xref: /openbmc/linux/fs/namespace.c (revision 6dfcd296)
1 /*
2  *  linux/fs/namespace.c
3  *
4  * (C) Copyright Al Viro 2000, 2001
5  *	Released under GPL v2.
6  *
7  * Based on code from fs/super.c, copyright Linus Torvalds and others.
8  * Heavily rewritten.
9  */
10 
11 #include <linux/syscalls.h>
12 #include <linux/export.h>
13 #include <linux/capability.h>
14 #include <linux/mnt_namespace.h>
15 #include <linux/user_namespace.h>
16 #include <linux/namei.h>
17 #include <linux/security.h>
18 #include <linux/idr.h>
19 #include <linux/init.h>		/* init_rootfs */
20 #include <linux/fs_struct.h>	/* get_fs_root et.al. */
21 #include <linux/fsnotify.h>	/* fsnotify_vfsmount_delete */
22 #include <linux/uaccess.h>
23 #include <linux/proc_ns.h>
24 #include <linux/magic.h>
25 #include <linux/bootmem.h>
26 #include <linux/task_work.h>
27 #include "pnode.h"
28 #include "internal.h"
29 
30 /* Maximum number of mounts in a mount namespace */
31 unsigned int sysctl_mount_max __read_mostly = 100000;
32 
33 static unsigned int m_hash_mask __read_mostly;
34 static unsigned int m_hash_shift __read_mostly;
35 static unsigned int mp_hash_mask __read_mostly;
36 static unsigned int mp_hash_shift __read_mostly;
37 
38 static __initdata unsigned long mhash_entries;
39 static int __init set_mhash_entries(char *str)
40 {
41 	if (!str)
42 		return 0;
43 	mhash_entries = simple_strtoul(str, &str, 0);
44 	return 1;
45 }
46 __setup("mhash_entries=", set_mhash_entries);
47 
48 static __initdata unsigned long mphash_entries;
49 static int __init set_mphash_entries(char *str)
50 {
51 	if (!str)
52 		return 0;
53 	mphash_entries = simple_strtoul(str, &str, 0);
54 	return 1;
55 }
56 __setup("mphash_entries=", set_mphash_entries);
57 
58 static u64 event;
59 static DEFINE_IDA(mnt_id_ida);
60 static DEFINE_IDA(mnt_group_ida);
61 static DEFINE_SPINLOCK(mnt_id_lock);
62 static int mnt_id_start = 0;
63 static int mnt_group_start = 1;
64 
65 static struct hlist_head *mount_hashtable __read_mostly;
66 static struct hlist_head *mountpoint_hashtable __read_mostly;
67 static struct kmem_cache *mnt_cache __read_mostly;
68 static DECLARE_RWSEM(namespace_sem);
69 
70 /* /sys/fs */
71 struct kobject *fs_kobj;
72 EXPORT_SYMBOL_GPL(fs_kobj);
73 
74 /*
75  * vfsmount lock may be taken for read to prevent changes to the
76  * vfsmount hash, ie. during mountpoint lookups or walking back
77  * up the tree.
78  *
79  * It should be taken for write in all cases where the vfsmount
80  * tree or hash is modified or when a vfsmount structure is modified.
81  */
82 __cacheline_aligned_in_smp DEFINE_SEQLOCK(mount_lock);
83 
84 static inline struct hlist_head *m_hash(struct vfsmount *mnt, struct dentry *dentry)
85 {
86 	unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
87 	tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
88 	tmp = tmp + (tmp >> m_hash_shift);
89 	return &mount_hashtable[tmp & m_hash_mask];
90 }
91 
92 static inline struct hlist_head *mp_hash(struct dentry *dentry)
93 {
94 	unsigned long tmp = ((unsigned long)dentry / L1_CACHE_BYTES);
95 	tmp = tmp + (tmp >> mp_hash_shift);
96 	return &mountpoint_hashtable[tmp & mp_hash_mask];
97 }
98 
99 /*
100  * allocation is serialized by namespace_sem, but we need the spinlock to
101  * serialize with freeing.
102  */
103 static int mnt_alloc_id(struct mount *mnt)
104 {
105 	int res;
106 
107 retry:
108 	ida_pre_get(&mnt_id_ida, GFP_KERNEL);
109 	spin_lock(&mnt_id_lock);
110 	res = ida_get_new_above(&mnt_id_ida, mnt_id_start, &mnt->mnt_id);
111 	if (!res)
112 		mnt_id_start = mnt->mnt_id + 1;
113 	spin_unlock(&mnt_id_lock);
114 	if (res == -EAGAIN)
115 		goto retry;
116 
117 	return res;
118 }
119 
120 static void mnt_free_id(struct mount *mnt)
121 {
122 	int id = mnt->mnt_id;
123 	spin_lock(&mnt_id_lock);
124 	ida_remove(&mnt_id_ida, id);
125 	if (mnt_id_start > id)
126 		mnt_id_start = id;
127 	spin_unlock(&mnt_id_lock);
128 }
129 
130 /*
131  * Allocate a new peer group ID
132  *
133  * mnt_group_ida is protected by namespace_sem
134  */
135 static int mnt_alloc_group_id(struct mount *mnt)
136 {
137 	int res;
138 
139 	if (!ida_pre_get(&mnt_group_ida, GFP_KERNEL))
140 		return -ENOMEM;
141 
142 	res = ida_get_new_above(&mnt_group_ida,
143 				mnt_group_start,
144 				&mnt->mnt_group_id);
145 	if (!res)
146 		mnt_group_start = mnt->mnt_group_id + 1;
147 
148 	return res;
149 }
150 
151 /*
152  * Release a peer group ID
153  */
154 void mnt_release_group_id(struct mount *mnt)
155 {
156 	int id = mnt->mnt_group_id;
157 	ida_remove(&mnt_group_ida, id);
158 	if (mnt_group_start > id)
159 		mnt_group_start = id;
160 	mnt->mnt_group_id = 0;
161 }
162 
163 /*
164  * vfsmount lock must be held for read
165  */
166 static inline void mnt_add_count(struct mount *mnt, int n)
167 {
168 #ifdef CONFIG_SMP
169 	this_cpu_add(mnt->mnt_pcp->mnt_count, n);
170 #else
171 	preempt_disable();
172 	mnt->mnt_count += n;
173 	preempt_enable();
174 #endif
175 }
176 
177 /*
178  * vfsmount lock must be held for write
179  */
180 unsigned int mnt_get_count(struct mount *mnt)
181 {
182 #ifdef CONFIG_SMP
183 	unsigned int count = 0;
184 	int cpu;
185 
186 	for_each_possible_cpu(cpu) {
187 		count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
188 	}
189 
190 	return count;
191 #else
192 	return mnt->mnt_count;
193 #endif
194 }
195 
196 static void drop_mountpoint(struct fs_pin *p)
197 {
198 	struct mount *m = container_of(p, struct mount, mnt_umount);
199 	dput(m->mnt_ex_mountpoint);
200 	pin_remove(p);
201 	mntput(&m->mnt);
202 }
203 
204 static struct mount *alloc_vfsmnt(const char *name)
205 {
206 	struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
207 	if (mnt) {
208 		int err;
209 
210 		err = mnt_alloc_id(mnt);
211 		if (err)
212 			goto out_free_cache;
213 
214 		if (name) {
215 			mnt->mnt_devname = kstrdup_const(name, GFP_KERNEL);
216 			if (!mnt->mnt_devname)
217 				goto out_free_id;
218 		}
219 
220 #ifdef CONFIG_SMP
221 		mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
222 		if (!mnt->mnt_pcp)
223 			goto out_free_devname;
224 
225 		this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
226 #else
227 		mnt->mnt_count = 1;
228 		mnt->mnt_writers = 0;
229 #endif
230 
231 		INIT_HLIST_NODE(&mnt->mnt_hash);
232 		INIT_LIST_HEAD(&mnt->mnt_child);
233 		INIT_LIST_HEAD(&mnt->mnt_mounts);
234 		INIT_LIST_HEAD(&mnt->mnt_list);
235 		INIT_LIST_HEAD(&mnt->mnt_expire);
236 		INIT_LIST_HEAD(&mnt->mnt_share);
237 		INIT_LIST_HEAD(&mnt->mnt_slave_list);
238 		INIT_LIST_HEAD(&mnt->mnt_slave);
239 		INIT_HLIST_NODE(&mnt->mnt_mp_list);
240 #ifdef CONFIG_FSNOTIFY
241 		INIT_HLIST_HEAD(&mnt->mnt_fsnotify_marks);
242 #endif
243 		init_fs_pin(&mnt->mnt_umount, drop_mountpoint);
244 	}
245 	return mnt;
246 
247 #ifdef CONFIG_SMP
248 out_free_devname:
249 	kfree_const(mnt->mnt_devname);
250 #endif
251 out_free_id:
252 	mnt_free_id(mnt);
253 out_free_cache:
254 	kmem_cache_free(mnt_cache, mnt);
255 	return NULL;
256 }
257 
258 /*
259  * Most r/o checks on a fs are for operations that take
260  * discrete amounts of time, like a write() or unlink().
261  * We must keep track of when those operations start
262  * (for permission checks) and when they end, so that
263  * we can determine when writes are able to occur to
264  * a filesystem.
265  */
266 /*
267  * __mnt_is_readonly: check whether a mount is read-only
268  * @mnt: the mount to check for its write status
269  *
270  * This shouldn't be used directly ouside of the VFS.
271  * It does not guarantee that the filesystem will stay
272  * r/w, just that it is right *now*.  This can not and
273  * should not be used in place of IS_RDONLY(inode).
274  * mnt_want/drop_write() will _keep_ the filesystem
275  * r/w.
276  */
277 int __mnt_is_readonly(struct vfsmount *mnt)
278 {
279 	if (mnt->mnt_flags & MNT_READONLY)
280 		return 1;
281 	if (mnt->mnt_sb->s_flags & MS_RDONLY)
282 		return 1;
283 	return 0;
284 }
285 EXPORT_SYMBOL_GPL(__mnt_is_readonly);
286 
287 static inline void mnt_inc_writers(struct mount *mnt)
288 {
289 #ifdef CONFIG_SMP
290 	this_cpu_inc(mnt->mnt_pcp->mnt_writers);
291 #else
292 	mnt->mnt_writers++;
293 #endif
294 }
295 
296 static inline void mnt_dec_writers(struct mount *mnt)
297 {
298 #ifdef CONFIG_SMP
299 	this_cpu_dec(mnt->mnt_pcp->mnt_writers);
300 #else
301 	mnt->mnt_writers--;
302 #endif
303 }
304 
305 static unsigned int mnt_get_writers(struct mount *mnt)
306 {
307 #ifdef CONFIG_SMP
308 	unsigned int count = 0;
309 	int cpu;
310 
311 	for_each_possible_cpu(cpu) {
312 		count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
313 	}
314 
315 	return count;
316 #else
317 	return mnt->mnt_writers;
318 #endif
319 }
320 
321 static int mnt_is_readonly(struct vfsmount *mnt)
322 {
323 	if (mnt->mnt_sb->s_readonly_remount)
324 		return 1;
325 	/* Order wrt setting s_flags/s_readonly_remount in do_remount() */
326 	smp_rmb();
327 	return __mnt_is_readonly(mnt);
328 }
329 
330 /*
331  * Most r/o & frozen checks on a fs are for operations that take discrete
332  * amounts of time, like a write() or unlink().  We must keep track of when
333  * those operations start (for permission checks) and when they end, so that we
334  * can determine when writes are able to occur to a filesystem.
335  */
336 /**
337  * __mnt_want_write - get write access to a mount without freeze protection
338  * @m: the mount on which to take a write
339  *
340  * This tells the low-level filesystem that a write is about to be performed to
341  * it, and makes sure that writes are allowed (mnt it read-write) before
342  * returning success. This operation does not protect against filesystem being
343  * frozen. When the write operation is finished, __mnt_drop_write() must be
344  * called. This is effectively a refcount.
345  */
346 int __mnt_want_write(struct vfsmount *m)
347 {
348 	struct mount *mnt = real_mount(m);
349 	int ret = 0;
350 
351 	preempt_disable();
352 	mnt_inc_writers(mnt);
353 	/*
354 	 * The store to mnt_inc_writers must be visible before we pass
355 	 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
356 	 * incremented count after it has set MNT_WRITE_HOLD.
357 	 */
358 	smp_mb();
359 	while (ACCESS_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD)
360 		cpu_relax();
361 	/*
362 	 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
363 	 * be set to match its requirements. So we must not load that until
364 	 * MNT_WRITE_HOLD is cleared.
365 	 */
366 	smp_rmb();
367 	if (mnt_is_readonly(m)) {
368 		mnt_dec_writers(mnt);
369 		ret = -EROFS;
370 	}
371 	preempt_enable();
372 
373 	return ret;
374 }
375 
376 /**
377  * mnt_want_write - get write access to a mount
378  * @m: the mount on which to take a write
379  *
380  * This tells the low-level filesystem that a write is about to be performed to
381  * it, and makes sure that writes are allowed (mount is read-write, filesystem
382  * is not frozen) before returning success.  When the write operation is
383  * finished, mnt_drop_write() must be called.  This is effectively a refcount.
384  */
385 int mnt_want_write(struct vfsmount *m)
386 {
387 	int ret;
388 
389 	sb_start_write(m->mnt_sb);
390 	ret = __mnt_want_write(m);
391 	if (ret)
392 		sb_end_write(m->mnt_sb);
393 	return ret;
394 }
395 EXPORT_SYMBOL_GPL(mnt_want_write);
396 
397 /**
398  * mnt_clone_write - get write access to a mount
399  * @mnt: the mount on which to take a write
400  *
401  * This is effectively like mnt_want_write, except
402  * it must only be used to take an extra write reference
403  * on a mountpoint that we already know has a write reference
404  * on it. This allows some optimisation.
405  *
406  * After finished, mnt_drop_write must be called as usual to
407  * drop the reference.
408  */
409 int mnt_clone_write(struct vfsmount *mnt)
410 {
411 	/* superblock may be r/o */
412 	if (__mnt_is_readonly(mnt))
413 		return -EROFS;
414 	preempt_disable();
415 	mnt_inc_writers(real_mount(mnt));
416 	preempt_enable();
417 	return 0;
418 }
419 EXPORT_SYMBOL_GPL(mnt_clone_write);
420 
421 /**
422  * __mnt_want_write_file - get write access to a file's mount
423  * @file: the file who's mount on which to take a write
424  *
425  * This is like __mnt_want_write, but it takes a file and can
426  * do some optimisations if the file is open for write already
427  */
428 int __mnt_want_write_file(struct file *file)
429 {
430 	if (!(file->f_mode & FMODE_WRITER))
431 		return __mnt_want_write(file->f_path.mnt);
432 	else
433 		return mnt_clone_write(file->f_path.mnt);
434 }
435 
436 /**
437  * mnt_want_write_file - get write access to a file's mount
438  * @file: the file who's mount on which to take a write
439  *
440  * This is like mnt_want_write, but it takes a file and can
441  * do some optimisations if the file is open for write already
442  */
443 int mnt_want_write_file(struct file *file)
444 {
445 	int ret;
446 
447 	sb_start_write(file->f_path.mnt->mnt_sb);
448 	ret = __mnt_want_write_file(file);
449 	if (ret)
450 		sb_end_write(file->f_path.mnt->mnt_sb);
451 	return ret;
452 }
453 EXPORT_SYMBOL_GPL(mnt_want_write_file);
454 
455 /**
456  * __mnt_drop_write - give up write access to a mount
457  * @mnt: the mount on which to give up write access
458  *
459  * Tells the low-level filesystem that we are done
460  * performing writes to it.  Must be matched with
461  * __mnt_want_write() call above.
