xref: /openbmc/linux/fs/namespace.c (revision 78c99ba1)
1 /*
2  *  linux/fs/namespace.c
3  *
4  * (C) Copyright Al Viro 2000, 2001
5  *	Released under GPL v2.
6  *
7  * Based on code from fs/super.c, copyright Linus Torvalds and others.
8  * Heavily rewritten.
9  */
10 
11 #include <linux/syscalls.h>
12 #include <linux/slab.h>
13 #include <linux/sched.h>
14 #include <linux/smp_lock.h>
15 #include <linux/init.h>
16 #include <linux/kernel.h>
17 #include <linux/acct.h>
18 #include <linux/capability.h>
19 #include <linux/cpumask.h>
20 #include <linux/module.h>
21 #include <linux/sysfs.h>
22 #include <linux/seq_file.h>
23 #include <linux/mnt_namespace.h>
24 #include <linux/namei.h>
25 #include <linux/security.h>
26 #include <linux/mount.h>
27 #include <linux/ramfs.h>
28 #include <linux/log2.h>
29 #include <linux/idr.h>
30 #include <linux/fs_struct.h>
31 #include <asm/uaccess.h>
32 #include <asm/unistd.h>
33 #include "pnode.h"
34 #include "internal.h"
35 
36 #define HASH_SHIFT ilog2(PAGE_SIZE / sizeof(struct list_head))
37 #define HASH_SIZE (1UL << HASH_SHIFT)
38 
39 /* spinlock for vfsmount related operations, inplace of dcache_lock */
40 __cacheline_aligned_in_smp DEFINE_SPINLOCK(vfsmount_lock);
41 
42 static int event;
43 static DEFINE_IDA(mnt_id_ida);
44 static DEFINE_IDA(mnt_group_ida);
45 
46 static struct list_head *mount_hashtable __read_mostly;
47 static struct kmem_cache *mnt_cache __read_mostly;
48 static struct rw_semaphore namespace_sem;
49 
50 /* /sys/fs */
51 struct kobject *fs_kobj;
52 EXPORT_SYMBOL_GPL(fs_kobj);
53 
54 static inline unsigned long hash(struct vfsmount *mnt, struct dentry *dentry)
55 {
56 	unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
57 	tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
58 	tmp = tmp + (tmp >> HASH_SHIFT);
59 	return tmp & (HASH_SIZE - 1);
60 }
61 
62 #define MNT_WRITER_UNDERFLOW_LIMIT -(1<<16)
63 
64 /* allocation is serialized by namespace_sem */
65 static int mnt_alloc_id(struct vfsmount *mnt)
66 {
67 	int res;
68 
69 retry:
70 	ida_pre_get(&mnt_id_ida, GFP_KERNEL);
71 	spin_lock(&vfsmount_lock);
72 	res = ida_get_new(&mnt_id_ida, &mnt->mnt_id);
73 	spin_unlock(&vfsmount_lock);
74 	if (res == -EAGAIN)
75 		goto retry;
76 
77 	return res;
78 }
79 
80 static void mnt_free_id(struct vfsmount *mnt)
81 {
82 	spin_lock(&vfsmount_lock);
83 	ida_remove(&mnt_id_ida, mnt->mnt_id);
84 	spin_unlock(&vfsmount_lock);
85 }
86 
87 /*
88  * Allocate a new peer group ID
89  *
90  * mnt_group_ida is protected by namespace_sem
91  */
92 static int mnt_alloc_group_id(struct vfsmount *mnt)
93 {
94 	if (!ida_pre_get(&mnt_group_ida, GFP_KERNEL))
95 		return -ENOMEM;
96 
97 	return ida_get_new_above(&mnt_group_ida, 1, &mnt->mnt_group_id);
98 }
99 
100 /*
101  * Release a peer group ID
102  */
103 void mnt_release_group_id(struct vfsmount *mnt)
104 {
105 	ida_remove(&mnt_group_ida, mnt->mnt_group_id);
106 	mnt->mnt_group_id = 0;
107 }
108 
109 struct vfsmount *alloc_vfsmnt(const char *name)
110 {
111 	struct vfsmount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
112 	if (mnt) {
113 		int err;
114 
115 		err = mnt_alloc_id(mnt);
116 		if (err)
117 			goto out_free_cache;
118 
119 		if (name) {
120 			mnt->mnt_devname = kstrdup(name, GFP_KERNEL);
121 			if (!mnt->mnt_devname)
122 				goto out_free_id;
123 		}
124 
125 		atomic_set(&mnt->mnt_count, 1);
126 		INIT_LIST_HEAD(&mnt->mnt_hash);
127 		INIT_LIST_HEAD(&mnt->mnt_child);
128 		INIT_LIST_HEAD(&mnt->mnt_mounts);
129 		INIT_LIST_HEAD(&mnt->mnt_list);
130 		INIT_LIST_HEAD(&mnt->mnt_expire);
131 		INIT_LIST_HEAD(&mnt->mnt_share);
132 		INIT_LIST_HEAD(&mnt->mnt_slave_list);
133 		INIT_LIST_HEAD(&mnt->mnt_slave);
134 		atomic_set(&mnt->__mnt_writers, 0);
135 	}
136 	return mnt;
137 
138 out_free_id:
139 	mnt_free_id(mnt);
140 out_free_cache:
141 	kmem_cache_free(mnt_cache, mnt);
142 	return NULL;
143 }
144 
145 /*
146  * Most r/o checks on a fs are for operations that take
147  * discrete amounts of time, like a write() or unlink().
148  * We must keep track of when those operations start
149  * (for permission checks) and when they end, so that
150  * we can determine when writes are able to occur to
151  * a filesystem.
152  */
153 /*
154  * __mnt_is_readonly: check whether a mount is read-only
155  * @mnt: the mount to check for its write status
156  *
157  * This shouldn't be used directly ouside of the VFS.
158  * It does not guarantee that the filesystem will stay
159  * r/w, just that it is right *now*.  This can not and
160  * should not be used in place of IS_RDONLY(inode).
161  * mnt_want/drop_write() will _keep_ the filesystem
162  * r/w.
163  */
164 int __mnt_is_readonly(struct vfsmount *mnt)
165 {
166 	if (mnt->mnt_flags & MNT_READONLY)
167 		return 1;
168 	if (mnt->mnt_sb->s_flags & MS_RDONLY)
169 		return 1;
170 	return 0;
171 }
172 EXPORT_SYMBOL_GPL(__mnt_is_readonly);
173 
174 struct mnt_writer {
175 	/*
176 	 * If holding multiple instances of this lock, they
177 	 * must be ordered by cpu number.
178 	 */
179 	spinlock_t lock;
180 	struct lock_class_key lock_class; /* compiles out with !lockdep */
181 	unsigned long count;
182 	struct vfsmount *mnt;
183 } ____cacheline_aligned_in_smp;
184 static DEFINE_PER_CPU(struct mnt_writer, mnt_writers);
185 
186 static int __init init_mnt_writers(void)
187 {
188 	int cpu;
189 	for_each_possible_cpu(cpu) {
190 		struct mnt_writer *writer = &per_cpu(mnt_writers, cpu);
191 		spin_lock_init(&writer->lock);
192 		lockdep_set_class(&writer->lock, &writer->lock_class);
193 		writer->count = 0;
194 	}
195 	return 0;
196 }
197 fs_initcall(init_mnt_writers);
198 
199 static void unlock_mnt_writers(void)
200 {
201 	int cpu;
202 	struct mnt_writer *cpu_writer;
203 
204 	for_each_possible_cpu(cpu) {
205 		cpu_writer = &per_cpu(mnt_writers, cpu);
206 		spin_unlock(&cpu_writer->lock);
207 	}
208 }
209 
210 static inline void __clear_mnt_count(struct mnt_writer *cpu_writer)
211 {
212 	if (!cpu_writer->mnt)
213 		return;
214 	/*
215 	 * This is in case anyone ever leaves an invalid,
216 	 * old ->mnt and a count of 0.
217 	 */
218 	if (!cpu_writer->count)
219 		return;
220 	atomic_add(cpu_writer->count, &cpu_writer->mnt->__mnt_writers);
221 	cpu_writer->count = 0;
222 }
223  /*
224  * must hold cpu_writer->lock
225  */
226 static inline void use_cpu_writer_for_mount(struct mnt_writer *cpu_writer,
227 					  struct vfsmount *mnt)
228 {
229 	if (cpu_writer->mnt == mnt)
230 		return;
231 	__clear_mnt_count(cpu_writer);
232 	cpu_writer->mnt = mnt;
233 }
234 
235 /*
236  * Most r/o checks on a fs are for operations that take
237  * discrete amounts of time, like a write() or unlink().
238  * We must keep track of when those operations start
239  * (for permission checks) and when they end, so that
240  * we can determine when writes are able to occur to
241  * a filesystem.
242  */
243 /**
244  * mnt_want_write - get write access to a mount
245  * @mnt: the mount on which to take a write
246  *
247  * This tells the low-level filesystem that a write is
248  * about to be performed to it, and makes sure that
249  * writes are allowed before returning success.  When
250  * the write operation is finished, mnt_drop_write()
251  * must be called.  This is effectively a refcount.
252  */
253 int mnt_want_write(struct vfsmount *mnt)
254 {
255 	int ret = 0;
256 	struct mnt_writer *cpu_writer;
257 
258 	cpu_writer = &get_cpu_var(mnt_writers);
259 	spin_lock(&cpu_writer->lock);
260 	if (__mnt_is_readonly(mnt)) {
261 		ret = -EROFS;
262 		goto out;
263 	}
264 	use_cpu_writer_for_mount(cpu_writer, mnt);
265 	cpu_writer->count++;
266 out:
267 	spin_unlock(&cpu_writer->lock);
268 	put_cpu_var(mnt_writers);
269 	return ret;
270 }
271 EXPORT_SYMBOL_GPL(mnt_want_write);
272 
273 static void lock_mnt_writers(void)
274 {
275 	int cpu;
276 	struct mnt_writer *cpu_writer;
277 
278 	for_each_possible_cpu(cpu) {
279 		cpu_writer = &per_cpu(mnt_writers, cpu);
280 		spin_lock(&cpu_writer->lock);
281 		__clear_mnt_count(cpu_writer);
282 		cpu_writer->mnt = NULL;
283 	}
284 }
285 
286 /*
287  * These per-cpu write counts are not guaranteed to have
288  * matched increments and decrements on any given cpu.
289  * A file open()ed for write on one cpu and close()d on
290  * another cpu will imbalance this count.  Make sure it
291  * does not get too far out of whack.
