mounts(struct vfsmount *mnt) 1437 { 1438 namespace_lock(); 1439 br_write_lock(&vfsmount_lock); 1440 umount_tree(real_mount(mnt), 0); 1441 br_write_unlock(&vfsmount_lock); 1442 namespace_unlock(); 1443 } 1444 1445 int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg, 1446 struct vfsmount *root) 1447 { 1448 struct mount *mnt; 1449 int res = f(root, arg); 1450 if (res) 1451 return res; 1452 list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) { 1453 res = f(&mnt->mnt, arg); 1454 if (res) 1455 return res; 1456 } 1457 return 0; 1458 } 1459 1460 static void cleanup_group_ids(struct mount *mnt, struct mount *end) 1461 { 1462 struct mount *p; 1463 1464 for (p = mnt; p != end; p = next_mnt(p, mnt)) { 1465 if (p->mnt_group_id && !IS_MNT_SHARED(p)) 1466 mnt_release_group_id(p); 1467 } 1468 } 1469 1470 static int invent_group_ids(struct mount *mnt, bool recurse) 1471 { 1472 struct mount *p; 1473 1474 for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) { 1475 if (!p->mnt_group_id && !IS_MNT_SHARED(p)) { 1476 int err = mnt_alloc_group_id(p); 1477 if (err) { 1478 cleanup_group_ids(mnt, p); 1479 return err; 1480 } 1481 } 1482 } 1483 1484 return 0; 1485 } 1486 1487 /* 1488 * @source_mnt : mount tree to be attached 1489 * @nd : place the mount tree @source_mnt is attached 1490 * @parent_nd : if non-null, detach the source_mnt from its parent and 1491 * store the parent mount and mountpoint dentry. 1492 * (done when source_mnt is moved) 1493 * 1494 * NOTE: in the table below explains the semantics when a source mount 1495 * of a given type is attached to a destination mount of a given type. 1496 * --------------------------------------------------------------------------- 1497 * | BIND MOUNT OPERATION | 1498 * |************************************************************************** 1499 * | source-->| shared | private | slave | unbindable | 1500 * | dest | | | | | 1501 * | | | | | | | 1502 * | v | | | | | 1503 * |************************************************************************** 1504 * | shared | shared (++) | shared (+) | shared(+++)| invalid | 1505 * | | | | | | 1506 * |non-shared| shared (+) | private | slave (*) | invalid | 1507 * *************************************************************************** 1508 * A bind operation clones the source mount and mounts the clone on the 1509 * destination mount. 1510 * 1511 * (++) the cloned mount is propagated to all the mounts in the propagation 1512 * tree of the destination mount and the cloned mount is added to 1513 * the peer group of the source mount. 1514 * (+) the cloned mount is created under the destination mount and is marked 1515 * as shared. The cloned mount is added to the peer group of the source 1516 * mount. 1517 * (+++) the mount is propagated to all the mounts in the propagation tree 1518 * of the destination mount and the cloned mount is made slave 1519 * of the same master as that of the source mount. The cloned mount 1520 * is marked as 'shared and slave'. 1521 * (*) the cloned mount is made a slave of the same master as that of the 1522 * source mount. 1523 * 1524 * --------------------------------------------------------------------------- 1525 * | MOVE MOUNT OPERATION | 1526 * |************************************************************************** 1527 * | source-->| shared | private | slave | unbindable | 1528 * | dest | | | | | 1529 * | | | | | | | 1530 * | v | | | | | 1531 * |************************************************************************** 1532 * | shared | shared (+) | shared (+) | shared(+++) | invalid | 1533 * | | | | | | 1534 * |non-shared| shared (+*) | private | slave (*) | unbindable | 1535 * *************************************************************************** 1536 * 1537 * (+) the mount is moved to the destination. And is then propagated to 1538 * all the mounts in the propagation tree of the destination mount. 1539 * (+*) the mount is moved to the destination. 1540 * (+++) the mount is moved to the destination and is then propagated to 1541 * all the mounts belonging to the destination mount's propagation tree. 1542 * the mount is marked as 'shared and slave'. 1543 * (*) the mount continues to be a slave at the new location. 1544 * 1545 * if the source mount is a tree, the operations explained above is 1546 * applied to each mount in the tree. 1547 * Must be called without spinlocks held, since this function can sleep 1548 * in allocations. 