462  */
463 void __mnt_drop_write(struct vfsmount *mnt)
464 {
465 	preempt_disable();
466 	mnt_dec_writers(real_mount(mnt));
467 	preempt_enable();
468 }
469 
470 /**
471  * mnt_drop_write - give up write access to a mount
472  * @mnt: the mount on which to give up write access
473  *
474  * Tells the low-level filesystem that we are done performing writes to it and
475  * also allows filesystem to be frozen again.  Must be matched with
476  * mnt_want_write() call above.
477  */
478 void mnt_drop_write(struct vfsmount *mnt)
479 {
480 	__mnt_drop_write(mnt);
481 	sb_end_write(mnt->mnt_sb);
482 }
483 EXPORT_SYMBOL_GPL(mnt_drop_write);
484 
485 void __mnt_drop_write_file(struct file *file)
486 {
487 	__mnt_drop_write(file->f_path.mnt);
488 }
489 
490 void mnt_drop_write_file(struct file *file)
491 {
492 	mnt_drop_write(file->f_path.mnt);
493 }
494 EXPORT_SYMBOL(mnt_drop_write_file);
495 
496 static int mnt_make_readonly(struct mount *mnt)
497 {
498 	int ret = 0;
499 
500 	lock_mount_hash();
501 	mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
502 	/*
503 	 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
504 	 * should be visible before we do.
505 	 */
506 	smp_mb();
507 
508 	/*
509 	 * With writers on hold, if this value is zero, then there are
510 	 * definitely no active writers (although held writers may subsequently
511 	 * increment the count, they'll have to wait, and decrement it after
512 	 * seeing MNT_READONLY).
513 	 *
514 	 * It is OK to have counter incremented on one CPU and decremented on
515 	 * another: the sum will add up correctly. The danger would be when we
516 	 * sum up each counter, if we read a counter before it is incremented,
517 	 * but then read another CPU's count which it has been subsequently
518 	 * decremented from -- we would see more decrements than we should.
519 	 * MNT_WRITE_HOLD protects against this scenario, because
520 	 * mnt_want_write first increments count, then smp_mb, then spins on
521 	 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
522 	 * we're counting up here.
523 	 */
524 	if (mnt_get_writers(mnt) > 0)
525 		ret = -EBUSY;
526 	else
527 		mnt->mnt.mnt_flags |= MNT_READONLY;
528 	/*
529 	 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
530 	 * that become unheld will see MNT_READONLY.
531 	 */
532 	smp_wmb();
533 	mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
534 	unlock_mount_hash();
535 	return ret;
536 }
537 
538 static void __mnt_unmake_readonly(struct mount *mnt)
539 {
540 	lock_mount_hash();
541 	mnt->mnt.mnt_flags &= ~MNT_READONLY;
542 	unlock_mount_hash();
543 }
544 
545 int sb_prepare_remount_readonly(struct super_block *sb)
546 {
547 	struct mount *mnt;
548 	int err = 0;
549 
550 	/* Racy optimization.  Recheck the counter under MNT_WRITE_HOLD */
551 	if (atomic_long_read(&sb->s_remove_count))
552 		return -EBUSY;
553 
554 	lock_mount_hash();
555 	list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
556 		if (!(mnt->mnt.mnt_flags & MNT_READONLY)) {
557 			mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
558 			smp_mb();
559 			if (mnt_get_writers(mnt) > 0) {
560 				err = -EBUSY;
561 				break;
562 			}
563 		}
564 	}
565 	if (!err && atomic_long_read(&sb->s_remove_count))
566 		err = -EBUSY;
567 
568 	if (!err) {
569 		sb->s_readonly_remount = 1;
570 		smp_wmb();
571 	}
572 	list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
573 		if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
574 			mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
575 	}
576 	unlock_mount_hash();
577 
578 	return err;
579 }
580 
581 static void free_vfsmnt(struct mount *mnt)
582 {
583 	kfree_const(mnt->mnt_devname);
584 #ifdef CONFIG_SMP
585 	free_percpu(mnt->mnt_pcp);
586 #endif
587 	kmem_cache_free(mnt_cache, mnt);
588 }
589 
590 static void delayed_free_vfsmnt(struct rcu_head *head)
591 {
592 	free_vfsmnt(container_of(head, struct mount, mnt_rcu));
593 }
594 
595 /* call under rcu_read_lock */
596 int __legitimize_mnt(struct vfsmount *bastard, unsigned seq)
597 {
598 	struct mount *mnt;
599 	if (read_seqretry(&mount_lock, seq))
600 		return 1;
601 	if (bastard == NULL)
602 		return 0;
603 	mnt = real_mount(bastard);
604 	mnt_add_count(mnt, 1);
605 	if (likely(!read_seqretry(&mount_lock, seq)))
606 		return 0;
607 	if (bastard->mnt_flags & MNT_SYNC_UMOUNT) {
608 		mnt_add_count(mnt, -1);
609 		return 1;
610 	}
611 	return -1;
612 }
613 
614 /* call under rcu_read_lock */
615 bool legitimize_mnt(struct vfsmount *bastard, unsigned seq)
616 {
617 	int res = __legitimize_mnt(bastard, seq);
618 	if (likely(!res))
619 		return true;
620 	if (unlikely(res < 0)) {
621 		rcu_read_unlock();
622 		mntput(bastard);
623 		rcu_read_lock();
624 	}
625 	return false;
626 }
627 
628 /*
629  * find the first mount at @dentry on vfsmount @mnt.
630  * call under rcu_read_lock()
631  */
632 struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry)
633 {
634 	struct hlist_head *head = m_hash(mnt, dentry);
635 	struct mount *p;
636 
637 	hlist_for_each_entry_rcu(p, head, mnt_hash)
638 		if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry)
639 			return p;
640 	return NULL;
641 }
642 
643 /*
644  * find the last mount at @dentry on vfsmount @mnt.
645  * mount_lock must be held.
646  */
647 struct mount *__lookup_mnt_last(struct vfsmount *mnt, struct dentry *dentry)
648 {
649 	struct mount *p, *res = NULL;
650 	p = __lookup_mnt(mnt, dentry);
651 	if (!p)
652 		goto out;
653 	if (!(p->mnt.mnt_flags & MNT_UMOUNT))
654 		res = p;
655 	hlist_for_each_entry_continue(p, mnt_hash) {
656 		if (&p->mnt_parent->mnt != mnt || p->mnt_mountpoint != dentry)
657 			break;
658 		if (!(p->mnt.mnt_flags & MNT_UMOUNT))
659 			res = p;
660 	}
661 out:
662 	return res;
663 }
664 
665 /*
666  * lookup_mnt - Return the first child mount mounted at path
667  *
668  * "First" means first mounted chronologically.  If you create the
669  * following mounts:
670  *
671  * mount /dev/sda1 /mnt
672  * mount /dev/sda2 /mnt
673  * mount /dev/sda3 /mnt
674  *
675  * Then lookup_mnt() on the base /mnt dentry in the root mount will
676  * return successively the root dentry and vfsmount of /dev/sda1, then
677  * /dev/sda2, then /dev/sda3, then NULL.
678  *
679  * lookup_mnt takes a reference to the found vfsmount.
680  */
681 struct vfsmount *lookup_mnt(struct path *path)
682 {
683 	struct mount *child_mnt;
684 	struct vfsmount *m;
685 	unsigned seq;
686 
687 	rcu_read_lock();
688 	do {
689 		seq = read_seqbegin(&mount_lock);
690 		child_mnt = __lookup_mnt(path->mnt, path->dentry);
691 		m = child_mnt ? &child_mnt->mnt : NULL;
692 	} while (!legitimize_mnt(m, seq));
693 	rcu_read_unlock();
694 	return m;
695 }
696 
697 /*
698  * __is_local_mountpoint - Test to see if dentry is a mountpoint in the
699  *                         current mount namespace.
700  *
701  * The common case is dentries are not mountpoints at all and that
702  * test is handled inline.  For the slow case when we are actually
703  * dealing with a mountpoint of some kind, walk through all of the
704  * mounts in the current mount namespace and test to see if the dentry
705  * is a mountpoint.
706  *
707  * The mount_hashtable is not usable in the context because we
708  * need to identify all mounts that may be in the current mount
709  * namespace not just a mount that happens to have some specified
710  * parent mount.
711  */
712 bool __is_local_mountpoint(struct dentry *dentry)
713 {
714 	struct mnt_namespace *ns = current->nsproxy->mnt_ns;
715 	struct mount *mnt;
716 	bool is_covered = false;
717 
718 	if (!d_mountpoint(dentry))
719 		goto out;
720 
721 	down_read(&namespace_sem);
722 	list_for_each_entry(mnt, &ns->list, mnt_list) {
723 		is_covered = (mnt->mnt_mountpoint == dentry);
724 		if (is_covered)
725 			break;
726 	}
727 	up_read(&namespace_sem);
728 out:
729 	return is_covered;
730 }
731 
732 static struct mountpoint *lookup_mountpoint(struct dentry *dentry)
733 {
734 	struct hlist_head *chain = mp_hash(dentry);
735 	struct mountpoint *mp;
736 
737 	hlist_for_each_entry(mp, chain, m_hash) {
738 		if (mp->m_dentry == dentry) {
739 			/* might be worth a WARN_ON() */
740 			if (d_unlinked(dentry))
741 				return ERR_PTR(-ENOENT);
742 			mp->m_count++;
743 			return mp;
744 		}
745 	}
746 	return NULL;
747 }
748 
749 static struct mountpoint *new_mountpoint(struct dentry *dentry)
750 {
751 	struct hlist_head *chain = mp_hash(dentry);
752 	struct mountpoint *mp;
753 	int ret;
754 
755 	mp = kmalloc(sizeof(struct mountpoint), GFP_KERNEL);
756 	if (!mp)
757 		return ERR_PTR(-ENOMEM);
758 
759 	ret = d_set_mounted(dentry);
760 	if (ret) {
761 		kfree(mp);
762 		return ERR_PTR(ret);
763 	}
764 
765 	mp->m_dentry = dentry;
766 	mp->m_count = 1;
767 	hlist_add_head(&mp->m_hash, chain);
768 	INIT_HLIST_HEAD(&mp->m_list);
769 	return mp;
770 }
771 
772 static void put_mountpoint(struct mountpoint *mp)
773 {
774 	if (!--mp->m_count) {
775 		struct dentry *dentry = mp->m_dentry;
776 		BUG_ON(!hlist_empty(&mp->m_list));
777 		spin_lock(&dentry->d_lock);
778 		dentry->d_flags &= ~DCACHE_MOUNTED;
779 		spin_unlock(&dentry->d_lock);
780 		hlist_del(&mp->m_hash);
781 		kfree(mp);
782 	}
783 }
784 
785 static inline int check_mnt(struct mount *mnt)
786 {
787 	return mnt->mnt_ns == current->nsproxy->mnt_ns;
788 }
789 
790 /*
791  * vfsmount lock must be held for write
792  */
793 static void touch_mnt_namespace(struct mnt_namespace *ns)
794 {
795 	if (ns) {
796 		ns->event = ++event;
797 		wake_up_interruptible(&ns->poll);
798 	}
799 }
800 
801 /*
802  * vfsmount lock must be held for write
803  */
804 static void __touch_mnt_namespace(struct mnt_namespace *ns)
805 {
806 	if (ns && ns->event != event) {
807 		ns->event = event;
808 		wake_up_interruptible(&ns->poll);
809 	}
810 }
811 
812 /*
813  * vfsmount lock must be held for write
814  */
815 static void unhash_mnt(struct mount *mnt)
816 {
817 	mnt->mnt_parent = mnt;
818 	mnt->mnt_mountpoint = mnt->mnt.mnt_root;
819 	list_del_init(&mnt->mnt_child);
820 	hlist_del_init_rcu(&mnt->mnt_hash);
821 	hlist_del_init(&mnt->mnt_mp_list);
822 	put_mountpoint(mnt->mnt_mp);
823 	mnt->mnt_mp = NULL;
824 }
825 
826 /*
827  * vfsmount lock must be held for write
828  */
829 static void detach_mnt(struct mount *mnt, struct path *old_path)
830 {
831 	old_path->dentry = mnt->mnt_mountpoint;
832 	old_path->mnt = &mnt->mnt_parent->mnt;
833 	unhash_mnt(mnt);
834 }
835 
836 /*
837  * vfsmount lock must be held for write
838  */
839 static void umount_mnt(struct mount *mnt)
840 {
841 	/* old mountpoint will be dropped when we can do that */
842 	mnt->mnt_ex_mountpoint = mnt->mnt_mountpoint;
843 	unhash_mnt(mnt);
844 }
845 
846 /*
847  * vfsmount lock must be held for write
848  */
849 void mnt_set_mountpoint(struct mount *mnt,
850 			struct mountpoint *mp,
851 			struct mount *child_mnt)
852 {
853 	mp->m_count++;
854 	mnt_add_count(mnt, 1);	/* essentially, that's mntget */
855 	child_mnt->mnt_mountpoint = dget(mp->m_dentry);
856 	child_mnt->mnt_parent = mnt;
857 	child_mnt->mnt_mp = mp;
858 	hlist_add_head(&child_mnt->mnt_mp_list, &mp->m_list);
859 }
860 
861 /*
862  * vfsmount lock must be held for write
863  */
864 static void attach_mnt(struct mount *mnt,
865 			struct mount *parent,
866 			struct mountpoint *mp)
867 {
868 	mnt_set_mountpoint(parent, mp, mnt);
869 	hlist_add_head_rcu(&mnt->mnt_hash, m_hash(&parent->mnt, mp->m_dentry));
870 	list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
871 }
872 
873 static void attach_shadowed(struct mount *mnt,
874 			struct mount *parent,
875 			struct mount *shadows)
876 {
877 	if (shadows) {
878 		hlist_add_behind_rcu(&mnt->mnt_hash, &shadows->mnt_hash);
879 		list_add(&mnt->mnt_child, &shadows->mnt_child);
880 	} else {
881 		hlist_add_head_rcu(&mnt->mnt_hash,
882 				m_hash(&parent->mnt, mnt->mnt_mountpoint));
883 		list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
884 	}
885 }
886 
887 /*
888  * vfsmount lock must be held for write
889  */
890 static void commit_tree(struct mount *mnt, struct mount *shadows)
891 {
892 	struct mount *parent = mnt->mnt_parent;
893 	struct mount *m;
894 	LIST_HEAD(head);
895 	struct mnt_namespace *n = parent->mnt_ns;
896 
897 	BUG_ON(parent == mnt);
898 
899 	list_add_tail(&head, &mnt->mnt_list);