292  */
293 static void handle_write_count_underflow(struct vfsmount *mnt)
294 {
295 	if (atomic_read(&mnt->__mnt_writers) >=
296 	    MNT_WRITER_UNDERFLOW_LIMIT)
297 		return;
298 	/*
299 	 * It isn't necessary to hold all of the locks
300 	 * at the same time, but doing it this way makes
301 	 * us share a lot more code.
302 	 */
303 	lock_mnt_writers();
304 	/*
305 	 * vfsmount_lock is for mnt_flags.
306 	 */
307 	spin_lock(&vfsmount_lock);
308 	/*
309 	 * If coalescing the per-cpu writer counts did not
310 	 * get us back to a positive writer count, we have
311 	 * a bug.
312 	 */
313 	if ((atomic_read(&mnt->__mnt_writers) < 0) &&
314 	    !(mnt->mnt_flags & MNT_IMBALANCED_WRITE_COUNT)) {
315 		WARN(1, KERN_DEBUG "leak detected on mount(%p) writers "
316 				"count: %d\n",
317 			mnt, atomic_read(&mnt->__mnt_writers));
318 		/* use the flag to keep the dmesg spam down */
319 		mnt->mnt_flags |= MNT_IMBALANCED_WRITE_COUNT;
320 	}
321 	spin_unlock(&vfsmount_lock);
322 	unlock_mnt_writers();
323 }
324 
325 /**
326  * mnt_drop_write - give up write access to a mount
327  * @mnt: the mount on which to give up write access
328  *
329  * Tells the low-level filesystem that we are done
330  * performing writes to it.  Must be matched with
331  * mnt_want_write() call above.
332  */
333 void mnt_drop_write(struct vfsmount *mnt)
334 {
335 	int must_check_underflow = 0;
336 	struct mnt_writer *cpu_writer;
337 
338 	cpu_writer = &get_cpu_var(mnt_writers);
339 	spin_lock(&cpu_writer->lock);
340 
341 	use_cpu_writer_for_mount(cpu_writer, mnt);
342 	if (cpu_writer->count > 0) {
343 		cpu_writer->count--;
344 	} else {
345 		must_check_underflow = 1;
346 		atomic_dec(&mnt->__mnt_writers);
347 	}
348 
349 	spin_unlock(&cpu_writer->lock);
350 	/*
351 	 * Logically, we could call this each time,
352 	 * but the __mnt_writers cacheline tends to
353 	 * be cold, and makes this expensive.
354 	 */
355 	if (must_check_underflow)
356 		handle_write_count_underflow(mnt);
357 	/*
358 	 * This could be done right after the spinlock
359 	 * is taken because the spinlock keeps us on
360 	 * the cpu, and disables preemption.  However,
361 	 * putting it here bounds the amount that
362 	 * __mnt_writers can underflow.  Without it,
363 	 * we could theoretically wrap __mnt_writers.
364 	 */
365 	put_cpu_var(mnt_writers);
366 }
367 EXPORT_SYMBOL_GPL(mnt_drop_write);
368 
369 static int mnt_make_readonly(struct vfsmount *mnt)
370 {
371 	int ret = 0;
372 
373 	lock_mnt_writers();
374 	/*
375 	 * With all the locks held, this value is stable
376 	 */
377 	if (atomic_read(&mnt->__mnt_writers) > 0) {
378 		ret = -EBUSY;
379 		goto out;
380 	}
381 	/*
382 	 * nobody can do a successful mnt_want_write() with all
383 	 * of the counts in MNT_DENIED_WRITE and the locks held.
384 	 */
385 	spin_lock(&vfsmount_lock);
386 	if (!ret)
387 		mnt->mnt_flags |= MNT_READONLY;
388 	spin_unlock(&vfsmount_lock);
389 out:
390 	unlock_mnt_writers();
391 	return ret;
392 }
393 
394 static void __mnt_unmake_readonly(struct vfsmount *mnt)
395 {
396 	spin_lock(&vfsmount_lock);
397 	mnt->mnt_flags &= ~MNT_READONLY;
398 	spin_unlock(&vfsmount_lock);
399 }
400 
401 void simple_set_mnt(struct vfsmount *mnt, struct super_block *sb)
402 {
403 	mnt->mnt_sb = sb;
404 	mnt->mnt_root = dget(sb->s_root);
405 }
406 
407 EXPORT_SYMBOL(simple_set_mnt);
408 
409 void free_vfsmnt(struct vfsmount *mnt)
410 {
411 	kfree(mnt->mnt_devname);
412 	mnt_free_id(mnt);
413 	kmem_cache_free(mnt_cache, mnt);
414 }
415 
416 /*
417  * find the first or last mount at @dentry on vfsmount @mnt depending on
418  * @dir. If @dir is set return the first mount else return the last mount.
419  */
420 struct vfsmount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry,
421 			      int dir)
422 {
423 	struct list_head *head = mount_hashtable + hash(mnt, dentry);
424 	struct list_head *tmp = head;
425 	struct vfsmount *p, *found = NULL;
426 
427 	for (;;) {
428 		tmp = dir ? tmp->next : tmp->prev;
429 		p = NULL;
430 		if (tmp == head)
431 			break;
432 		p = list_entry(tmp, struct vfsmount, mnt_hash);
433 		if (p->mnt_parent == mnt && p->mnt_mountpoint == dentry) {
434 			found = p;
435 			break;
436 		}
437 	}
438 	return found;
439 }
440 
441 /*
442  * lookup_mnt increments the ref count before returning
443  * the vfsmount struct.
444  */
445 struct vfsmount *lookup_mnt(struct vfsmount *mnt, struct dentry *dentry)
446 {
447 	struct vfsmount *child_mnt;
448 	spin_lock(&vfsmount_lock);
449 	if ((child_mnt = __lookup_mnt(mnt, dentry, 1)))
450 		mntget(child_mnt);
451 	spin_unlock(&vfsmount_lock);
452 	return child_mnt;
453 }
454 
455 static inline int check_mnt(struct vfsmount *mnt)
456 {
457 	return mnt->mnt_ns == current->nsproxy->mnt_ns;
458 }
459 
460 static void touch_mnt_namespace(struct mnt_namespace *ns)
461 {
462 	if (ns) {
463 		ns->event = ++event;
464 		wake_up_interruptible(&ns->poll);
465 	}
466 }
467 
468 static void __touch_mnt_namespace(struct mnt_namespace *ns)
469 {
470 	if (ns && ns->event != event) {
471 		ns->event = event;
472 		wake_up_interruptible(&ns->poll);
473 	}
474 }
475 
476 static void detach_mnt(struct vfsmount *mnt, struct path *old_path)
477 {
478 	old_path->dentry = mnt->mnt_mountpoint;
479 	old_path->mnt = mnt->mnt_parent;
480 	mnt->mnt_parent = mnt;
481 	mnt->mnt_mountpoint = mnt->mnt_root;
482 	list_del_init(&mnt->mnt_child);
483 	list_del_init(&mnt->mnt_hash);
484 	old_path->dentry->d_mounted--;
485 }
486 
487 void mnt_set_mountpoint(struct vfsmount *mnt, struct dentry *dentry,
488 			struct vfsmount *child_mnt)
489 {
490 	child_mnt->mnt_parent = mntget(mnt);
491 	child_mnt->mnt_mountpoint = dget(dentry);
492 	dentry->d_mounted++;
493 }
494 
495 static void attach_mnt(struct vfsmount *mnt, struct path *path)
496 {
497 	mnt_set_mountpoint(path->mnt, path->dentry, mnt);
498 	list_add_tail(&mnt->mnt_hash, mount_hashtable +
499 			hash(path->mnt, path->dentry));
500 	list_add_tail(&mnt->mnt_child, &path->mnt->mnt_mounts);
501 }
502 
503 /*
504  * the caller must hold vfsmount_lock
505  */
506 static void commit_tree(struct vfsmount *mnt)
507 {
508 	struct vfsmount *parent = mnt->mnt_parent;
509 	struct vfsmount *m;
510 	LIST_HEAD(head);
511 	struct mnt_namespace *n = parent->mnt_ns;
512 
513 	BUG_ON(parent == mnt);
514 
515 	list_add_tail(&head, &mnt->mnt_list);
516 	list_for_each_entry(m, &head, mnt_list)
517 		m->mnt_ns = n;
518 	list_splice(&head, n->list.prev);
519 
520 	list_add_tail(&mnt->mnt_hash, mount_hashtable +
521 				hash(parent, mnt->mnt_mountpoint));
522 	list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
523 	touch_mnt_namespace(n);
524 }
525 
526 static struct vfsmount *next_mnt(struct vfsmount *p, struct vfsmount *root)
527 {
528 	struct list_head *next = p->mnt_mounts.next;
529 	if (next == &p->mnt_mounts) {
530 		while (1) {
531 			if (p == root)
532 				return NULL;
533 			next = p->mnt_child.next;
534 			if (next != &p->mnt_parent->mnt_mounts)
535 				break;
536 			p = p->mnt_parent;
537 		}
538 	}
539 	return list_entry(next, struct vfsmount, mnt_child);
540 }
541 
542 static struct vfsmount *skip_mnt_tree(struct vfsmount *p)
543 {
544 	struct list_head *prev = p->mnt_mounts.prev;
545 	while (prev != &p->mnt_mounts) {
546 		p = list_entry(prev, struct vfsmount, mnt_child);
547 		prev = p->mnt_mounts.prev;
548 	}
549 	return p;
550 }
551 
552 static struct vfsmount *clone_mnt(struct vfsmount *old, struct dentry *root,
553 					int flag)
554 {
555 	struct super_block *sb = old->mnt_sb;
556 	struct vfsmount *mnt = alloc_vfsmnt(old->mnt_devname);
557 
558 	if (mnt) {
559 		if (flag & (CL_SLAVE | CL_PRIVATE))
560 			mnt->mnt_group_id = 0; /* not a peer of original */
561 		else
562 			mnt->mnt_group_id = old->mnt_group_id;
563 
564 		if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
565 			int err = mnt_alloc_group_id(mnt);
566 			if (err)
567 				goto out_free;
568 		}
569 
570 		mnt->mnt_flags = old->mnt_flags;
571 		atomic_inc(&sb->s_active);
572 		mnt->mnt_sb = sb;
573 		mnt->mnt_root = dget(root);
574 		mnt->mnt_mountpoint = mnt->mnt_root;
575 		mnt->mnt_parent = mnt;
576 
577 		if (flag & CL_SLAVE) {
578 			list_add(&mnt->mnt_slave, &old->mnt_slave_list);
579 			mnt->mnt_master = old;
580 			CLEAR_MNT_SHARED(mnt);
581 		} else if (!(flag & CL_PRIVATE)) {
582 			if ((flag & CL_PROPAGATION) || IS_MNT_SHARED(old))
583 				list_add(&mnt->mnt_share, &old->mnt_share);
584 			if (IS_MNT_SLAVE(old))
585 				list_add(&mnt->mnt_slave, &old->mnt_slave);
586 			mnt->mnt_master = old->mnt_master;
587 		}
588 		if (flag & CL_MAKE_SHARED)
589 			set_mnt_shared(mnt);
590 
591 		/* stick the duplicate mount on the same expiry list
592 		 * as the original if that was on one */
593 		if (flag & CL_EXPIRE) {
594 			if (!list_empty(&old->mnt_expire))
595 				list_add(&mnt->mnt_expire, &old->mnt_expire);
596 		}
597 	}
598 	return mnt;
599 
600  out_free:
601 	free_vfsmnt(mnt);
602 	return NULL;
603 }
604 
605 static inline void __mntput(struct vfsmount *mnt)
606 {
607 	int cpu;
608 	struct super_block *sb = mnt->mnt_sb;
609 	/*
610 	 * We don't have to hold all of the locks at the
611 	 * same time here because we know that we're the
612 	 * last reference to mnt and that no new writers
613 	 * can come in.