1549 */ 1550 static int attach_recursive_mnt(struct mount *source_mnt, 1551 struct mount *dest_mnt, 1552 struct mountpoint *dest_mp, 1553 struct path *parent_path) 1554 { 1555 LIST_HEAD(tree_list); 1556 struct mount *child, *p; 1557 int err; 1558 1559 if (IS_MNT_SHARED(dest_mnt)) { 1560 err = invent_group_ids(source_mnt, true); 1561 if (err) 1562 goto out; 1563 } 1564 err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list); 1565 if (err) 1566 goto out_cleanup_ids; 1567 1568 br_write_lock(&vfsmount_lock); 1569 1570 if (IS_MNT_SHARED(dest_mnt)) { 1571 for (p = source_mnt; p; p = next_mnt(p, source_mnt)) 1572 set_mnt_shared(p); 1573 } 1574 if (parent_path) { 1575 detach_mnt(source_mnt, parent_path); 1576 attach_mnt(source_mnt, dest_mnt, dest_mp); 1577 touch_mnt_namespace(source_mnt->mnt_ns); 1578 } else { 1579 mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt); 1580 commit_tree(source_mnt); 1581 } 1582 1583 list_for_each_entry_safe(child, p, &tree_list, mnt_hash) { 1584 list_del_init(&child->mnt_hash); 1585 commit_tree(child); 1586 } 1587 br_write_unlock(&vfsmount_lock); 1588 1589 return 0; 1590 1591 out_cleanup_ids: 1592 if (IS_MNT_SHARED(dest_mnt)) 1593 cleanup_group_ids(source_mnt, NULL); 1594 out: 1595 return err; 1596 } 1597 1598 static struct mountpoint *lock_mount(struct path *path) 1599 { 1600 struct vfsmount *mnt; 1601 struct dentry *dentry = path->dentry; 1602 retry: 1603 mutex_lock(&dentry->d_inode->i_mutex); 1604 if (unlikely(cant_mount(dentry))) { 1605 mutex_unlock(&dentry->d_inode->i_mutex); 1606 return ERR_PTR(-ENOENT); 1607 } 1608 namespace_lock(); 1609 mnt = lookup_mnt(path); 1610 if (likely(!mnt)) { 1611 struct mountpoint *mp = new_mountpoint(dentry); 1612 if (IS_ERR(mp)) { 1613 namespace_unlock(); 1614 mutex_unlock(&dentry->d_inode->i_mutex); 1615 return mp; 1616 } 1617 return mp; 1618 } 1619 namespace_unlock(); 1620 mutex_unlock(&path->dentry->d_inode->i_mutex); 1621 path_put(path); 1622 path->mnt = mnt; 1623 dentry = path->dentry = dget(mnt->mnt_root); 1624 goto retry; 1625 } 1626 1627 static void unlock_mount(struct mountpoint *where) 1628 { 1629 struct dentry *dentry = where->m_dentry; 1630 put_mountpoint(where); 1631 namespace_unlock(); 1632 mutex_unlock(&dentry->d_inode->i_mutex); 1633 } 1634 1635 static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp) 1636 { 1637 if (mnt->mnt.mnt_sb->s_flags & MS_NOUSER) 1638 return -EINVAL; 1639 1640 if (S_ISDIR(mp->m_dentry->d_inode->i_mode) != 1641 S_ISDIR(mnt->mnt.mnt_root->d_inode->i_mode)) 1642 return -ENOTDIR; 1643 1644 return attach_recursive_mnt(mnt, p, mp, NULL); 1645 } 1646 1647 /* 1648 * Sanity check the flags to change_mnt_propagation. 1649 */ 1650 1651 static int flags_to_propagation_type(int flags) 1652 { 1653 int type = flags & ~(MS_REC | MS_SILENT); 1654 1655 /* Fail if any non-propagation flags are set */ 1656 if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE)) 1657 return 0; 1658 /* Only one propagation flag should be set */ 1659 if (!is_power_of_2(type)) 1660 return 0; 1661 return type; 1662 } 1663 1664 /* 1665 * recursively change the type of the mountpoint. 1666 */ 1667 static int do_change_type(struct path *path, int flag) 1668 { 1669 struct mount *m; 1670 struct mount *mnt = real_mount(path->mnt); 1671 int recurse = flag & MS_REC; 1672 int type; 1673 int err = 0; 1674 1675 if (path->dentry != path->mnt->mnt_root) 1676 return -EINVAL; 1677 1678 type = flags_to_propagation_type(flag); 1679 if (!type) 1680 return -EINVAL; 1681 1682 namespace_lock(); 1683 if (type == MS_SHARED) { 1684 err = invent_group_ids(mnt, recurse); 1685 if (err) 1686 goto out_unlock; 1687 } 1688 1689 br_write_lock(&vfsmount_lock); 1690 for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL)) 1691 change_mnt_propagation(m, type); 1692 br_write_unlock(&vfsmount_lock); 1693 1694 out_unlock: 1695 namespace_unlock(); 1696 return err; 1697 } 1698 1699 /* 1700 * do loopback mount. 1701 */ 1702 static int do_loopback(struct path *path, const char *old_name, 1703 int recurse) 1704 { 1705 struct path old_path; 1706 struct mount *mnt = NULL, *old, *parent; 1707 struct mountpoint *mp; 1708 int err; 1709 if (!old_name || !*old_name) 1710 return -EINVAL; 1711 err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path); 1712 if (err) 1713 return err; 1714 1715 err = -EINVAL; 1716 if (mnt_ns_loop(&old_path)) 1717 goto out; 1718 1719 mp = lock_mount(path); 1720 err = PTR_ERR(mp); 1721 if (IS_ERR(mp)) 1722 goto out; 1723 1724 old = real_mount(old_path.mnt); 1725 parent = real_mount(path->mnt); 1726 1727 err = -EINVAL; 1728 if (IS_MNT_UNBINDABLE(old)) 1729 goto out2; 1730 1731 if (!check_mnt(parent) || !check_mnt(old)) 1732 goto out2; 1733 1734 if (recurse) 1735 mnt = copy_tree(old, old_path.dentry, 0); 1736 else 1737 mnt = clone_mnt(old, old_path.dentry, 0); 1738 1739 if (IS_ERR(mnt)) { 1740 err = PTR_ERR(mnt); 1741 goto out2; 1742 } 1743 1744 err = graft_tree(mnt, parent, mp); 1745 if (err) { 1746 br_write_lock(&vfsmount_lock); 1747 umount_tree(mnt, 0); 1748 br_write_unlock(&vfsmount_lock); 1749 } 1750 out2: 1751 unlock_mount(mp); 1752 out: 1753 path_put(&old_path); 1754 return err; 1755 } 1756 1757 static int change_mount_flags(struct vfsmount *mnt, int ms_flags) 1758 { 1759 int error = 0; 1760 int readonly_request = 0; 1761 1762 if (ms_flags & MS_RDONLY) 1763 readonly_request = 1; 1764 if (readonly_request == __mnt_is_readonly(mnt)) 1765 return 0; 1766 1767 if (mnt->mnt_flags & MNT_LOCK_READONLY) 1768 return -EPERM; 1769 1770 if (readonly_request) 1771 error = mnt_make_readonly(real_mount(mnt)); 1772 else 1773 __mnt_unmake_readonly(real_mount(mnt)); 1774 return error; 1775 } 1776 1777 /* 1778 * change filesystem flags. dir should be a physical root of filesystem. 