1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/fs/namespace.c 4 * 5 * (C) Copyright Al Viro 2000, 2001 6 * 7 * Based on code from fs/super.c, copyright Linus Torvalds and others. 8 * Heavily rewritten. 9 */ 10 11 #include <linux/syscalls.h> 12 #include <linux/export.h> 13 #include <linux/capability.h> 14 #include <linux/mnt_namespace.h> 15 #include <linux/user_namespace.h> 16 #include <linux/namei.h> 17 #include <linux/security.h> 18 #include <linux/cred.h> 19 #include <linux/idr.h> 20 #include <linux/init.h> /* init_rootfs */ 21 #include <linux/fs_struct.h> /* get_fs_root et.al. */ 22 #include <linux/fsnotify.h> /* fsnotify_vfsmount_delete */ 23 #include <linux/file.h> 24 #include <linux/uaccess.h> 25 #include <linux/proc_ns.h> 26 #include <linux/magic.h> 27 #include <linux/memblock.h> 28 #include <linux/task_work.h> 29 #include <linux/sched/task.h> 30 #include <uapi/linux/mount.h> 31 #include <linux/fs_context.h> 32 33 #include "pnode.h" 34 #include "internal.h" 35 36 /* Maximum number of mounts in a mount namespace */ 37 unsigned int sysctl_mount_max __read_mostly = 100000; 38 39 static unsigned int m_hash_mask __read_mostly; 40 static unsigned int m_hash_shift __read_mostly; 41 static unsigned int mp_hash_mask __read_mostly; 42 static unsigned int mp_hash_shift __read_mostly; 43 44 static __initdata unsigned long mhash_entries; 45 static int __init set_mhash_entries(char *str) 46 { 47 if (!str) 48 return 0; 49 mhash_entries = simple_strtoul(str, &str, 0); 50 return 1; 51 } 52 __setup("mhash_entries=", set_mhash_entries); 53 54 static __initdata unsigned long mphash_entries; 55 static int __init set_mphash_entries(char *str) 56 { 57 if (!str) 58 return 0; 59 mphash_entries = simple_strtoul(str, &str, 0); 60 return 1; 61 } 62 __setup("mphash_entries=", set_mphash_entries); 63 64 static u64 event; 65 static DEFINE_IDA(mnt_id_ida); 66 static DEFINE_IDA(mnt_group_ida); 67 68 static struct hlist_head *mount_hashtable __read_mostly; 69 static struct hlist_head *mountpoint_hashtable __read_mostly; 70 static struct kmem_cache *mnt_cache __read_mostly; 71 static DECLARE_RWSEM(namespace_sem); 72 73 /* /sys/fs */ 74 struct kobject *fs_kobj; 75 EXPORT_SYMBOL_GPL(fs_kobj); 76 77 /* 78 * vfsmount lock may be taken for read to prevent changes to the 79 * vfsmount hash, ie. during mountpoint lookups or walking back 80 * up the tree. 81 * 82 * It should be taken for write in all cases where the vfsmount 83 * tree or hash is modified or when a vfsmount structure is modified. 84 */ 85 __cacheline_aligned_in_smp DEFINE_SEQLOCK(mount_lock); 86 87 static inline struct hlist_head *m_hash(struct vfsmount *mnt, struct dentry *dentry) 88 { 89 unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES); 90 tmp += ((unsigned long)dentry / L1_CACHE_BYTES); 91 tmp = tmp + (tmp >> m_hash_shift); 92 return &mount_hashtable[tmp & m_hash_mask]; 93 } 94 95 static inline struct hlist_head *mp_hash(struct dentry *dentry) 96 { 97 unsigned long tmp = ((unsigned long)dentry / L1_CACHE_BYTES); 98 tmp = tmp + (tmp >> mp_hash_shift); 99 return &mountpoint_hashtable[tmp & mp_hash_mask]; 100 } 101 102 static int mnt_alloc_id(struct mount *mnt) 103 { 104 int res = ida_alloc(&mnt_id_ida, GFP_KERNEL); 105 106 if (res < 0) 107 return res; 108 mnt->mnt_id = res; 109 return 0; 110 } 111 112 static void mnt_free_id(struct mount *mnt) 113 { 114 ida_free(&mnt_id_ida, mnt->mnt_id); 115 } 116 117 /* 118 * Allocate a new peer group ID 119 */ 120 static int mnt_alloc_group_id(struct mount *mnt) 121 { 122 int res = ida_alloc_min(&mnt_group_ida, 1, GFP_KERNEL); 123 124 if (res < 0) 125 return res; 126 mnt->mnt_group_id = res; 127 return 0; 128 } 129 130 /* 131 * Release a peer group ID 132 */ 133 void mnt_release_group_id(struct mount *mnt) 134 { 135 ida_free(&mnt_group_ida, mnt->mnt_group_id); 136 mnt->mnt_group_id = 0; 137 } 138 139 /* 140 * vfsmount lock must be held for read 141 */ 142 static inline void mnt_add_count(struct mount *mnt, int n) 143 { 144 #ifdef CONFIG_SMP 145 this_cpu_add(mnt->mnt_pcp->mnt_count, n); 146 #else 147 preempt_disable(); 148 mnt->mnt_count += n; 149 preempt_enable(); 150 #endif 151 } 152 153 /* 154 * vfsmount lock must be held for write 155 */ 156 unsigned int mnt_get_count(struct mount *mnt) 157 { 158 #ifdef CONFIG_SMP 159 unsigned int count = 0; 160 int cpu; 161 162 for_each_possible_cpu(cpu) { 163 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count; 164 } 165 166 return count; 167 #else 168 return mnt->mnt_count; 169 #endif 170 } 171 172 static void drop_mountpoint(struct fs_pin *p) 173 { 174 struct mount *m = container_of(p, struct mount, mnt_umount); 175 dput(m->mnt_ex_mountpoint); 176 pin_remove(p); 177 mntput(&m->mnt); 178 } 179 180 static struct mount *alloc_vfsmnt(const char *name) 181 { 182 struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL); 183 if (mnt) { 184 int err; 185 186 err = mnt_alloc_id(mnt); 187 if (err) 188 goto out_free_cache; 189 190 if (name) { 191 mnt->mnt_devname = kstrdup_const(name, GFP_KERNEL); 192 if (!mnt->mnt_devname) 193 goto out_free_id; 194 } 195 196 #ifdef CONFIG_SMP 197 mnt->mnt_pcp = alloc_percpu(struct mnt_pcp); 198 if (!mnt->mnt_pcp) 199 goto out_free_devname; 200 201 this_cpu_add(mnt->mnt_pcp->mnt_count, 1); 202 #else 203 mnt->mnt_count = 1; 204 mnt->mnt_writers = 0; 205 #endif 206 207 INIT_HLIST_NODE(&mnt->mnt_hash); 208 INIT_LIST_HEAD(&mnt->mnt_child); 209 INIT_LIST_HEAD(&mnt->mnt_mounts); 210 INIT_LIST_HEAD(&mnt->mnt_list); 211 INIT_LIST_HEAD(&mnt->mnt_expire); 212 INIT_LIST_HEAD(&mnt->mnt_share); 213 INIT_LIST_HEAD(&mnt->mnt_slave_list); 214 INIT_LIST_HEAD(&mnt->mnt_slave); 215 INIT_HLIST_NODE(&mnt->mnt_mp_list); 216 INIT_LIST_HEAD(&mnt->mnt_umounting); 217 init_fs_pin(&mnt->mnt_umount, drop_mountpoint); 218 } 219 return mnt; 220 221 #ifdef CONFIG_SMP 222 out_free_devname: 223 kfree_const(mnt->mnt_devname); 224 #endif 225 out_free_id: 226 mnt_free_id(mnt); 227 out_free_cache: 228 kmem_cache_free(mnt_cache, mnt); 229 return NULL; 230 } 231 232 /* 233 * Most r/o checks on a fs are for operations that take 234 * discrete amounts of time, like a write() or unlink(). 235 * We must keep track of when those operations start 236 * (for permission checks) and when they end, so that 237 * we can determine when writes are able to occur to 238 * a filesystem. 239 */ 240 /* 241 * __mnt_is_readonly: check whether a mount is read-only 242 * @mnt: the mount to check for its write status 243 * 244 * This shouldn't be used directly ouside of the VFS. 245 * It does not guarantee that the filesystem will stay 246 * r/w, just that it is right *now*. This can not and 247 * should not be used in place of IS_RDONLY(inode). 248 * mnt_want/drop_write() will _keep_ the filesystem 249 * r/w. 250 */ 251 bool __mnt_is_readonly(struct vfsmount *mnt) 252 { 253 return (mnt->mnt_flags & MNT_READONLY) || sb_rdonly(mnt->mnt_sb); 254 } 255 EXPORT_SYMBOL_GPL(__mnt_is_readonly); 256 257 static inline void mnt_inc_writers(struct mount *mnt) 258 { 259 #ifdef CONFIG_SMP 260 this_cpu_inc(mnt->mnt_pcp->mnt_writers); 261 #else 262 mnt->mnt_writers++; 263 #endif 264 } 265 266 static inline void mnt_dec_writers(struct mount *mnt) 267 { 268 #ifdef CONFIG_SMP 269 this_cpu_dec(mnt->mnt_pcp->mnt_writers); 270 #else 271 mnt->mnt_writers--; 272 #endif 273 } 274 275 static unsigned int mnt_get_writers(struct mount *mnt) 276 { 277 #ifdef CONFIG_SMP 278 unsigned int count = 0; 279 int cpu; 280 281 for_each_possible_cpu(cpu) { 282 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers; 283 } 284 285 return count; 286 #else 287 return mnt->mnt_writers; 288 #endif 289 } 290 291 static int mnt_is_readonly(struct vfsmount *mnt) 292 { 293 if (mnt->mnt_sb->s_readonly_remount) 294 return 1; 295 /* Order wrt setting s_flags/s_readonly_remount in do_remount() */ 296 smp_rmb(); 297 return __mnt_is_readonly(mnt); 298 } 299 300 /* 301 * Most r/o & frozen checks on a fs are for operations that take discrete 302 * amounts of time, like a write() or unlink(). We must keep track of when 303 * those operations start (for permission checks) and when they end, so that we 304 * can determine when writes are able to occur to a filesystem. 305 */ 306 /** 307 * __mnt_want_write - get write access to a mount without freeze protection 308 * @m: the mount on which to take a write 309 * 310 * This tells the low-level filesystem that a write is about to be performed to 311 * it, and makes sure that writes are allowed (mnt it read-write) before 312 * returning success. This operation does not protect against filesystem being 313 * frozen. When the write operation is finished, __mnt_drop_write() must be 314 * called. This is effectively a refcount. 315 */ 316 int __mnt_want_write(struct vfsmount *m) 317 { 318 struct mount *mnt = real_mount(m); 319 int ret = 0; 320 321 preempt_disable(); 322 mnt_inc_writers(mnt); 323 /* 324 * The store to mnt_inc_writers must be visible before we pass 325 * MNT_WRITE_HOLD loop below, so that the slowpath can see our 326 * incremented count after it has set MNT_WRITE_HOLD. 327 */ 328 smp_mb(); 329 while (READ_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD) 330 cpu_relax(); 331 /* 332 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will 333 * be set to match its requirements. So we must not load that until 334 * MNT_WRITE_HOLD is cleared. 335 */ 336 smp_rmb(); 337 if (mnt_is_readonly(m)) { 338 mnt_dec_writers(mnt); 339 ret = -EROFS; 340 } 341 preempt_enable(); 342 343 return ret; 344 } 345 346 /** 347 * mnt_want_write - get write access to a mount 348 * @m: the mount on which to take a write 349 * 350 * This tells the low-level filesystem that a write is about to be performed to 351 * it, and makes sure that writes are allowed (mount is read-write, filesystem 352 * is not frozen) before returning success. When the write operation is 353 * finished, mnt_drop_write() must be called. This is effectively a refcount. 354 */ 355 int mnt_want_write(struct vfsmount *m) 356 { 357 int ret; 358 359 sb_start_write(m->mnt_sb); 360 ret = __mnt_want_write(m); 361 if (ret) 362 sb_end_write(m->mnt_sb); 363 return ret; 364 } 365 EXPORT_SYMBOL_GPL(mnt_want_write); 366 367 /** 368 * mnt_clone_write - get write access to a mount 369 * @mnt: the mount on which to take a write 370 * 371 * This is effectively like mnt_want_write, except 372 * it must only be used to take an extra write reference 373 * on a mountpoint that we already know has a write reference 374 * on it. This allows some optimisation. 375 * 376 * After finished, mnt_drop_write must be called as usual to 377 * drop the reference. 378 */ 379 int mnt_clone_write(struct vfsmount *mnt) 380 { 381 /* superblock may be r/o */ 382 if (__mnt_is_readonly(mnt)) 383 return -EROFS; 384 preempt_disable(); 385 mnt_inc_writers(real_mount(mnt)); 386 preempt_enable(); 387 return 0; 388 } 389 EXPORT_SYMBOL_GPL(mnt_clone_write); 390 391 /** 392 * __mnt_want_write_file - get write access to a file's mount 393 * @file: the file who's mount on which to take a write 394 * 395 * This is like __mnt_want_write, but it takes a file and can 396 * do some optimisations if the file is open for write already 397 */ 398 int __mnt_want_write_file(struct file *file) 399 { 400 if (!(file->f_mode & FMODE_WRITER)) 401 return __mnt_want_write(file->f_path.mnt); 402 else 403 return mnt_clone_write(file->f_path.mnt); 404 } 405 406 /** 407 * mnt_want_write_file - get write access to a file's mount 408 * @file: the file who's mount on which to take a write 409 * 410 * This is like mnt_want_write, but it takes a file and can 411 * do some optimisations if the file is open for write already 412 */ 413 int mnt_want_write_file(struct file *file) 414 { 415 int ret; 416 417 sb_start_write(file_inode(file)->i_sb); 418 ret = __mnt_want_write_file(file); 419 if (ret) 420 sb_end_write(file_inode(file)->i_sb); 421 return ret; 422 } 423 EXPORT_SYMBOL_GPL(mnt_want_write_file); 424 425 /** 426 * __mnt_drop_write - give up write access to a mount 427 * @mnt: the mount on which to give up write access 428 * 429 * Tells the low-level filesystem that we are done 430 * performing writes to it. Must be matched with 431 * __mnt_want_write() call above. 432 */ 433 void __mnt_drop_write(struct vfsmount *mnt) 434 { 435 preempt_disable(); 436 mnt_dec_writers(real_mount(mnt)); 437 preempt_enable(); 438 } 439 440 /** 441 * mnt_drop_write - give up write access to a mount 442 * @mnt: the mount on which to give up write access 443 * 444 * Tells the low-level filesystem that we are done performing writes to it and 445 * also allows filesystem to be frozen again. Must be matched with 446 * mnt_want_write() call above. 447 */ 448 void mnt_drop_write(struct vfsmount *mnt) 449 { 450 __mnt_drop_write(mnt); 451 sb_end_write(mnt->mnt_sb); 452 } 453 EXPORT_SYMBOL_GPL(mnt_drop_write); 454 455 void __mnt_drop_write_file(struct file *file) 456 { 457 __mnt_drop_write(file->f_path.mnt); 458 } 459 460 void mnt_drop_write_file(struct file *file) 461 { 462 __mnt_drop_write_file(file); 463 sb_end_write(file_inode(file)->i_sb); 464 } 465 EXPORT_SYMBOL(mnt_drop_write_file); 466 467 static int mnt_make_readonly(struct mount *mnt) 468 { 469 int ret = 0; 470 471 lock_mount_hash(); 472 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD; 473 /* 474 * After storing MNT_WRITE_HOLD, we'll read the counters. This store 475 * should be visible before we do. 476 */ 477 smp_mb(); 478 479 /* 480 * With writers on hold, if this value is zero, then there are 481 * definitely no active writers (although held writers may subsequently 482 * increment the count, they'll have to wait, and decrement it after 483 * seeing MNT_READONLY). 484 * 485 * It is OK to have counter incremented on one CPU and decremented on 486 * another: the sum will add up correctly. The danger would be when we 487 * sum up each counter, if we read a counter before it is incremented, 488 * but then read another CPU's count which it has been subsequently 489 * decremented from -- we would see more decrements than we should. 