614 	 */
615 	for_each_possible_cpu(cpu) {
616 		struct mnt_writer *cpu_writer = &per_cpu(mnt_writers, cpu);
617 		spin_lock(&cpu_writer->lock);
618 		if (cpu_writer->mnt != mnt) {
619 			spin_unlock(&cpu_writer->lock);
620 			continue;
621 		}
622 		atomic_add(cpu_writer->count, &mnt->__mnt_writers);
623 		cpu_writer->count = 0;
624 		/*
625 		 * Might as well do this so that no one
626 		 * ever sees the pointer and expects
627 		 * it to be valid.
628 		 */
629 		cpu_writer->mnt = NULL;
630 		spin_unlock(&cpu_writer->lock);
631 	}
632 	/*
633 	 * This probably indicates that somebody messed
634 	 * up a mnt_want/drop_write() pair.  If this
635 	 * happens, the filesystem was probably unable
636 	 * to make r/w->r/o transitions.
637 	 */
638 	WARN_ON(atomic_read(&mnt->__mnt_writers));
639 	dput(mnt->mnt_root);
640 	free_vfsmnt(mnt);
641 	deactivate_super(sb);
642 }
643 
644 void mntput_no_expire(struct vfsmount *mnt)
645 {
646 repeat:
647 	if (atomic_dec_and_lock(&mnt->mnt_count, &vfsmount_lock)) {
648 		if (likely(!mnt->mnt_pinned)) {
649 			spin_unlock(&vfsmount_lock);
650 			__mntput(mnt);
651 			return;
652 		}
653 		atomic_add(mnt->mnt_pinned + 1, &mnt->mnt_count);
654 		mnt->mnt_pinned = 0;
655 		spin_unlock(&vfsmount_lock);
656 		acct_auto_close_mnt(mnt);
657 		security_sb_umount_close(mnt);
658 		goto repeat;
659 	}
660 }
661 
662 EXPORT_SYMBOL(mntput_no_expire);
663 
664 void mnt_pin(struct vfsmount *mnt)
665 {
666 	spin_lock(&vfsmount_lock);
667 	mnt->mnt_pinned++;
668 	spin_unlock(&vfsmount_lock);
669 }
670 
671 EXPORT_SYMBOL(mnt_pin);
672 
673 void mnt_unpin(struct vfsmount *mnt)
674 {
675 	spin_lock(&vfsmount_lock);
676 	if (mnt->mnt_pinned) {
677 		atomic_inc(&mnt->mnt_count);
678 		mnt->mnt_pinned--;
679 	}
680 	spin_unlock(&vfsmount_lock);
681 }
682 
683 EXPORT_SYMBOL(mnt_unpin);
684 
685 static inline void mangle(struct seq_file *m, const char *s)
686 {
687 	seq_escape(m, s, " \t\n\\");
688 }
689 
690 /*
691  * Simple .show_options callback for filesystems which don't want to
692  * implement more complex mount option showing.
693  *
694  * See also save_mount_options().
695  */
696 int generic_show_options(struct seq_file *m, struct vfsmount *mnt)
697 {
698 	const char *options;
699 
700 	rcu_read_lock();
701 	options = rcu_dereference(mnt->mnt_sb->s_options);
702 
703 	if (options != NULL && options[0]) {
704 		seq_putc(m, ',');
705 		mangle(m, options);
706 	}
707 	rcu_read_unlock();
708 
709 	return 0;
710 }
711 EXPORT_SYMBOL(generic_show_options);
712 
713 /*
714  * If filesystem uses generic_show_options(), this function should be
715  * called from the fill_super() callback.
716  *
717  * The .remount_fs callback usually needs to be handled in a special
718  * way, to make sure, that previous options are not overwritten if the
719  * remount fails.
720  *
721  * Also note, that if the filesystem's .remount_fs function doesn't
722  * reset all options to their default value, but changes only newly
723  * given options, then the displayed options will not reflect reality
724  * any more.
725  */
726 void save_mount_options(struct super_block *sb, char *options)
727 {
728 	BUG_ON(sb->s_options);
729 	rcu_assign_pointer(sb->s_options, kstrdup(options, GFP_KERNEL));
730 }
731 EXPORT_SYMBOL(save_mount_options);
732 
733 void replace_mount_options(struct super_block *sb, char *options)
734 {
735 	char *old = sb->s_options;
736 	rcu_assign_pointer(sb->s_options, options);
737 	if (old) {
738 		synchronize_rcu();
739 		kfree(old);
740 	}
741 }
742 EXPORT_SYMBOL(replace_mount_options);
743 
744 #ifdef CONFIG_PROC_FS
745 /* iterator */
746 static void *m_start(struct seq_file *m, loff_t *pos)
747 {
748 	struct proc_mounts *p = m->private;
749 
750 	down_read(&namespace_sem);
751 	return seq_list_start(&p->ns->list, *pos);
752 }
753 
754 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
755 {
756 	struct proc_mounts *p = m->private;
757 
758 	return seq_list_next(v, &p->ns->list, pos);
759 }
760 
761 static void m_stop(struct seq_file *m, void *v)
762 {
763 	up_read(&namespace_sem);
764 }
765 
766 struct proc_fs_info {
767 	int flag;
768 	const char *str;
769 };
770 
771 static int show_sb_opts(struct seq_file *m, struct super_block *sb)
772 {
773 	static const struct proc_fs_info fs_info[] = {
774 		{ MS_SYNCHRONOUS, ",sync" },
775 		{ MS_DIRSYNC, ",dirsync" },
776 		{ MS_MANDLOCK, ",mand" },
777 		{ 0, NULL }
778 	};
779 	const struct proc_fs_info *fs_infop;
780 
781 	for (fs_infop = fs_info; fs_infop->flag; fs_infop++) {
782 		if (sb->s_flags & fs_infop->flag)
783 			seq_puts(m, fs_infop->str);
784 	}
785 
786 	return security_sb_show_options(m, sb);
787 }
788 
789 static void show_mnt_opts(struct seq_file *m, struct vfsmount *mnt)
790 {
791 	static const struct proc_fs_info mnt_info[] = {
792 		{ MNT_NOSUID, ",nosuid" },
793 		{ MNT_NODEV, ",nodev" },
794 		{ MNT_NOEXEC, ",noexec" },
795 		{ MNT_NOATIME, ",noatime" },
796 		{ MNT_NODIRATIME, ",nodiratime" },
797 		{ MNT_RELATIME, ",relatime" },
798 		{ MNT_STRICTATIME, ",strictatime" },
799 		{ 0, NULL }
800 	};
801 	const struct proc_fs_info *fs_infop;
802 
803 	for (fs_infop = mnt_info; fs_infop->flag; fs_infop++) {
804 		if (mnt->mnt_flags & fs_infop->flag)
805 			seq_puts(m, fs_infop->str);
806 	}
807 }
808 
809 static void show_type(struct seq_file *m, struct super_block *sb)
810 {
811 	mangle(m, sb->s_type->name);
812 	if (sb->s_subtype && sb->s_subtype[0]) {
813 		seq_putc(m, '.');
814 		mangle(m, sb->s_subtype);
815 	}
816 }
817 
818 static int show_vfsmnt(struct seq_file *m, void *v)
819 {
820 	struct vfsmount *mnt = list_entry(v, struct vfsmount, mnt_list);
821 	int err = 0;
822 	struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt };
823 
824 	mangle(m, mnt->mnt_devname ? mnt->mnt_devname : "none");
825 	seq_putc(m, ' ');
826 	seq_path(m, &mnt_path, " \t\n\\");
827 	seq_putc(m, ' ');
828 	show_type(m, mnt->mnt_sb);
829 	seq_puts(m, __mnt_is_readonly(mnt) ? " ro" : " rw");
830 	err = show_sb_opts(m, mnt->mnt_sb);
831 	if (err)
832 		goto out;
833 	show_mnt_opts(m, mnt);
834 	if (mnt->mnt_sb->s_op->show_options)
835 		err = mnt->mnt_sb->s_op->show_options(m, mnt);
836 	seq_puts(m, " 0 0\n");
837 out:
838 	return err;
839 }
840 
841 const struct seq_operations mounts_op = {
842 	.start	= m_start,
843 	.next	= m_next,
844 	.stop	= m_stop,
845 	.show	= show_vfsmnt
846 };
847 
848 static int show_mountinfo(struct seq_file *m, void *v)
849 {
850 	struct proc_mounts *p = m->private;
851 	struct vfsmount *mnt = list_entry(v, struct vfsmount, mnt_list);
852 	struct super_block *sb = mnt->mnt_sb;
853 	struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt };
854 	struct path root = p->root;
855 	int err = 0;
856 
857 	seq_printf(m, "%i %i %u:%u ", mnt->mnt_id, mnt->mnt_parent->mnt_id,
858 		   MAJOR(sb->s_dev), MINOR(sb->s_dev));
859 	seq_dentry(m, mnt->mnt_root, " \t\n\\");
860 	seq_putc(m, ' ');
861 	seq_path_root(m, &mnt_path, &root, " \t\n\\");
862 	if (root.mnt != p->root.mnt || root.dentry != p->root.dentry) {
863 		/*
864 		 * Mountpoint is outside root, discard that one.  Ugly,
865 		 * but less so than trying to do that in iterator in a
866 		 * race-free way (due to renames).