900 	list_for_each_entry(m, &head, mnt_list)
901 		m->mnt_ns = n;
902 
903 	list_splice(&head, n->list.prev);
904 
905 	n->mounts += n->pending_mounts;
906 	n->pending_mounts = 0;
907 
908 	attach_shadowed(mnt, parent, shadows);
909 	touch_mnt_namespace(n);
910 }
911 
912 static struct mount *next_mnt(struct mount *p, struct mount *root)
913 {
914 	struct list_head *next = p->mnt_mounts.next;
915 	if (next == &p->mnt_mounts) {
916 		while (1) {
917 			if (p == root)
918 				return NULL;
919 			next = p->mnt_child.next;
920 			if (next != &p->mnt_parent->mnt_mounts)
921 				break;
922 			p = p->mnt_parent;
923 		}
924 	}
925 	return list_entry(next, struct mount, mnt_child);
926 }
927 
928 static struct mount *skip_mnt_tree(struct mount *p)
929 {
930 	struct list_head *prev = p->mnt_mounts.prev;
931 	while (prev != &p->mnt_mounts) {
932 		p = list_entry(prev, struct mount, mnt_child);
933 		prev = p->mnt_mounts.prev;
934 	}
935 	return p;
936 }
937 
938 struct vfsmount *
939 vfs_kern_mount(struct file_system_type *type, int flags, const char *name, void *data)
940 {
941 	struct mount *mnt;
942 	struct dentry *root;
943 
944 	if (!type)
945 		return ERR_PTR(-ENODEV);
946 
947 	mnt = alloc_vfsmnt(name);
948 	if (!mnt)
949 		return ERR_PTR(-ENOMEM);
950 
951 	if (flags & MS_KERNMOUNT)
952 		mnt->mnt.mnt_flags = MNT_INTERNAL;
953 
954 	root = mount_fs(type, flags, name, data);
955 	if (IS_ERR(root)) {
956 		mnt_free_id(mnt);
957 		free_vfsmnt(mnt);
958 		return ERR_CAST(root);
959 	}
960 
961 	mnt->mnt.mnt_root = root;
962 	mnt->mnt.mnt_sb = root->d_sb;
963 	mnt->mnt_mountpoint = mnt->mnt.mnt_root;
964 	mnt->mnt_parent = mnt;
965 	lock_mount_hash();
966 	list_add_tail(&mnt->mnt_instance, &root->d_sb->s_mounts);
967 	unlock_mount_hash();
968 	return &mnt->mnt;
969 }
970 EXPORT_SYMBOL_GPL(vfs_kern_mount);
971 
972 static struct mount *clone_mnt(struct mount *old, struct dentry *root,
973 					int flag)
974 {
975 	struct super_block *sb = old->mnt.mnt_sb;
976 	struct mount *mnt;
977 	int err;
978 
979 	mnt = alloc_vfsmnt(old->mnt_devname);
980 	if (!mnt)
981 		return ERR_PTR(-ENOMEM);
982 
983 	if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE))
984 		mnt->mnt_group_id = 0; /* not a peer of original */
985 	else
986 		mnt->mnt_group_id = old->mnt_group_id;
987 
988 	if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
989 		err = mnt_alloc_group_id(mnt);
990 		if (err)
991 			goto out_free;
992 	}
993 
994 	mnt->mnt.mnt_flags = old->mnt.mnt_flags & ~(MNT_WRITE_HOLD|MNT_MARKED);
995 	/* Don't allow unprivileged users to change mount flags */
996 	if (flag & CL_UNPRIVILEGED) {
997 		mnt->mnt.mnt_flags |= MNT_LOCK_ATIME;
998 
999 		if (mnt->mnt.mnt_flags & MNT_READONLY)
1000 			mnt->mnt.mnt_flags |= MNT_LOCK_READONLY;
1001 
1002 		if (mnt->mnt.mnt_flags & MNT_NODEV)
1003 			mnt->mnt.mnt_flags |= MNT_LOCK_NODEV;
1004 
1005 		if (mnt->mnt.mnt_flags & MNT_NOSUID)
1006 			mnt->mnt.mnt_flags |= MNT_LOCK_NOSUID;
1007 
1008 		if (mnt->mnt.mnt_flags & MNT_NOEXEC)
1009 			mnt->mnt.mnt_flags |= MNT_LOCK_NOEXEC;
1010 	}
1011 
1012 	/* Don't allow unprivileged users to reveal what is under a mount */
1013 	if ((flag & CL_UNPRIVILEGED) &&
1014 	    (!(flag & CL_EXPIRE) || list_empty(&old->mnt_expire)))
1015 		mnt->mnt.mnt_flags |= MNT_LOCKED;
1016 
1017 	atomic_inc(&sb->s_active);
1018 	mnt->mnt.mnt_sb = sb;
1019 	mnt->mnt.mnt_root = dget(root);
1020 	mnt->mnt_mountpoint = mnt->mnt.mnt_root;
1021 	mnt->mnt_parent = mnt;
1022 	lock_mount_hash();
1023 	list_add_tail(&mnt->mnt_instance, &sb->s_mounts);
1024 	unlock_mount_hash();
1025 
1026 	if ((flag & CL_SLAVE) ||
1027 	    ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) {
1028 		list_add(&mnt->mnt_slave, &old->mnt_slave_list);
1029 		mnt->mnt_master = old;
1030 		CLEAR_MNT_SHARED(mnt);
1031 	} else if (!(flag & CL_PRIVATE)) {
1032 		if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
1033 			list_add(&mnt->mnt_share, &old->mnt_share);
1034 		if (IS_MNT_SLAVE(old))
1035 			list_add(&mnt->mnt_slave, &old->mnt_slave);
1036 		mnt->mnt_master = old->mnt_master;
1037 	}
1038 	if (flag & CL_MAKE_SHARED)
1039 		set_mnt_shared(mnt);
1040 
1041 	/* stick the duplicate mount on the same expiry list
1042 	 * as the original if that was on one */
1043 	if (flag & CL_EXPIRE) {
1044 		if (!list_empty(&old->mnt_expire))
1045 			list_add(&mnt->mnt_expire, &old->mnt_expire);
1046 	}
1047 
1048 	return mnt;
1049 
1050  out_free:
1051 	mnt_free_id(mnt);
1052 	free_vfsmnt(mnt);
1053 	return ERR_PTR(err);
1054 }
1055 
1056 static void cleanup_mnt(struct mount *mnt)
1057 {
1058 	/*
1059 	 * This probably indicates that somebody messed
1060 	 * up a mnt_want/drop_write() pair.  If this
1061 	 * happens, the filesystem was probably unable
1062 	 * to make r/w->r/o transitions.
1063 	 */
1064 	/*
1065 	 * The locking used to deal with mnt_count decrement provides barriers,
1066 	 * so mnt_get_writers() below is safe.
1067 	 */
1068 	WARN_ON(mnt_get_writers(mnt));
1069 	if (unlikely(mnt->mnt_pins.first))
1070 		mnt_pin_kill(mnt);
1071 	fsnotify_vfsmount_delete(&mnt->mnt);
1072 	dput(mnt->mnt.mnt_root);
1073 	deactivate_super(mnt->mnt.mnt_sb);
1074 	mnt_free_id(mnt);
1075 	call_rcu(&mnt->mnt_rcu, delayed_free_vfsmnt);
1076 }
1077 
1078 static void __cleanup_mnt(struct rcu_head *head)
1079 {
1080 	cleanup_mnt(container_of(head, struct mount, mnt_rcu));
1081 }
1082 
1083 static LLIST_HEAD(delayed_mntput_list);
1084 static void delayed_mntput(struct work_struct *unused)
1085 {
1086 	struct llist_node *node = llist_del_all(&delayed_mntput_list);
1087 	struct llist_node *next;
1088 
1089 	for (; node; node = next) {
1090 		next = llist_next(node);
1091 		cleanup_mnt(llist_entry(node, struct mount, mnt_llist));
1092 	}
1093 }
1094 static DECLARE_DELAYED_WORK(delayed_mntput_work, delayed_mntput);
1095 
1096 static void mntput_no_expire(struct mount *mnt)
1097 {
1098 	rcu_read_lock();
1099 	mnt_add_count(mnt, -1);
1100 	if (likely(mnt->mnt_ns)) { /* shouldn't be the last one */
1101 		rcu_read_unlock();
1102 		return;
1103 	}
1104 	lock_mount_hash();
1105 	if (mnt_get_count(mnt)) {
1106 		rcu_read_unlock();
1107 		unlock_mount_hash();
1108 		return;
1109 	}
1110 	if (unlikely(mnt->mnt.mnt_flags & MNT_DOOMED)) {
1111 		rcu_read_unlock();
1112 		unlock_mount_hash();
1113 		return;
1114 	}
1115 	mnt->mnt.mnt_flags |= MNT_DOOMED;
1116 	rcu_read_unlock();
1117 
1118 	list_del(&mnt->mnt_instance);
1119 
1120 	if (unlikely(!list_empty(&mnt->mnt_mounts))) {
1121 		struct mount *p, *tmp;
1122 		list_for_each_entry_safe(p, tmp, &mnt->mnt_mounts,  mnt_child) {
1123 			umount_mnt(p);
1124 		}
1125 	}
1126 	unlock_mount_hash();
1127 
1128 	if (likely(!(mnt->mnt.mnt_flags & MNT_INTERNAL))) {
1129 		struct task_struct *task = current;
1130 		if (likely(!(task->flags & PF_KTHREAD))) {
1131 			init_task_work(&mnt->mnt_rcu, __cleanup_mnt);
1132 			if (!task_work_add(task, &mnt->mnt_rcu, true))
1133 				return;
1134 		}
1135 		if (llist_add(&mnt->mnt_llist, &delayed_mntput_list))
1136 			schedule_delayed_work(&delayed_mntput_work, 1);
1137 		return;
1138 	}
1139 	cleanup_mnt(mnt);
1140 }
1141 
1142 void mntput(struct vfsmount *mnt)
1143 {
1144 	if (mnt) {
1145 		struct mount *m = real_mount(mnt);
1146 		/* avoid cacheline pingpong, hope gcc doesn't get "smart" */
1147 		if (unlikely(m->mnt_expiry_mark))
1148 			m->mnt_expiry_mark = 0;
1149 		mntput_no_expire(m);
1150 	}
1151 }
1152 EXPORT_SYMBOL(mntput);
1153 
1154 struct vfsmount *mntget(struct vfsmount *mnt)
1155 {
1156 	if (mnt)
1157 		mnt_add_count(real_mount(mnt), 1);
1158 	return mnt;
1159 }
1160 EXPORT_SYMBOL(mntget);
1161 
1162 struct vfsmount *mnt_clone_internal(struct path *path)
1163 {
1164 	struct mount *p;
1165 	p = clone_mnt(real_mount(path->mnt), path->dentry, CL_PRIVATE);
1166 	if (IS_ERR(p))
1167 		return ERR_CAST(p);
1168 	p->mnt.mnt_flags |= MNT_INTERNAL;
1169 	return &p->mnt;
1170 }
1171 
1172 static inline void mangle(struct seq_file *m, const char *s)
1173 {
1174 	seq_escape(m, s, " \t\n\\");
1175 }
1176 
1177 /*
1178  * Simple .show_options callback for filesystems which don't want to
1179  * implement more complex mount option showing.
1180  *
1181  * See also save_mount_options().
1182  */
1183 int generic_show_options(struct seq_file *m, struct dentry *root)
1184 {
1185 	const char *options;
1186 
1187 	rcu_read_lock();
1188 	options = rcu_dereference(root->d_sb->s_options);
1189 
1190 	if (options != NULL && options[0]) {
1191 		seq_putc(m, ',');
1192 		mangle(m, options);
1193 	}
1194 	rcu_read_unlock();
1195 
1196 	return 0;
1197 }
1198 EXPORT_SYMBOL(generic_show_options);
1199 
1200 /*
1201  * If filesystem uses generic_show_options(), this function should be
1202  * called from the fill_super() callback.
1203  *
1204  * The .remount_fs callback usually needs to be handled in a special
1205  * way, to make sure, that previous options are not overwritten if the
1206  * remount fails.
1207  *
1208  * Also note, that if the filesystem's .remount_fs function doesn't
1209  * reset all options to their default value, but changes only newly
1210  * given options, then the displayed options will not reflect reality
1211  * any more.
1212  */
1213 void save_mount_options(struct super_block *sb, char *options)
1214 {
1215 	BUG_ON(sb->s_options);
1216 	rcu_assign_pointer(sb->s_options, kstrdup(options, GFP_KERNEL));
1217 }
1218 EXPORT_SYMBOL(save_mount_options);
1219 
1220 void replace_mount_options(struct super_block *sb, char *options)
1221 {
1222 	char *old = sb->s_options;
1223 	rcu_assign_pointer(sb->s_options, options);
1224 	if (old) {
1225 		synchronize_rcu();
1226 		kfree(old);
1227 	}
1228 }
1229 EXPORT_SYMBOL(replace_mount_options);
1230 
1231 #ifdef CONFIG_PROC_FS
1232 /* iterator; we want it to have access to namespace_sem, thus here... */
1233 static void *m_start(struct seq_file *m, loff_t *pos)
1234 {
1235 	struct proc_mounts *p = m->private;
1236 
1237 	down_read(&namespace_sem);
1238 	if (p->cached_event == p->ns->event) {
1239 		void *v = p->cached_mount;
1240 		if (*pos == p->cached_index)
1241 			return v;
1242 		if (*pos == p->cached_index + 1) {
1243 			v = seq_list_next(v, &p->ns->list, &p->cached_index);
1244 			return p->cached_mount = v;
1245 		}
1246 	}
1247 
1248 	p->cached_event = p->ns->event;
1249 	p->cached_mount = seq_list_start(&p->ns->list, *pos);
1250 	p->cached_index = *pos;
1251 	return p->cached_mount;
1252 }
1253 
1254 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
1255 {
1256 	struct proc_mounts *p = m->private;
1257 
1258 	p->cached_mount = seq_list_next(v, &p->ns->list, pos);
1259 	p->cached_index = *pos;
1260 	return p->cached_mount;
1261 }
1262 
1263 static void m_stop(struct seq_file *m, void *v)
1264 {
1265 	up_read(&namespace_sem);
1266 }
1267 
1268 static int m_show(struct seq_file *m, void *v)
1269 {
1270 	struct proc_mounts *p = m->private;
1271 	struct mount *r = list_entry(v, struct mount, mnt_list);
1272 	return p->show(m, &r->mnt);
1273 }
1274 
1275 const struct seq_operations mounts_op = {
1276 	.start	= m_start,
1277 	.next	= m_next,
1278 	.stop	= m_stop,
1279 	.show	= m_show,
1280 };
1281 #endif  /* CONFIG_PROC_FS */
1282 
1283 /**
1284  * may_umount_tree - check if a mount tree is busy
1285  * @mnt: root of mount tree
1286  *
1287  * This is called to check if a tree of mounts has any
1288  * open files, pwds, chroots or sub mounts that are
1289  * busy.
1290  */
1291 int may_umount_tree(struct vfsmount *m)
1292 {
1293 	struct mount *mnt = real_mount(m);
1294 	int actual_refs = 0;
1295 	int minimum_refs = 0;
1296 	struct mount *p;
1297 	BUG_ON(!m);
1298 
1299 	/* write lock needed for mnt_get_count */
1300 	lock_mount_hash();
1301 	for (p = mnt; p; p = next_mnt(p, mnt)) {
1302 		actual_refs += mnt_get_count(p);
1303 		minimum_refs += 2;
1304 	}
1305 	unlock_mount_hash();
1306 
1307 	if (actual_refs > minimum_refs)
1308 		return 0;
1309 
1310 	return 1;
1311 }
1312 
1313 EXPORT_SYMBOL(may_umount_tree);
1314 
1315 /**
1316  * may_umount - check if a mount point is busy
1317  * @mnt: root of mount
1318  *
1319  * This is called to check if a mount point has any
1320  * open files, pwds, chroots or sub mounts. If the
1321  * mount has sub mounts this will return busy
1322  * regardless of whether the sub mounts are busy.