490 * MNT_WRITE_HOLD protects against this scenario, because 491 * mnt_want_write first increments count, then smp_mb, then spins on 492 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while 493 * we're counting up here. 494 */ 495 if (mnt_get_writers(mnt) > 0) 496 ret = -EBUSY; 497 else 498 mnt->mnt.mnt_flags |= MNT_READONLY; 499 /* 500 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers 501 * that become unheld will see MNT_READONLY. 502 */ 503 smp_wmb(); 504 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD; 505 unlock_mount_hash(); 506 return ret; 507 } 508 509 static int __mnt_unmake_readonly(struct mount *mnt) 510 { 511 lock_mount_hash(); 512 mnt->mnt.mnt_flags &= ~MNT_READONLY; 513 unlock_mount_hash(); 514 return 0; 515 } 516 517 int sb_prepare_remount_readonly(struct super_block *sb) 518 { 519 struct mount *mnt; 520 int err = 0; 521 522 /* Racy optimization. Recheck the counter under MNT_WRITE_HOLD */ 523 if (atomic_long_read(&sb->s_remove_count)) 524 return -EBUSY; 525 526 lock_mount_hash(); 527 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) { 528 if (!(mnt->mnt.mnt_flags & MNT_READONLY)) { 529 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD; 530 smp_mb(); 531 if (mnt_get_writers(mnt) > 0) { 532 err = -EBUSY; 533 break; 534 } 535 } 536 } 537 if (!err && atomic_long_read(&sb->s_remove_count)) 538 err = -EBUSY; 539 540 if (!err) { 541 sb->s_readonly_remount = 1; 542 smp_wmb(); 543 } 544 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) { 545 if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD) 546 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD; 547 } 548 unlock_mount_hash(); 549 550 return err; 551 } 552 553 static void free_vfsmnt(struct mount *mnt) 554 { 555 kfree_const(mnt->mnt_devname); 556 #ifdef CONFIG_SMP 557 free_percpu(mnt->mnt_pcp); 558 #endif 559 kmem_cache_free(mnt_cache, mnt); 560 } 561 562 static void delayed_free_vfsmnt(struct rcu_head *head) 563 { 564 free_vfsmnt(container_of(head, struct mount, mnt_rcu)); 565 } 566 567 /* call under rcu_read_lock */ 568 int __legitimize_mnt(struct vfsmount *bastard, unsigned seq) 569 { 570 struct mount *mnt; 571 if (read_seqretry(&mount_lock, seq)) 572 return 1; 573 if (bastard == NULL) 574 return 0; 575 mnt = real_mount(bastard); 576 mnt_add_count(mnt, 1); 577 smp_mb(); // see mntput_no_expire() 578 if (likely(!read_seqretry(&mount_lock, seq))) 579 return 0; 580 if (bastard->mnt_flags & MNT_SYNC_UMOUNT) { 581 mnt_add_count(mnt, -1); 582 return 1; 583 } 584 lock_mount_hash(); 585 if (unlikely(bastard->mnt_flags & MNT_DOOMED)) { 586 mnt_add_count(mnt, -1); 587 unlock_mount_hash(); 588 return 1; 589 } 590 unlock_mount_hash(); 591 /* caller will mntput() */ 592 return -1; 593 } 594 595 /* call under rcu_read_lock */ 596 bool legitimize_mnt(struct vfsmount *bastard, unsigned seq) 597 { 598 int res = __legitimize_mnt(bastard, seq); 599 if (likely(!res)) 600 return true; 601 if (unlikely(res < 0)) { 602 rcu_read_unlock(); 603 mntput(bastard); 604 rcu_read_lock(); 605 } 606 return false; 607 } 608 609 /* 610 * find the first mount at @dentry on vfsmount @mnt. 611 * call under rcu_read_lock() 612 */ 613 struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry) 614 { 615 struct hlist_head *head = m_hash(mnt, dentry); 616 struct mount *p; 617 618 hlist_for_each_entry_rcu(p, head, mnt_hash) 619 if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry) 620 return p; 621 return NULL; 622 } 623 624 /* 625 * lookup_mnt - Return the first child mount mounted at path 626 * 627 * "First" means first mounted chronologically. If you create the 628 * following mounts: 629 * 630 * mount /dev/sda1 /mnt 631 * mount /dev/sda2 /mnt 632 * mount /dev/sda3 /mnt 633 * 634 * Then lookup_mnt() on the base /mnt dentry in the root mount will 635 * return successively the root dentry and vfsmount of /dev/sda1, then 636 * /dev/sda2, then /dev/sda3, then NULL. 637 * 638 * lookup_mnt takes a reference to the found vfsmount. 639 */ 640 struct vfsmount *lookup_mnt(const struct path *path) 641 { 642 struct mount *child_mnt; 643 struct vfsmount *m; 644 unsigned seq; 645 646 rcu_read_lock(); 647 do { 648 seq = read_seqbegin(&mount_lock); 649 child_mnt = __lookup_mnt(path->mnt, path->dentry); 650 m = child_mnt ? &child_mnt->mnt : NULL; 651 } while (!legitimize_mnt(m, seq)); 652 rcu_read_unlock(); 653 return m; 654 } 655 656 /* 657 * __is_local_mountpoint - Test to see if dentry is a mountpoint in the 658 * current mount namespace. 659 * 660 * The common case is dentries are not mountpoints at all and that 661 * test is handled inline. For the slow case when we are actually 662 * dealing with a mountpoint of some kind, walk through all of the 663 * mounts in the current mount namespace and test to see if the dentry 664 * is a mountpoint. 665 * 666 * The mount_hashtable is not usable in the context because we 667 * need to identify all mounts that may be in the current mount 668 * namespace not just a mount that happens to have some specified 669 * parent mount. 670 */ 671 bool __is_local_mountpoint(struct dentry *dentry) 672 { 673 struct mnt_namespace *ns = current->nsproxy->mnt_ns; 674 struct mount *mnt; 675 bool is_covered = false; 676 677 if (!d_mountpoint(dentry)) 678 goto out; 679 680 down_read(&namespace_sem); 681 list_for_each_entry(mnt, &ns->list, mnt_list) { 682 is_covered = (mnt->mnt_mountpoint == dentry); 683 if (is_covered) 684 break; 685 } 686 up_read(&namespace_sem); 687 out: 688 return is_covered; 689 } 690 691 static struct mountpoint *lookup_mountpoint(struct dentry *dentry) 692 { 693 struct hlist_head *chain = mp_hash(dentry); 694 struct mountpoint *mp; 695 696 hlist_for_each_entry(mp, chain, m_hash) { 697 if (mp->m_dentry == dentry) { 698 mp->m_count++; 699 return mp; 700 } 701 } 702 return NULL; 703 } 704 705 static struct mountpoint *get_mountpoint(struct dentry *dentry) 706 { 707 struct mountpoint *mp, *new = NULL; 708 int ret; 709 710 if (d_mountpoint(dentry)) { 711 /* might be worth a WARN_ON() */ 712 if (d_unlinked(dentry)) 713 return ERR_PTR(-ENOENT); 714 mountpoint: 715 read_seqlock_excl(&mount_lock); 716 mp = lookup_mountpoint(dentry); 717 read_sequnlock_excl(&mount_lock); 718 if (mp) 719 goto done; 720 } 721 722 if (!new) 723 new = kmalloc(sizeof(struct mountpoint), GFP_KERNEL); 724 if (!new) 725 return ERR_PTR(-ENOMEM); 726 727 728 /* Exactly one processes may set d_mounted */ 729 ret = d_set_mounted(dentry); 730 731 /* Someone else set d_mounted? */ 732 if (ret == -EBUSY) 733 goto mountpoint; 734 735 /* The dentry is not available as a mountpoint? */ 736 mp = ERR_PTR(ret); 737 if (ret) 738 goto done; 739 740 /* Add the new mountpoint to the hash table */ 741 read_seqlock_excl(&mount_lock); 742 new->m_dentry = dentry; 743 new->m_count = 1; 744 hlist_add_head(&new->m_hash, mp_hash(dentry)); 745 INIT_HLIST_HEAD(&new->m_list); 746 read_sequnlock_excl(&mount_lock); 747 748 mp = new; 749 new = NULL; 750 done: 751 kfree(new); 752 return mp; 753 } 754 755 static void put_mountpoint(struct mountpoint *mp) 756 { 757 if (!--mp->m_count) { 758 struct dentry *dentry = mp->m_dentry; 759 BUG_ON(!hlist_empty(&mp->m_list)); 760 spin_lock(&dentry->d_lock); 761 dentry->d_flags &= ~DCACHE_MOUNTED; 762 spin_unlock(&dentry->d_lock); 763 hlist_del(&mp->m_hash); 764 kfree(mp); 765 } 766 } 767 768 static inline int check_mnt(struct mount *mnt) 769 { 770 return mnt->mnt_ns == current->nsproxy->mnt_ns; 771 } 772 773 /* 774 * vfsmount lock must be held for write 775 */ 776 static void touch_mnt_namespace(struct mnt_namespace *ns) 777 { 778 if (ns) { 779 ns->event = ++event; 780 wake_up_interruptible(&ns->poll); 781 } 782 } 783 784 /* 785 * vfsmount lock must be held for write 786 */ 787 static void __touch_mnt_namespace(struct mnt_namespace *ns) 788 { 789 if (ns && ns->event != event) { 790 ns->event = event; 791 wake_up_interruptible(&ns->poll); 792 } 793 } 794 795 /* 796 * vfsmount lock must be held for write 797 */ 798 static void unhash_mnt(struct mount *mnt) 799 { 800 mnt->mnt_parent = mnt; 801 mnt->mnt_mountpoint = mnt->mnt.mnt_root; 802 list_del_init(&mnt->mnt_child); 803 hlist_del_init_rcu(&mnt->mnt_hash); 804 hlist_del_init(&mnt->mnt_mp_list); 805 put_mountpoint(mnt->mnt_mp); 806 mnt->mnt_mp = NULL; 807 } 808 809 /* 810 * vfsmount lock must be held for write 811 */ 812 static void detach_mnt(struct mount *mnt, struct path *old_path) 813 { 814 old_path->dentry = mnt->mnt_mountpoint; 815 old_path->mnt = &mnt->mnt_parent->mnt; 816 unhash_mnt(mnt); 817 } 818 819 /* 820 * vfsmount lock must be held for write 821 */ 822 static void umount_mnt(struct mount *mnt) 823 { 824 /* old mountpoint will be dropped when we can do that */ 825 mnt->mnt_ex_mountpoint = mnt->mnt_mountpoint; 826 unhash_mnt(mnt); 827 } 828 829 /* 830 * vfsmount lock must be held for write 831 */ 832 void mnt_set_mountpoint(struct mount *mnt, 833 struct mountpoint *mp, 834 struct mount *child_mnt) 835 { 836 mp->m_count++; 837 mnt_add_count(mnt, 1); /* essentially, that's mntget */ 838 child_mnt->mnt_mountpoint = dget(mp->m_dentry); 839 child_mnt->mnt_parent = mnt; 840 child_mnt->mnt_mp = mp; 841 hlist_add_head(&child_mnt->mnt_mp_list, &mp->m_list); 842 } 843 844 static void __attach_mnt(struct mount *mnt, struct mount *parent) 845 { 846 hlist_add_head_rcu(&mnt->mnt_hash, 847 m_hash(&parent->mnt, mnt->mnt_mountpoint)); 848 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts); 849 } 850 851 /* 852 * vfsmount lock must be held for write 853 */ 854 static void attach_mnt(struct mount *mnt, 855 struct mount *parent, 856 struct mountpoint *mp) 857 { 858 mnt_set_mountpoint(parent, mp, mnt); 859 __attach_mnt(mnt, parent); 860 } 861 862 void mnt_change_mountpoint(struct mount *parent, struct mountpoint *mp, struct mount *mnt) 863 { 864 struct mountpoint *old_mp = mnt->mnt_mp; 865 struct dentry *old_mountpoint = mnt->mnt_mountpoint; 866 struct mount *old_parent = mnt->mnt_parent; 867 868 list_del_init(&mnt->mnt_child); 869 hlist_del_init(&mnt->mnt_mp_list); 870 hlist_del_init_rcu(&mnt->mnt_hash); 871 872 attach_mnt(mnt, parent, mp); 873 874 put_mountpoint(old_mp); 875 876 /* 877 * Safely avoid even the suggestion this code might sleep or 878 * lock the mount hash by taking advantage of the knowledge that 879 * mnt_change_mountpoint will not release the final reference 880 * to a mountpoint. 881 * 882 * During mounting, the mount passed in as the parent mount will 883 * continue to use the old mountpoint and during unmounting, the 884 * old mountpoint will continue to exist until namespace_unlock, 885 * which happens well after mnt_change_mountpoint. 886 */ 887 spin_lock(&old_mountpoint->d_lock); 888 old_mountpoint->d_lockref.count--; 889 spin_unlock(&old_mountpoint->d_lock); 890 891 mnt_add_count(old_parent, -1); 892 } 893 894 /* 895 * vfsmount lock must be held for write 896 */ 897 static void commit_tree(struct mount *mnt) 898 { 899 struct mount *parent = mnt->mnt_parent; 900 struct mount *m; 901 LIST_HEAD(head); 902 struct mnt_namespace *n = parent->mnt_ns; 903 904 BUG_ON(parent == mnt); 905 906 list_add_tail(&head, &mnt->mnt_list); 907 list_for_each_entry(m, &head, mnt_list) 908 m->mnt_ns = n; 909 910 list_splice(&head, n->list.prev); 911 912 n->mounts += n->pending_mounts; 913 n->pending_mounts = 0; 914 915 __attach_mnt(mnt, parent); 916 touch_mnt_namespace(n); 917 } 918 919 static struct mount *next_mnt(struct mount *p, struct mount *root) 920 { 921 struct list_head *next = p->mnt_mounts.next; 922 if (next == &p->mnt_mounts) { 923 while (1) { 924 if (p == root) 925 return NULL; 926 next = p->mnt_child.next; 927 if (next != &p->mnt_parent->mnt_mounts) 928 break; 929 p = p->mnt_parent; 930 } 931 } 932 return list_entry(next, struct mount, mnt_child); 933 } 934 935 static struct mount *skip_mnt_tree(struct mount *p) 936 { 937 struct list_head *prev = p->mnt_mounts.prev; 938 while (prev != &p->mnt_mounts) { 939 p = list_entry(prev, struct mount, mnt_child); 940 prev = p->mnt_mounts.prev; 941 } 942 return p; 943 } 944 945 /** 946 * vfs_create_mount - Create a mount for a configured superblock 947 * @fc: The configuration context with the superblock attached 948 * 949 * Create a mount to an already configured superblock. If necessary, the 950 * caller should invoke vfs_get_tree() before calling this. 951 * 952 * Note that this does not attach the mount to anything. 953 */ 954 struct vfsmount *vfs_create_mount(struct fs_context *fc) 955 { 956 struct mount *mnt; 957 958 if (!fc->root) 959 return ERR_PTR(-EINVAL); 960 961 mnt = alloc_vfsmnt(fc->source ?: "none"); 962 if (!mnt) 963 return ERR_PTR(-ENOMEM); 964 965 if (fc->sb_flags & SB_KERNMOUNT) 966 mnt->mnt.mnt_flags = MNT_INTERNAL; 967 968 atomic_inc(&fc->root->d_sb->s_active); 969 mnt->mnt.mnt_sb = fc->root->d_sb; 970 mnt->mnt.mnt_root = dget(fc->root); 971 mnt->mnt_mountpoint = mnt->mnt.mnt_root; 972 mnt->mnt_parent = mnt; 973 974 lock_mount_hash(); 975 list_add_tail(&mnt->mnt_instance, &mnt->mnt.mnt_sb->s_mounts); 976 unlock_mount_hash(); 977 return &mnt->mnt; 978 } 979 EXPORT_SYMBOL(vfs_create_mount); 980 981 struct vfsmount *fc_mount(struct fs_context *fc) 982 { 983 int err = vfs_get_tree(fc); 984 if (!err) { 985 up_write(&fc->root->d_sb->s_umount); 986 return vfs_create_mount(fc); 987 } 988 return ERR_PTR(err); 989 } 990 EXPORT_SYMBOL(fc_mount); 991 992 struct vfsmount *vfs_kern_mount(struct file_system_type *type, 993 int flags, const char *name, 994 void *data) 995 { 996 struct fs_context *fc; 997 struct vfsmount *mnt; 998 int ret = 0; 999 1000 if (!type) 1001 return ERR_PTR(-EINVAL); 1002 1003 fc = fs_context_for_mount(type, flags); 1004 if (IS_ERR(fc)) 1005 return ERR_CAST(fc); 1006 1007 if (name) 1008 ret = vfs_parse_fs_string(fc, "source", 1009 name, strlen(name)); 1010 if (!ret) 1011 ret = parse_monolithic_mount_data(fc, data); 1012 if (!ret) 1013 mnt = fc_mount(fc); 1014 else 1015 mnt = ERR_PTR(ret); 1016 1017 put_fs_context(fc); 1018 return mnt; 1019 } 1020 EXPORT_SYMBOL_GPL(vfs_kern_mount); 1021 1022 struct vfsmount * 1023 vfs_submount(const struct dentry *mountpoint, struct file_system_type *type, 1024 const char *name, void *data) 1025 { 1026 /* Until it is worked out how to pass the user namespace 1027 * through from the parent mount to the submount don't support 1028 * unprivileged mounts with submounts. 