867 		 */
868 		return SEQ_SKIP;
869 	}
870 	seq_puts(m, mnt->mnt_flags & MNT_READONLY ? " ro" : " rw");
871 	show_mnt_opts(m, mnt);
872 
873 	/* Tagged fields ("foo:X" or "bar") */
874 	if (IS_MNT_SHARED(mnt))
875 		seq_printf(m, " shared:%i", mnt->mnt_group_id);
876 	if (IS_MNT_SLAVE(mnt)) {
877 		int master = mnt->mnt_master->mnt_group_id;
878 		int dom = get_dominating_id(mnt, &p->root);
879 		seq_printf(m, " master:%i", master);
880 		if (dom && dom != master)
881 			seq_printf(m, " propagate_from:%i", dom);
882 	}
883 	if (IS_MNT_UNBINDABLE(mnt))
884 		seq_puts(m, " unbindable");
885 
886 	/* Filesystem specific data */
887 	seq_puts(m, " - ");
888 	show_type(m, sb);
889 	seq_putc(m, ' ');
890 	mangle(m, mnt->mnt_devname ? mnt->mnt_devname : "none");
891 	seq_puts(m, sb->s_flags & MS_RDONLY ? " ro" : " rw");
892 	err = show_sb_opts(m, sb);
893 	if (err)
894 		goto out;
895 	if (sb->s_op->show_options)
896 		err = sb->s_op->show_options(m, mnt);
897 	seq_putc(m, '\n');
898 out:
899 	return err;
900 }
901 
902 const struct seq_operations mountinfo_op = {
903 	.start	= m_start,
904 	.next	= m_next,
905 	.stop	= m_stop,
906 	.show	= show_mountinfo,
907 };
908 
909 static int show_vfsstat(struct seq_file *m, void *v)
910 {
911 	struct vfsmount *mnt = list_entry(v, struct vfsmount, mnt_list);
912 	struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt };
913 	int err = 0;
914 
915 	/* device */
916 	if (mnt->mnt_devname) {
917 		seq_puts(m, "device ");
918 		mangle(m, mnt->mnt_devname);
919 	} else
920 		seq_puts(m, "no device");
921 
922 	/* mount point */
923 	seq_puts(m, " mounted on ");
924 	seq_path(m, &mnt_path, " \t\n\\");
925 	seq_putc(m, ' ');
926 
927 	/* file system type */
928 	seq_puts(m, "with fstype ");
929 	show_type(m, mnt->mnt_sb);
930 
931 	/* optional statistics */
932 	if (mnt->mnt_sb->s_op->show_stats) {
933 		seq_putc(m, ' ');
934 		err = mnt->mnt_sb->s_op->show_stats(m, mnt);
935 	}
936 
937 	seq_putc(m, '\n');
938 	return err;
939 }
940 
941 const struct seq_operations mountstats_op = {
942 	.start	= m_start,
943 	.next	= m_next,
944 	.stop	= m_stop,
945 	.show	= show_vfsstat,
946 };
947 #endif  /* CONFIG_PROC_FS */
948 
949 /**
950  * may_umount_tree - check if a mount tree is busy
951  * @mnt: root of mount tree
952  *
953  * This is called to check if a tree of mounts has any
954  * open files, pwds, chroots or sub mounts that are
955  * busy.
956  */
957 int may_umount_tree(struct vfsmount *mnt)
958 {
959 	int actual_refs = 0;
960 	int minimum_refs = 0;
961 	struct vfsmount *p;
962 
963 	spin_lock(&vfsmount_lock);
964 	for (p = mnt; p; p = next_mnt(p, mnt)) {
965 		actual_refs += atomic_read(&p->mnt_count);
966 		minimum_refs += 2;
967 	}
968 	spin_unlock(&vfsmount_lock);
969 
970 	if (actual_refs > minimum_refs)
971 		return 0;
972 
973 	return 1;
974 }
975 
976 EXPORT_SYMBOL(may_umount_tree);
977 
978 /**
979  * may_umount - check if a mount point is busy
980  * @mnt: root of mount
981  *
982  * This is called to check if a mount point has any
983  * open files, pwds, chroots or sub mounts. If the
984  * mount has sub mounts this will return busy
985  * regardless of whether the sub mounts are busy.
986  *
987  * Doesn't take quota and stuff into account. IOW, in some cases it will
988  * give false negatives. The main reason why it's here is that we need
989  * a non-destructive way to look for easily umountable filesystems.
990  */
991 int may_umount(struct vfsmount *mnt)
992 {
993 	int ret = 1;
994 	spin_lock(&vfsmount_lock);
995 	if (propagate_mount_busy(mnt, 2))
996 		ret = 0;
997 	spin_unlock(&vfsmount_lock);
998 	return ret;
999 }
1000 
1001 EXPORT_SYMBOL(may_umount);
1002 
1003 void release_mounts(struct list_head *head)
1004 {
1005 	struct vfsmount *mnt;
1006 	while (!list_empty(head)) {
1007 		mnt = list_first_entry(head, struct vfsmount, mnt_hash);
1008 		list_del_init(&mnt->mnt_hash);
1009 		if (mnt->mnt_parent != mnt) {
1010 			struct dentry *dentry;
1011 			struct vfsmount *m;
1012 			spin_lock(&vfsmount_lock);
1013 			dentry = mnt->mnt_mountpoint;
1014 			m = mnt->mnt_parent;
1015 			mnt->mnt_mountpoint = mnt->mnt_root;
1016 			mnt->mnt_parent = mnt;
1017 			m->mnt_ghosts--;
1018 			spin_unlock(&vfsmount_lock);
1019 			dput(dentry);
1020 			mntput(m);
1021 		}
1022 		mntput(mnt);
1023 	}
1024 }
1025 
1026 void umount_tree(struct vfsmount *mnt, int propagate, struct list_head *kill)
1027 {
1028 	struct vfsmount *p;
1029 
1030 	for (p = mnt; p; p = next_mnt(p, mnt))
1031 		list_move(&p->mnt_hash, kill);
1032 
1033 	if (propagate)
1034 		propagate_umount(kill);
1035 
1036 	list_for_each_entry(p, kill, mnt_hash) {
1037 		list_del_init(&p->mnt_expire);
1038 		list_del_init(&p->mnt_list);
1039 		__touch_mnt_namespace(p->mnt_ns);
1040 		p->mnt_ns = NULL;
1041 		list_del_init(&p->mnt_child);
1042 		if (p->mnt_parent != p) {
1043 			p->mnt_parent->mnt_ghosts++;
1044 			p->mnt_mountpoint->d_mounted--;
1045 		}
1046 		change_mnt_propagation(p, MS_PRIVATE);
1047 	}
1048 }
1049 
1050 static void shrink_submounts(struct vfsmount *mnt, struct list_head *umounts);
1051 
1052 static int do_umount(struct vfsmount *mnt, int flags)
1053 {
1054 	struct super_block *sb = mnt->mnt_sb;
1055 	int retval;
1056 	LIST_HEAD(umount_list);
1057 
1058 	retval = security_sb_umount(mnt, flags);
1059 	if (retval)
1060 		return retval;
1061 
1062 	/*
1063 	 * Allow userspace to request a mountpoint be expired rather than
1064 	 * unmounting unconditionally. Unmount only happens if:
1065 	 *  (1) the mark is already set (the mark is cleared by mntput())
1066 	 *  (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1067 	 */
1068 	if (flags & MNT_EXPIRE) {
1069 		if (mnt == current->fs->root.mnt ||
1070 		    flags & (MNT_FORCE | MNT_DETACH))
1071 			return -EINVAL;
1072 
1073 		if (atomic_read(&mnt->mnt_count) != 2)
1074 			return -EBUSY;
1075 
1076 		if (!xchg(&mnt->mnt_expiry_mark, 1))
1077 			return -EAGAIN;
1078 	}
1079 
1080 	/*
1081 	 * If we may have to abort operations to get out of this
1082 	 * mount, and they will themselves hold resources we must
1083 	 * allow the fs to do things. In the Unix tradition of
1084 	 * 'Gee thats tricky lets do it in userspace' the umount_begin
1085 	 * might fail to complete on the first run through as other tasks
1086 	 * must return, and the like. Thats for the mount program to worry
1087 	 * about for the moment.
1088 	 */
1089 
1090 	if (flags & MNT_FORCE && sb->s_op->umount_begin) {
1091 		sb->s_op->umount_begin(sb);
1092 	}
1093 
1094 	/*
1095 	 * No sense to grab the lock for this test, but test itself looks
1096 	 * somewhat bogus. Suggestions for better replacement?
1097 	 * Ho-hum... In principle, we might treat that as umount + switch
1098 	 * to rootfs. GC would eventually take care of the old vfsmount.
1099 	 * Actually it makes sense, especially if rootfs would contain a
1100 	 * /reboot - static binary that would close all descriptors and
1101 	 * call reboot(9). Then init(8) could umount root and exec /reboot.
1102 	 */
1103 	if (mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1104 		/*
1105 		 * Special case for "unmounting" root ...
1106 		 * we just try to remount it readonly.
1107 		 */
1108 		down_write(&sb->s_umount);
1109 		if (!(sb->s_flags & MS_RDONLY)) {
1110 			lock_kernel();
1111 			retval = do_remount_sb(sb, MS_RDONLY, NULL, 0);
1112 			unlock_kernel();
1113 		}
1114 		up_write(&sb->s_umount);
1115 		return retval;
1116 	}
1117 
1118 	down_write(&namespace_sem);
1119 	spin_lock(&vfsmount_lock);
1120 	event++;
1121 
1122 	if (!(flags & MNT_DETACH))
1123 		shrink_submounts(mnt, &umount_list);
1124 
1125 	retval = -EBUSY;
1126 	if (flags & MNT_DETACH || !propagate_mount_busy(mnt, 2)) {
1127 		if (!list_empty(&mnt->mnt_list))
1128 			umount_tree(mnt, 1, &umount_list);
1129 		retval = 0;
1130 	}
1131 	spin_unlock(&vfsmount_lock);
1132 	if (retval)
1133 		security_sb_umount_busy(mnt);
1134 	up_write(&namespace_sem);
1135 	release_mounts(&umount_list);
1136 	return retval;
1137 }
1138 
1139 /*
1140  * Now umount can handle mount points as well as block devices.
1141  * This is important for filesystems which use unnamed block devices.
1142  *
1143  * We now support a flag for forced unmount like the other 'big iron'
1144  * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
1145  */
1146 
1147 SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
1148 {
1149 	struct path path;
1150 	int retval;
1151 
1152 	retval = user_path(name, &path);
1153 	if (retval)
1154 		goto out;
1155 	retval = -EINVAL;
1156 	if (path.dentry != path.mnt->mnt_root)
1157 		goto dput_and_out;
1158 	if (!check_mnt(path.mnt))
1159 		goto dput_and_out;
1160 
1161 	retval = -EPERM;
1162 	if (!capable(CAP_SYS_ADMIN))
1163 		goto dput_and_out;
1164 
1165 	retval = do_umount(path.mnt, flags);
1166 dput_and_out:
1167 	/* we mustn't call path_put() as that would clear mnt_expiry_mark */
1168 	dput(path.dentry);
1169 	mntput_no_expire(path.mnt);
1170 out:
1171 	return retval;
1172 }
1173 
1174 #ifdef __ARCH_WANT_SYS_OLDUMOUNT
1175 
1176 /*
1177  *	The 2.0 compatible umount. No flags.
