1 /* 2 * linux/fs/namespace.c 3 * 4 * (C) Copyright Al Viro 2000, 2001 5 * Released under GPL v2. 6 * 7 * Based on code from fs/super.c, copyright Linus Torvalds and others. 8 * Heavily rewritten. 9 */ 10 11 #include <linux/syscalls.h> 12 #include <linux/export.h> 13 #include <linux/capability.h> 14 #include <linux/mnt_namespace.h> 15 #include <linux/user_namespace.h> 16 #include <linux/namei.h> 17 #include <linux/security.h> 18 #include <linux/idr.h> 19 #include <linux/init.h> /* init_rootfs */ 20 #include <linux/fs_struct.h> /* get_fs_root et.al. */ 21 #include <linux/fsnotify.h> /* fsnotify_vfsmount_delete */ 22 #include <linux/uaccess.h> 23 #include <linux/proc_ns.h> 24 #include <linux/magic.h> 25 #include <linux/bootmem.h> 26 #include <linux/task_work.h> 27 #include "pnode.h" 28 #include "internal.h" 29 30 /* Maximum number of mounts in a mount namespace */ 31 unsigned int sysctl_mount_max __read_mostly = 100000; 32 33 static unsigned int m_hash_mask __read_mostly; 34 static unsigned int m_hash_shift __read_mostly; 35 static unsigned int mp_hash_mask __read_mostly; 36 static unsigned int mp_hash_shift __read_mostly; 37 38 static __initdata unsigned long mhash_entries; 39 static int __init set_mhash_entries(char *str) 40 { 41 if (!str) 42 return 0; 43 mhash_entries = simple_strtoul(str, &str, 0); 44 return 1; 45 } 46 __setup("mhash_entries=", set_mhash_entries); 47 48 static __initdata unsigned long mphash_entries; 49 static int __init set_mphash_entries(char *str) 50 { 51 if (!str) 52 return 0; 53 mphash_entries = simple_strtoul(str, &str, 0); 54 return 1; 55 } 56 __setup("mphash_entries=", set_mphash_entries); 57 58 static u64 event; 59 static DEFINE_IDA(mnt_id_ida); 60 static DEFINE_IDA(mnt_group_ida); 61 static DEFINE_SPINLOCK(mnt_id_lock); 62 static int mnt_id_start = 0; 63 static int mnt_group_start = 1; 64 65 static struct hlist_head *mount_hashtable __read_mostly; 66 static struct hlist_head *mountpoint_hashtable __read_mostly; 67 static struct kmem_cache *mnt_cache __read_mostly; 68 static DECLARE_RWSEM(namespace_sem); 69 70 /* /sys/fs */ 71 struct kobject *fs_kobj; 72 EXPORT_SYMBOL_GPL(fs_kobj); 73 74 /* 75 * vfsmount lock may be taken for read to prevent changes to the 76 * vfsmount hash, ie. during mountpoint lookups or walking back 77 * up the tree. 78 * 79 * It should be taken for write in all cases where the vfsmount 80 * tree or hash is modified or when a vfsmount structure is modified. 81 */ 82 __cacheline_aligned_in_smp DEFINE_SEQLOCK(mount_lock); 83 84 static inline struct hlist_head *m_hash(struct vfsmount *mnt, struct dentry *dentry) 85 { 86 unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES); 87 tmp += ((unsigned long)dentry / L1_CACHE_BYTES); 88 tmp = tmp + (tmp >> m_hash_shift); 89 return &mount_hashtable[tmp & m_hash_mask]; 90 } 91 92 static inline struct hlist_head *mp_hash(struct dentry *dentry) 93 { 94 unsigned long tmp = ((unsigned long)dentry / L1_CACHE_BYTES); 95 tmp = tmp + (tmp >> mp_hash_shift); 96 return &mountpoint_hashtable[tmp & mp_hash_mask]; 97 } 98 99 /* 100 * allocation is serialized by namespace_sem, but we need the spinlock to 101 * serialize with freeing. 102 */ 103 static int mnt_alloc_id(struct mount *mnt) 104 { 105 int res; 106 107 retry: 108 ida_pre_get(&mnt_id_ida, GFP_KERNEL); 109 spin_lock(&mnt_id_lock); 110 res = ida_get_new_above(&mnt_id_ida, mnt_id_start, &mnt->mnt_id); 111 if (!res) 112 mnt_id_start = mnt->mnt_id + 1; 113 spin_unlock(&mnt_id_lock); 114 if (res == -EAGAIN) 115 goto retry; 116 117 return res; 118 } 119 120 static void mnt_free_id(struct mount *mnt) 121 { 122 int id = mnt->mnt_id; 123 spin_lock(&mnt_id_lock); 124 ida_remove(&mnt_id_ida, id); 125 if (mnt_id_start > id) 126 mnt_id_start = id; 127 spin_unlock(&mnt_id_lock); 128 } 129 130 /* 131 * Allocate a new peer group ID 132 * 133 * mnt_group_ida is protected by namespace_sem 134 */ 135 static int mnt_alloc_group_id(struct mount *mnt) 136 { 137 int res; 138 139 if (!ida_pre_get(&mnt_group_ida, GFP_KERNEL)) 140 return -ENOMEM; 141 142 res = ida_get_new_above(&mnt_group_ida, 143 mnt_group_start, 144 &mnt->mnt_group_id); 145 if (!res) 146 mnt_group_start = mnt->mnt_group_id + 1; 147 148 return res; 149 } 150 151 /* 152 * Release a peer group ID 153 */ 154 void mnt_release_group_id(struct mount *mnt) 155 { 156 int id = mnt->mnt_group_id; 157 ida_remove(&mnt_group_ida, id); 158 if (mnt_group_start > id) 159 mnt_group_start = id; 160 mnt->mnt_group_id = 0; 161 } 162 163 /* 164 * vfsmount lock must be held for read 165 */ 166 static inline void mnt_add_count(struct mount *mnt, int n) 167 { 168 #ifdef CONFIG_SMP 169 this_cpu_add(mnt->mnt_pcp->mnt_count, n); 170 #else 171 preempt_disable(); 172 mnt->mnt_count += n; 173 preempt_enable(); 174 #endif 175 } 176 177 /* 178 * vfsmount lock must be held for write 179 */ 180 unsigned int mnt_get_count(struct mount *mnt) 181 { 182 #ifdef CONFIG_SMP 183 unsigned int count = 0; 184 int cpu; 185 186 for_each_possible_cpu(cpu) { 187 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count; 188 } 189 190 return count; 191 #else 192 return mnt->mnt_count; 193 #endif 194 } 195 196 static void drop_mountpoint(struct fs_pin *p) 197 { 198 struct mount *m = container_of(p, struct mount, mnt_umount); 199 dput(m->mnt_ex_mountpoint); 200 pin_remove(p); 201 mntput(&m->mnt); 202 } 203 204 static struct mount *alloc_vfsmnt(const char *name) 205 { 206 struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL); 207 if (mnt) { 208 int err; 209 210 err = mnt_alloc_id(mnt); 211 if (err) 212 goto out_free_cache; 213 214 if (name) { 215 mnt->mnt_devname = kstrdup_const(name, GFP_KERNEL); 216 if (!mnt->mnt_devname) 217 goto out_free_id; 218 } 219 220 #ifdef CONFIG_SMP 221 mnt->mnt_pcp = alloc_percpu(struct mnt_pcp); 222 if (!mnt->mnt_pcp) 223 goto out_free_devname; 224 225 this_cpu_add(mnt->mnt_pcp->mnt_count, 1); 226 #else 227 mnt->mnt_count = 1; 228 mnt->mnt_writers = 0; 229 #endif 230 231 INIT_HLIST_NODE(&mnt->mnt_hash); 232 INIT_LIST_HEAD(&mnt->mnt_child); 233 INIT_LIST_HEAD(&mnt->mnt_mounts); 234 INIT_LIST_HEAD(&mnt->mnt_list); 235 INIT_LIST_HEAD(&mnt->mnt_expire); 236 INIT_LIST_HEAD(&mnt->mnt_share); 237 INIT_LIST_HEAD(&mnt->mnt_slave_list); 238 INIT_LIST_HEAD(&mnt->mnt_slave); 239 INIT_HLIST_NODE(&mnt->mnt_mp_list); 240 #ifdef CONFIG_FSNOTIFY 241 INIT_HLIST_HEAD(&mnt->mnt_fsnotify_marks); 242 #endif 243 init_fs_pin(&mnt->mnt_umount, drop_mountpoint); 244 } 245 return mnt; 246 247 #ifdef CONFIG_SMP 248 out_free_devname: 249 kfree_const(mnt->mnt_devname); 250 #endif 251 out_free_id: 252 mnt_free_id(mnt); 253 out_free_cache: 254 kmem_cache_free(mnt_cache, mnt); 255 return NULL; 256 } 257 258 /* 259 * Most r/o checks on a fs are for operations that take 260 * discrete amounts of time, like a write() or unlink(). 261 * We must keep track of when those operations start 262 * (for permission checks) and when they end, so that 263 * we can determine when writes are able to occur to 264 * a filesystem. 265 */ 266 /* 267 * __mnt_is_readonly: check whether a mount is read-only 268 * @mnt: the mount to check for its write status 269 * 270 * This shouldn't be used directly ouside of the VFS. 271 * It does not guarantee that the filesystem will stay 272 * r/w, just that it is right *now*. This can not and 273 * should not be used in place of IS_RDONLY(inode). 274 * mnt_want/drop_write() will _keep_ the filesystem 275 * r/w. 276 */ 277 int __mnt_is_readonly(struct vfsmount *mnt) 278 { 279 if (mnt->mnt_flags & MNT_READONLY) 280 return 1; 281 if (mnt->mnt_sb->s_flags & MS_RDONLY) 282 return 1; 283 return 0; 284 } 285 EXPORT_SYMBOL_GPL(__mnt_is_readonly); 286 287 static inline void mnt_inc_writers(struct mount *mnt) 288 { 289 #ifdef CONFIG_SMP 290 this_cpu_inc(mnt->mnt_pcp->mnt_writers); 291 #else 292 mnt->mnt_writers++; 293 #endif 294 } 295 296 static inline void mnt_dec_writers(struct mount *mnt) 297 { 298 #ifdef CONFIG_SMP 299 this_cpu_dec(mnt->mnt_pcp->mnt_writers); 300 #else 301 mnt->mnt_writers--; 302 #endif 303 } 304 305 static unsigned int mnt_get_writers(struct mount *mnt) 306 { 307 #ifdef CONFIG_SMP 308 unsigned int count = 0; 309 int cpu; 310 311 for_each_possible_cpu(cpu) { 312 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers; 313 } 314 315 return count; 316 #else 317 return mnt->mnt_writers; 318 #endif 319 } 320 321 static int mnt_is_readonly(struct vfsmount *mnt) 322 { 323 if (mnt->mnt_sb->s_readonly_remount) 324 return 1; 325 /* Order wrt setting s_flags/s_readonly_remount in do_remount() */ 326 smp_rmb(); 327 return __mnt_is_readonly(mnt); 328 } 329 330 /* 331 * Most r/o & frozen checks on a fs are for operations that take discrete 332 * amounts of time, like a write() or unlink(). We must keep track of when 333 * those operations start (for permission checks) and when they end, so that we 334 * can determine when writes are able to occur to a filesystem. 335 */ 336 /** 337 * __mnt_want_write - get write access to a mount without freeze protection 338 * @m: the mount on which to take a write 339 * 340 * This tells the low-level filesystem that a write is about to be performed to 341 * it, and makes sure that writes are allowed (mnt it read-write) before 342 * returning success. This operation does not protect against filesystem being 343 * frozen. When the write operation is finished, __mnt_drop_write() must be 344 * called. This is effectively a refcount. 345 */ 346 int __mnt_want_write(struct vfsmount *m) 347 { 348 struct mount *mnt = real_mount(m); 349 int ret = 0; 350 351 preempt_disable(); 352 mnt_inc_writers(mnt); 353 /* 354 * The store to mnt_inc_writers must be visible before we pass 355 * MNT_WRITE_HOLD loop below, so that the slowpath can see our 356 * incremented count after it has set MNT_WRITE_HOLD. 357 */ 358 smp_mb(); 359 while (ACCESS_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD) 360 cpu_relax(); 361 /* 362 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will 363 * be set to match its requirements. So we must not load that until 364 * MNT_WRITE_HOLD is cleared. 365 */ 366 smp_rmb(); 367 if (mnt_is_readonly(m)) { 368 mnt_dec_writers(mnt); 369 ret = -EROFS; 370 } 371 preempt_enable(); 372 373 return ret; 374 } 375 376 /** 377 * mnt_want_write - get write access to a mount 378 * @m: the mount on which to take a write 379 * 380 * This tells the low-level filesystem that a write is about to be performed to 381 * it, and makes sure that writes are allowed (mount is read-write, filesystem 382 * is not frozen) before returning success. When the write operation is 383 * finished, mnt_drop_write() must be called. This is effectively a refcount. 384 */ 385 int mnt_want_write(struct vfsmount *m) 386 { 387 int ret; 388 389 sb_start_write(m->mnt_sb); 390 ret = __mnt_want_write(m); 391 if (ret) 392 sb_end_write(m->mnt_sb); 393 return ret; 394 } 395 EXPORT_SYMBOL_GPL(mnt_want_write); 396 397 /** 398 * mnt_clone_write - get write access to a mount 399 * @mnt: the mount on which to take a write 400 * 401 * This is effectively like mnt_want_write, except 402 * it must only be used to take an extra write reference 403 * on a mountpoint that we already know has a write reference 404 * on it. This allows some optimisation. 405 * 406 * After finished, mnt_drop_write must be called as usual to 407 * drop the reference. 408 */ 409 int mnt_clone_write(struct vfsmount *mnt) 410 { 411 /* superblock may be r/o */ 412 if (__mnt_is_readonly(mnt)) 413 return -EROFS; 414 preempt_disable(); 415 mnt_inc_writers(real_mount(mnt)); 416 preempt_enable(); 417 return 0; 418 } 419 EXPORT_SYMBOL_GPL(mnt_clone_write); 420 421 /** 422 * __mnt_want_write_file - get write access to a file's mount 423 * @file: the file who's mount on which to take a write 424 * 425 * This is like __mnt_want_write, but it takes a file and can 426 * do some optimisations if the file is open for write already 427 */ 428 int __mnt_want_write_file(struct file *file) 429 { 430 if (!