1779 * If you've mounted a non-root directory somewhere and want to do remount 1780 * on it - tough luck. 1781 */ 1782 static int do_remount(struct path *path, int flags, int mnt_flags, 1783 void *data) 1784 { 1785 int err; 1786 struct super_block *sb = path->mnt->mnt_sb; 1787 struct mount *mnt = real_mount(path->mnt); 1788 1789 if (!check_mnt(mnt)) 1790 return -EINVAL; 1791 1792 if (path->dentry != path->mnt->mnt_root) 1793 return -EINVAL; 1794 1795 err = security_sb_remount(sb, data); 1796 if (err) 1797 return err; 1798 1799 down_write(&sb->s_umount); 1800 if (flags & MS_BIND) 1801 err = change_mount_flags(path->mnt, flags); 1802 else if (!capable(CAP_SYS_ADMIN)) 1803 err = -EPERM; 1804 else 1805 err = do_remount_sb(sb, flags, data, 0); 1806 if (!err) { 1807 br_write_lock(&vfsmount_lock); 1808 mnt_flags |= mnt->mnt.mnt_flags & MNT_PROPAGATION_MASK; 1809 mnt->mnt.mnt_flags = mnt_flags; 1810 br_write_unlock(&vfsmount_lock); 1811 } 1812 up_write(&sb->s_umount); 1813 if (!err) { 1814 br_write_lock(&vfsmount_lock); 1815 touch_mnt_namespace(mnt->mnt_ns); 1816 br_write_unlock(&vfsmount_lock); 1817 } 1818 return err; 1819 } 1820 1821 static inline int tree_contains_unbindable(struct mount *mnt) 1822 { 1823 struct mount *p; 1824 for (p = mnt; p; p = next_mnt(p, mnt)) { 1825 if (IS_MNT_UNBINDABLE(p)) 1826 return 1; 1827 } 1828 return 0; 1829 } 1830 1831 static int do_move_mount(struct path *path, const char *old_name) 1832 { 1833 struct path old_path, parent_path; 1834 struct mount *p; 1835 struct mount *old; 1836 struct mountpoint *mp; 1837 int err; 1838 if (!old_name || !*old_name) 1839 return -EINVAL; 1840 err = kern_path(old_name, LOOKUP_FOLLOW, &old_path); 1841 if (err) 1842 return err; 1843 1844 mp = lock_mount(path); 1845 err = PTR_ERR(mp); 1846 if (IS_ERR(mp)) 1847 goto out; 1848 1849 old = real_mount(old_path.mnt); 1850 p = real_mount(path->mnt); 1851 1852 err = -EINVAL; 1853 if (!check_mnt(p) || !check_mnt(old)) 1854 goto out1; 1855 1856 err = -EINVAL; 1857 if (old_path.dentry != old_path.mnt->mnt_root) 1858 goto out1; 1859 1860 if (!mnt_has_parent(old)) 1861 goto out1; 1862 1863 if (S_ISDIR(path->dentry->d_inode->i_mode) != 1864 S_ISDIR(old_path.dentry->d_inode->i_mode)) 1865 goto out1; 1866 /* 1867 * Don't move a mount residing in a shared parent. 1868 */ 1869 if (IS_MNT_SHARED(old->mnt_parent)) 1870 goto out1; 1871 /* 1872 * Don't move a mount tree containing unbindable mounts to a destination 1873 * mount which is shared. 1874 */ 1875 if (IS_MNT_SHARED(p) && tree_contains_unbindable(old)) 1876 goto out1; 1877 err = -ELOOP; 1878 for (; mnt_has_parent(p); p = p->mnt_parent) 1879 if (p == old) 1880 goto out1; 1881 1882 err = attach_recursive_mnt(old, real_mount(path->mnt), mp, &parent_path); 1883 if (err) 1884 goto out1; 1885 1886 /* if the mount is moved, it should no longer be expire 1887 * automatically */ 1888 list_del_init(&old->mnt_expire); 1889 out1: 1890 unlock_mount(mp); 1891 out: 1892 if (!err) 1893 path_put(&parent_path); 1894 path_put(&old_path); 1895 return err; 1896 } 1897 1898 static struct vfsmount *fs_set_subtype(struct vfsmount *mnt, const char *fstype) 1899 { 1900 int err; 1901 const char *subtype = strchr(fstype, '.'); 1902 if (subtype) { 1903 subtype++; 1904 err = -EINVAL; 1905 if (!subtype[0]) 1906 goto err; 1907 } else 1908 subtype = ""; 1909 1910 mnt->mnt_sb->s_subtype = kstrdup(subtype, GFP_KERNEL); 1911 err = -ENOMEM; 1912 if (!mnt->mnt_sb->s_subtype) 1913 goto err; 1914 return mnt; 1915 1916 err: 1917 mntput(mnt); 1918 return ERR_PTR(err); 1919 } 1920 1921 /* 1922 * add a mount into a namespace's mount tree 1923 */ 1924 static int do_add_mount(struct mount *newmnt, struct path *path, int mnt_flags) 1925 { 1926 struct mountpoint *mp; 1927 struct mount *parent; 1928 int err; 1929 1930 mnt_flags &= ~(MNT_SHARED | MNT_WRITE_HOLD | MNT_INTERNAL); 1931 1932 mp = lock_mount(path); 1933 if (IS_ERR(mp)) 1934 return PTR_ERR(mp); 1935 1936 parent = real_mount(path->mnt); 1937 err = -EINVAL; 1938 if (unlikely(!check_mnt(parent))) { 1939 /* that's acceptable only for automounts done in private ns */ 1940 if (!(mnt_flags & MNT_SHRINKABLE)) 1941 goto unlock; 1942 /* ... and for those we'd better have mountpoint still alive */ 1943 if (!parent->mnt_ns) 1944 goto unlock; 1945 } 1946 1947 /* Refuse the same filesystem on the same mount point */ 1948 err = -EBUSY; 1949 if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb && 1950 path->mnt->mnt_root == path->dentry) 1951 goto unlock; 1952 1953 err = -EINVAL; 1954 if (S_ISLNK(newmnt->mnt.mnt_root->d_inode->i_mode)) 1955 goto unlock; 1956 1957 newmnt->mnt.mnt_flags = mnt_flags; 1958 err = graft_tree(newmnt, parent, mp); 1959 1960 unlock: 1961 unlock_mount(mp); 1962 return err; 1963 } 1964 1965 /* 1966 * create a new mount for userspace and request it to be added into the 1967 * namespace's tree 1968 */ 1969 static int do_new_mount(struct path *path, const char *fstype, int flags, 1970 int mnt_flags, const char *name, void *data) 1971 { 1972 struct file_system_type *type; 1973 struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns; 1974 struct vfsmount *mnt; 1975 int err; 1976 1977 if (!fstype) 1978 return -EINVAL; 1979 1980 type = get_fs_type(fstype); 1981 if (!type) 1982 return -ENODEV; 1983 1984 if (user_ns != &init_user_ns) { 1985 if (!