1178  */
1179 SYSCALL_DEFINE1(oldumount, char __user *, name)
1180 {
1181 	return sys_umount(name, 0);
1182 }
1183 
1184 #endif
1185 
1186 static int mount_is_safe(struct path *path)
1187 {
1188 	if (capable(CAP_SYS_ADMIN))
1189 		return 0;
1190 	return -EPERM;
1191 #ifdef notyet
1192 	if (S_ISLNK(path->dentry->d_inode->i_mode))
1193 		return -EPERM;
1194 	if (path->dentry->d_inode->i_mode & S_ISVTX) {
1195 		if (current_uid() != path->dentry->d_inode->i_uid)
1196 			return -EPERM;
1197 	}
1198 	if (inode_permission(path->dentry->d_inode, MAY_WRITE))
1199 		return -EPERM;
1200 	return 0;
1201 #endif
1202 }
1203 
1204 struct vfsmount *copy_tree(struct vfsmount *mnt, struct dentry *dentry,
1205 					int flag)
1206 {
1207 	struct vfsmount *res, *p, *q, *r, *s;
1208 	struct path path;
1209 
1210 	if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(mnt))
1211 		return NULL;
1212 
1213 	res = q = clone_mnt(mnt, dentry, flag);
1214 	if (!q)
1215 		goto Enomem;
1216 	q->mnt_mountpoint = mnt->mnt_mountpoint;
1217 
1218 	p = mnt;
1219 	list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
1220 		if (!is_subdir(r->mnt_mountpoint, dentry))
1221 			continue;
1222 
1223 		for (s = r; s; s = next_mnt(s, r)) {
1224 			if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(s)) {
1225 				s = skip_mnt_tree(s);
1226 				continue;
1227 			}
1228 			while (p != s->mnt_parent) {
1229 				p = p->mnt_parent;
1230 				q = q->mnt_parent;
1231 			}
1232 			p = s;
1233 			path.mnt = q;
1234 			path.dentry = p->mnt_mountpoint;
1235 			q = clone_mnt(p, p->mnt_root, flag);
1236 			if (!q)
1237 				goto Enomem;
1238 			spin_lock(&vfsmount_lock);
1239 			list_add_tail(&q->mnt_list, &res->mnt_list);
1240 			attach_mnt(q, &path);
1241 			spin_unlock(&vfsmount_lock);
1242 		}
1243 	}
1244 	return res;
1245 Enomem:
1246 	if (res) {
1247 		LIST_HEAD(umount_list);
1248 		spin_lock(&vfsmount_lock);
1249 		umount_tree(res, 0, &umount_list);
1250 		spin_unlock(&vfsmount_lock);
1251 		release_mounts(&umount_list);
1252 	}
1253 	return NULL;
1254 }
1255 
1256 struct vfsmount *collect_mounts(struct vfsmount *mnt, struct dentry *dentry)
1257 {
1258 	struct vfsmount *tree;
1259 	down_write(&namespace_sem);
1260 	tree = copy_tree(mnt, dentry, CL_COPY_ALL | CL_PRIVATE);
1261 	up_write(&namespace_sem);
1262 	return tree;
1263 }
1264 
1265 void drop_collected_mounts(struct vfsmount *mnt)
1266 {
1267 	LIST_HEAD(umount_list);
1268 	down_write(&namespace_sem);
1269 	spin_lock(&vfsmount_lock);
1270 	umount_tree(mnt, 0, &umount_list);
1271 	spin_unlock(&vfsmount_lock);
1272 	up_write(&namespace_sem);
1273 	release_mounts(&umount_list);
1274 }
1275 
1276 static void cleanup_group_ids(struct vfsmount *mnt, struct vfsmount *end)
1277 {
1278 	struct vfsmount *p;
1279 
1280 	for (p = mnt; p != end; p = next_mnt(p, mnt)) {
1281 		if (p->mnt_group_id && !IS_MNT_SHARED(p))
1282 			mnt_release_group_id(p);
1283 	}
1284 }
1285 
1286 static int invent_group_ids(struct vfsmount *mnt, bool recurse)
1287 {
1288 	struct vfsmount *p;
1289 
1290 	for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
1291 		if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
1292 			int err = mnt_alloc_group_id(p);
1293 			if (err) {
1294 				cleanup_group_ids(mnt, p);
1295 				return err;
1296 			}
1297 		}
1298 	}
1299 
1300 	return 0;
1301 }
1302 
1303 /*
1304  *  @source_mnt : mount tree to be attached
1305  *  @nd         : place the mount tree @source_mnt is attached
1306  *  @parent_nd  : if non-null, detach the source_mnt from its parent and
1307  *  		   store the parent mount and mountpoint dentry.
1308  *  		   (done when source_mnt is moved)
1309  *
1310  *  NOTE: in the table below explains the semantics when a source mount
1311  *  of a given type is attached to a destination mount of a given type.
1312  * ---------------------------------------------------------------------------
1313  * |         BIND MOUNT OPERATION                                            |
1314  * |**************************************************************************
1315  * | source-->| shared        |       private  |       slave    | unbindable |
1316  * | dest     |               |                |                |            |
1317  * |   |      |               |                |                |            |
1318  * |   v      |               |                |                |            |
1319  * |**************************************************************************
1320  * |  shared  | shared (++)   |     shared (+) |     shared(+++)|  invalid   |
1321  * |          |               |                |                |            |
1322  * |non-shared| shared (+)    |      private   |      slave (*) |  invalid   |
1323  * ***************************************************************************
1324  * A bind operation clones the source mount and mounts the clone on the
1325  * destination mount.
1326  *
1327  * (++)  the cloned mount is propagated to all the mounts in the propagation
1328  * 	 tree of the destination mount and the cloned mount is added to
1329  * 	 the peer group of the source mount.
1330  * (+)   the cloned mount is created under the destination mount and is marked
1331  *       as shared. The cloned mount is added to the peer group of the source
1332  *       mount.
1333  * (+++) the mount is propagated to all the mounts in the propagation tree
1334  *       of the destination mount and the cloned mount is made slave
1335  *       of the same master as that of the source mount. The cloned mount
1336  *       is marked as 'shared and slave'.
1337  * (*)   the cloned mount is made a slave of the same master as that of the
1338  * 	 source mount.
1339  *
1340  * ---------------------------------------------------------------------------
1341  * |         		MOVE MOUNT OPERATION                                 |
1342  * |**************************************************************************
1343  * | source-->| shared        |       private  |       slave    | unbindable |
1344  * | dest     |               |                |                |            |
1345  * |   |      |               |                |                |            |
1346  * |   v      |               |                |                |            |
1347  * |**************************************************************************
1348  * |  shared  | shared (+)    |     shared (+) |    shared(+++) |  invalid   |
1349  * |          |               |                |                |            |
1350  * |non-shared| shared (+*)   |      private   |    slave (*)   | unbindable |
1351  * ***************************************************************************
1352  *
1353  * (+)  the mount is moved to the destination. And is then propagated to
1354  * 	all the mounts in the propagation tree of the destination mount.
1355  * (+*)  the mount is moved to the destination.
1356  * (+++)  the mount is moved to the destination and is then propagated to
1357  * 	all the mounts belonging to the destination mount's propagation tree.
1358  * 	the mount is marked as 'shared and slave'.
1359  * (*)	the mount continues to be a slave at the new location.
1360  *
1361  * if the source mount is a tree, the operations explained above is
1362  * applied to each mount in the tree.
1363  * Must be called without spinlocks held, since this function can sleep
1364  * in allocations.
1365  */
1366 static int attach_recursive_mnt(struct vfsmount *source_mnt,
1367 			struct path *path, struct path *parent_path)
1368 {
1369 	LIST_HEAD(tree_list);
1370 	struct vfsmount *dest_mnt = path->mnt;
1371 	struct dentry *dest_dentry = path->dentry;
1372 	struct vfsmount *child, *p;
1373 	int err;
1374 
1375 	if (IS_MNT_SHARED(dest_mnt)) {
1376 		err = invent_group_ids(source_mnt, true);
1377 		if (err)
1378 			goto out;
1379 	}
1380 	err = propagate_mnt(dest_mnt, dest_dentry, source_mnt, &tree_list);
1381 	if (err)
1382 		goto out_cleanup_ids;
1383 
1384 	if (IS_MNT_SHARED(dest_mnt)) {
1385 		for (p = source_mnt; p; p = next_mnt(p, source_mnt))
1386 			set_mnt_shared(p);
1387 	}
1388 
1389 	spin_lock(&vfsmount_lock);
1390 	if (parent_path) {
1391 		detach_mnt(source_mnt, parent_path);
1392 		attach_mnt(source_mnt, path);
1393 		touch_mnt_namespace(parent_path->mnt->mnt_ns);
1394 	} else {
1395 		mnt_set_mountpoint(dest_mnt, dest_dentry, source_mnt);
1396 		commit_tree(source_mnt);
1397 	}
1398 
1399 	list_for_each_entry_safe(child, p, &tree_list, mnt_hash) {
1400 		list_del_init(&child->mnt_hash);
1401 		commit_tree(child);
1402 	}
1403 	spin_unlock(&vfsmount_lock);
1404 	return 0;
1405 
1406  out_cleanup_ids:
1407 	if (IS_MNT_SHARED(dest_mnt))
1408 		cleanup_group_ids(source_mnt, NULL);
1409  out:
1410 	return err;
1411 }
1412 
1413 static int graft_tree(struct vfsmount *mnt, struct path *path)
1414 {
1415 	int err;
1416 	if (mnt->mnt_sb->s_flags & MS_NOUSER)
1417 		return -EINVAL;
1418 
1419 	if (S_ISDIR(path->dentry->d_inode->i_mode) !=
1420 	      S_ISDIR(mnt->mnt_root->d_inode->i_mode))
1421 		return -ENOTDIR;
1422 
1423 	err = -ENOENT;
1424 	mutex_lock(&path->dentry->d_inode->i_mutex);
1425 	if (IS_DEADDIR(path->dentry->d_inode))
1426 		goto out_unlock;
1427 
1428 	err = security_sb_check_sb(mnt, path);
1429 	if (err)
1430 		goto out_unlock;
1431 
1432 	err = -ENOENT;
1433 	if (IS_ROOT(path->dentry) || !d_unhashed(path->dentry))
1434 		err = attach_recursive_mnt(mnt, path, NULL);
1435 out_unlock:
1436 	mutex_unlock(&path->dentry->d_inode->i_mutex);
1437 	if (!err)
1438 		security_sb_post_addmount(mnt, path);
1439 	return err;
1440 }
1441 
1442 /*
1443  * recursively change the type of the mountpoint.