(file->f_mode & FMODE_WRITER)) 431 return __mnt_want_write(file->f_path.mnt); 432 else 433 return mnt_clone_write(file->f_path.mnt); 434 } 435 436 /** 437 * mnt_want_write_file - get write access to a file's mount 438 * @file: the file who's mount on which to take a write 439 * 440 * This is like mnt_want_write, but it takes a file and can 441 * do some optimisations if the file is open for write already 442 */ 443 int mnt_want_write_file(struct file *file) 444 { 445 int ret; 446 447 sb_start_write(file->f_path.mnt->mnt_sb); 448 ret = __mnt_want_write_file(file); 449 if (ret) 450 sb_end_write(file->f_path.mnt->mnt_sb); 451 return ret; 452 } 453 EXPORT_SYMBOL_GPL(mnt_want_write_file); 454 455 /** 456 * __mnt_drop_write - give up write access to a mount 457 * @mnt: the mount on which to give up write access 458 * 459 * Tells the low-level filesystem that we are done 460 * performing writes to it. Must be matched with 461 * __mnt_want_write() call above. 462 */ 463 void __mnt_drop_write(struct vfsmount *mnt) 464 { 465 preempt_disable(); 466 mnt_dec_writers(real_mount(mnt)); 467 preempt_enable(); 468 } 469 470 /** 471 * mnt_drop_write - give up write access to a mount 472 * @mnt: the mount on which to give up write access 473 * 474 * Tells the low-level filesystem that we are done performing writes to it and 475 * also allows filesystem to be frozen again. Must be matched with 476 * mnt_want_write() call above. 477 */ 478 void mnt_drop_write(struct vfsmount *mnt) 479 { 480 __mnt_drop_write(mnt); 481 sb_end_write(mnt->mnt_sb); 482 } 483 EXPORT_SYMBOL_GPL(mnt_drop_write); 484 485 void __mnt_drop_write_file(struct file *file) 486 { 487 __mnt_drop_write(file->f_path.mnt); 488 } 489 490 void mnt_drop_write_file(struct file *file) 491 { 492 mnt_drop_write(file->f_path.mnt); 493 } 494 EXPORT_SYMBOL(mnt_drop_write_file); 495 496 static int mnt_make_readonly(struct mount *mnt) 497 { 498 int ret = 0; 499 500 lock_mount_hash(); 501 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD; 502 /* 503 * After storing MNT_WRITE_HOLD, we'll read the counters. This store 504 * should be visible before we do. 505 */ 506 smp_mb(); 507 508 /* 509 * With writers on hold, if this value is zero, then there are 510 * definitely no active writers (although held writers may subsequently 511 * increment the count, they'll have to wait, and decrement it after 512 * seeing MNT_READONLY). 513 * 514 * It is OK to have counter incremented on one CPU and decremented on 515 * another: the sum will add up correctly. The danger would be when we 516 * sum up each counter, if we read a counter before it is incremented, 517 * but then read another CPU's count which it has been subsequently 518 * decremented from -- we would see more decrements than we should. 519 * MNT_WRITE_HOLD protects against this scenario, because 520 * mnt_want_write first increments count, then smp_mb, then spins on 521 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while 522 * we're counting up here. 523 */ 524 if (mnt_get_writers(mnt) > 0) 525 ret = -EBUSY; 526 else 527 mnt->mnt.mnt_flags |= MNT_READONLY; 528 /* 529 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers 530 * that become unheld will see MNT_READONLY. 531 */ 532 smp_wmb(); 533 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD; 534 unlock_mount_hash(); 535 return ret; 536 } 537 538 static void __mnt_unmake_readonly(struct mount *mnt) 539 { 540 lock_mount_hash(); 541 mnt->mnt.mnt_flags &= ~MNT_READONLY; 542 unlock_mount_hash(); 543 } 544 545 int sb_prepare_remount_readonly(struct super_block *sb) 546 { 547 struct mount *mnt; 548 int err = 0; 549 550 /* Racy optimization. Recheck the counter under MNT_WRITE_HOLD */ 551 if (atomic_long_read(&sb->s_remove_count)) 552 return -EBUSY; 553 554 lock_mount_hash(); 555 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) { 556 if (!(mnt->mnt.mnt_flags & MNT_READONLY)) { 557 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD; 558 smp_mb(); 559 if (mnt_get_writers(mnt) > 0) { 560 err = -EBUSY; 561 break; 562 } 563 } 564 } 565 if (!err && atomic_long_read(&sb->s_remove_count)) 566 err = -EBUSY; 567 568 if (!err) { 569 sb->s_readonly_remount = 1; 570 smp_wmb(); 571 } 572 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) { 573 if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD) 574 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD; 575 } 576 unlock_mount_hash(); 577 578 return err; 579 } 580 581 static void free_vfsmnt(struct mount *mnt) 582 { 583 kfree_const(mnt->mnt_devname); 584 #ifdef CONFIG_SMP 585 free_percpu(mnt->mnt_pcp); 586 #endif 587 kmem_cache_free(mnt_cache, mnt); 588 } 589 590 static void delayed_free_vfsmnt(struct rcu_head *head) 591 { 592 free_vfsmnt(container_of(head, struct mount, mnt_rcu)); 593 } 594 595 /* call under rcu_read_lock */ 596 int __legitimize_mnt(struct vfsmount *bastard, unsigned seq) 597 { 598 struct mount *mnt; 599 if (read_seqretry(&mount_lock, seq)) 600 return 1; 601 if (bastard == NULL) 602 return 0; 603 mnt = real_mount(bastard); 604 mnt_add_count(mnt, 1); 605 if (likely(!read_seqretry(&mount_lock, seq))) 606 return 0; 607 if (bastard->mnt_flags & MNT_SYNC_UMOUNT) { 608 mnt_add_count(mnt, -1); 609 return 1; 610 } 611 return -1; 612 } 613 614 /* call under rcu_read_lock */ 615 bool legitimize_mnt(struct vfsmount *bastard, unsigned seq) 616 { 617 int res = __legitimize_mnt(bastard, seq); 618 if (likely(!res)) 619 return true; 620 if (unlikely(res < 0)) { 621 rcu_read_unlock(); 622 mntput(bastard); 623 rcu_read_lock(); 624 } 625 return false; 626 } 627 628 /* 629 * find the first mount at @dentry on vfsmount @mnt. 630 * call under rcu_read_lock() 631 */ 632 struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry) 633 { 634 struct hlist_head *head = m_hash(mnt, dentry); 635 struct mount *p; 636 637 hlist_for_each_entry_rcu(p, head, mnt_hash) 638 if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry) 639 return p; 640 return NULL; 641 } 642 643 /* 644 * find the last mount at @dentry on vfsmount @mnt. 645 * mount_lock must be held. 646 */ 647 struct mount *__lookup_mnt_last(struct vfsmount *mnt, struct dentry *dentry) 648 { 649 struct mount *p, *res = NULL; 650 p = __lookup_mnt(mnt, dentry); 651 if (!p) 652 goto out; 653 if (!(p->mnt.mnt_flags & MNT_UMOUNT)) 654 res = p; 655 hlist_for_each_entry_continue(p, mnt_hash) { 656 if (&p->mnt_parent->mnt != mnt || p->mnt_mountpoint != dentry) 657 break; 658 if (!(p->mnt.mnt_flags & MNT_UMOUNT)) 659 res = p; 660 } 661 out: 662 return res; 663 } 664 665 /* 666 * lookup_mnt - Return the first child mount mounted at path 667 * 668 * "First" means first mounted chronologically. If you create the 669 * following mounts: 670 * 671 * mount /dev/sda1 /mnt 672 * mount /dev/sda2 /mnt 673 * mount /dev/sda3 /mnt 674 * 675 * Then lookup_mnt() on the base /mnt dentry in the root mount will 676 * return successively the root dentry and vfsmount of /dev/sda1, then 677 * /dev/sda2, then /dev/sda3, then NULL. 678 * 679 * lookup_mnt takes a reference to the found vfsmount. 680 */ 681 struct vfsmount *lookup_mnt(struct path *path) 682 { 683 struct mount *child_mnt; 684 struct vfsmount *m; 685 unsigned seq; 686 687 rcu_read_lock(); 688 do { 689 seq = read_seqbegin(&mount_lock); 690 child_mnt = __lookup_mnt(path->mnt, path->dentry); 691 m = child_mnt ? &child_mnt->mnt : NULL; 692 } while (!legitimize_mnt(m, seq)); 693 rcu_read_unlock(); 694 return m; 695 } 696 697 /* 698 * __is_local_mountpoint - Test to see if dentry is a mountpoint in the 699 * current mount namespace. 700 * 701 * The common case is dentries are not mountpoints at all and that 702 * test is handled inline. For the slow case when we are actually 703 * dealing with a mountpoint of some kind, walk through all of the 704 * mounts in the current mount namespace and test to see if the dentry 705 * is a mountpoint. 706 * 707 * The mount_hashtable is not usable in the context because we 708 * need to identify all mounts that may be in the current mount 709 * namespace not just a mount that happens to have some specified 710 * parent mount. 711 */ 712 bool __is_local_mountpoint(struct dentry *dentry) 713 { 714 struct mnt_namespace *ns = current->nsproxy->mnt_ns; 715 struct mount *mnt; 716 bool is_covered = false; 717 718 if (!d_mountpoint(dentry)) 719 goto out; 720 721 down_read(&namespace_sem); 722 list_for_each_entry(mnt, &ns->list, mnt_list) { 723 is_covered = (mnt->mnt_mountpoint == dentry); 724 if (is_covered) 725 break; 726 } 727 up_read(&namespace_sem); 728 out: 729 return is_covered; 730 } 731 732 static struct mountpoint *lookup_mountpoint(struct dentry *dentry) 733 { 734 struct hlist_head *chain = mp_hash(dentry); 735 struct mountpoint *mp; 736 737 hlist_for_each_entry(mp, chain, m_hash) { 738 if (mp->m_dentry == dentry) { 739 /* might be worth a WARN_ON() */ 740 if (d_unlinked(dentry)) 741 return ERR_PTR(-ENOENT); 742 mp->m_count++; 743 return mp; 744 } 745 } 746 return NULL; 747 } 748 749 static struct mountpoint *new_mountpoint(struct dentry *dentry) 750 { 751 struct hlist_head *chain = mp_hash(dentry); 752 struct mountpoint *mp; 753 int ret; 754 755 mp = kmalloc(sizeof(struct mountpoint), GFP_KERNEL); 756 if (!mp) 757 return ERR_PTR(-ENOMEM); 758 759 ret = d_set_mounted(dentry); 760 if (ret) { 761 kfree(mp); 762 return ERR_PTR(ret); 763 } 764 765 mp->m_dentry = dentry; 766 mp->m_count = 1; 767 hlist_add_head(&mp->m_hash, chain); 768 INIT_HLIST_HEAD(&mp->m_list); 769 return mp; 770 } 771 772 static void put_mountpoint(struct mountpoint *mp) 773 { 774 if (!--mp->m_count) { 775 struct dentry *dentry = mp->m_dentry; 776 BUG_ON(!hlist_empty(&mp->m_list)); 777 spin_lock(&dentry->d_lock); 778 dentry->d_flags &= ~DCACHE_MOUNTED; 779 spin_unlock(&dentry->d_lock); 780 hlist_del(&mp->m_hash); 781 kfree(mp); 782 } 783 } 784 785 static inline int check_mnt(struct mount *mnt) 786 { 787 return mnt->mnt_ns == current->nsproxy->mnt_ns; 788 } 789 790 /* 791 * vfsmount lock must be held for write 792 */ 793 static void touch_mnt_namespace(struct mnt_namespace *ns) 794 { 795 if (ns) { 796 ns->event = ++event; 797 wake_up_interruptible(&ns->poll); 798 } 799 } 800 801 /* 802 * vfsmount lock must be held for write 803 */ 804 static void __touch_mnt_namespace(struct mnt_namespace *ns) 805 { 806 if (ns && ns->event != event) { 807 ns->event = event; 808 wake_up_interruptible(&ns->poll); 809 } 810 } 811 812 /* 813 * vfsmount lock must be held for write 814 */ 815 static void unhash_mnt(struct mount *mnt) 816 { 817 mnt->mnt_parent = mnt; 818 mnt->mnt_mountpoint = mnt->mnt.mnt_root; 819 list_del_init(&mnt->mnt_child); 820 hlist_del_init_rcu(&mnt->mnt_hash); 821 hlist_del_init(&mnt->mnt_mp_list); 822 put_mountpoint(mnt->mnt_mp); 823 mnt->mnt_mp = NULL; 824 } 825 826 /* 827 * vfsmount lock must be held for write 828 */ 829 static void detach_mnt(struct mount *mnt, struct path *old_path) 830 { 831 old_path->dentry = mnt->mnt_mountpoint; 832 old_path->mnt = &mnt->mnt_parent->mnt; 833 unhash_mnt(mnt); 834 } 835 836 /* 837 * vfsmount lock must be held for write 838 */ 839 static void umount_mnt(struct mount *mnt) 840 { 841 /* old mountpoint will be dropped when we can do that */ 842 mnt->mnt_ex_mountpoint = mnt->mnt_mountpoint; 843 unhash_mnt(mnt); 844 } 845 846 /* 847 * vfsmount lock must be held for write 848 */ 849 void mnt_set_mountpoint(struct mount *mnt, 850 struct mountpoint *mp, 851 struct mount *child_mnt) 852 { 853 mp->m_count++; 854 mnt_add_count(mnt, 1); /* essentially, that's mntget */ 855 child_mnt->mnt_mountpoint = dget(mp->m_dentry); 856 child_mnt->mnt_parent = mnt; 857 child_mnt->mnt_mp = mp; 858 hlist_add_head(&child_mnt->mnt_mp_list, &mp->m_list); 859 } 860 861 /* 862 * vfsmount lock must be held for write 863 */ 864 static void attach_mnt(struct mount *mnt, 865 struct mount *parent, 866 struct mountpoint *mp) 867 { 868 mnt_set_mountpoint(parent, mp, mnt); 869 hlist_add_head_rcu(&mnt->mnt_hash, m_hash(&parent->mnt, mp->m_dentry)); 870 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts); 871 } 872 873 static void attach_shadowed(struct mount *mnt, 874 struct mount *parent, 875 struct mount *shadows) 876 { 877 if (shadows) { 878 