1029 */ 1030 if (mountpoint->d_sb->s_user_ns != &init_user_ns) 1031 return ERR_PTR(-EPERM); 1032 1033 return vfs_kern_mount(type, SB_SUBMOUNT, name, data); 1034 } 1035 EXPORT_SYMBOL_GPL(vfs_submount); 1036 1037 static struct mount *clone_mnt(struct mount *old, struct dentry *root, 1038 int flag) 1039 { 1040 struct super_block *sb = old->mnt.mnt_sb; 1041 struct mount *mnt; 1042 int err; 1043 1044 mnt = alloc_vfsmnt(old->mnt_devname); 1045 if (!mnt) 1046 return ERR_PTR(-ENOMEM); 1047 1048 if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE)) 1049 mnt->mnt_group_id = 0; /* not a peer of original */ 1050 else 1051 mnt->mnt_group_id = old->mnt_group_id; 1052 1053 if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) { 1054 err = mnt_alloc_group_id(mnt); 1055 if (err) 1056 goto out_free; 1057 } 1058 1059 mnt->mnt.mnt_flags = old->mnt.mnt_flags; 1060 mnt->mnt.mnt_flags &= ~(MNT_WRITE_HOLD|MNT_MARKED|MNT_INTERNAL); 1061 1062 atomic_inc(&sb->s_active); 1063 mnt->mnt.mnt_sb = sb; 1064 mnt->mnt.mnt_root = dget(root); 1065 mnt->mnt_mountpoint = mnt->mnt.mnt_root; 1066 mnt->mnt_parent = mnt; 1067 lock_mount_hash(); 1068 list_add_tail(&mnt->mnt_instance, &sb->s_mounts); 1069 unlock_mount_hash(); 1070 1071 if ((flag & CL_SLAVE) || 1072 ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) { 1073 list_add(&mnt->mnt_slave, &old->mnt_slave_list); 1074 mnt->mnt_master = old; 1075 CLEAR_MNT_SHARED(mnt); 1076 } else if (!(flag & CL_PRIVATE)) { 1077 if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old)) 1078 list_add(&mnt->mnt_share, &old->mnt_share); 1079 if (IS_MNT_SLAVE(old)) 1080 list_add(&mnt->mnt_slave, &old->mnt_slave); 1081 mnt->mnt_master = old->mnt_master; 1082 } else { 1083 CLEAR_MNT_SHARED(mnt); 1084 } 1085 if (flag & CL_MAKE_SHARED) 1086 set_mnt_shared(mnt); 1087 1088 /* stick the duplicate mount on the same expiry list 1089 * as the original if that was on one */ 1090 if (flag & CL_EXPIRE) { 1091 if (!list_empty(&old->mnt_expire)) 1092 list_add(&mnt->mnt_expire, &old->mnt_expire); 1093 } 1094 1095 return mnt; 1096 1097 out_free: 1098 mnt_free_id(mnt); 1099 free_vfsmnt(mnt); 1100 return ERR_PTR(err); 1101 } 1102 1103 static void cleanup_mnt(struct mount *mnt) 1104 { 1105 /* 1106 * This probably indicates that somebody messed 1107 * up a mnt_want/drop_write() pair. If this 1108 * happens, the filesystem was probably unable 1109 * to make r/w->r/o transitions. 1110 */ 1111 /* 1112 * The locking used to deal with mnt_count decrement provides barriers, 1113 * so mnt_get_writers() below is safe. 1114 */ 1115 WARN_ON(mnt_get_writers(mnt)); 1116 if (unlikely(mnt->mnt_pins.first)) 1117 mnt_pin_kill(mnt); 1118 fsnotify_vfsmount_delete(&mnt->mnt); 1119 dput(mnt->mnt.mnt_root); 1120 deactivate_super(mnt->mnt.mnt_sb); 1121 mnt_free_id(mnt); 1122 call_rcu(&mnt->mnt_rcu, delayed_free_vfsmnt); 1123 } 1124 1125 static void __cleanup_mnt(struct rcu_head *head) 1126 { 1127 cleanup_mnt(container_of(head, struct mount, mnt_rcu)); 1128 } 1129 1130 static LLIST_HEAD(delayed_mntput_list); 1131 static void delayed_mntput(struct work_struct *unused) 1132 { 1133 struct llist_node *node = llist_del_all(&delayed_mntput_list); 1134 struct mount *m, *t; 1135 1136 llist_for_each_entry_safe(m, t, node, mnt_llist) 1137 cleanup_mnt(m); 1138 } 1139 static DECLARE_DELAYED_WORK(delayed_mntput_work, delayed_mntput); 1140 1141 static void mntput_no_expire(struct mount *mnt) 1142 { 1143 rcu_read_lock(); 1144 if (likely(READ_ONCE(mnt->mnt_ns))) { 1145 /* 1146 * Since we don't do lock_mount_hash() here, 1147 * ->mnt_ns can change under us. However, if it's 1148 * non-NULL, then there's a reference that won't 1149 * be dropped until after an RCU delay done after 1150 * turning ->mnt_ns NULL. So if we observe it 1151 * non-NULL under rcu_read_lock(), the reference 1152 * we are dropping is not the final one. 1153 */ 1154 mnt_add_count(mnt, -1); 1155 rcu_read_unlock(); 1156 return; 1157 } 1158 lock_mount_hash(); 1159 /* 1160 * make sure that if __legitimize_mnt() has not seen us grab 1161 * mount_lock, we'll see their refcount increment here. 1162 */ 1163 smp_mb(); 1164 mnt_add_count(mnt, -1); 1165 if (mnt_get_count(mnt)) { 1166 rcu_read_unlock(); 1167 unlock_mount_hash(); 1168 return; 1169 } 1170 if (unlikely(mnt->mnt.mnt_flags & MNT_DOOMED)) { 1171 rcu_read_unlock(); 1172 unlock_mount_hash(); 1173 return; 1174 } 1175 mnt->mnt.mnt_flags |= MNT_DOOMED; 1176 rcu_read_unlock(); 1177 1178 list_del(&mnt->mnt_instance); 1179 1180 if (unlikely(!list_empty(&mnt->mnt_mounts))) { 1181 struct mount *p, *tmp; 1182 list_for_each_entry_safe(p, tmp, &mnt->mnt_mounts, mnt_child) { 1183 umount_mnt(p); 1184 } 1185 } 1186 unlock_mount_hash(); 1187 1188 if (likely(!(mnt->mnt.mnt_flags & MNT_INTERNAL))) { 1189 struct task_struct *task = current; 1190 if (likely(!(task->flags & PF_KTHREAD))) { 1191 init_task_work(&mnt->mnt_rcu, __cleanup_mnt); 1192 if (!task_work_add(task, &mnt->mnt_rcu, true)) 1193 return; 1194 } 1195 if (llist_add(&mnt->mnt_llist, &delayed_mntput_list)) 1196 schedule_delayed_work(&delayed_mntput_work, 1); 1197 return; 1198 } 1199 cleanup_mnt(mnt); 1200 } 1201 1202 void mntput(struct vfsmount *mnt) 1203 { 1204 if (mnt) { 1205 struct mount *m = real_mount(mnt); 1206 /* avoid cacheline pingpong, hope gcc doesn't get "smart" */ 1207 if (unlikely(m->mnt_expiry_mark)) 1208 m->mnt_expiry_mark = 0; 1209 mntput_no_expire(m); 1210 } 1211 } 1212 EXPORT_SYMBOL(mntput); 1213 1214 struct vfsmount *mntget(struct vfsmount *mnt) 1215 { 1216 if (mnt) 1217 mnt_add_count(real_mount(mnt), 1); 1218 return mnt; 1219 } 1220 EXPORT_SYMBOL(mntget); 1221 1222 /* path_is_mountpoint() - Check if path is a mount in the current 1223 * namespace. 1224 * 1225 * d_mountpoint() can only be used reliably to establish if a dentry is 1226 * not mounted in any namespace and that common case is handled inline. 1227 * d_mountpoint() isn't aware of the possibility there may be multiple 1228 * mounts using a given dentry in a different namespace. This function 1229 * checks if the passed in path is a mountpoint rather than the dentry 1230 * alone. 1231 */ 1232 bool path_is_mountpoint(const struct path *path) 1233 { 1234 unsigned seq; 1235 bool res; 1236 1237 if (!d_mountpoint(path->dentry)) 1238 return false; 1239 1240 rcu_read_lock(); 1241 do { 1242 seq = read_seqbegin(&mount_lock); 1243 res = __path_is_mountpoint(path); 1244 } while (read_seqretry(&mount_lock, seq)); 1245 rcu_read_unlock(); 1246 1247 return res; 1248 } 1249 EXPORT_SYMBOL(path_is_mountpoint); 1250 1251 struct vfsmount *mnt_clone_internal(const struct path *path) 1252 { 1253 struct mount *p; 1254 p = clone_mnt(real_mount(path->mnt), path->dentry, CL_PRIVATE); 1255 if (IS_ERR(p)) 1256 return ERR_CAST(p); 1257 p->mnt.mnt_flags |= MNT_INTERNAL; 1258 return &p->mnt; 1259 } 1260 1261 #ifdef CONFIG_PROC_FS 1262 /* iterator; we want it to have access to namespace_sem, thus here... */ 1263 static void *m_start(struct seq_file *m, loff_t *pos) 1264 { 1265 struct proc_mounts *p = m->private; 1266 1267 down_read(&namespace_sem); 1268 if (p->cached_event == p->ns->event) { 1269 void *v = p->cached_mount; 1270 if (*pos == p->cached_index) 1271 return v; 1272 if (*pos == p->cached_index + 1) { 1273 v = seq_list_next(v, &p->ns->list, &p->cached_index); 1274 return p->cached_mount = v; 1275 } 1276 } 1277 1278 p->cached_event = p->ns->event; 1279 p->cached_mount = seq_list_start(&p->ns->list, *pos); 1280 p->cached_index = *pos; 1281 return p->cached_mount; 1282 } 1283 1284 static void *m_next(struct seq_file *m, void *v, loff_t *pos) 1285 { 1286 struct proc_mounts *p = m->private; 1287 1288 p->cached_mount = seq_list_next(v, &p->ns->list, pos); 1289 p->cached_index = *pos; 1290 return p->cached_mount; 1291 } 1292 1293 static void m_stop(struct seq_file *m, void *v) 1294 { 1295 up_read(&namespace_sem); 1296 } 1297 1298 static int m_show(struct seq_file *m, void *v) 1299 { 1300 struct proc_mounts *p = m->private; 1301 struct mount *r = list_entry(v, struct mount, mnt_list); 1302 return p->show(m, &r->mnt); 1303 } 1304 1305 const struct seq_operations mounts_op = { 1306 .start = m_start, 1307 .next = m_next, 1308 .stop = m_stop, 1309 .show = m_show, 1310 }; 1311 #endif /* CONFIG_PROC_FS */ 1312 1313 /** 1314 * may_umount_tree - check if a mount tree is busy 1315 * @mnt: root of mount tree 1316 * 1317 * This is called to check if a tree of mounts has any 1318 * open files, pwds, chroots or sub mounts that are 1319 * busy. 1320 */ 1321 int may_umount_tree(struct vfsmount *m) 1322 { 1323 struct mount *mnt = real_mount(m); 1324 int actual_refs = 0; 1325 int minimum_refs = 0; 1326 struct mount *p; 1327 BUG_ON(!m); 1328 1329 /* write lock needed for mnt_get_count */ 1330 lock_mount_hash(); 1331 for (p = mnt; p; p = next_mnt(p, mnt)) { 1332 actual_refs += mnt_get_count(p); 1333 minimum_refs += 2; 1334 } 1335 unlock_mount_hash(); 1336 1337 if (actual_refs > minimum_refs) 1338 return 0; 1339 1340 return 1; 1341 } 1342 1343 EXPORT_SYMBOL(may_umount_tree); 1344 1345 /** 1346 * may_umount - check if a mount point is busy 1347 * @mnt: root of mount 1348 * 1349 * This is called to check if a mount point has any 1350 * open files, pwds, chroots or sub mounts. If the 1351 * mount has sub mounts this will return busy 1352 * regardless of whether the sub mounts are busy. 1353 * 1354 * Doesn't take quota and stuff into account. IOW, in some cases it will 1355 * give false negatives. The main reason why it's here is that we need 1356 * a non-destructive way to look for easily umountable filesystems. 1357 */ 1358 int may_umount(struct vfsmount *mnt) 1359 { 1360 int ret = 1; 1361 down_read(&namespace_sem); 1362 lock_mount_hash(); 1363 if (propagate_mount_busy(real_mount(mnt), 2)) 1364 ret = 0; 1365 unlock_mount_hash(); 1366 up_read(&namespace_sem); 1367 return ret; 1368 } 1369 1370 EXPORT_SYMBOL(may_umount); 1371 1372 static HLIST_HEAD(unmounted); /* protected by namespace_sem */ 1373 1374 static void namespace_unlock(void) 1375 { 1376 struct hlist_head head; 1377 1378 hlist_move_list(&unmounted, &head); 1379 1380 up_write(&namespace_sem); 1381 1382 if (likely(hlist_empty(&head))) 1383 return; 1384 1385 synchronize_rcu_expedited(); 1386 1387 group_pin_kill(&head); 1388 } 1389 1390 static inline void namespace_lock(void) 1391 { 1392 down_write(&namespace_sem); 1393 } 1394 1395 enum umount_tree_flags { 1396 UMOUNT_SYNC = 1, 1397 UMOUNT_PROPAGATE = 2, 1398 UMOUNT_CONNECTED = 4, 1399 }; 1400 1401 static bool disconnect_mount(struct mount *mnt, enum umount_tree_flags how) 1402 { 1403 /* Leaving mounts connected is only valid for lazy umounts */ 1404 if (how & UMOUNT_SYNC) 1405 return true; 1406 1407 /* A mount without a parent has nothing to be connected to */ 1408 if (!mnt_has_parent(mnt)) 1409 return true; 1410 1411 /* Because the reference counting rules change when mounts are 1412 * unmounted and connected, umounted mounts may not be 1413 * connected to mounted mounts. 1414 */ 1415 if (!(mnt->mnt_parent->mnt.mnt_flags & MNT_UMOUNT)) 1416 return true; 1417 1418 /* Has it been requested that the mount remain connected? */ 1419 if (how & UMOUNT_CONNECTED) 1420 return false; 1421 1422 /* Is the mount locked such that it needs to remain connected? */ 1423 if (IS_MNT_LOCKED(mnt)) 1424 return false; 1425 1426 /* By default disconnect the mount */ 1427 return true; 1428 } 1429 1430 /* 1431 * mount_lock must be held 1432 * namespace_sem must be held for write 1433 */ 1434 static void umount_tree(struct mount *mnt, enum umount_tree_flags how) 1435 { 1436 LIST_HEAD(tmp_list); 1437 struct mount *p; 1438 1439 if (how & UMOUNT_PROPAGATE) 1440 propagate_mount_unlock(mnt); 1441 1442 /* Gather the mounts to umount */ 1443 for (p = mnt; p; p = next_mnt(p, mnt)) { 1444 p->mnt.mnt_flags |= MNT_UMOUNT; 1445 list_move(&p->mnt_list, &tmp_list); 1446 } 1447 1448 /* Hide the mounts from mnt_mounts */ 1449 list_for_each_entry(p, &tmp_list, mnt_list) { 1450 list_del_init(&p->mnt_child); 1451 } 1452 1453 /* Add propogated mounts to the tmp_list */ 1454 if (how & UMOUNT_PROPAGATE) 1455 propagate_umount(&tmp_list); 1456 1457 while (!list_empty(&tmp_list)) { 1458 struct mnt_namespace *ns; 1459 bool disconnect; 1460 p = list_first_entry(&tmp_list, struct mount, mnt_list); 1461 list_del_init(&p->mnt_expire); 1462 list_del_init(&p->mnt_list); 1463 ns = p->mnt_ns; 1464 if (ns) { 1465 ns->mounts--; 1466 __touch_mnt_namespace(ns); 1467 } 1468 p->mnt_ns = NULL; 1469 if (how & UMOUNT_SYNC) 1470 p->mnt.mnt_flags |= MNT_SYNC_UMOUNT; 1471 1472 disconnect = disconnect_mount(p, how); 1473 1474 pin_insert_group(&p->mnt_umount, &p->mnt_parent->mnt, 1475 disconnect ? &unmounted : NULL); 1476 if (mnt_has_parent(p)) { 1477 mnt_add_count(p->mnt_parent, -1); 1478 if (!disconnect) { 1479 /* Don't forget about p */ 1480 list_add_tail(&p->mnt_child, &p->mnt_parent->mnt_mounts); 1481 } else { 1482 umount_mnt(p); 1483 } 1484 } 1485 change_mnt_propagation(p, MS_PRIVATE); 1486 } 1487 } 1488 1489 static void shrink_submounts(struct mount *mnt); 1490 1491 static int do_umount_root(struct super_block *sb) 1492 { 1493 int ret = 0; 1494 1495 down_write(&sb->s_umount); 1496 if (!sb_rdonly(sb)) { 1497 struct fs_context *fc; 1498 1499 fc = fs_context_for_reconfigure(sb->s_root, SB_RDONLY, 1500 SB_RDONLY); 1501 if (IS_ERR(fc)) { 1502 ret = PTR_ERR(fc); 1503 } else { 1504 ret = parse_monolithic_mount_data(fc, NULL); 1505 if (!ret) 1506 ret = reconfigure_super(fc); 1507 put_fs_context(fc); 1508 } 1509 } 1510 up_write(&sb->s_umount); 1511 return ret; 1512 } 1513 1514 static int do_umount(struct mount *mnt, int flags) 1515 { 1516 struct super_block *sb = mnt->mnt.mnt_sb; 1517 int retval; 1518 1519 retval = security_sb_umount(&mnt->mnt, flags); 1520 if (retval) 1521 return retval; 1522 1523 /* 1524 * Allow userspace to request a mountpoint be expired rather than 1525 * unmounting unconditionally. Unmount only happens if: 1526 * (1) the mark is already set (the mark is cleared by mntput()) 1527 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount] 1528 */ 1529 if (flags & MNT_EXPIRE) { 1530 if (&mnt->mnt == current->fs->root.mnt || 1531 flags & (MNT_FORCE | MNT_DETACH)) 1532 return -EINVAL; 1533 1534 /* 1535 * probably don't strictly need the lock here if we examined 1536 * all race cases, but it's a slowpath. 