1444  */
1445 static int do_change_type(struct path *path, int flag)
1446 {
1447 	struct vfsmount *m, *mnt = path->mnt;
1448 	int recurse = flag & MS_REC;
1449 	int type = flag & ~MS_REC;
1450 	int err = 0;
1451 
1452 	if (!capable(CAP_SYS_ADMIN))
1453 		return -EPERM;
1454 
1455 	if (path->dentry != path->mnt->mnt_root)
1456 		return -EINVAL;
1457 
1458 	down_write(&namespace_sem);
1459 	if (type == MS_SHARED) {
1460 		err = invent_group_ids(mnt, recurse);
1461 		if (err)
1462 			goto out_unlock;
1463 	}
1464 
1465 	spin_lock(&vfsmount_lock);
1466 	for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
1467 		change_mnt_propagation(m, type);
1468 	spin_unlock(&vfsmount_lock);
1469 
1470  out_unlock:
1471 	up_write(&namespace_sem);
1472 	return err;
1473 }
1474 
1475 /*
1476  * do loopback mount.
1477  */
1478 static int do_loopback(struct path *path, char *old_name,
1479 				int recurse)
1480 {
1481 	struct path old_path;
1482 	struct vfsmount *mnt = NULL;
1483 	int err = mount_is_safe(path);
1484 	if (err)
1485 		return err;
1486 	if (!old_name || !*old_name)
1487 		return -EINVAL;
1488 	err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
1489 	if (err)
1490 		return err;
1491 
1492 	down_write(&namespace_sem);
1493 	err = -EINVAL;
1494 	if (IS_MNT_UNBINDABLE(old_path.mnt))
1495 		goto out;
1496 
1497 	if (!check_mnt(path->mnt) || !check_mnt(old_path.mnt))
1498 		goto out;
1499 
1500 	err = -ENOMEM;
1501 	if (recurse)
1502 		mnt = copy_tree(old_path.mnt, old_path.dentry, 0);
1503 	else
1504 		mnt = clone_mnt(old_path.mnt, old_path.dentry, 0);
1505 
1506 	if (!mnt)
1507 		goto out;
1508 
1509 	err = graft_tree(mnt, path);
1510 	if (err) {
1511 		LIST_HEAD(umount_list);
1512 		spin_lock(&vfsmount_lock);
1513 		umount_tree(mnt, 0, &umount_list);
1514 		spin_unlock(&vfsmount_lock);
1515 		release_mounts(&umount_list);
1516 	}
1517 
1518 out:
1519 	up_write(&namespace_sem);
1520 	path_put(&old_path);
1521 	return err;
1522 }
1523 
1524 static int change_mount_flags(struct vfsmount *mnt, int ms_flags)
1525 {
1526 	int error = 0;
1527 	int readonly_request = 0;
1528 
1529 	if (ms_flags & MS_RDONLY)
1530 		readonly_request = 1;
1531 	if (readonly_request == __mnt_is_readonly(mnt))
1532 		return 0;
1533 
1534 	if (readonly_request)
1535 		error = mnt_make_readonly(mnt);
1536 	else
1537 		__mnt_unmake_readonly(mnt);
1538 	return error;
1539 }
1540 
1541 /*
1542  * change filesystem flags. dir should be a physical root of filesystem.
1543  * If you've mounted a non-root directory somewhere and want to do remount
1544  * on it - tough luck.
1545  */
1546 static int do_remount(struct path *path, int flags, int mnt_flags,
1547 		      void *data)
1548 {
1549 	int err;
1550 	struct super_block *sb = path->mnt->mnt_sb;
1551 
1552 	if (!capable(CAP_SYS_ADMIN))
1553 		return -EPERM;
1554 
1555 	if (!check_mnt(path->mnt))
1556 		return -EINVAL;
1557 
1558 	if (path->dentry != path->mnt->mnt_root)
1559 		return -EINVAL;
1560 
1561 	down_write(&sb->s_umount);
1562 	if (flags & MS_BIND)
1563 		err = change_mount_flags(path->mnt, flags);
1564 	else
1565 		err = do_remount_sb(sb, flags, data, 0);
1566 	if (!err)
1567 		path->mnt->mnt_flags = mnt_flags;
1568 	up_write(&sb->s_umount);
1569 	if (!err) {
1570 		security_sb_post_remount(path->mnt, flags, data);
1571 
1572 		spin_lock(&vfsmount_lock);
1573 		touch_mnt_namespace(path->mnt->mnt_ns);
1574 		spin_unlock(&vfsmount_lock);
1575 	}
1576 	return err;
1577 }
1578 
1579 static inline int tree_contains_unbindable(struct vfsmount *mnt)
1580 {
1581 	struct vfsmount *p;
1582 	for (p = mnt; p; p = next_mnt(p, mnt)) {
1583 		if (IS_MNT_UNBINDABLE(p))
1584 			return 1;
1585 	}
1586 	return 0;
1587 }
1588 
1589 static int do_move_mount(struct path *path, char *old_name)
1590 {
1591 	struct path old_path, parent_path;
1592 	struct vfsmount *p;
1593 	int err = 0;
1594 	if (!capable(CAP_SYS_ADMIN))
1595 		return -EPERM;
1596 	if (!old_name || !*old_name)
1597 		return -EINVAL;
1598 	err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
1599 	if (err)
1600 		return err;
1601 
1602 	down_write(&namespace_sem);
1603 	while (d_mountpoint(path->dentry) &&
1604 	       follow_down(&path->mnt, &path->dentry))
1605 		;
1606 	err = -EINVAL;
1607 	if (!check_mnt(path->mnt) || !check_mnt(old_path.mnt))
1608 		goto out;
1609 
1610 	err = -ENOENT;
1611 	mutex_lock(&path->dentry->d_inode->i_mutex);
1612 	if (IS_DEADDIR(path->dentry->d_inode))
1613 		goto out1;
1614 
1615 	if (!IS_ROOT(path->dentry) && d_unhashed(path->dentry))
1616 		goto out1;
1617 
1618 	err = -EINVAL;
1619 	if (old_path.dentry != old_path.mnt->mnt_root)
1620 		goto out1;
1621 
1622 	if (old_path.mnt == old_path.mnt->mnt_parent)
1623 		goto out1;
1624 
1625 	if (S_ISDIR(path->dentry->d_inode->i_mode) !=
1626 	      S_ISDIR(old_path.dentry->d_inode->i_mode))
1627 		goto out1;
1628 	/*
1629 	 * Don't move a mount residing in a shared parent.
1630 	 */
1631 	if (old_path.mnt->mnt_parent &&
1632 	    IS_MNT_SHARED(old_path.mnt->mnt_parent))
1633 		goto out1;
1634 	/*
1635 	 * Don't move a mount tree containing unbindable mounts to a destination
1636 	 * mount which is shared.
1637 	 */
1638 	if (IS_MNT_SHARED(path->mnt) &&
1639 	    tree_contains_unbindable(old_path.mnt))
1640 		goto out1;
1641 	err = -ELOOP;
1642 	for (p = path->mnt; p->mnt_parent != p; p = p->mnt_parent)
1643 		if (p == old_path.mnt)
1644 			goto out1;
1645 
1646 	err = attach_recursive_mnt(old_path.mnt, path, &parent_path);
1647 	if (err)
1648 		goto out1;
1649 
1650 	/* if the mount is moved, it should no longer be expire
1651 	 * automatically */
1652 	list_del_init(&old_path.mnt->mnt_expire);
1653 out1:
1654 	mutex_unlock(&path->dentry->d_inode->i_mutex);
1655 out:
1656 	up_write(&namespace_sem);
1657 	if (!err)
1658 		path_put(&parent_path);
1659 	path_put(&old_path);
1660 	return err;
1661 }
1662 
1663 /*
1664  * create a new mount for userspace and request it to be added into the
1665  * namespace's tree
1666  */
1667 static int do_new_mount(struct path *path, char *type, int flags,
1668 			int mnt_flags, char *name, void *data)
1669 {
1670 	struct vfsmount *mnt;
1671 
1672 	if (!type || !memchr(type, 0, PAGE_SIZE))
1673 		return -EINVAL;
1674 
1675 	/* we need capabilities... */
1676 	if (!capable(CAP_SYS_ADMIN))
1677 		return -EPERM;
1678 
1679 	mnt = do_kern_mount(type, flags, name, data);
1680 	if (IS_ERR(mnt))
1681 		return PTR_ERR(mnt);
1682 
1683 	return do_add_mount(mnt, path, mnt_flags, NULL);
1684 }
1685 
1686 /*
1687  * add a mount into a namespace's mount tree
1688  * - provide the option of adding the new mount to an expiration list
1689  */
1690 int do_add_mount(struct vfsmount *newmnt, struct path *path,
1691 		 int mnt_flags, struct list_head *fslist)
1692 {
1693 	int err;
1694 
1695 	down_write(&namespace_sem);
1696 	/* Something was mounted here while we slept */
1697 	while (d_mountpoint(path->dentry) &&
1698 	       follow_down(&path->mnt, &path->dentry))
1699 		;
1700 	err = -EINVAL;
1701 	if (!check_mnt(path->mnt))
1702 		goto unlock;
1703 
1704 	/* Refuse the same filesystem on the same mount point */
1705 	err = -EBUSY;
1706 	if (path->mnt->mnt_sb == newmnt->mnt_sb &&
1707 	    path->mnt->mnt_root == path->dentry)
1708 		goto unlock;
1709 
1710 	err = -EINVAL;
1711 	if (S_ISLNK(newmnt->mnt_root->d_inode->i_mode))
1712 		goto unlock;
1713 
1714 	newmnt->mnt_flags = mnt_flags;
1715 	if ((err = graft_tree(newmnt, path)))
1716 		goto unlock;
1717 
1718 	if (fslist) /* add to the specified expiration list */
1719 		list_add_tail(&newmnt->mnt_expire, fslist);
1720 
1721 	up_write(&namespace_sem);
1722 	return 0;
1723 
1724 unlock:
1725 	up_write(&namespace_sem);
1726 	mntput(newmnt);
1727 	return err;
1728 }
1729 
1730 EXPORT_SYMBOL_GPL(do_add_mount);
1731 
1732 /*
1733  * process a list of expirable mountpoints with the intent of discarding any
1734  * mountpoints that aren't in use and haven't been touched since last we came
1735  * here
1736  */
1737 void mark_mounts_for_expiry(struct list_head *mounts)
1738 {
1739 	struct vfsmount *mnt, *next;
1740 	LIST_HEAD(graveyard);
1741 	LIST_HEAD(umounts);
1742 
1743 	if (list_empty(mounts))
1744 		return;
1745 
1746 	down_write(&namespace_sem);
1747 	spin_lock(&vfsmount_lock);
1748 
1749 	/* extract from the expiration list every vfsmount that matches the
1750 	 * following criteria:
1751 	 * - only referenced by its parent vfsmount
1752 	 * - still marked for expiry (marked on the last call here; marks are
1753 	 *   cleared by mntput())
1754 	 */
1755 	list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
1756 		if (!xchg(&mnt->mnt_expiry_mark, 1) ||
1757 			propagate_mount_busy(mnt, 1))
1758 			continue;
1759 		list_move(&mnt->mnt_expire, &graveyard);
1760 	}
1761 	while (!list_empty(&graveyard)) {
1762 		mnt = list_first_entry(&graveyard, struct vfsmount, mnt_expire);
1763 		touch_mnt_namespace(mnt->mnt_ns);
1764 		umount_tree(mnt, 1, &umounts);
1765 	}
1766 	spin_unlock(&vfsmount_lock);
1767 	up_write(&namespace_sem);
1768 
1769 	release_mounts(&umounts);
1770 }
1771 
1772 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
1773 
1774 /*
1775  * Ripoff of 'select_parent()'
1776  *
1777  * search the list of submounts for a given mountpoint, and move any
1778  * shrinkable submounts to the 'graveyard' list.