hlist_add_behind_rcu(&mnt->mnt_hash, &shadows->mnt_hash); 879 list_add(&mnt->mnt_child, &shadows->mnt_child); 880 } else { 881 hlist_add_head_rcu(&mnt->mnt_hash, 882 m_hash(&parent->mnt, mnt->mnt_mountpoint)); 883 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts); 884 } 885 } 886 887 /* 888 * vfsmount lock must be held for write 889 */ 890 static void commit_tree(struct mount *mnt, struct mount *shadows) 891 { 892 struct mount *parent = mnt->mnt_parent; 893 struct mount *m; 894 LIST_HEAD(head); 895 struct mnt_namespace *n = parent->mnt_ns; 896 897 BUG_ON(parent == mnt); 898 899 list_add_tail(&head, &mnt->mnt_list); 900 list_for_each_entry(m, &head, mnt_list) 901 m->mnt_ns = n; 902 903 list_splice(&head, n->list.prev); 904 905 n->mounts += n->pending_mounts; 906 n->pending_mounts = 0; 907 908 attach_shadowed(mnt, parent, shadows); 909 touch_mnt_namespace(n); 910 } 911 912 static struct mount *next_mnt(struct mount *p, struct mount *root) 913 { 914 struct list_head *next = p->mnt_mounts.next; 915 if (next == &p->mnt_mounts) { 916 while (1) { 917 if (p == root) 918 return NULL; 919 next = p->mnt_child.next; 920 if (next != &p->mnt_parent->mnt_mounts) 921 break; 922 p = p->mnt_parent; 923 } 924 } 925 return list_entry(next, struct mount, mnt_child); 926 } 927 928 static struct mount *skip_mnt_tree(struct mount *p) 929 { 930 struct list_head *prev = p->mnt_mounts.prev; 931 while (prev != &p->mnt_mounts) { 932 p = list_entry(prev, struct mount, mnt_child); 933 prev = p->mnt_mounts.prev; 934 } 935 return p; 936 } 937 938 struct vfsmount * 939 vfs_kern_mount(struct file_system_type *type, int flags, const char *name, void *data) 940 { 941 struct mount *mnt; 942 struct dentry *root; 943 944 if (!type) 945 return ERR_PTR(-ENODEV); 946 947 mnt = alloc_vfsmnt(name); 948 if (!mnt) 949 return ERR_PTR(-ENOMEM); 950 951 if (flags & MS_KERNMOUNT) 952 mnt->mnt.mnt_flags = MNT_INTERNAL; 953 954 root = mount_fs(type, flags, name, data); 955 if (IS_ERR(root)) { 956 mnt_free_id(mnt); 957 free_vfsmnt(mnt); 958 return ERR_CAST(root); 959 } 960 961 mnt->mnt.mnt_root = root; 962 mnt->mnt.mnt_sb = root->d_sb; 963 mnt->mnt_mountpoint = mnt->mnt.mnt_root; 964 mnt->mnt_parent = mnt; 965 lock_mount_hash(); 966 list_add_tail(&mnt->mnt_instance, &root->d_sb->s_mounts); 967 unlock_mount_hash(); 968 return &mnt->mnt; 969 } 970 EXPORT_SYMBOL_GPL(vfs_kern_mount); 971 972 static struct mount *clone_mnt(struct mount *old, struct dentry *root, 973 int flag) 974 { 975 struct super_block *sb = old->mnt.mnt_sb; 976 struct mount *mnt; 977 int err; 978 979 mnt = alloc_vfsmnt(old->mnt_devname); 980 if (!mnt) 981 return ERR_PTR(-ENOMEM); 982 983 if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE)) 984 mnt->mnt_group_id = 0; /* not a peer of original */ 985 else 986 mnt->mnt_group_id = old->mnt_group_id; 987 988 if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) { 989 err = mnt_alloc_group_id(mnt); 990 if (err) 991 goto out_free; 992 } 993 994 mnt->mnt.mnt_flags = old->mnt.mnt_flags & ~(MNT_WRITE_HOLD|MNT_MARKED); 995 /* Don't allow unprivileged users to change mount flags */ 996 if (flag & CL_UNPRIVILEGED) { 997 mnt->mnt.mnt_flags |= MNT_LOCK_ATIME; 998 999 if (mnt->mnt.mnt_flags & MNT_READONLY) 1000 mnt->mnt.mnt_flags |= MNT_LOCK_READONLY; 1001 1002 if (mnt->mnt.mnt_flags & MNT_NODEV) 1003 mnt->mnt.mnt_flags |= MNT_LOCK_NODEV; 1004 1005 if (mnt->mnt.mnt_flags & MNT_NOSUID) 1006 mnt->mnt.mnt_flags |= MNT_LOCK_NOSUID; 1007 1008 if (mnt->mnt.mnt_flags & MNT_NOEXEC) 1009 mnt->mnt.mnt_flags |= MNT_LOCK_NOEXEC; 1010 } 1011 1012 /* Don't allow unprivileged users to reveal what is under a mount */ 1013 if ((flag & CL_UNPRIVILEGED) && 1014 (!(flag & CL_EXPIRE) || list_empty(&old->mnt_expire))) 1015 mnt->mnt.mnt_flags |= MNT_LOCKED; 1016 1017 atomic_inc(&sb->s_active); 1018 mnt->mnt.mnt_sb = sb; 1019 mnt->mnt.mnt_root = dget(root); 1020 mnt->mnt_mountpoint = mnt->mnt.mnt_root; 1021 mnt->mnt_parent = mnt; 1022 lock_mount_hash(); 1023 list_add_tail(&mnt->mnt_instance, &sb->s_mounts); 1024 unlock_mount_hash(); 1025 1026 if ((flag & CL_SLAVE) || 1027 ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) { 1028 list_add(&mnt->mnt_slave, &old->mnt_slave_list); 1029 mnt->mnt_master = old; 1030 CLEAR_MNT_SHARED(mnt); 1031 } else if (!(flag & CL_PRIVATE)) { 1032 if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old)) 1033 list_add(&mnt->mnt_share, &old->mnt_share); 1034 if (IS_MNT_SLAVE(old)) 1035 list_add(&mnt->mnt_slave, &old->mnt_slave); 1036 mnt->mnt_master = old->mnt_master; 1037 } 1038 if (flag & CL_MAKE_SHARED) 1039 set_mnt_shared(mnt); 1040 1041 /* stick the duplicate mount on the same expiry list 1042 * as the original if that was on one */ 1043 if (flag & CL_EXPIRE) { 1044 if (!list_empty(&old->mnt_expire)) 1045 list_add(&mnt->mnt_expire, &old->mnt_expire); 1046 } 1047 1048 return mnt; 1049 1050 out_free: 1051 mnt_free_id(mnt); 1052 free_vfsmnt(mnt); 1053 return ERR_PTR(err); 1054 } 1055 1056 static void cleanup_mnt(struct mount *mnt) 1057 { 1058 /* 1059 * This probably indicates that somebody messed 1060 * up a mnt_want/drop_write() pair. If this 1061 * happens, the filesystem was probably unable 1062 * to make r/w->r/o transitions. 1063 */ 1064 /* 1065 * The locking used to deal with mnt_count decrement provides barriers, 1066 * so mnt_get_writers() below is safe. 1067 */ 1068 WARN_ON(mnt_get_writers(mnt)); 1069 if (unlikely(mnt->mnt_pins.first)) 1070 mnt_pin_kill(mnt); 1071 fsnotify_vfsmount_delete(&mnt->mnt); 1072 dput(mnt->mnt.mnt_root); 1073 deactivate_super(mnt->mnt.mnt_sb); 1074 mnt_free_id(mnt); 1075 call_rcu(&mnt->mnt_rcu, delayed_free_vfsmnt); 1076 } 1077 1078 static void __cleanup_mnt(struct rcu_head *head) 1079 { 1080 cleanup_mnt(container_of(head, struct mount, mnt_rcu)); 1081 } 1082 1083 static LLIST_HEAD(delayed_mntput_list); 1084 static void delayed_mntput(struct work_struct *unused) 1085 { 1086 struct llist_node *node = llist_del_all(&delayed_mntput_list); 1087 struct llist_node *next; 1088 1089 for (; node; node = next) { 1090 next = llist_next(node); 1091 cleanup_mnt(llist_entry(node, struct mount, mnt_llist)); 1092 } 1093 } 1094 static DECLARE_DELAYED_WORK(delayed_mntput_work, delayed_mntput); 1095 1096 static void mntput_no_expire(struct mount *mnt) 1097 { 1098 rcu_read_lock(); 1099 mnt_add_count(mnt, -1); 1100 if (likely(mnt->mnt_ns)) { /* shouldn't be the last one */ 1101 rcu_read_unlock(); 1102 return; 1103 } 1104 lock_mount_hash(); 1105 if (mnt_get_count(mnt)) { 1106 rcu_read_unlock(); 1107 unlock_mount_hash(); 1108 return; 1109 } 1110 if (unlikely(mnt->mnt.mnt_flags & MNT_DOOMED)) { 1111 rcu_read_unlock(); 1112 unlock_mount_hash(); 1113 return; 1114 } 1115 mnt->mnt.mnt_flags |= MNT_DOOMED; 1116 rcu_read_unlock(); 1117 1118 list_del(&mnt->mnt_instance); 1119 1120 if (unlikely(!list_empty(&mnt->mnt_mounts))) { 1121 struct mount *p, *tmp; 1122 list_for_each_entry_safe(p, tmp, &mnt->mnt_mounts, mnt_child) { 1123 umount_mnt(p); 1124 } 1125 } 1126 unlock_mount_hash(); 1127 1128 if (likely(!(mnt->mnt.mnt_flags & MNT_INTERNAL))) { 1129 struct task_struct *task = current; 1130 if (likely(!(task->flags & PF_KTHREAD))) { 1131 init_task_work(&mnt->mnt_rcu, __cleanup_mnt); 1132 if (!task_work_add(task, &mnt->mnt_rcu, true)) 1133 return; 1134 } 1135 if (llist_add(&mnt->mnt_llist, &delayed_mntput_list)) 1136 schedule_delayed_work(&delayed_mntput_work, 1); 1137 return; 1138 } 1139 cleanup_mnt(mnt); 1140 } 1141 1142 void mntput(struct vfsmount *mnt) 1143 { 1144 if (mnt) { 1145 struct mount *m = real_mount(mnt); 1146 /* avoid cacheline pingpong, hope gcc doesn't get "smart" */ 1147 if (unlikely(m->mnt_expiry_mark)) 1148 m->mnt_expiry_mark = 0; 1149 mntput_no_expire(m); 1150 } 1151 } 1152 EXPORT_SYMBOL(mntput); 1153 1154 struct vfsmount *mntget(struct vfsmount *mnt) 1155 { 1156 if (mnt) 1157 mnt_add_count(real_mount(mnt), 1); 1158 return mnt; 1159 } 1160 EXPORT_SYMBOL(mntget); 1161 1162 struct vfsmount *mnt_clone_internal(struct path *path) 1163 { 1164 struct mount *p; 1165 p = clone_mnt(real_mount(path->mnt), path->dentry, CL_PRIVATE); 1166 if (IS_ERR(p)) 1167 return ERR_CAST(p); 1168 p->mnt.mnt_flags |= MNT_INTERNAL; 1169 return &p->mnt; 1170 } 1171 1172 static inline void mangle(struct seq_file *m, const char *s) 1173 { 1174 seq_escape(m, s, " \t\n\\"); 1175 } 1176 1177 /* 1178 * Simple .show_options callback for filesystems which don't want to 1179 * implement more complex mount option showing. 1180 * 1181 * See also save_mount_options(). 1182 */ 1183 int generic_show_options(struct seq_file *m, struct dentry *root) 1184 { 1185 const char *options; 1186 1187 rcu_read_lock(); 1188 options = rcu_dereference(root->d_sb->s_options); 1189 1190 if (options != NULL && options[0]) { 1191 seq_putc(m, ','); 1192 mangle(m, options); 1193 } 1194 rcu_read_unlock(); 1195 1196 return 0; 1197 } 1198 EXPORT_SYMBOL(generic_show_options); 1199 1200 /* 1201 * If filesystem uses generic_show_options(), this function should be 1202 * called from the fill_super() callback. 1203 * 1204 * The .remount_fs callback usually needs to be handled in a special 1205 * way, to make sure, that previous options are not overwritten if the 1206 * remount fails. 1207 * 1208 * Also note, that if the filesystem's .remount_fs function doesn't 1209 * reset all options to their default value, but changes only newly 1210 * given options, then the displayed options will not reflect reality 1211 * any more. 1212 */ 1213 void save_mount_options(struct super_block *sb, char *options) 1214 { 1215 BUG_ON(sb->s_options); 1216 rcu_assign_pointer(sb->s_options, kstrdup(options, GFP_KERNEL)); 1217 } 1218 EXPORT_SYMBOL(save_mount_options); 1219 1220 void replace_mount_options(struct super_block *sb, char *options) 1221 { 1222 char *old = sb->s_options; 1223 rcu_assign_pointer(sb->s_options, options); 1224 if (old) { 1225 synchronize_rcu(); 1226 kfree(old); 1227 } 1228 } 1229 EXPORT_SYMBOL(replace_mount_options); 1230 1231 #ifdef CONFIG_PROC_FS 1232 /* iterator; we want it to have access to namespace_sem, thus here... */ 1233 static void *m_start(struct seq_file *m, loff_t *pos) 1234 { 1235 struct proc_mounts *p = m->private; 1236 1237 down_read(&namespace_sem); 1238 if (p->cached_event == p->ns->event) { 1239 void *v = p->cached_mount; 1240 if (*pos == p->cached_index) 1241 return v; 1242 if (*pos == p->cached_index + 1) { 1243 v = seq_list_next(v, &p->ns->list, &p->cached_index); 1244 return p->cached_mount = v; 1245 } 1246 } 1247 1248 p->cached_event = p->ns->event; 1249 p->cached_mount = seq_list_start(&p->ns->list, *pos); 1250 p->cached_index = *pos; 1251 return p->cached_mount; 1252 } 1253 1254 static void *m_next(struct seq_file *m, void *v, loff_t *pos) 1255 { 1256 struct proc_mounts *p = m->private; 1257 1258 p->cached_mount = seq_list_next(v, &p->ns->list, pos); 1259 p->cached_index = *pos; 1260 return p->cached_mount; 1261 } 1262 1263 static void m_stop(struct seq_file *m, void *v) 1264 { 1265 up_read(&namespace_sem); 1266 } 1267 1268 static int m_show(struct seq_file *m, void *v) 1269 { 1270 struct proc_mounts *p = m->private; 1271 struct mount *r = list_entry(v, struct mount, mnt_list); 1272 return p->show(m, &r->mnt); 1273 } 1274 1275 const struct seq_operations mounts_op = { 1276 .start = m_start, 1277 .next = m_next, 1278 .stop = m_stop, 1279 .show = m_show, 1280 }; 1281 #endif /* CONFIG_PROC_FS */ 1282 1283 /** 1284 * may_umount_tree - check if a mount tree is busy 1285 * @mnt: root of mount tree 1286 * 1287 * This is called to check if a tree of mounts has any 1288 * open files, pwds, chroots or sub mounts that are 1289 * busy. 1290 */ 1291 int may_umount_tree(struct vfsmount *m) 1292 { 1293 struct mount *mnt = real_mount(m); 1294 int actual_refs = 0; 1295 int minimum_refs = 0; 1296 struct mount *p; 1297 BUG_ON(!m); 1298 1299 /* write lock needed for mnt_get_count */ 1300 lock_mount_hash(); 1301 for (p = mnt; p; p = next_mnt(p, mnt)) { 1302 actual_refs += mnt_get_count(p); 1303 minimum_refs += 2; 1304 } 1305 unlock_mount_hash(); 1306 1307 if (actual_refs > minimum_refs) 1308 return 0; 1309 1310 return 1; 1311 } 1312 1313 EXPORT_SYMBOL(may_umount_tree); 1314 1315 /** 1316 * may_umount - check if a mount point is busy 1317 * @mnt: root of mount 1318 * 1319 * This is called to check if a mount point has any 1320 * open files, pwds, chroots or sub mounts. If the 1321 * mount has sub mounts this will return busy 1322 * regardless of whether the sub mounts are busy. 1323 * 1324 * Doesn't take quota and stuff into account. IOW, in some cases it will 1325 * give false negatives. The main reason why it's here is that we need 1326 * a non-destructive way to look for easily umountable filesystems. 