1323  *
1324  * Doesn't take quota and stuff into account. IOW, in some cases it will
1325  * give false negatives. The main reason why it's here is that we need
1326  * a non-destructive way to look for easily umountable filesystems.
1327  */
1328 int may_umount(struct vfsmount *mnt)
1329 {
1330 	int ret = 1;
1331 	down_read(&namespace_sem);
1332 	lock_mount_hash();
1333 	if (propagate_mount_busy(real_mount(mnt), 2))
1334 		ret = 0;
1335 	unlock_mount_hash();
1336 	up_read(&namespace_sem);
1337 	return ret;
1338 }
1339 
1340 EXPORT_SYMBOL(may_umount);
1341 
1342 static HLIST_HEAD(unmounted);	/* protected by namespace_sem */
1343 
1344 static void namespace_unlock(void)
1345 {
1346 	struct hlist_head head;
1347 
1348 	hlist_move_list(&unmounted, &head);
1349 
1350 	up_write(&namespace_sem);
1351 
1352 	if (likely(hlist_empty(&head)))
1353 		return;
1354 
1355 	synchronize_rcu();
1356 
1357 	group_pin_kill(&head);
1358 }
1359 
1360 static inline void namespace_lock(void)
1361 {
1362 	down_write(&namespace_sem);
1363 }
1364 
1365 enum umount_tree_flags {
1366 	UMOUNT_SYNC = 1,
1367 	UMOUNT_PROPAGATE = 2,
1368 	UMOUNT_CONNECTED = 4,
1369 };
1370 
1371 static bool disconnect_mount(struct mount *mnt, enum umount_tree_flags how)
1372 {
1373 	/* Leaving mounts connected is only valid for lazy umounts */
1374 	if (how & UMOUNT_SYNC)
1375 		return true;
1376 
1377 	/* A mount without a parent has nothing to be connected to */
1378 	if (!mnt_has_parent(mnt))
1379 		return true;
1380 
1381 	/* Because the reference counting rules change when mounts are
1382 	 * unmounted and connected, umounted mounts may not be
1383 	 * connected to mounted mounts.
1384 	 */
1385 	if (!(mnt->mnt_parent->mnt.mnt_flags & MNT_UMOUNT))
1386 		return true;
1387 
1388 	/* Has it been requested that the mount remain connected? */
1389 	if (how & UMOUNT_CONNECTED)
1390 		return false;
1391 
1392 	/* Is the mount locked such that it needs to remain connected? */
1393 	if (IS_MNT_LOCKED(mnt))
1394 		return false;
1395 
1396 	/* By default disconnect the mount */
1397 	return true;
1398 }
1399 
1400 /*
1401  * mount_lock must be held
1402  * namespace_sem must be held for write
1403  */
1404 static void umount_tree(struct mount *mnt, enum umount_tree_flags how)
1405 {
1406 	LIST_HEAD(tmp_list);
1407 	struct mount *p;
1408 
1409 	if (how & UMOUNT_PROPAGATE)
1410 		propagate_mount_unlock(mnt);
1411 
1412 	/* Gather the mounts to umount */
1413 	for (p = mnt; p; p = next_mnt(p, mnt)) {
1414 		p->mnt.mnt_flags |= MNT_UMOUNT;
1415 		list_move(&p->mnt_list, &tmp_list);
1416 	}
1417 
1418 	/* Hide the mounts from mnt_mounts */
1419 	list_for_each_entry(p, &tmp_list, mnt_list) {
1420 		list_del_init(&p->mnt_child);
1421 	}
1422 
1423 	/* Add propogated mounts to the tmp_list */
1424 	if (how & UMOUNT_PROPAGATE)
1425 		propagate_umount(&tmp_list);
1426 
1427 	while (!list_empty(&tmp_list)) {
1428 		struct mnt_namespace *ns;
1429 		bool disconnect;
1430 		p = list_first_entry(&tmp_list, struct mount, mnt_list);
1431 		list_del_init(&p->mnt_expire);
1432 		list_del_init(&p->mnt_list);
1433 		ns = p->mnt_ns;
1434 		if (ns) {
1435 			ns->mounts--;
1436 			__touch_mnt_namespace(ns);
1437 		}
1438 		p->mnt_ns = NULL;
1439 		if (how & UMOUNT_SYNC)
1440 			p->mnt.mnt_flags |= MNT_SYNC_UMOUNT;
1441 
1442 		disconnect = disconnect_mount(p, how);
1443 
1444 		pin_insert_group(&p->mnt_umount, &p->mnt_parent->mnt,
1445 				 disconnect ? &unmounted : NULL);
1446 		if (mnt_has_parent(p)) {
1447 			mnt_add_count(p->mnt_parent, -1);
1448 			if (!disconnect) {
1449 				/* Don't forget about p */
1450 				list_add_tail(&p->mnt_child, &p->mnt_parent->mnt_mounts);
1451 			} else {
1452 				umount_mnt(p);
1453 			}
1454 		}
1455 		change_mnt_propagation(p, MS_PRIVATE);
1456 	}
1457 }
1458 
1459 static void shrink_submounts(struct mount *mnt);
1460 
1461 static int do_umount(struct mount *mnt, int flags)
1462 {
1463 	struct super_block *sb = mnt->mnt.mnt_sb;
1464 	int retval;
1465 
1466 	retval = security_sb_umount(&mnt->mnt, flags);
1467 	if (retval)
1468 		return retval;
1469 
1470 	/*
1471 	 * Allow userspace to request a mountpoint be expired rather than
1472 	 * unmounting unconditionally. Unmount only happens if:
1473 	 *  (1) the mark is already set (the mark is cleared by mntput())
1474 	 *  (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1475 	 */
1476 	if (flags & MNT_EXPIRE) {
1477 		if (&mnt->mnt == current->fs->root.mnt ||
1478 		    flags & (MNT_FORCE | MNT_DETACH))
1479 			return -EINVAL;
1480 
1481 		/*
1482 		 * probably don't strictly need the lock here if we examined
1483 		 * all race cases, but it's a slowpath.
1484 		 */
1485 		lock_mount_hash();
1486 		if (mnt_get_count(mnt) != 2) {
1487 			unlock_mount_hash();
1488 			return -EBUSY;
1489 		}
1490 		unlock_mount_hash();
1491 
1492 		if (!xchg(&mnt->mnt_expiry_mark, 1))
1493 			return -EAGAIN;
1494 	}
1495 
1496 	/*
1497 	 * If we may have to abort operations to get out of this
1498 	 * mount, and they will themselves hold resources we must
1499 	 * allow the fs to do things. In the Unix tradition of
1500 	 * 'Gee thats tricky lets do it in userspace' the umount_begin
1501 	 * might fail to complete on the first run through as other tasks
1502 	 * must return, and the like. Thats for the mount program to worry
1503 	 * about for the moment.
1504 	 */
1505 
1506 	if (flags & MNT_FORCE && sb->s_op->umount_begin) {
1507 		sb->s_op->umount_begin(sb);
1508 	}
1509 
1510 	/*
1511 	 * No sense to grab the lock for this test, but test itself looks
1512 	 * somewhat bogus. Suggestions for better replacement?
1513 	 * Ho-hum... In principle, we might treat that as umount + switch
1514 	 * to rootfs. GC would eventually take care of the old vfsmount.
1515 	 * Actually it makes sense, especially if rootfs would contain a
1516 	 * /reboot - static binary that would close all descriptors and
1517 	 * call reboot(9). Then init(8) could umount root and exec /reboot.
1518 	 */
1519 	if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1520 		/*
1521 		 * Special case for "unmounting" root ...
1522 		 * we just try to remount it readonly.
1523 		 */
1524 		if (!capable(CAP_SYS_ADMIN))
1525 			return -EPERM;
1526 		down_write(&sb->s_umount);
1527 		if (!(sb->s_flags & MS_RDONLY))
1528 			retval = do_remount_sb(sb, MS_RDONLY, NULL, 0);
1529 		up_write(&sb->s_umount);
1530 		return retval;
1531 	}
1532 
1533 	namespace_lock();
1534 	lock_mount_hash();
1535 	event++;
1536 
1537 	if (flags & MNT_DETACH) {
1538 		if (!list_empty(&mnt->mnt_list))
1539 			umount_tree(mnt, UMOUNT_PROPAGATE);
1540 		retval = 0;
1541 	} else {
1542 		shrink_submounts(mnt);
1543 		retval = -EBUSY;
1544 		if (!propagate_mount_busy(mnt, 2)) {
1545 			if (!list_empty(&mnt->mnt_list))
1546 				umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
1547 			retval = 0;
1548 		}
1549 	}
1550 	unlock_mount_hash();
1551 	namespace_unlock();
1552 	return retval;
1553 }
1554 
1555 /*
1556  * __detach_mounts - lazily unmount all mounts on the specified dentry
1557  *
1558  * During unlink, rmdir, and d_drop it is possible to loose the path
1559  * to an existing mountpoint, and wind up leaking the mount.
1560  * detach_mounts allows lazily unmounting those mounts instead of
1561  * leaking them.
1562  *
1563  * The caller may hold dentry->d_inode->i_mutex.
1564  */
1565 void __detach_mounts(struct dentry *dentry)
1566 {
1567 	struct mountpoint *mp;
1568 	struct mount *mnt;
1569 
1570 	namespace_lock();
1571 	mp = lookup_mountpoint(dentry);
1572 	if (IS_ERR_OR_NULL(mp))
1573 		goto out_unlock;
1574 
1575 	lock_mount_hash();
1576 	event++;
1577 	while (!hlist_empty(&mp->m_list)) {
1578 		mnt = hlist_entry(mp->m_list.first, struct mount, mnt_mp_list);
1579 		if (mnt->mnt.mnt_flags & MNT_UMOUNT) {
1580 			hlist_add_head(&mnt->mnt_umount.s_list, &unmounted);
1581 			umount_mnt(mnt);
1582 		}
1583 		else umount_tree(mnt, UMOUNT_CONNECTED);
1584 	}
1585 	unlock_mount_hash();
1586 	put_mountpoint(mp);
1587 out_unlock:
1588 	namespace_unlock();
1589 }
1590 
1591 /*
1592  * Is the caller allowed to modify his namespace?
1593  */
1594 static inline bool may_mount(void)
1595 {
1596 	return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN);
1597 }
1598 
1599 static inline bool may_mandlock(void)
1600 {
1601 #ifndef	CONFIG_MANDATORY_FILE_LOCKING
1602 	return false;
1603 #endif
1604 	return capable(CAP_SYS_ADMIN);
1605 }
1606 
1607 /*
1608  * Now umount can handle mount points as well as block devices.
1609  * This is important for filesystems which use unnamed block devices.
1610  *
1611  * We now support a flag for forced unmount like the other 'big iron'
1612  * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
1613  */
1614 
1615 SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
1616 {
1617 	struct path path;
1618 	struct mount *mnt;
1619 	int retval;
1620 	int lookup_flags = 0;
1621 
1622 	if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
1623 		return -EINVAL;
1624 
1625 	if (!may_mount())
1626 		return -EPERM;
1627 
1628 	if (!(flags & UMOUNT_NOFOLLOW))
1629 		lookup_flags |= LOOKUP_FOLLOW;
1630 
1631 	retval = user_path_mountpoint_at(AT_FDCWD, name, lookup_flags, &path);
1632 	if (retval)
1633 		goto out;
1634 	mnt = real_mount(path.mnt);
1635 	retval = -EINVAL;
1636 	if (path.dentry != path.mnt->mnt_root)
1637 		goto dput_and_out;
1638 	if (!check_mnt(mnt))
1639 		goto dput_and_out;
1640 	if (mnt->mnt.mnt_flags & MNT_LOCKED)
1641 		goto dput_and_out;
1642 	retval = -EPERM;
1643 	if (flags & MNT_FORCE && !capable(CAP_SYS_ADMIN))
1644 		goto dput_and_out;
1645 
1646 	retval = do_umount(mnt, flags);
1647 dput_and_out:
1648 	/* we mustn't call path_put() as that would clear mnt_expiry_mark */
1649 	dput(path.dentry);
1650 	mntput_no_expire(mnt);
1651 out:
1652 	return retval;
1653 }
1654 
1655 #ifdef __ARCH_WANT_SYS_OLDUMOUNT
1656 
1657 /*
1658  *	The 2.0 compatible umount. No flags.
1659  */
1660 SYSCALL_DEFINE1(oldumount, char __user *, name)
1661 {
1662 	return sys_umount(name, 0);
1663 }
1664 
1665 #endif
1666 
1667 static bool is_mnt_ns_file(struct dentry *dentry)
1668 {
1669 	/* Is this a proxy for a mount namespace? */
1670 	return dentry->d_op == &ns_dentry_operations &&
1671 	       dentry->d_fsdata == &mntns_operations;
1672 }
1673 
1674 struct mnt_namespace *to_mnt_ns(struct ns_common *ns)
1675 {
1676 	return container_of(ns, struct mnt_namespace, ns);
1677 }
1678 
1679 static bool mnt_ns_loop(struct dentry *dentry)
1680 {
1681 	/* Could bind mounting the mount namespace inode cause a
1682 	 * mount namespace loop?
1683 	 */
1684 	struct mnt_namespace *mnt_ns;
1685 	if (!is_mnt_ns_file(dentry))
1686 		return false;
1687 
1688 	mnt_ns = to_mnt_ns(get_proc_ns(dentry->d_inode));
1689 	return current->nsproxy->mnt_ns->seq >= mnt_ns->seq;
1690 }
1691 
1692 struct mount *copy_tree(struct mount *mnt, struct dentry *dentry,
1693 					int flag)
1694 {
1695 	struct mount *res, *p, *q, *r, *parent;
1696 
1697 	if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(mnt))
1698 		return ERR_PTR(-EINVAL);
1699 
1700 	if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry))
1701 		return ERR_PTR(-EINVAL);
1702 
1703 	res = q = clone_mnt(mnt, dentry, flag);
1704 	if (IS_ERR(q))
1705 		return q;
1706 
1707 	q->mnt_mountpoint = mnt->mnt_mountpoint;
1708 
1709 	p = mnt;
1710 	list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
1711 		struct mount *s;
1712 		if (!is_subdir(r->mnt_mountpoint, dentry))
1713 			continue;
1714 
1715 		for (s = r; s; s = next_mnt(s, r)) {
1716 			struct mount *t = NULL;
1717 			if (!(flag & CL_COPY_UNBINDABLE) &&
1718 			    IS_MNT_UNBINDABLE(s)) {
1719 				s = skip_mnt_tree(s);
1720 				continue;
1721 			}
1722 			if (!(flag & CL_COPY_MNT_NS_FILE) &&
1723 			    is_mnt_ns_file(s->mnt.mnt_root)) {
1724 				s = skip_mnt_tree(s);
1725 				continue;
1726 			}
1727 			while (p != s->mnt_parent) {
1728 				p = p->mnt_parent;
1729 				q = q->mnt_parent;
1730 			}
1731 			p = s;
1732 			parent = q;
1733 			q = clone_mnt(p, p->mnt.mnt_root, flag);
1734 			if (IS_ERR(q))
1735 				goto out;
1736 			lock_mount_hash();
1737 			list_add_tail(&q->mnt_list, &res->mnt_list);
1738 			mnt_set_mountpoint(parent, p->mnt_mp, q);
1739 			if (!list_empty(&parent->mnt_mounts)) {
1740 				t = list_last_entry(&parent->mnt_mounts,
1741 					struct mount, mnt_child);
1742 				if (t->mnt_mp != p->mnt_mp)
1743 					t = NULL;
1744 			}
1745 			attach_shadowed(q, parent, t);
1746 			unlock_mount_hash();
1747 		}
1748 	}
1749 	return res;
1750 out:
1751 	if (res) {
1752 		lock_mount_hash();
1753 		umount_tree(res, UMOUNT_SYNC);
1754 		unlock_mount_hash();
1755 	}
1756 	return q;
1757 }
1758 
1759 /* Caller should check returned pointer for errors */
1760 
1761 struct vfsmount *collect_mounts(struct path *path)
1762 {
1763 	struct mount *tree;
1764 	namespace_lock();
1765 	if (!check_mnt(real_mount(path->mnt)))
1766 		tree = ERR_PTR(-EINVAL);
1767 	else
1768 		tree = copy_tree(real_mount(path->mnt), path->dentry,
1769 				 CL_COPY_ALL | CL_PRIVATE);
1770 	namespace_unlock();
1771 	if (IS_ERR(tree))
1772 		return ERR_CAST(tree);
1773 	return &tree->mnt;
1774 }
1775 
1776 void drop_collected_mounts(struct vfsmount *mnt)
1777 {
1778 	namespace_lock();
1779 	lock_mount_hash();
1780 	umount_tree(real_mount(mnt), UMOUNT_SYNC);
1781 	unlock_mount_hash();
1782 	namespace_unlock();
1783 }
1784 
1785 /**
1786  * clone_private_mount - create a private clone of a path
1787  *
1788  * This creates a new vfsmount, which will be the clone of @path.  The new will
1789  * not be attached anywhere in the namespace and will be private (i.e. changes
1790  * to the originating mount won't be propagated into this).