1779  */
1780 static int select_submounts(struct vfsmount *parent, struct list_head *graveyard)
1781 {
1782 	struct vfsmount *this_parent = parent;
1783 	struct list_head *next;
1784 	int found = 0;
1785 
1786 repeat:
1787 	next = this_parent->mnt_mounts.next;
1788 resume:
1789 	while (next != &this_parent->mnt_mounts) {
1790 		struct list_head *tmp = next;
1791 		struct vfsmount *mnt = list_entry(tmp, struct vfsmount, mnt_child);
1792 
1793 		next = tmp->next;
1794 		if (!(mnt->mnt_flags & MNT_SHRINKABLE))
1795 			continue;
1796 		/*
1797 		 * Descend a level if the d_mounts list is non-empty.
1798 		 */
1799 		if (!list_empty(&mnt->mnt_mounts)) {
1800 			this_parent = mnt;
1801 			goto repeat;
1802 		}
1803 
1804 		if (!propagate_mount_busy(mnt, 1)) {
1805 			list_move_tail(&mnt->mnt_expire, graveyard);
1806 			found++;
1807 		}
1808 	}
1809 	/*
1810 	 * All done at this level ... ascend and resume the search
1811 	 */
1812 	if (this_parent != parent) {
1813 		next = this_parent->mnt_child.next;
1814 		this_parent = this_parent->mnt_parent;
1815 		goto resume;
1816 	}
1817 	return found;
1818 }
1819 
1820 /*
1821  * process a list of expirable mountpoints with the intent of discarding any
1822  * submounts of a specific parent mountpoint
1823  */
1824 static void shrink_submounts(struct vfsmount *mnt, struct list_head *umounts)
1825 {
1826 	LIST_HEAD(graveyard);
1827 	struct vfsmount *m;
1828 
1829 	/* extract submounts of 'mountpoint' from the expiration list */
1830 	while (select_submounts(mnt, &graveyard)) {
1831 		while (!list_empty(&graveyard)) {
1832 			m = list_first_entry(&graveyard, struct vfsmount,
1833 						mnt_expire);
1834 			touch_mnt_namespace(m->mnt_ns);
1835 			umount_tree(m, 1, umounts);
1836 		}
1837 	}
1838 }
1839 
1840 /*
1841  * Some copy_from_user() implementations do not return the exact number of
1842  * bytes remaining to copy on a fault.  But copy_mount_options() requires that.
1843  * Note that this function differs from copy_from_user() in that it will oops
1844  * on bad values of `to', rather than returning a short copy.
1845  */
1846 static long exact_copy_from_user(void *to, const void __user * from,
1847 				 unsigned long n)
1848 {
1849 	char *t = to;
1850 	const char __user *f = from;
1851 	char c;
1852 
1853 	if (!access_ok(VERIFY_READ, from, n))
1854 		return n;
1855 
1856 	while (n) {
1857 		if (__get_user(c, f)) {
1858 			memset(t, 0, n);
1859 			break;
1860 		}
1861 		*t++ = c;
1862 		f++;
1863 		n--;
1864 	}
1865 	return n;
1866 }
1867 
1868 int copy_mount_options(const void __user * data, unsigned long *where)
1869 {
1870 	int i;
1871 	unsigned long page;
1872 	unsigned long size;
1873 
1874 	*where = 0;
1875 	if (!data)
1876 		return 0;
1877 
1878 	if (!(page = __get_free_page(GFP_KERNEL)))
1879 		return -ENOMEM;
1880 
1881 	/* We only care that *some* data at the address the user
1882 	 * gave us is valid.  Just in case, we'll zero
1883 	 * the remainder of the page.
1884 	 */
1885 	/* copy_from_user cannot cross TASK_SIZE ! */
1886 	size = TASK_SIZE - (unsigned long)data;
1887 	if (size > PAGE_SIZE)
1888 		size = PAGE_SIZE;
1889 
1890 	i = size - exact_copy_from_user((void *)page, data, size);
1891 	if (!i) {
1892 		free_page(page);
1893 		return -EFAULT;
1894 	}
1895 	if (i != PAGE_SIZE)
1896 		memset((char *)page + i, 0, PAGE_SIZE - i);
1897 	*where = page;
1898 	return 0;
1899 }
1900 
1901 /*
1902  * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
1903  * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
1904  *
1905  * data is a (void *) that can point to any structure up to
1906  * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
1907  * information (or be NULL).
1908  *
1909  * Pre-0.97 versions of mount() didn't have a flags word.
1910  * When the flags word was introduced its top half was required
1911  * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
1912  * Therefore, if this magic number is present, it carries no information
1913  * and must be discarded.
1914  */
1915 long do_mount(char *dev_name, char *dir_name, char *type_page,
1916 		  unsigned long flags, void *data_page)
1917 {
1918 	struct path path;
1919 	int retval = 0;
1920 	int mnt_flags = 0;
1921 
1922 	/* Discard magic */
1923 	if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
1924 		flags &= ~MS_MGC_MSK;
1925 
1926 	/* Basic sanity checks */
1927 
1928 	if (!dir_name || !*dir_name || !memchr(dir_name, 0, PAGE_SIZE))
1929 		return -EINVAL;
1930 	if (dev_name && !memchr(dev_name, 0, PAGE_SIZE))
1931 		return -EINVAL;
1932 
1933 	if (data_page)
1934 		((char *)data_page)[PAGE_SIZE - 1] = 0;
1935 
1936 	/* Default to relatime unless overriden */
1937 	if (!(flags & MS_NOATIME))
1938 		mnt_flags |= MNT_RELATIME;
1939 
1940 	/* Separate the per-mountpoint flags */
1941 	if (flags & MS_NOSUID)
1942 		mnt_flags |= MNT_NOSUID;
1943 	if (flags & MS_NODEV)
1944 		mnt_flags |= MNT_NODEV;
1945 	if (flags & MS_NOEXEC)
1946 		mnt_flags |= MNT_NOEXEC;
1947 	if (flags & MS_NOATIME)
1948 		mnt_flags |= MNT_NOATIME;
1949 	if (flags & MS_NODIRATIME)
1950 		mnt_flags |= MNT_NODIRATIME;
1951 	if (flags & MS_STRICTATIME)
1952 		mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
1953 	if (flags & MS_RDONLY)
1954 		mnt_flags |= MNT_READONLY;
1955 
1956 	flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE |
1957 		   MS_NOATIME | MS_NODIRATIME | MS_RELATIME| MS_KERNMOUNT |
1958 		   MS_STRICTATIME);
1959 
1960 	/* ... and get the mountpoint */
1961 	retval = kern_path(dir_name, LOOKUP_FOLLOW, &path);
1962 	if (retval)
1963 		return retval;
1964 
1965 	retval = security_sb_mount(dev_name, &path,
1966 				   type_page, flags, data_page);
1967 	if (retval)
1968 		goto dput_out;
1969 
1970 	if (flags & MS_REMOUNT)
1971 		retval = do_remount(&path, flags & ~MS_REMOUNT, mnt_flags,
1972 				    data_page);
1973 	else if (flags & MS_BIND)
1974 		retval = do_loopback(&path, dev_name, flags & MS_REC);
1975 	else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
1976 		retval = do_change_type(&path, flags);
1977 	else if (flags & MS_MOVE)
1978 		retval = do_move_mount(&path, dev_name);
1979 	else
1980 		retval = do_new_mount(&path, type_page, flags, mnt_flags,
1981 				      dev_name, data_page);
1982 dput_out:
1983 	path_put(&path);
1984 	return retval;
1985 }
1986 
1987 /*
1988  * Allocate a new namespace structure and populate it with contents
1989  * copied from the namespace of the passed in task structure.
1990  */
1991 static struct mnt_namespace *dup_mnt_ns(struct mnt_namespace *mnt_ns,
1992 		struct fs_struct *fs)
1993 {
1994 	struct mnt_namespace *new_ns;
1995 	struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
1996 	struct vfsmount *p, *q;
1997 
1998 	new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
1999 	if (!new_ns)
2000 		return ERR_PTR(-ENOMEM);
2001 
2002 	atomic_set(&new_ns->count, 1);
2003 	INIT_LIST_HEAD(&new_ns->list);
2004 	init_waitqueue_head(&new_ns->poll);
2005 	new_ns->event = 0;
2006 
2007 	down_write(&namespace_sem);
2008 	/* First pass: copy the tree topology */
2009 	new_ns->root = copy_tree(mnt_ns->root, mnt_ns->root->mnt_root,
2010 					CL_COPY_ALL | CL_EXPIRE);
2011 	if (!new_ns->root) {
2012 		up_write(&namespace_sem);
2013 		kfree(new_ns);
2014 		return ERR_PTR(-ENOMEM);
2015 	}
2016 	spin_lock(&vfsmount_lock);
2017 	list_add_tail(&new_ns->list, &new_ns->root->mnt_list);
2018 	spin_unlock(&vfsmount_lock);
2019 
2020 	/*
2021 	 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
2022 	 * as belonging to new namespace.  We have already acquired a private
2023 	 * fs_struct, so tsk->fs->lock is not needed.