1327 */ 1328 int may_umount(struct vfsmount *mnt) 1329 { 1330 int ret = 1; 1331 down_read(&namespace_sem); 1332 lock_mount_hash(); 1333 if (propagate_mount_busy(real_mount(mnt), 2)) 1334 ret = 0; 1335 unlock_mount_hash(); 1336 up_read(&namespace_sem); 1337 return ret; 1338 } 1339 1340 EXPORT_SYMBOL(may_umount); 1341 1342 static HLIST_HEAD(unmounted); /* protected by namespace_sem */ 1343 1344 static void namespace_unlock(void) 1345 { 1346 struct hlist_head head; 1347 1348 hlist_move_list(&unmounted, &head); 1349 1350 up_write(&namespace_sem); 1351 1352 if (likely(hlist_empty(&head))) 1353 return; 1354 1355 synchronize_rcu(); 1356 1357 group_pin_kill(&head); 1358 } 1359 1360 static inline void namespace_lock(void) 1361 { 1362 down_write(&namespace_sem); 1363 } 1364 1365 enum umount_tree_flags { 1366 UMOUNT_SYNC = 1, 1367 UMOUNT_PROPAGATE = 2, 1368 UMOUNT_CONNECTED = 4, 1369 }; 1370 1371 static bool disconnect_mount(struct mount *mnt, enum umount_tree_flags how) 1372 { 1373 /* Leaving mounts connected is only valid for lazy umounts */ 1374 if (how & UMOUNT_SYNC) 1375 return true; 1376 1377 /* A mount without a parent has nothing to be connected to */ 1378 if (!mnt_has_parent(mnt)) 1379 return true; 1380 1381 /* Because the reference counting rules change when mounts are 1382 * unmounted and connected, umounted mounts may not be 1383 * connected to mounted mounts. 1384 */ 1385 if (!(mnt->mnt_parent->mnt.mnt_flags & MNT_UMOUNT)) 1386 return true; 1387 1388 /* Has it been requested that the mount remain connected? */ 1389 if (how & UMOUNT_CONNECTED) 1390 return false; 1391 1392 /* Is the mount locked such that it needs to remain connected? */ 1393 if (IS_MNT_LOCKED(mnt)) 1394 return false; 1395 1396 /* By default disconnect the mount */ 1397 return true; 1398 } 1399 1400 /* 1401 * mount_lock must be held 1402 * namespace_sem must be held for write 1403 */ 1404 static void umount_tree(struct mount *mnt, enum umount_tree_flags how) 1405 { 1406 LIST_HEAD(tmp_list); 1407 struct mount *p; 1408 1409 if (how & UMOUNT_PROPAGATE) 1410 propagate_mount_unlock(mnt); 1411 1412 /* Gather the mounts to umount */ 1413 for (p = mnt; p; p = next_mnt(p, mnt)) { 1414 p->mnt.mnt_flags |= MNT_UMOUNT; 1415 list_move(&p->mnt_list, &tmp_list); 1416 } 1417 1418 /* Hide the mounts from mnt_mounts */ 1419 list_for_each_entry(p, &tmp_list, mnt_list) { 1420 list_del_init(&p->mnt_child); 1421 } 1422 1423 /* Add propogated mounts to the tmp_list */ 1424 if (how & UMOUNT_PROPAGATE) 1425 propagate_umount(&tmp_list); 1426 1427 while (!list_empty(&tmp_list)) { 1428 struct mnt_namespace *ns; 1429 bool disconnect; 1430 p = list_first_entry(&tmp_list, struct mount, mnt_list); 1431 list_del_init(&p->mnt_expire); 1432 list_del_init(&p->mnt_list); 1433 ns = p->mnt_ns; 1434 if (ns) { 1435 ns->mounts--; 1436 __touch_mnt_namespace(ns); 1437 } 1438 p->mnt_ns = NULL; 1439 if (how & UMOUNT_SYNC) 1440 p->mnt.mnt_flags |= MNT_SYNC_UMOUNT; 1441 1442 disconnect = disconnect_mount(p, how); 1443 1444 pin_insert_group(&p->mnt_umount, &p->mnt_parent->mnt, 1445 disconnect ? &unmounted : NULL); 1446 if (mnt_has_parent(p)) { 1447 mnt_add_count(p->mnt_parent, -1); 1448 if (!disconnect) { 1449 /* Don't forget about p */ 1450 list_add_tail(&p->mnt_child, &p->mnt_parent->mnt_mounts); 1451 } else { 1452 umount_mnt(p); 1453 } 1454 } 1455 change_mnt_propagation(p, MS_PRIVATE); 1456 } 1457 } 1458 1459 static void shrink_submounts(struct mount *mnt); 1460 1461 static int do_umount(struct mount *mnt, int flags) 1462 { 1463 struct super_block *sb = mnt->mnt.mnt_sb; 1464 int retval; 1465 1466 retval = security_sb_umount(&mnt->mnt, flags); 1467 if (retval) 1468 return retval; 1469 1470 /* 1471 * Allow userspace to request a mountpoint be expired rather than 1472 * unmounting unconditionally. Unmount only happens if: 1473 * (1) the mark is already set (the mark is cleared by mntput()) 1474 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount] 1475 */ 1476 if (flags & MNT_EXPIRE) { 1477 if (&mnt->mnt == current->fs->root.mnt || 1478 flags & (MNT_FORCE | MNT_DETACH)) 1479 return -EINVAL; 1480 1481 /* 1482 * probably don't strictly need the lock here if we examined 1483 * all race cases, but it's a slowpath. 1484 */ 1485 lock_mount_hash(); 1486 if (mnt_get_count(mnt) != 2) { 1487 unlock_mount_hash(); 1488 return -EBUSY; 1489 } 1490 unlock_mount_hash(); 1491 1492 if (!xchg(&mnt->mnt_expiry_mark, 1)) 1493 return -EAGAIN; 1494 } 1495 1496 /* 1497 * If we may have to abort operations to get out of this 1498 * mount, and they will themselves hold resources we must 1499 * allow the fs to do things. In the Unix tradition of 1500 * 'Gee thats tricky lets do it in userspace' the umount_begin 1501 * might fail to complete on the first run through as other tasks 1502 * must return, and the like. Thats for the mount program to worry 1503 * about for the moment. 1504 */ 1505 1506 if (flags & MNT_FORCE && sb->s_op->umount_begin) { 1507 sb->s_op->umount_begin(sb); 1508 } 1509 1510 /* 1511 * No sense to grab the lock for this test, but test itself looks 1512 * somewhat bogus. Suggestions for better replacement? 1513 * Ho-hum... In principle, we might treat that as umount + switch 1514 * to rootfs. GC would eventually take care of the old vfsmount. 1515 * Actually it makes sense, especially if rootfs would contain a 1516 * /reboot - static binary that would close all descriptors and 1517 * call reboot(9). Then init(8) could umount root and exec /reboot. 1518 */ 1519 if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) { 1520 /* 1521 * Special case for "unmounting" root ... 1522 * we just try to remount it readonly. 1523 */ 1524 if (!capable(CAP_SYS_ADMIN)) 1525 return -EPERM; 1526 down_write(&sb->s_umount); 1527 if (!(sb->s_flags & MS_RDONLY)) 1528 retval = do_remount_sb(sb, MS_RDONLY, NULL, 0); 1529 up_write(&sb->s_umount); 1530 return retval; 1531 } 1532 1533 namespace_lock(); 1534 lock_mount_hash(); 1535 event++; 1536 1537 if (flags & MNT_DETACH) { 1538 if (!list_empty(&mnt->mnt_list)) 1539 umount_tree(mnt, UMOUNT_PROPAGATE); 1540 retval = 0; 1541 } else { 1542 shrink_submounts(mnt); 1543 retval = -EBUSY; 1544 if (!propagate_mount_busy(mnt, 2)) { 1545 if (!list_empty(&mnt->mnt_list)) 1546 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC); 1547 retval = 0; 1548 } 1549 } 1550 unlock_mount_hash(); 1551 namespace_unlock(); 1552 return retval; 1553 } 1554 1555 /* 1556 * __detach_mounts - lazily unmount all mounts on the specified dentry 1557 * 1558 * During unlink, rmdir, and d_drop it is possible to loose the path 1559 * to an existing mountpoint, and wind up leaking the mount. 1560 * detach_mounts allows lazily unmounting those mounts instead of 1561 * leaking them. 1562 * 1563 * The caller may hold dentry->d_inode->i_mutex. 1564 */ 1565 void __detach_mounts(struct dentry *dentry) 1566 { 1567 struct mountpoint *mp; 1568 struct mount *mnt; 1569 1570 namespace_lock(); 1571 mp = lookup_mountpoint(dentry); 1572 if (IS_ERR_OR_NULL(mp)) 1573 goto out_unlock; 1574 1575 lock_mount_hash(); 1576 event++; 1577 while (!hlist_empty(&mp->m_list)) { 1578 mnt = hlist_entry(mp->m_list.first, struct mount, mnt_mp_list); 1579 if (mnt->mnt.mnt_flags & MNT_UMOUNT) { 1580 hlist_add_head(&mnt->mnt_umount.s_list, &unmounted); 1581 umount_mnt(mnt); 1582 } 1583 else umount_tree(mnt, UMOUNT_CONNECTED); 1584 } 1585 unlock_mount_hash(); 1586 put_mountpoint(mp); 1587 out_unlock: 1588 namespace_unlock(); 1589 } 1590 1591 /* 1592 * Is the caller allowed to modify his namespace? 1593 */ 1594 static inline bool may_mount(void) 1595 { 1596 return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN); 1597 } 1598 1599 static inline bool may_mandlock(void) 1600 { 1601 #ifndef CONFIG_MANDATORY_FILE_LOCKING 1602 return false; 1603 #endif 1604 return capable(CAP_SYS_ADMIN); 1605 } 1606 1607 /* 1608 * Now umount can handle mount points as well as block devices. 1609 * This is important for filesystems which use unnamed block devices. 1610 * 1611 * We now support a flag for forced unmount like the other 'big iron' 1612 * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD 1613 */ 1614 1615 SYSCALL_DEFINE2(umount, char __user *, name, int, flags) 1616 { 1617 struct path path; 1618 struct mount *mnt; 1619 int retval; 1620 int lookup_flags = 0; 1621 1622 if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW)) 1623 return -EINVAL; 1624 1625 if (!may_mount()) 1626 return -EPERM; 1627 1628 if (!(flags & UMOUNT_NOFOLLOW)) 1629 lookup_flags |= LOOKUP_FOLLOW; 1630 1631 retval = user_path_mountpoint_at(AT_FDCWD, name, lookup_flags, &path); 1632 if (retval) 1633 goto out; 1634 mnt = real_mount(path.mnt); 1635 retval = -EINVAL; 1636 if (path.dentry != path.mnt->mnt_root) 1637 goto dput_and_out; 1638 if (!check_mnt(mnt)) 1639 goto dput_and_out; 1640 if (mnt->mnt.mnt_flags & MNT_LOCKED) 1641 goto dput_and_out; 1642 retval = -EPERM; 1643 if (flags & MNT_FORCE && !capable(CAP_SYS_ADMIN)) 1644 goto dput_and_out; 1645 1646 retval = do_umount(mnt, flags); 1647 dput_and_out: 1648 /* we mustn't call path_put() as that would clear mnt_expiry_mark */ 1649 dput(path.dentry); 1650 mntput_no_expire(mnt); 1651 out: 1652 return retval; 1653 } 1654 1655 #ifdef __ARCH_WANT_SYS_OLDUMOUNT 1656 1657 /* 1658 * The 2.0 compatible umount. No flags. 1659 */ 1660 SYSCALL_DEFINE1(oldumount, char __user *, name) 1661 { 1662 return sys_umount(name, 0); 1663 } 1664 1665 #endif 1666 1667 static bool is_mnt_ns_file(struct dentry *dentry) 1668 { 1669 /* Is this a proxy for a mount namespace? */ 1670 return dentry->d_op == &ns_dentry_operations && 1671 dentry->d_fsdata == &mntns_operations; 1672 } 1673 1674 struct mnt_namespace *to_mnt_ns(struct ns_common *ns) 1675 { 1676 return container_of(ns, struct mnt_namespace, ns); 1677 } 1678 1679 static bool mnt_ns_loop(struct dentry *dentry) 1680 { 1681 /* Could bind mounting the mount namespace inode cause a 1682 * mount namespace loop? 1683 */ 1684 struct mnt_namespace *mnt_ns; 1685 if (!is_mnt_ns_file(dentry)) 1686 return false; 1687 1688 mnt_ns = to_mnt_ns(get_proc_ns(dentry->d_inode)); 1689 return current->nsproxy->mnt_ns->seq >= mnt_ns->seq; 1690 } 1691 1692 struct mount *copy_tree(struct mount *mnt, struct dentry *dentry, 1693 int flag) 1694 { 1695 struct mount *res, *p, *q, *r, *parent; 1696 1697 if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(mnt)) 1698 return ERR_PTR(-EINVAL); 1699 1700 if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry)) 1701 return ERR_PTR(-EINVAL); 1702 1703 res = q = clone_mnt(mnt, dentry, flag); 1704 if (IS_ERR(q)) 1705 return q; 1706 1707 q->mnt_mountpoint = mnt->mnt_mountpoint; 1708 1709 p = mnt; 1710 list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) { 1711 struct mount *s; 1712 if (!is_subdir(r->mnt_mountpoint, dentry)) 1713 continue; 1714 1715 for (s = r; s; s = next_mnt(s, r)) { 1716 struct mount *t = NULL; 1717 if (!(flag & CL_COPY_UNBINDABLE) && 1718 IS_MNT_UNBINDABLE(s)) { 1719 s = skip_mnt_tree(s); 1720 continue; 1721 } 1722 if (!