1537 */ 1538 lock_mount_hash(); 1539 if (mnt_get_count(mnt) != 2) { 1540 unlock_mount_hash(); 1541 return -EBUSY; 1542 } 1543 unlock_mount_hash(); 1544 1545 if (!xchg(&mnt->mnt_expiry_mark, 1)) 1546 return -EAGAIN; 1547 } 1548 1549 /* 1550 * If we may have to abort operations to get out of this 1551 * mount, and they will themselves hold resources we must 1552 * allow the fs to do things. In the Unix tradition of 1553 * 'Gee thats tricky lets do it in userspace' the umount_begin 1554 * might fail to complete on the first run through as other tasks 1555 * must return, and the like. Thats for the mount program to worry 1556 * about for the moment. 1557 */ 1558 1559 if (flags & MNT_FORCE && sb->s_op->umount_begin) { 1560 sb->s_op->umount_begin(sb); 1561 } 1562 1563 /* 1564 * No sense to grab the lock for this test, but test itself looks 1565 * somewhat bogus. Suggestions for better replacement? 1566 * Ho-hum... In principle, we might treat that as umount + switch 1567 * to rootfs. GC would eventually take care of the old vfsmount. 1568 * Actually it makes sense, especially if rootfs would contain a 1569 * /reboot - static binary that would close all descriptors and 1570 * call reboot(9). Then init(8) could umount root and exec /reboot. 1571 */ 1572 if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) { 1573 /* 1574 * Special case for "unmounting" root ... 1575 * we just try to remount it readonly. 1576 */ 1577 if (!ns_capable(sb->s_user_ns, CAP_SYS_ADMIN)) 1578 return -EPERM; 1579 return do_umount_root(sb); 1580 } 1581 1582 namespace_lock(); 1583 lock_mount_hash(); 1584 1585 /* Recheck MNT_LOCKED with the locks held */ 1586 retval = -EINVAL; 1587 if (mnt->mnt.mnt_flags & MNT_LOCKED) 1588 goto out; 1589 1590 event++; 1591 if (flags & MNT_DETACH) { 1592 if (!list_empty(&mnt->mnt_list)) 1593 umount_tree(mnt, UMOUNT_PROPAGATE); 1594 retval = 0; 1595 } else { 1596 shrink_submounts(mnt); 1597 retval = -EBUSY; 1598 if (!propagate_mount_busy(mnt, 2)) { 1599 if (!list_empty(&mnt->mnt_list)) 1600 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC); 1601 retval = 0; 1602 } 1603 } 1604 out: 1605 unlock_mount_hash(); 1606 namespace_unlock(); 1607 return retval; 1608 } 1609 1610 /* 1611 * __detach_mounts - lazily unmount all mounts on the specified dentry 1612 * 1613 * During unlink, rmdir, and d_drop it is possible to loose the path 1614 * to an existing mountpoint, and wind up leaking the mount. 1615 * detach_mounts allows lazily unmounting those mounts instead of 1616 * leaking them. 1617 * 1618 * The caller may hold dentry->d_inode->i_mutex. 1619 */ 1620 void __detach_mounts(struct dentry *dentry) 1621 { 1622 struct mountpoint *mp; 1623 struct mount *mnt; 1624 1625 namespace_lock(); 1626 lock_mount_hash(); 1627 mp = lookup_mountpoint(dentry); 1628 if (IS_ERR_OR_NULL(mp)) 1629 goto out_unlock; 1630 1631 event++; 1632 while (!hlist_empty(&mp->m_list)) { 1633 mnt = hlist_entry(mp->m_list.first, struct mount, mnt_mp_list); 1634 if (mnt->mnt.mnt_flags & MNT_UMOUNT) { 1635 hlist_add_head(&mnt->mnt_umount.s_list, &unmounted); 1636 umount_mnt(mnt); 1637 } 1638 else umount_tree(mnt, UMOUNT_CONNECTED); 1639 } 1640 put_mountpoint(mp); 1641 out_unlock: 1642 unlock_mount_hash(); 1643 namespace_unlock(); 1644 } 1645 1646 /* 1647 * Is the caller allowed to modify his namespace? 1648 */ 1649 static inline bool may_mount(void) 1650 { 1651 return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN); 1652 } 1653 1654 static inline bool may_mandlock(void) 1655 { 1656 #ifndef CONFIG_MANDATORY_FILE_LOCKING 1657 return false; 1658 #endif 1659 return capable(CAP_SYS_ADMIN); 1660 } 1661 1662 /* 1663 * Now umount can handle mount points as well as block devices. 1664 * This is important for filesystems which use unnamed block devices. 1665 * 1666 * We now support a flag for forced unmount like the other 'big iron' 1667 * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD 1668 */ 1669 1670 int ksys_umount(char __user *name, int flags) 1671 { 1672 struct path path; 1673 struct mount *mnt; 1674 int retval; 1675 int lookup_flags = 0; 1676 1677 if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW)) 1678 return -EINVAL; 1679 1680 if (!may_mount()) 1681 return -EPERM; 1682 1683 if (!(flags & UMOUNT_NOFOLLOW)) 1684 lookup_flags |= LOOKUP_FOLLOW; 1685 1686 lookup_flags |= LOOKUP_NO_EVAL; 1687 1688 retval = user_path_mountpoint_at(AT_FDCWD, name, lookup_flags, &path); 1689 if (retval) 1690 goto out; 1691 mnt = real_mount(path.mnt); 1692 retval = -EINVAL; 1693 if (path.dentry != path.mnt->mnt_root) 1694 goto dput_and_out; 1695 if (!check_mnt(mnt)) 1696 goto dput_and_out; 1697 if (mnt->mnt.mnt_flags & MNT_LOCKED) /* Check optimistically */ 1698 goto dput_and_out; 1699 retval = -EPERM; 1700 if (flags & MNT_FORCE && !capable(CAP_SYS_ADMIN)) 1701 goto dput_and_out; 1702 1703 retval = do_umount(mnt, flags); 1704 dput_and_out: 1705 /* we mustn't call path_put() as that would clear mnt_expiry_mark */ 1706 dput(path.dentry); 1707 mntput_no_expire(mnt); 1708 out: 1709 return retval; 1710 } 1711 1712 SYSCALL_DEFINE2(umount, char __user *, name, int, flags) 1713 { 1714 return ksys_umount(name, flags); 1715 } 1716 1717 #ifdef __ARCH_WANT_SYS_OLDUMOUNT 1718 1719 /* 1720 * The 2.0 compatible umount. No flags. 1721 */ 1722 SYSCALL_DEFINE1(oldumount, char __user *, name) 1723 { 1724 return ksys_umount(name, 0); 1725 } 1726 1727 #endif 1728 1729 static bool is_mnt_ns_file(struct dentry *dentry) 1730 { 1731 /* Is this a proxy for a mount namespace? */ 1732 return dentry->d_op == &ns_dentry_operations && 1733 dentry->d_fsdata == &mntns_operations; 1734 } 1735 1736 struct mnt_namespace *to_mnt_ns(struct ns_common *ns) 1737 { 1738 return container_of(ns, struct mnt_namespace, ns); 1739 } 1740 1741 static bool mnt_ns_loop(struct dentry *dentry) 1742 { 1743 /* Could bind mounting the mount namespace inode cause a 1744 * mount namespace loop? 1745 */ 1746 struct mnt_namespace *mnt_ns; 1747 if (!is_mnt_ns_file(dentry)) 1748 return false; 1749 1750 mnt_ns = to_mnt_ns(get_proc_ns(dentry->d_inode)); 1751 return current->nsproxy->mnt_ns->seq >= mnt_ns->seq; 1752 } 1753 1754 struct mount *copy_tree(struct mount *mnt, struct dentry *dentry, 1755 int flag) 1756 { 1757 struct mount *res, *p, *q, *r, *parent; 1758 1759 if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(mnt)) 1760 return ERR_PTR(-EINVAL); 1761 1762 if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry)) 1763 return ERR_PTR(-EINVAL); 1764 1765 res = q = clone_mnt(mnt, dentry, flag); 1766 if (IS_ERR(q)) 1767 return q; 1768 1769 q->mnt_mountpoint = mnt->mnt_mountpoint; 1770 1771 p = mnt; 1772 list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) { 1773 struct mount *s; 1774 if (!is_subdir(r->mnt_mountpoint, dentry)) 1775 continue; 1776 1777 for (s = r; s; s = next_mnt(s, r)) { 1778 if (!(flag & CL_COPY_UNBINDABLE) && 1779 IS_MNT_UNBINDABLE(s)) { 1780 if (s->mnt.mnt_flags & MNT_LOCKED) { 1781 /* Both unbindable and locked. */ 1782 q = ERR_PTR(-EPERM); 1783 goto out; 1784 } else { 1785 s = skip_mnt_tree(s); 1786 continue; 1787 } 1788 } 1789 if (!(flag & CL_COPY_MNT_NS_FILE) && 1790 is_mnt_ns_file(s->mnt.mnt_root)) { 1791 s = skip_mnt_tree(s); 1792 continue; 1793 } 1794 while (p != s->mnt_parent) { 1795 p = p->mnt_parent; 1796 q = q->mnt_parent; 1797 } 1798 p = s; 1799 parent = q; 1800 q = clone_mnt(p, p->mnt.mnt_root, flag); 1801 if (IS_ERR(q)) 1802 goto out; 1803 lock_mount_hash(); 1804 list_add_tail(&q->mnt_list, &res->mnt_list); 1805 attach_mnt(q, parent, p->mnt_mp); 1806 unlock_mount_hash(); 1807 } 1808 } 1809 return res; 1810 out: 1811 if (res) { 1812 lock_mount_hash(); 1813 umount_tree(res, UMOUNT_SYNC); 1814 unlock_mount_hash(); 1815 } 1816 return q; 1817 } 1818 1819 /* Caller should check returned pointer for errors */ 1820 1821 struct vfsmount *collect_mounts(const struct path *path) 1822 { 1823 struct mount *tree; 1824 namespace_lock(); 1825 if (!check_mnt(real_mount(path->mnt))) 1826 tree = ERR_PTR(-EINVAL); 1827 else 1828 tree = copy_tree(real_mount(path->mnt), path->dentry, 1829 CL_COPY_ALL | CL_PRIVATE); 1830 namespace_unlock(); 1831 if (IS_ERR(tree)) 1832 return ERR_CAST(tree); 1833 return &tree->mnt; 1834 } 1835 1836 static void free_mnt_ns(struct mnt_namespace *); 1837 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *, bool); 1838 1839 void dissolve_on_fput(struct vfsmount *mnt) 1840 { 1841 struct mnt_namespace *ns; 1842 namespace_lock(); 1843 lock_mount_hash(); 1844 ns = real_mount(mnt)->mnt_ns; 1845 if (ns) { 1846 if (is_anon_ns(ns)) 1847 umount_tree(real_mount(mnt), UMOUNT_CONNECTED); 1848 else 1849 ns = NULL; 1850 } 1851 unlock_mount_hash(); 1852 namespace_unlock(); 1853 if (ns) 1854 free_mnt_ns(ns); 1855 } 1856 1857 void drop_collected_mounts(struct vfsmount *mnt) 1858 { 1859 namespace_lock(); 1860 lock_mount_hash(); 1861 umount_tree(real_mount(mnt), 0); 1862 unlock_mount_hash(); 1863 namespace_unlock(); 1864 } 1865 1866 /** 1867 * clone_private_mount - create a private clone of a path 1868 * 1869 * This creates a new vfsmount, which will be the clone of @path. The new will 1870 * not be attached anywhere in the namespace and will be private (i.e. changes 1871 * to the originating mount won't be propagated into this). 1872 * 1873 * Release with mntput(). 1874 */ 1875 struct vfsmount *clone_private_mount(const struct path *path) 1876 { 1877 struct mount *old_mnt = real_mount(path->mnt); 1878 struct mount *new_mnt; 1879 1880 if (IS_MNT_UNBINDABLE(old_mnt)) 1881 return ERR_PTR(-EINVAL); 1882 1883 new_mnt = clone_mnt(old_mnt, path->dentry, CL_PRIVATE); 1884 if (IS_ERR(new_mnt)) 1885 return ERR_CAST(new_mnt); 1886 1887 return &new_mnt->mnt; 1888 } 1889 EXPORT_SYMBOL_GPL(clone_private_mount); 1890 1891 int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg, 1892 struct vfsmount *root) 1893 { 1894 struct mount *mnt; 1895 int res = f(root, arg); 1896 if (res) 1897 return res; 1898 list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) { 1899 res = f(&mnt->mnt, arg); 1900 if (res) 1901 return res; 1902 } 1903 return 0; 1904 } 1905 1906 static void lock_mnt_tree(struct mount *mnt) 1907 { 1908 struct mount *p; 1909 1910 for (p = mnt; p; p = next_mnt(p, mnt)) { 1911 int flags = p->mnt.mnt_flags; 1912 /* Don't allow unprivileged users to change mount flags */ 1913 flags |= MNT_LOCK_ATIME; 1914 1915 if (flags & MNT_READONLY) 1916 flags |= MNT_LOCK_READONLY; 1917 1918 if (flags & MNT_NODEV) 1919 flags |= MNT_LOCK_NODEV; 1920 1921 if (flags & MNT_NOSUID) 1922 flags |= MNT_LOCK_NOSUID; 1923 1924 if (flags & MNT_NOEXEC) 1925 flags |= MNT_LOCK_NOEXEC; 1926 /* Don't allow unprivileged users to reveal what is under a mount */ 1927 if (list_empty(&p->mnt_expire)) 1928 flags |= MNT_LOCKED; 1929 p->mnt.mnt_flags = flags; 1930 } 1931 } 1932 1933 static void cleanup_group_ids(struct mount *mnt, struct mount *end) 1934 { 1935 struct mount *p; 1936 1937 for (p = mnt; p != end; p = next_mnt(p, mnt)) { 1938 if (p->mnt_group_id && !IS_MNT_SHARED(p)) 1939 mnt_release_group_id(p); 1940 } 1941 } 1942 1943 static int invent_group_ids(struct mount *mnt, bool recurse) 1944 { 1945 struct mount *p; 1946 1947 for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) { 1948 if (!p->mnt_group_id && !IS_MNT_SHARED(p)) { 1949 int err = mnt_alloc_group_id(p); 1950 if (err) { 1951 cleanup_group_ids(mnt, p); 1952 return err; 1953 } 1954 } 1955 } 1956 1957 return 0; 1958 } 1959 1960 int count_mounts(struct mnt_namespace *ns, struct mount *mnt) 1961 { 1962 unsigned int max = READ_ONCE(sysctl_mount_max); 1963 unsigned int mounts = 0, old, pending, sum; 1964 struct mount *p; 1965 1966 for (p = mnt; p; p = next_mnt(p, mnt)) 1967 mounts++; 1968 1969 old = ns->mounts; 1970 pending = ns->pending_mounts; 1971 sum = old + pending; 1972 if ((old > sum) || 1973 (pending > sum) || 1974 (max < sum) || 1975 (mounts > (max - sum))) 1976 return -ENOSPC; 1977 1978 ns->pending_mounts = pending + mounts; 1979 return 0; 1980 } 1981 1982 /* 1983 * @source_mnt : mount tree to be attached 1984 * @nd : place the mount tree @source_mnt is attached 1985 * @parent_nd : if non-null, detach the source_mnt from its parent and 1986 * store the parent mount and mountpoint dentry. 1987 * (done when source_mnt is moved) 1988 * 1989 * NOTE: in the table below explains the semantics when a source mount 1990 * of a given type is attached to a destination mount of a given type. 1991 * --------------------------------------------------------------------------- 1992 * | BIND MOUNT OPERATION | 1993 * |************************************************************************** 1994 * | source-->| shared | private | slave | unbindable | 1995 * | dest | | | | | 1996 * | | | | | | | 1997 * | v | | | | | 1998 * |************************************************************************** 1999 * | shared | shared (++) | shared (+) | shared(+++)| invalid | 2000 * | | | | | | 2001 * |non-shared| shared (+) | private | slave (*) | invalid | 2002 * *************************************************************************** 2003 * A bind operation clones the source mount and mounts the clone on the 2004 * destination mount. 2005 * 2006 * (++) the cloned mount is propagated to all the mounts in the propagation 2007 * tree of the destination mount and the cloned mount is added to 2008 * the peer group of the source mount. 