1791  *
1792  * Release with mntput().
1793  */
1794 struct vfsmount *clone_private_mount(struct path *path)
1795 {
1796 	struct mount *old_mnt = real_mount(path->mnt);
1797 	struct mount *new_mnt;
1798 
1799 	if (IS_MNT_UNBINDABLE(old_mnt))
1800 		return ERR_PTR(-EINVAL);
1801 
1802 	down_read(&namespace_sem);
1803 	new_mnt = clone_mnt(old_mnt, path->dentry, CL_PRIVATE);
1804 	up_read(&namespace_sem);
1805 	if (IS_ERR(new_mnt))
1806 		return ERR_CAST(new_mnt);
1807 
1808 	return &new_mnt->mnt;
1809 }
1810 EXPORT_SYMBOL_GPL(clone_private_mount);
1811 
1812 int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
1813 		   struct vfsmount *root)
1814 {
1815 	struct mount *mnt;
1816 	int res = f(root, arg);
1817 	if (res)
1818 		return res;
1819 	list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) {
1820 		res = f(&mnt->mnt, arg);
1821 		if (res)
1822 			return res;
1823 	}
1824 	return 0;
1825 }
1826 
1827 static void cleanup_group_ids(struct mount *mnt, struct mount *end)
1828 {
1829 	struct mount *p;
1830 
1831 	for (p = mnt; p != end; p = next_mnt(p, mnt)) {
1832 		if (p->mnt_group_id && !IS_MNT_SHARED(p))
1833 			mnt_release_group_id(p);
1834 	}
1835 }
1836 
1837 static int invent_group_ids(struct mount *mnt, bool recurse)
1838 {
1839 	struct mount *p;
1840 
1841 	for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
1842 		if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
1843 			int err = mnt_alloc_group_id(p);
1844 			if (err) {
1845 				cleanup_group_ids(mnt, p);
1846 				return err;
1847 			}
1848 		}
1849 	}
1850 
1851 	return 0;
1852 }
1853 
1854 int count_mounts(struct mnt_namespace *ns, struct mount *mnt)
1855 {
1856 	unsigned int max = READ_ONCE(sysctl_mount_max);
1857 	unsigned int mounts = 0, old, pending, sum;
1858 	struct mount *p;
1859 
1860 	for (p = mnt; p; p = next_mnt(p, mnt))
1861 		mounts++;
1862 
1863 	old = ns->mounts;
1864 	pending = ns->pending_mounts;
1865 	sum = old + pending;
1866 	if ((old > sum) ||
1867 	    (pending > sum) ||
1868 	    (max < sum) ||
1869 	    (mounts > (max - sum)))
1870 		return -ENOSPC;
1871 
1872 	ns->pending_mounts = pending + mounts;
1873 	return 0;
1874 }
1875 
1876 /*
1877  *  @source_mnt : mount tree to be attached
1878  *  @nd         : place the mount tree @source_mnt is attached
1879  *  @parent_nd  : if non-null, detach the source_mnt from its parent and
1880  *  		   store the parent mount and mountpoint dentry.
1881  *  		   (done when source_mnt is moved)
1882  *
1883  *  NOTE: in the table below explains the semantics when a source mount
1884  *  of a given type is attached to a destination mount of a given type.
1885  * ---------------------------------------------------------------------------
1886  * |         BIND MOUNT OPERATION                                            |
1887  * |**************************************************************************
1888  * | source-->| shared        |       private  |       slave    | unbindable |
1889  * | dest     |               |                |                |            |
1890  * |   |      |               |                |                |            |
1891  * |   v      |               |                |                |            |
1892  * |**************************************************************************
1893  * |  shared  | shared (++)   |     shared (+) |     shared(+++)|  invalid   |
1894  * |          |               |                |                |            |
1895  * |non-shared| shared (+)    |      private   |      slave (*) |  invalid   |
1896  * ***************************************************************************
1897  * A bind operation clones the source mount and mounts the clone on the
1898  * destination mount.
1899  *
1900  * (++)  the cloned mount is propagated to all the mounts in the propagation
1901  * 	 tree of the destination mount and the cloned mount is added to
1902  * 	 the peer group of the source mount.
1903  * (+)   the cloned mount is created under the destination mount and is marked
1904  *       as shared. The cloned mount is added to the peer group of the source
1905  *       mount.
1906  * (+++) the mount is propagated to all the mounts in the propagation tree
1907  *       of the destination mount and the cloned mount is made slave
1908  *       of the same master as that of the source mount. The cloned mount
1909  *       is marked as 'shared and slave'.
1910  * (*)   the cloned mount is made a slave of the same master as that of the
1911  * 	 source mount.
1912  *
1913  * ---------------------------------------------------------------------------
1914  * |         		MOVE MOUNT OPERATION                                 |
1915  * |**************************************************************************
1916  * | source-->| shared        |       private  |       slave    | unbindable |
1917  * | dest     |               |                |                |            |
1918  * |   |      |               |                |                |            |
1919  * |   v      |               |                |                |            |
1920  * |**************************************************************************
1921  * |  shared  | shared (+)    |     shared (+) |    shared(+++) |  invalid   |
1922  * |          |               |                |                |            |
1923  * |non-shared| shared (+*)   |      private   |    slave (*)   | unbindable |
1924  * ***************************************************************************
1925  *
1926  * (+)  the mount is moved to the destination. And is then propagated to
1927  * 	all the mounts in the propagation tree of the destination mount.
1928  * (+*)  the mount is moved to the destination.
1929  * (+++)  the mount is moved to the destination and is then propagated to
1930  * 	all the mounts belonging to the destination mount's propagation tree.
1931  * 	the mount is marked as 'shared and slave'.
1932  * (*)	the mount continues to be a slave at the new location.
1933  *
1934  * if the source mount is a tree, the operations explained above is
1935  * applied to each mount in the tree.
1936  * Must be called without spinlocks held, since this function can sleep
1937  * in allocations.
1938  */
1939 static int attach_recursive_mnt(struct mount *source_mnt,
1940 			struct mount *dest_mnt,
1941 			struct mountpoint *dest_mp,
1942 			struct path *parent_path)
1943 {
1944 	HLIST_HEAD(tree_list);
1945 	struct mnt_namespace *ns = dest_mnt->mnt_ns;
1946 	struct mount *child, *p;
1947 	struct hlist_node *n;
1948 	int err;
1949 
1950 	/* Is there space to add these mounts to the mount namespace? */
1951 	if (!parent_path) {
1952 		err = count_mounts(ns, source_mnt);
1953 		if (err)
1954 			goto out;
1955 	}
1956 
1957 	if (IS_MNT_SHARED(dest_mnt)) {
1958 		err = invent_group_ids(source_mnt, true);
1959 		if (err)
1960 			goto out;
1961 		err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list);
1962 		lock_mount_hash();
1963 		if (err)
1964 			goto out_cleanup_ids;
1965 		for (p = source_mnt; p; p = next_mnt(p, source_mnt))
1966 			set_mnt_shared(p);
1967 	} else {
1968 		lock_mount_hash();
1969 	}
1970 	if (parent_path) {
1971 		detach_mnt(source_mnt, parent_path);
1972 		attach_mnt(source_mnt, dest_mnt, dest_mp);
1973 		touch_mnt_namespace(source_mnt->mnt_ns);
1974 	} else {
1975 		mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt);
1976 		commit_tree(source_mnt, NULL);
1977 	}
1978 
1979 	hlist_for_each_entry_safe(child, n, &tree_list, mnt_hash) {
1980 		struct mount *q;
1981 		hlist_del_init(&child->mnt_hash);
1982 		q = __lookup_mnt_last(&child->mnt_parent->mnt,
1983 				      child->mnt_mountpoint);
1984 		commit_tree(child, q);
1985 	}
1986 	unlock_mount_hash();
1987 
1988 	return 0;
1989 
1990  out_cleanup_ids:
1991 	while (!hlist_empty(&tree_list)) {
1992 		child = hlist_entry(tree_list.first, struct mount, mnt_hash);
1993 		child->mnt_parent->mnt_ns->pending_mounts = 0;
1994 		umount_tree(child, UMOUNT_SYNC);
1995 	}
1996 	unlock_mount_hash();
1997 	cleanup_group_ids(source_mnt, NULL);
1998  out:
1999 	ns->pending_mounts = 0;
2000 	return err;
2001 }
2002 
2003 static struct mountpoint *lock_mount(struct path *path)
2004 {
2005 	struct vfsmount *mnt;
2006 	struct dentry *dentry = path->dentry;
2007 retry:
2008 	inode_lock(dentry->d_inode);
2009 	if (unlikely(cant_mount(dentry))) {
2010 		inode_unlock(dentry->d_inode);
2011 		return ERR_PTR(-ENOENT);
2012 	}
2013 	namespace_lock();
2014 	mnt = lookup_mnt(path);
2015 	if (likely(!mnt)) {
2016 		struct mountpoint *mp = lookup_mountpoint(dentry);
2017 		if (!mp)
2018 			mp = new_mountpoint(dentry);
2019 		if (IS_ERR(mp)) {
2020 			namespace_unlock();
2021 			inode_unlock(dentry->d_inode);
2022 			return mp;
2023 		}
2024 		return mp;
2025 	}
2026 	namespace_unlock();
2027 	inode_unlock(path->dentry->d_inode);
2028 	path_put(path);
2029 	path->mnt = mnt;
2030 	dentry = path->dentry = dget(mnt->mnt_root);
2031 	goto retry;
2032 }
2033 
2034 static void unlock_mount(struct mountpoint *where)
2035 {
2036 	struct dentry *dentry = where->m_dentry;
2037 	put_mountpoint(where);
2038 	namespace_unlock();
2039 	inode_unlock(dentry->d_inode);
2040 }
2041 
2042 static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp)
2043 {
2044 	if (mnt->mnt.mnt_sb->s_flags & MS_NOUSER)
2045 		return -EINVAL;
2046 
2047 	if (d_is_dir(mp->m_dentry) !=
2048 	      d_is_dir(mnt->mnt.mnt_root))
2049 		return -ENOTDIR;
2050 
2051 	return attach_recursive_mnt(mnt, p, mp, NULL);
2052 }
2053 
2054 /*
2055  * Sanity check the flags to change_mnt_propagation.
2056  */
2057 
2058 static int flags_to_propagation_type(int flags)
2059 {
2060 	int type = flags & ~(MS_REC | MS_SILENT);
2061 
2062 	/* Fail if any non-propagation flags are set */
2063 	if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2064 		return 0;
2065 	/* Only one propagation flag should be set */
2066 	if (!is_power_of_2(type))
2067 		return 0;
2068 	return type;
2069 }
2070 
2071 /*
2072  * recursively change the type of the mountpoint.
2073  */
2074 static int do_change_type(struct path *path, int flag)
2075 {
2076 	struct mount *m;
2077 	struct mount *mnt = real_mount(path->mnt);
2078 	int recurse = flag & MS_REC;
2079 	int type;
2080 	int err = 0;
2081 
2082 	if (path->dentry != path->mnt->mnt_root)
2083 		return -EINVAL;
2084 
2085 	type = flags_to_propagation_type(flag);
2086 	if (!type)
2087 		return -EINVAL;
2088 
2089 	namespace_lock();
2090 	if (type == MS_SHARED) {
2091 		err = invent_group_ids(mnt, recurse);
2092 		if (err)
2093 			goto out_unlock;
2094 	}
2095 
2096 	lock_mount_hash();
2097 	for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
2098 		change_mnt_propagation(m, type);
2099 	unlock_mount_hash();
2100 
2101  out_unlock:
2102 	namespace_unlock();
2103 	return err;
2104 }
2105 
2106 static bool has_locked_children(struct mount *mnt, struct dentry *dentry)
2107 {
2108 	struct mount *child;
2109 	list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
2110 		if (!is_subdir(child->mnt_mountpoint, dentry))
2111 			continue;
2112 
2113 		if (child->mnt.mnt_flags & MNT_LOCKED)
2114 			return true;
2115 	}
2116 	return false;
2117 }
2118 
2119 /*
2120  * do loopback mount.
2121  */
2122 static int do_loopback(struct path *path, const char *old_name,
2123 				int recurse)
2124 {
2125 	struct path old_path;
2126 	struct mount *mnt = NULL, *old, *parent;
2127 	struct mountpoint *mp;
2128 	int err;
2129 	if (!old_name || !*old_name)
2130 		return -EINVAL;
2131 	err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
2132 	if (err)
2133 		return err;
2134 
2135 	err = -EINVAL;
2136 	if (mnt_ns_loop(old_path.dentry))
2137 		goto out;
2138 
2139 	mp = lock_mount(path);
2140 	err = PTR_ERR(mp);
2141 	if (IS_ERR(mp))
2142 		goto out;
2143 
2144 	old = real_mount(old_path.mnt);
2145 	parent = real_mount(path->mnt);
2146 
2147 	err = -EINVAL;
2148 	if (IS_MNT_UNBINDABLE(old))
2149 		goto out2;
2150 
2151 	if (!check_mnt(parent))
2152 		goto out2;
2153 
2154 	if (!check_mnt(old) && old_path.dentry->d_op != &ns_dentry_operations)
2155 		goto out2;
2156 
2157 	if (!recurse && has_locked_children(old, old_path.dentry))
2158 		goto out2;
2159 
2160 	if (recurse)
2161 		mnt = copy_tree(old, old_path.dentry, CL_COPY_MNT_NS_FILE);
2162 	else
2163 		mnt = clone_mnt(old, old_path.dentry, 0);
2164 
2165 	if (IS_ERR(mnt)) {
2166 		err = PTR_ERR(mnt);
2167 		goto out2;
2168 	}
2169 
2170 	mnt->mnt.mnt_flags &= ~MNT_LOCKED;
2171 
2172 	err = graft_tree(mnt, parent, mp);
2173 	if (err) {
2174 		lock_mount_hash();
2175 		umount_tree(mnt, UMOUNT_SYNC);
2176 		unlock_mount_hash();
2177 	}
2178 out2:
2179 	unlock_mount(mp);
2180 out:
2181 	path_put(&old_path);
2182 	return err;
2183 }
2184 
2185 static int change_mount_flags(struct vfsmount *mnt, int ms_flags)
2186 {
2187 	int error = 0;
2188 	int readonly_request = 0;
2189 
2190 	if (ms_flags & MS_RDONLY)
2191 		readonly_request = 1;
2192 	if (readonly_request == __mnt_is_readonly(mnt))
2193 		return 0;
2194 
2195 	if (readonly_request)
2196 		error = mnt_make_readonly(real_mount(mnt));
2197 	else
2198 		__mnt_unmake_readonly(real_mount(mnt));
2199 	return error;
2200 }
2201 
2202 /*
2203  * change filesystem flags. dir should be a physical root of filesystem.