(flag & CL_COPY_MNT_NS_FILE) && 1723 is_mnt_ns_file(s->mnt.mnt_root)) { 1724 s = skip_mnt_tree(s); 1725 continue; 1726 } 1727 while (p != s->mnt_parent) { 1728 p = p->mnt_parent; 1729 q = q->mnt_parent; 1730 } 1731 p = s; 1732 parent = q; 1733 q = clone_mnt(p, p->mnt.mnt_root, flag); 1734 if (IS_ERR(q)) 1735 goto out; 1736 lock_mount_hash(); 1737 list_add_tail(&q->mnt_list, &res->mnt_list); 1738 mnt_set_mountpoint(parent, p->mnt_mp, q); 1739 if (!list_empty(&parent->mnt_mounts)) { 1740 t = list_last_entry(&parent->mnt_mounts, 1741 struct mount, mnt_child); 1742 if (t->mnt_mp != p->mnt_mp) 1743 t = NULL; 1744 } 1745 attach_shadowed(q, parent, t); 1746 unlock_mount_hash(); 1747 } 1748 } 1749 return res; 1750 out: 1751 if (res) { 1752 lock_mount_hash(); 1753 umount_tree(res, UMOUNT_SYNC); 1754 unlock_mount_hash(); 1755 } 1756 return q; 1757 } 1758 1759 /* Caller should check returned pointer for errors */ 1760 1761 struct vfsmount *collect_mounts(struct path *path) 1762 { 1763 struct mount *tree; 1764 namespace_lock(); 1765 if (!check_mnt(real_mount(path->mnt))) 1766 tree = ERR_PTR(-EINVAL); 1767 else 1768 tree = copy_tree(real_mount(path->mnt), path->dentry, 1769 CL_COPY_ALL | CL_PRIVATE); 1770 namespace_unlock(); 1771 if (IS_ERR(tree)) 1772 return ERR_CAST(tree); 1773 return &tree->mnt; 1774 } 1775 1776 void drop_collected_mounts(struct vfsmount *mnt) 1777 { 1778 namespace_lock(); 1779 lock_mount_hash(); 1780 umount_tree(real_mount(mnt), UMOUNT_SYNC); 1781 unlock_mount_hash(); 1782 namespace_unlock(); 1783 } 1784 1785 /** 1786 * clone_private_mount - create a private clone of a path 1787 * 1788 * This creates a new vfsmount, which will be the clone of @path. The new will 1789 * not be attached anywhere in the namespace and will be private (i.e. changes 1790 * to the originating mount won't be propagated into this). 1791 * 1792 * Release with mntput(). 1793 */ 1794 struct vfsmount *clone_private_mount(struct path *path) 1795 { 1796 struct mount *old_mnt = real_mount(path->mnt); 1797 struct mount *new_mnt; 1798 1799 if (IS_MNT_UNBINDABLE(old_mnt)) 1800 return ERR_PTR(-EINVAL); 1801 1802 down_read(&namespace_sem); 1803 new_mnt = clone_mnt(old_mnt, path->dentry, CL_PRIVATE); 1804 up_read(&namespace_sem); 1805 if (IS_ERR(new_mnt)) 1806 return ERR_CAST(new_mnt); 1807 1808 return &new_mnt->mnt; 1809 } 1810 EXPORT_SYMBOL_GPL(clone_private_mount); 1811 1812 int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg, 1813 struct vfsmount *root) 1814 { 1815 struct mount *mnt; 1816 int res = f(root, arg); 1817 if (res) 1818 return res; 1819 list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) { 1820 res = f(&mnt->mnt, arg); 1821 if (res) 1822 return res; 1823 } 1824 return 0; 1825 } 1826 1827 static void cleanup_group_ids(struct mount *mnt, struct mount *end) 1828 { 1829 struct mount *p; 1830 1831 for (p = mnt; p != end; p = next_mnt(p, mnt)) { 1832 if (p->mnt_group_id && !IS_MNT_SHARED(p)) 1833 mnt_release_group_id(p); 1834 } 1835 } 1836 1837 static int invent_group_ids(struct mount *mnt, bool recurse) 1838 { 1839 struct mount *p; 1840 1841 for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) { 1842 if (!p->mnt_group_id && !IS_MNT_SHARED(p)) { 1843 int err = mnt_alloc_group_id(p); 1844 if (err) { 1845 cleanup_group_ids(mnt, p); 1846 return err; 1847 } 1848 } 1849 } 1850 1851 return 0; 1852 } 1853 1854 int count_mounts(struct mnt_namespace *ns, struct mount *mnt) 1855 { 1856 unsigned int max = READ_ONCE(sysctl_mount_max); 1857 unsigned int mounts = 0, old, pending, sum; 1858 struct mount *p; 1859 1860 for (p = mnt; p; p = next_mnt(p, mnt)) 1861 mounts++; 1862 1863 old = ns->mounts; 1864 pending = ns->pending_mounts; 1865 sum = old + pending; 1866 if ((old > sum) || 1867 (pending > sum) || 1868 (max < sum) || 1869 (mounts > (max - sum))) 1870 return -ENOSPC; 1871 1872 ns->pending_mounts = pending + mounts; 1873 return 0; 1874 } 1875 1876 /* 1877 * @source_mnt : mount tree to be attached 1878 * @nd : place the mount tree @source_mnt is attached 1879 * @parent_nd : if non-null, detach the source_mnt from its parent and 1880 * store the parent mount and mountpoint dentry. 1881 * (done when source_mnt is moved) 1882 * 1883 * NOTE: in the table below explains the semantics when a source mount 1884 * of a given type is attached to a destination mount of a given type. 1885 * --------------------------------------------------------------------------- 1886 * | BIND MOUNT OPERATION | 1887 * |************************************************************************** 1888 * | source-->| shared | private | slave | unbindable | 1889 * | dest | | | | | 1890 * | | | | | | | 1891 * | v | | | | | 1892 * |************************************************************************** 1893 * | shared | shared (++) | shared (+) | shared(+++)| invalid | 1894 * | | | | | | 1895 * |non-shared| shared (+) | private | slave (*) | invalid | 1896 * *************************************************************************** 1897 * A bind operation clones the source mount and mounts the clone on the 1898 * destination mount. 1899 * 1900 * (++) the cloned mount is propagated to all the mounts in the propagation 1901 * tree of the destination mount and the cloned mount is added to 1902 * the peer group of the source mount. 1903 * (+) the cloned mount is created under the destination mount and is marked 1904 * as shared. The cloned mount is added to the peer group of the source 1905 * mount. 1906 * (+++) the mount is propagated to all the mounts in the propagation tree 1907 * of the destination mount and the cloned mount is made slave 1908 * of the same master as that of the source mount. The cloned mount 1909 * is marked as 'shared and slave'. 1910 * (*) the cloned mount is made a slave of the same master as that of the 1911 * source mount. 1912 * 1913 * --------------------------------------------------------------------------- 1914 * | MOVE MOUNT OPERATION | 1915 * |************************************************************************** 1916 * | source-->| shared | private | slave | unbindable | 1917 * | dest | | | | | 1918 * | | | | | | | 1919 * | v | | | | | 1920 * |************************************************************************** 1921 * | shared | shared (+) | shared (+) | shared(+++) | invalid | 1922 * | | | | | | 1923 * |non-shared| shared (+*) | private | slave (*) | unbindable | 1924 * *************************************************************************** 1925 * 1926 * (+) the mount is moved to the destination. And is then propagated to 1927 * all the mounts in the propagation tree of the destination mount. 1928 * (+*) the mount is moved to the destination. 1929 * (+++) the mount is moved to the destination and is then propagated to 1930 * all the mounts belonging to the destination mount's propagation tree. 1931 * the mount is marked as 'shared and slave'. 1932 * (*) the mount continues to be a slave at the new location. 1933 * 1934 * if the source mount is a tree, the operations explained above is 1935 * applied to each mount in the tree. 1936 * Must be called without spinlocks held, since this function can sleep 1937 * in allocations. 1938 */ 1939 static int attach_recursive_mnt(struct mount *source_mnt, 1940 struct mount *dest_mnt, 1941 struct mountpoint *dest_mp, 1942 struct path *parent_path) 1943 { 1944 HLIST_HEAD(tree_list); 1945 struct mnt_namespace *ns = dest_mnt->mnt_ns; 1946 struct mount *child, *p; 1947 struct hlist_node *n; 1948 int err; 1949 1950 /* Is there space to add these mounts to the mount namespace? */ 1951 if (!parent_path) { 1952 err = count_mounts(ns, source_mnt); 1953 if (err) 1954 goto out; 1955 } 1956 1957 if (IS_MNT_SHARED(dest_mnt)) { 1958 err = invent_group_ids(source_mnt, true); 1959 if (err) 1960 goto out; 1961 err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list); 1962 lock_mount_hash(); 1963 if (err) 1964 goto out_cleanup_ids; 1965 for (p = source_mnt; p; p = next_mnt(p, source_mnt)) 1966 set_mnt_shared(p); 1967 } else { 1968 lock_mount_hash(); 1969 } 1970 if (parent_path) { 1971 detach_mnt(source_mnt, parent_path); 1972 attach_mnt(source_mnt, dest_mnt, dest_mp); 1973 touch_mnt_namespace(source_mnt->mnt_ns); 1974 } else { 1975 mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt); 1976 commit_tree(source_mnt, NULL); 1977 } 1978 1979 hlist_for_each_entry_safe(child, n, &tree_list, mnt_hash) { 1980 struct mount *q; 1981 hlist_del_init(&child->mnt_hash); 1982 q = __lookup_mnt_last(&child->mnt_parent->mnt, 1983 child->mnt_mountpoint); 1984 commit_tree(child, q); 1985 } 1986 unlock_mount_hash(); 1987 1988 return 0; 1989 1990 out_cleanup_ids: 1991 while (!hlist_empty(&tree_list)) { 1992 child = hlist_entry(tree_list.first, struct mount, mnt_hash); 1993 child->mnt_parent->mnt_ns->pending_mounts = 0; 1994 umount_tree(child, UMOUNT_SYNC); 1995 } 1996 unlock_mount_hash(); 1997 cleanup_group_ids(source_mnt, NULL); 1998 out: 1999 ns->pending_mounts = 0; 2000 return err; 2001 } 2002 2003 static struct mountpoint *lock_mount(struct path *path) 2004 { 2005 struct vfsmount *mnt; 2006 struct dentry *dentry = path->dentry; 2007 retry: 2008 inode_lock(dentry->d_inode); 2009 if (unlikely(cant_mount(dentry))) { 2010 inode_unlock(dentry->d_inode); 2011 return ERR_PTR(-ENOENT); 2012 } 2013 namespace_lock(); 2014 mnt = lookup_mnt(path); 2015 if (likely(!mnt)) { 2016 struct mountpoint *mp = lookup_mountpoint(dentry); 2017 if (!mp) 2018 mp = new_mountpoint(dentry); 2019 if (IS_ERR(mp)) { 2020 namespace_unlock(); 2021 inode_unlock(dentry->d_inode); 2022 return mp; 2023 } 2024 return mp; 2025 } 2026 namespace_unlock(); 2027 inode_unlock(path->dentry->d_inode); 2028 path_put(path); 2029 path->mnt = mnt; 2030 dentry = path->dentry = dget(mnt->mnt_root); 2031 goto retry; 2032 } 2033 2034 static void unlock_mount(struct mountpoint *where) 2035 { 2036 struct dentry *dentry = where->m_dentry; 2037 put_mountpoint(where); 2038 namespace_unlock(); 2039 inode_unlock(dentry->d_inode); 2040 } 2041 2042 static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp) 2043 { 2044 if (mnt->mnt.mnt_sb->s_flags & MS_NOUSER) 2045 return -EINVAL; 2046 2047 if (d_is_dir(mp->m_dentry) != 2048 d_is_dir(mnt->mnt.mnt_root)) 2049 return -ENOTDIR; 2050 2051 return attach_recursive_mnt(mnt, p, mp, NULL); 2052 } 2053 2054 /* 2055 * Sanity check the flags to change_mnt_propagation. 2056 */ 2057 2058 static int flags_to_propagation_type(int flags) 2059 { 2060 int type = flags & ~(MS_REC | MS_SILENT); 2061 2062 /* Fail if any non-propagation flags are set */ 2063 if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE)) 2064 return 0; 2065 /* Only one propagation flag should be set */ 2066 if (!is_power_of_2(type)) 2067 return 0; 2068 return type; 2069 } 2070 2071 /* 2072 * recursively change the type of the mountpoint. 2073 */ 2074 static int do_change_type(struct path *path, int flag) 2075 { 2076 struct mount *m; 2077 struct mount *mnt = real_mount(path->mnt); 2078 int recurse = flag & MS_REC; 2079 int type; 2080 int err = 0; 2081 2082 if (path->dentry != path->mnt->mnt_root) 2083 return -EINVAL; 2084 2085 type = flags_to_propagation_type(flag); 2086 if (!type) 2087 return -EINVAL; 2088 2089 namespace_lock(); 2090 if (type == MS_SHARED) { 2091 err = invent_group_ids(mnt, recurse); 2092 if (err) 2093 goto out_unlock; 2094 } 2095 2096 lock_mount_hash(); 2097 for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL)) 2098 change_mnt_propagation(m, type); 2099 unlock_mount_hash(); 2100 2101 out_unlock: 2102 namespace_unlock(); 2103 return err; 2104 } 2105 2106 static bool has_locked_children(struct mount *mnt, struct dentry *dentry) 2107 { 2108 struct mount *child; 2109 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) { 2110 if (!is_subdir(child->mnt_mountpoint, dentry)) 2111 continue; 2112 2113 if (child->mnt.mnt_flags & MNT_LOCKED) 2114 return true; 2115 } 2116 return false; 2117 } 2118 2119 /* 2120 * do loopback mount. 2121 */ 2122 static int do_loopback(struct path *path, const char *old_name, 2123 int recurse) 2124 { 2125 struct path old_path; 2126 struct mount *mnt = NULL, *old, *parent; 2127 struct mountpoint *mp; 2128 int err; 2129 if (!old_name || !