2024 	 */
2025 	p = mnt_ns->root;
2026 	q = new_ns->root;
2027 	while (p) {
2028 		q->mnt_ns = new_ns;
2029 		if (fs) {
2030 			if (p == fs->root.mnt) {
2031 				rootmnt = p;
2032 				fs->root.mnt = mntget(q);
2033 			}
2034 			if (p == fs->pwd.mnt) {
2035 				pwdmnt = p;
2036 				fs->pwd.mnt = mntget(q);
2037 			}
2038 		}
2039 		p = next_mnt(p, mnt_ns->root);
2040 		q = next_mnt(q, new_ns->root);
2041 	}
2042 	up_write(&namespace_sem);
2043 
2044 	if (rootmnt)
2045 		mntput(rootmnt);
2046 	if (pwdmnt)
2047 		mntput(pwdmnt);
2048 
2049 	return new_ns;
2050 }
2051 
2052 struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
2053 		struct fs_struct *new_fs)
2054 {
2055 	struct mnt_namespace *new_ns;
2056 
2057 	BUG_ON(!ns);
2058 	get_mnt_ns(ns);
2059 
2060 	if (!(flags & CLONE_NEWNS))
2061 		return ns;
2062 
2063 	new_ns = dup_mnt_ns(ns, new_fs);
2064 
2065 	put_mnt_ns(ns);
2066 	return new_ns;
2067 }
2068 
2069 SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
2070 		char __user *, type, unsigned long, flags, void __user *, data)
2071 {
2072 	int retval;
2073 	unsigned long data_page;
2074 	unsigned long type_page;
2075 	unsigned long dev_page;
2076 	char *dir_page;
2077 
2078 	retval = copy_mount_options(type, &type_page);
2079 	if (retval < 0)
2080 		return retval;
2081 
2082 	dir_page = getname(dir_name);
2083 	retval = PTR_ERR(dir_page);
2084 	if (IS_ERR(dir_page))
2085 		goto out1;
2086 
2087 	retval = copy_mount_options(dev_name, &dev_page);
2088 	if (retval < 0)
2089 		goto out2;
2090 
2091 	retval = copy_mount_options(data, &data_page);
2092 	if (retval < 0)
2093 		goto out3;
2094 
2095 	lock_kernel();
2096 	retval = do_mount((char *)dev_page, dir_page, (char *)type_page,
2097 			  flags, (void *)data_page);
2098 	unlock_kernel();
2099 	free_page(data_page);
2100 
2101 out3:
2102 	free_page(dev_page);
2103 out2:
2104 	putname(dir_page);
2105 out1:
2106 	free_page(type_page);
2107 	return retval;
2108 }
2109 
2110 /*
2111  * pivot_root Semantics:
2112  * Moves the root file system of the current process to the directory put_old,
2113  * makes new_root as the new root file system of the current process, and sets
2114  * root/cwd of all processes which had them on the current root to new_root.
2115  *
2116  * Restrictions:
2117  * The new_root and put_old must be directories, and  must not be on the
2118  * same file  system as the current process root. The put_old  must  be
2119  * underneath new_root,  i.e. adding a non-zero number of /.. to the string
2120  * pointed to by put_old must yield the same directory as new_root. No other
2121  * file system may be mounted on put_old. After all, new_root is a mountpoint.
2122  *
2123  * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
2124  * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
2125  * in this situation.
2126  *
2127  * Notes:
2128  *  - we don't move root/cwd if they are not at the root (reason: if something
2129  *    cared enough to change them, it's probably wrong to force them elsewhere)
2130  *  - it's okay to pick a root that isn't the root of a file system, e.g.
2131  *    /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
2132  *    though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
2133  *    first.
2134  */
2135 SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
2136 		const char __user *, put_old)
2137 {
2138 	struct vfsmount *tmp;
2139 	struct path new, old, parent_path, root_parent, root;
2140 	int error;
2141 
2142 	if (!capable(CAP_SYS_ADMIN))
2143 		return -EPERM;
2144 
2145 	error = user_path_dir(new_root, &new);
2146 	if (error)
2147 		goto out0;
2148 	error = -EINVAL;
2149 	if (!check_mnt(new.mnt))
2150 		goto out1;
2151 
2152 	error = user_path_dir(put_old, &old);
2153 	if (error)
2154 		goto out1;
2155 
2156 	error = security_sb_pivotroot(&old, &new);
2157 	if (error) {
2158 		path_put(&old);
2159 		goto out1;
2160 	}
2161 
2162 	read_lock(&current->fs->lock);
2163 	root = current->fs->root;
2164 	path_get(&current->fs->root);
2165 	read_unlock(&current->fs->lock);
2166 	down_write(&namespace_sem);
2167 	mutex_lock(&old.dentry->d_inode->i_mutex);
2168 	error = -EINVAL;
2169 	if (IS_MNT_SHARED(old.mnt) ||
2170 		IS_MNT_SHARED(new.mnt->mnt_parent) ||
2171 		IS_MNT_SHARED(root.mnt->mnt_parent))
2172 		goto out2;
2173 	if (!check_mnt(root.mnt))
2174 		goto out2;
2175 	error = -ENOENT;
2176 	if (IS_DEADDIR(new.dentry->d_inode))
2177 		goto out2;
2178 	if (d_unhashed(new.dentry) && !IS_ROOT(new.dentry))
2179 		goto out2;
2180 	if (d_unhashed(old.dentry) && !IS_ROOT(old.dentry))
2181 		goto out2;
2182 	error = -EBUSY;
2183 	if (new.mnt == root.mnt ||
2184 	    old.mnt == root.mnt)
2185 		goto out2; /* loop, on the same file system  */
2186 	error = -EINVAL;
2187 	if (root.mnt->mnt_root != root.dentry)
2188 		goto out2; /* not a mountpoint */
2189 	if (root.mnt->mnt_parent == root.mnt)
2190 		goto out2; /* not attached */
2191 	if (new.mnt->mnt_root != new.dentry)
2192 		goto out2; /* not a mountpoint */
2193 	if (new.mnt->mnt_parent == new.mnt)
2194 		goto out2; /* not attached */
2195 	/* make sure we can reach put_old from new_root */
2196 	tmp = old.mnt;
2197 	spin_lock(&vfsmount_lock);
2198 	if (tmp != new.mnt) {
2199 		for (;;) {
2200 			if (tmp->mnt_parent == tmp)
2201 				goto out3; /* already mounted on put_old */
2202 			if (tmp->mnt_parent == new.mnt)
2203 				break;
2204 			tmp = tmp->mnt_parent;
2205 		}
2206 		if (!is_subdir(tmp->mnt_mountpoint, new.dentry))
2207 			goto out3;
2208 	} else if (!is_subdir(old.dentry, new.dentry))
2209 		goto out3;
2210 	detach_mnt(new.mnt, &parent_path);
2211 	detach_mnt(root.mnt, &root_parent);
2212 	/* mount old root on put_old */
2213 	attach_mnt(root.mnt, &old);
2214 	/* mount new_root on / */
2215 	attach_mnt(new.mnt, &root_parent);
2216 	touch_mnt_namespace(current->nsproxy->mnt_ns);
2217 	spin_unlock(&vfsmount_lock);
2218 	chroot_fs_refs(&root, &new);
2219 	security_sb_post_pivotroot(&root, &new);
2220 	error = 0;
2221 	path_put(&root_parent);
2222 	path_put(&parent_path);
2223 out2:
2224 	mutex_unlock(&old.dentry->d_inode->i_mutex);
2225 	up_write(&namespace_sem);
2226 	path_put(&root);
2227 	path_put(&old);
2228 out1:
2229 	path_put(&new);
2230 out0:
2231 	return error;
2232 out3:
2233 	spin_unlock(&vfsmount_lock);
2234 	goto out2;
2235 }
2236 
2237 static void __init init_mount_tree(void)
2238 {
2239 	struct vfsmount *mnt;
2240 	struct mnt_namespace *ns;
2241 	struct path root;
2242 
2243 	mnt = do_kern_mount("rootfs", 0, "rootfs", NULL);
2244 	if (IS_ERR(mnt))
2245 		panic("Can't create rootfs");
2246 	ns = kmalloc(sizeof(*ns), GFP_KERNEL);
2247 	if (!ns)
2248 		panic("Can't allocate initial namespace");
2249 	atomic_set(&ns->count, 1);
2250 	INIT_LIST_HEAD(&ns->list);
2251 	init_waitqueue_head(&ns->poll);
2252 	ns->event = 0;
2253 	list_add(&mnt->mnt_list, &ns->list);
2254 	ns->root = mnt;
2255 	mnt->mnt_ns = ns;
2256 
2257 	init_task.nsproxy->mnt_ns = ns;
2258 	get_mnt_ns(ns);
2259 
2260 	root.mnt = ns->root;
2261 	root.dentry = ns->root->mnt_root;
2262 
2263 	set_fs_pwd(current->fs, &root);
2264 	set_fs_root(current->fs, &root);
2265 }
2266 
2267 void __init mnt_init(void)
2268 {
2269 	unsigned u;
2270 	int err;
2271 
2272 	init_rwsem(&namespace_sem);
2273 
2274 	mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct vfsmount),
2275 			0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
2276 
2277 	mount_hashtable = (struct list_head *)__get_free_page(GFP_ATOMIC);
2278 
2279 	if (!mount_hashtable)
2280 		panic("Failed to allocate mount hash table\n");
2281 
2282 	printk("Mount-cache hash table entries: %lu\n", HASH_SIZE);
2283 
2284 	for (u = 0; u < HASH_SIZE; u++)
2285 		INIT_LIST_HEAD(&mount_hashtable[u]);
2286 
2287 	err = sysfs_init();
2288 	if (err)
2289 		printk(KERN_WARNING "%s: sysfs_init error: %d\n",
2290 			__func__, err);
2291 	fs_kobj = kobject_create_and_add("fs", NULL);
2292 	if (!fs_kobj)
2293 		printk(KERN_WARNING "%s: kobj create error\n", __func__);
2294 	init_rootfs();
2295 	init_mount_tree();
2296 }
2297 
2298 void __put_mnt_ns(struct mnt_namespace *ns)
2299 {
2300 	struct vfsmount *root = ns->root;
2301 	LIST_HEAD(umount_list);
2302 	ns->root = NULL;
2303 	spin_unlock(&vfsmount_lock);
2304 	down_write(&namespace_sem);
2305 	spin_lock(&vfsmount_lock);
2306 	umount_tree(root, 0, &umount_list);
2307 	spin_unlock(&vfsmount_lock);
2308 	up_write(&namespace_sem);
2309 	release_mounts(&umount_list);
2310 	kfree(ns);
2311 }
2312