2204  * If you've mounted a non-root directory somewhere and want to do remount
2205  * on it - tough luck.
2206  */
2207 static int do_remount(struct path *path, int flags, int mnt_flags,
2208 		      void *data)
2209 {
2210 	int err;
2211 	struct super_block *sb = path->mnt->mnt_sb;
2212 	struct mount *mnt = real_mount(path->mnt);
2213 
2214 	if (!check_mnt(mnt))
2215 		return -EINVAL;
2216 
2217 	if (path->dentry != path->mnt->mnt_root)
2218 		return -EINVAL;
2219 
2220 	/* Don't allow changing of locked mnt flags.
2221 	 *
2222 	 * No locks need to be held here while testing the various
2223 	 * MNT_LOCK flags because those flags can never be cleared
2224 	 * once they are set.
2225 	 */
2226 	if ((mnt->mnt.mnt_flags & MNT_LOCK_READONLY) &&
2227 	    !(mnt_flags & MNT_READONLY)) {
2228 		return -EPERM;
2229 	}
2230 	if ((mnt->mnt.mnt_flags & MNT_LOCK_NODEV) &&
2231 	    !(mnt_flags & MNT_NODEV)) {
2232 		return -EPERM;
2233 	}
2234 	if ((mnt->mnt.mnt_flags & MNT_LOCK_NOSUID) &&
2235 	    !(mnt_flags & MNT_NOSUID)) {
2236 		return -EPERM;
2237 	}
2238 	if ((mnt->mnt.mnt_flags & MNT_LOCK_NOEXEC) &&
2239 	    !(mnt_flags & MNT_NOEXEC)) {
2240 		return -EPERM;
2241 	}
2242 	if ((mnt->mnt.mnt_flags & MNT_LOCK_ATIME) &&
2243 	    ((mnt->mnt.mnt_flags & MNT_ATIME_MASK) != (mnt_flags & MNT_ATIME_MASK))) {
2244 		return -EPERM;
2245 	}
2246 
2247 	err = security_sb_remount(sb, data);
2248 	if (err)
2249 		return err;
2250 
2251 	down_write(&sb->s_umount);
2252 	if (flags & MS_BIND)
2253 		err = change_mount_flags(path->mnt, flags);
2254 	else if (!capable(CAP_SYS_ADMIN))
2255 		err = -EPERM;
2256 	else
2257 		err = do_remount_sb(sb, flags, data, 0);
2258 	if (!err) {
2259 		lock_mount_hash();
2260 		mnt_flags |= mnt->mnt.mnt_flags & ~MNT_USER_SETTABLE_MASK;
2261 		mnt->mnt.mnt_flags = mnt_flags;
2262 		touch_mnt_namespace(mnt->mnt_ns);
2263 		unlock_mount_hash();
2264 	}
2265 	up_write(&sb->s_umount);
2266 	return err;
2267 }
2268 
2269 static inline int tree_contains_unbindable(struct mount *mnt)
2270 {
2271 	struct mount *p;
2272 	for (p = mnt; p; p = next_mnt(p, mnt)) {
2273 		if (IS_MNT_UNBINDABLE(p))
2274 			return 1;
2275 	}
2276 	return 0;
2277 }
2278 
2279 static int do_move_mount(struct path *path, const char *old_name)
2280 {
2281 	struct path old_path, parent_path;
2282 	struct mount *p;
2283 	struct mount *old;
2284 	struct mountpoint *mp;
2285 	int err;
2286 	if (!old_name || !*old_name)
2287 		return -EINVAL;
2288 	err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
2289 	if (err)
2290 		return err;
2291 
2292 	mp = lock_mount(path);
2293 	err = PTR_ERR(mp);
2294 	if (IS_ERR(mp))
2295 		goto out;
2296 
2297 	old = real_mount(old_path.mnt);
2298 	p = real_mount(path->mnt);
2299 
2300 	err = -EINVAL;
2301 	if (!check_mnt(p) || !check_mnt(old))
2302 		goto out1;
2303 
2304 	if (old->mnt.mnt_flags & MNT_LOCKED)
2305 		goto out1;
2306 
2307 	err = -EINVAL;
2308 	if (old_path.dentry != old_path.mnt->mnt_root)
2309 		goto out1;
2310 
2311 	if (!mnt_has_parent(old))
2312 		goto out1;
2313 
2314 	if (d_is_dir(path->dentry) !=
2315 	      d_is_dir(old_path.dentry))
2316 		goto out1;
2317 	/*
2318 	 * Don't move a mount residing in a shared parent.
2319 	 */
2320 	if (IS_MNT_SHARED(old->mnt_parent))
2321 		goto out1;
2322 	/*
2323 	 * Don't move a mount tree containing unbindable mounts to a destination
2324 	 * mount which is shared.
2325 	 */
2326 	if (IS_MNT_SHARED(p) && tree_contains_unbindable(old))
2327 		goto out1;
2328 	err = -ELOOP;
2329 	for (; mnt_has_parent(p); p = p->mnt_parent)
2330 		if (p == old)
2331 			goto out1;
2332 
2333 	err = attach_recursive_mnt(old, real_mount(path->mnt), mp, &parent_path);
2334 	if (err)
2335 		goto out1;
2336 
2337 	/* if the mount is moved, it should no longer be expire
2338 	 * automatically */
2339 	list_del_init(&old->mnt_expire);
2340 out1:
2341 	unlock_mount(mp);
2342 out:
2343 	if (!err)
2344 		path_put(&parent_path);
2345 	path_put(&old_path);
2346 	return err;
2347 }
2348 
2349 static struct vfsmount *fs_set_subtype(struct vfsmount *mnt, const char *fstype)
2350 {
2351 	int err;
2352 	const char *subtype = strchr(fstype, '.');
2353 	if (subtype) {
2354 		subtype++;
2355 		err = -EINVAL;
2356 		if (!subtype[0])
2357 			goto err;
2358 	} else
2359 		subtype = "";
2360 
2361 	mnt->mnt_sb->s_subtype = kstrdup(subtype, GFP_KERNEL);
2362 	err = -ENOMEM;
2363 	if (!mnt->mnt_sb->s_subtype)
2364 		goto err;
2365 	return mnt;
2366 
2367  err:
2368 	mntput(mnt);
2369 	return ERR_PTR(err);
2370 }
2371 
2372 /*
2373  * add a mount into a namespace's mount tree
2374  */
2375 static int do_add_mount(struct mount *newmnt, struct path *path, int mnt_flags)
2376 {
2377 	struct mountpoint *mp;
2378 	struct mount *parent;
2379 	int err;
2380 
2381 	mnt_flags &= ~MNT_INTERNAL_FLAGS;
2382 
2383 	mp = lock_mount(path);
2384 	if (IS_ERR(mp))
2385 		return PTR_ERR(mp);
2386 
2387 	parent = real_mount(path->mnt);
2388 	err = -EINVAL;
2389 	if (unlikely(!check_mnt(parent))) {
2390 		/* that's acceptable only for automounts done in private ns */
2391 		if (!(mnt_flags & MNT_SHRINKABLE))
2392 			goto unlock;
2393 		/* ... and for those we'd better have mountpoint still alive */
2394 		if (!parent->mnt_ns)
2395 			goto unlock;
2396 	}
2397 
2398 	/* Refuse the same filesystem on the same mount point */
2399 	err = -EBUSY;
2400 	if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb &&
2401 	    path->mnt->mnt_root == path->dentry)
2402 		goto unlock;
2403 
2404 	err = -EINVAL;
2405 	if (d_is_symlink(newmnt->mnt.mnt_root))
2406 		goto unlock;
2407 
2408 	newmnt->mnt.mnt_flags = mnt_flags;
2409 	err = graft_tree(newmnt, parent, mp);
2410 
2411 unlock:
2412 	unlock_mount(mp);
2413 	return err;
2414 }
2415 
2416 static bool mount_too_revealing(struct vfsmount *mnt, int *new_mnt_flags);
2417 
2418 /*
2419  * create a new mount for userspace and request it to be added into the
2420  * namespace's tree
2421  */
2422 static int do_new_mount(struct path *path, const char *fstype, int flags,
2423 			int mnt_flags, const char *name, void *data)
2424 {
2425 	struct file_system_type *type;
2426 	struct vfsmount *mnt;
2427 	int err;
2428 
2429 	if (!fstype)
2430 		return -EINVAL;
2431 
2432 	type = get_fs_type(fstype);
2433 	if (!type)
2434 		return -ENODEV;
2435 
2436 	mnt = vfs_kern_mount(type, flags, name, data);
2437 	if (!IS_ERR(mnt) && (type->fs_flags & FS_HAS_SUBTYPE) &&
2438 	    !mnt->mnt_sb->s_subtype)
2439 		mnt = fs_set_subtype(mnt, fstype);
2440 
2441 	put_filesystem(type);
2442 	if (IS_ERR(mnt))
2443 		return PTR_ERR(mnt);
2444 
2445 	if (mount_too_revealing(mnt, &mnt_flags)) {
2446 		mntput(mnt);
2447 		return -EPERM;
2448 	}
2449 
2450 	err = do_add_mount(real_mount(mnt), path, mnt_flags);
2451 	if (err)
2452 		mntput(mnt);
2453 	return err;
2454 }
2455 
2456 int finish_automount(struct vfsmount *m, struct path *path)
2457 {
2458 	struct mount *mnt = real_mount(m);
2459 	int err;
2460 	/* The new mount record should have at least 2 refs to prevent it being
2461 	 * expired before we get a chance to add it
2462 	 */
2463 	BUG_ON(mnt_get_count(mnt) < 2);
2464 
2465 	if (m->mnt_sb == path->mnt->mnt_sb &&
2466 	    m->mnt_root == path->dentry) {
2467 		err = -ELOOP;
2468 		goto fail;
2469 	}
2470 
2471 	err = do_add_mount(mnt, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
2472 	if (!err)
2473 		return 0;
2474 fail:
2475 	/* remove m from any expiration list it may be on */
2476 	if (!list_empty(&mnt->mnt_expire)) {
2477 		namespace_lock();
2478 		list_del_init(&mnt->mnt_expire);
2479 		namespace_unlock();
2480 	}
2481 	mntput(m);
2482 	mntput(m);
2483 	return err;
2484 }
2485 
2486 /**
2487  * mnt_set_expiry - Put a mount on an expiration list
2488  * @mnt: The mount to list.
2489  * @expiry_list: The list to add the mount to.
2490  */
2491 void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
2492 {
2493 	namespace_lock();
2494 
2495 	list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
2496 
2497 	namespace_unlock();
2498 }
2499 EXPORT_SYMBOL(mnt_set_expiry);
2500 
2501 /*
2502  * process a list of expirable mountpoints with the intent of discarding any
2503  * mountpoints that aren't in use and haven't been touched since last we came
2504  * here
2505  */
2506 void mark_mounts_for_expiry(struct list_head *mounts)
2507 {
2508 	struct mount *mnt, *next;
2509 	LIST_HEAD(graveyard);
2510 
2511 	if (list_empty(mounts))
2512 		return;
2513 
2514 	namespace_lock();
2515 	lock_mount_hash();
2516 
2517 	/* extract from the expiration list every vfsmount that matches the
2518 	 * following criteria:
2519 	 * - only referenced by its parent vfsmount
2520 	 * - still marked for expiry (marked on the last call here; marks are
2521 	 *   cleared by mntput())
2522 	 */
2523 	list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
2524 		if (!xchg(&mnt->mnt_expiry_mark, 1) ||
2525 			propagate_mount_busy(mnt, 1))
2526 			continue;
2527 		list_move(&mnt->mnt_expire, &graveyard);
2528 	}
2529 	while (!list_empty(&graveyard)) {
2530 		mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
2531 		touch_mnt_namespace(mnt->mnt_ns);
2532 		umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
2533 	}
2534 	unlock_mount_hash();
2535 	namespace_unlock();
2536 }
2537 
2538 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
2539 
2540 /*
2541  * Ripoff of 'select_parent()'
2542  *
2543  * search the list of submounts for a given mountpoint, and move any
2544  * shrinkable submounts to the 'graveyard' list.
2545  */
2546 static int select_submounts(struct mount *parent, struct list_head *graveyard)
2547 {
2548 	struct mount *this_parent = parent;
2549 	struct list_head *next;
2550 	int found = 0;
2551 
2552 repeat:
2553 	next = this_parent->mnt_mounts.next;
2554 resume:
2555 	while (next != &this_parent->mnt_mounts) {
2556 		struct list_head *tmp = next;
2557 		struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
2558 
2559 		next = tmp->next;
2560 		if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
2561 			continue;
2562 		/*
2563 		 * Descend a level if the d_mounts list is non-empty.
2564 		 */
2565 		if (!list_empty(&mnt->mnt_mounts)) {
2566 			this_parent = mnt;
2567 			goto repeat;
2568 		}
2569 
2570 		if (!propagate_mount_busy(mnt, 1)) {
2571 			list_move_tail(&mnt->mnt_expire, graveyard);
2572 			found++;
2573 		}
2574 	}
2575 	/*
2576 	 * All done at this level ... ascend and resume the search
2577 	 */
2578 	if (this_parent != parent) {
2579 		next = this_parent->mnt_child.next;
2580 		this_parent = this_parent->mnt_parent;
2581 		goto resume;
2582 	}
2583 	return found;
2584 }
2585 
2586 /*
2587  * process a list of expirable mountpoints with the intent of discarding any
2588  * submounts of a specific parent mountpoint
2589  *
2590  * mount_lock must be held for write
2591  */
2592 static void shrink_submounts(struct mount *mnt)
2593 {
2594 	LIST_HEAD(graveyard);
2595 	struct mount *m;
2596 
2597 	/* extract submounts of 'mountpoint' from the expiration list */
2598 	while (select_submounts(mnt, &graveyard)) {
2599 		while (!list_empty(&graveyard)) {
2600 			m = list_first_entry(&graveyard, struct mount,
2601 						mnt_expire);
2602 			touch_mnt_namespace(m->mnt_ns);
2603 			umount_tree(m, UMOUNT_PROPAGATE|UMOUNT_SYNC);
2604 		}
2605 	}
2606 }
2607 
2608 /*
2609  * Some copy_from_user() implementations do not return the exact number of
2610  * bytes remaining to copy on a fault.  But copy_mount_options() requires that.