*old_name) 2130 return -EINVAL; 2131 err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path); 2132 if (err) 2133 return err; 2134 2135 err = -EINVAL; 2136 if (mnt_ns_loop(old_path.dentry)) 2137 goto out; 2138 2139 mp = lock_mount(path); 2140 err = PTR_ERR(mp); 2141 if (IS_ERR(mp)) 2142 goto out; 2143 2144 old = real_mount(old_path.mnt); 2145 parent = real_mount(path->mnt); 2146 2147 err = -EINVAL; 2148 if (IS_MNT_UNBINDABLE(old)) 2149 goto out2; 2150 2151 if (!check_mnt(parent)) 2152 goto out2; 2153 2154 if (!check_mnt(old) && old_path.dentry->d_op != &ns_dentry_operations) 2155 goto out2; 2156 2157 if (!recurse && has_locked_children(old, old_path.dentry)) 2158 goto out2; 2159 2160 if (recurse) 2161 mnt = copy_tree(old, old_path.dentry, CL_COPY_MNT_NS_FILE); 2162 else 2163 mnt = clone_mnt(old, old_path.dentry, 0); 2164 2165 if (IS_ERR(mnt)) { 2166 err = PTR_ERR(mnt); 2167 goto out2; 2168 } 2169 2170 mnt->mnt.mnt_flags &= ~MNT_LOCKED; 2171 2172 err = graft_tree(mnt, parent, mp); 2173 if (err) { 2174 lock_mount_hash(); 2175 umount_tree(mnt, UMOUNT_SYNC); 2176 unlock_mount_hash(); 2177 } 2178 out2: 2179 unlock_mount(mp); 2180 out: 2181 path_put(&old_path); 2182 return err; 2183 } 2184 2185 static int change_mount_flags(struct vfsmount *mnt, int ms_flags) 2186 { 2187 int error = 0; 2188 int readonly_request = 0; 2189 2190 if (ms_flags & MS_RDONLY) 2191 readonly_request = 1; 2192 if (readonly_request == __mnt_is_readonly(mnt)) 2193 return 0; 2194 2195 if (readonly_request) 2196 error = mnt_make_readonly(real_mount(mnt)); 2197 else 2198 __mnt_unmake_readonly(real_mount(mnt)); 2199 return error; 2200 } 2201 2202 /* 2203 * change filesystem flags. dir should be a physical root of filesystem. 2204 * If you've mounted a non-root directory somewhere and want to do remount 2205 * on it - tough luck. 2206 */ 2207 static int do_remount(struct path *path, int flags, int mnt_flags, 2208 void *data) 2209 { 2210 int err; 2211 struct super_block *sb = path->mnt->mnt_sb; 2212 struct mount *mnt = real_mount(path->mnt); 2213 2214 if (!check_mnt(mnt)) 2215 return -EINVAL; 2216 2217 if (path->dentry != path->mnt->mnt_root) 2218 return -EINVAL; 2219 2220 /* Don't allow changing of locked mnt flags. 2221 * 2222 * No locks need to be held here while testing the various 2223 * MNT_LOCK flags because those flags can never be cleared 2224 * once they are set. 2225 */ 2226 if ((mnt->mnt.mnt_flags & MNT_LOCK_READONLY) && 2227 !(mnt_flags & MNT_READONLY)) { 2228 return -EPERM; 2229 } 2230 if ((mnt->mnt.mnt_flags & MNT_LOCK_NODEV) && 2231 !(mnt_flags & MNT_NODEV)) { 2232 return -EPERM; 2233 } 2234 if ((mnt->mnt.mnt_flags & MNT_LOCK_NOSUID) && 2235 !(mnt_flags & MNT_NOSUID)) { 2236 return -EPERM; 2237 } 2238 if ((mnt->mnt.mnt_flags & MNT_LOCK_NOEXEC) && 2239 !(mnt_flags & MNT_NOEXEC)) { 2240 return -EPERM; 2241 } 2242 if ((mnt->mnt.mnt_flags & MNT_LOCK_ATIME) && 2243 ((mnt->mnt.mnt_flags & MNT_ATIME_MASK) != (mnt_flags & MNT_ATIME_MASK))) { 2244 return -EPERM; 2245 } 2246 2247 err = security_sb_remount(sb, data); 2248 if (err) 2249 return err; 2250 2251 down_write(&sb->s_umount); 2252 if (flags & MS_BIND) 2253 err = change_mount_flags(path->mnt, flags); 2254 else if (!capable(CAP_SYS_ADMIN)) 2255 err = -EPERM; 2256 else 2257 err = do_remount_sb(sb, flags, data, 0); 2258 if (!err) { 2259 lock_mount_hash(); 2260 mnt_flags |= mnt->mnt.mnt_flags & ~MNT_USER_SETTABLE_MASK; 2261 mnt->mnt.mnt_flags = mnt_flags; 2262 touch_mnt_namespace(mnt->mnt_ns); 2263 unlock_mount_hash(); 2264 } 2265 up_write(&sb->s_umount); 2266 return err; 2267 } 2268 2269 static inline int tree_contains_unbindable(struct mount *mnt) 2270 { 2271 struct mount *p; 2272 for (p = mnt; p; p = next_mnt(p, mnt)) { 2273 if (IS_MNT_UNBINDABLE(p)) 2274 return 1; 2275 } 2276 return 0; 2277 } 2278 2279 static int do_move_mount(struct path *path, const char *old_name) 2280 { 2281 struct path old_path, parent_path; 2282 struct mount *p; 2283 struct mount *old; 2284 struct mountpoint *mp; 2285 int err; 2286 if (!old_name || !*old_name) 2287 return -EINVAL; 2288 err = kern_path(old_name, LOOKUP_FOLLOW, &old_path); 2289 if (err) 2290 return err; 2291 2292 mp = lock_mount(path); 2293 err = PTR_ERR(mp); 2294 if (IS_ERR(mp)) 2295 goto out; 2296 2297 old = real_mount(old_path.mnt); 2298 p = real_mount(path->mnt); 2299 2300 err = -EINVAL; 2301 if (!check_mnt(p) || !check_mnt(old)) 2302 goto out1; 2303 2304 if (old->mnt.mnt_flags & MNT_LOCKED) 2305 goto out1; 2306 2307 err = -EINVAL; 2308 if (old_path.dentry != old_path.mnt->mnt_root) 2309 goto out1; 2310 2311 if (!mnt_has_parent(old)) 2312 goto out1; 2313 2314 if (d_is_dir(path->dentry) != 2315 d_is_dir(old_path.dentry)) 2316 goto out1; 2317 /* 2318 * Don't move a mount residing in a shared parent. 2319 */ 2320 if (IS_MNT_SHARED(old->mnt_parent)) 2321 goto out1; 2322 /* 2323 * Don't move a mount tree containing unbindable mounts to a destination 2324 * mount which is shared. 2325 */ 2326 if (IS_MNT_SHARED(p) && tree_contains_unbindable(old)) 2327 goto out1; 2328 err = -ELOOP; 2329 for (; mnt_has_parent(p); p = p->mnt_parent) 2330 if (p == old) 2331 goto out1; 2332 2333 err = attach_recursive_mnt(old, real_mount(path->mnt), mp, &parent_path); 2334 if (err) 2335 goto out1; 2336 2337 /* if the mount is moved, it should no longer be expire 2338 * automatically */ 2339 list_del_init(&old->mnt_expire); 2340 out1: 2341 unlock_mount(mp); 2342 out: 2343 if (!err) 2344 path_put(&parent_path); 2345 path_put(&old_path); 2346 return err; 2347 } 2348 2349 static struct vfsmount *fs_set_subtype(struct vfsmount *mnt, const char *fstype) 2350 { 2351 int err; 2352 const char *subtype = strchr(fstype, '.'); 2353 if (subtype) { 2354 subtype++; 2355 err = -EINVAL; 2356 if (!subtype[0]) 2357 goto err; 2358 } else 2359 subtype = ""; 2360 2361 mnt->mnt_sb->s_subtype = kstrdup(subtype, GFP_KERNEL); 2362 err = -ENOMEM; 2363 if (!mnt->mnt_sb->s_subtype) 2364 goto err; 2365 return mnt; 2366 2367 err: 2368 mntput(mnt); 2369 return ERR_PTR(err); 2370 } 2371 2372 /* 2373 * add a mount into a namespace's mount tree 2374 */ 2375 static int do_add_mount(struct mount *newmnt, struct path *path, int mnt_flags) 2376 { 2377 struct mountpoint *mp; 2378 struct mount *parent; 2379 int err; 2380 2381 mnt_flags &= ~MNT_INTERNAL_FLAGS; 2382 2383 mp = lock_mount(path); 2384 if (IS_ERR(mp)) 2385 return PTR_ERR(mp); 2386 2387 parent = real_mount(path->mnt); 2388 err = -EINVAL; 2389 if (unlikely(!check_mnt(parent))) { 2390 /* that's acceptable only for automounts done in private ns */ 2391 if (!(mnt_flags & MNT_SHRINKABLE)) 2392 goto unlock; 2393 /* ... and for those we'd better have mountpoint still alive */ 2394 if (!parent->mnt_ns) 2395 goto unlock; 2396 } 2397 2398 /* Refuse the same filesystem on the same mount point */ 2399 err = -EBUSY; 2400 if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb && 2401 path->mnt->mnt_root == path->dentry) 2402 goto unlock; 2403 2404 err = -EINVAL; 2405 if (d_is_symlink(newmnt->mnt.mnt_root)) 2406 goto unlock; 2407 2408 newmnt->mnt.mnt_flags = mnt_flags; 2409 err = graft_tree(newmnt, parent, mp); 2410 2411 unlock: 2412 unlock_mount(mp); 2413 return err; 2414 } 2415 2416 static bool mount_too_revealing(struct vfsmount *mnt, int *new_mnt_flags); 2417 2418 /* 2419 * create a new mount for userspace and request it to be added into the 2420 * namespace's tree 2421 */ 2422 static int do_new_mount(struct path *path, const char *fstype, int flags, 2423 int mnt_flags, const char *name, void *data) 2424 { 2425 struct file_system_type *type; 2426 struct vfsmount *mnt; 2427 int err; 2428 2429 if (!fstype) 2430 return -EINVAL; 2431 2432 type = get_fs_type(fstype); 2433 if (!type) 2434 return -ENODEV; 2435 2436 mnt = vfs_kern_mount(type, flags, name, data); 2437 if (!IS_ERR(mnt) && (type->fs_flags & FS_HAS_SUBTYPE) && 2438 !mnt->mnt_sb->s_subtype) 2439 mnt = fs_set_subtype(mnt, fstype); 2440 2441 put_filesystem(type); 2442 if (IS_ERR(mnt)) 2443 return PTR_ERR(mnt); 2444 2445 if (mount_too_revealing(mnt, &mnt_flags)) { 2446 mntput(mnt); 2447 return -EPERM; 2448 } 2449 2450 err = do_add_mount(real_mount(mnt), path, mnt_flags); 2451 if (err) 2452 mntput(mnt); 2453 return err; 2454 } 2455 2456 int finish_automount(struct vfsmount *m, struct path *path) 2457 { 2458 struct mount *mnt = real_mount(m); 2459 int err; 2460 /* The new mount record should have at least 2 refs to prevent it being 2461 * expired before we get a chance to add it 2462 */ 2463 BUG_ON(mnt_get_count(mnt) < 2); 2464 2465 if (m->mnt_sb == path->mnt->mnt_sb && 2466 m->mnt_root == path->dentry) { 2467 err = -ELOOP; 2468 goto fail; 2469 } 2470 2471 err = do_add_mount(mnt, path, path->mnt->mnt_flags | MNT_SHRINKABLE); 2472 if (!err) 2473 return 0; 2474 fail: 2475 /* remove m from any expiration list it may be on */ 2476 if (!list_empty(&mnt->mnt_expire)) { 2477 namespace_lock(); 2478 list_del_init(&mnt->mnt_expire); 2479 namespace_unlock(); 2480 } 2481 mntput(m); 2482 mntput(m); 2483 return err; 2484 } 2485 2486 /** 2487 * mnt_set_expiry - Put a mount on an expiration list 2488 * @mnt: The mount to list. 2489 * @expiry_list: The list to add the mount to. 2490 */ 2491 void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list) 2492 { 2493 namespace_lock(); 2494 2495 list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list); 2496 2497 namespace_unlock(); 2498 } 2499 EXPORT_SYMBOL(mnt_set_expiry); 2500 2501 /* 2502 * process a list of expirable mountpoints with the intent of discarding any 2503 * mountpoints that aren't in use and haven't been touched since last we came 2504 * here 2505 */ 2506 void mark_mounts_for_expiry(struct list_head *mounts) 2507 { 2508 struct mount *mnt, *next; 2509 LIST_HEAD(graveyard); 2510 2511 if (list_empty(mounts)) 2512 return; 2513 2514 namespace_lock(); 2515 lock_mount_hash(); 2516 2517 /* extract from the expiration list every vfsmount that matches the 2518 * following criteria: 2519 * - only referenced by its parent vfsmount 2520 * - still marked for expiry (marked on the last call here; marks are 2521 * cleared by mntput()) 2522 */ 2523 list_for_each_entry_safe(mnt, next, mounts, mnt_expire) { 2524 if (!xchg(&mnt->mnt_expiry_mark, 1) || 2525 propagate_mount_busy(mnt, 1)) 2526 continue; 2527 list_move(&mnt->mnt_expire, &graveyard); 2528 } 2529 while (!list_empty(&graveyard)) { 2530 mnt = list_first_entry(&graveyard, struct mount, mnt_expire); 2531 touch_mnt_namespace(mnt->mnt_ns); 2532 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC); 2533 } 2534 unlock_mount_hash(); 2535 namespace_unlock(); 2536 } 2537 2538 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry); 2539 2540 /* 2541 * Ripoff of 'select_parent()' 2542 * 2543 * search the list of submounts for a given mountpoint, and move any 2544 * shrinkable submounts to the 'graveyard' list. 2545 */ 2546 static int select_submounts(struct mount *parent, struct list_head *graveyard) 2547 { 2548 struct mount *this_parent = parent; 2549 struct list_head *next; 2550 int found = 0; 2551 2552 repeat: 2553 next = this_parent->mnt_mounts.next; 2554 resume: 2555 while (next != &this_parent->mnt_mounts) { 2556 struct list_head *tmp = next; 2557 struct mount *mnt = list_entry(tmp, struct mount, mnt_child); 2558 2559 next = tmp->next; 2560 if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE)) 2561 continue; 2562 /* 2563 * Descend a level if the d_mounts list is non-empty. 