(type->fs_flags & FS_USERNS_MOUNT)) { 1986 put_filesystem(type); 1987 return -EPERM; 1988 } 1989 /* Only in special cases allow devices from mounts 1990 * created outside the initial user namespace. 1991 */ 1992 if (!(type->fs_flags & FS_USERNS_DEV_MOUNT)) { 1993 flags |= MS_NODEV; 1994 mnt_flags |= MNT_NODEV; 1995 } 1996 } 1997 1998 mnt = vfs_kern_mount(type, flags, name, data); 1999 if (!IS_ERR(mnt) && (type->fs_flags & FS_HAS_SUBTYPE) && 2000 !mnt->mnt_sb->s_subtype) 2001 mnt = fs_set_subtype(mnt, fstype); 2002 2003 put_filesystem(type); 2004 if (IS_ERR(mnt)) 2005 return PTR_ERR(mnt); 2006 2007 err = do_add_mount(real_mount(mnt), path, mnt_flags); 2008 if (err) 2009 mntput(mnt); 2010 return err; 2011 } 2012 2013 int finish_automount(struct vfsmount *m, struct path *path) 2014 { 2015 struct mount *mnt = real_mount(m); 2016 int err; 2017 /* The new mount record should have at least 2 refs to prevent it being 2018 * expired before we get a chance to add it 2019 */ 2020 BUG_ON(mnt_get_count(mnt) < 2); 2021 2022 if (m->mnt_sb == path->mnt->mnt_sb && 2023 m->mnt_root == path->dentry) { 2024 err = -ELOOP; 2025 goto fail; 2026 } 2027 2028 err = do_add_mount(mnt, path, path->mnt->mnt_flags | MNT_SHRINKABLE); 2029 if (!err) 2030 return 0; 2031 fail: 2032 /* remove m from any expiration list it may be on */ 2033 if (!list_empty(&mnt->mnt_expire)) { 2034 namespace_lock(); 2035 br_write_lock(&vfsmount_lock); 2036 list_del_init(&mnt->mnt_expire); 2037 br_write_unlock(&vfsmount_lock); 2038 namespace_unlock(); 2039 } 2040 mntput(m); 2041 mntput(m); 2042 return err; 2043 } 2044 2045 /** 2046 * mnt_set_expiry - Put a mount on an expiration list 2047 * @mnt: The mount to list. 2048 * @expiry_list: The list to add the mount to. 2049 */ 2050 void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list) 2051 { 2052 namespace_lock(); 2053 br_write_lock(&vfsmount_lock); 2054 2055 list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list); 2056 2057 br_write_unlock(&vfsmount_lock); 2058 namespace_unlock(); 2059 } 2060 EXPORT_SYMBOL(mnt_set_expiry); 2061 2062 /* 2063 * process a list of expirable mountpoints with the intent of discarding any 2064 * mountpoints that aren't in use and haven't been touched since last we came 2065 * here 2066 */ 2067 void mark_mounts_for_expiry(struct list_head *mounts) 2068 { 2069 struct mount *mnt, *next; 2070 LIST_HEAD(graveyard); 2071 2072 if (list_empty(mounts)) 2073 return; 2074 2075 namespace_lock(); 2076 br_write_lock(&vfsmount_lock); 2077 2078 /* extract from the expiration list every vfsmount that matches the 2079 * following criteria: 2080 * - only referenced by its parent vfsmount 2081 * - still marked for expiry (marked on the last call here; marks are 2082 * cleared by mntput()) 2083 */ 2084 list_for_each_entry_safe(mnt, next, mounts, mnt_expire) { 2085 if (!xchg(&mnt->mnt_expiry_mark, 1) || 2086 propagate_mount_busy(mnt, 1)) 2087 continue; 2088 list_move(&mnt->mnt_expire, &graveyard); 2089 } 2090 while (!list_empty(&graveyard)) { 2091 mnt = list_first_entry(&graveyard, struct mount, mnt_expire); 2092 touch_mnt_namespace(mnt->mnt_ns); 2093 umount_tree(mnt, 1); 2094 } 2095 br_write_unlock(&vfsmount_lock); 2096 namespace_unlock(); 2097 } 2098 2099 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry); 2100 2101 /* 2102 * Ripoff of 'select_parent()' 2103 * 2104 * search the list of submounts for a given mountpoint, and move any 2105 * shrinkable submounts to the 'graveyard' list. 2106 */ 2107 static int select_submounts(struct mount *parent, struct list_head *graveyard) 2108 { 2109 struct mount *this_parent = parent; 2110 struct list_head *next; 2111 int found = 0; 2112 2113 repeat: 2114 next = this_parent->mnt_mounts.next; 2115 resume: 2116 while (next != &this_parent->mnt_mounts) { 2117 struct list_head *tmp = next; 2118 struct mount *mnt = list_entry(tmp, struct mount, mnt_child); 2119 2120 next = tmp->next; 2121 if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE)) 2122 continue; 2123 /* 2124 * Descend a level if the d_mounts list is non-empty. 2125 */ 2126 if (!list_empty(&mnt->mnt_mounts)) { 2127 this_parent = mnt; 2128 goto repeat; 2129 } 2130 2131 if (!propagate_mount_busy(mnt, 1)) { 2132 list_move_tail(&mnt->mnt_expire, graveyard); 2133 found++; 2134 } 2135 } 2136 /* 2137 * All done at this level ... ascend and resume the search 2138 */ 2139 if (this_parent != parent) { 2140 next = this_parent->mnt_child.next; 2141 this_parent = this_parent->mnt_parent; 2142 goto resume; 2143 } 2144 return found; 2145 } 2146 2147 /* 2148 * process a list of expirable mountpoints with the intent of discarding any 2149 * submounts of a specific parent mountpoint 2150 * 2151 * vfsmount_lock must be held for write 2152 */ 2153 static void shrink_submounts(struct mount *mnt) 2154 { 2155 LIST_HEAD(graveyard); 2156 struct mount *m; 2157 2158 /* extract submounts of 'mountpoint' from the expiration list */ 2159 while (select_submounts(mnt, &graveyard)) { 2160 while (!list_empty(&graveyard)) { 2161 m = list_first_entry(&graveyard, struct mount, 2162 mnt_expire); 2163 touch_mnt_namespace(m->mnt_ns); 2164 umount_tree(m, 1); 2165 } 2166 } 2167 } 2168 2169 /* 2170 * Some copy_from_user() implementations do not return the exact number of 2171 * bytes remaining to copy on a fault. But copy_mount_options() requires that. 2172 * Note that this function differs from copy_from_user() in that it will oops 2173 * on bad values of `to', rather than returning a short copy. 2174 */ 2175 static long exact_copy_from_user(void *to, const void __user * from, 2176 unsigned long n) 2177 { 2178 char *t = to; 2179 const char __user *f = from; 2180 char c; 2181 2182 if (!access_ok(VERIFY_READ, from, n)) 2183 return n; 2184 2185 while (n) { 2186 if (__get_user(c, f)) { 2187 memset(t, 0, n); 2188 break; 2189 } 2190 *t++ = c; 2191 f++; 2192 n--; 2193 } 2194 return n; 2195 } 2196 2197 int copy_mount_options(const void __user * data, unsigned long *where) 2198 { 2199 int i; 2200 unsigned long page; 2201 unsigned long size; 2202 2203 *where = 0; 2204 if (!data) 2205 return 0; 2206 2207 if (!(page = __get_free_page(GFP_KERNEL))) 2208 return -ENOMEM; 2209 2210 /* We only care that *some* data at the address the user 2211 * gave us is valid. Just in case, we'll zero 2212 * the remainder of the page. 2213 */ 2214 /* copy_from_user cannot cross TASK_SIZE ! */ 2215 size = TASK_SIZE - (unsigned long)data; 2216 if (size > PAGE_SIZE) 2217 size = PAGE_SIZE; 2218 2219 i = size - exact_copy_from_user((void *)page, data, size); 2220 if (!i) { 2221 free_page(page); 2222 return -EFAULT; 2223 } 2224 if (i != PAGE_SIZE) 2225 memset((char *)page + i, 0, PAGE_SIZE - i); 2226 *where = page; 2227 return 0; 2228 } 2229 2230 int copy_mount_string(const void __user *data, char **where) 2231 { 2232 char *tmp; 2233 2234 if (!data) { 2235 *where = NULL; 2236 return 0; 2237 } 2238 2239 tmp = strndup_user(data, PAGE_SIZE); 2240 if (IS_ERR(tmp)) 2241 return PTR_ERR(tmp); 2242 2243 *where = tmp; 2244 return 0; 2245 } 2246 2247 /* 2248 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to 2249 * be given to the mount() call (ie: read-only, no-dev, no-suid etc). 2250 * 2251 * data is a (void *) that can point to any structure up to 2252 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent 2253 * information (or be NULL). 2254 * 2255 * Pre-0.97 versions of mount() didn't have a flags word. 2256 * When the flags word was introduced its top half was required 2257 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9. 2258 * Therefore, if this magic number is present, it carries no information 2259 * and must be discarded. 2260 */ 2261 long do_mount(const char *dev_name, const char *dir_name, 2262 const char *type_page, unsigned long flags, void *data_page) 2263 { 2264 struct path path; 2265 int retval = 0; 2266 int mnt_flags = 0; 2267 2268 /* Discard magic */ 2269 if ((flags & MS_MGC_MSK) == MS_MGC_VAL) 2270 flags &= ~MS_MGC_MSK; 2271 2272 /* Basic sanity checks */ 2273 2274 if (!dir_name || !*dir_name || !memchr(dir_name, 0, PAGE_SIZE)) 2275 return -EINVAL; 2276 2277 if (data_page) 2278 ((char *)data_page)[PAGE_SIZE - 1] = 0; 2279 2280 /* ... and get the mountpoint */ 2281 retval = kern_path(dir_name, LOOKUP_FOLLOW, &path); 2282 if (retval) 2283 return retval; 2284 2285 retval = security_sb_mount(dev_name, &path, 2286 type_page, flags, data_page); 2287 if (!retval && !may_mount()) 2288 retval = -EPERM; 2289 if (retval) 2290 goto dput_out; 2291 2292 /* Default to relatime unless overriden */ 2293 if (!(flags & MS_NOATIME)) 2294 mnt_flags |= MNT_RELATIME; 2295 2296 /* Separate the per-mountpoint flags */ 2297 if (flags & MS_NOSUID) 2298 mnt_flags |= MNT_NOSUID; 2299 if (flags & MS_NODEV) 2300 mnt_flags |= MNT_NODEV; 2301 if (flags & MS_NOEXEC) 2302 mnt_flags |= MNT_NOEXEC; 2303 if (flags & MS_NOATIME) 2304 mnt_flags |= MNT_NOATIME; 2305 if (flags & MS_NODIRATIME) 2306 mnt_flags |= MNT_NODIRATIME; 2307 if (flags & MS_STRICTATIME) 2308 mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME); 2309 if (flags & MS_RDONLY) 2310 mnt_flags |= MNT_READONLY; 2311 2312 flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE | MS_BORN | 2313 MS_NOATIME | MS_NODIRATIME | MS_RELATIME| MS_KERNMOUNT | 2314 MS_STRICTATIME); 2315 2316 if (flags & MS_REMOUNT) 2317 retval = do_remount(&path, flags & ~MS_REMOUNT, mnt_flags, 2318 data_page); 2319 else if (flags & MS_BIND) 2320 retval = do_loopback(&path, dev_name, flags & MS_REC); 2321 else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE)) 2322 retval = do_change_type(&path, flags); 2323 else if (flags & MS_MOVE) 2324 retval = do_move_mount(&path, dev_name); 2325 else 2326 retval = do_new_mount(&path, type_page, flags, mnt_flags, 2327 dev_name, data_page); 2328 dput_out: 2329 path_put(&path); 2330 return retval; 2331 } 2332 2333 static void free_mnt_ns(struct mnt_namespace *ns) 2334 { 2335 proc_free_inum(ns->proc_inum); 2336 put_user_ns(ns->user_ns); 2337 kfree(ns); 2338 } 2339 2340 /* 2341 * Assign a sequence number so we can detect when we attempt to bind 2342 * mount a reference to an older mount namespace into the current 2343 * mount namespace, preventing reference counting loops. A 64bit 2344 * number incrementing at 10Ghz will take 12,427 years to wrap which 2345 * is effectively never, so we can ignore the possibility. 