2611  * Note that this function differs from copy_from_user() in that it will oops
2612  * on bad values of `to', rather than returning a short copy.
2613  */
2614 static long exact_copy_from_user(void *to, const void __user * from,
2615 				 unsigned long n)
2616 {
2617 	char *t = to;
2618 	const char __user *f = from;
2619 	char c;
2620 
2621 	if (!access_ok(VERIFY_READ, from, n))
2622 		return n;
2623 
2624 	while (n) {
2625 		if (__get_user(c, f)) {
2626 			memset(t, 0, n);
2627 			break;
2628 		}
2629 		*t++ = c;
2630 		f++;
2631 		n--;
2632 	}
2633 	return n;
2634 }
2635 
2636 void *copy_mount_options(const void __user * data)
2637 {
2638 	int i;
2639 	unsigned long size;
2640 	char *copy;
2641 
2642 	if (!data)
2643 		return NULL;
2644 
2645 	copy = kmalloc(PAGE_SIZE, GFP_KERNEL);
2646 	if (!copy)
2647 		return ERR_PTR(-ENOMEM);
2648 
2649 	/* We only care that *some* data at the address the user
2650 	 * gave us is valid.  Just in case, we'll zero
2651 	 * the remainder of the page.
2652 	 */
2653 	/* copy_from_user cannot cross TASK_SIZE ! */
2654 	size = TASK_SIZE - (unsigned long)data;
2655 	if (size > PAGE_SIZE)
2656 		size = PAGE_SIZE;
2657 
2658 	i = size - exact_copy_from_user(copy, data, size);
2659 	if (!i) {
2660 		kfree(copy);
2661 		return ERR_PTR(-EFAULT);
2662 	}
2663 	if (i != PAGE_SIZE)
2664 		memset(copy + i, 0, PAGE_SIZE - i);
2665 	return copy;
2666 }
2667 
2668 char *copy_mount_string(const void __user *data)
2669 {
2670 	return data ? strndup_user(data, PAGE_SIZE) : NULL;
2671 }
2672 
2673 /*
2674  * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
2675  * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
2676  *
2677  * data is a (void *) that can point to any structure up to
2678  * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
2679  * information (or be NULL).
2680  *
2681  * Pre-0.97 versions of mount() didn't have a flags word.
2682  * When the flags word was introduced its top half was required
2683  * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
2684  * Therefore, if this magic number is present, it carries no information
2685  * and must be discarded.
2686  */
2687 long do_mount(const char *dev_name, const char __user *dir_name,
2688 		const char *type_page, unsigned long flags, void *data_page)
2689 {
2690 	struct path path;
2691 	int retval = 0;
2692 	int mnt_flags = 0;
2693 
2694 	/* Discard magic */
2695 	if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
2696 		flags &= ~MS_MGC_MSK;
2697 
2698 	/* Basic sanity checks */
2699 	if (data_page)
2700 		((char *)data_page)[PAGE_SIZE - 1] = 0;
2701 
2702 	/* ... and get the mountpoint */
2703 	retval = user_path(dir_name, &path);
2704 	if (retval)
2705 		return retval;
2706 
2707 	retval = security_sb_mount(dev_name, &path,
2708 				   type_page, flags, data_page);
2709 	if (!retval && !may_mount())
2710 		retval = -EPERM;
2711 	if (!retval && (flags & MS_MANDLOCK) && !may_mandlock())
2712 		retval = -EPERM;
2713 	if (retval)
2714 		goto dput_out;
2715 
2716 	/* Default to relatime unless overriden */
2717 	if (!(flags & MS_NOATIME))
2718 		mnt_flags |= MNT_RELATIME;
2719 
2720 	/* Separate the per-mountpoint flags */
2721 	if (flags & MS_NOSUID)
2722 		mnt_flags |= MNT_NOSUID;
2723 	if (flags & MS_NODEV)
2724 		mnt_flags |= MNT_NODEV;
2725 	if (flags & MS_NOEXEC)
2726 		mnt_flags |= MNT_NOEXEC;
2727 	if (flags & MS_NOATIME)
2728 		mnt_flags |= MNT_NOATIME;
2729 	if (flags & MS_NODIRATIME)
2730 		mnt_flags |= MNT_NODIRATIME;
2731 	if (flags & MS_STRICTATIME)
2732 		mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
2733 	if (flags & MS_RDONLY)
2734 		mnt_flags |= MNT_READONLY;
2735 
2736 	/* The default atime for remount is preservation */
2737 	if ((flags & MS_REMOUNT) &&
2738 	    ((flags & (MS_NOATIME | MS_NODIRATIME | MS_RELATIME |
2739 		       MS_STRICTATIME)) == 0)) {
2740 		mnt_flags &= ~MNT_ATIME_MASK;
2741 		mnt_flags |= path.mnt->mnt_flags & MNT_ATIME_MASK;
2742 	}
2743 
2744 	flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE | MS_BORN |
2745 		   MS_NOATIME | MS_NODIRATIME | MS_RELATIME| MS_KERNMOUNT |
2746 		   MS_STRICTATIME | MS_NOREMOTELOCK);
2747 
2748 	if (flags & MS_REMOUNT)
2749 		retval = do_remount(&path, flags & ~MS_REMOUNT, mnt_flags,
2750 				    data_page);
2751 	else if (flags & MS_BIND)
2752 		retval = do_loopback(&path, dev_name, flags & MS_REC);
2753 	else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2754 		retval = do_change_type(&path, flags);
2755 	else if (flags & MS_MOVE)
2756 		retval = do_move_mount(&path, dev_name);
2757 	else
2758 		retval = do_new_mount(&path, type_page, flags, mnt_flags,
2759 				      dev_name, data_page);
2760 dput_out:
2761 	path_put(&path);
2762 	return retval;
2763 }
2764 
2765 static struct ucounts *inc_mnt_namespaces(struct user_namespace *ns)
2766 {
2767 	return inc_ucount(ns, current_euid(), UCOUNT_MNT_NAMESPACES);
2768 }
2769 
2770 static void dec_mnt_namespaces(struct ucounts *ucounts)
2771 {
2772 	dec_ucount(ucounts, UCOUNT_MNT_NAMESPACES);
2773 }
2774 
2775 static void free_mnt_ns(struct mnt_namespace *ns)
2776 {
2777 	ns_free_inum(&ns->ns);
2778 	dec_mnt_namespaces(ns->ucounts);
2779 	put_user_ns(ns->user_ns);
2780 	kfree(ns);
2781 }
2782 
2783 /*
2784  * Assign a sequence number so we can detect when we attempt to bind
2785  * mount a reference to an older mount namespace into the current
2786  * mount namespace, preventing reference counting loops.  A 64bit
2787  * number incrementing at 10Ghz will take 12,427 years to wrap which
2788  * is effectively never, so we can ignore the possibility.
2789  */
2790 static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1);
2791 
2792 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns)
2793 {
2794 	struct mnt_namespace *new_ns;
2795 	struct ucounts *ucounts;
2796 	int ret;
2797 
2798 	ucounts = inc_mnt_namespaces(user_ns);
2799 	if (!ucounts)
2800 		return ERR_PTR(-ENOSPC);
2801 
2802 	new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
2803 	if (!new_ns) {
2804 		dec_mnt_namespaces(ucounts);
2805 		return ERR_PTR(-ENOMEM);
2806 	}
2807 	ret = ns_alloc_inum(&new_ns->ns);
2808 	if (ret) {
2809 		kfree(new_ns);
2810 		dec_mnt_namespaces(ucounts);
2811 		return ERR_PTR(ret);
2812 	}
2813 	new_ns->ns.ops = &mntns_operations;
2814 	new_ns->seq = atomic64_add_return(1, &mnt_ns_seq);
2815 	atomic_set(&new_ns->count, 1);
2816 	new_ns->root = NULL;
2817 	INIT_LIST_HEAD(&new_ns->list);
2818 	init_waitqueue_head(&new_ns->poll);
2819 	new_ns->event = 0;
2820 	new_ns->user_ns = get_user_ns(user_ns);
2821 	new_ns->ucounts = ucounts;
2822 	new_ns->mounts = 0;
2823 	new_ns->pending_mounts = 0;
2824 	return new_ns;
2825 }
2826 
2827 __latent_entropy
2828 struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
2829 		struct user_namespace *user_ns, struct fs_struct *new_fs)
2830 {
2831 	struct mnt_namespace *new_ns;
2832 	struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
2833 	struct mount *p, *q;
2834 	struct mount *old;
2835 	struct mount *new;
2836 	int copy_flags;
2837 
2838 	BUG_ON(!ns);
2839 
2840 	if (likely(!(flags & CLONE_NEWNS))) {
2841 		get_mnt_ns(ns);
2842 		return ns;
2843 	}
2844 
2845 	old = ns->root;
2846 
2847 	new_ns = alloc_mnt_ns(user_ns);
2848 	if (IS_ERR(new_ns))
2849 		return new_ns;
2850 
2851 	namespace_lock();
2852 	/* First pass: copy the tree topology */
2853 	copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE;
2854 	if (user_ns != ns->user_ns)
2855 		copy_flags |= CL_SHARED_TO_SLAVE | CL_UNPRIVILEGED;
2856 	new = copy_tree(old, old->mnt.mnt_root, copy_flags);
2857 	if (IS_ERR(new)) {
2858 		namespace_unlock();
2859 		free_mnt_ns(new_ns);
2860 		return ERR_CAST(new);
2861 	}
2862 	new_ns->root = new;
2863 	list_add_tail(&new_ns->list, &new->mnt_list);
2864 
2865 	/*
2866 	 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
2867 	 * as belonging to new namespace.  We have already acquired a private
2868 	 * fs_struct, so tsk->fs->lock is not needed.
2869 	 */
2870 	p = old;
2871 	q = new;
2872 	while (p) {
2873 		q->mnt_ns = new_ns;
2874 		new_ns->mounts++;
2875 		if (new_fs) {
2876 			if (&p->mnt == new_fs->root.mnt) {
2877 				new_fs->root.mnt = mntget(&q->mnt);
2878 				rootmnt = &p->mnt;
2879 			}
2880 			if (&p->mnt == new_fs->pwd.mnt) {
2881 				new_fs->pwd.mnt = mntget(&q->mnt);
2882 				pwdmnt = &p->mnt;
2883 			}
2884 		}
2885 		p = next_mnt(p, old);
2886 		q = next_mnt(q, new);
2887 		if (!q)
2888 			break;
2889 		while (p->mnt.mnt_root != q->mnt.mnt_root)
2890 			p = next_mnt(p, old);
2891 	}
2892 	namespace_unlock();
2893 
2894 	if (rootmnt)
2895 		mntput(rootmnt);
2896 	if (pwdmnt)
2897 		mntput(pwdmnt);
2898 
2899 	return new_ns;
2900 }
2901 
2902 /**
2903  * create_mnt_ns - creates a private namespace and adds a root filesystem
2904  * @mnt: pointer to the new root filesystem mountpoint
2905  */
2906 static struct mnt_namespace *create_mnt_ns(struct vfsmount *m)
2907 {
2908 	struct mnt_namespace *new_ns = alloc_mnt_ns(&init_user_ns);
2909 	if (!IS_ERR(new_ns)) {
2910 		struct mount *mnt = real_mount(m);
2911 		mnt->mnt_ns = new_ns;
2912 		new_ns->root = mnt;
2913 		new_ns->mounts++;
2914 		list_add(&mnt->mnt_list, &new_ns->list);
2915 	} else {
2916 		mntput(m);
2917 	}
2918 	return new_ns;
2919 }
2920 
2921 struct dentry *mount_subtree(struct vfsmount *mnt, const char *name)
2922 {
2923 	struct mnt_namespace *ns;
2924 	struct super_block *s;
2925 	struct path path;
2926 	int err;
2927 
2928 	ns = create_mnt_ns(mnt);
2929 	if (IS_ERR(ns))
2930 		return ERR_CAST(ns);
2931 
2932 	err = vfs_path_lookup(mnt->mnt_root, mnt,
2933 			name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
2934 
2935 	put_mnt_ns(ns);
2936 
2937 	if (err)
2938 		return ERR_PTR(err);
2939 
2940 	/* trade a vfsmount reference for active sb one */
2941 	s = path.mnt->mnt_sb;
2942 	atomic_inc(&s->s_active);
2943 	mntput(path.mnt);
2944 	/* lock the sucker */
2945 	down_write(&s->s_umount);
2946 	/* ... and return the root of (sub)tree on it */
2947 	return path.dentry;
2948 }
2949 EXPORT_SYMBOL(mount_subtree);
2950 
2951 SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
2952 		char __user *, type, unsigned long, flags, void __user *, data)
2953 {
2954 	int ret;
2955 	char *kernel_type;
2956 	char *kernel_dev;
2957 	void *options;
2958 
2959 	kernel_type = copy_mount_string(type);
2960 	ret = PTR_ERR(kernel_type);
2961 	if (IS_ERR(kernel_type))
2962 		goto out_type;
2963 
2964 	kernel_dev = copy_mount_string(dev_name);
2965 	ret = PTR_ERR(kernel_dev);
2966 	if (IS_ERR(kernel_dev))
2967 		goto out_dev;
2968 
2969 	options = copy_mount_options(data);
2970 	ret = PTR_ERR(options);
2971 	if (IS_ERR(options))
2972 		goto out_data;
2973 
2974 	ret = do_mount(kernel_dev, dir_name, kernel_type, flags, options);
2975 
2976 	kfree(options);
2977 out_data:
2978 	kfree(kernel_dev);
2979 out_dev:
2980 	kfree(kernel_type);
2981 out_type:
2982 	return ret;
2983 }
2984 
2985 /*
2986  * Return true if path is reachable from root
2987  *
2988  * namespace_sem or mount_lock is held
2989  */
2990 bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
2991 			 const struct path *root)
2992 {
2993 	while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
2994 		dentry = mnt->mnt_mountpoint;
2995 		mnt = mnt->mnt_parent;
2996 	}
2997 	return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
2998 }
2999 
3000 bool path_is_under(struct path *path1, struct path *path2)
3001 {
3002 	bool res;
3003 	read_seqlock_excl(&mount_lock);
3004 	res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
3005 	read_sequnlock_excl(&mount_lock);
3006 	return res;
3007 }
3008 EXPORT_SYMBOL(path_is_under);
3009 
3010 /*
3011  * pivot_root Semantics:
3012  * Moves the root file system of the current process to the directory put_old,
3013  * makes new_root as the new root file system of the current process, and sets
3014  * root/cwd of all processes which had them on the current root to new_root.
3015  *
3016  * Restrictions:
3017  * The new_root and put_old must be directories, and  must not be on the
3018  * same file  system as the current process root. The put_old  must  be
3019  * underneath new_root,  i.e. adding a non-zero number of /.. to the string
3020  * pointed to by put_old must yield the same directory as new_root. No other
3021  * file system may be mounted on put_old. After all, new_root is a mountpoint.
3022  *
3023  * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
3024  * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
3025  * in this situation.
3026  *
3027  * Notes:
3028  *  - we don't move root/cwd if they are not at the root (reason: if something
3029  *    cared enough to change them, it's probably wrong to force them elsewhere)
3030  *  - it's okay to pick a root that isn't the root of a file system, e.g.
3031  *    /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
3032  *    though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
3033  *    first.