2564 */ 2565 if (!list_empty(&mnt->mnt_mounts)) { 2566 this_parent = mnt; 2567 goto repeat; 2568 } 2569 2570 if (!propagate_mount_busy(mnt, 1)) { 2571 list_move_tail(&mnt->mnt_expire, graveyard); 2572 found++; 2573 } 2574 } 2575 /* 2576 * All done at this level ... ascend and resume the search 2577 */ 2578 if (this_parent != parent) { 2579 next = this_parent->mnt_child.next; 2580 this_parent = this_parent->mnt_parent; 2581 goto resume; 2582 } 2583 return found; 2584 } 2585 2586 /* 2587 * process a list of expirable mountpoints with the intent of discarding any 2588 * submounts of a specific parent mountpoint 2589 * 2590 * mount_lock must be held for write 2591 */ 2592 static void shrink_submounts(struct mount *mnt) 2593 { 2594 LIST_HEAD(graveyard); 2595 struct mount *m; 2596 2597 /* extract submounts of 'mountpoint' from the expiration list */ 2598 while (select_submounts(mnt, &graveyard)) { 2599 while (!list_empty(&graveyard)) { 2600 m = list_first_entry(&graveyard, struct mount, 2601 mnt_expire); 2602 touch_mnt_namespace(m->mnt_ns); 2603 umount_tree(m, UMOUNT_PROPAGATE|UMOUNT_SYNC); 2604 } 2605 } 2606 } 2607 2608 /* 2609 * Some copy_from_user() implementations do not return the exact number of 2610 * bytes remaining to copy on a fault. But copy_mount_options() requires that. 2611 * Note that this function differs from copy_from_user() in that it will oops 2612 * on bad values of `to', rather than returning a short copy. 2613 */ 2614 static long exact_copy_from_user(void *to, const void __user * from, 2615 unsigned long n) 2616 { 2617 char *t = to; 2618 const char __user *f = from; 2619 char c; 2620 2621 if (!access_ok(VERIFY_READ, from, n)) 2622 return n; 2623 2624 while (n) { 2625 if (__get_user(c, f)) { 2626 memset(t, 0, n); 2627 break; 2628 } 2629 *t++ = c; 2630 f++; 2631 n--; 2632 } 2633 return n; 2634 } 2635 2636 void *copy_mount_options(const void __user * data) 2637 { 2638 int i; 2639 unsigned long size; 2640 char *copy; 2641 2642 if (!data) 2643 return NULL; 2644 2645 copy = kmalloc(PAGE_SIZE, GFP_KERNEL); 2646 if (!copy) 2647 return ERR_PTR(-ENOMEM); 2648 2649 /* We only care that *some* data at the address the user 2650 * gave us is valid. Just in case, we'll zero 2651 * the remainder of the page. 2652 */ 2653 /* copy_from_user cannot cross TASK_SIZE ! */ 2654 size = TASK_SIZE - (unsigned long)data; 2655 if (size > PAGE_SIZE) 2656 size = PAGE_SIZE; 2657 2658 i = size - exact_copy_from_user(copy, data, size); 2659 if (!i) { 2660 kfree(copy); 2661 return ERR_PTR(-EFAULT); 2662 } 2663 if (i != PAGE_SIZE) 2664 memset(copy + i, 0, PAGE_SIZE - i); 2665 return copy; 2666 } 2667 2668 char *copy_mount_string(const void __user *data) 2669 { 2670 return data ? strndup_user(data, PAGE_SIZE) : NULL; 2671 } 2672 2673 /* 2674 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to 2675 * be given to the mount() call (ie: read-only, no-dev, no-suid etc). 2676 * 2677 * data is a (void *) that can point to any structure up to 2678 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent 2679 * information (or be NULL). 2680 * 2681 * Pre-0.97 versions of mount() didn't have a flags word. 2682 * When the flags word was introduced its top half was required 2683 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9. 2684 * Therefore, if this magic number is present, it carries no information 2685 * and must be discarded. 2686 */ 2687 long do_mount(const char *dev_name, const char __user *dir_name, 2688 const char *type_page, unsigned long flags, void *data_page) 2689 { 2690 struct path path; 2691 int retval = 0; 2692 int mnt_flags = 0; 2693 2694 /* Discard magic */ 2695 if ((flags & MS_MGC_MSK) == MS_MGC_VAL) 2696 flags &= ~MS_MGC_MSK; 2697 2698 /* Basic sanity checks */ 2699 if (data_page) 2700 ((char *)data_page)[PAGE_SIZE - 1] = 0; 2701 2702 /* ... and get the mountpoint */ 2703 retval = user_path(dir_name, &path); 2704 if (retval) 2705 return retval; 2706 2707 retval = security_sb_mount(dev_name, &path, 2708 type_page, flags, data_page); 2709 if (!retval && !may_mount()) 2710 retval = -EPERM; 2711 if (!retval && (flags & MS_MANDLOCK) && !may_mandlock()) 2712 retval = -EPERM; 2713 if (retval) 2714 goto dput_out; 2715 2716 /* Default to relatime unless overriden */ 2717 if (!(flags & MS_NOATIME)) 2718 mnt_flags |= MNT_RELATIME; 2719 2720 /* Separate the per-mountpoint flags */ 2721 if (flags & MS_NOSUID) 2722 mnt_flags |= MNT_NOSUID; 2723 if (flags & MS_NODEV) 2724 mnt_flags |= MNT_NODEV; 2725 if (flags & MS_NOEXEC) 2726 mnt_flags |= MNT_NOEXEC; 2727 if (flags & MS_NOATIME) 2728 mnt_flags |= MNT_NOATIME; 2729 if (flags & MS_NODIRATIME) 2730 mnt_flags |= MNT_NODIRATIME; 2731 if (flags & MS_STRICTATIME) 2732 mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME); 2733 if (flags & MS_RDONLY) 2734 mnt_flags |= MNT_READONLY; 2735 2736 /* The default atime for remount is preservation */ 2737 if ((flags & MS_REMOUNT) && 2738 ((flags & (MS_NOATIME | MS_NODIRATIME | MS_RELATIME | 2739 MS_STRICTATIME)) == 0)) { 2740 mnt_flags &= ~MNT_ATIME_MASK; 2741 mnt_flags |= path.mnt->mnt_flags & MNT_ATIME_MASK; 2742 } 2743 2744 flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE | MS_BORN | 2745 MS_NOATIME | MS_NODIRATIME | MS_RELATIME| MS_KERNMOUNT | 2746 MS_STRICTATIME | MS_NOREMOTELOCK); 2747 2748 if (flags & MS_REMOUNT) 2749 retval = do_remount(&path, flags & ~MS_REMOUNT, mnt_flags, 2750 data_page); 2751 else if (flags & MS_BIND) 2752 retval = do_loopback(&path, dev_name, flags & MS_REC); 2753 else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE)) 2754 retval = do_change_type(&path, flags); 2755 else if (flags & MS_MOVE) 2756 retval = do_move_mount(&path, dev_name); 2757 else 2758 retval = do_new_mount(&path, type_page, flags, mnt_flags, 2759 dev_name, data_page); 2760 dput_out: 2761 path_put(&path); 2762 return retval; 2763 } 2764 2765 static struct ucounts *inc_mnt_namespaces(struct user_namespace *ns) 2766 { 2767 return inc_ucount(ns, current_euid(), UCOUNT_MNT_NAMESPACES); 2768 } 2769 2770 static void dec_mnt_namespaces(struct ucounts *ucounts) 2771 { 2772 dec_ucount(ucounts, UCOUNT_MNT_NAMESPACES); 2773 } 2774 2775 static void free_mnt_ns(struct mnt_namespace *ns) 2776 { 2777 ns_free_inum(&ns->ns); 2778 dec_mnt_namespaces(ns->ucounts); 2779 put_user_ns(ns->user_ns); 2780 kfree(ns); 2781 } 2782 2783 /* 2784 * Assign a sequence number so we can detect when we attempt to bind 2785 * mount a reference to an older mount namespace into the current 2786 * mount namespace, preventing reference counting loops. A 64bit 2787 * number incrementing at 10Ghz will take 12,427 years to wrap which 2788 * is effectively never, so we can ignore the possibility. 2789 */ 2790 static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1); 2791 2792 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns) 2793 { 2794 struct mnt_namespace *new_ns; 2795 struct ucounts *ucounts; 2796 int ret; 2797 2798 ucounts = inc_mnt_namespaces(user_ns); 2799 if (!ucounts) 2800 return ERR_PTR(-ENOSPC); 2801 2802 new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL); 2803 if (!new_ns) { 2804 dec_mnt_namespaces(ucounts); 2805 return ERR_PTR(-ENOMEM); 2806 } 2807 ret = ns_alloc_inum(&new_ns->ns); 2808 if (ret) { 2809 kfree(new_ns); 2810 dec_mnt_namespaces(ucounts); 2811 return ERR_PTR(ret); 2812 } 2813 new_ns->ns.ops = &mntns_operations; 2814 new_ns->seq = atomic64_add_return(1, &mnt_ns_seq); 2815 atomic_set(&new_ns->count, 1); 2816 new_ns->root = NULL; 2817 INIT_LIST_HEAD(&new_ns->list); 2818 init_waitqueue_head(&new_ns->poll); 2819 new_ns->event = 0; 2820 new_ns->user_ns = get_user_ns(user_ns); 2821 new_ns->ucounts = ucounts; 2822 new_ns->mounts = 0; 2823 new_ns->pending_mounts = 0; 2824 return new_ns; 2825 } 2826 2827 __latent_entropy 2828 struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns, 2829 struct user_namespace *user_ns, struct fs_struct *new_fs) 2830 { 2831 struct mnt_namespace *new_ns; 2832 struct vfsmount *rootmnt = NULL, *pwdmnt = NULL; 2833 struct mount *p, *q; 2834 struct mount *old; 2835 struct mount *new; 2836 int copy_flags; 2837 2838 BUG_ON(!ns); 2839 2840 if (likely(!(flags & CLONE_NEWNS))) { 2841 get_mnt_ns(ns); 2842 return ns; 2843 } 2844 2845 old = ns->root; 2846 2847 new_ns = alloc_mnt_ns(user_ns); 2848 if (IS_ERR(new_ns)) 2849 return new_ns; 2850 2851 namespace_lock(); 2852 /* First pass: copy the tree topology */ 2853 copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE; 2854 if (user_ns != ns->user_ns) 2855 copy_flags |= CL_SHARED_TO_SLAVE | CL_UNPRIVILEGED; 2856 new = copy_tree(old, old->mnt.mnt_root, copy_flags); 2857 if (IS_ERR(new)) { 2858 namespace_unlock(); 2859 free_mnt_ns(new_ns); 2860 return ERR_CAST(new); 2861 } 2862 new_ns->root = new; 2863 list_add_tail(&new_ns->list, &new->mnt_list); 2864 2865 /* 2866 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts 2867 * as belonging to new namespace. We have already acquired a private 2868 * fs_struct, so tsk->fs->lock is not needed. 2869 */ 2870 p = old; 2871 q = new; 2872 while (p) { 2873 q->mnt_ns = new_ns; 2874 new_ns->mounts++; 2875 if (new_fs) { 2876 if (&p->mnt == new_fs->root.mnt) { 2877 new_fs->root.mnt = mntget(&q->mnt); 2878 rootmnt = &p->mnt; 2879 } 2880 if (&p->mnt == new_fs->pwd.mnt) { 2881 new_fs->pwd.mnt = mntget(&q->mnt); 2882 pwdmnt = &p->mnt; 2883 } 2884 } 2885 p = next_mnt(p, old); 2886 q = next_mnt(q, new); 2887 if (!q) 2888 break; 2889 while (p->mnt.mnt_root != q->mnt.mnt_root) 2890 p = next_mnt(p, old); 2891 } 2892 namespace_unlock(); 2893 2894 if (rootmnt) 2895 mntput(rootmnt); 2896 if (pwdmnt) 2897 mntput(pwdmnt); 2898 2899 return new_ns; 2900 } 2901 2902 /** 2903 * create_mnt_ns - creates a private namespace and adds a root filesystem 2904 * @mnt: pointer to the new root filesystem mountpoint 2905 */ 2906 static struct mnt_namespace *create_mnt_ns(struct vfsmount *m) 2907 { 2908 struct mnt_namespace *new_ns = alloc_mnt_ns(&init_user_ns); 2909 if (!IS_ERR(new_ns)) { 2910 struct mount *mnt = real_mount(m); 2911 mnt->mnt_ns = new_ns; 2912 new_ns->root = mnt; 2913 new_ns->mounts++; 2914 list_add(&mnt->mnt_list, &new_ns->list); 2915 } else { 2916 mntput(m); 2917 } 2918 return new_ns; 2919 } 2920 2921 struct dentry *mount_subtree(struct vfsmount *mnt, const char *name) 2922 { 2923 struct mnt_namespace *ns; 2924 struct super_block *s; 2925 struct path path; 2926 int err; 2927 2928 ns = create_mnt_ns(mnt); 2929 if (IS_ERR(ns)) 2930 return ERR_CAST(ns); 2931 2932 err = vfs_path_lookup(mnt->mnt_root, mnt, 2933 name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path); 2934 2935 put_mnt_ns(ns); 2936 2937 if (err) 2938 return ERR_PTR(err); 2939 2940 /* trade a vfsmount reference for active sb one */ 2941 s = path.mnt->mnt_sb; 2942 atomic_inc(&s->s_active); 2943 mntput(path.mnt); 2944 /* lock the sucker */ 2945 down_write(&s->s_umount); 2946 /* ... and return the root of (sub)tree on it */ 2947 return path.dentry; 2948 } 2949 EXPORT_SYMBOL(mount_subtree); 2950 2951 SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name, 2952 char __user *, type, unsigned long, flags, void __user *, data) 2953 { 2954 int ret; 2955 char *kernel_type; 2956 char *kernel_dev; 2957 void *options; 2958 2959 kernel_type = copy_mount_string(type); 2960 ret = PTR_ERR(kernel_type); 2961 if (IS_ERR(kernel_type)) 2962 goto out_type; 2963 2964 kernel_dev = copy_mount_string(dev_name); 2965 ret = PTR_ERR(kernel_dev); 2966 if (IS_ERR(kernel_dev)) 2967 goto out_dev; 2968 2969 options = copy_mount_options(data); 2970 ret = PTR_ERR(options); 2971 if (IS_ERR(options)) 2972 goto out_data; 2973 2974 ret = do_mount(kernel_dev, dir_name, kernel_type, flags, options); 2975 2976 kfree(options); 2977 out_data: 2978 kfree(kernel_dev); 2979 out_dev: 2980 kfree(kernel_type); 2981 out_type: 2982 return ret; 2983 } 2984 2985 /* 2986 * Return true if path is reachable from root 2987 * 2988 * namespace_sem or mount_lock is held 2989 */ 2990 bool is_path_reachable(struct mount *mnt, struct dentry *dentry, 2991 const struct path *root) 2992 { 2993 while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) { 2994 dentry = mnt->mnt_mountpoint; 2995 mnt = mnt->mnt_parent; 2996 } 2997 return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry); 2998 } 2999 3000 bool path_is_under(struct path *path1, struct path *path2) 3001 { 3002 bool res; 3003 read_seqlock_excl(&mount_lock); 3004 res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2); 3005 read_sequnlock_excl(&mount_lock); 3006 return res; 3007 } 3008 EXPORT_SYMBOL(path_is_under); 3009 3010 /* 3011 * pivot_root Semantics: 3012 * Moves the root file system of the current process to the directory put_old, 3013 * makes new_root as the new root file system of the current process, and sets 3014 * root/cwd of all processes which had them on the current root to new_root. 3015 * 3016 * Restrictions: 3017 * The new_root and put_old must be directories, and must not be on the 3018 * same file system as the current process root. The put_old must be 3019 * underneath new_root, i.e. adding a non-zero number of /.. to the string 3020 * pointed to by put_old must yield the same directory as new_root. No other 3021 * file system may be mounted on put_old. After all, new_root is a mountpoint. 