2009 * (+) the cloned mount is created under the destination mount and is marked 2010 * as shared. The cloned mount is added to the peer group of the source 2011 * mount. 2012 * (+++) the mount is propagated to all the mounts in the propagation tree 2013 * of the destination mount and the cloned mount is made slave 2014 * of the same master as that of the source mount. The cloned mount 2015 * is marked as 'shared and slave'. 2016 * (*) the cloned mount is made a slave of the same master as that of the 2017 * source mount. 2018 * 2019 * --------------------------------------------------------------------------- 2020 * | MOVE MOUNT OPERATION | 2021 * |************************************************************************** 2022 * | source-->| shared | private | slave | unbindable | 2023 * | dest | | | | | 2024 * | | | | | | | 2025 * | v | | | | | 2026 * |************************************************************************** 2027 * | shared | shared (+) | shared (+) | shared(+++) | invalid | 2028 * | | | | | | 2029 * |non-shared| shared (+*) | private | slave (*) | unbindable | 2030 * *************************************************************************** 2031 * 2032 * (+) the mount is moved to the destination. And is then propagated to 2033 * all the mounts in the propagation tree of the destination mount. 2034 * (+*) the mount is moved to the destination. 2035 * (+++) the mount is moved to the destination and is then propagated to 2036 * all the mounts belonging to the destination mount's propagation tree. 2037 * the mount is marked as 'shared and slave'. 2038 * (*) the mount continues to be a slave at the new location. 2039 * 2040 * if the source mount is a tree, the operations explained above is 2041 * applied to each mount in the tree. 2042 * Must be called without spinlocks held, since this function can sleep 2043 * in allocations. 2044 */ 2045 static int attach_recursive_mnt(struct mount *source_mnt, 2046 struct mount *dest_mnt, 2047 struct mountpoint *dest_mp, 2048 struct path *parent_path) 2049 { 2050 struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns; 2051 HLIST_HEAD(tree_list); 2052 struct mnt_namespace *ns = dest_mnt->mnt_ns; 2053 struct mountpoint *smp; 2054 struct mount *child, *p; 2055 struct hlist_node *n; 2056 int err; 2057 2058 /* Preallocate a mountpoint in case the new mounts need 2059 * to be tucked under other mounts. 2060 */ 2061 smp = get_mountpoint(source_mnt->mnt.mnt_root); 2062 if (IS_ERR(smp)) 2063 return PTR_ERR(smp); 2064 2065 /* Is there space to add these mounts to the mount namespace? */ 2066 if (!parent_path) { 2067 err = count_mounts(ns, source_mnt); 2068 if (err) 2069 goto out; 2070 } 2071 2072 if (IS_MNT_SHARED(dest_mnt)) { 2073 err = invent_group_ids(source_mnt, true); 2074 if (err) 2075 goto out; 2076 err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list); 2077 lock_mount_hash(); 2078 if (err) 2079 goto out_cleanup_ids; 2080 for (p = source_mnt; p; p = next_mnt(p, source_mnt)) 2081 set_mnt_shared(p); 2082 } else { 2083 lock_mount_hash(); 2084 } 2085 if (parent_path) { 2086 detach_mnt(source_mnt, parent_path); 2087 attach_mnt(source_mnt, dest_mnt, dest_mp); 2088 touch_mnt_namespace(source_mnt->mnt_ns); 2089 } else { 2090 if (source_mnt->mnt_ns) { 2091 /* move from anon - the caller will destroy */ 2092 list_del_init(&source_mnt->mnt_ns->list); 2093 } 2094 mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt); 2095 commit_tree(source_mnt); 2096 } 2097 2098 hlist_for_each_entry_safe(child, n, &tree_list, mnt_hash) { 2099 struct mount *q; 2100 hlist_del_init(&child->mnt_hash); 2101 q = __lookup_mnt(&child->mnt_parent->mnt, 2102 child->mnt_mountpoint); 2103 if (q) 2104 mnt_change_mountpoint(child, smp, q); 2105 /* Notice when we are propagating across user namespaces */ 2106 if (child->mnt_parent->mnt_ns->user_ns != user_ns) 2107 lock_mnt_tree(child); 2108 child->mnt.mnt_flags &= ~MNT_LOCKED; 2109 commit_tree(child); 2110 } 2111 put_mountpoint(smp); 2112 unlock_mount_hash(); 2113 2114 return 0; 2115 2116 out_cleanup_ids: 2117 while (!hlist_empty(&tree_list)) { 2118 child = hlist_entry(tree_list.first, struct mount, mnt_hash); 2119 child->mnt_parent->mnt_ns->pending_mounts = 0; 2120 umount_tree(child, UMOUNT_SYNC); 2121 } 2122 unlock_mount_hash(); 2123 cleanup_group_ids(source_mnt, NULL); 2124 out: 2125 ns->pending_mounts = 0; 2126 2127 read_seqlock_excl(&mount_lock); 2128 put_mountpoint(smp); 2129 read_sequnlock_excl(&mount_lock); 2130 2131 return err; 2132 } 2133 2134 static struct mountpoint *lock_mount(struct path *path) 2135 { 2136 struct vfsmount *mnt; 2137 struct dentry *dentry = path->dentry; 2138 retry: 2139 inode_lock(dentry->d_inode); 2140 if (unlikely(cant_mount(dentry))) { 2141 inode_unlock(dentry->d_inode); 2142 return ERR_PTR(-ENOENT); 2143 } 2144 namespace_lock(); 2145 mnt = lookup_mnt(path); 2146 if (likely(!mnt)) { 2147 struct mountpoint *mp = get_mountpoint(dentry); 2148 if (IS_ERR(mp)) { 2149 namespace_unlock(); 2150 inode_unlock(dentry->d_inode); 2151 return mp; 2152 } 2153 return mp; 2154 } 2155 namespace_unlock(); 2156 inode_unlock(path->dentry->d_inode); 2157 path_put(path); 2158 path->mnt = mnt; 2159 dentry = path->dentry = dget(mnt->mnt_root); 2160 goto retry; 2161 } 2162 2163 static void unlock_mount(struct mountpoint *where) 2164 { 2165 struct dentry *dentry = where->m_dentry; 2166 2167 read_seqlock_excl(&mount_lock); 2168 put_mountpoint(where); 2169 read_sequnlock_excl(&mount_lock); 2170 2171 namespace_unlock(); 2172 inode_unlock(dentry->d_inode); 2173 } 2174 2175 static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp) 2176 { 2177 if (mnt->mnt.mnt_sb->s_flags & SB_NOUSER) 2178 return -EINVAL; 2179 2180 if (d_is_dir(mp->m_dentry) != 2181 d_is_dir(mnt->mnt.mnt_root)) 2182 return -ENOTDIR; 2183 2184 return attach_recursive_mnt(mnt, p, mp, NULL); 2185 } 2186 2187 /* 2188 * Sanity check the flags to change_mnt_propagation. 2189 */ 2190 2191 static int flags_to_propagation_type(int ms_flags) 2192 { 2193 int type = ms_flags & ~(MS_REC | MS_SILENT); 2194 2195 /* Fail if any non-propagation flags are set */ 2196 if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE)) 2197 return 0; 2198 /* Only one propagation flag should be set */ 2199 if (!is_power_of_2(type)) 2200 return 0; 2201 return type; 2202 } 2203 2204 /* 2205 * recursively change the type of the mountpoint. 2206 */ 2207 static int do_change_type(struct path *path, int ms_flags) 2208 { 2209 struct mount *m; 2210 struct mount *mnt = real_mount(path->mnt); 2211 int recurse = ms_flags & MS_REC; 2212 int type; 2213 int err = 0; 2214 2215 if (path->dentry != path->mnt->mnt_root) 2216 return -EINVAL; 2217 2218 type = flags_to_propagation_type(ms_flags); 2219 if (!type) 2220 return -EINVAL; 2221 2222 namespace_lock(); 2223 if (type == MS_SHARED) { 2224 err = invent_group_ids(mnt, recurse); 2225 if (err) 2226 goto out_unlock; 2227 } 2228 2229 lock_mount_hash(); 2230 for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL)) 2231 change_mnt_propagation(m, type); 2232 unlock_mount_hash(); 2233 2234 out_unlock: 2235 namespace_unlock(); 2236 return err; 2237 } 2238 2239 static bool has_locked_children(struct mount *mnt, struct dentry *dentry) 2240 { 2241 struct mount *child; 2242 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) { 2243 if (!is_subdir(child->mnt_mountpoint, dentry)) 2244 continue; 2245 2246 if (child->mnt.mnt_flags & MNT_LOCKED) 2247 return true; 2248 } 2249 return false; 2250 } 2251 2252 static struct mount *__do_loopback(struct path *old_path, int recurse) 2253 { 2254 struct mount *mnt = ERR_PTR(-EINVAL), *old = real_mount(old_path->mnt); 2255 2256 if (IS_MNT_UNBINDABLE(old)) 2257 return mnt; 2258 2259 if (!check_mnt(old) && old_path->dentry->d_op != &ns_dentry_operations) 2260 return mnt; 2261 2262 if (!recurse && has_locked_children(old, old_path->dentry)) 2263 return mnt; 2264 2265 if (recurse) 2266 mnt = copy_tree(old, old_path->dentry, CL_COPY_MNT_NS_FILE); 2267 else 2268 mnt = clone_mnt(old, old_path->dentry, 0); 2269 2270 if (!IS_ERR(mnt)) 2271 mnt->mnt.mnt_flags &= ~MNT_LOCKED; 2272 2273 return mnt; 2274 } 2275 2276 /* 2277 * do loopback mount. 2278 */ 2279 static int do_loopback(struct path *path, const char *old_name, 2280 int recurse) 2281 { 2282 struct path old_path; 2283 struct mount *mnt = NULL, *parent; 2284 struct mountpoint *mp; 2285 int err; 2286 if (!old_name || !*old_name) 2287 return -EINVAL; 2288 err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path); 2289 if (err) 2290 return err; 2291 2292 err = -EINVAL; 2293 if (mnt_ns_loop(old_path.dentry)) 2294 goto out; 2295 2296 mp = lock_mount(path); 2297 if (IS_ERR(mp)) { 2298 err = PTR_ERR(mp); 2299 goto out; 2300 } 2301 2302 parent = real_mount(path->mnt); 2303 if (!check_mnt(parent)) 2304 goto out2; 2305 2306 mnt = __do_loopback(&old_path, recurse); 2307 if (IS_ERR(mnt)) { 2308 err = PTR_ERR(mnt); 2309 goto out2; 2310 } 2311 2312 err = graft_tree(mnt, parent, mp); 2313 if (err) { 2314 lock_mount_hash(); 2315 umount_tree(mnt, UMOUNT_SYNC); 2316 unlock_mount_hash(); 2317 } 2318 out2: 2319 unlock_mount(mp); 2320 out: 2321 path_put(&old_path); 2322 return err; 2323 } 2324 2325 static struct file *open_detached_copy(struct path *path, bool recursive) 2326 { 2327 struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns; 2328 struct mnt_namespace *ns = alloc_mnt_ns(user_ns, true); 2329 struct mount *mnt, *p; 2330 struct file *file; 2331 2332 if (IS_ERR(ns)) 2333 return ERR_CAST(ns); 2334 2335 namespace_lock(); 2336 mnt = __do_loopback(path, recursive); 2337 if (IS_ERR(mnt)) { 2338 namespace_unlock(); 2339 free_mnt_ns(ns); 2340 return ERR_CAST(mnt); 2341 } 2342 2343 lock_mount_hash(); 2344 for (p = mnt; p; p = next_mnt(p, mnt)) { 2345 p->mnt_ns = ns; 2346 ns->mounts++; 2347 } 2348 ns->root = mnt; 2349 list_add_tail(&ns->list, &mnt->mnt_list); 2350 mntget(&mnt->mnt); 2351 unlock_mount_hash(); 2352 namespace_unlock(); 2353 2354 mntput(path->mnt); 2355 path->mnt = &mnt->mnt; 2356 file = dentry_open(path, O_PATH, current_cred()); 2357 if (IS_ERR(file)) 2358 dissolve_on_fput(path->mnt); 2359 else 2360 file->f_mode |= FMODE_NEED_UNMOUNT; 2361 return file; 2362 } 2363 2364 SYSCALL_DEFINE3(open_tree, int, dfd, const char *, filename, unsigned, flags) 2365 { 2366 struct file *file; 2367 struct path path; 2368 int lookup_flags = LOOKUP_AUTOMOUNT | LOOKUP_FOLLOW; 2369 bool detached = flags & OPEN_TREE_CLONE; 2370 int error; 2371 int fd; 2372 2373 BUILD_BUG_ON(OPEN_TREE_CLOEXEC != O_CLOEXEC); 2374 2375 if (flags & ~(AT_EMPTY_PATH | AT_NO_AUTOMOUNT | AT_RECURSIVE | 2376 AT_SYMLINK_NOFOLLOW | OPEN_TREE_CLONE | 2377 OPEN_TREE_CLOEXEC)) 2378 return -EINVAL; 2379 2380 if ((flags & (AT_RECURSIVE | OPEN_TREE_CLONE)) == AT_RECURSIVE) 2381 return -EINVAL; 2382 2383 if (flags & AT_NO_AUTOMOUNT) 2384 lookup_flags &= ~LOOKUP_AUTOMOUNT; 2385 if (flags & AT_SYMLINK_NOFOLLOW) 2386 lookup_flags &= ~LOOKUP_FOLLOW; 2387 if (flags & AT_EMPTY_PATH) 2388 lookup_flags |= LOOKUP_EMPTY; 2389 2390 if (detached && !may_mount()) 2391 return -EPERM; 2392 2393 fd = get_unused_fd_flags(flags & O_CLOEXEC); 2394 if (fd < 0) 2395 return fd; 2396 2397 error = user_path_at(dfd, filename, lookup_flags, &path); 2398 if (unlikely(error)) { 2399 file = ERR_PTR(error); 2400 } else { 2401 if (detached) 2402 file = open_detached_copy(&path, flags & AT_RECURSIVE); 2403 else 2404 file = dentry_open(&path, O_PATH, current_cred()); 2405 path_put(&path); 2406 } 2407 if (IS_ERR(file)) { 2408 put_unused_fd(fd); 2409 return PTR_ERR(file); 2410 } 2411 fd_install(fd, file); 2412 return fd; 2413 } 2414 2415 /* 2416 * Don't allow locked mount flags to be cleared. 2417 * 2418 * No locks need to be held here while testing the various MNT_LOCK 2419 * flags because those flags can never be cleared once they are set. 2420 */ 2421 static bool can_change_locked_flags(struct mount *mnt, unsigned int mnt_flags) 2422 { 2423 unsigned int fl = mnt->mnt.mnt_flags; 2424 2425 if ((fl & MNT_LOCK_READONLY) && 2426 !(mnt_flags & MNT_READONLY)) 2427 return false; 2428 2429 if ((fl & MNT_LOCK_NODEV) && 2430 !(mnt_flags & MNT_NODEV)) 2431 return false; 2432 2433 if ((fl & MNT_LOCK_NOSUID) && 2434 !(mnt_flags & MNT_NOSUID)) 2435 return false; 2436 2437 if ((fl & MNT_LOCK_NOEXEC) && 2438 !(mnt_flags & MNT_NOEXEC)) 2439 return false; 2440 2441 if ((fl & MNT_LOCK_ATIME) && 2442 ((fl & MNT_ATIME_MASK) != (mnt_flags & MNT_ATIME_MASK))) 2443 return false; 2444 2445 return true; 2446 } 2447 2448 static int change_mount_ro_state(struct mount *mnt, unsigned int mnt_flags) 2449 { 2450 bool readonly_request = (mnt_flags & MNT_READONLY); 2451 2452 if (readonly_request == __mnt_is_readonly(&mnt->mnt)) 2453 return 0; 2454 2455 if (readonly_request) 2456 return mnt_make_readonly(mnt); 2457 2458 return __mnt_unmake_readonly(mnt); 2459 } 2460 2461 /* 2462 * Update the user-settable attributes on a mount. The caller must hold 2463 * sb->s_umount for writing. 2464 */ 2465 static void set_mount_attributes(struct mount *mnt, unsigned int mnt_flags) 2466 { 2467 lock_mount_hash(); 2468 mnt_flags |= mnt->mnt.mnt_flags & ~MNT_USER_SETTABLE_MASK; 2469 mnt->mnt.mnt_flags = mnt_flags; 2470 touch_mnt_namespace(mnt->mnt_ns); 2471 unlock_mount_hash(); 2472 } 2473 2474 /* 2475 * Handle reconfiguration of the mountpoint only without alteration of the 2476 * superblock it refers to. This is triggered by specifying MS_REMOUNT|MS_BIND 2477 * to mount(2). 2478 */ 2479 static int do_reconfigure_mnt(struct path *path, unsigned int mnt_flags) 2480 { 2481 struct super_block *sb = path->mnt->mnt_sb; 2482 struct mount *mnt = real_mount(path->mnt); 2483 int ret; 2484 2485 if (!check_mnt(mnt)) 2486 return -EINVAL; 2487 2488 if (path->dentry != mnt->mnt.mnt_root) 2489 return -EINVAL; 2490 2491 if (!can_change_locked_flags(mnt, mnt_flags)) 2492 return -EPERM; 2493 2494 down_write(&sb->s_umount); 2495 ret = change_mount_ro_state(mnt, mnt_flags); 2496 if (ret == 0) 2497 set_mount_attributes(mnt, mnt_flags); 2498 up_write(&sb->s_umount); 2499 return ret; 2500 } 2501 2502 /* 2503 * change filesystem flags. dir should be a physical root of filesystem. 