3034  */
3035 SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
3036 		const char __user *, put_old)
3037 {
3038 	struct path new, old, parent_path, root_parent, root;
3039 	struct mount *new_mnt, *root_mnt, *old_mnt;
3040 	struct mountpoint *old_mp, *root_mp;
3041 	int error;
3042 
3043 	if (!may_mount())
3044 		return -EPERM;
3045 
3046 	error = user_path_dir(new_root, &new);
3047 	if (error)
3048 		goto out0;
3049 
3050 	error = user_path_dir(put_old, &old);
3051 	if (error)
3052 		goto out1;
3053 
3054 	error = security_sb_pivotroot(&old, &new);
3055 	if (error)
3056 		goto out2;
3057 
3058 	get_fs_root(current->fs, &root);
3059 	old_mp = lock_mount(&old);
3060 	error = PTR_ERR(old_mp);
3061 	if (IS_ERR(old_mp))
3062 		goto out3;
3063 
3064 	error = -EINVAL;
3065 	new_mnt = real_mount(new.mnt);
3066 	root_mnt = real_mount(root.mnt);
3067 	old_mnt = real_mount(old.mnt);
3068 	if (IS_MNT_SHARED(old_mnt) ||
3069 		IS_MNT_SHARED(new_mnt->mnt_parent) ||
3070 		IS_MNT_SHARED(root_mnt->mnt_parent))
3071 		goto out4;
3072 	if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
3073 		goto out4;
3074 	if (new_mnt->mnt.mnt_flags & MNT_LOCKED)
3075 		goto out4;
3076 	error = -ENOENT;
3077 	if (d_unlinked(new.dentry))
3078 		goto out4;
3079 	error = -EBUSY;
3080 	if (new_mnt == root_mnt || old_mnt == root_mnt)
3081 		goto out4; /* loop, on the same file system  */
3082 	error = -EINVAL;
3083 	if (root.mnt->mnt_root != root.dentry)
3084 		goto out4; /* not a mountpoint */
3085 	if (!mnt_has_parent(root_mnt))
3086 		goto out4; /* not attached */
3087 	root_mp = root_mnt->mnt_mp;
3088 	if (new.mnt->mnt_root != new.dentry)
3089 		goto out4; /* not a mountpoint */
3090 	if (!mnt_has_parent(new_mnt))
3091 		goto out4; /* not attached */
3092 	/* make sure we can reach put_old from new_root */
3093 	if (!is_path_reachable(old_mnt, old.dentry, &new))
3094 		goto out4;
3095 	/* make certain new is below the root */
3096 	if (!is_path_reachable(new_mnt, new.dentry, &root))
3097 		goto out4;
3098 	root_mp->m_count++; /* pin it so it won't go away */
3099 	lock_mount_hash();
3100 	detach_mnt(new_mnt, &parent_path);
3101 	detach_mnt(root_mnt, &root_parent);
3102 	if (root_mnt->mnt.mnt_flags & MNT_LOCKED) {
3103 		new_mnt->mnt.mnt_flags |= MNT_LOCKED;
3104 		root_mnt->mnt.mnt_flags &= ~MNT_LOCKED;
3105 	}
3106 	/* mount old root on put_old */
3107 	attach_mnt(root_mnt, old_mnt, old_mp);
3108 	/* mount new_root on / */
3109 	attach_mnt(new_mnt, real_mount(root_parent.mnt), root_mp);
3110 	touch_mnt_namespace(current->nsproxy->mnt_ns);
3111 	/* A moved mount should not expire automatically */
3112 	list_del_init(&new_mnt->mnt_expire);
3113 	unlock_mount_hash();
3114 	chroot_fs_refs(&root, &new);
3115 	put_mountpoint(root_mp);
3116 	error = 0;
3117 out4:
3118 	unlock_mount(old_mp);
3119 	if (!error) {
3120 		path_put(&root_parent);
3121 		path_put(&parent_path);
3122 	}
3123 out3:
3124 	path_put(&root);
3125 out2:
3126 	path_put(&old);
3127 out1:
3128 	path_put(&new);
3129 out0:
3130 	return error;
3131 }
3132 
3133 static void __init init_mount_tree(void)
3134 {
3135 	struct vfsmount *mnt;
3136 	struct mnt_namespace *ns;
3137 	struct path root;
3138 	struct file_system_type *type;
3139 
3140 	type = get_fs_type("rootfs");
3141 	if (!type)
3142 		panic("Can't find rootfs type");
3143 	mnt = vfs_kern_mount(type, 0, "rootfs", NULL);
3144 	put_filesystem(type);
3145 	if (IS_ERR(mnt))
3146 		panic("Can't create rootfs");
3147 
3148 	ns = create_mnt_ns(mnt);
3149 	if (IS_ERR(ns))
3150 		panic("Can't allocate initial namespace");
3151 
3152 	init_task.nsproxy->mnt_ns = ns;
3153 	get_mnt_ns(ns);
3154 
3155 	root.mnt = mnt;
3156 	root.dentry = mnt->mnt_root;
3157 	mnt->mnt_flags |= MNT_LOCKED;
3158 
3159 	set_fs_pwd(current->fs, &root);
3160 	set_fs_root(current->fs, &root);
3161 }
3162 
3163 void __init mnt_init(void)
3164 {
3165 	unsigned u;
3166 	int err;
3167 
3168 	mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
3169 			0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
3170 
3171 	mount_hashtable = alloc_large_system_hash("Mount-cache",
3172 				sizeof(struct hlist_head),
3173 				mhash_entries, 19,
3174 				0,
3175 				&m_hash_shift, &m_hash_mask, 0, 0);
3176 	mountpoint_hashtable = alloc_large_system_hash("Mountpoint-cache",
3177 				sizeof(struct hlist_head),
3178 				mphash_entries, 19,
3179 				0,
3180 				&mp_hash_shift, &mp_hash_mask, 0, 0);
3181 
3182 	if (!mount_hashtable || !mountpoint_hashtable)
3183 		panic("Failed to allocate mount hash table\n");
3184 
3185 	for (u = 0; u <= m_hash_mask; u++)
3186 		INIT_HLIST_HEAD(&mount_hashtable[u]);
3187 	for (u = 0; u <= mp_hash_mask; u++)
3188 		INIT_HLIST_HEAD(&mountpoint_hashtable[u]);
3189 
3190 	kernfs_init();
3191 
3192 	err = sysfs_init();
3193 	if (err)
3194 		printk(KERN_WARNING "%s: sysfs_init error: %d\n",
3195 			__func__, err);
3196 	fs_kobj = kobject_create_and_add("fs", NULL);
3197 	if (!fs_kobj)
3198 		printk(KERN_WARNING "%s: kobj create error\n", __func__);
3199 	init_rootfs();
3200 	init_mount_tree();
3201 }
3202 
3203 void put_mnt_ns(struct mnt_namespace *ns)
3204 {
3205 	if (!atomic_dec_and_test(&ns->count))
3206 		return;
3207 	drop_collected_mounts(&ns->root->mnt);
3208 	free_mnt_ns(ns);
3209 }
3210 
3211 struct vfsmount *kern_mount_data(struct file_system_type *type, void *data)
3212 {
3213 	struct vfsmount *mnt;
3214 	mnt = vfs_kern_mount(type, MS_KERNMOUNT, type->name, data);
3215 	if (!IS_ERR(mnt)) {
3216 		/*
3217 		 * it is a longterm mount, don't release mnt until
3218 		 * we unmount before file sys is unregistered
3219 		*/
3220 		real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
3221 	}
3222 	return mnt;
3223 }
3224 EXPORT_SYMBOL_GPL(kern_mount_data);
3225 
3226 void kern_unmount(struct vfsmount *mnt)
3227 {
3228 	/* release long term mount so mount point can be released */
3229 	if (!IS_ERR_OR_NULL(mnt)) {
3230 		real_mount(mnt)->mnt_ns = NULL;
3231 		synchronize_rcu();	/* yecchhh... */
3232 		mntput(mnt);
3233 	}
3234 }
3235 EXPORT_SYMBOL(kern_unmount);
3236 
3237 bool our_mnt(struct vfsmount *mnt)
3238 {
3239 	return check_mnt(real_mount(mnt));
3240 }
3241 
3242 bool current_chrooted(void)
3243 {
3244 	/* Does the current process have a non-standard root */
3245 	struct path ns_root;
3246 	struct path fs_root;
3247 	bool chrooted;
3248 
3249 	/* Find the namespace root */
3250 	ns_root.mnt = &current->nsproxy->mnt_ns->root->mnt;
3251 	ns_root.dentry = ns_root.mnt->mnt_root;
3252 	path_get(&ns_root);
3253 	while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root))
3254 		;
3255 
3256 	get_fs_root(current->fs, &fs_root);
3257 
3258 	chrooted = !path_equal(&fs_root, &ns_root);
3259 
3260 	path_put(&fs_root);
3261 	path_put(&ns_root);
3262 
3263 	return chrooted;
3264 }
3265 
3266 static bool mnt_already_visible(struct mnt_namespace *ns, struct vfsmount *new,
3267 				int *new_mnt_flags)
3268 {
3269 	int new_flags = *new_mnt_flags;
3270 	struct mount *mnt;
3271 	bool visible = false;
3272 
3273 	down_read(&namespace_sem);
3274 	list_for_each_entry(mnt, &ns->list, mnt_list) {
3275 		struct mount *child;
3276 		int mnt_flags;
3277 
3278 		if (mnt->mnt.mnt_sb->s_type != new->mnt_sb->s_type)
3279 			continue;
3280 
3281 		/* This mount is not fully visible if it's root directory
3282 		 * is not the root directory of the filesystem.
3283 		 */
3284 		if (mnt->mnt.mnt_root != mnt->mnt.mnt_sb->s_root)
3285 			continue;
3286 
3287 		/* A local view of the mount flags */
3288 		mnt_flags = mnt->mnt.mnt_flags;
3289 
3290 		/* Don't miss readonly hidden in the superblock flags */
3291 		if (mnt->mnt.mnt_sb->s_flags & MS_RDONLY)
3292 			mnt_flags |= MNT_LOCK_READONLY;
3293 
3294 		/* Verify the mount flags are equal to or more permissive
3295 		 * than the proposed new mount.
3296 		 */
3297 		if ((mnt_flags & MNT_LOCK_READONLY) &&
3298 		    !(new_flags & MNT_READONLY))
3299 			continue;
3300 		if ((mnt_flags & MNT_LOCK_ATIME) &&
3301 		    ((mnt_flags & MNT_ATIME_MASK) != (new_flags & MNT_ATIME_MASK)))
3302 			continue;
3303 
3304 		/* This mount is not fully visible if there are any
3305 		 * locked child mounts that cover anything except for
3306 		 * empty directories.
3307 		 */
3308 		list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
3309 			struct inode *inode = child->mnt_mountpoint->d_inode;
3310 			/* Only worry about locked mounts */
3311 			if (!(child->mnt.mnt_flags & MNT_LOCKED))
3312 				continue;
3313 			/* Is the directory permanetly empty? */
3314 			if (!is_empty_dir_inode(inode))
3315 				goto next;
3316 		}
3317 		/* Preserve the locked attributes */
3318 		*new_mnt_flags |= mnt_flags & (MNT_LOCK_READONLY | \
3319 					       MNT_LOCK_ATIME);
3320 		visible = true;
3321 		goto found;
3322 	next:	;
3323 	}
3324 found:
3325 	up_read(&namespace_sem);
3326 	return visible;
3327 }
3328 
3329 static bool mount_too_revealing(struct vfsmount *mnt, int *new_mnt_flags)
3330 {
3331 	const unsigned long required_iflags = SB_I_NOEXEC | SB_I_NODEV;
3332 	struct mnt_namespace *ns = current->nsproxy->mnt_ns;
3333 	unsigned long s_iflags;
3334 
3335 	if (ns->user_ns == &init_user_ns)
3336 		return false;
3337 
3338 	/* Can this filesystem be too revealing? */
3339 	s_iflags = mnt->mnt_sb->s_iflags;
3340 	if (!(s_iflags & SB_I_USERNS_VISIBLE))
3341 		return false;
3342 
3343 	if ((s_iflags & required_iflags) != required_iflags) {
3344 		WARN_ONCE(1, "Expected s_iflags to contain 0x%lx\n",
3345 			  required_iflags);
3346 		return true;
3347 	}
3348 
3349 	return !mnt_already_visible(ns, mnt, new_mnt_flags);
3350 }
3351 
3352 bool mnt_may_suid(struct vfsmount *mnt)
3353 {
3354 	/*
3355 	 * Foreign mounts (accessed via fchdir or through /proc
3356 	 * symlinks) are always treated as if they are nosuid.  This
3357 	 * prevents namespaces from trusting potentially unsafe
3358 	 * suid/sgid bits, file caps, or security labels that originate
3359 	 * in other namespaces.
3360 	 */
3361 	return !(mnt->mnt_flags & MNT_NOSUID) && check_mnt(real_mount(mnt)) &&
3362 	       current_in_userns(mnt->mnt_sb->s_user_ns);
3363 }
3364 
3365 static struct ns_common *mntns_get(struct task_struct *task)
3366 {
3367 	struct ns_common *ns = NULL;
3368 	struct nsproxy *nsproxy;
3369 
3370 	task_lock(task);
3371 	nsproxy = task->nsproxy;
3372 	if (nsproxy) {
3373 		ns = &nsproxy->mnt_ns->ns;
3374 		get_mnt_ns(to_mnt_ns(ns));
3375 	}
3376 	task_unlock(task);
3377 
3378 	return ns;
3379 }
3380 
3381 static void mntns_put(struct ns_common *ns)
3382 {
3383 	put_mnt_ns(to_mnt_ns(ns));
3384 }
3385 
3386 static int mntns_install(struct nsproxy *nsproxy, struct ns_common *ns)
3387 {
3388 	struct fs_struct *fs = current->fs;
3389 	struct mnt_namespace *mnt_ns = to_mnt_ns(ns);
3390 	struct path root;
3391 
3392 	if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) ||
3393 	    !ns_capable(current_user_ns(), CAP_SYS_CHROOT) ||
3394 	    !ns_capable(current_user_ns(), CAP_SYS_ADMIN))
3395 		return -EPERM;
3396 
3397 	if (fs->users != 1)
3398 		return -EINVAL;
3399 
3400 	get_mnt_ns(mnt_ns);
3401 	put_mnt_ns(nsproxy->mnt_ns);
3402 	nsproxy->mnt_ns = mnt_ns;
3403 
3404 	/* Find the root */
3405 	root.mnt    = &mnt_ns->root->mnt;
3406 	root.dentry = mnt_ns->root->mnt.mnt_root;
3407 	path_get(&root);
3408 	while(d_mountpoint(root.dentry) && follow_down_one(&root))
3409 		;
3410 
3411 	/* Update the pwd and root */
3412 	set_fs_pwd(fs, &root);
3413 	set_fs_root(fs, &root);
3414 
3415 	path_put(&root);
3416 	return 0;
3417 }
3418 
3419 static struct user_namespace *mntns_owner(struct ns_common *ns)
3420 {
3421 	return to_mnt_ns(ns)->user_ns;
3422 }
3423 
3424 const struct proc_ns_operations mntns_operations = {
3425 	.name		= "mnt",
3426 	.type		= CLONE_NEWNS,
3427 	.get		= mntns_get,
3428 	.put		= mntns_put,
3429 	.install	= mntns_install,
3430 	.owner		= mntns_owner,
3431 };
3432