2346 */ 2347 static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1); 2348 2349 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns) 2350 { 2351 struct mnt_namespace *new_ns; 2352 int ret; 2353 2354 new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL); 2355 if (!new_ns) 2356 return ERR_PTR(-ENOMEM); 2357 ret = proc_alloc_inum(&new_ns->proc_inum); 2358 if (ret) { 2359 kfree(new_ns); 2360 return ERR_PTR(ret); 2361 } 2362 new_ns->seq = atomic64_add_return(1, &mnt_ns_seq); 2363 atomic_set(&new_ns->count, 1); 2364 new_ns->root = NULL; 2365 INIT_LIST_HEAD(&new_ns->list); 2366 init_waitqueue_head(&new_ns->poll); 2367 new_ns->event = 0; 2368 new_ns->user_ns = get_user_ns(user_ns); 2369 return new_ns; 2370 } 2371 2372 /* 2373 * Allocate a new namespace structure and populate it with contents 2374 * copied from the namespace of the passed in task structure. 2375 */ 2376 static struct mnt_namespace *dup_mnt_ns(struct mnt_namespace *mnt_ns, 2377 struct user_namespace *user_ns, struct fs_struct *fs) 2378 { 2379 struct mnt_namespace *new_ns; 2380 struct vfsmount *rootmnt = NULL, *pwdmnt = NULL; 2381 struct mount *p, *q; 2382 struct mount *old = mnt_ns->root; 2383 struct mount *new; 2384 int copy_flags; 2385 2386 new_ns = alloc_mnt_ns(user_ns); 2387 if (IS_ERR(new_ns)) 2388 return new_ns; 2389 2390 namespace_lock(); 2391 /* First pass: copy the tree topology */ 2392 copy_flags = CL_COPY_ALL | CL_EXPIRE; 2393 if (user_ns != mnt_ns->user_ns) 2394 copy_flags |= CL_SHARED_TO_SLAVE | CL_UNPRIVILEGED; 2395 new = copy_tree(old, old->mnt.mnt_root, copy_flags); 2396 if (IS_ERR(new)) { 2397 namespace_unlock(); 2398 free_mnt_ns(new_ns); 2399 return ERR_CAST(new); 2400 } 2401 new_ns->root = new; 2402 br_write_lock(&vfsmount_lock); 2403 list_add_tail(&new_ns->list, &new->mnt_list); 2404 br_write_unlock(&vfsmount_lock); 2405 2406 /* 2407 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts 2408 * as belonging to new namespace. We have already acquired a private 2409 * fs_struct, so tsk->fs->lock is not needed. 2410 */ 2411 p = old; 2412 q = new; 2413 while (p) { 2414 q->mnt_ns = new_ns; 2415 if (fs) { 2416 if (&p->mnt == fs->root.mnt) { 2417 fs->root.mnt = mntget(&q->mnt); 2418 rootmnt = &p->mnt; 2419 } 2420 if (&p->mnt == fs->pwd.mnt) { 2421 fs->pwd.mnt = mntget(&q->mnt); 2422 pwdmnt = &p->mnt; 2423 } 2424 } 2425 p = next_mnt(p, old); 2426 q = next_mnt(q, new); 2427 } 2428 namespace_unlock(); 2429 2430 if (rootmnt) 2431 mntput(rootmnt); 2432 if (pwdmnt) 2433 mntput(pwdmnt); 2434 2435 return new_ns; 2436 } 2437 2438 struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns, 2439 struct user_namespace *user_ns, struct fs_struct *new_fs) 2440 { 2441 struct mnt_namespace *new_ns; 2442 2443 BUG_ON(!ns); 2444 get_mnt_ns(ns); 2445 2446 if (!(flags & CLONE_NEWNS)) 2447 return ns; 2448 2449 new_ns = dup_mnt_ns(ns, user_ns, new_fs); 2450 2451 put_mnt_ns(ns); 2452 return new_ns; 2453 } 2454 2455 /** 2456 * create_mnt_ns - creates a private namespace and adds a root filesystem 2457 * @mnt: pointer to the new root filesystem mountpoint 2458 */ 2459 static struct mnt_namespace *create_mnt_ns(struct vfsmount *m) 2460 { 2461 struct mnt_namespace *new_ns = alloc_mnt_ns(&init_user_ns); 2462 if (!IS_ERR(new_ns)) { 2463 struct mount *mnt = real_mount(m); 2464 mnt->mnt_ns = new_ns; 2465 new_ns->root = mnt; 2466 list_add(&mnt->mnt_list, &new_ns->list); 2467 } else { 2468 mntput(m); 2469 } 2470 return new_ns; 2471 } 2472 2473 struct dentry *mount_subtree(struct vfsmount *mnt, const char *name) 2474 { 2475 struct mnt_namespace *ns; 2476 struct super_block *s; 2477 struct path path; 2478 int err; 2479 2480 ns = create_mnt_ns(mnt); 2481 if (IS_ERR(ns)) 2482 return ERR_CAST(ns); 2483 2484 err = vfs_path_lookup(mnt->mnt_root, mnt, 2485 name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path); 2486 2487 put_mnt_ns(ns); 2488 2489 if (err) 2490 return ERR_PTR(err); 2491 2492 /* trade a vfsmount reference for active sb one */ 2493 s = path.mnt->mnt_sb; 2494 atomic_inc(&s->s_active); 2495 mntput(path.mnt); 2496 /* lock the sucker */ 2497 down_write(&s->s_umount); 2498 /* ... and return the root of (sub)tree on it */ 2499 return path.dentry; 2500 } 2501 EXPORT_SYMBOL(mount_subtree); 2502 2503 SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name, 2504 char __user *, type, unsigned long, flags, void __user *, data) 2505 { 2506 int ret; 2507 char *kernel_type; 2508 struct filename *kernel_dir; 2509 char *kernel_dev; 2510 unsigned long data_page; 2511 2512 ret = copy_mount_string(type, &kernel_type); 2513 if (ret < 0) 2514 goto out_type; 2515 2516 kernel_dir = getname(dir_name); 2517 if (IS_ERR(kernel_dir)) { 2518 ret = PTR_ERR(kernel_dir); 2519 goto out_dir; 2520 } 2521 2522 ret = copy_mount_string(dev_name, &kernel_dev); 2523 if (ret < 0) 2524 goto out_dev; 2525 2526 ret = copy_mount_options(data, &data_page); 2527 if (ret < 0) 2528 goto out_data; 2529 2530 ret = do_mount(kernel_dev, kernel_dir->name, kernel_type, flags, 2531 (void *) data_page); 2532 2533 free_page(data_page); 2534 out_data: 2535 kfree(kernel_dev); 2536 out_dev: 2537 putname(kernel_dir); 2538 out_dir: 2539 kfree(kernel_type); 2540 out_type: 2541 