2504 * If you've mounted a non-root directory somewhere and want to do remount 2505 * on it - tough luck. 2506 */ 2507 static int do_remount(struct path *path, int ms_flags, int sb_flags, 2508 int mnt_flags, void *data) 2509 { 2510 int err; 2511 struct super_block *sb = path->mnt->mnt_sb; 2512 struct mount *mnt = real_mount(path->mnt); 2513 struct fs_context *fc; 2514 2515 if (!check_mnt(mnt)) 2516 return -EINVAL; 2517 2518 if (path->dentry != path->mnt->mnt_root) 2519 return -EINVAL; 2520 2521 if (!can_change_locked_flags(mnt, mnt_flags)) 2522 return -EPERM; 2523 2524 fc = fs_context_for_reconfigure(path->dentry, sb_flags, MS_RMT_MASK); 2525 if (IS_ERR(fc)) 2526 return PTR_ERR(fc); 2527 2528 err = parse_monolithic_mount_data(fc, data); 2529 if (!err) { 2530 down_write(&sb->s_umount); 2531 err = -EPERM; 2532 if (ns_capable(sb->s_user_ns, CAP_SYS_ADMIN)) { 2533 err = reconfigure_super(fc); 2534 if (!err) 2535 set_mount_attributes(mnt, mnt_flags); 2536 } 2537 up_write(&sb->s_umount); 2538 } 2539 put_fs_context(fc); 2540 return err; 2541 } 2542 2543 static inline int tree_contains_unbindable(struct mount *mnt) 2544 { 2545 struct mount *p; 2546 for (p = mnt; p; p = next_mnt(p, mnt)) { 2547 if (IS_MNT_UNBINDABLE(p)) 2548 return 1; 2549 } 2550 return 0; 2551 } 2552 2553 /* 2554 * Check that there aren't references to earlier/same mount namespaces in the 2555 * specified subtree. Such references can act as pins for mount namespaces 2556 * that aren't checked by the mount-cycle checking code, thereby allowing 2557 * cycles to be made. 2558 */ 2559 static bool check_for_nsfs_mounts(struct mount *subtree) 2560 { 2561 struct mount *p; 2562 bool ret = false; 2563 2564 lock_mount_hash(); 2565 for (p = subtree; p; p = next_mnt(p, subtree)) 2566 if (mnt_ns_loop(p->mnt.mnt_root)) 2567 goto out; 2568 2569 ret = true; 2570 out: 2571 unlock_mount_hash(); 2572 return ret; 2573 } 2574 2575 static int do_move_mount(struct path *old_path, struct path *new_path) 2576 { 2577 struct path parent_path = {.mnt = NULL, .dentry = NULL}; 2578 struct mnt_namespace *ns; 2579 struct mount *p; 2580 struct mount *old; 2581 struct mountpoint *mp; 2582 int err; 2583 bool attached; 2584 2585 mp = lock_mount(new_path); 2586 if (IS_ERR(mp)) 2587 return PTR_ERR(mp); 2588 2589 old = real_mount(old_path->mnt); 2590 p = real_mount(new_path->mnt); 2591 attached = mnt_has_parent(old); 2592 ns = old->mnt_ns; 2593 2594 err = -EINVAL; 2595 /* The mountpoint must be in our namespace. */ 2596 if (!check_mnt(p)) 2597 goto out; 2598 2599 /* The thing moved should be either ours or completely unattached. */ 2600 if (attached && !check_mnt(old)) 2601 goto out; 2602 2603 if (!attached && !(ns && is_anon_ns(ns))) 2604 goto out; 2605 2606 if (old->mnt.mnt_flags & MNT_LOCKED) 2607 goto out; 2608 2609 if (old_path->dentry != old_path->mnt->mnt_root) 2610 goto out; 2611 2612 if (d_is_dir(new_path->dentry) != 2613 d_is_dir(old_path->dentry)) 2614 goto out; 2615 /* 2616 * Don't move a mount residing in a shared parent. 2617 */ 2618 if (attached && IS_MNT_SHARED(old->mnt_parent)) 2619 goto out; 2620 /* 2621 * Don't move a mount tree containing unbindable mounts to a destination 2622 * mount which is shared. 2623 */ 2624 if (IS_MNT_SHARED(p) && tree_contains_unbindable(old)) 2625 goto out; 2626 err = -ELOOP; 2627 if (!check_for_nsfs_mounts(old)) 2628 goto out; 2629 for (; mnt_has_parent(p); p = p->mnt_parent) 2630 if (p == old) 2631 goto out; 2632 2633 err = attach_recursive_mnt(old, real_mount(new_path->mnt), mp, 2634 attached ? &parent_path : NULL); 2635 if (err) 2636 goto out; 2637 2638 /* if the mount is moved, it should no longer be expire 2639 * automatically */ 2640 list_del_init(&old->mnt_expire); 2641 out: 2642 unlock_mount(mp); 2643 if (!err) { 2644 path_put(&parent_path); 2645 if (!attached) 2646 free_mnt_ns(ns); 2647 } 2648 return err; 2649 } 2650 2651 static int do_move_mount_old(struct path *path, const char *old_name) 2652 { 2653 struct path old_path; 2654 int err; 2655 2656 if (!old_name || !*old_name) 2657 return -EINVAL; 2658 2659 err = kern_path(old_name, LOOKUP_FOLLOW, &old_path); 2660 if (err) 2661 return err; 2662 2663 err = do_move_mount(&old_path, path); 2664 path_put(&old_path); 2665 return err; 2666 } 2667 2668 /* 2669 * add a mount into a namespace's mount tree 2670 */ 2671 static int do_add_mount(struct mount *newmnt, struct path *path, int mnt_flags) 2672 { 2673 struct mountpoint *mp; 2674 struct mount *parent; 2675 int err; 2676 2677 mnt_flags &= ~MNT_INTERNAL_FLAGS; 2678 2679 mp = lock_mount(path); 2680 if (IS_ERR(mp)) 2681 return PTR_ERR(mp); 2682 2683 parent = real_mount(path->mnt); 2684 err = -EINVAL; 2685 if (unlikely(!check_mnt(parent))) { 2686 /* that's acceptable only for automounts done in private ns */ 2687 if (!(mnt_flags & MNT_SHRINKABLE)) 2688 goto unlock; 2689 /* ... and for those we'd better have mountpoint still alive */ 2690 if (!parent->mnt_ns) 2691 goto unlock; 2692 } 2693 2694 /* Refuse the same filesystem on the same mount point */ 2695 err = -EBUSY; 2696 if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb && 2697 path->mnt->mnt_root == path->dentry) 2698 goto unlock; 2699 2700 err = -EINVAL; 2701 if (d_is_symlink(newmnt->mnt.mnt_root)) 2702 goto unlock; 2703 2704 newmnt->mnt.mnt_flags = mnt_flags; 2705 err = graft_tree(newmnt, parent, mp); 2706 2707 unlock: 2708 unlock_mount(mp); 2709 return err; 2710 } 2711 2712 static bool mount_too_revealing(const struct super_block *sb, int *new_mnt_flags); 2713 2714 /* 2715 * Create a new mount using a superblock configuration and request it 2716 * be added to the namespace tree. 2717 */ 2718 static int do_new_mount_fc(struct fs_context *fc, struct path *mountpoint, 2719 unsigned int mnt_flags) 2720 { 2721 struct vfsmount *mnt; 2722 struct super_block *sb = fc->root->d_sb; 2723 int error; 2724 2725 error = security_sb_kern_mount(sb); 2726 if (!error && mount_too_revealing(sb, &mnt_flags)) 2727 error = -EPERM; 2728 2729 if (unlikely(error)) { 2730 fc_drop_locked(fc); 2731 return error; 2732 } 2733 2734 up_write(&sb->s_umount); 2735 2736 mnt = vfs_create_mount(fc); 2737 if (IS_ERR(mnt)) 2738 return PTR_ERR(mnt); 2739 2740 error = do_add_mount(real_mount(mnt), mountpoint, mnt_flags); 2741 if (error < 0) 2742 mntput(mnt); 2743 return error; 2744 } 2745 2746 /* 2747 * create a new mount for userspace and request it to be added into the 2748 * namespace's tree 2749 */ 2750 static int do_new_mount(struct path *path, const char *fstype, int sb_flags, 2751 int mnt_flags, const char *name, void *data) 2752 { 2753 struct file_system_type *type; 2754 struct fs_context *fc; 2755 const char *subtype = NULL; 2756 int err = 0; 2757 2758 if (!fstype) 2759 return -EINVAL; 2760 2761 type = get_fs_type(fstype); 2762 if (!type) 2763 return -ENODEV; 2764 2765 if (type->fs_flags & FS_HAS_SUBTYPE) { 2766 subtype = strchr(fstype, '.'); 2767 if (subtype) { 2768 subtype++; 2769 if (!*subtype) { 2770 put_filesystem(type); 2771 return -EINVAL; 2772 } 2773 } else { 2774 subtype = ""; 2775 } 2776 } 2777 2778 fc = fs_context_for_mount(type, sb_flags); 2779 put_filesystem(type); 2780 if (IS_ERR(fc)) 2781 return PTR_ERR(fc); 2782 2783 if (subtype) 2784 err = vfs_parse_fs_string(fc, "subtype", 2785 subtype, strlen(subtype)); 2786 if (!err && name) 2787 err = vfs_parse_fs_string(fc, "source", name, strlen(name)); 2788 if (!err) 2789 err = parse_monolithic_mount_data(fc, data); 2790 if (!err) 2791 err = vfs_get_tree(fc); 2792 if (!err) 2793 err = do_new_mount_fc(fc, path, mnt_flags); 2794 2795 put_fs_context(fc); 2796 return err; 2797 } 2798 2799 int finish_automount(struct vfsmount *m, struct path *path) 2800 { 2801 struct mount *mnt = real_mount(m); 2802 int err; 2803 /* The new mount record should have at least 2 refs to prevent it being 2804 * expired before we get a chance to add it 2805 */ 2806 BUG_ON(mnt_get_count(mnt) < 2); 2807 2808 if (m->mnt_sb == path->mnt->mnt_sb && 2809 m->mnt_root == path->dentry) { 2810 err = -ELOOP; 2811 goto fail; 2812 } 2813 2814 err = do_add_mount(mnt, path, path->mnt->mnt_flags | MNT_SHRINKABLE); 2815 if (!err) 2816 return 0; 2817 fail: 2818 /* remove m from any expiration list it may be on */ 2819 if (!list_empty(&mnt->mnt_expire)) { 2820 namespace_lock(); 2821 list_del_init(&mnt->mnt_expire); 2822 namespace_unlock(); 2823 } 2824 mntput(m); 2825 mntput(m); 2826 return err; 2827 } 2828 2829 /** 2830 * mnt_set_expiry - Put a mount on an expiration list 2831 * @mnt: The mount to list. 2832 * @expiry_list: The list to add the mount to. 2833 */ 2834 void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list) 2835 { 2836 namespace_lock(); 2837 2838 list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list); 2839 2840 namespace_unlock(); 2841 } 2842 EXPORT_SYMBOL(mnt_set_expiry); 2843 2844 /* 2845 * process a list of expirable mountpoints with the intent of discarding any 2846 * mountpoints that aren't in use and haven't been touched since last we came 2847 * here 2848 */ 2849 void mark_mounts_for_expiry(struct list_head *mounts) 2850 { 2851 struct mount *mnt, *next; 2852 LIST_HEAD(graveyard); 2853 2854 if (list_empty(mounts)) 2855 return; 2856 2857 namespace_lock(); 2858 lock_mount_hash(); 2859 2860 /* extract from the expiration list every vfsmount that matches the 2861 * following criteria: 2862 * - only referenced by its parent vfsmount 2863 * - still marked for expiry (marked on the last call here; marks are 2864 * cleared by mntput()) 2865 */ 2866 list_for_each_entry_safe(mnt, next, mounts, mnt_expire) { 2867 if (!xchg(&mnt->mnt_expiry_mark, 1) || 2868 propagate_mount_busy(mnt, 1)) 2869 continue; 2870 list_move(&mnt->mnt_expire, &graveyard); 2871 } 2872 while (!list_empty(&graveyard)) { 2873 mnt = list_first_entry(&graveyard, struct mount, mnt_expire); 2874 touch_mnt_namespace(mnt->mnt_ns); 2875 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC); 2876 } 2877 unlock_mount_hash(); 2878 namespace_unlock(); 2879 } 2880 2881 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry); 2882 2883 /* 2884 * Ripoff of 'select_parent()' 2885 * 2886 * search the list of submounts for a given mountpoint, and move any 2887 * shrinkable submounts to the 'graveyard' list. 2888 */ 2889 static int select_submounts(struct mount *parent, struct list_head *graveyard) 2890 { 2891 struct mount *this_parent = parent; 2892 struct list_head *next; 2893 int found = 0; 2894 2895 repeat: 2896 next = this_parent->mnt_mounts.next; 2897 resume: 2898 while (next != &this_parent->mnt_mounts) { 2899 struct list_head *tmp = next; 2900 struct mount *mnt = list_entry(tmp, struct mount, mnt_child); 2901 2902 next = tmp->next; 2903 if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE)) 2904 continue; 2905 /* 2906 * Descend a level if the d_mounts list is non-empty. 2907 */ 2908 if (!list_empty(&mnt->mnt_mounts)) { 2909 this_parent = mnt; 2910 goto repeat; 2911 } 2912 2913 if (!propagate_mount_busy(mnt, 1)) { 2914 list_move_tail(&mnt->mnt_expire, graveyard); 2915 found++; 2916 } 2917 } 2918 /* 2919 * All done at this level ... ascend and resume the search 2920 */ 2921 if (this_parent != parent) { 2922 next = this_parent->mnt_child.next; 2923 this_parent = this_parent->mnt_parent; 2924 goto resume; 2925 } 2926 return found; 2927 } 2928 2929 /* 2930 * process a list of expirable mountpoints with the intent of discarding any 2931 * submounts of a specific parent mountpoint 2932 * 2933 * mount_lock must be held for write 2934 */ 2935 static void shrink_submounts(struct mount *mnt) 2936 { 2937 LIST_HEAD(graveyard); 2938 struct mount *m; 2939 2940 /* extract submounts of 'mountpoint' from the expiration list */ 2941 while (select_submounts(mnt, &graveyard)) { 2942 while (!list_empty(&graveyard)) { 2943 m = list_first_entry(&graveyard, struct mount, 2944 mnt_expire); 2945 touch_mnt_namespace(m->mnt_ns); 2946 umount_tree(m, UMOUNT_PROPAGATE|UMOUNT_SYNC); 2947 } 2948 } 2949 } 2950 2951 /* 2952 * Some copy_from_user() implementations do not return the exact number of 2953 * bytes remaining to copy on a fault. But copy_mount_options() requires that. 2954 * Note that this function differs from copy_from_user() in that it will oops 2955 * on bad values of `to', rather than returning a short copy. 2956 */ 2957 static long exact_copy_from_user(void *to, const void __user * from, 2958 unsigned long n) 2959 { 2960 char *t = to; 2961 const char __user *f = from; 2962 char c; 2963 2964 if (!access_ok(from, n)) 2965 return n; 2966 2967 while (n) { 2968 if (__get_user(c, f)) { 2969 memset(t, 0, n); 2970 break; 2971 } 2972 *t++ = c; 2973 f++; 2974 n--; 2975 } 2976 return n; 2977 } 2978 2979 void *copy_mount_options(const void __user * data) 2980 { 2981 int i; 2982 unsigned long size; 2983 char *copy; 2984 2985 if (!data) 2986 return NULL; 2987 2988 copy = kmalloc(PAGE_SIZE, GFP_KERNEL); 2989 if (!copy) 2990 return ERR_PTR(-ENOMEM); 2991 2992 /* We only care that *some* data at the address the user 2993 * gave us is valid. Just in case, we'll zero 2994 * the remainder of the page. 2995 */ 2996 /* copy_from_user cannot cross TASK_SIZE ! */ 2997 size = TASK_SIZE - (unsigned long)data; 2998 if (size > PAGE_SIZE) 2999 size = PAGE_SIZE; 3000 3001 i = size - exact_copy_from_user(copy, data, size); 3002 if (!i) { 3003 kfree(copy); 3004 return ERR_PTR(-EFAULT); 3005 } 3006 if (i != PAGE_SIZE) 3007 memset(copy + i, 0, PAGE_SIZE - i); 3008 return copy; 3009 } 3010 3011 char *copy_mount_string(const void __user *data) 3012 { 3013 return data ? strndup_user(data, PATH_MAX) : NULL; 3014 } 3015 3016 /* 3017 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to 3018 * be given to the mount() call (ie: read-only, no-dev, no-suid etc). 