3022 * 3023 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem. 3024 * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives 3025 * in this situation. 3026 * 3027 * Notes: 3028 * - we don't move root/cwd if they are not at the root (reason: if something 3029 * cared enough to change them, it's probably wrong to force them elsewhere) 3030 * - it's okay to pick a root that isn't the root of a file system, e.g. 3031 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint, 3032 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root 3033 * first. 3034 */ 3035 SYSCALL_DEFINE2(pivot_root, const char __user *, new_root, 3036 const char __user *, put_old) 3037 { 3038 struct path new, old, parent_path, root_parent, root; 3039 struct mount *new_mnt, *root_mnt, *old_mnt; 3040 struct mountpoint *old_mp, *root_mp; 3041 int error; 3042 3043 if (!may_mount()) 3044 return -EPERM; 3045 3046 error = user_path_dir(new_root, &new); 3047 if (error) 3048 goto out0; 3049 3050 error = user_path_dir(put_old, &old); 3051 if (error) 3052 goto out1; 3053 3054 error = security_sb_pivotroot(&old, &new); 3055 if (error) 3056 goto out2; 3057 3058 get_fs_root(current->fs, &root); 3059 old_mp = lock_mount(&old); 3060 error = PTR_ERR(old_mp); 3061 if (IS_ERR(old_mp)) 3062 goto out3; 3063 3064 error = -EINVAL; 3065 new_mnt = real_mount(new.mnt); 3066 root_mnt = real_mount(root.mnt); 3067 old_mnt = real_mount(old.mnt); 3068 if (IS_MNT_SHARED(old_mnt) || 3069 IS_MNT_SHARED(new_mnt->mnt_parent) || 3070 IS_MNT_SHARED(root_mnt->mnt_parent)) 3071 goto out4; 3072 if (!check_mnt(root_mnt) || !check_mnt(new_mnt)) 3073 goto out4; 3074 if (new_mnt->mnt.mnt_flags & MNT_LOCKED) 3075 goto out4; 3076 error = -ENOENT; 3077 if (d_unlinked(new.dentry)) 3078 goto out4; 3079 error = -EBUSY; 3080 if (new_mnt == root_mnt || old_mnt == root_mnt) 3081 goto out4; /* loop, on the same file system */ 3082 error = -EINVAL; 3083 if (root.mnt->mnt_root != root.dentry) 3084 goto out4; /* not a mountpoint */ 3085 if (!mnt_has_parent(root_mnt)) 3086 goto out4; /* not attached */ 3087 root_mp = root_mnt->mnt_mp; 3088 if (new.mnt->mnt_root != new.dentry) 3089 goto out4; /* not a mountpoint */ 3090 if (!mnt_has_parent(new_mnt)) 3091 goto out4; /* not attached */ 3092 /* make sure we can reach put_old from new_root */ 3093 if (!is_path_reachable(old_mnt, old.dentry, &new)) 3094 goto out4; 3095 /* make certain new is below the root */ 3096 if (!is_path_reachable(new_mnt, new.dentry, &root)) 3097 goto out4; 3098 root_mp->m_count++; /* pin it so it won't go away */ 3099 lock_mount_hash(); 3100 detach_mnt(new_mnt, &parent_path); 3101 detach_mnt(root_mnt, &root_parent); 3102 if (root_mnt->mnt.mnt_flags & MNT_LOCKED) { 3103 new_mnt->mnt.mnt_flags |= MNT_LOCKED; 3104 root_mnt->mnt.mnt_flags &= ~MNT_LOCKED; 3105 } 3106 /* mount old root on put_old */ 3107 attach_mnt(root_mnt, old_mnt, old_mp); 3108 /* mount new_root on / */ 3109 attach_mnt(new_mnt, real_mount(root_parent.mnt), root_mp); 3110 touch_mnt_namespace(current->nsproxy->mnt_ns); 3111 /* A moved mount should not expire automatically */ 3112 list_del_init(&new_mnt->mnt_expire); 3113 unlock_mount_hash(); 3114 chroot_fs_refs(&root, &new); 3115 put_mountpoint(root_mp); 3116 error = 0; 3117 out4: 3118 unlock_mount(old_mp); 3119 if (!error) { 3120 path_put(&root_parent); 3121 path_put(&parent_path); 3122 } 3123 out3: 3124 path_put(&root); 3125 out2: 3126 path_put(&old); 3127 out1: 3128 path_put(&new); 3129 out0: 3130 return error; 3131 } 3132 3133 static void __init init_mount_tree(void) 3134 { 3135 struct vfsmount *mnt; 3136 struct mnt_namespace *ns; 3137 struct path root; 3138 struct file_system_type *type; 3139 3140 type = get_fs_type("rootfs"); 3141 if (!type) 3142 panic("Can't find rootfs type"); 3143 mnt = vfs_kern_mount(type, 0, "rootfs", NULL); 3144 put_filesystem(type); 3145 if (IS_ERR(mnt)) 3146 panic("Can't create rootfs"); 3147 3148 ns = create_mnt_ns(mnt); 3149 if (IS_ERR(ns)) 3150 panic("Can't allocate initial namespace"); 3151 3152 init_task.nsproxy->mnt_ns = ns; 3153 get_mnt_ns(ns); 3154 3155 root.mnt = mnt; 3156 root.dentry = mnt->mnt_root; 3157 mnt->mnt_flags |= MNT_LOCKED; 3158 3159 set_fs_pwd(current->fs, &root); 3160 set_fs_root(current->fs, &root); 3161 } 3162 3163 void __init mnt_init(void) 3164 { 3165 unsigned u; 3166 int err; 3167 3168 mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount), 3169 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL); 3170 3171 mount_hashtable = alloc_large_system_hash("Mount-cache", 3172 sizeof(struct hlist_head), 3173 mhash_entries, 19, 3174 0, 3175 &m_hash_shift, &m_hash_mask, 0, 0); 3176 mountpoint_hashtable = alloc_large_system_hash("Mountpoint-cache", 3177 sizeof(struct hlist_head), 3178 mphash_entries, 19, 3179 0, 3180 &mp_hash_shift, &mp_hash_mask, 0, 0); 3181 3182 if (!mount_hashtable || !mountpoint_hashtable) 3183 panic("Failed to allocate mount hash table\n"); 3184 3185 for (u = 0; u <= m_hash_mask; u++) 3186 INIT_HLIST_HEAD(&mount_hashtable[u]); 3187 for (u = 0; u <= mp_hash_mask; u++) 3188 INIT_HLIST_HEAD(&mountpoint_hashtable[u]); 3189 3190 kernfs_init(); 3191 3192 err = sysfs_init(); 3193 if (err) 3194 printk(KERN_WARNING "%s: sysfs_init error: %d\n", 3195 __func__, err); 3196 fs_kobj = kobject_create_and_add("fs", NULL); 3197 if (!fs_kobj) 3198 printk(KERN_WARNING "%s: kobj create error\n", __func__); 3199 init_rootfs(); 3200 init_mount_tree(); 3201 } 3202 3203 void put_mnt_ns(struct mnt_namespace *ns) 3204 { 3205 if (!atomic_dec_and_test(&ns->count)) 3206 return; 3207 drop_collected_mounts(&ns->root->mnt); 3208 free_mnt_ns(ns); 3209 } 3210 3211 struct vfsmount *kern_mount_data(struct file_system_type *type, void *data) 3212 { 3213 struct vfsmount *mnt; 3214 mnt = vfs_kern_mount(type, MS_KERNMOUNT, type->name, data); 3215 if (!IS_ERR(mnt)) { 3216 /* 3217 * it is a longterm mount, don't release mnt until 3218 * we unmount before file sys is unregistered 3219 */ 3220 real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL; 3221 } 3222 return mnt; 3223 } 3224 EXPORT_SYMBOL_GPL(kern_mount_data); 3225 3226 void kern_unmount(struct vfsmount *mnt) 3227 { 3228 /* release long term mount so mount point can be released */ 3229 if (!IS_ERR_OR_NULL(mnt)) { 3230 real_mount(mnt)->mnt_ns = NULL; 3231 synchronize_rcu(); /* yecchhh... */ 3232 mntput(mnt); 3233 } 3234 } 3235 EXPORT_SYMBOL(kern_unmount); 3236 3237 bool our_mnt(struct vfsmount *mnt) 3238 { 3239 return check_mnt(real_mount(mnt)); 3240 } 3241 3242 bool current_chrooted(void) 3243 { 3244 /* Does the current process have a non-standard root */ 3245 struct path ns_root; 3246 struct path fs_root; 3247 bool chrooted; 3248 3249 /* Find the namespace root */ 3250 ns_root.mnt = ¤t->nsproxy->mnt_ns->root->mnt; 3251 ns_root.dentry = ns_root.mnt->mnt_root; 3252 path_get(&ns_root); 3253 while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root)) 3254 ; 3255 3256 get_fs_root(current->fs, &fs_root); 3257 3258 chrooted = !path_equal(&fs_root, &ns_root); 3259 3260 path_put(&fs_root); 3261 path_put(&ns_root); 3262 3263 return chrooted; 3264 } 3265 3266 static bool mnt_already_visible(struct mnt_namespace *ns, struct vfsmount *new, 3267 int *new_mnt_flags) 3268 { 3269 int new_flags = *new_mnt_flags; 3270 struct mount *mnt; 3271 bool visible = false; 3272 3273 down_read(&namespace_sem); 3274 list_for_each_entry(mnt, &ns->list, mnt_list) { 3275 struct mount *child; 3276 int mnt_flags; 3277 3278 if (mnt->mnt.mnt_sb->s_type != new->mnt_sb->s_type) 3279 continue; 3280 3281 /* This mount is not fully visible if it's root directory 3282 * is not the root directory of the filesystem. 3283 */ 3284 if (mnt->mnt.mnt_root != mnt->mnt.mnt_sb->s_root) 3285 continue; 3286 3287 /* A local view of the mount flags */ 3288 mnt_flags = mnt->mnt.mnt_flags; 3289 3290 /* Don't miss readonly hidden in the superblock flags */ 3291 if (mnt->mnt.mnt_sb->s_flags & MS_RDONLY) 3292 mnt_flags |= MNT_LOCK_READONLY; 3293 3294 /* Verify the mount flags are equal to or more permissive 3295 * than the proposed new mount. 3296 */ 3297 if ((mnt_flags & MNT_LOCK_READONLY) && 3298 !(new_flags & MNT_READONLY)) 3299 continue; 3300 if ((mnt_flags & MNT_LOCK_ATIME) && 3301 ((mnt_flags & MNT_ATIME_MASK) != (new_flags & MNT_ATIME_MASK))) 3302 continue; 3303 3304 /* This mount is not fully visible if there are any 3305 * locked child mounts that cover anything except for 3306 * empty directories. 3307 */ 3308 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) { 3309 struct inode *inode = child->mnt_mountpoint->d_inode; 3310 /* Only worry about locked mounts */ 3311 if (!(child->mnt.mnt_flags & MNT_LOCKED)) 3312 continue; 3313 /* Is the directory permanetly empty? */ 3314 if (!is_empty_dir_inode(inode)) 3315 goto next; 3316 } 3317 /* Preserve the locked attributes */ 3318 *new_mnt_flags |= mnt_flags & (MNT_LOCK_READONLY | \ 3319 MNT_LOCK_ATIME); 3320 visible = true; 3321 goto found; 3322 next: ; 3323 } 3324 found: 3325 up_read(&namespace_sem); 3326 return visible; 3327 } 3328 3329 static bool mount_too_revealing(struct vfsmount *mnt, int *new_mnt_flags) 3330 { 3331 const unsigned long required_iflags = SB_I_NOEXEC | SB_I_NODEV; 3332 struct mnt_namespace *ns = current->nsproxy->mnt_ns; 3333 unsigned long s_iflags; 3334 3335 if (ns->user_ns == &init_user_ns) 3336 return false; 3337 3338 /* Can this filesystem be too revealing? */ 3339 s_iflags = mnt->mnt_sb->s_iflags; 3340 if (!(s_iflags & SB_I_USERNS_VISIBLE)) 3341 return false; 3342 3343 if ((s_iflags & required_iflags) != required_iflags) { 3344 WARN_ONCE(1, "Expected s_iflags to contain 0x%lx\n", 3345 required_iflags); 3346 return true; 3347 } 3348 3349 return !mnt_already_visible(ns, mnt, new_mnt_flags); 3350 } 3351 3352 bool mnt_may_suid(struct vfsmount *mnt) 3353 { 3354 /* 3355 * Foreign mounts (accessed via fchdir or through /proc 3356 * symlinks) are always treated as if they are nosuid. This 3357 * prevents namespaces from trusting potentially unsafe 3358 * suid/sgid bits, file caps, or security labels that originate 3359 * in other namespaces. 3360 */ 3361 return !(mnt->mnt_flags & MNT_NOSUID) && check_mnt(real_mount(mnt)) && 3362 current_in_userns(mnt->mnt_sb->s_user_ns); 3363 } 3364 3365 static struct ns_common *mntns_get(struct task_struct *task) 3366 { 3367 struct ns_common *ns = NULL; 3368 struct nsproxy *nsproxy; 3369 3370 task_lock(task); 3371 nsproxy = task->nsproxy; 3372 if (nsproxy) { 3373 ns = &nsproxy->mnt_ns->ns; 3374 get_mnt_ns(to_mnt_ns(ns)); 3375 } 3376 task_unlock(task); 3377 3378 return ns; 3379 } 3380 3381 static void mntns_put(struct ns_common *ns) 3382 { 3383 put_mnt_ns(to_mnt_ns(ns)); 3384 } 3385 3386 static int mntns_install(struct nsproxy *nsproxy, struct ns_common *ns) 3387 { 3388 struct fs_struct *fs = current->fs; 3389 struct mnt_namespace *mnt_ns = to_mnt_ns(ns); 3390 struct path root; 3391 3392 if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) || 3393 !ns_capable(current_user_ns(), CAP_SYS_CHROOT) || 3394 !ns_capable(current_user_ns(), CAP_SYS_ADMIN)) 3395 return -EPERM; 3396 3397 if (fs->users != 1) 3398 return -EINVAL; 3399 3400 get_mnt_ns(mnt_ns); 3401 put_mnt_ns(nsproxy->mnt_ns); 3402 nsproxy->mnt_ns = mnt_ns; 3403 3404 /* Find the root */ 3405 root.mnt = &mnt_ns->root->mnt; 3406 root.dentry = mnt_ns->root->mnt.mnt_root; 3407 path_get(&root); 3408 while(d_mountpoint(root.dentry) && follow_down_one(&root)) 3409 ; 3410 3411 /* Update the pwd and root */ 3412 set_fs_pwd(fs, &root); 3413 set_fs_root(fs, &root); 3414 3415 path_put(&root); 3416 return 0; 3417 } 3418 3419 static struct user_namespace *mntns_owner(struct ns_common *ns) 3420 { 3421 return to_mnt_ns(ns)->user_ns; 3422 } 3423 3424 const struct proc_ns_operations mntns_operations = { 3425 .name = "mnt", 3426 .type = CLONE_NEWNS, 3427 .get = mntns_get, 3428 .put = mntns_put, 3429 .install = mntns_install, 3430 .owner = mntns_owner, 3431 }; 3432