return ret; 2542 } 2543 2544 /* 2545 * Return true if path is reachable from root 2546 * 2547 * namespace_sem or vfsmount_lock is held 2548 */ 2549 bool is_path_reachable(struct mount *mnt, struct dentry *dentry, 2550 const struct path *root) 2551 { 2552 while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) { 2553 dentry = mnt->mnt_mountpoint; 2554 mnt = mnt->mnt_parent; 2555 } 2556 return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry); 2557 } 2558 2559 int path_is_under(struct path *path1, struct path *path2) 2560 { 2561 int res; 2562 br_read_lock(&vfsmount_lock); 2563 res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2); 2564 br_read_unlock(&vfsmount_lock); 2565 return res; 2566 } 2567 EXPORT_SYMBOL(path_is_under); 2568 2569 /* 2570 * pivot_root Semantics: 2571 * Moves the root file system of the current process to the directory put_old, 2572 * makes new_root as the new root file system of the current process, and sets 2573 * root/cwd of all processes which had them on the current root to new_root. 2574 * 2575 * Restrictions: 2576 * The new_root and put_old must be directories, and must not be on the 2577 * same file system as the current process root. The put_old must be 2578 * underneath new_root, i.e. adding a non-zero number of /.. to the string 2579 * pointed to by put_old must yield the same directory as new_root. No other 2580 * file system may be mounted on put_old. After all, new_root is a mountpoint. 2581 * 2582 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem. 2583 * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives 2584 * in this situation. 2585 * 2586 * Notes: 2587 * - we don't move root/cwd if they are not at the root (reason: if something 2588 * cared enough to change them, it's probably wrong to force them elsewhere) 2589 * - it's okay to pick a root that isn't the root of a file system, e.g. 2590 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint, 2591 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root 2592 * first. 2593 */ 2594 SYSCALL_DEFINE2(pivot_root, const char __user *, new_root, 2595 const char __user *, put_old) 2596 { 2597 struct path new, old, parent_path, root_parent, root; 2598 struct mount *new_mnt, *root_mnt, *old_mnt; 2599 struct mountpoint *old_mp, *root_mp; 2600 int error; 2601 2602 if (!may_mount()) 2603 return -EPERM; 2604 2605 error = user_path_dir(new_root, &new); 2606 if (error) 2607 goto out0; 2608 2609 error = user_path_dir(put_old, &old); 2610 if (error) 2611 goto out1; 2612 2613 error = security_sb_pivotroot(&old, &new); 2614 if (error) 2615 goto out2; 2616 2617 get_fs_root(current->fs, &root); 2618 old_mp = lock_mount(&old); 2619 error = PTR_ERR(old_mp); 2620 if (IS_ERR(old_mp)) 2621 goto out3; 2622 2623 error = -EINVAL; 2624 new_mnt = real_mount(new.mnt); 2625 root_mnt = real_mount(root.mnt); 2626 old_mnt = real_mount(old.mnt); 2627 if (IS_MNT_SHARED(old_mnt) || 2628 IS_MNT_SHARED(new_mnt->mnt_parent) || 2629 IS_MNT_SHARED(root_mnt->mnt_parent)) 2630 goto out4; 2631 if (!check_mnt(root_mnt) || !check_mnt(new_mnt)) 2632 goto out4; 2633 error = -ENOENT; 2634 if (d_unlinked(new.dentry)) 2635 goto out4; 2636 error = -EBUSY; 2637 if (new_mnt == root_mnt || old_mnt == root_mnt) 2638 goto out4; /* loop, on the same file system */ 2639 error = -EINVAL; 2640 if (root.mnt->mnt_root != root.dentry) 2641 goto out4; /* not a mountpoint */ 2642 if (!mnt_has_parent(root_mnt)) 2643 goto out4; /* not attached */ 2644 root_mp = root_mnt->mnt_mp; 2645 if (new.mnt->mnt_root != new.dentry) 2646 goto out4; /* not a mountpoint */ 2647 if (!mnt_has_parent(new_mnt)) 2648 goto out4; /* not attached */ 2649 /* make sure we can reach put_old from new_root */ 2650 if (!is_path_reachable(old_mnt, old.dentry, &new)) 2651 goto out4; 2652 root_mp->m_count++; /* pin it so it won't go away */ 2653 br_write_lock(&vfsmount_lock); 2654 detach_mnt(new_mnt, &parent_path); 2655 detach_mnt(root_mnt, &root_parent); 2656 /* mount old root on put_old */ 2657 attach_mnt(root_mnt, old_mnt, old_mp); 2658 /* mount new_root on / */ 2659 attach_mnt(new_mnt, real_mount(root_parent.mnt), root_mp); 2660 touch_mnt_namespace(current->nsproxy->mnt_ns); 2661 br_write_unlock(&vfsmount_lock); 2662 chroot_fs_refs(&root, &new); 2663 put_mountpoint(root_mp); 2664 error = 0; 2665 out4: 2666 unlock_mount(old_mp); 2667 if (!error) { 2668 path_put(&root_parent); 2669 path_put(&parent_path); 2670 } 2671 out3: 2672 path_put(&root); 2673 out2: 2674 path_put(&old); 2675 out1: 2676 path_put(&new); 2677 out0: 2678 return error; 2679 } 2680 2681 static void __init init_mount_tree(void) 2682 { 2683 struct vfsmount *mnt; 2684 struct mnt_namespace *ns; 2685 struct path root; 2686 struct file_system_type *type; 2687 2688 type = get_fs_type("rootfs"); 2689 if (!type) 2690 panic("Can't find rootfs type"); 2691 mnt = vfs_kern_mount(type, 0, "rootfs", NULL); 2692 put_filesystem(type); 2693 if (IS_ERR(mnt)) 2694 panic("Can't create rootfs"); 2695 2696 ns = create_mnt_ns(mnt); 2697 if (IS_ERR(ns)) 2698 panic("Can't allocate initial namespace"); 2699 2700 init_task.nsproxy->mnt_ns = ns; 2701 get_mnt_ns(ns); 2702 2703 root.mnt = mnt; 2704 root.dentry = mnt->mnt_root; 2705 2706 set_fs_pwd(current->fs, &root); 2707 set_fs_root(current->fs, &root); 2708 } 2709 2710 void __init mnt_init(void) 2711 { 2712 unsigned u; 2713 int err; 2714 2715 init_rwsem(&namespace_sem); 2716 2717 mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount), 2718 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL); 2719 2720 mount_hashtable = (struct list_head *)__get_free_page(GFP_ATOMIC); 2721 mountpoint_hashtable = (struct list_head *)__get_free_page(GFP_ATOMIC); 2722 2723 if (!mount_hashtable || !mountpoint_hashtable) 2724 panic("Failed to allocate mount hash table\n"); 2725 2726 printk(KERN_INFO "Mount-cache hash table entries: %lu\n", HASH_SIZE); 2727 2728 for (u = 0; u < HASH_SIZE; u++) 2729 INIT_LIST_HEAD(&mount_hashtable[u]); 2730 for (u = 0; u < HASH_SIZE; u++) 2731 INIT_LIST_HEAD(&mountpoint_hashtable[u]); 2732 2733 br_lock_init(&vfsmount_lock); 2734 2735 err = sysfs_init(); 2736 if (err) 2737 printk(KERN_WARNING "%s: sysfs_init error: %d\n", 2738 __func__, err); 2739 fs_kobj = kobject_create_and_add("fs", NULL); 2740 if (!fs_kobj) 2741 printk(KERN_WARNING "%s: kobj create error\n", __func__); 2742 init_rootfs(); 2743 init_mount_tree(); 2744 } 2745 2746 void put_mnt_ns(struct mnt_namespace *ns) 2747 { 2748 if (!atomic_dec_and_test(&ns->count)) 2749 return; 2750 namespace_lock(); 2751 br_write_lock(&vfsmount_lock); 2752 umount_tree(ns->root, 0); 2753 br_write_unlock(&vfsmount_lock); 2754 namespace_unlock(); 2755 free_mnt_ns(ns); 2756 } 2757 2758 struct vfsmount *kern_mount_data(struct file_system_type *type, void *data) 2759 { 2760 struct vfsmount *mnt; 2761 mnt = vfs_kern_mount(type, MS_KERNMOUNT, type->name, data); 2762 if (!IS_ERR(mnt)) { 2763 /* 2764 * it is a longterm mount, don't release mnt until 2765 * we unmount before file sys is unregistered 2766 */ 2767 real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL; 2768 } 2769 return mnt; 2770 } 2771 EXPORT_SYMBOL_GPL(kern_mount_data); 2772 2773 void kern_unmount(struct vfsmount *mnt) 2774 { 2775 /* release long term mount so mount point can be released */ 2776 if (!IS_ERR_OR_NULL(mnt)) { 2777 br_write_lock(&vfsmount_lock); 2778 real_mount(mnt)->mnt_ns = NULL; 2779 br_write_unlock(&vfsmount_lock); 2780 mntput(mnt); 2781 } 2782 } 2783 EXPORT_SYMBOL(kern_unmount); 2784 2785 bool our_mnt(struct vfsmount *mnt) 2786 { 2787 return check_mnt(real_mount(mnt)); 2788 } 2789 2790 bool current_chrooted(void) 2791 { 2792 /* Does the current process have a non-standard root */ 2793 struct path ns_root; 2794 struct path fs_root; 2795 bool chrooted; 2796 2797 /* Find the namespace root */ 2798 ns_root.mnt = ¤t->nsproxy->mnt_ns->root->mnt; 2799 ns_root.dentry = ns_root.mnt->mnt_root; 2800 path_get(&ns_root); 2801 while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root)) 2802 ; 2803 2804 get_fs_root(current->fs, &fs_root); 2805 2806 chrooted = !path_equal(&fs_root, &ns_root); 2807 2808 path_put(&fs_root); 2809 path_put(&ns_root); 2810 2811 return chrooted; 2812 } 2813 2814 void update_mnt_policy(struct user_namespace *userns) 2815 { 2816 struct mnt_namespace *ns = current->nsproxy->mnt_ns; 2817 struct mount *mnt; 2818 2819 down_read(&namespace_sem); 2820 list_for_each_entry(mnt, &ns->list, mnt_list) { 2821 switch (mnt->mnt.mnt_sb->s_magic) { 2822 case SYSFS_MAGIC: 2823 userns->may_mount_sysfs = true; 2824 break; 2825 case PROC_SUPER_MAGIC: 2826 userns->may_mount_proc = true; 2827 break; 2828 } 2829 if (userns->may_mount_sysfs && userns->may_mount_proc) 2830 break; 2831 } 2832 up_read(&namespace_sem); 2833 } 2834 2835 static void *mntns_get(struct task_struct *task) 2836 { 2837 struct mnt_namespace *ns = NULL; 2838 struct nsproxy *nsproxy; 2839 2840 rcu_read_lock(); 2841 nsproxy = task_nsproxy(task); 2842 if (nsproxy) { 2843 ns = nsproxy->mnt_ns; 2844 get_mnt_ns(ns); 2845 } 2846 rcu_read_unlock(); 2847 2848 return ns; 2849 } 2850 2851 static void mntns_put(void *ns) 2852 { 2853 put_mnt_ns(ns); 2854 } 2855 2856 static int mntns_install(struct nsproxy *nsproxy, void *ns) 2857 { 2858 struct fs_struct *fs = current->fs; 2859 struct mnt_namespace *mnt_ns = ns; 2860 struct path root; 2861 2862 if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) || 2863 !nsown_capable(CAP_SYS_CHROOT) || 2864 !nsown_capable(CAP_SYS_ADMIN)) 2865 return -EPERM; 2866 2867 if (fs->users != 1) 2868 return -EINVAL; 2869 2870 get_mnt_ns(mnt_ns); 2871 put_mnt_ns(nsproxy->mnt_ns); 2872 nsproxy->mnt_ns = mnt_ns; 2873 2874 /* Find the root */ 2875 root.mnt = &mnt_ns->root->mnt; 2876 root.dentry = mnt_ns->root->mnt.mnt_root; 2877 path_get(&root); 2878 while(d_mountpoint(root.dentry) && follow_down_one(&root)) 2879 ; 2880 2881 /* Update the pwd and root */ 2882 set_fs_pwd(fs, &root); 2883 set_fs_root(fs, &root); 2884 2885 path_put(&root); 2886 return 0; 2887 } 2888 2889 static unsigned int mntns_inum(void *ns) 2890 { 2891 struct mnt_namespace *mnt_ns = ns; 2892 return mnt_ns->proc_inum; 2893 } 2894 2895 const struct proc_ns_operations mntns_operations = { 2896 .name = "mnt", 2897 .type = CLONE_NEWNS, 2898 .get = mntns_get, 2899 .put = mntns_put, 2900 .install = mntns_install, 2901 .inum = mntns_inum, 2902 }; 2903