3019 * 3020 * data is a (void *) that can point to any structure up to 3021 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent 3022 * information (or be NULL). 3023 * 3024 * Pre-0.97 versions of mount() didn't have a flags word. 3025 * When the flags word was introduced its top half was required 3026 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9. 3027 * Therefore, if this magic number is present, it carries no information 3028 * and must be discarded. 3029 */ 3030 long do_mount(const char *dev_name, const char __user *dir_name, 3031 const char *type_page, unsigned long flags, void *data_page) 3032 { 3033 struct path path; 3034 unsigned int mnt_flags = 0, sb_flags; 3035 int retval = 0; 3036 3037 /* Discard magic */ 3038 if ((flags & MS_MGC_MSK) == MS_MGC_VAL) 3039 flags &= ~MS_MGC_MSK; 3040 3041 /* Basic sanity checks */ 3042 if (data_page) 3043 ((char *)data_page)[PAGE_SIZE - 1] = 0; 3044 3045 if (flags & MS_NOUSER) 3046 return -EINVAL; 3047 3048 /* ... and get the mountpoint */ 3049 retval = user_path(dir_name, &path); 3050 if (retval) 3051 return retval; 3052 3053 retval = security_sb_mount(dev_name, &path, 3054 type_page, flags, data_page); 3055 if (!retval && !may_mount()) 3056 retval = -EPERM; 3057 if (!retval && (flags & SB_MANDLOCK) && !may_mandlock()) 3058 retval = -EPERM; 3059 if (retval) 3060 goto dput_out; 3061 3062 /* Default to relatime unless overriden */ 3063 if (!(flags & MS_NOATIME)) 3064 mnt_flags |= MNT_RELATIME; 3065 3066 /* Separate the per-mountpoint flags */ 3067 if (flags & MS_NOSUID) 3068 mnt_flags |= MNT_NOSUID; 3069 if (flags & MS_NODEV) 3070 mnt_flags |= MNT_NODEV; 3071 if (flags & MS_NOEXEC) 3072 mnt_flags |= MNT_NOEXEC; 3073 if (flags & MS_NOATIME) 3074 mnt_flags |= MNT_NOATIME; 3075 if (flags & MS_NODIRATIME) 3076 mnt_flags |= MNT_NODIRATIME; 3077 if (flags & MS_STRICTATIME) 3078 mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME); 3079 if (flags & MS_RDONLY) 3080 mnt_flags |= MNT_READONLY; 3081 3082 /* The default atime for remount is preservation */ 3083 if ((flags & MS_REMOUNT) && 3084 ((flags & (MS_NOATIME | MS_NODIRATIME | MS_RELATIME | 3085 MS_STRICTATIME)) == 0)) { 3086 mnt_flags &= ~MNT_ATIME_MASK; 3087 mnt_flags |= path.mnt->mnt_flags & MNT_ATIME_MASK; 3088 } 3089 3090 sb_flags = flags & (SB_RDONLY | 3091 SB_SYNCHRONOUS | 3092 SB_MANDLOCK | 3093 SB_DIRSYNC | 3094 SB_SILENT | 3095 SB_POSIXACL | 3096 SB_LAZYTIME | 3097 SB_I_VERSION); 3098 3099 if ((flags & (MS_REMOUNT | MS_BIND)) == (MS_REMOUNT | MS_BIND)) 3100 retval = do_reconfigure_mnt(&path, mnt_flags); 3101 else if (flags & MS_REMOUNT) 3102 retval = do_remount(&path, flags, sb_flags, mnt_flags, 3103 data_page); 3104 else if (flags & MS_BIND) 3105 retval = do_loopback(&path, dev_name, flags & MS_REC); 3106 else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE)) 3107 retval = do_change_type(&path, flags); 3108 else if (flags & MS_MOVE) 3109 retval = do_move_mount_old(&path, dev_name); 3110 else 3111 retval = do_new_mount(&path, type_page, sb_flags, mnt_flags, 3112 dev_name, data_page); 3113 dput_out: 3114 path_put(&path); 3115 return retval; 3116 } 3117 3118 static struct ucounts *inc_mnt_namespaces(struct user_namespace *ns) 3119 { 3120 return inc_ucount(ns, current_euid(), UCOUNT_MNT_NAMESPACES); 3121 } 3122 3123 static void dec_mnt_namespaces(struct ucounts *ucounts) 3124 { 3125 dec_ucount(ucounts, UCOUNT_MNT_NAMESPACES); 3126 } 3127 3128 static void free_mnt_ns(struct mnt_namespace *ns) 3129 { 3130 if (!is_anon_ns(ns)) 3131 ns_free_inum(&ns->ns); 3132 dec_mnt_namespaces(ns->ucounts); 3133 put_user_ns(ns->user_ns); 3134 kfree(ns); 3135 } 3136 3137 /* 3138 * Assign a sequence number so we can detect when we attempt to bind 3139 * mount a reference to an older mount namespace into the current 3140 * mount namespace, preventing reference counting loops. A 64bit 3141 * number incrementing at 10Ghz will take 12,427 years to wrap which 3142 * is effectively never, so we can ignore the possibility. 3143 */ 3144 static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1); 3145 3146 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns, bool anon) 3147 { 3148 struct mnt_namespace *new_ns; 3149 struct ucounts *ucounts; 3150 int ret; 3151 3152 ucounts = inc_mnt_namespaces(user_ns); 3153 if (!ucounts) 3154 return ERR_PTR(-ENOSPC); 3155 3156 new_ns = kzalloc(sizeof(struct mnt_namespace), GFP_KERNEL); 3157 if (!new_ns) { 3158 dec_mnt_namespaces(ucounts); 3159 return ERR_PTR(-ENOMEM); 3160 } 3161 if (!anon) { 3162 ret = ns_alloc_inum(&new_ns->ns); 3163 if (ret) { 3164 kfree(new_ns); 3165 dec_mnt_namespaces(ucounts); 3166 return ERR_PTR(ret); 3167 } 3168 } 3169 new_ns->ns.ops = &mntns_operations; 3170 if (!anon) 3171 new_ns->seq = atomic64_add_return(1, &mnt_ns_seq); 3172 atomic_set(&new_ns->count, 1); 3173 INIT_LIST_HEAD(&new_ns->list); 3174 init_waitqueue_head(&new_ns->poll); 3175 new_ns->user_ns = get_user_ns(user_ns); 3176 new_ns->ucounts = ucounts; 3177 return new_ns; 3178 } 3179 3180 __latent_entropy 3181 struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns, 3182 struct user_namespace *user_ns, struct fs_struct *new_fs) 3183 { 3184 struct mnt_namespace *new_ns; 3185 struct vfsmount *rootmnt = NULL, *pwdmnt = NULL; 3186 struct mount *p, *q; 3187 struct mount *old; 3188 struct mount *new; 3189 int copy_flags; 3190 3191 BUG_ON(!ns); 3192 3193 if (likely(!(flags & CLONE_NEWNS))) { 3194 get_mnt_ns(ns); 3195 return ns; 3196 } 3197 3198 old = ns->root; 3199 3200 new_ns = alloc_mnt_ns(user_ns, false); 3201 if (IS_ERR(new_ns)) 3202 return new_ns; 3203 3204 namespace_lock(); 3205 /* First pass: copy the tree topology */ 3206 copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE; 3207 if (user_ns != ns->user_ns) 3208 copy_flags |= CL_SHARED_TO_SLAVE; 3209 new = copy_tree(old, old->mnt.mnt_root, copy_flags); 3210 if (IS_ERR(new)) { 3211 namespace_unlock(); 3212 free_mnt_ns(new_ns); 3213 return ERR_CAST(new); 3214 } 3215 if (user_ns != ns->user_ns) { 3216 lock_mount_hash(); 3217 lock_mnt_tree(new); 3218 unlock_mount_hash(); 3219 } 3220 new_ns->root = new; 3221 list_add_tail(&new_ns->list, &new->mnt_list); 3222 3223 /* 3224 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts 3225 * as belonging to new namespace. We have already acquired a private 3226 * fs_struct, so tsk->fs->lock is not needed. 3227 */ 3228 p = old; 3229 q = new; 3230 while (p) { 3231 q->mnt_ns = new_ns; 3232 new_ns->mounts++; 3233 if (new_fs) { 3234 if (&p->mnt == new_fs->root.mnt) { 3235 new_fs->root.mnt = mntget(&q->mnt); 3236 rootmnt = &p->mnt; 3237 } 3238 if (&p->mnt == new_fs->pwd.mnt) { 3239 new_fs->pwd.mnt = mntget(&q->mnt); 3240 pwdmnt = &p->mnt; 3241 } 3242 } 3243 p = next_mnt(p, old); 3244 q = next_mnt(q, new); 3245 if (!q) 3246 break; 3247 while (p->mnt.mnt_root != q->mnt.mnt_root) 3248 p = next_mnt(p, old); 3249 } 3250 namespace_unlock(); 3251 3252 if (rootmnt) 3253 mntput(rootmnt); 3254 if (pwdmnt) 3255 mntput(pwdmnt); 3256 3257 return new_ns; 3258 } 3259 3260 struct dentry *mount_subtree(struct vfsmount *m, const char *name) 3261 { 3262 struct mount *mnt = real_mount(m); 3263 struct mnt_namespace *ns; 3264 struct super_block *s; 3265 struct path path; 3266 int err; 3267 3268 ns = alloc_mnt_ns(&init_user_ns, true); 3269 if (IS_ERR(ns)) { 3270 mntput(m); 3271 return ERR_CAST(ns); 3272 } 3273 mnt->mnt_ns = ns; 3274 ns->root = mnt; 3275 ns->mounts++; 3276 list_add(&mnt->mnt_list, &ns->list); 3277 3278 err = vfs_path_lookup(m->mnt_root, m, 3279 name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path); 3280 3281 put_mnt_ns(ns); 3282 3283 if (err) 3284 return ERR_PTR(err); 3285 3286 /* trade a vfsmount reference for active sb one */ 3287 s = path.mnt->mnt_sb; 3288 atomic_inc(&s->s_active); 3289 mntput(path.mnt); 3290 /* lock the sucker */ 3291 down_write(&s->s_umount); 3292 /* ... and return the root of (sub)tree on it */ 3293 return path.dentry; 3294 } 3295 EXPORT_SYMBOL(mount_subtree); 3296 3297 int ksys_mount(char __user *dev_name, char __user *dir_name, char __user *type, 3298 unsigned long flags, void __user *data) 3299 { 3300 int ret; 3301 char *kernel_type; 3302 char *kernel_dev; 3303 void *options; 3304 3305 kernel_type = copy_mount_string(type); 3306 ret = PTR_ERR(kernel_type); 3307 if (IS_ERR(kernel_type)) 3308 goto out_type; 3309 3310 kernel_dev = copy_mount_string(dev_name); 3311 ret = PTR_ERR(kernel_dev); 3312 if (IS_ERR(kernel_dev)) 3313 goto out_dev; 3314 3315 options = copy_mount_options(data); 3316 ret = PTR_ERR(options); 3317 if (IS_ERR(options)) 3318 goto out_data; 3319 3320 ret = do_mount(kernel_dev, dir_name, kernel_type, flags, options); 3321 3322 kfree(options); 3323 out_data: 3324 kfree(kernel_dev); 3325 out_dev: 3326 kfree(kernel_type); 3327 out_type: 3328 return ret; 3329 } 3330 3331 SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name, 3332 char __user *, type, unsigned long, flags, void __user *, data) 3333 { 3334 return ksys_mount(dev_name, dir_name, type, flags, data); 3335 } 3336 3337 /* 3338 * Create a kernel mount representation for a new, prepared superblock 3339 * (specified by fs_fd) and attach to an open_tree-like file descriptor. 3340 */ 3341 SYSCALL_DEFINE3(fsmount, int, fs_fd, unsigned int, flags, 3342 unsigned int, attr_flags) 3343 { 3344 struct mnt_namespace *ns; 3345 struct fs_context *fc; 3346 struct file *file; 3347 struct path newmount; 3348 struct mount *mnt; 3349 struct fd f; 3350 unsigned int mnt_flags = 0; 3351 long ret; 3352 3353 if (!may_mount()) 3354 return -EPERM; 3355 3356 if ((flags & ~(FSMOUNT_CLOEXEC)) != 0) 3357 return -EINVAL; 3358 3359 if (attr_flags & ~(MOUNT_ATTR_RDONLY | 3360 MOUNT_ATTR_NOSUID | 3361 MOUNT_ATTR_NODEV | 3362 MOUNT_ATTR_NOEXEC | 3363 MOUNT_ATTR__ATIME | 3364 MOUNT_ATTR_NODIRATIME)) 3365 return -EINVAL; 3366 3367 if (attr_flags & MOUNT_ATTR_RDONLY) 3368 mnt_flags |= MNT_READONLY; 3369 if (attr_flags & MOUNT_ATTR_NOSUID) 3370 mnt_flags |= MNT_NOSUID; 3371 if (attr_flags & MOUNT_ATTR_NODEV) 3372 mnt_flags |= MNT_NODEV; 3373 if (attr_flags & MOUNT_ATTR_NOEXEC) 3374 mnt_flags |= MNT_NOEXEC; 3375 if (attr_flags & MOUNT_ATTR_NODIRATIME) 3376 mnt_flags |= MNT_NODIRATIME; 3377 3378 switch (attr_flags & MOUNT_ATTR__ATIME) { 3379 case MOUNT_ATTR_STRICTATIME: 3380 break; 3381 case MOUNT_ATTR_NOATIME: 3382 mnt_flags |= MNT_NOATIME; 3383 break; 3384 case MOUNT_ATTR_RELATIME: 3385 mnt_flags |= MNT_RELATIME; 3386 break; 3387 default: 3388 return -EINVAL; 3389 } 3390 3391 f = fdget(fs_fd); 3392 if (!f.file) 3393 return -EBADF; 3394 3395 ret = -EINVAL; 3396 if (f.file->f_op != &fscontext_fops) 3397 goto err_fsfd; 3398 3399 fc = f.file->private_data; 3400 3401 ret = mutex_lock_interruptible(&fc->uapi_mutex); 3402 if (ret < 0) 3403 goto err_fsfd; 3404 3405 /* There must be a valid superblock or we can't mount it */ 3406 ret = -EINVAL; 3407 if (!fc->root) 3408 goto err_unlock; 3409 3410 ret = -EPERM; 3411 if (mount_too_revealing(fc->root->d_sb, &mnt_flags)) { 3412 pr_warn("VFS: Mount too revealing\n"); 3413 goto err_unlock; 3414 } 3415 3416 ret = -EBUSY; 3417 if (fc->phase != FS_CONTEXT_AWAITING_MOUNT) 3418 goto err_unlock; 3419 3420 ret = -EPERM; 3421 if ((fc->sb_flags & SB_MANDLOCK) && !may_mandlock()) 3422 goto err_unlock; 3423 3424 newmount.mnt = vfs_create_mount(fc); 3425 if (IS_ERR(newmount.mnt)) { 3426 ret = PTR_ERR(newmount.mnt); 3427 goto err_unlock; 3428 } 3429 newmount.dentry = dget(fc->root); 3430 newmount.mnt->mnt_flags = mnt_flags; 3431 3432 /* We've done the mount bit - now move the file context into more or 3433 * less the same state as if we'd done an fspick(). We don't want to 3434 * do any memory allocation or anything like that at this point as we 3435 * don't want to have to handle any errors incurred. 3436 */ 3437 vfs_clean_context(fc); 3438 3439 ns = alloc_mnt_ns(current->nsproxy->mnt_ns->user_ns, true); 3440 if (IS_ERR(ns)) { 3441 ret = PTR_ERR(ns); 3442 goto err_path; 3443 } 3444 mnt = real_mount(newmount.mnt); 3445 mnt->mnt_ns = ns; 3446 ns->root = mnt; 3447 ns->mounts = 1; 3448 list_add(&mnt->mnt_list, &ns->list); 3449 mntget(newmount.mnt); 3450 3451 /* Attach to an apparent O_PATH fd with a note that we need to unmount 3452 * it, not just simply put it. 3453 */ 3454 file = dentry_open(&newmount, O_PATH, fc->cred); 3455 if (IS_ERR(file)) { 3456 dissolve_on_fput(newmount.mnt); 3457 ret = PTR_ERR(file); 3458 goto err_path; 3459 } 3460 file->f_mode |= FMODE_NEED_UNMOUNT; 3461 3462 ret = get_unused_fd_flags((flags & FSMOUNT_CLOEXEC) ? O_CLOEXEC : 0); 3463 if (ret >= 0) 3464 fd_install(ret, file); 3465 else 3466 fput(file); 3467 3468 err_path: 3469 path_put(&newmount); 3470 err_unlock: 3471 mutex_unlock(&fc->uapi_mutex); 3472 err_fsfd: 3473 fdput(f); 3474 return ret; 3475 } 3476 3477 /* 3478 * Move a mount from one place to another. In combination with 3479 * fsopen()/fsmount() this is used to install a new mount and in combination 3480 * with open_tree(OPEN_TREE_CLONE [| AT_RECURSIVE]) it can be used to copy 3481 * a mount subtree. 3482 * 3483 * Note the flags value is a combination of MOVE_MOUNT_* flags. 3484 */ 3485 SYSCALL_DEFINE5(move_mount, 3486 int, from_dfd, const char *, from_pathname, 3487 int, to_dfd, const char *, to_pathname, 3488 unsigned int, flags) 3489 { 3490 struct path from_path, to_path; 3491 unsigned int lflags; 3492 int ret = 0; 3493 3494 if (!may_mount()) 3495 return -EPERM; 3496 3497 if (flags & ~MOVE_MOUNT__MASK) 3498 return -EINVAL; 3499 3500 /* If someone gives a pathname, they aren't permitted to move 3501 * from an fd that requires unmount as we can't get at the flag 3502 * to clear it afterwards. 3503 */ 3504 lflags = 0; 3505 if (flags & MOVE_MOUNT_F_SYMLINKS) lflags |= LOOKUP_FOLLOW; 3506 if (flags & MOVE_MOUNT_F_AUTOMOUNTS) lflags |= LOOKUP_AUTOMOUNT; 3507 if (flags & MOVE_MOUNT_F_EMPTY_PATH) lflags |= LOOKUP_EMPTY; 3508 3509 ret = user_path_at(from_dfd, from_pathname, lflags, &from_path); 3510 if (ret < 0) 3511 return ret; 3512 3513 lflags = 0; 3514 if (flags & MOVE_MOUNT_T_SYMLINKS) lflags |= LOOKUP_FOLLOW; 3515 if (flags & MOVE_MOUNT_T_AUTOMOUNTS) lflags |= LOOKUP_AUTOMOUNT; 3516 if (flags & MOVE_MOUNT_T_EMPTY_PATH) lflags |= LOOKUP_EMPTY; 3517 3518 ret = user_path_at(to_dfd, to_pathname, lflags, &to_path); 3519 if (ret < 0) 3520 goto out_from; 3521 3522 ret = security_move_mount(&from_path, &to_path); 3523 if (ret < 0) 3524 goto out_to; 3525 3526 ret = do_move_mount(&from_path, &to_path); 3527 3528 out_to: 3529 path_put(&to_path); 3530 out_from: 3531 path_put(&from_path); 3532 return ret; 3533 } 3534 3535 /* 3536 * Return true if path is reachable from root 3537 * 3538 * namespace_sem or mount_lock is held 3539 */ 3540 bool is_path_reachable(struct mount *mnt, struct dentry *dentry, 3541 const struct path *root) 3542 { 3543 while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) { 3544 dentry = mnt->mnt_mountpoint; 3545 mnt = mnt->mnt_parent; 3546 } 3547 return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry); 3548 } 3549 3550 bool path_is_under(const struct path *path1, const struct path *path2) 3551 { 3552 bool res; 3553 read_seqlock_excl(&mount_lock); 3554 res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2); 3555 read_sequnlock_excl(&mount_lock); 3556 return res; 3557 } 3558 EXPORT_SYMBOL(path_is_under); 3559 3560 /* 3561 * pivot_root Semantics: 3562 * Moves the root file system of the current process to the directory put_old, 3563 * makes new_root as the new root file system of the current process, and sets 3564 * root/cwd of all processes which had them on the current root to new_root. 3565 * 3566 * Restrictions: 3567 * The new_root and put_old must be directories, and must not be on the 3568 * same file system as the current process root. The put_old must be 3569 * underneath new_root, i.e. adding a non-zero number of /.. to the string 3570 * pointed to by put_old must yield the same directory as new_root. No other 3571 * file system may be mounted on put_old. After all, new_root is a mountpoint. 3572 * 3573 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem. 3574 * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives 3575 * in this situation. 3576 * 3577 * Notes: 3578 * - we don't move root/cwd if they are not at the root (reason: if something 3579 * cared enough to change them, it's probably wrong to force them elsewhere) 3580 * - it's okay to pick a root that isn't the root of a file system, e.g. 3581 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint, 3582 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root 3583 * first. 3584 */ 3585 SYSCALL_DEFINE2(pivot_root, const char __user *, new_root, 3586 const char __user *, put_old) 3587 { 3588 struct path new, old, parent_path, root_parent, root; 3589 struct mount *new_mnt, *root_mnt, *old_mnt; 3590 struct mountpoint *old_mp, *root_mp; 3591 int error; 3592 3593 if (!may_mount()) 3594 return -EPERM; 3595 3596 error = user_path_dir(new_root, &new); 3597 if (error) 3598 goto out0; 3599 3600 error = user_path_dir(put_old, &old); 3601 if (error) 3602 goto out1; 3603 3604 error = security_sb_pivotroot(&old, &new); 3605 if (error) 3606 goto out2; 3607 3608 get_fs_root(current->fs, &root); 3609 old_mp = lock_mount(&old); 3610 error = PTR_ERR(old_mp); 3611 if (IS_ERR(old_mp)) 3612 goto out3; 3613 3614 error = -EINVAL; 3615 new_mnt = real_mount(new.mnt); 3616 root_mnt = real_mount(root.mnt); 3617 old_mnt = real_mount(old.mnt); 3618 if (IS_MNT_SHARED(old_mnt) || 3619 IS_MNT_SHARED(new_mnt->mnt_parent) || 3620 IS_MNT_SHARED(root_mnt->mnt_parent)) 3621 goto out4; 3622 if (!check_mnt(root_mnt) || !check_mnt(new_mnt)) 3623 goto out4; 3624 if (new_mnt->mnt.mnt_flags & MNT_LOCKED) 3625 goto out4; 3626 error = -ENOENT; 3627 if (d_unlinked(new.dentry)) 3628 goto out4; 3629 error = -EBUSY; 3630 if (new_mnt == root_mnt || old_mnt == root_mnt) 3631 goto out4; /* loop, on the same file system */ 3632 error = -EINVAL; 3633 if (root.mnt->mnt_root != root.dentry) 3634 goto out4; /* not a mountpoint */ 3635 if (!mnt_has_parent(root_mnt)) 3636 goto out4; /* not attached */ 3637 root_mp = root_mnt->mnt_mp; 3638 if (new.mnt->mnt_root != new.dentry) 3639 goto out4; /* not a mountpoint */ 3640 if (!mnt_has_parent(new_mnt)) 3641 goto out4; /* not attached */ 3642 /* make sure we can reach put_old from new_root */ 3643 if (!is_path_reachable(old_mnt, old.dentry, &new)) 3644 goto out4; 3645 /* make certain new is below the root */ 3646 if (!is_path_reachable(new_mnt, new.dentry, &root)) 3647 goto out4; 3648 root_mp->m_count++; /* pin it so it won't go away */ 3649 lock_mount_hash(); 3650 detach_mnt(new_mnt, &parent_path); 3651 detach_mnt(root_mnt, &root_parent); 3652 if (root_mnt->mnt.mnt_flags & MNT_LOCKED) { 3653 new_mnt->mnt.mnt_flags |= MNT_LOCKED; 3654 root_mnt->mnt.mnt_flags &= ~MNT_LOCKED; 3655 } 3656 /* mount old root on put_old */ 3657 attach_mnt(root_mnt, old_mnt, old_mp); 3658 /* mount new_root on / */ 3659 attach_mnt(new_mnt, real_mount(root_parent.mnt), root_mp); 3660 touch_mnt_namespace(current->nsproxy->mnt_ns); 3661 /* A moved mount should not expire automatically */ 3662 list_del_init(&new_mnt->mnt_expire); 3663 put_mountpoint(root_mp); 3664 unlock_mount_hash(); 3665 chroot_fs_refs(&root, &new); 3666 error = 0; 3667 out4: 3668 unlock_mount(old_mp); 3669 if (!error) { 3670 path_put(&root_parent); 3671 path_put(&parent_path); 3672 } 3673 out3: 3674 path_put(&root); 3675 out2: 3676 path_put(&old); 3677 out1: 3678 path_put(&new); 3679 out0: 3680 return error; 3681 } 3682 3683 static void __init init_mount_tree(void) 3684 { 3685 struct vfsmount *mnt; 3686 struct mount *m; 3687 struct mnt_namespace *ns; 3688 struct path root; 3689 struct file_system_type *type; 3690 3691 type = get_fs_type("rootfs"); 3692 if (!type) 3693 panic("Can't find rootfs type"); 3694 mnt = vfs_kern_mount(type, 0, "rootfs", NULL); 3695 put_filesystem(type); 3696 if (IS_ERR(mnt)) 3697 panic("Can't create rootfs"); 3698 3699 ns = alloc_mnt_ns(&init_user_ns, false); 3700 if (IS_ERR(ns)) 3701 panic("Can't allocate initial namespace"); 3702 m = real_mount(mnt); 3703 m->mnt_ns = ns; 3704 ns->root = m; 3705 ns->mounts = 1; 3706 list_add(&m->mnt_list, &ns->list); 3707 init_task.nsproxy->mnt_ns = ns; 3708 get_mnt_ns(ns); 3709 3710 root.mnt = mnt; 3711 root.dentry = mnt->mnt_root; 3712 mnt->mnt_flags |= MNT_LOCKED; 3713 3714 set_fs_pwd(current->fs, &root); 3715 set_fs_root(current->fs, &root); 3716 } 3717 3718 void __init mnt_init(void) 3719 { 3720 int err; 3721 3722 mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount), 3723 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL); 3724 3725 mount_hashtable = alloc_large_system_hash("Mount-cache", 3726 sizeof(struct hlist_head), 3727 mhash_entries, 19, 3728 HASH_ZERO, 3729 &m_hash_shift, &m_hash_mask, 0, 0); 3730 mountpoint_hashtable = alloc_large_system_hash("Mountpoint-cache", 3731 sizeof(struct hlist_head), 3732 mphash_entries, 19, 3733 HASH_ZERO, 3734 &mp_hash_shift, &mp_hash_mask, 0, 0); 3735 3736 if (!mount_hashtable || !mountpoint_hashtable) 3737 panic("Failed to allocate mount hash table\n"); 3738 3739 kernfs_init(); 3740 3741 err = sysfs_init(); 3742 if (err) 3743 printk(KERN_WARNING "%s: sysfs_init error: %d\n", 3744 __func__, err); 3745 fs_kobj = kobject_create_and_add("fs", NULL); 3746 if (!fs_kobj) 3747 printk(KERN_WARNING "%s: kobj create error\n", __func__); 3748 init_rootfs(); 3749 init_mount_tree(); 3750 } 3751 3752 void put_mnt_ns(struct mnt_namespace *ns) 3753 { 3754 if (!atomic_dec_and_test(&ns->count)) 3755 return; 3756 drop_collected_mounts(&ns->root->mnt); 3757 free_mnt_ns(ns); 3758 } 3759 3760 struct vfsmount *kern_mount(struct file_system_type *type) 3761 { 3762 struct vfsmount *mnt; 3763 mnt = vfs_kern_mount(type, SB_KERNMOUNT, type->name, NULL); 3764 if (!IS_ERR(mnt)) { 3765 /* 3766 * it is a longterm mount, don't release mnt until 3767 * we unmount before file sys is unregistered 3768 */ 3769 real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL; 3770 } 3771 return mnt; 3772 } 3773 EXPORT_SYMBOL_GPL(kern_mount); 3774 3775 void kern_unmount(struct vfsmount *mnt) 3776 { 3777 /* release long term mount so mount point can be released */ 3778 if (!IS_ERR_OR_NULL(mnt)) { 3779 real_mount(mnt)->mnt_ns = NULL; 3780 synchronize_rcu(); /* yecchhh... */ 3781 mntput(mnt); 3782 } 3783 } 3784 EXPORT_SYMBOL(kern_unmount); 3785 3786 bool our_mnt(struct vfsmount *mnt) 3787 { 3788 return check_mnt(real_mount(mnt)); 3789 } 3790 3791 bool current_chrooted(void) 3792 { 3793 /* Does the current process have a non-standard root */ 3794 struct path ns_root; 3795 struct path fs_root; 3796 bool chrooted; 3797 3798 /* Find the namespace root */ 3799 ns_root.mnt = ¤t->nsproxy->mnt_ns->root->mnt; 3800 ns_root.dentry = ns_root.mnt->mnt_root; 3801 path_get(&ns_root); 3802 while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root)) 3803 ; 3804 3805 get_fs_root(current->fs, &fs_root); 3806 3807 chrooted = !path_equal(&fs_root, &ns_root); 3808 3809 path_put(&fs_root); 3810 path_put(&ns_root); 3811 3812 return chrooted; 3813 } 3814 3815 static bool mnt_already_visible(struct mnt_namespace *ns, 3816 const struct super_block *sb, 3817 int *new_mnt_flags) 3818 { 3819 int new_flags = *new_mnt_flags; 3820 struct mount *mnt; 3821 bool visible = false; 3822 3823 down_read(&namespace_sem); 3824 list_for_each_entry(mnt, &ns->list, mnt_list) { 3825 struct mount *child; 3826 int mnt_flags; 3827 3828 if (mnt->mnt.mnt_sb->s_type != sb->s_type) 3829 continue; 3830 3831 /* This mount is not fully visible if it's root directory 3832 * is not the root directory of the filesystem. 3833 */ 3834 if (mnt->mnt.mnt_root != mnt->mnt.mnt_sb->s_root) 3835 continue; 3836 3837 /* A local view of the mount flags */ 3838 mnt_flags = mnt->mnt.mnt_flags; 3839 3840 /* Don't miss readonly hidden in the superblock flags */ 3841 if (sb_rdonly(mnt->mnt.mnt_sb)) 3842 mnt_flags |= MNT_LOCK_READONLY; 3843 3844 /* Verify the mount flags are equal to or more permissive 3845 * than the proposed new mount. 3846 */ 3847 if ((mnt_flags & MNT_LOCK_READONLY) && 3848 !(new_flags & MNT_READONLY)) 3849 continue; 3850 if ((mnt_flags & MNT_LOCK_ATIME) && 3851 ((mnt_flags & MNT_ATIME_MASK) != (new_flags & MNT_ATIME_MASK))) 3852 continue; 3853 3854 /* This mount is not fully visible if there are any 3855 * locked child mounts that cover anything except for 3856 * empty directories. 3857 */ 3858 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) { 3859 struct inode *inode = child->mnt_mountpoint->d_inode; 3860 /* Only worry about locked mounts */ 3861 if (!(child->mnt.mnt_flags & MNT_LOCKED)) 3862 continue; 3863 /* Is the directory permanetly empty? */ 3864 if (!is_empty_dir_inode(inode)) 3865 goto next; 3866 } 3867 /* Preserve the locked attributes */ 3868 *new_mnt_flags |= mnt_flags & (MNT_LOCK_READONLY | \ 3869 MNT_LOCK_ATIME); 3870 visible = true; 3871 goto found; 3872 next: ; 3873 } 3874 found: 3875 up_read(&namespace_sem); 3876 return visible; 3877 } 3878 3879 static bool mount_too_revealing(const struct super_block *sb, int *new_mnt_flags) 3880 { 3881 const unsigned long required_iflags = SB_I_NOEXEC | SB_I_NODEV; 3882 struct mnt_namespace *ns = current->nsproxy->mnt_ns; 3883 unsigned long s_iflags; 3884 3885 if (ns->user_ns == &init_user_ns) 3886 return false; 3887 3888 /* Can this filesystem be too revealing? */ 3889 s_iflags = sb->s_iflags; 3890 if (!(s_iflags & SB_I_USERNS_VISIBLE)) 3891 return false; 3892 3893 if ((s_iflags & required_iflags) != required_iflags) { 3894 WARN_ONCE(1, "Expected s_iflags to contain 0x%lx\n", 3895 required_iflags); 3896 return true; 3897 } 3898 3899 return !mnt_already_visible(ns, sb, new_mnt_flags); 3900 } 3901 3902 bool mnt_may_suid(struct vfsmount *mnt) 3903 { 3904 /* 3905 * Foreign mounts (accessed via fchdir or through /proc 3906 * symlinks) are always treated as if they are nosuid. This 3907 * prevents namespaces from trusting potentially unsafe 3908 * suid/sgid bits, file caps, or security labels that originate 3909 * in other namespaces. 3910 */ 3911 return !(mnt->mnt_flags & MNT_NOSUID) && check_mnt(real_mount(mnt)) && 3912 current_in_userns(mnt->mnt_sb->s_user_ns); 3913 } 3914 3915 static struct ns_common *mntns_get(struct task_struct *task) 3916 { 3917 struct ns_common *ns = NULL; 3918 struct nsproxy *nsproxy; 3919 3920 task_lock(task); 3921 nsproxy = task->nsproxy; 3922 if (nsproxy) { 3923 ns = &nsproxy->mnt_ns->ns; 3924 get_mnt_ns(to_mnt_ns(ns)); 3925 } 3926 task_unlock(task); 3927 3928 return ns; 3929 } 3930 3931 static void mntns_put(struct ns_common *ns) 3932 { 3933 put_mnt_ns(to_mnt_ns(ns)); 3934 } 3935 3936 static int mntns_install(struct nsproxy *nsproxy, struct ns_common *ns) 3937 { 3938 struct fs_struct *fs = current->fs; 3939 struct mnt_namespace *mnt_ns = to_mnt_ns(ns), *old_mnt_ns; 3940 struct path root; 3941 int err; 3942 3943 if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) || 3944 !ns_capable(current_user_ns(), CAP_SYS_CHROOT) || 3945 !ns_capable(current_user_ns(), CAP_SYS_ADMIN)) 3946 return -EPERM; 3947 3948 if (is_anon_ns(mnt_ns)) 3949 return -EINVAL; 3950 3951 if (fs->users != 1) 3952 return -EINVAL; 3953 3954 get_mnt_ns(mnt_ns); 3955 old_mnt_ns = nsproxy->mnt_ns; 3956 nsproxy->mnt_ns = mnt_ns; 3957 3958 /* Find the root */ 3959 err = vfs_path_lookup(mnt_ns->root->mnt.mnt_root, &mnt_ns->root->mnt, 3960 "/", LOOKUP_DOWN, &root); 3961 if (err) { 3962 /* revert to old namespace */ 3963 nsproxy->mnt_ns = old_mnt_ns; 3964 put_mnt_ns(mnt_ns); 3965 return err; 3966 } 3967 3968 put_mnt_ns(old_mnt_ns); 3969 3970 /* Update the pwd and root */ 3971 set_fs_pwd(fs, &root); 3972 set_fs_root(fs, &root); 3973 3974 path_put(&root); 3975 return 0; 3976 } 3977 3978 static struct user_namespace *mntns_owner(struct ns_common *ns) 3979 { 3980 return to_mnt_ns(ns)->user_ns; 3981 } 3982 3983 const struct proc_ns_operations mntns_operations = { 3984 .name = "mnt", 3985 .type = CLONE_NEWNS, 3986 .get = mntns_get, 3987 .put = mntns_put, 3988 .install = mntns_install, 3989 .owner = mntns_owner, 3990 }; 3991